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2 
INTRODUCTION 

Drought is probably the major factor in limiting crop 

production in semi-arid regions. These regions have been 

periodically subjected to droughts and in severe cases com- 

plete crop failures have resulted. Previous weather records 

indicate that high temperatures and low rainfall may occur 

periodically and as an insurance against such adverse weather 

conditions the plant breeder must necessarily produce plants 

that will withstand such conditions. 

The westward migration into the Great Plains area re- 

sulted in a great change in the natural vegetation. Pre- 

viously the prairies were in their natural state and over a 

long period of time a balance in vegetation had been reached. 

During this long unmolested period, a climax vegetation was 

established through the weeding out of the non-resistant 

plants. However, man has plowed many acres of this virgin 

land and has substituted his own crops, which often have 

been brought from great distances and lack the necessary 

resistance to adverse conditions. Nature's balance has been 

upset and man is now attempting to produce an artificial 

balance with crops that have not been subjected to the rigor 

of nature's long-time selection in the Great Plains region. 

Corn, although not the most important crop in the Great 

Plains area, is grown extensively in areas where drought con- 
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ditions frequently occur. Corn is naturally a subtropical 

crop and grows during the warmest season of the year when 

moisture shortage and dry hot weather frequently prevail. 

Corn possesses characters which seemingly make it adapted 

to droughty conditions, such as its deep roots extending 

five to six feet in depth and its relatively low water re- 

quirement. Because of its flowering habit it is not well 

adapted to dry hot regions. Low soil moisture delays Bilk- 

ing much more than it does pollen shedding and the tassel 

often "blasts" when hot winds occur. The flowering period 

has been shown to be the most critical period of the corn 

plant by the rather high correlations which exist between 

July rainfall, especially July 20 to August 10, and high 

temperatures with the yield of corn in Kansas as shown by 

Robb (1934) and Hodges (1931). 

Corn with its apparent lack of adaptation for semi-arid 

conditions probably will continue to be grown in areas sub- 

ject to droughts. As such conditions do prevail it has be- 

come necessary to consider the tolerance of various strains 

of corn to heat and soil drought in a corn improvement pro- 

gram. The task of the plant breeder, then is to produce 

strains that will be better suited to their environment. 

Corn improvement methods normally are long and rather costly 

and testing drought tolerance under field conditions is not 

very certain because of the weather variations that occur 
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from year to year. To accelerate the progress of the plant 

breeder, who is developing crops for use in the drought 

regions, the perfection of some suitable, simple and reliable 

methods for determining the comparative resistance of plants 

in the laboratory is desirable. Adverse weather conditions 

do not occur regularly and with a suitable system of control- 

led conditions the plant breeder would not have to depend 

upon the highly variable climatic factors to test his plants. 

Such reasonably accurate laboratory methods have been de- 

scribed by Hunter, et. al. (1936) for corn and by Aamodt 

(1935) for wheat. 

Much of the early work done on the drought relationships 

of plants represents attempts to find some simple index of 

measuring drought resistance by means of a number of relative- 

ly easily observable antanomical characteristics. The xer- 

ophytic adaptations and drought resistance of native plants 

are of small value to the agronomic crops. Dormancy during 

dry spells and slow Frowth are characteristics of the perenni- 

als while the annuals are often of an ephemeral nature. The 

ultimate goal of economic crop plants is yield of either 

grain or forage and this generally cannot be accomplished in 

early maturing plants, or in plants which remain dormant for 

extended periods of time, although modifications of these 

adaptations may be utilized. 

The study of drought resistance is complicated by the 
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fact that the degree of drought resistance is lnriuencea by 

all the conditions under which the plant develops and that 

the sensitivity of the plant to drought varies at different 

periods of growth. Drought resistance in the field is a sum- 

mation of several factors which under proper laboratory con- 

ditions can be separated. Drought generally is associated 

with low atmospheric moisture and high temperature which 

causes a very low relative humidity and a high rate of evap- 

oration. Under field conditions it is impossible to separate 

the effect due to lack of moisture from that due to high tem- 

perature, while with controlled conditions the moisture or 

temperature relations of the plant can be worked out separate- 

ly. In this study air temperature is the only factor of 

drought considered. 

The physiological basis of drought resistance has been 

studied extensively but the genetic behavior of drought tol- 

erance has received relatively little attention. These two 

factors cannot be separated satisfactorily since physiologi- 

cal behavior is the response of the hereditary potentialities 

of the individual to its surrounding habitat. In studying 

such a problem as drought tolerance the close association 

between the physiology and genetics of the plant must be 

kept in mind. 

Since yield depends upon such factors as drought toler- 

ance, winter hardiness, and insect resistance, it is important 
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that the plant breeder knows something about the mode of in- 

heritance of these characters to carry out a successful breed- 

ing program. This paper deals primarily with the problem of 

determining whether any major genetic factors for drought tol- 

erance are associated with any of the ten linkage groups in 

maize and only incidently with the mode of inheritance of 

drought tolerance. 

RE7TEW OF LITERATURE 

Physiological Studies 

Drought resistance which is possessed by any group of 

plants undoubtedly is due to the interaction of a number of 

factors. A review of the literature shows that although con- 

siderable work on drought resistance in plants has been done, 

primary emphasis has been placed on the attempt to find a 

simple indes to measure drought resistance. 

Perhaps the best interpretation is given by Maxsimov 

(1929) in which he defines drought resistance of crop plants 

as the capacity of the plants to endure drought and to recover 

readily after permanent wilting with minimum damage to the 

plant itself and to the yield produced. 

The term "drought" may be considered in several ways. 

There are at least two readily distinguishable types of 

drought: (1) atmospheric drought and (2) soil or edaphic 

drought. Ellis et. al. (1936) have sugr-ested another type as 
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(3) physiological drought. Atmospheric drought is one caused 

by a hot dry wind resulting in a low humidity and a high rate 

of evaporation which causes the plant to wilt but which is 

usually of a temporary nature. Soil drought is most common- 

ly thought of as the condition in which the soil no longer 

provides the plant with moisture, causing the plant to wilt 

permanently. One or the other types of drought may occur and 

when they occur in combination very adverse conditions for 

plant growth prevail. Physiological drought is caused by 

too high a concentration of the soil solution whereby the 

plant cannot obtain water from the soil. This type is of a 

very local nature occurring in such areas as alkali spots 

and sometimes associated with frozen soil. The problem of 

drought may also be classified as to (1) moisture and (2) 

temperature relationships that exist in the environment. 

Each may be subdivided into two parts: (a) soil and (b) air. 

Thus under moisture, the water available to plants and the 

relative humidity of the air would be considered, and under 

temperature, the soil and air temperatures would be consid- 

ered. Soil temperatures, though not so important, are known 

to cause damage, especially to flax plants. pincer (1919), 

of the United States Weather Bureau, considers a drought to 

be 30 consecutive days, or more, without 0.25 inch of rain- 

fall in 24 hours for the period from March to September in- 

clusive. This probably is not a satisfactory definition be- 
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cause it does not take into consideration the effect of tem- 

perature. 

Earlier it was thought that plants differed in their 

ability to absorb water from the soil. Briggs and Shantz 

(1912) did extensive work on the ability of plants to remove 

moisture from the soil. Plants were allowed to grow in seal- 

ed containers until permanently wilted. The moisture content 

of the soil at this stage was determined and was called the 

"wilting coefficient." It was found that the wilting coe- 

fficient for all plants tested on the same soil was nearly 

the same, and that no relationship existed between the amount 

of water a plant could remove from the soil and its relative 

tolerance to drought. 

It was previously thought that plants with xerophytic 

characteristics adapted to droughty habitats were economical 

in their use of water. Miller (1931) defines "water require- 

ment" as the ratio of the number of units of water absorbed 

by the plant during the growing season to the number of units 

of dry matter produced by the plant during that time. Briggs 

and Shantz (1913, 1914, 1917) have determined the water re- 

quirement of many plants and have concluded that various 

factors of the environment affect the amount of water used 

by plants. They at first thought that there would be a close 

association between the water requirement of plants and 

drought resistance, but they found that sorghums, millets, 
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and corn had a low water requirement and certain Agropyrons 

and Brome grass had high water requirements. Also sorghums 

often had a higher water requirement than corn although sor- 

ghum is recognized to be more drought resistant than corn. 

They found a wide range in water requirement among the var- 

ieties of many crops and encouraged the belief that strains 

could be obtained which were still more efficient in the use 

of water than those grown at present in dry-land regions. 

Dillman (1916) also suggested that the plant breeder should 

determine the water requirement of his elected strains and 

if significant differences were found it was one of the best 

indications of difference in adaptability to drought con- 

ditions. Later, (1931), he stated that water requirement 

probably is not a dependable measure of the adaptation of a 

variety to conditions of drought. 

Plants that are growing under arid conditions differ 

morphologically from those growing in humid climates. It 

was thought that xerophytic structures in crop plants would 

insure drought resistant qualities. Size of cells and number 

and size of stomata were thought to be a rather definite 

measure of drought resistance. Kiesselbach (1916) studied 

correlations between leaf structure and number of stomata and 

concluded there was no consistent correlation between these 

histological coefficients and the transpiration rate per unit 

dry matter or per unit leaf-area of the different varieties 
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of corn studied. In summarizing the value of xerophilous 

structures such as small cells, a dense network of veins, 

numerous (but small) stomata per unit area, a relatively 

great development of the root system, succulent nature of 

stem and leaves, and hairy and waxy coverings, Maxsimov 

(1929) considered them to be only of secondary importance. 

He placed the most emphasis on the plants ability to with- 

stand wilting without injury and loss in yield. 

The extent, type, and amount of the root systems have 

been studied in considerable detail. Miller (1916) reported 

that the nature of the root system may have an important part 

in preventing incipient wilting in the leaves. For any given 

stage of growth Miller found that corn and sorghum possessed 

the same number of primary roots and that the general extent 

of these roots in both a horizontal and vertical direction 

was the same. Sorghums have about twice as many secondary 

roots per unit of primary roots as corn and the primary and 

secondary roots of sorghum are more fibrous than those of 

the corn plant. Corn ordinarily has from 1.5 to 2.3 times 

as great a leaf area as sorghum, but sorghum has a main root 

system as large as corn and furthermore has twice as many 

secondary and fibrous roots which suggests that the absorbing 

system of sorghum would be twice as efficient in the absorp- 

tion of water from the soil as corn. It is a well known fact 

that sorghum is a better dry-land crop than corn and its ef- 
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ficient root system may be a partial explanation of this dif- 

ference. Weaver and Albertson (1936) in studying the changes 

in prairie vegetation due to the drought of 1934 and 1936, 

found that all of the native grasses suffered loss, but that 

the death rate was greater among those with relatively short 

roots. Andropogon furcatus because of its deeper root system 

was usually injured least. There apparently exists some cor- 

relation between type and extent of root systems and drought 

resistance, but the precedure necessary to determine the type 

and extent of roots on a comprehensive scale is out of the 

question for the average plant breeder. 

More recent studies have been made upon the physiology 

of the protoplasm in relation to drought resistance. Novikov 

(1931), a Russian worker, determined the amount of bound water 

in the plants. Bound water is referred to as the water which 

plants hold in an unfree state. From field records Novikov 

selected drought resistance and non-drought resistant strains 

of wheat that had proven qualities over a period of years. 

In one experiment Novikov grew plants in soil of 40, 60, and 

80 percent maximum water content. There was no significant 

difference in percent of frozen water between plants growing 

in soil with 60 and 80 percent of maximum moisture content. 

A significant difference was found, however, in plants which 

were grown in soil of 40 percent of maximum moisture. The 
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resistant wheat had 18.6 percent frozen water and the non- 

resistant wheat had 30 percent frozen water. In a series of 

tests the drought resistant wheat yielded more than the non- 

resistant wheat in dry years but showed no advantage in 

normal years. 

Holbert et. al. (1932) made total, free, and bound 

water determinations on yellow dent corn during a brief 

drought period. Indications were obtained that the water 

holding capacity of the leaf tissue in resistant strains of 

corn increases as heat and drought continue. Total water de- 

creased slightly but bound water increased 35 percent on the 

dry basis. On the second day following one-half inch of rain 

another marked shift in bound water and free water equilibri- 

um occurred in the direction of the condition existing prior 

to the heat and drought period. On the other hand, the water 

binding capacity of comparable leaf tissues of heat suscept- 

ible strains increased very little as heat and drought con- 

tinued and even in some strains there was a decrease. During 

the first three days after the stress period had passed sus- 

ceptible strains made phenomenal growth. Prehardening for 

heat as well as for cold has been found associated with mark- 

ed increase in water binding capacity. 

More recently studies have been made on the physico- 

chemical properties of plants in regard to drought tolerance. 

Newton and Martin (1930) have done a large amount of work in 
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this field, having studied many plants in relation to known 

drought adaptations. In determining the osmotic pressure of 

plants they found that the osmotic pressure of the tissues 

of many grasses, both cultivated and wild types, varied with 

the physiological scarcity of water, but they concluded it 

was not a good index of drought resistance. They also deter- 

mined the colloidal content of cells. A characteristic 

property of colloids is the imbibition of water and the hold- 

ing of this water against a rather high tension. The colloid- 

al content of the cell varied considerably but there apparent- 

ly was some relation between the amount of colloids present 

and the drought resisting nature of the plants. Their tech- 

nique is not simple enough to be used in making many tests. 

Newton and idartin also determined the bound water content of 

various plants and found this index to be more dependable. 

On this basis the cultivated wheats and several grasses 

have been arranged satisfactorily in the order of their 

drought resistance. 

The principle factors affecting drought resistance f'n 

plants were summarized by Newton and Martin (1930) as shown 

in the following outline on page 14. 
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Outline showing the principal factors affecting drought resistance 
in plants. Newton and Martin, 1930. 
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Quantitative Factors 

Inbred lines of maize ("pure lines") and other true 

breeding varieties of plants breed true not only for such 

visible characters as color, height, leafiness, strength of 

stalk and so forth, but also for physiological functions such 

as disease resistance, insect resistance and drought re- 

sistance. East (1936) states that in any given population 

there are more different allels present among the genes in- 

fluencing the physiological efficiency than among the genes 

influencing the morphological pattern. It is recognized 

that somatic changes, although genetically determined, may 

be influenced by the environment in which grown or by the 

other elements in the genetic composition. In the more 

simple cases of known genes the epistatic or modifying effect, 

duplicate, complementary and supplementary behavior of genes 

has been well worked out. However, with such elusive genes 

as quantitative factors, very complicated situations occur 

because of the many more genes present and the lack of know- 

ledge of their exact mode of inheritance. 

Quantitative characters often may best be studied by 

determining whether they are associated with any known, 

simple qualitative genes. With the rapid cataloguing and 

classification of chromosomal translccations in maize, another 
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method besides well known genes, can be used in the study of 

quantitative factors. This latter method makes it possible 

to use normal stocks of maize without the probable alteration 

some of the better known qualitative genes may have on the 

physiology of the plants. Genetic factors responsible for 

size (quantitative) characters are unquestionably difficult 

to analyze and their actual presence in the germinal complex 

is still largely theoretical. Enough work has been done on 

the problem of quantitative characters to verify that herit- 

able variations are probably due to a large number of Men- 

delian factors but more work should be done. 

In any such study involving quantitative factors care 

should be taken that the causes of variability are properly 

separated. Many size characters are influenced by external 

conditions and it becomes difficult to distinguish the dif- 

ferent genetic possibilities because of the knowledge that 

these genetic factors can be modified by the environment. 

Therefore it becomes more important that the response of 

genes to their environment be more fully understood in order 

to facilitate the study of complex quantitative characters 

and further aid in the breeding of better crop plants. 

There are relatively few critical studies on quantitative 

factors in maize. Many of these studies have been on disease 

resistance, which has been found in some cases, to be due to 

a single gene. 
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Emerson and East (1913) reported upon the inheritance ot 

several size factors in maize. The inheritance of the number 

of rows per ear was studied and in nearly every case the F1 

was intermediate and the parent types were recovered in F2 

and F3 generations. Ear length studies gave similar results. 

Earliness of F1 plants was intermediate while in F2 and F 
3 

generations the range between both parents was obtained. In 

height of plants the F1 was generally taller (heterosis) than 

either of the parents. In studying these various size factors 

it was concluded that certain quantitative relations in maize 

are the influence of a single factor in the development of 

two or more characters as well as the influence of several 

factors in the development of a single character. The multi- 

ple-factor hypothesis furnishes a satisfactory interpretation 

of the behavior of size characters in plants and animals which 

is based upon the Mendelian principle of segregation and re- 

combination of factors. 

Wellhausen (1937) studied the behavior of fifty-six in- 

bred lines of corn to bacterial wilt and selected the most 

resistant and the two most susceptible lines and made all the 

possible crosses between them. He concluded that there were 

at least three dominant factors, independent and supplementa- 

ry, which were involved in the inheritance to bacterial wilt. 

Two factors were major in importance and the other minor. 

The presence of all three factors in heterozygous or homo- 
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zygous conditions gave a high degree of resistance while the 

triple recessive was very susceptible. Apparently one of 

the factors may be located on chromosome I as a loose link- 

age was noted with the P gene. Resistance also was associat- 

ed with late maturity and susceptibility with early maturity. 

Hybrid vigor was exhibited when the two susceptible inbreds 

were crossed but this vigor did not increase the resistance. 

Wellhausen suggested that there may be other minor factors 

besides the three factors he had postulated. This carefully 

planned experiment shows the difficulty in isolating quantit- 

ative factors and assigning them to linkage groups. 

Lindstrom (1929, 1931) noted that the number of rows 

on an ear was governed by multiple factors and was one size 

character that was influenced relatively little by environ- 

ment. It was thought that the multiple genes controlling 

row number (or any other size character) are scattered on 

many of the chromosomes and if enough characters were ana- 

lyzed genetically and correlated with row number by appropri- 

ate hybridization methods, certain linkages would be demon- 

strated. Lindstrom used only four well known qualitative 

factors in his study but found a very significant correlation 

between cob and pericarp color (P) and row number in a large 

series of crosses and was inclined to believe that one of 

the major row number genes is located on the P-br chromosome. 

He also found rather loose linkage with endosperm texture 
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(Susu), endosperm color (Iy) and aleurone color (Rr). In 

such a study as the linkage of quantitative and qualitative 

genes it is often only through the use of exceedingly large 

numbers of progeny that certain linkages can be detected. 

Jenkins (1931) observed very marked differences in re- 

sistance of inbred lines of corn and their single crosses to 

leaf burning which is common in hot, dry weather. One inbred 

seemed to carry factors for drought resistance, for in the 

ten crosses in which it occurred, no injury was noted. Compa- 

rable crosses of another inbred were very susceptible to leaf 

burning. This latter line seemingly carried somewhat domi- 

nant factors for susceptibility. Incidently the crosses in- 

volving the resistant line were on the average the most pro- 

ductive. No cross between these two lines was grown in the 

year the observations were made. The data indicate that 

much may be accomplished in breeding corn for drought re- 

sistance. 

Immer (1927) studied the linkage relations between the 

factors determining smut reaction and one or more known ge- 

netic factors in seven of the ten linkage groups in maize. 

He found that the factor was linked with two groups, the 

P-br group and the B-1g group. However, he thought that per- _ 

haps the morphology of the liguless factor caused high smut 

infection. The number of smut infected ears on the liguless 

plants was low which further gave evidence that the morpho- 
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logical character itself may have been of more importance than 

any linked genes for specific smut behavior. It is of in- 

terest to note that smut was not linked with Su su when smut 

is of such common occurrence in sweet corn. In general, the 

inheritance of reaction of corn smut in maize was shown to 

be intermediate, although there were several instances in 

which there was an apparent dominance of susceptibility. 

Hoover (1932) also studied the inheritance of smut in 

maize. He found that the F1 was intermediate. He used ge- 

netic markers on nine of the ten chromosomes and found link- 

ape of smut reaction with four of these. These four included 

the factors for "ramosa", "tassel seed", "brachytic" and "lig- 

uless", and each character giving such a morphological change 

from the normal condition that it might play an important 

role in the reaction of a plant to smut and not be true link- 

age relationship. Hoover concluded that in so far as the 

host is concerned, two sets of genetic factors seemed to con- 

trol the reaction of any particular strain to smut. One 

group of factors was considered to be concerned primarily in 

the control of physiological behavior and the second with the 

morphology of the plant. 

Not all cases of disease resistance are explained on the 

multiple-factor basis. Rhoades (1935) showed that resistance 

to race 3 of Puccinia sorghi was due to a single Mendelian 

factor, which was located on chromosome IX. Her method used 
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in locating the gene for rust resistance was of interest in 

that she used irradiated pollen and trisomics, thus escaping 

the possible direct effect of any marker genes. Mains (1931) 

also showed that resistance to two forms (1 and 3) of Puccinia 

sorghi was inherited in a very definite manner obtaining in 

F 
2 

a ratio of three resistant to one susceptible plants. 

Lindstrom (1926) presented conclusive evidence to demon- 

strate that genetic linkage occurs between color factors and 

size factors in the fruit of tomatoes. Two known factors, a 
for skin color and Rr, for flesh color, located on two dif- 

ferent chromosomes, were used as simple qualitative factors. 

Rather definite linkage of the size of fruit occurred with 

the yellow skin color. Also some linkage with red flesh was 

noted, but not as striking as in case of yellow skin. Small 

size tended to be dominant. No complimentary factors were 

present, at least no transgressive segregation occurred in 

F2. Only two of the 12 chromosomes in tomatoes were tested 

and it may be possible that there are size factors on all of 

them. 

Yeager (1937) also worked with size inheritance in 

tomatoes. He found that locule number was associated with 

size whereas Lindstrom found no such association. Locule 

number was also associated with the shape of the fruit. 

Yeager did find that tomatoes with the same locule number dif- 

fered several hundred percent in size so obviously there are 
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other size factors present. Since the vegetative vigor of a 

plant may greatly affect the size of the fruit, Yeager con- 

cluded that genes not directly related to size and shape of 

the fruit but which affect the general vigor of the plant 

and other plant characteristics have their effect on fruit 

size. 

Griffee (1925) has shown that resistance and suscepti- 

bility of barley to Belminthosporium sativum are due to defi- 

nite genetic factors. By studying the reaction of F3 lines 

to this pathogene in relation to other characters the in- 

ference was drawn that at least three factors are concerned. 

One factor was linked with the factor for 2-rowed heads, one 

with white glumes and one with rough awn. The linkage of the 

factor for susceptibility to barley stripe with the factor 

for earliness was very intense, or else earliness in itself 

predisposes the plant to attack by the pathogene. Such com- 

plications as these make the separation of physiological and 

genetical factors difficult. 

The relation between genes affecting size and color in 

tobacco was studied by Smith (1937). He found that each color 

gene studied was linked with genes affecting coralla size. 

Apparently a large number of size genes of comparable magni- 

tude was involved, none having major effects and all being 

non-dominant. 

In observing the varietal resistance of small grains to 
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spring frost injury, Harrington (1936) found a relationship 

between remote ancestry and susceptibility to frost damage. 

Nheats having winter-hardy Kanred as a parent showed more 

frost resistance than wheats involving emmer and Indian wheats 

in their ancestry. This is a striking example in which frost 

reaction (a quantitative character) is transmitted from the 

parent to the progeny. 

The study of inheritance ,of winter-hardiness in wheat by 

Quisenberry (1931) indicated that this character appears to 

be controlled by several genetic factors, the final expression 

being greatly influenced by the environment under which the 

material is grown. Worzella (1935) made a further study of 

cold tolerance and grew the F1, F2, and F3 generations to- 

gether with their parents, and subjected them to artifically 

controlled freezing tests. The F 
1 
was intermediate and the 

F 
2 
varied from some more susceptible than the non-hardy parent 

up to plants as resistant as the hardy parent. F2 lines which 

were susceptible carried over into F3. The transgressive 

segregation which occurred was significant. The great in- 

crease in the variability between the parents and F2 gener- 

ations, the reappearance of the parental types and trans- 

gressive variation indicates clearly that segregation of ge- 

netic factors had occurred. The number of genetic factors in- 

volved could not be determined. 

Castle (1929) in studying size inheritance in rabbits 
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doubted that genes exist which affect the general rate of 

growth and which influence the size of the organism as a 

whole. Although size is a highly complicated character, 

being the resultant of many factors, Castle studied only 

four factors representing four linkage groups of the twenty- 

two in rab its. General body conformation is similar to 

yield in grain crops in that both are possibly the cumulative 

result of many factors. At best the linkage test is a dif- 

ficult and uncertain method of isolating quantitative genes 

and only by the use of large numbers may certain linkages be 

detected. 

Methods of Studying Drought Resistance 

The Russian investigator Novikov (1931) and others have 

made considerable use of the amount of bound water in plants 

as a measure of drought or cold resistance and have obtained 

some rather definite results. 

Timofeeva (1933) used a very simple method to determine 

the drought resistance of various crop plants. Seeds of wheat 

were germinated on blotters, put into various concentrations 

of sucrose for certain periods of time and then removed and 

planted in sand to note reccYlz,y. A greater proportion of 

plants of drought resistant varieties survived than of those 

which were non-resistant to drought. Aamodt and Johnston 

(1936) on.the other hand found no marked superiority of ker- 
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nels of drought resistant varieties over non-resistant va- 

rieties in their capacity to germinate in more concentrated 

solutions of common salt, potassium chloride and sucrose. 

Shirley (1934) was perhaps the first to build a chamber 

in which entire plants could be tested under constant con- 

ditions of temperature and young spruce trees were placed in 

an illuminated chamber with a revolving table to expose all 

plants to the same conditions. Temperature and humidity were 

controlled by the use of an electric heating element and calci- 

um chloride. The length of time the plants survived was used 

as the measure of drought resistance. 

Bayles et. al. (1937) grew two varieties of wheat in the 

same pot and allowed the pots to dry and noted the loss of 

water from the plants. The rate of recovery was also noted 

when proper growing conditions were reestablished. Plants 

were also exposed to a current of hot air (92° - 980) and the 

amount of injury was observed. 

Aamodt (1935) described a machine for testing the re- 

sistance of plants to atmospheric drought. The machine con- 

sisted of a glass chamber through which air was forced at a 

constant rate. The temperature was maintained by thermo- 

statically controlled electric heaters and the air current 

was regulated by dampers and baffles. After exposure for 

8-15 hours at 110° F., 14 percent relative humidity and an 

air velocity of 6 miles per hour, wheat varieties known to 



26 

be drought resistant in the field showed less injury than 

varieties known to be non-drought resistant. 

Hunter et. al. (1936) subjected two week old corn plants 

to artificial heat in a simple chamber with thermostatically 

controlled electrical units as the source of heat. The 

plants were exposed for 6.5 hours at 1400 F. and relative 

humidity ranging from 28-32 percent. Almost perfect corre- 

lation between survival value of seedlings after treatment 

and field behavior of inbred strains of maize was obtained. 

Zink and Grandfield (1936) constructed a temperature 

and humidity control chamber to study the set of seed in al- 

falfa. A double glass chamber was built to allow the plants 

access to light. Heat was supplied by electric heaters and 

humidity was controlled by a known concentration of sulfuric 

acid. A small fan kept the air in constant motion. 

All these methods are steps forward in working out the 

complex problem of drought resistance. The actual treatment 

of seedling plants to drought conditions has given high cor- 

relation with field behavior just as subjecting plants to 

artificial cold has been very successful in studies of cold 

resistance. Wide differences between varieties of a single 

crop and among different crop plants can be shown by these 

various methods. For determining smaller differences between 

similar strains these tests should be used in conjunction 

with a study of the factors that actually exists in the natu- 
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ral environment under which the crop is to be grown. Waldron 

(1931) has clearly shown that this is necessary. Kubanka 

wheat has always been thought to be highly drought resistant. 

Moreover, the bound water of Kubanka was 7 percent and only 

4 percent in Marquis which would lead one to believe Kubanka 

would be quite superior to Marquis in drought resistance. 

In a comparison involving 68 crop years which were reasonably 

droughty and omitting rust years, however, Kubanka yielded 

only 0.11*0.21 bushels more than Marquis, which is not sig- 

nificant. The final decision as to the best crop or variety 

should take into account its behavior over a long period of 

years. 

MATERIAL AND METHODS 

The drought of 1936 illustrated very clearly the dif- 

ference in reaction of various strains of maize to drought 

condition. Some inbred lines in the corn breeding nursery 

at Manhattan, Kansas, succumbed rather early while others 

endured the drought to a remarkable degree. Although many 

strains failed to reach the tasseling stage, some were able 

to produce a few grains under the very adverse weather con- 

ditions that prevailed. Five Kansas inbred lines of maize 

were selected on the basis of their behavior to drought 

under actual field conditions. One of the lines selected 

failed to set seed in 1936 but was chosen because of its 



ability to remain erect, green, and apparently uninjured by 

the drought. These selected lines were used as drought re- 

sistant parents in crosses made with susceptible genetic 

testers in the winter of 1936-37. Descriptions of the five 

inbred lines are given in Table 1. 

Table 1. Description of inbred lines of maize with 

known behavior to natural and controlled conditions. 

--* 
In- :Genera- 
bred:tions 
line:selfed 

:Aleurone 
and 

:endosperm 
:constitution 

:Average: :Drought Rank: 
:height :Matur-: in : in :Variety 
:inches : ity :field:lab. :source 
: 1937 : 

BS1 8 

PS10 4 

PS39 5 

M1 2 

M2 2 

A 
1 
A 
2 
CRPrSuy 50 

A 
1 
A 
2 
crPrSuy 58 

A 
1 
A 
2 
CrprSuy 64 

28 

Early 5 5 Blue Squaw 

Medium 1 1 Pride of 
Saline 

Late 4 4 If fl II 

A 
1 
A 
2 
CrprSuY 85 Late 2 

A 
1 
A 
2 
crPrSuY 85 Late 2 

3 Midland 

2 

The rank of drought resistance in the field of Ml and 

M2 was rated the same since they originated from one ear. 

After one more year of selfing M2 was noticeably better in 

tolerance to artifical heat than Ml. The early inbred BS1 

probably is not as much drought enduring as it is drought 

escaping, being so early that pollination occurs before the 

most severe conditions are experienced. In addition to the 

above factorial composition, BS1 carries a gene for brown 



29 

midrib (bm) but it is not known which bm factor is involved. 

PS10 is the outstanding inbred of the group in heat and 

drought tolerance. 

Thirteen translocation stocks of maize involving all ten 

chromosomes were obtained from Dr. E. G. Anderson, California 

institute of Technology, four linkage testers from Dr. A. A. 

Bryan, Iowa State College, and ten linkage testers from Dr. 

C. R. Burnham, University of West Virginia. These twenty- 

even genetic testers were used in the study as the suscepti- 

ble parent stocks and as markers for the ten chromosomes in 

maize. The assumption was made that all these testers were 

drought susceptible, having been grown under much more favor- 

able conditions than exist in Kansas. Most of these testers 

did prove to be susceptible to artifical heat but several 

gave an intermediate reaction.. 

Besides the strains and testers used, two sweet corn 

inbreds received from the Minnesota Experiment Station and 

two inbreds and one single cross sweet corn from the Indiana 

Experiment Station were used extensively in crosses and out- 

crosses made during the summer of 1937. These sweet Cbrn 

strains were very susceptible to artifical heat and early in 

July 1937 they showed apparent drought susceptibility. row- 

ever, a timely rain occurred and irrigation was supplied with 

recently installed equipment so that no further field obser- 

vations of drought resistance could be made. Several other 
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inbred lines from various states selected on the basis of 

their behavior in the 1936 top-cross test at Manhattan were 

tested. 

During the winter of 1936-37 the five selected Kansas 

inbred lines of maize were crossed with the twenty-seven 

genetic testers. Three plants each of the translocation 

stocks were grown and only one each of the ordinary linkage 

testers. Crosses were made indiscriminately, although ap- 

proximately equal numbers were made with each line. Crosses 

could not be planned accurately in advance because the rel- 

ative flowering dates of the testers used were unknown. 

Fifty-two crosses between the drought resistant (DR) inbreds 

and the non-drought resistant (NDR) testers were harvested. 

The seed matured soon enough so that field plantings were 

made the first week in May 1937. 

These 52 crosses, the parent stocks, 18 inbred lines of 

varying drought resistance in addition to the five used as 

DR parents, 15 other linkage testers and three single crosses 

were planted in the field in 1937. Planting dates were stag- 

gered in an attempt to make crosses between early and late 

maturing strains. A total of 225 rows were planted, each 

row containing 15 plants spaced 14 inches apart. 

Crosses were made between the DR, intermediate and NDR 

inbreds. Outcrosses to susceptible strains were made with 

the crosses involving translocations. Backcrosses and a few 
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self pollinations were made with the crosses involving the 

ordinary linkage testers. 

Three of the translocations used were heterozygous which 

made it necessary to examine the pollen of the crosses in- 

volving these heterozygous stocks. Only the pollen from 

plants having semi-sterile pollen was used in making the out- 

crosses so the translocations would be carried on. Over one 

thousand ears were harvested in the fall of 1937. 

During the winter of 1937-38 the progeny of material 

grown during 1937 was subjected in the seedling stage to 

artificial heat. A simple heat chamber constructed by Laude 

and Zink, Kansas State College, with thermostatically con- 

trolled electrical heating units was used in making all tests. 

Twenty-day old seedlings grown in 4-inch clay pots were placed 

in the heat chamber for 5 hours at 130° F. and a relative hu- 

midity of 30 percent. 

The soil used throughout the experiment was a good uni- 

form compost. Ten kernels were planted in each pot and later 

thinned to seven plants per pot. Four or more pots of each 

strain or cross was planted at one time. The plants were 

kept at about optimum growing conditions at all times. Be- 

fore placing the plants in the heat chamber they were well 

watered so that during the trial the plants always had suf- 

ficient water and were subjected only to heat. 

The temperature of the soil was recorded in every test and 
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averaged 1020 F. for all tests. The pots in the center of 

the table generally had a soil temperature several degrees 

lower than those on the outside. There also was a slight 

variation in amount of injury that occurred between pots in 

the middle and those on the outside but this was equalized by 

the random distribution of the four pots representing each 

lot of material. 

As an index of measure of differential injury the amount 

of exposed leaf and sheath tissue killed was estimated the 

third day after treatment. After considerable practice 

reasonably accurate readings could be made. About the tenth 

day after treatment the number of plants killed was recorded 

and notes taken as to the recovery of the plants. Each pot 

was considered a unit and no attempt was made to record the 

injury of the individual plants. Plant height and number of 

plants were recorded before the treatment. 

EXPERIMENTAL RESULTS 

Method Studies 

Before attempting a detailed study of differences be- 

tween varieties and within segregating populations, several 

experiments were conducted to determine the best stage of 

plant growth at which to test corn seedlings to assure the 

most uniform and consistent results. 
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In all method studies PS10, an inbred, and Hy x R4, a 

single cross, were used. Whenever more than these two were 

used, strains were chosen that gave a wide range of resistance 

and had a uniform behavior to artificial heat treatments. 

Number of Plants per Pot. Due to differential germination 

planting a uniform number of kernels per pot did not produce 

a uniform number of plants. To determine whether the differ- 

ence in number of plants per pot influenced the results, a 

series having uniform stands, ranging from one to fifteen 

plants per pot was treated. On exposure to heat no signifi- 

cant difference in percentage of plant tissue killed was ob- 

served with varying of plants where eleven or 

more plants were growing in each pot. The pots with the 

higher numbers of plants showed less injury. This was ex- 

plained as being due to the protection offered by the large 

number of plants growing together. When planted at thicker 

rates, the plants grew faster but were lighter green in color) 

and more spindly than plants sown at a lower rate. Seven 

plants per pot was chosen as the most representative rate, as 

this number of plants developed normally within the period 

before the plants were subjected to the heat treatment. 

Type of Container. It was thought that planting the 

corn in rows in greenhouse flats would be a good method of 

showing differential injury. With all the plants growing in 

one container, there probably would be less variation in some 
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cases than occurs when the plants are grown in four-inch clay 

pots. Six strains of corn were planted in a greenhouse flat 

3 x 12 x 22 inches. A duplicate test was planted in clay 

pots and all were treated at the same time. The results are 

shown in Table 2. 

Table 2. Comparison of injury to corn seedlings grown 
in 4-inch clay pots and greenhouse flats when subjected to 
artificial heat. 

Strains 
PS10 KYSx38-11 HyxR4 GCB 

Grown in flat 

su42 su51 

Percent Injury 5 40 55 60 85 80 

Height, Inches 6 8 9 

Grown in pots 

6 9 

Percent Injury 0 35 45 55 75 90 

Height, Inches 8 9 10 9 9 7 

The plants made a faster and more uniform growth in the 

pots than in the flat. The inbred strains were at a disadvan- 

tage in direct competition with single crosses in the flats. 

This competition was shown more strikingly when the plants 

were treated severely or when they were not hardened. It 

was also noted that the outside rows of plants were injured 

more severely than the middle rows. The rank in injury of 

the strains was nearly the same in both containers. Since 

inbred lines, F1 plants, backcrosses, and outcrosses were to 
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be tested at the same time, the use of pots appeared to be 

the better method in order to eliminate the competition be- 

tween vigorous and less vigorous strains growing together. 

A-e of Seedlings. When twenty day-old seedlings were 

subjected to the high temperatures (140° F.), at which. Hunter 

et. al (1936) treated them, such severe injury occurred that 

nearly all plants were killed. Since 14 day-old seedlings 

were treated in the experiment referred to, it suggested that 

the age of seedling may have some effect upon the plant's 

ability to withstand artificial heat. Corn was planted at 

two-day intervals giving plants ranging from 10 to 28 days 

in age at the time of treatment. These plants of various 

ages were all treated at the same time. At each time corn 

was planted, 30 additional kernels were weighed and planted 

in large pots filled with sand. When these plants reached 

the age of 10 to 28 days, the seed was carefully removed 

from 20 plants in each pot. The dry weight of the seed re- 

maining was determined and the percentage of weight of the 

original seed was calculated. The results are shown graphi- 

cally in Figure 1. The seedlings showed the greatest re- 

sistance at ten days of age and remained fairly resistant 

up to the fourteenth day. At the 10-day stage the weight of 

the seed was only 31 percent of the original weight. A mark- 

ed decline continued from the tenth to the twelfth day. From 

the twelfth to the eighteenth day the decline was slight and 
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after that time no reduction occurred. The small increase 

in wei ht of seed toward the later period is probably due 

to the difficulty in separating the seed from the plant and 

soil, as at this stage the seed was badly rotted. A photo- 

graph of plants ranging from 12 to 22 days in age is shown 

in Plate I. The 12 day-old plants were very resistant and 

there was a decided difference between the 14 and 16 day-old 

seedlings. The 22 day-old plants showed only slight re- 

sistance while the 16-20 day-old plants, were highly suscept- 

ible to artificial heat. On the basis of these results all 

following tests were made on plants ranging between 18 and 

22 days of age. 

To study the effect of reserve food stored in the seed, 

three strains of corn were planted in sand and kept in the 

dark. Just before the plumule broke through the coleoptile, 

the young seedlings were decapitated. They were treated 

similarly every day following in which one-fourth inch or more 

growth had occurred. The number cut off each day was record- 

ed. With the total number of seedlings, which germinated as 

a basis, the percentage of plants cut each day was cal2u) ted. 

The results are shown graphically in Figure 2. There are some 

fluctuation up and down in percentage of seedlings decapi- 

tated, but after the thirteenth day in two strains and the 

fourteenth day in the third the decrease was rapidly downward. 

Eighteen days after planting the seedlings of Hy x R4 failed 
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Explanation of Plate I 

Effect of heat on Hy x R4 seedlings 12 to 22 days old. 

The number refers to the age of the seedling fram planting 

to treatment. Photographed 8 days after treatment. 
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to send out new growth. This occurred one day later in PS10 

and two days later in su51. The resistant strain did not 

make use of the reserve material in the seed any longer than 

the other two strains. This decapitation experiment cor- 

relates closely with the results obtained in the studies of 

age of seedling and decline in weight of the seed. Sometime 

between the tenth and fourteenth day the plant has apparently 

used most of the available nutrients in the seed and is then 

astablishing itself independently of the seed. During this 

time of readjustment there may be a few days in which the 

corn plant has a low rate of metabolism. This period seems 

to be somewhere between the fourteenth and twentieth day 

in the corn plants studied. This is also a period in which 

rapid elongation takes place and the plant may be low in 

available starches and sugars. Miller (1910) in a physiologi- 

cal study of the germination of the sunflower seed found that 

when the seedling was about 13 days old, it had exhausted all 

of the nutrients from the seed. When the plants were kept 

in air free of carbon dioxide for seven days previous to the 

end of this period the plants had shown no further growth of 

their parts. This was to be expected, since the plants, 

being unable to synthesize their own food, had no material 

for growth after the reserve material had been consumed. 

Suneson and Peltier (1934), working with various stages of 

development of winter wheat plants, found that very young 
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seedlings, which were presumably still dependent upon the 

endosperm to a considerable degree, surpassed all other more 

advanced stage-of-development groups in cold tolerance. 

Jones and Huston (1914) in analyzing maize at various stages 

of its growth found that 19 days after planting, the dry 

matter in the plant was practically the same as the dry 

matter in the seed used. The evidence from several tests 

has indicated that twenty day-old seedlings of any strain 

were no longer dependent upon material in the endosperm and 

any resistance the rlant had to artificial heat would depend 

upon its inherited characteristics. 

Twenty day-old plants subjected to heat for five hours 

at 130° F and relative humidity ranging from 20-30 percent 

gave the most satisfactory results. If a longer treatment 

was given, variations occurred in the rate at which the pots 

dried out. When rather large and vigorous plants were 

tested, if the pots were well watered before treating, there 

was still moisture available for the plants at the end of a 

five bour treatment. Consequently it was not necessary to 

add water during a five-hour test. 

Reaction to Light. It has been known for a long time 

that various exposures of light markedly affects the growth 

and physiological response of plants. When corn seedlings 

were treated early in the morning before they had received 

any daylight they were noticeably more susceptible to heat 
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than plants treated in the afternoon under similar condi- 

tions. 

On observing this difference in reaction, two experi- 

ments were set up to study quantitatively the relation of 

exposure to light and heat tolerance. In the first case, 

the plants were exposed to various hours of daylight fol- 

lowed by a period of darkness before being placed in the 

heat chamber. A series of plants receiving the following 

combinations of light and dark periods was tested. 

!"croup 1 No light 

H 

tf 

f I 

If 

2 1 hour daylight followed by 6 hours of darkness 

3 2 hours " 

4 3 " 

5 4 " 

6 5 

7 6 

8 7 

11 

rr ff 

if ff 

rf ft 

It H 5 rt ft II 

II II 4 ft 11 11 

if if 3 It ft It 

If 
" 2 11 11 If 

11 H If if 
1 hour 

TT 1! t I It 0 hours 

These groups were treated at the same time so the con- 

ditions of heat and humidity were identical. The evidence 

presented in Figure 3 shows that plants which received no 

light were the most susceptible to heat. Plants that re- 

ceived more light had a higher resistance to heat. PS10, 

however, gave a peculiar behavior, in that plants receiving 

one hour of light followed by six hours of darkness were in- 

jured less than those receiving two or three hours of light. 
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This same phenomenon occurred in the two tests conducted. 

In the case of P810 the resistance gained in one hour still 

had a considerable effect after the plants were exposed to 

six hours of darkness. 

The stimulus received from light in Hy x R4 was not so 

effective as in PS10. PS10 shows more resistance than Hy x 

R4 in the hardened or non-hardened condition. Plate II shows 

the effect of light followed by darkness on plants of Hy x 

R4. 

Another test in which the effect of light on heat tol- 

erance was studied was set up as follows: 

Group 1 - received no daylight 

tt 

It 

ft 

It 

It 

2 - 

3 - 

4 - 

5 - 

6 - 

7 - 

8 - 

tt 

It 

tt 

ft 

tt 

tl 

1 hour daylight 

2 hours " 

3 

4 

5 

6 

7 

It 

11 

tt 

It 

It 

ft 

tt 

It 

The plants were tested at 2 p.m. so the last several 

hours of daylight received were the most intense. Very 

striking differences were obtained as shown in Plate. III. 

Only four Pots of the series of Hy x R4 and three of PS10 

are shown. The response to light by PS10 is more noticeable 

than in Hy x R4. 
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Explanation of Plate II 

Effect of light on heat tolerance of Hy x R4. The 

first three pots are very susceptible to heat while the 

other pots show increasing resistance to heat as the period 

of light is increased and the amount of darkness decreased. 

The numbers 0, 1, 2, etc. refer to the number of hours of 

daylight the plants received. Each was followed by a period 

of darkness varying from 7 to 0 hours, reading from left to 

right. 
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Plants exposed to periods of less than one hour of 

light was not attempted. In one case, however, the plants 

were exposed to light for ebout 10 minutes when they were 

transferred from one greenhouse to another before being put 

into the heat chamber. When these plants were subjected to 

heat they showed nearly the same resistance as those exposed 

much longer to light, indicating an almost immediate response 

to light. To obtain the best results it was found advisable 

to transfer the plants directly to the he't chamber from the 

dark box with no light in the chamber during the trial. 

This very quick response to light, undoubtedly, has a 

direct relation to the photosynethetic process which is de- 

pendent upon light. Dexter (1933, 1933) has shown that 

light has a profound influence on hardening winter wheat 

plants against cold. Plants deprived of carbon dioxide 

would not harden under any circumstances, which shows that 

photosynthesis is involved in hardening plants. He con- 

cluded that the development and maintenance of a high avail- 

able carbohydrate supply, with much retarded vegetative 

growth, is essential before cold-temperature reaction or 

hardening of plants will occur in an efficient manner. 

Tysdal (1933) observed that light was an important factor 

in the hardening process of alfalfa. Plants exposed to 16 

hours in the hardening room and 8 hours in a warm green- 

house during daylight developed more hardiness than did 
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Explanation of Plate III 

The response of corn seedlings to light and the effect 

upon heat tolerance. The four pots to the left are plants 

of Hy x R4 receiving 0, 1, 3, and 7 hours of light respec- 

tively, and the three pots to the right are plants of PS10 

receiving 0, 1, and 7 hours of light respectively. 



Plate III 
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those subjected to continuous low temperatures in the dark. 

Du^.-ar (1936) in reviewing the effects of light intensity 

upon seed slants stated that work had been done which in- 

dicated that plants developed in the shade are less resist- 

ant to drought than those grown in full sunlight. 

Weight of Seeds. Strains of corn vary in size of seed. 

To determine the effect of the size of seed on heat toler- 

ance the lightest and heaviest kernels of six strains of 

corn were used. Eighty kernels of each weight group were 

weighed in grams, and ten kernels were planted in each pot. 

Later the plants were thinned to seven per pot. The strains 

used and the comparative weights of seed planted and heights 

of plant in inches at the time of treatment are shown in 

Table 3. 

Table 3. Relation between weight in grams of kernels 
and height in inches of seedlins in several strains of corn. 

Strain 
KYS x suPB x 

PS10 G6626 suPB HyxR4 38-11 G6626 

Small Weight 14.11 15.85 10.80 14.16 13.49 8.89 
kernels Height 5.2 5.7 5.5 8 7.5 5.2 

Large Weight 19.39 21.72 16.88 20.72 16.49 20.32 
kernels Height 5.5 6.5 5.0 9 8.2 6.2 

In all cases but one the plants from the heavy seeds 

were the taller. In most cases no noticeable difference was 

evident in plants from small seeds and large seeds, except 
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in height. In Hy x H4, however, the plants from the small 

seeds had smaller stems and were slightly lighter green in 

color. 

The percentage injury wcs recorded and the data ob- 

tained were subjected to the analysis of variance using 

Fisher's (1936) F tables to determine the significance of 

the results. The analysis of variance in Table 4 shows 

that difference between strains and weight groups is highly 

significant. The significant discrepance in this experi- 

ment shows that the effect of different weights of kernels 

is not always the same, but depends upon the strains which 

are being tested. These results indicate that it is im- 

portant either to select seeds within a size group or at 

random in order to avoid difference in injury due to dif- 

ference in weight of seed. 

Table 4. Analysis of variance of percentage injury by 
heat in six strains of maize divided into seed weight groups. 

Degrees of Sum of Mean 
Source of Variation Freedom Squares Square 

Total 95 23,043.5 

Strains 5 16,420.1 3,284.02** 

Weight groups 1 436.8 436.8 ** 

Interaction 
(subclass discrepance) 5 939.7 187.94* 

Pots in subclass 
(error) 84 5,246.9 62.46 

** Highly significant * Significant 
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Kiesselbach (1924) found that the small seeds of winter 

and spring wheat and oats when planted in equal numbers 

yielded 19 percent less than large seeds. He attributed 

this difference to the immediate advantage of a greater re- 

serve food supply in the larger seed which results in a more 

vigorous initial growth. It is not known whether the plants 

from small kernels in corn would be more susceptible to heat 

in later stages of growth or not but this does not seem to 

be very probable. 

Observation on Inbred Lines 

Approximately 50 inbreds were tested for tolerance to 

artificial heat. The field reaction of most of the lines 

was known from their behavior to the drought of 1936. Only 

a few lines were classed as highly drought resistance. 

Most lines were classed as intermediate and it was difficult 

to rank them very accurately as to drought resistance. A 

small percent was classed as non-drought resistant. The 

small number of susceptible lines can be explained by the 

fact that most of them have been rreviously weeded out 

under Kansas conditions through natural selection. 

The heat chamber did not operate at the same level for 

each test and comparisons were only made between lines 

tested at the same time. Although the amount of injury 

varied with each test the ranking between lines remained 
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very similar. PS10 was used as a check in all tests, 

which made it rosslble to make comparison between lines in 

different tests. As in field behavior, only a few lines 

were considered highly resistant to artificial heat, the 

greater nortion giving an intermediate resistance to heat. 

The inbred lines apparently have definite temperatures 

at which they become subject to damage by heat. When some 

lines were subjected to temperatures of 1200 F. they were re- 

sistant but by raising the temperature slightly they were 

very susceptible indicating that lines vary in their ther- 

mal death point. In some lines the leaves began to curl 15 

minutes after the test was started while others would show 

no apparent injury until near the end of the test and then 

become injured severely in a short time. A few lines showed 

dried leaf tissue within one-half hour after the test was 

started but after this first brief period, they remained un- 

changed during the remainder of the test. 

This sensitivity to small temperature changes was ob- 

served in the field in 1937. Two lines susceptible to burn- 

ing of the top leaves were injured by the hot weather in 

1937. The leaves of most lines curled during the midday, 

but when the temperature went up to 100° F. the top leaves 

in one line were killed. When the temperature went up to 

112° F. the second line was injured. In the first line the 

top three leaves were killed but the plant was still in a 
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vigorous growing stage and recovered when a two-inch rain 

occurred several days later. This injury was evident through- 

out the entire season. These two lines which were top fired 

in 1937 were also very susceptible to artifidhl heat. 

The reaction of about ten percent of the lines subject- 

ed to artificial heat was not as expected from their known 

field behavior to drought. Only one of these lines, YS74, 

varied greatly, being classed as one of the best inbreds in 

the nursery in 1936. This line was one of the most suscepti- 

ble lines to artificial heat. This inbred was in the best 

single crosses in 1935 with respect to drought resistance. 

As a seedling and young plant this line has yellow stri- 

ations on the leaves which may be a type of chlorophyll 

deficiency. The rate of growth is very slow until it be- 

comes a uniform green color and begins to grow vigorously. 

This unusual seedling behavior may explain its susceptibility 

to heat in the seedling stage. The other non-conforming lines 

were rated as better than the average in the field but were 

below the average when subjected to artificial heat. One 

of these lines was early and its apparent drought resistance 

in the field probably was due to its earliness which made 

it possible to escape the drought. 
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Mode of Inheritance 

Crosses were made between inbred lines of corn that dif- 

fered in their behavior to drought. The crosses were between 

resistant lines, resistance x susceptible, and susceptible x 

susceptible. The results of artificial heat injury to five 

inbred lines and crosses between them is shown in Table 5. 

The results are an average of three trials and in each of 

which the temperature was low enough to cause only moderate 

injury. The resistant x resistant cross was very resistant. 

At higher temperatures it was superior to the parents, but 

in the results in Table 5 it does not appear to be any better 

than either parent. 
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Table 5. Comparative injury of inbred lines differing 
in heat tolerance and crosses between them. 

Drought Percent Percent Notes on 
Strain classification injury killed recovery 

PS10 DR 6 o Good 

YS48 DR 4 0 Good 

su39 NDR 39 21 Poor 

su51 NDR 48 33 Poor 

G6626 NDR 42 13 Live plants 
recover quickly 

PS10 x YS48 DR x DR 5 0 Excellent 

PS10 x G6626 DR x NDR 6 0 Fair 

PS10 x su39 DR x NDR 15 0 Fair 

YS48 x G6626 DR x NDR 25 0 Slow 

YS48 x su39 DR x NDR 10 0 Fair 

16626 x su39 NDR x NDR 43 2 Very yellow, 
slow 

su39 x su51 NDR x NDR 50 35 Poor 

DR - Drought resistant NDR - Non-drought resistant 

The F1, resistant x susceptible crosses gave varying 

results but the tendency was for resistance to be semi- 

dominant. In one of the crosses between susceptible lines 

there was no difference from the inbred parents in percent 

of tissue killed but the F 
1 

plants had a higher survival 

value. In the cross su39 x su51, the F1 was more susceptible 
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to heat than either parent, which shows that heterosis, in 

itself, does not necessarily make the F1 seedlings heat tol- 

erant. Not all crosses reacted like those shown in Table 5. 

For example when G6626 was crossed with lines classified 

as intermediate to drought resistance the crosses were as 

susceptible to heat as G6626. PS10 apparently has a number 

of dominant genes for heat tolerance as shown by its con- 

sistent tendency to increase the heat tolerance of the cross- 

es in which it is involved. 

The inheritance of heat tolerance also was studied in 

single and double crosses. Only three single crosses were 

used, but these had a wide range in heat tolerance. The 

three possible double crosses were made and all six hybrids 

tested at the same time. The evidence presented in Table 6 

shows that differences between double crosses relative to 

heat tolerance do occur. The range in percent of injury was 

small but the survival of crosses differed significantly. 

The double crosses were intermediate in reaction to heat 

tolerance. 
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Table 6. Comparative injury of single crosses differ- 
ing in heat tolerance and crosses between them. 

Drought Percent Percent Notes on 
Strain classification injury killed recovery 

KYS x 38-11 DR 85 14 Fair 

Hy x R4 M 94 23 Good 

su39 x su51 NDR 100 88 Poor 

(KYS x 38-11) x DR x M 94 24 Good 
(Hy x R4) 

(KYS x 38-11) x 
(su39 x su51) 

DR x NDR 91 33 Fair 

(Hy x R4) x (su39 x 
su51) 

M x NDR 96 45 Fair 

DR - Drought resistant 
M - Intermediate 
NDR -Non-drought resistant 

A test was made to determine the heat tolerance of 

seven open-pollinated varieties, four from Kansas and three 

from other states. The California variety was developed for 

irrigated land and had the reputed quality of being able to 

shed viable pollen during hot weather. The varieties have 

been listed in order of their heat tolerance in Table 7. 

The percentage injury and plants killed and the recovery 

notes are shown. The two long season Kansas varieties were 

outstanding in heat tolerance, which is probably due to the 

influence of natural selection. The California variety, al- 
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though burned severely, made an excellent recovery. The two 

early Kansas varieties, Hays Golden and Freed White, were not 

as heat tolerant as would be expected since these varieties 

ordinarily yield better under adverse conditions than later 

varieties. The varieties usually yield more in dry years 

probably because they are early and therefore escape the 

drought, while Pride of Saline is later in maturity, it 

would necessarily have to endure a drought to produce a crop. 

The other two varieties were rather susceptible to heat. 

Table 7. Comparative injury by heat to seven varieties 
of corn. 

Variety Origin 
Percent 
injury 

Percent 
killed Recovery 

Pride of Saline Kansas 75 11 Excellent 

Yellow Selection #1 Kansas 79 7 Good 

California Yellow California 98 20 Good 

Freed White Kansas 97 44 Fair 

Hays Golden Kansas 94 59 Fair 

Boone County White Missouri 95 63 Poor 

Krug Iowa 100 63 Poor 

Linkage Experiments 

Ten linkage groups corresponding to the ten chromosomes 

in maize are now recognized. Known genes located on all ten 
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groups nave been studied. and can be used in tests to de- 

termine the linkage relationships of unplaced genes. 

In testing for the possible association of drought tol- 

erance with particular chromosomes drought resistant plants 

were crossed with stocks carrying known recessive genes and 

then the hybrids backcrossed to the recessive. Drought re- 

sistant plants were also crossed to translocation stocks 

representing all ten chromosomes and the semi-sterile hy- 

brids outcrossed to drought susceptible plants. Only chromo- 

some VIII and X were not fully represented by the translo- 

cation stocks. 

The translocation behaves as a dominant in crosses and 

is expressed by the semi-sterile condition of the pollen 

and ovules. Plants must be grown to the pollen shedding 

stage before semi-sterility can be determined so no linkage 

data were obtained by use of translocations. All the out- 

c-osses with translocations were tested as seedlings but if 

any segregation occurred within a pot it was not observable. 

Some of the translocations carried known genes that could be 

separated on the basis of seed color or texture and these 

were used as ordinary gene testers. 

Testers Used. The genetic stocks and translocations 

used in these experiments are listed in Table 8, according 

to their respective chromosome groups. All factors used 

could be identified in the endosperm or in the seedling. 
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sucn ractors, nowever, were not available in chromosome VIII 

and the attempt to obtain the initial c:'oss involving chromo- 

some III was unsuccessful. 

Table 8. Genes and translocations used as testers. 

Chromosome and 
linkage group Gene and symbol 

I P-br P, pericarp and cob color; fl, fine stripe; 
T1-4a; T1-5b. 

II b-lgi liguless; alossv: T2-4b; T2-9a 

III al-ts4 na, nana; 124, tassel seed; T3-5b. 

IV sul-Tu FU, sugary; g13, glossy; T2-4b; T4-6a. 

V sr -v2 a2, anthocyanin (plant and aleurone color); 
2r, aleurone color; T3-5b; T5-7. 

VI Y-Pl 2, endosperm color; P1, plant color; T4-6a; 
T6-9b. 

VII ra-,E1 
1 

gll, glossy; T5-7. 

VIII E28-11 mss, male sterile; T8-10b; T8-10c. 

IX c-sh-wx c, aleurone color; sh, shrunken; T2-9a; 
T6-9a. 

X 11-El r, aleurone color; T8-10b; T8-10c. 

The data obtained by treating the progenies of the back- 

crosses and outcrosses are shown in Table 9. The dominant 

member of each pair of allels was associated with the re- 

sistant parent. 
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Table 9. Summary of results of heat tolerance in re- 

lation to genes in eight of the linkage groups in maize. 
Dominance was associated with the resistant parents. 

Genes tested Percent injury Percent killed 

X x 

Chromosome I 
F1 f1 

Chromosome II 
G1 

2 
g12 

Chromosome IV 
Su 

1 
sui 

Chromosome V 
A 
2 

a 
Pr p 

Chromosome VI 
Y y 

Chromosome VII 
G11 g11 

Chromosome IX 
Sh sh 
C c 

Chromosome X 
R r 

X 

88 

70 

87 

67 
79 

78 

92 

62 
87 

90 

x 

92 

46 

95 

72 
88 

83 

73 

65 
93 

92 

Significance of 
difference 

*41. 

X 

16 

18 

42 

17 
21 

7 

34 

4 
53 

55 

50 

9 

72 

11 
33 

11 

24 

11 
71 
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*Significant **Highly significant 

The significance of the differences in percent injury 

was determined by analysis of variance from Fisher's (1936) 

table of F values. The problems were set up to measure 

whether any significant differences occurred between the 

genes tested, between the tests, and interactions between 
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genes and tests. There would be no interactions if all pairs 

were alike in difference. A significant discrepance would 

indicate one of two things: (1) the pairs differ in per- 

centage of injury at various temperature levels and (2) as 

different parents were used it may show that some lines react 

differently than others. The percentage of plants killed 

was not analyzed because it was not as good a measure of dif- 

ference as percentage of leaf tissue burned. 

Tests with Chromosome I. Fine stripe F1, f1, was the 

only pair of genes studied in this group. 1,10 significant 

difference was noted in percentage of injury but the fine 

stripe plants had a lower survival value. This may be ex- 

plained by the fact that f1 gives virescent-like seedlings 

which are deficient in chlorophyll and for this reason prob- 

ably do not have the ability to recover from heat injury. 

Tests with Chromosome II. Two genes, lza and .g1.2, were 

used to determine whether drought resistance is associated 

with this chromosome. These two genes were in a coupling 

series. The doible recessive segregates in the backcross 

were separated from the heterozygous dominant segregates. 

Although the glossy factor was associated with the suscepti- 

ble parent the glossy plants were more tolerant to heat than 

the normal condition as indicated by the highly significant 

difference. The percentage survival is also in favor of the 

glossy seedlings which is probably due to less burning of 
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leaf tissue. The resistant inbred parent, however, was con- 

siderably more resistant than the linkage tester 1E2E11. The 

surface of the leaves on the glossy plants may reflect more 

teat rays than the non-glossy condition keeping the leaves 

cooler and causing less damage. Shull (1929) found that 

hairy, smooth, or shiny leaf surfaces were not necessarily 

correlated with high reflection. Because the surface of the 

leaves on glossy plants is of a waxy nature the rate of tran 

spiration may be lower. This waxy condition would tend to 

keep the leaves moist and prevent drying and burning by keep- 

ing the transpiration rate low enough so no deficiency of 

water would occur in the leaves. 

Tests with Chromosome III. No testers involving charac- 

ters that could be distinguished in kernels or seedlings 

were available for this chromosome. The pair of genes used 

was Na, na, which causes a dwarf condition of the plant and 

is difficult to classify in the seedling stage. The back- 

cross progenies were tested but no evident segregation was 

observed. 

Tests with Chromosome IV. The pair of genes influencing 

the sugary and starchy texture of the endosperm is located 

in this linkage group. The sugary gene (sul) is the factor 

which is responsible for the endosperm character in sweet 

corn. Extensive evidence from five segregating progenies in 

32 tests shows that the sugary factor is associated with heat 
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susceptibility. Although only a small difference in percent- 

age of leaf burning is shown in Table 9 the results are high- 

ly significant. In backcrosses the seedlings from the sugary 

kernels had a much lower survival value than the seedlings 

from the starchy kernels. 

Very striking results were obtained when the seedlings 

from starchy and sugary segregates on the same ear were treat- 

ed at the same time. Such evidence is shown in Plate IV. 

The two parents are represented by the first and third pots, 

M 
2 
and su su. The F 

1 
in this case is as resistant as the M2 

resistant parent. The segregating progeny are represented 

by the four pots to the right; the Su su plants came from 

starchy kernels and the su su plants came from sugary kernels. 

Tests were available in which E1 and sul were in a 

coupling series. These two penes are about 40 units apart 

on the chromosome, so frequent crossovers would be expected. 

Starchy glossy and non-glossy plants, and sugary glossy and 

non-glossy plants were tested at the same time. There was no 

significant difference between the starchy glossy plants 

(crossovers) and the starchy non-glossy plants (non-cross- 

overs) in relation to heat tolerance. The sugary non-glossy 

plants (crossovers), however, were slightly more resistant 

to heat than the double recessive condition, su El. This 

is not in agreement with the results obtained with g11 and 

g12. The sugary seedlings in both cases were more susceptible 
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Explanation of Plate IV 

The effect of heat on maize plants segregating for 

starchy and sugary kernels. The parents are represented by 

the first and third pots, and the F1 is between them. The 

starchy and sugary segregates resulting from a backcross to 

the su su parent are represented by the Su su and su su 

plants respectively. 
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than the starchy segregates. These results indicate that 

the sugary condition has more influence on heat tolerance 

than the glossy factor in the strains of maize studied. 

Sweet corn is generally considered to be more suscepti- 

ble to drought conditions than dent corn. The sweet corn 

industry is located in the regions near the northern range 

of the corn belt and in the eastern states where extremes 

in weather conditf.ons do not frequently occur. As sweet 

corn seems to be susceptible to drought it suggests that the 

sugary gene may also be responsible for heat susceptibility. 

This was indicated rather clearly by growing to the pollen 

shedding stage some plants involving translocations which 

included chromosome IV. The translocation, T1-4a, was 

heterozygous for sugary (Su su). This was crossed to a re- 

sistant inbred (Su Su). The sugary condition was not ex- 

pressed in the Fl but half of the plants would carry su, and 

by outcrossing the F1 plants to a sugary stock the sugary 

factor would be expressed in one-half of the ears pollinated. 

When the sugary and starchy segregates from one of these 

ears were tested the seedlings from the sugary kernels were 

the most heat susceptible. The outcross, not involving the 

su gene, was also slanted and subjected to heat. The 16 

most resistant plants, from 56 tested, were transplanted and 

grown until they shed pollen. Only 12 plants lived. If 

heat susceptibility was located on chromosome IV one would 
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expect all the plants to be normal, however, seven of the 

12 plants were semi-sterile and five normal. Although very 

small numbers were used it indicates that heat susceptibili-, 

ty is transmitted independently of the semi-sterile condi- 

tion and that heat tolerance is probably not associated with 

chromosomes I or IV. 

Another translocation, T4-6a, which was sugary, was 

crossed with a resistant Su inbred and the F1 outcrossed 

to a sugary stock. Four plants each from the sugary and 

starchy kernels were grown to the pollen shedding stage. 

The four plants from the starchy kernels were normal and the 

four plants from the sugary kernels were semi-sterile. This 

was to be exrected for the translocation was linked with su. 

No crossovers were observed as only a very small number of 

plants were analyzed. 

The results with sugary translocations are very similar 

to those obtained with ordinary sugary testers. The effect 

of heat on the parents and progenies when a translocation 

was used is illustrated in Plate V. PS10 and T4-6a were the 

parents. The F1 is not shown but the third pot, su su, rep- 

resents the stock to which the F1 was outcrossed. The seg- 

regating progenies are illustrated by the four remaining 

pots. The inbred, PS10, consistently increased the resist- 

ance of the crosses in which it occurred. This is shown by 

the two pots on the right being more resistant than either 
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Explanation of Plate V 

Relative heat tolerance of a starchy inbred and sugary 

translocation and the resulting progeny when outcrossed to 

a sugary stock. PS10 is the resistant parent, T4-6a is the 

susceptible translocation parent. The third pot from the 

left, su su is the stock to which the F1 plants (not shown) 

were outcrossed. The four pots on the right represent the 

segregating progeny, the Su su designating plants from the 

starchy segregates and su su the sugary segregates. 



r%) 
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the translocation parent (T4-6a) or the outcross parent 

(third from left). 

Significant discrepance occurred in this experiment 

which indicates that lines differed in the reaction to heat. 

All five resistant inbreds were crossed with sugary testers 

and when two inbreds were crossed on the same tester and 

backcrossed or outcrossed to the same stock evident differ- 

ences occurred in the reaction of the progenies to heat. 

This difference is illustrated clearly in Plate VI. The 

plants shown are the segregating plants from sugary (A) 

kernels and starchy (B) kernels. The original cross in 

figure 1 was made between PS10 and T4-6a (su su) and the F1 

was outcrossed to a susceptible sugary tester. Figure 2 

represents the same as figure 1 except that BS1 was sub- 

stituted for PS10. The time of planting and treatment were 

identical. PS10 transmitted more heat resistance to its 

progeny than BS1. Even the plants from the sugary kernels 

show considerable resistance to heat when PS10 was involved, 

while the plants from sugary kernels were killed when BS1 

was used as a parent. The inbred, PS10, shows more resist- 

ance to heat than BS1 when subjected to the same conditions. 

This may be a reason why the plants in figure 1 are more re- 

sistant than these in figure 2. These pictures indicate 

that progress can be made in breeding for drought resistant 

in lines and hybrids of corn. 
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Explanation of Plate VI 

Effect of different parents on the heat resistance of 

their progeny. The plants indicated by A were from sugary 

segregating kernels and the plants B were from starchy seg- 

regating kernels. In figure 1 PS10 was used as the resist- 

ant parent and in figure 2 BS1 was used as the resistant 

parent. The susceptible parent and outcross stock were the 

same in both cases. Plants were planted and treated at the 

same time. Pictures were taken the same day. 
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It is probable that the su gene in itself coild affect 

tolerance similar to other genes in maize which are known 

to have dual effects on unrelated structures or functions of 

the plant. In the tests conducted no sweet corn lines were 

found to be resistant to heat. If the su gene is responsible 

for the lower resistance to heat it will be a limiting factor 

in the production of a sweet corn possessing as high a de- 

gree of resistance as is found in lines of starchy corn. 

Both dent and sweet corn have many diseases in common 

but in nearly all instances their effect is more severe on 

sweet corn. In studying the inheritance of smut resistance 

it is of interest to note that Immer (1927) did not find 

smut to be linked with Su su. Senn (1932), however, found 

that in artificially inoculated plants the sugary segregates 

were significantly more susceptible to seedling blight than 

the starchy segregates. In naturally infected ears the dif- 

ference was not significant but in favor of the Su kernels. 

He concluded that the su gene is also a factor responsible 

for the differential resistance to seedling blight disease 

exhibited between the two kernel types. 

No tests were made with the Su su 22 or Su3su3 pairs of 
genes which also cause a sugary condition of the endosperm. 

Tests with Chromosome V. The behavior of heat tolerance 

was determined in relation to two genes in this group, a2 

and pr. The evidence presented in Table 9 indicate that 
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A2, a2 is probably inherited independently of heat tolerance. 

The a2 tester used was one of the testers that gave an in- 

termediate reaction to artificial heat. Enough plants were 

tested so if a linkage did exist the results would have been 

significant as determined by analysis of variance. 

The behavior of heat tolerance with the Pr, a pair of 

genes gave highly significant results. In the cases studied 

Pr was associated with the resistant parents and the purple 

segregates on the ear resulted in the most resistant seed- 

lings. The survival value is also in favor of the Pr plants. 

Stadler(1) the Pr 

factor may affect the pH value of the cell sap in the plants 

and that this change may be of such a nature as to make the 

plants more resistant to heat. The Pr factor intensifies 

the anthocyanin pigmentation in the corn plants. Purple 

plants are a darker color if Pr is present instead of 21.2 and 

red kernels become purple if Pr is present. This color 

change can be compared with the change of litmus paper from 

red to blue when the solution is changed from an acid to a 

base. 

Tests with Chromosome VI. The behavior of heat toler- 

ance was studied with reference to only one pair of genes 

Y2, y2, in this chromosome and no significant differences 

(1) Personal conversation with Dr. L. J. Stadler, Bureau of 
Plant Industry, U. S. Department of Agriculture, University 
of Missouri, Columbia, Missouri. 
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were observed. It has been thought by some that white corn 

is superior to yellow corn in the drier regions just be- 

cause it is white corn. These tests do not uphold this 

hypothesis for the plants from kernels with white endosperm 

were no better than the plants from kernels with yellow 

endosperms. In fact, although the results are not signifi- 

cant, they are in favor of the yellow corn in percentage of 

leaf tissue burned and in survival of plants. 

Tests with Chromosome VII. As shown in Table 9 gli 

appears to have an effect on the relative heat tolerance of 

corn seedlings. The glossy seedlings were more resistant to 

heat than the non-glossy seedlings. This parallels the case 

reported in chromosome II, in which the glossy seedlings, 

due to .812 were also the more resistant although the glossy 

character was associated with the susceptible parent. 

As the glossy testers were more susceptible to heat 

than the resistant inbreds it does not seem possible that in 

the segregating progenies resulting from backcrosses to the 

recessive parents that the glossy seedlings should be the 

most resistant. The reason the glossy seedlings behave this 

way is not known. Not enough evidence was available to 

determine whether the glossy factor or genes closely linked 

with glossy were restonsible for this behavior to heat in 

the seedling stage. 

Tests with Chromosome VIII. For linkage group 8 only 
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two genes have been reported and neither of these affect 

kernel or seedling characters. Crosses were made involving 

the MAR, ms pair of genes but the seedlings tested did not 

show any observable segregation. 

Tests with Chromosome IX. Heat tolerance was studied in 

relation to two pair of genes, Sh, sh and C, c on this chromo- 

some. The shrunken character causes the endosperm to col- 

lapse during the drying stage at maturity and the seedlings 

are somewhat retarded in early stages of growth. Although 

the seedlings from shrunken kernels may have been at a dis- 

advantage no significant difference in percentage of heat in- 

jury occurred between this pair of genes. 

In tests with the C, c pair of genes, which affects 

aleurone color, a significant difference occurred. The C 

factor was associated with the resistant parent. The results 

were only significant (odds 19 to 1) and it may have been 

only a fortuitous choice of material that caused the dif- 

ferences. The difference in survival, however, is consider- 

ably in favor of the C factor that is, in plants from seed 

having the colored aleurone. One of the temperature tests 

in which pronounced differences occurred in this pair of 

genes is illustrated in Plate VII. The cc and Cc plants 

represent the colorless and colored segregates respectively 

resulting from a backcross to the recessive parent. 

Tests with Chromosome X. The factor pair, R, r, which 
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Explanation of Plate VII 

Differential response of seedlings from colorless (cc) 

and colored (Cc) kernels to artificial heat due to the C, c 

pair of genes. 



Plate VII 
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is associated with aleurone color, was the only pair of genes 

studied in this chromosome to determine the inheritance of 

heat tolerance. The evidence presented in Table 9 indicates 

that in the crosses studied heat tolerance is inherited in- 

dependently of the R, r pair of genes. 

DISCUSSION 

Emerson (1937) in discussing heredity and environment 

stressed the fact that he knew of no characteristics of 

plants, animals or man, that one can be perfectly sure are 

wholly environmental or wholly hereditary. In fact, usually 

one is unable to separate these two influences. He further 

states that characters of all sorts are influenced by ge- 

netic factors. Emerson defines "What is inherited", as "the 

possibility - indeed the necessity - of reacting in a par- 

ticular internal and external environment." 

In relation to heat tolerance some inbred lines of corn 

are resistant to heat up to a given temperature and then be- 

come susceptible when the environment changes i.e. when high- 

er temperatures prevail. The expression of this character 

is not shown until the proper environment exists. If such 

an inbred is grown in conditions where high temperatures 

never prevail this susceptibility would be transmitted from 

year to year although the character would not be expressed. 
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Even after growing for several years in favorable conditions, 

and then being planted where drought conditions prevail, the 

susceptibility to drought would be expressed. 

It is impossible to separate the physiological responses 

of a plant into two distinct categories and label them as 

being conditioned exclusively by environment or by heredity. 

The final expression is the result of a complex interaction 

of the inherited potentialities of the individual with the 

environment in which it finds itself. Many genes are so uni- 

formly present within a species that they are not given 

special attention by many as part of the hereditary make-up 

of the individuals, unless they are observed to segregate 

from their very infrequent allels, when they are at once 

recognized. Possibly literally thousands of these stable 

and unknown genes make up the genetic background of a species 

and form the basis of the more constant physiological re- 

sponses which many botanists commonly think of as purely 

environmental. The sum total of the genes present in an in- 

dividual or species, then determines the final expression of 

the response of the plant to its habitat. 

In addition to these universal or very widely distribut 

ed genes, there are others of which one or more allels are 

known. Some of these factor pairs produce their typical 

character responses throughout the range of environmental 

conditions that we recognize. For example, ears produced on 
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maize plants carrying P 
rr 

in the presence of Al always have 

red cobs and red pericarp under all known conditions of 

growth. Other factors require a special environment in order 

to express thErlelves and may long pass unnoticed unless the 

necessary conditions for their expression are present. Sun- 

red pericarp in corn is an example of this type of behavior. 

Kernels completely shaded by the husks have a colorless peri- 

carp, but if the husks are pulled back allowing sunlight to 

fall on the kernels, the pericarp develops a bright red 

color, These two types of behavior are not contradictory, 

but merely indicate that in some cases we do not know the 

entire range of environmental conditions which influence 

the reaction of certain genes. 

As a corollary to this statement, our knowledge of rare 

genes may often be so limited that we may conclude that a 

given environment always produces a certain result. This 

has been the case with certain plant diseases such as flax 

wilt or Pythium disease of milo until an exceptional plant 

containing a gene or genes for resistance is found which 

reveals a resistant type within a susceptible variety. 

In the cooler and more humid sections of the corn belt 

temperatures of 100° F. are frequently regarded as lethal 

to the pollen of adapted varieties. Maize is a highly vari- 

able species, however, and under natural selection in the 

southern Great Plains varieties have been developed in which 
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the pollen will stand temperatures appreciably over 100° F. 

without injury. Similarly, varieties, and more especially 

inbred lines, from humid and arid regions differ very mark- 

edly in the ability of plants to survive under conditions of 

high temperatures and deficient moisture. These differences 

certainly have a hereditary basis, although they could not 

be recognized or differentiated under a more favorable en- 

vironment. Studies of problems such as drought resistance 

can best be solved by a combined attack by plant geneticists 

and plant physiologists. 

Anyone acquainted with agriculture realizes that both 

environment and heredity play important parts in the prod- 

uction of crops. The factors of the environment can be sepa- 

rated but the effects of these factors upon the plant cannot 

be clearly analyzed unless the hereditary make-up of the 

plant is known. There is a close relation between the two and 

to think clearly on the subject one must consider both major 

factors. 

Considering heredity and environment as the two major 

factors controlling the responses of plants the outline of 

Newton and. Martin (1930) on page 14 has been revised. The 

rearranged outline is included in this chapter for reference. 
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The adaptations listed under morphology are easily 

shown to be of an inherited nature as the inheritance of 

structural changes in many plants and animals have been well 

demonstrated. The rhysiological adaptations listed as being 

of a heritable nature may cause considerable discussion. 

But if one keeps in mind Emersonts definition of what is 

inherited it can be readily assumed that genes influencing 

the physiological efficiency of a plant or animal actually 

exist. Although the environmental factors are independent 

of the heritable factors many of the heritable factors de- 

pend on environmental conditions for their full expression. 

For example, osmotic pressure of cell sap may be influenced 

by available moisture, temperature, light, and perhaps other 

factors, while the spread and depth of root penetration may 

be affected by the type of soil, the soil temperature, and 

the amount and distribution of soil moisture. The geno- 

typical responses of the plant due to variations of the en- 

vironment are then often expressed in the Modification of 

the morphological and physiological features. 

The isolation of quantitative genes by linkage tests is 

often difficult because of the number of genes involved and 

the relative variations in their importance. The maize ex- 

periment reported upon gives some evidence that genes con- 

trolling heat tolerance occur on at least three of the eight 

chromosomes tested and that the glossy character protects 
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the seedlings from injury to artificial heat. 

In addition to using gene markers of known position 

for determining linkage relations, a new method of locating 

quantitative genes was attempted. The use of translocation 

stocks involving parts of two reciprocally interchanged 

chromosomes was thought to be a better method of locating 

quantitative genes. Several advantages are evident in the 

use of chromosomal interchanged stocks of maize. Transloca- 

tions in the homozygous or heterozygous condition apparent- 

ly do not affect the normal somatic development of the 

plant, and in this way normal stocks of maize containing the 

translocation could be established, avoiding any possible 

altering effects of known genic testers. The translocation 

behaves as a dominant. The whole chromosome is involved 

and no particular emphasis is placed upon one locus on the 

chromosome. 

Only little use could be made of crosses involving 

translocations in this experiment because relatively few 

plants could be grown to the pollen shedding stage in the 

greenhouse. It will be of interest, however, to note whether 

the linkage associations found by the use of genic testers 

will be borne out in the field by analyzing the outcross 

progenies involving translocations now on hand. 
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SUMMARY AND CONCLUSIONS 

The reaction of corn seedlings to artificial heat was 

studied, approximately 27,000 seedlings being subjected to 

high temperature conditions. This reaction was found to 

correlate well with known field behavior in drought years. 

Ten to 14-day old seedlings when treated for 5 hours at 

130° F., with a relative humidity of 25-30 percent, were 

more heat tolerant than those at any later stages of develop- 

ment. 

Testing 18 to 20-day old seedlings for 5 hours in a 

chamber controlled at 130° F., with a relative humidity of 

25-30 percent and preceded by 12 hours of darkness gave the 

most satisfactory results. 

Decapitation experiments and decline in weight of seeds 

indicate that after the 14th day the young plant is probably 

independent of the endosperm for food material. 

Corn seedlings respond quickly to light which increases 

their resistance to heat within one hour's time. 

Inheritance of reaction to heat tolerance was studied 

in varieties and in selfed lines of corn and crosses between 

them. 

Heat tolerance in most cases was dominant but there 

were crosses in which susceptibility tended to be dominant. 

Hybrid vigor, in itself, apparently does not make the 
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cross resistant to heat in the seedling stage. 

Linkage relations were studied between the factors 

determining heat tolerance and one or more factors in eight 

of the linkage groups. Close association of heat tolerance 

with Suisui and Pr 2.11 and a loose association with C c was 

observed. Glossy seedlings apparently protect the seedlings 

from injury by artificial heat. 

The su gene is considered to be directly responsible 

for the differential resistance to heat as shown by the dif- 

ferential behavior of seedlings from sugary and starchy 

kernels. The equal distribution of the semi-sterile and 

normal conditions in translocation outcrosses involving 

chromosome IV strengthens this hypothesis. 

If the sugary gene in itself lowers the resistance of 

the plant to heat it is not likely that a sweet corn will 

be developed that possesses as high a degree of heat toler- 

ance as dent corn. 

The resistance of heat tolerance is conditioned by 

multiple factors and it is probable that the su gene is one 

of the major factors that is responsible for a low heat 

tolerance. The Pr factor may also have a significant effect. 
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