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1.1 MOTIVATION AND STATEMENT OF PROJECT

There are a number of asituations where it is important that
programs be portable among several machines. That 15,.1t becomes
important to be able to write a program in some high-level language
and run it on a variety of different machine types (e.g., CDC 6600,
IBM 370, PDP-11) without altering the source code. Such a situation
oceurs in a generalized network of heterogeneous computers where
programs should not be unduly restricted from running on any available
machine.

NADEX (Network ADaptable EXecutive) [YOUN79a, YOUN79b] is an
operating system, implemented in Concurrent Pascal [BRINTT], which
supports general graphs (software configurations) of communicating
software nodes. The nodes of a software configuration may be
sequential or concurrent programs and are not necessarily all resident
on the same machine, or even the same machine type. So, for a NADEX
network, there are three areas related to portability which must be
addressed. First, some portion of NADEX must reside in each machine
connected to the network; thus, that code must be executable on each
machine type. Second, application programs should be executable on any
machine in the network. Third, there may be some machines which are
not capable of running compilers which produce object code for
themselves, for example, because of small memory size.

One way to provide portable control and application programs is
to write cross-compilers which will run on a machine and produce
object code for each machine type. Source code can then be compiled

for any machine type and sent via a very simple communications



-
protocol to the hardware on which it is to be executed. This is the
approach used to provide NADEX support on the Pascal Microengine
[MICR79] and described in this report.

Kansas State University currently has an Interdata 8/32 and
Western Digital Pascal Microengine (among other machines) which could
be included in a network running under NADEX. Concurrent and
Sequential Pascal compilers run on the 8/32 and produce object code
for it. This report describes an effort to modify a multipass
Concurrent Pascal compiler so that it will execute on the Interdata
8/32 and produce object code for the Microengine.

The compiler to be modified generates P-code which appears to be
very close to the Microengine's machine code. However, there are
subtle but significant differences. A primary objective of the project
was to assess the impact of these differences on a multipass

compiler.

1.2 REPORT ORGANIZATION

This report consists of five chapters, apart from this
introduction. Chapters two and three contain a juxtaposition of the
compiler's original target machine (virtual, Concurrent Pascal) and
the new one (Pascal Microengine) for which it was to be modified. The
overall structure of the Concurrent Pascal compiler is discussed in
chapter four. The next chapter is a description of the changes which
were made to each pass of the compiler. Since pass six was so
extensively changed, the modifications to it are grouped by the
affected area of the pass: the objects which are generated as output,
the overall structure. and the generated code sequences. Chapter six

consists of an identification of the results of the project and the
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work which remains. The reader is assumed to be familiar with the

concepts of the Concurrent Pascal language [BRINTT].

1.3 NOMENCLATURE

Probably none of the terms used in this report will be new to the
reader, but there could be some ambiguity surrounding their usage
here.

In this report routipne will be used to refer collectively to the
Concurrent Pascal constructs PROCEDURE, FUNCTION (both ENTRY and
non-ENTRY), and the initial statements (BEGIN...END. block) of
processes, monitors, classes, and sequential programs. (The initial
statement of a concurrent program is the same as the initial statement
of a proee;s.)

Stacks shown in the figures grow from the top of the page (high
addresses) to the bottom (low' addresses). The heap grows in the
opposite direction. Generally, instructions can refer to three data
areas in the stack-- loeal vari§b1es, global variables, and stack
operands. Local yariables are identical to Concurrent Pasecal
temporary variables. Global variables are the same as the permanent,
or shared, variables of Concurrent Pascal. Instructions which push or
pop values act on the operand stack.

Concurrent Pascal processes are synonymous with Microengine
tasks-- each is the schedulable entity on the corresponding machine.

A sequential program running under a concurrent process may call
certain ENTRY routines of the process. The accessible routines are
named by the interface definition in the process. Those same routines
are named in the sequential program's prefix. At run time, calls by

the sequential program to its prefix routinesre mapped to a calls to
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the corresponding process ENTRY routines. In the Concurrent Pascal
virtual machine this mapping is performed by a jump table. On the
Microengine, a special code segment, called the interface segment,
(which contains only one routine-- the interface routine) performs the
same mapping.

Actions of the two compiler systems can be controlled by
specifying options. There are gompiler options and diixgn_gn;igna.
Compiler options are specified at the beginning of the source code
being compiled [HARTT6]. Driver options are specified as parameters in
the CSS invocation line which the user enters at the console to start
one of the compilers.

Items on the operand stack are referred to by their position
relative to the top of the stack. TI0S refers to the item on top of
the stack, regardless of its length. For instance, the TOS item could
be an integer value, occupying one word, or a real, which occupies two
words. JO0S-]1 refers to the item which was pushed onto the stack
immediately before the TOS item. Similarly, IO0S-2 is the item pushed
before TOS-1.

1.4 COMPILER GENEOLOGY

Figure 1 is a graphic illustration of the relationships between
the various compiler versions in the geneology described below. At
first the intention was to modify the code generator in HCPASCAL-- the
original version of Concurrent Pascal received several years ago from
the California Institute of Technology [HART76]. The object code
(P-code) which it generates seemed close to the Microengine
instruction set. The source code for HCPASCAL was not available,

however, so an extended version of it (MCPASCAL) was used for the
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project. MCPASCAL [SCHM77] is the same as HCPASCAL, except that it
allows use of the manager construct 1in the source language. For the
purposes of this project, the portions which deal with the compilation
of managers were ignored. The version of MCPASCAL which generates
Microengine machine code is MEPASCAL, and is the result of the work
described in this document. CPASCAL, another version of HCPASCAL,
accepts the same source language as HCPASCAL but produces object code
for the Interdata 8/32. CPASCAL makes more passes over the

intermediate code than its parent, but also performs

machine-independent and -dependent optimization.



ARCHITECTURE AND ORGANIZATION OF THE PASCAL VIRTUAL MACHINE

The MCPASCAL compiler generates code (called P-code, or virtual
code) for a hypothetical machine, not for any existent hardware.
P-code will execute on a real machine only if it 1is run
interpretively, or if it 1s further translated to the language of a
real machine. The software which Iimplements the virtual machine has
three major aspects: the virtual P-machine (that is, the machine which
would be visible to a P-code programmer), the interpreter which
presents that view, and the software kernel which interfaces directly

with the real hardware.

2.1 VIRTUAL P-MACHINE

The virtual machine executes P-code, has a stack architecture,
and uses five virtual registers, designated Q, G, B, S, and H. The Q
register is the virtual program counter. G is the global base
register, and can point to either of two types of data areas. When
P-code in the anonymous initial process is being executed, G points to
the data area containing the concurrent program's global variables.
However, " within system components, G points to the data area
containing that component's permanent (global, shared) variables., B
is the local base register, and points to the local variable area of a
routine, regardless of whether or/not it 1s a system component ENTRY
routine. The stack pointer, S, always points to the top of the stack
(the last word which was pushed onto it). H is the heap pointer, and
points to the first byte of free space.

When a routine 1s called, machine state information is pushed

onto the stack by the CALL instruction and the first instruction in
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the called routine (for example, ENTER). This structure, called a
markstack, consists of the return address in the caller's code
(contents of caller's Q register), caller's global base (G), caller's
local base (B), the value of S before the caller pushed the actual
parameters (if any), and the source code line number of the called
routine. The markstack fields are pushed on the stack in the order
Just given,

In general, routine calls proceed in the following manner. If
the called routine is a function, the caller pushes enough space to
hold the value to be returned. The caller pushes actual parameters (if
any), proceeding left to right through the source code parameter list,
and then the return address. The called routine builds the rest of the
markstack, resets the 1local base register, pushes enough space onto
the stack to accommodate its local variables, and resets the global
base, if necessary. Figure 2 shows a stylized configuration of the
data areas and registers after a function has begun execution.

The object code of a concurrent program compiled by MCPASCAL is a
sequence of 16-bit integers, divided into three sections: initial
process information, virtual code, and long constants. Five integers
comprise the initial process information:

1) The byte address of the last word in the object code, relative
to the first byte of the code file. That is, relative to the
first byte of this integer;

2) The number of bytes of virtual code;

3) The amount of stack space (bytes) required by the program;

4) The number of bytes required for the initial process!
permanent variables;

5) The number of bytes in the long constant pool.
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The second section is the virtual code itself. The virtual machine
instruction set (P-code) is given in [ZEPKT4], along with English and
psuedocode descriptions of each 1instruction's operation. The third
section 1s the pool of long constants (reals, strings (arrays of
CHAR), and sets). The constant pool always contains at least 16 bytes
since MCPASCAL always generates the null set, even if it is never
used. Figure 3 shows the object code which results from compiling a

null program.

2.2 INTERPRETER

Object code generated by MCPASCAL and HCPASCAL runs
interpretively. The original interpreter [ZEPKTA] ran on a PDP-11/45
and consisted of 1K bytes of assembly code. Structurally, it is a jump
table and a series of c¢ode pieces which carry out the actual
interpretation of virtual instructions. The virtual operation codes
are indices into the jump table whose entries are the addresses of the
corresponding code pieces. Each code piece ends with the PDP-11
assembly instruction

MOV @(Q)+,P

where P ;s the real machine program counter. The Q register contains
the address of the next virtual operation code to be interpreted. The
single move instruction uses the contents of the word to which Q
points (the opcode) to locate a word in the jump table. The content of
that word is then 1loaded into the real machine's program counter,
thereby jumping from the code piece which interpreted the current
virtual instruection to the code which will interpret the next one.
Figure 4 shows the arrangement of virtual code, interpreter, and

program counters. [ZEPKT4] gives a psuedocode description of the
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RELAIVE le——1 wORD———
ADDRESS

0 34 LDDRESS OF LAST WORD
2 10 CODE LENGTH
4 30 STACK LENGTH
6 0 PERMANENT VARIABLES LENGTH
B 16 CONSTANT POGL LENGTH

T 10 JUMP

VIRTUAL 12 L2 ] ; OPERAND FOR JUMP INSTRUCTION

CODE 14 BEGINPROCESS |

l 16 (1 _| OPERAND FOR BEGINPRGCESS

% ENDPROCESS INSTRUCTION

F 2 0
22 (o]

CONSTANT  24] 0

POOL 26| 0
28 (8]
30 0
32 0

¥y 4 0

FIGZURE 3. Object code file generated by MNCPASCAL frca the source
prograiu; BEGIN END.
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BYTE
ADDRESS INTERPRETER _‘ VIRTUAL CODE
2| (CONSTADDR) 226 0
4] (LOCALADDR) 500 2
6| (GLOBADDR) 620 4
- | 6
!o/— LJUMP .
TABLE /_
222 /—_
224) (WAIT) 9000 | 4 j
226 ‘CONSTADDR' i ' 160 6 (GLOBADDR)
CODE PIECE 102! 14 (OPERAND)
— 104 2 (CONSTADDR)
MOV @ (Q)+,P I 106l 10(OPERAND)
500 ‘LOCALADDR' 1 108 20{PUSHSET)
CODE PIECE i ?
MOV @ (Q)+, P |
620 ‘GLOBADDR' ]
CODE PIECE ]
668 4"--"—[ |
670 _MOV @ (Q)+, P | l
672 | |
Le——" ! | | GIVIRIUAL PGM. CTR)_
! L‘"_T° i —
._—/_’-1[ I l
| - 106
9000 'WAIT' I
| P
CODE PIECE P (REAL_PGM. CTR.) _
L —--hv{70 668 |
MOV @ (Q)+, P '
o 226
FIGURE &, Interpreter, vircual code., and rprogram counters before
(dasned) and after (solid) execution of the MOV instruction at

location 670 ir the interpreter. The MOV terminates the interpretation
of' the GLCEADDE wvirtuzl instruction and autcmaticzally irnitiates the
interpretaticn of CONSTADDR., @ peints to the pext word to be
interpreted. '
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action of each code piece.

2.3 SUPPORT FOR CONCURRENT PROCESSES (KERNEL)

In the PDP-11/45 implementation of Concurrent Pascal a kernel
(2.8K bytes of assembly code) handles processor multiplexing and
guarantees that processes have exclusive access to monitors [BRIN75].
It also performs some hardware interface functions, such as I/0 with
peripherals. The interpreter has access to the kernel, via the
KERNELCALL operation, in order to obtain the services which it
provides. For instance, the virtual instruction INITPROC causes the
creation of a new process. On encountering INITPROC, the interpreter
calls on the kernel to generate a unique process identifier and
process control block (PCB). The newly-created process is then placed
in the ready queue for subsequent execution, and control returns to
the interpreter.

Monitor access is controlled in the kernel by performing
operations on a data structure, called a gate, which contains the
state of the monitor (busy or free), to ensure mutual exclusion. Each
monitor has its own gate, a record, the fields of which are a boolean
(OPEN) and a pointer to a queue of PCBs. If a process is in the
monitor (OPEN=FALSE) when another tries to enter, the PCB of the
entering process is placed in the gate's queue. When the process
currently in the monitor leaves, another one is selected from the
queue and allowed to enter. If the queue is empty when a proceas
exits, OPEN is made TRUE. Figure 5 depicts the logical relationship of
the kernel to the interpreter and virtual code of a concurrent

program.
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ARCHITECTURE AND ORGANIZATION OF THE PASCAL MICROENGINE

3.1 SYSTEM OVERVIEW

The Pascal Microengine [MICR79] is a 16-bit, word addressable
stack machine. manufactured by Western Digital Company. It 1is a
desktop microcomputer built around the WD/9000 processor chip set, and
is a hardware implementation of the University of California at San
Diego (UCSD) virtual P-machine. The five LSI/MOS chips which
constitute the processor are the Data Chip which contains the
microinstruction decoder and ALU; the Control Chip, where the
macroinstruction decoder, microinstruction counter, and I/0 control
logic are housed; and three 22 X 512-bit MICROM chips for
microinstruction storage. The machine has 64K bytes of RAM, two
asynchronous serial ports, one 8=bit parallel port, and controllers
which give disk units direct memory access. The system at Kansas State
University has two eight-inch flexible-disk drives, a CRT, and a
printer attached. The hardware is supported by the Pascal Operating
System which was written by the University of California at San
Diego. The system supports UCSD Pascal, a variant of standard

(sequential) Pascal. Assembly language is not supported.

3.2 P-MACHINE

The microengine has an architecture which 1is similar to that of
the Concurrent Pascal virtual machine described earlier. The next
three sections describe some significant aspects of that

architecture.
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3.2.1 Registers

The Microengine has an extensive set of logical registers. Those
which correspond to the Q, G, B, S, and H registers of the virtual
Concurrent Pascal machine are the IPC, BP, MP, SP, and SPLOW
registers. IPC (Interpreter Program Counter) 1is the program counter.
It contains a pointer (byte measure), relative to the start of the
code segment (described below), to the instruction after the one
currently under execution. BP (Base Pointer), the global base
register, points to the markstack of a procedure at the outermost
level of nesting in the source code. MP (current Markstack Pointer),
the local base register, points to the markstack of the procedure
invocation which is currently under execution. SP (Stack Pointer)
points to the last word which was pushed onto the stack. SPLOW (Stack
Pointer LOWer limit) points to the first free word in the heap, and
also marks the last 1location 1into which the stack can grow. This is
the stack's Jlower 1limit since the stack grows from high to low
addresses.

In addition, there are other logical registers which have no
analogs in the Concurrent Pascal virtual machine. SPUPR (Stack
Pointer U?Peﬂ limit) points to the location where stack growth begins.
SEGB (SEGment Base) points to the code segment currently under
execution. PRIOR (PRIORity), an 8-bit register, holds the CPU
priority designation of the current task. Another 8-bit register,
FLAGS, contains task state flags, but these have not yet been defined
[MICR79]. If the current task gets placed in a linked data structure
(ready list or semaphore wait queue, for example) the WAITQ (WAIT
Queue) register contains a pointer to the next task in the structure.

The registers mentioned so far are logical registers in the
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Microengine P-machine. There are three others which appear to
actually exist in hardware. These are RQP (Ready Queue Pointer) which
points to the first task on the ready list, CTP (Current Task Pointer)
which points to the +task presently running, and SDP (Segment
Dictionary Pointer) which points to a vector of indirect pointers to
code segments,

The machine instructions refer to all registers by number:

-3: RQP ~2: SDP -1: CTP 0: WAITQ
1: PRIOR 1: FLAGS 2: SPLOW 3: SPUPR
4: SP 5: MP 6: BP 7: IPC
8: SEGB.

In register number 1 PRIOR is the low order byte, and FLAGS is the

high order byte.

3.2.2 Object Code File Format
In disk file directory listings, object code files are identified
by the extension ".CODE". Stored on disk, a code file (figure 6)
consists of a sequence of contiguous 512-byte physical disk blocks.
The first block in the file (block number zero) is a header which
describeq each of the code segments (up to sixteen) which start in
block number one.
The header block (figure 6) has four areas of data in it:
1) Segment dictionary-- 3Sixteen entries, one per segment,
regardless of the number of segments actually in the file.
Each entry consists of two 1integer filelds. The first is the
block number (relative to the header which is block zero) of
the first block in the corresponding segment. The second entry

is the number of meaningful words in the segment. Meaningless
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T—
-"‘--
—
-'-,__ _—
CODE FILE *n‘w
HEADER BLOCK SEG START BLOCK
SEG LENGTH
SEG 1 START BLOCK
5 SEG 1 LENGTH
SEGMENT \ SEGMENT J l
¥ DICTIONARY i
-_’/’_ \\h l
__/— \ {
5
NO. O ‘\ SEG 15 START BLOCK
\ L SEG 15 LENGTH
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\ SEG 0 NAME
BECHEHL ; SEG 1 NAME
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words may occur at the end of a segment in order to pad to the
end of a block. If the file contains fewer than sixteen
segments zeros are used to indicate null entries,

2) Segment names-- Sixteen entries, as above. Each entry is a
16-byte string which is the ASCII character name of the
segment, left justified, blank being the pad character. The
entry is all blanks if the corresponding segment is null.

3) Segment state descriptors-- Sixteen integer entries, aﬁ
above. Valid entry values are in the range zero through four.
The entries encode linkage information such as the presence of
external references and whether they have been resolved. For
more information see MICR79, "Linker Conventions and
Implementation™. The entry for a null segment is zero.

3) The next 1434 words are, according to [MICR79], reserved for
future use. Most, but not all, of this area contains zeros.
The meaning and function of the nonzero entries is unknown,
and altering them seems to have no effect on the execution of
the file and segment.

Each segment (figure 7) in the file may extend over any number of
blocks apd consists of a header word, a variable number of routines, a
procedure dictionary, a final word of segment information, and
possibly some padding. The header word contains the address (measured
in words, relative to the start of the segment-- word zero) of the
last meaningful word in the segment (the "final word of segment
information™ just mentioned).

Each routine (figure 7) is made up of a (possibly empty) constant
poocl and two words of run-time information, followed by the machine

instructions themselves. The constant pool i1s aligned on a word
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boundary, and is similar to the constant pool of the Concurrent Pascal
virtual machine. The first information field 1is the EXIT-IC, a
word-aligned pointer (byte measure, relative to the start of the
segment-- byte zero), the target of which is the first machine
instruction of the routine's epilogue. Usually, the epilogue consists
of only an RPU (Return from Procedure-- User) instruction.
Presumably, either the hardware or operating system stores this value
into the IPC register when a fatal run-time error occurs so that the
stack gets cleaned up before returning to the operating system. The
second information field, DATASIZE, is the number of words of local
variable space required by the routine. The routine's code appears
last, and because of prior aligmments, it necessarily starts on a word
boundary.

The segment's procedure dictionary (of variable length) follows
the code of the last procedure and contains a pointer for every
routine in the segment (see figure 7). The target of each pointer is
the DATASIZE field of the corresponding routine. The pointers (word
measure, relative to the start of the segment-- word zero) are
arranged in what one would normally consider reverse order. That is,
if there are 50 routines in the segment, the pointer for routine 50
comes first. and that for routine 1 comes last. Note that although the
routine pointers are in reverse routine-number order, the routines
themselves will not be in the same order since the initial statement
of a routine is assigned its number before any enclosed routines are
assigned theirs. The numbering scheme is further disrupted with each
nesting level.

The last meaningful word in the segment contains two pieces of

information. The even-address byte contains the segment's identifying
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number (zero through fifteen) within the code file, and the
odd-address byte contains the number of routines in the segment. If
this word is not the last one in the block, the rest of the block is
padded with zeros. It must be noted that the segments are the unit of
execution, not the code file. During any execution, only the segments
which are specifically invoked actually enter main memory to have the

processor applied to them.

3.2.3 Routine Invocation and Stack Organization

Routine invocations involve a good deal of cooperation between
hardware and software. If the called routine is a function, software
in the calling routine pushes enough empty space onto the stack to
hold the function value when it is returned. If parameters are
required, the caller also pushes them onto the stack. Assume for the
moment that the calling and called routines are part of the same code
segment. The machine instructions which make such intrasegment ecalls
are CPL (Call Procedure-- Local), CPG (Call Procedure-- Global), and
CPI (Call Procedure-- Intermediate). During the execution of any of
these instructions the hardware performs a number of operations. It
uses the procedure number (fetched as an instruction operand) of the
called routine as a backward index into the segment's procedure
dictionary, fetches the pointer to the routine's DATASIZE field, and
pushes onto the stack that number of words for use as the local
variable space. It then builds a four-word markstack.

The first markstack word to be pushed on the stack contains two
one-byte fields. One is the number of the code segment containing the
calling routine's code (or zero, if the calling and called routine are

in the same segment). The other has been reserved for future use. The
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return address in the caller's code (contents of the IPC register) 1is
stored in the next word. The third word is the dynamic link (pointer
to the caller's local variables), which is a copy of the caller's MP
register. Since UCSD Pascal allows nested routine definitions in the
source code, the fourth word is the static link-- a pointer to an
enclosing routine's variables. The value used for the static link
depends on the nesting level (lexical 1level) of the called routine,
and the particular instruction used. See CPL, CPG, and CPI
instructions in [MICR79]. Figure 8 depicts the general notion of
static and dynamic links.

After construction of the markstack, the hardware copies the SP
register into MP, making the called routine's local variables
addressable., Hardware also calculates the IPC value for the first
instruction of the called routine and execution continues at that
point. The configuration of the stack after a function begins
execution is shown in figure 9.

If the called routine 1is not in the same segment as the caller
(that is, external) the invoking instruction is either CXL (Call
eXternal Local procedure), CXG (Call eXternal Global procedure), or
CXI1 (Cal% eXternal Intermediate procedure). Before the UCSD Pascal
compiler generates a call to an external user routine, it generates an
external call to a well-known procedure in an operating syatem.segment
which is always core-resident at run time, That routine fetches the
required segment from the disk and pushes it onto the stack. Thus, the
compiler and operating system work together to ensure that external
procedure-call instructions will never be forced to deal with the
invocation of a routine which is not in main memory. The run-time

operation of external call instructions is the same as the other ecall
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instructions except that the segment number operand is used to find
the address of the code segment containing the called procedure before

indexing into the procedure dictionary.

3.3 SUPPORT FOR CONCURRENT PROCESSES

The Microengine has several design features which can facilitate
the execution of concurrent processes, although not all of them are
supported by the hardware at this time.

The embodiment of a process 1is the Task Information Block (TIB)
which is comparable to a process control block and contains the fields
WAITQ, PRIOR, FLAGS, SPLOW, SPUPR, SP, MP, BP, IPC, SEGB, HANGP, XXX,
SIBS, MAINTASK, and STARTMSCW. The first ten are the nonnegative
logical registers described in section 3.2.1. If the task gets placed
in a semaphore wait queue, HANGP can be used to hold a pointer to the
semaphore data structure (described below) on which it is waiting. XXX
is an unused integer field. SIBS points to an array of segment dope
vectors (segment information blocks). The Western Digital
documentation [MICR79) states that MAINTASK is of type BOOLEAN and
that STARTMSCW is a pointer to a markstack, but does not explain their
functions. The reader is left to make his own assumptions.

The target of the pointer SIBS is a vector of Segment Information
Blocks (SIB). A SIB contains the fields SEGBASE, a pointer to the
core-resident code segment; SEGLEN, the number of words in the
segment; SEGREFS, the number of routine calls currently active in the
segment; SEGADDR, the absolute physical disk address where the segment
resides on secondary storage; and SEGUNIT, the number of the disk
drive where the segment resides.

Figure 10 shows several tasks 1in, say the ready list, and how
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each one has some private code segments bound to it through the SIBS
field and SIB vector. The segments are "private™ to each task since it
would be difficult (but not impossible) for a casual programmer to
execute code which traversed all the links in order to tamper with the
code of some other task. In external routine call instructions, the
segment number operand refers to a private segment if its value is 128
or greater.

Other segments can be easily called by any task in the system.
The SIBs for these "shared™ segments are not gathered together in a
single data structure 1like a task's private segments. Instead,
pointers to them reside in an array. the segment dictionary, which in
turn is pointed to by the SDP register (see figure 11). In external
routine call instructions, the segment number operand refers to a
private segment if its value is in the range 0 through 127. However,
there is an implementation restriction which limits shared segment
numbers to the range 0 through 15.

Figure 12 shows how neatly the two segment schemes mesh. The
three negative-numbered registers (RQP, SDP, and CTP) point to the
ready queue, shared segment dictionary. and currently executing TIB
respectively., When a process comes up for execution its private code
segments become available through the CTP register, but it does not
have easy access to the code of other processes. However, all
processes have easy access to the shared code via the SDP register.
This means, for example, that operating system processes can keep
sensitive code in the relatively secure private segments, while making
available that code which really must be public. Notice that context
switching only involves resetting the CTP register and advancing the

ready queue pointer since process state information is always in the
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TIB.

Machine instructions WAIT and SIGNAL are provided for process
synchronization. The semaphore data structure on which these act
consists of a COUNT field and a pointer to the semaphore's wait queue.
COUNT holds the number of outstanding SIGNALs which have been issued
on the semaphore. Presumably, the two instructions behave in a
straightforward manner, similar to Dijkstra's P and V operators.

At the present time the hardware does not support interrupts and
hardware context switching. According to [MICR79], however, the
machine is designed to provide a vectored, fixed-priority interrupt
system. There will be eight two-word entries in the vector. One entry
for DMA completion, six for serial and parallel port I/0 completion,

and one for exceptions on either of the serial ports.

3.4 P-MACHINE SEMANTICS FOR CONCURRENT PASCAL

The purpose of a translator for any high level language 13 to map
the source code to the architecture of the target machine. In the case
of HCPASCAL, the language existed first, and a virtual machine was
implemented to accommodate it. The machine was built according to the
peeds of the language. For MEPASCAL, the source language and target
machine came into existence independently of each other, so the
compiler must somehow make use of the existing architectural
facilities of the Microengine to carry out the semantie actions of

Concurrent Pascal.
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3.3.1 Code Segments

In the virtual machine there are four code spaces: kernel,
interpreter, concurrent program, and sequential programs (which exist
as permanent variables in concurrent processes). These can be
accommodated on the Microengine in the following ways.

The interpreter is trivial since its function is performed by the
compiler and hardware.

The kernel code should be independent of the concurrent program
since it 1s designed as a relatively stable piece of software to
provide support for any Concurrent Pascal program. Therefore, it
makes sense to put it by itself in a Microengine shared code segment.
If the kernel is always in the same segment (say, segment zero) it is
very easy to implement the kernel-call mechanism as a call to a
well-known routine within that segment. The kernel operator and
operands would have to be pushed onto the stack as parameters by
compiler-generated machine code. If it becomes necessary to modify
the kernel relatively frequently, a second approach to kernel-call
implementation might be more useful. Since the number by which the
routine is known to callers can be affected by changing the
arrangement or number of routines in the kernel segment, it would be
advantageous to 1isolate the kernel-call handler in a second
(well-known) kernel segment where routine number one merely examines
the kernel operator and passes the operands to the appropriate routine
in the segment. This can be done via routine calls embedded in a CASE
statement. See figure 13 for a pseudo UCSD Pascal outline of such a
segment. In this report we will assume the entire kernel is in only
one segment.

The classes, monitors, and processes of the concurrent program
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TYPE
KERNOPTR = (INITGATE, ENTERGATE, LEAVEGATE, ENDPROCESS,
INITPROCESS, REALTIME, DELAYGATE, CONTGATE,

STOPJOB, WAIT, SYSERROR, I0.;

SEGMENT PROCEDURE KCALLHDLR (OPTR: KERNCPTR:

OPND1, OPND2, OPND3, OPND4: INTEGER);
CORST
IGATERTN
EGATERTN
LGATERTN
EPROCRTN
IPROCRTN
ETIMERTN
DGATERTN
CGATERTN
STJSOBRTN
WAITRTN
SYSERRIN
IORTH

routine numbers in

kernel segment
|

L L U O U N - N 4 A F N (A [ Y | I 1|

I
]
|
1
1
1
[}
[}

KERNSEG = O; "SEGMENT NUMBER OF KERNEL PROPER"

BEGIN

CASE COPTR OF
INITGATE: PUSH CPERENDS; EXTERNAL CALL TO KERNSEG, IGATERTN;
ENTERGATE: PUSH OPERANDS; EYXTERNAL CALL TO KERNSEG, EGATERTN;
LZAVEGATE: PUSH OPERANDS; EXTERNAL CALL TJ KERNSEG, LGATERTN;
ENDPROCESS: PUSH OPERANLS; EXTERNAL CALL TO KENRSEG, EPROCRTN;
INITPROCZSS: PUSE CPERANDS; EXTERNAL CALL TO KERNSEG, IPROCRTN;
REALTIME: PUSE OPERARDS; EXTERNAL CALL TO KERNSEG, RTIMERTN;
DELAYGATE: PUSH OPERANDS; EXTERNAL CALL TO KERKSEG, DGATERTH;
CONTGATE: PUSE OPERANDS; EXTERNAL CiALL TC KERNSEG, CGATERTHN;
STOPJOB: PUSE OPERANDS; EXTERKAL CALL TO KZIRNSEG, STJ0BRIN;
WAIT: PUSE OPERANDS; EXTEENAL CALL TC KERNSEG, WAITRTN;
SYSERROR: PUSE OPERANDS; EXTERKAL CALL TO KERNSEG, SYSERRTN;
I0: PUSE OPERANDS; EYXTERNAL CALL TO KERNSEG, ICETN

EIDCASE

END;

FIGURE 13. Pseudo UC3D Pascal ocutline of specialized segment to handle
kernel calis. Pushing the operands and calling the external routine
are separate machine operations. In hizh level code this woculd appear
as a normal routine czll with parameters.
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can be placed in another shared segment where each initial block,
routine, and entry routine of the concurrent program is one routine in
the concurrent c¢ode segment. The segment must be sharable since
monitors and classes can be entered by any process which has the
appropriate access right. The concurrent segment will always be
segment number one. Always placing the concurrent program in segment
number one makes it well-known in the system and will aid the
implementation of the interface mechanism (explained below).

Sequential programs and their interface with host concurrent
processes present special problems. When calling a sequential progranm,
the interpreter for the Concurrent Pascal virtual machine often makes
use of a property not found on the Microengine; namely, that real
memory is a single, linear address space where all addresses are
alike, and that once an address has been obtained, the processor can
easily be forced to Jump to that 1location. Sequential program
invocation on the wvirtual Pascal machine is fairly straightforward.
The concurrent program must somehow load sequential code into a
variable (a large array, for example), and the compiler must generate
code to push the variable's address onto the stack. CALLPROG is the
virtual instruction which actually starts the program. During its
interpretation, the return address is saved on the stack and the
virtual program counter (Q) 1is loaded with the address of the first
sequential program instruction which is located a fixed distance from
the start of the program variable (whose address is on the stack). On
the Microengine, the address of the program variable (in the real
memory address space) can be pushed onto the stack by any of several
machine instructions. However, it cannot be placed directly into the

IPC register to cause a jump to the sequential program since the
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hardware expects the address in the IPC to be an offset from the
beginning of a code segment. A possible solution to this problem is
depicted in figure 14 and runs as follows. Assume that when the kernel
creates a TIB for'a process it also allocateg space for two SIBs for
segments private to the newly created task. The segment numbers of
these can always be 128 and 129, where segment 129 is the sequential
program segment. (The purpose of segment 128, the interface segment,
will be described below.) As part of the program invocation code, the
compiler generates 1instructions which follow pointers from the CTP
register, through the current task's TIB to its SIB vector, and pop
the address of the code variable into the SEGBASE field in SIB 129,
The next instruction generated is an external call to routine number
one in segment 129. The effect of all this at run time is to make the
code variable look like a code segment to the hardware, and start the
sequential program by means of a normal external routine invocation.

Operating system services are provided to the sequential program

through an interface which names the process ENTRY routines to which
the sequential program has access. The operation of the interface
mechanism is best demonstrated by example. The (meaningless)
concurre?t program shown in figure 15 contains an interface definition
(line 7) for the sequential program J. The program is actually invoked
in line 27. The MCPASCAL compiler produces code which performs the
following functions in order to get J started:

1) Push onto the stack the address of the first instruction of
each ENTRY routine named in 1line 7, in reverse order of
appearance in the source code. That is, push the address of
PE3, then that of PE2, then that of PE1;

2) Push the parameters (the values 1 and 2, in the example);
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= BT =

1 TYPE . 2

2 PRC = PROCESS; +1000

3 TYPE CCDE - = ARBAY[1..1000] OF INTEGER;
4 V4R CODEVAR: CODE;

5 : "

6 PROGRAM J (4, B: INTEGER; C: CODE);

T ENTRY PE1, PE2, PE3;

8

9 PROCEDURE ENTRY PE1 (PARAM1: INTEGER;

10 VLR PARAM2: INTEGER);
11 BEGIN

iz PARAMZ := PARAM1 + 100

12 END;

14

15 PROCEDURE ENTRY PE2 (PARAM1: INTEGER;

16 V4R PARAM2: INTEGER}):
17 BEGIN

18 PARAM2 := PARAM1 + 200

19 END;

20
21 FUNCTION ENTRY PE3 (PARAM: INTEGER): INTEGER;
22 BEGIN

3 PE3 := PARAM + 300
24 END;
25
26 BEGIN

27 J (1, 2, CODEVAR)
28 END;
29
39

31 VAR PRCY: PRC; "

32
33
34 BEGIN

35 INIT PRCV

36 END.

FIGURE 15. Sample Concurrent Pascal program containing an interface
definition {line T) for the sequentizl program defined in line 6 ané
invoked in line 27.
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3) Push the address of the variable containing the sequential

program code;

§) Execute the CALLPROG instruction as described above.

A snapshot of the run-time stack at this point is shown in figure 16.
Notice that the addresses of the process ENTRY routines (interface
routines) in the stack constitute a jump table, built at run time. The
sequential program calls interface routines by executing the virtual
instruction CALLSYS(PREFIX_INDEX). During the interpretation of
CALLSYS, the value of PREFIX_INDEX is used as an index into the jump
table on the stack and the processor branches to the corresponding
ENTRY routine in the concurrent process. This mechanism allows a great
deal of independence between the concurrent and sequential programs.
The only point on which they must agree is the order in which the
interface routines are to appear.

The design of an interface mechanism for the Microengine proved
to be a significant challenge. The problems stem from two Microengine
architectural features: routines are known and called by their number,
and the number of the called routine must be supplied to the invoking
instruction as an immediate operand, not a stack operand. The first
item prec;udes the cons;ruction of a run-time Jump table, but if the
sequential program is allowed to call process ENTRY routines directly,
two major points of independence are lost. First, the sequential
program would need to know, at compile time, the identifying numbers
(not just the order) of the entry routines it is allowed to use.
Second, the number and arrangement of routines in the concurrent
program could be changed, independent of the sequential program, only
if it could be guaranteed that the routine numbers of the process

entries would be unaffected-- an extremely difficult, if not
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URE 16. Run-time stack after exscution of the viriual instruction
PEOG which invokes &2 sequential program. CALLPROG uses the
uential program variable zddress which it finds on tep of the stack
and replaces it witk the address of the sequentizl program's constant
pool. The sequential program's markstack will be be built later in the
lined zarez.
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impossible, task. If routine call instructions took their operands
from the stack, then the numbers of the interface routines could be
placed on the stack as parameters to the sequential program.
Invocation of an 1interface routine would only require pushing the
appropriate parameter onto the top of the stack and initiating a
routine call. However, as mentioned above, the architecture prevents
such a maneuver.,

The required Microengine mechanism must be a run-time mapping of
prefix indices to interface routine numbers in the concurrent segment.
The map can be realized in an interface segment (see figure 17) built
by the compiler whenever it encounters the invocation of a sequential
program which requires an interface. Some details of the scheme, such
as the time at which the interface segment should be loaded into main
storage, and the accommodation of more than one interface in a single
process have not yet been resolved. The interface segment (always
segment 128) contains only one routine which itself consists largely
of a CASE statement. The case labels are the prefix indices which are
known to the sequential program. The code of each case is an external
call to a process ENTRY routine in the concurrent segment. If the
routine numbers change because of some structural change 1in the
concurrent program, the operands to the routine calls will be adjusted
accordingly when it is recompiled.

Sequential program invocation can be the same as described above
for the virtual machine, except that it is no longer necessary to push
the jump table onto the stack. The invocation of a process ENTRY
routine will be quite different. The sequential program will push onto
the stack the prefix index of the ENTRY routine as a parameter. It

then will call procedure one in segment 128, the interface mapping



SEGMENT PROCEDURE INTERFACE (PREFIX_INDEX: INTEGER);
BEGIN

RANGECHECK (PREFIX_INDEX);

CASE PREFIX_INDEX OF
1: EXTERNAL CALL TC CONCURRENT SECMENT, ROUTIKE W;
2: EXTERNAL CALL TO CONCURRENT SEGMENT, ROUTINE X;
3: EXTERNAL CALL TO CCHNCURRENT SEGMENT, ROUTIRE Y;

.

Li: EXTERNAL CALL TO CONCURRENT SEGMENT, ROUTIRE Z
ENDCASE

END;

FIGUEE 17. Pseudo UCSD Fascz2l description of concurrent/sequential
interfeace segment. PREFIX_INDEY is the index number cof the prefix
routine the sequential pregram is calling. W, ¥, ¥, and Z are the

numerical identifiers which the routine-eczlling instructions use to
invoke the corresponding crroesss EHTRY routine. RANGECHECK causes a
run-time errcr if PREFIX_IKDEX is not in the range 1..N.
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routine. The mapping routine will use the parameter as the case
selector, and call the coresponding process ENTRY routine in the
concurrent segment.

Figure 18 shows the proposed arrangement of segments required for
a Concurrent Pascal program to run on the Microengine. Two segments
(kernel and concurrent program) are shared by all tasks, and two
(interface and sequential program) are privately associated with their

controlling task.

3.4.2 Data Spaces

Just as code areas must be mapped to the Microengine
architecture, so must Concurrent Pascal data spaces. They will be
handled in the manner described here. Figure 19 shows the general
"state of affairs in the stack after the initia; process has started
executing its initial routinet This state can be reached through the
following sequence of events. At IPL time the system is powered up and
a human operator presses the RESET button on the rear of the processor
cabinet. This causes the hardware to read into main memory a fixed
area of data from a disk unit which is well-known to it. The hardware
assumes that it has Just read in the first part of a bootstrap loader
and proceeds to load the Lkernel by executing that information. Once
the kernel code is 1in place it can begin execution and fetch the
concurrent program code from a disk unit. At this point the stack
consists of the kernel code segment, space for its variables, and a
markstack. As concurrent object code is read into the processor, it is
pushed onto the kernel's operand stack. Once the segment has been
loaded, the kernel sets the segment dictionary pointer, builds a SIB,

and puts the address of the segment into it. - Routines in the
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concurrent segment can now be called. The concurrent program becomes
active when the kernel calls its initial routine, routine number one.

Invocation of the initial routine causes the hardware to allocate
stack space for its variables and build a markstack (see section
3.2.3). The amount of variable space to be allocated was determined by
the Concurrent Pascal compiler (MEPASCAL). If any of the initial
process' variables are system components, they will appear here, as
shown in figure 19. The embodiment of a system component yariable
(instance of a system component type) is a record in the variable
space of the initial process. The record has the same format as the
top region of the stack, Just after a routine call instruction has
been completed. For example, suppose that a c¢lass is defined as

TYPE CL = CLASS (P1, P2, P3: INTEGER);
VAR V1, V2: REAL;

PROCEDURE ENTRY X;

BEGIN

"code®

END;

PROCEDURE ENTRY Y;

BEGIN

"code™

END;

BEGIN

"initial code™

END;
and that the concurrent program variables declarations include

VAR cL1, CL2, CL3, CL4: CL; .

Then in the initial process variable space, along with any other
concurrent program variables, there would be four records (CL1, CL2,
CL3, and CL34), each containing five fields. Three integer fields at
the high-address end of the record are the parameters P1, P2, and P3.

Two real filelds at the low-address end of each record are the

permanent variables of the class, V1 and V2, Any time the class
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instance CL2, for example, starts executing, the global base register
(B) will be forced by compiler-generated software to point to an
imaginary markstack adjacent to the high-address end of the record for
CL2, as shown in figure 19. Unlike the local variable areas of
procedures, functions, and ENTRY routines, which appear upon
activation and disappear upon return, the initial process variables
disappear only if the whole concurrent program returns to the kernel,
Hence, the permanence of component permanent variables i1s realized.
Before initializing a component variable, software pushes its
parameters onto the stack. The actual INIT code sequence then pops
them into the component variable's record. {For a process
initialization, the parameter movement is handled by the kernel.) In
this way access rights are "remembered"™ after the initial routine
returns to its caller.

As figure 20 shows, process stack space is allocated contiguously
in the order of process creation. The amount of space to be allocated
to a process is determined at compile time. Once the space is
allocated, it exists forever during execution. Within that space the
stack for the process will rise and fall as code is executed and
routines are activated. Since each process has its own stack operating
concurrently with those of other processes, there will be gzeveral
stacks and stack pointers existent 1in the machine at the same time.
However, there is no ambiguity for the hardware regarding which stack
pointer to use, nor is there any need for software to reset SP during
context switches, since every process has its own SP in its TIB. When
a TIB gets switched onto the processor (when the TIB becomes the
target of the CTP register) the correct SP comes with it.

The amount of stack space needed by a process can be supplied to
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the kernel as a parameter to the kernel routine which creates
processes. Even though the space information 1is provided at
process-creation time, it will not be used until the kernel is called
upon to create the pext process. Figure 21 shows how stack space for a
new process (process 2) must be allocated in relationship to the most
recently allocated space (process 1). During execution of routine call
instructions the hardware apparently makes use of the SP register to
determine the starting address of the routine's local variable area
and, by implication, the 1location of the new markstack. This means
that when process 2 is created, the kernel must set the SP register in
process 2's TIB so that it points to the last allocated word in
process 1's stack space. When the new process comes up for its first
execution time slice it will execute a call to its own initial
routine, and the process markstack will automatically be built in the
correct location. The placement of the initial routine's markstack 1is
somewhat eritical. If it spills into the previously allocated area,
it could be destroyed, but placing it too far away wastes memory. The
new process' global (permanent) variables have been allocated in the
variable space of the anonymous initial process, so the new variable
space is ?nll. It seems possible to allocate process global variables
here since they would be deallocated only if the process initial
routine tried to return to its caller, but placing them in the initial
process area malntains a c¢onsistency with the allocation scheme for
¢lass and monitor permanent variables.

If the method just described is to ever work successfully, a
mechanism is required which will allow gne process to enter the kernel
routine which creates processes, and allow two to exit it safely.

(The second process must not be allowed to cut back a nonexistent
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stack.) And yet, the hardware should do as much of the work as
possible. This turns out to be no small task. Assume for the moment
that the anonymous initial process is to start a process called PRC.
The proposed mechanism calls for the compiler to generate code in the
initial process which (in pseudocode) looks like:

CALL KERNEL TO CREATE PROCESS

SKIP NEXT INSTRUCTION

CALL PRC'S INITIAL ROUTINE

OTHER CODE,
and for the kernel's process-creation routine to be similar to:

BUILD TIB FOR PROCESS PRC-

BUILD OTHER PROCESS STRUCTURES (SIB, for example)

FETCH DYNAMIC LINK (points to initial process SKIP)

ADD 2 BYTES TO DYNAMIC LINK VALUE

PUT (DYNAMIC LINK + 2) INTO PRC*'S IPC

SET SP REGISTER IN PRC'S TIB

POT PRC'S TIB IN READY LIST

RETURN TO CALLER.
Execution proceeds in the following manner. The anonymous process
executes a normal call to the process-creation routine in the kernel.
That routine builds a TIB and related data structures for PRC (see
figure 18). Next, the IPC address of the SKIP instruction in the
initial process is fetched. This is possible by means of the
following steps:

1) Load the contents of the MP register onto the stack. This puts
the memory address of the process-creation routine's markstack
onto the stack.

2) Add one word to the top-of-stack value to yield the address of
the dynamic link field in the markstack.

3) Push onto the stack the word pointed to by the top-of-stack
word. That is, push indirectly the dynamic link.

The dynamic 1link is the IPC value of the SKIP instruction in the

initial process. Two (the skip instruction is two bytes long) is added
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to it to yield the IPC value of the CALL PRC instruction. That value
(dynamie link + 2) is put into the IPC register field of PRC's TIB so
that PRC will start execution there when it gets its first slice of
processor time, PRC's SP register is initialized as discussed above,
and the TIB is placed in the ready 1list. The anonymous process
executes a normal return from the kernel and next executes the SKIP in
the initial process. It then continues on to its other code. If the
CALL were not skipped, the initial process would end up in the code of .
PRC, not its own. On the other hand, when PRC comes up for its first
execution, it must execute the CALL so that it ends up in its own
initial code. If PRC attempts to return from its initial routine, it
will be prevented from entering the code of the initial process, from
which it was called, by compiler-generated code which calls a kernel
routine before the RETURN instruction ecan be executed. That routine

(ENDPROCESS) simply removes PRC's TIB from the ready list.
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STRUCTURE OF THE CONCURRENT PASCAL, COMPILER

4.1 OVERVIEH AND SUMMARY OF PASSES ONE THROUGH FIVE

MCPASCAL is a seven-pass, recursive descent compiler written in
Pascal32, a variant of sequential Pascal which generates Interdata
8/32 object code. Figure 22 shows the various parts of the compiler on
Kansas State University's Interdata 8/32. MCPASCAL.CSS is an operating
system command file which makes logical device assignments, allocates
temporary intermediate code files and a permanent object code file,
and initiates the sequential Pascal program MCPASCAL, MCPASCAL is the
compiler's driving program and performs the following functions:

1) Scans the string of driver options requested by the user and
saves them for future reference;

2) Invokes the passes of the compiler (MCPASSx-- Managers,
Concurrent, PASS number x) in the proper sequence;

2) Invokes the program MNEM (explained below) as indicated in the
driver options specified by the user;

4) Monitors the compilation and reports its progress (for
example, passes completed and presence/absence of compilation
errors) to the user's console.

The driver communicates with the programs it calls through variables
of type ARGLIST and PROGRESULT which are defined in the prefix of each
program.

The compiler passes use four disk files as shown in figure 23.

The two temporary files coniain the 1intermediate code produced by
each pass. When an intermediate code file is no longer needed, it is
overwritten by subsequent passes. For example, MCPASS3 writes over

the output of MCPASS1 when it produces its own output.
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MNEM (MNEMonics) is a sequential program which accepts the number
of a compiler pass as a parameter. It reads the intermediate code
output of that pass and prints the contents on the same device (or
file) as the source code 1listing generated by the first pass. The
output is formatted, and operators appear as mnemonics instead of
integers. Operands appear as integers and are enclosed by
parentheses. MNEM is described more fully in Appendix A. This
mechanism replaces the test mechanism built into the compiler and
invoked as a compiler option. The test mechanism prints the
intermediate code as integers. Operators are identified by preceding
them with the letter "C",

The first pass of the compiler (MCPASS1) is the lexical scanner.
In general terms, it translates the source program into a sequence of
16-bit integers which represent the program tokens, and produces a
listing of the source file. It also performs three rather specific
functions unrelated to lexical analysis. First, it generates the null
set long constant. Second, it allocates heap space for the PASSLINK, a
record data structure which remains in the heap between passes, and
through which the passes communicate with each other. The third
specific function is the analysis and initialization of compiler
options which may appear at the beginning of the source program.

MCPASS1N (MCPASS1 No source) is the same as MCPASS1 except that
it does not produce a source 1listing. Its existence allows the
source/no-source option to be specified as a driver option when the
compiler is invoked, rather than as a compiler option embedded in the
source code. If "NS" is in the string of driver options, MCPASS1N is
invoked as the first compiler pass instead of MCPASS1.

MCPASS2 performs recursive descent syntax analysis on the token
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stream produced by the previous pass. At the end of the pass it saves
the number of jump labels it created in the PASSLINK record.

Scope (name) analysis of program identifiers is performed by pass
three. It enforces rules which, for example, demand that within a
single block or record, identifiers have only one meaning, and forbid
a nested component definition from referring to the parameters or
variables of an enclosing component. In addition, the calculated
length of the constant pool is saved in the PASSLINK, even though the
constants themselves remain sprinkled through the intermediate code
stream.

MCPASSY performs the semantic processing of the declaration
portions of the program. It analyzes types, assigns addresses to
variables and parameters, and assigns block labels to routines.
Semantic rules are also enforced here. For example, strings must be of
even length; variables of type QUEUE must be variables of monitors
only. Pass four consumes declarations, encodes their information, and
distributes it wherever needed in tﬁe routine bodies. At the
completion of the pass the intermediate code 1is merely a sequence of
routine bodies. The number of routines in the program is saved in the
PASSLINK.

Analysis of routine bodies is performed by pass five and consists
of ensuring the compatability of operands with each other, and of
operands with operators. For example, only an integer may be added to
another integer, and the addition operator must be an integer ADD, not

real. The pass also generates addressing commands.



4.2 PASS SIX

The final two passes constitute a two-pass assembler. The first
of these, MCPASS6, selects the final code, converts routine and jump
labels to addresses, determines the stack space required for each
routine and system component, and constructs the constant pool.

The main portion of the pass is a loop around a CASE statement,
where the case labels are the operators of the input language. The
loop consists of reading an operator (variable OP, in the MCPASS6
source code) and using it as the case selector value to perform the
actions appropriate to that operator. If the operator is one which has
operands in the ‘code stream, they are read by one of the READxARG
routines, where "x" is the number of operands (1-5) to be read. The
global variables ARG1, ARG2, ARG3, ARGY4, and ARG5S contain the operands
after the read operation. The loop terminates when the EOM operator
is encountered.

Some inputs translate on a simple one-for-one basis to the output
language. For example, whenever PUSHCONST1 is the input operator its
operand (the value to be pushed onto the stack at run time) is read
into ARG1, and the output PUSHCONST2, followed by ARG1, is always
emitted. Other translations are a bit more complex. For example, the
intermediate code generated from PUSHVAR1 and its three operands
(variable type, addressing mode, and displacement) depends on whether
the variable to be pushed is of word type, whether it is a variable in
a system component, and whether the displacement is positive. Based on
the operand values, one or more instructions will be generated, and
the displacement value may or may not be adjusted. Detailed
deseriptions of the translations are presented in sections 5.2.3 and

5.2.“.
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In the pass six input language, the operands of jump instructions
(JUMP1, FALSEJUMP1, and CASEJUMP1) are label numbers which have been
generated during syntax analysis. A jump's destination is marked by a
DEFLABEL1 instruction whose operand is a label number which is the
same as that of the jump operand. Since jumps in the final code are in
terms of displacements relative to the Jump instructions themselves,
the labels must be converted to displacements within the virtual code
address space. As the first step in the conversion, this pass builds a
table (JUMPTABLE) in the heap which will be used by the next pass.
Label numbers are used as the table index to insert table entries
which are object code location counter values. The global variable
LOCATION serves as the 1location counter of the final code to be
produced by pass seven, and contains the address of the pext
instruction to be generated. When a DEFLABEL1( <label> ) instruction
appears in the code stream, the current value of LOCATION is placed in
the label-th position of JUMPTABLE. Label numbers are unique so there
is no danger of overwriting previous entries. If the LINENUMBER
compiler option is in effeect a NEWLINE2 instruction is generated,
otherwise DEFLABEL1 produces no code. When a jump instruction appears,
a corresponding output instruction is generated and the location
counter updated. The current value of LOCATION is then emitted, but
LOCATION is not updated since the emitted value will be removed from
the code stream by pass seven. Pass seven performs the rest of the
label-to-displacement conversion.
Routine label numbers are converted to virtual addresses in a
similar manner using BLOCKTABLE, CALL1 instructions correspond to
Jump instructions and cause the emission of the current LOCATION value

as well as the output language instruetion. Pass seven will use and
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remove the LOCATION value placed in the code stream. ENTER1 is
analogous to DEFLABEL1 and results in the insertion of the LOCATION
value into the BLOCKTABLE entry indexed by the routine label. Final
conversion to displacements is done by the next pass.

Pass six computes the maximum amount of run-time stack space
required by each routine. This is possible since Concurrent Pascal
does not allow recursive routine calls. The space requirement is the
sum of the length of the routine's local variable area, the maximum
size of the operand stack, the markstack size, and any additional
reserved space (in the case of a process which is host to a recursive
sequential program). The local variable length and size of additional
reserved space are taken from the input code stream as operands to
ENTER1 and are kept in the global variables VARLENGTH and STACKLENGTH,
respectively. The markstack size is always five words. The maximum
amount of space needed for the operand stack is determined as the pass
scans the intermediate code. For each routine the variable TEMP
simulates the rise and fall of the run-time operand stack. At the
start of the routine (ENTER1 instruction) TEMP is set to zero. As the
pass generates instructions which will push or consume stack operands
at run time, TEMP is incremented or decremented by the length of the
object pushed or consumed. MAXTEMP is alsoc set to zero at the start of
each routine. Each time TEMP is increased its new value is compared to
the current value of MAXTEMP, If TEMP is greater, its value is placed
in MAXTEMP, thus recording the "high-water"™ mark of the operand stack
up to that point in the routine. The operand stack space is also
affected by routine calls. When a routine call instruction (CALL1) is
encountered, the stack requirement of the called routine (obtained

from STACKTABLE-- described below) is added to TEMP to simulate the
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space it wuses during its activation. The run-time return from the
called routine, and resultant release of stack space is simulated by
immediately decrementing TEMP. When the compiler encounters the end
of the calling routine (RETURNY1 instruction) its total stack
requirement is entered into a table (STACKTABLEi. the index of which
is the routine label, making this routine's stack requirement
available to subsequent routines which might eall it. Since Concurrent
Pascal allows calls only to routines which have been defined earlier
in the source code (and a previous pass enforces this restriction) the
stack requirement values will always be in the table when needed at
CALL instructions. Pass seven also uses STACKTABLE.

Long constants (compiler-generated null set, real. and string
constants) appear in the input code as a CONSTANT1 operator, followed
by the byte length of the constant, followed by the constant itself.
The constant pool at this point is in the form of a table
(CONSTTABLE), the entries of which contain one word of some constant.
The global variable CONSTANTS counts the number of words of constants
currently in the pool and is the index into CONSTTABLE. When a
constant is found, CONSTANTS is incremented by one for every word of
the constant which 1is read from the code stream and placed in
CONSTTABLE. No output is emitted.

Logically JUMPTABLE, BLOCKTABLE, STACKTABLE, and CONSTTABLE are
simple arrays of integers, but physically they appear as shown in
figure 24. The LABELS, BLOCKS, and CONSTANTS values from the PASSLINK
record indicate the number of entries required for each table. The
tables are allocated space from the heap in pieces consisting of 100
table entries and space for a pointer to the next piece. So, for

example, 1if the value in LABELS is 175, JUMPTABLE will consist of 200
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table entries. In general. tables have 100%#[N/100] entries allocated,
where N is the number actually needed. The tables are known by their
pointer (of type TABLEPTR) to the first piece, such as the JUMPTABLE
variable.

Three routines manage the heap tables. ALLOCATE gets the required
space from the heap, sets the pointers between table pieces, and
returns to the caller a pointer to the first table piece. ENTER uses
as input a pointer to a table's first piece, an index, and an integer
value. It places the integer in the table named by the pointer, in
the position specified by the index. The logical equivalent 1is
TABLENAME[INDEX]:=VALUE. Table entries are retrieved by the ENTR
function which uses a table pointer and an index as input. It is
logically equivalent to ENTR:=TABLENAME[INDEX]. All four tables built
by MCPASS6 are left in the heap for MCPASST to use. They are passed
by putting the pointer to each table's first piece in the PASSLINK
record. The address of the PASSLINK itself is sent to the next pass as
PARAM[2].PTR, a program parameter.

The source 1l1listing of MCPASS6 contains several sections which
require some comment. In the constant definitions, "VIRTUAL DATA
TYPES" refers not to Pascal TYPEs but to the length attribute of an
object-- objects have the same length as a byte, word, real value, or
set variable. The virtual addressing constants have the following
meanings:

MODEO=0; Constant-- the object is to be addressed relative to the

start of the constant pool;

MODE1=1; Procedure-- the object is a parameter or local variable

of a non-entry routine;

MODE2=2; Program-- the object 1s a parameter or variable of a
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sequential program;

MODE3=3; Process entry-- the object is a parameter or local
variable of an entry routine in a process type; that is,
of an interface routine;

MODE4=z4; Class entry-- the object is a parameter or local
variable of an entry routine in a class type;

MODE5=5; Monitor entry-- the object is a parameter or local
variable of an entry routine in a monitor type;

MODE6=6; Process-- the object is a parameter or permanent
(global) variable of a process type;

MODET=7; Class-- the object is a parameter or permanent (global)
variable of a class type;

MODE8=8; Monitor-- the object is a parameter or permanent
(global, shared) variable in a monitor type;

MODE9=9; Standard-- standard routine;

MODE10=10; Undefined-- used for error recovery;

MODE11=12; Manager-- not relevant to project;

MODE12=13; Manager entry-- not relevant to project.

Notice that the values of MODE11 and MODE12 do not correspond to their
names.

The section of the source code marked "COMMON TEST OUTPUT
MECHANISM" contains the routines which produce an unformatted 1listing
of the intermediate output code, perform simple pass initialization
and termination funetions, and handle page-buffer I/O0 with the
intermediate code files. The "INPUT PROCEDURES"™ routines read from the
code stream the number of instruction operands specified in the
routine's name, as mentioned above. The WRITEx routines put into the

output code stream the number of integers specified in the routine
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name, where the first one is an operator and the others are operands.
WRITEARG emits just one instruction gperand (no operator). Both WRITEx
and WRITEARG increment the location counter, LOCATION. Routines in
"STACK PROCEDURES™ are used to simulate the growth and reduction of
the run-time stack. "BLOCK PROCEDURES" are called only when the
compiler starts scanning a new routine or finishes the current one
(that is, when ENTER1 and RETURN1 instructions, respectively, are
encountered). The heap table management routines have been described
above. BEGINPASS and ENDPASS take care of initialization and
termination functions which are peculiar to pass six, such as
allocating heap tables, starting the location counter at zero, and
saving data in the PASSLINK record. In ENDPASS, PROGLENGTH is the
length of the entire objeet file (header words, virtual code, and
constants); CODELENGTH is the length of the virtual code proper;
STACKLENGTH is the stack requirement for the anonymous initial
process, hence the entire program; and VARLENGTH is the amount of
variable space required by the initial process (that is, the length of
the permanent variable space). The rest of MCPASS6 will be discussed

in section 5.2.

4,3 PASS SEVEN
MCPASS7 is the code assembly phase of the compiler and is
structurally much simpler than the other passes. In general terms, it
performs the following functions:
1) Put the five words of header information into the object file;
2) Convert intermediate code operators to the even-number integer
encoding which is intelligible to the interpreter;

3) Finish converting jump 1labels and routine labels to
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displacements;

4) Insert stack requirement values into routine entry and process

initialization instructions;

5) Remove error messages from the code stream and put them at the

end of the source listing;

6) Put long constants into the object file immediately after the

virtual code.

All five values for the header words are available from the
PASSLINK. The translation of intermediate code operators is done on a
simple one-for-one basis and operands are, for the most part, simply
copied from the input file to the object file.

To convert jump and routine 1lables to displacements, the labels
in the instructions are used as indices into JUMPTABLE and BLOCKTABLE
(which were passed from MCPASS6 through the heap) to retrieve the
location counter value associatedr with the 1label. The difference
between that value and the current location counter value (which was
emitted along with the instruction by pass six) is written out as the
instruction operand.

The stack space required for each routine is in STACKTABLE. The
interpreter needs the information contained there to perform run-=time
checks for stack overflow when routines are activated. When a routine
entry or process initialization instruction is encountered, the
routine's label is used as an index into STACKTABLE to fetch its stack
requirement value. That value then becomes an instruction operand in
the output stream.

If the source program contained any errors they were marked in
previous passes by a MESSAGE(PASS, ERROR, LINE) instruction in the

intermediate code. Pass seven removes MESSAGE instructions from the
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code and prints the text for the error which is encoded in the ERROR
operand. PASS is the number of the compiler pass which detected the
error, and LINE is where it was found in the source code.

Once the virtual code proper has been generated, the constant
pool is built by copying the contents of CONSTTABLE to the output

file.
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COMPILER MODIFICATIONS

Structurally, the MEPASCAL (MicroEngine PASCAL) compiler system

of programs is directly analogous to the MCPASCAL system. The

following correlation holds between the programs of the two compilers:

MCPASCAL COMPILER MEPASCAL COMPILER
Command File: MCPASCAL.CSS MEPASCAL.CSS
Driver: MCPASCAL MEPASCAL
Compiler Passes: MCPASSx MEPASSx
Pass 1, no source: MCPASS1N MEPASS1N
Code Mnemoniecs: MNEM MEMNEM.

Each program of MEPASCAL performs the same general function as its
analog. In some cases (passes one and two, for example) the code is
virtually identical.

Theoretically, passes one through five are independent of the
compiler's target machine. Passes six and seven translate the
machine-independent output language of pass five to the language of
some particular machine. In view of this, it was originally thought
that MEPASCAL could be built by rewriting just the last two passes of
MCPASCAL so that they would produce Microengine machine code instead
of virtual P-code. It seemed that 1localizing all the modifications
would provide several advantages. It would eliminate the need for
detailed knowledge about the workings of the other passes, design and
programming errors introduced during the modification process would be
confined to a small, familiar portion of the compiler, and changing
Just two passes in a straightforward manner seemed to offer fewer
opportunities to make mistakes in the first place. The idea is simple,
and it seemed workable. As it turns out, the first five passes can be
slightly affected by the requirements of the target language, so they

could not be wused without change. However, modifications were
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introduced only when it was felt that they were absolutely necessary,
and so very little code was actually changed. Some changes could have
been made either in pass six or one of the prior passes. As a rule,
the choice was made to change pass six, even though it might have been
"optimal®™ in some sense to do otherwise. This chapter describes the
minor changes made to the first five compiler passes, and the major

rewrite of pass six.

5.1 CHANGES TO PASSES ONE THROUGH FIVE

MEPASS1 (MEPASS1N) is the same as MCPASS1 (MCPASS1N) except for
two changes in the PASSLINK record which is defined in the program
prefix. Because of the ﬁay the Microengine XJP (case JumP) operator
works, the number of words which case jumps will add to the constant
pool must be exchanged between passes five and six. The field
XJP_OFFSETS will hold that value. Pass five will also create and pass
on a record of information concerning the concurrent/sequential
program interfaces. INTERFACE will hold a pointer to that record.
These two additions were also made to MCPASS2 to yleld MEPASS2.

MCPASS3 incorporates the same PASSLINK changes made to the first
two passes. The pass also uses a new output operator, DUPT0S2,
(DUPlicate Top-Of-Stack word) when handling the input operator
INIT_NAME1. The new operator is required because the Microengine code
generated after INIT_NAME will, at run-time, pops the top-of-stack
word, although that word will be needed later. DUPTOS2 will preserve
the word for future use. See section 5.2.4.4 for more information.

The PASSLINK changes described above are included in pass four as
well as the new input and output operators DUPTOS1 and DUPTOS2.

DUPTOS1 appears as part of the CASE statement in the main loop of the
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program. MEPASSY also contains a modification to the BODY procedure.
Before the hhange, the output generated in response to the BODY1 input
operator varied, depending on whether the body (routine) being entered
by the compiler was the initial routine of a system component. If it
was not an initial routine, the output was the BODY2 operator and five
operands, including the length of the routine's local variable area
and the amount of stack space occupied by its parameters. For initial
routines, the output was the same, except that the variable area and
parameter length operands were always zero. Space for variables and
parameters had already been allocated as a record in the data space of
the anonymous initial process. For the Microengine, the two sizes need
to be known in pass six for proper address displacement calculation.
Since this is needed regardless of whether the routine is an initial
one or not, BODY was changed so that the actual sizes are always
included as BODY2 operands. More information is inecluded in sections
5.2.4.1, 5.2.4.5, and 5.2.4.6.

Compared to the previous passes, MEPASS5 incorporates a large
number of code modifiications, including the new operators DUPTO0S1 and
DUPTOS2. In the other passes PASSLINK,INTERFACE is of type POINTER
merely to reserve a fullword (32 bits) of storage, the amount of space
required for any pointer. In pass five PASSLINK.INTERFACE is actually
used, and so it must be declared as a pointer to some specific object
type. Since it will point to an IFINFO (InterFace INFOrmation) record,
it is declared to be of type IFPTR (InterFace PoinTeR). The IFINFO
structure records the number of interfaces contained in the concurrent
program (field INTERFACES) and the number of accessible process ENTRY
routines in each one (field INTERFACESIZES). INTFACEPTR and INTFACE

are instances of IFPTR and IFINFO, respectively. Figure 27 shows how
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the objects and pointers of the PASSLINK relate to each other.

The instance of PASSLINK in pass five 1s the target of the
pointer INTER_PASS PTR. The procedure INITIALIZE handles
initialization functions which are peculiar to this pass, before any
intermediate code is read. In that procedure,
INTER_PASS PTR@.XJP_OFFSETS is set to zero to indicate that no case
jumps (hence, no case jump offsets) have yet been found in the code.
Space for the interface information record (type IFINFO) is allocated
from the heap. Since no interfaces have been seen, the INTERFACES
field in that record is initialized to zero. As the pass executes, it
uses some space in the heap for temporary workspace. When the pass is
finished, the workspace can be returned to the heap, but the interface
information record must be retained for use by pass six. After
allocating space for the IFINFO record, the extent of the heap is
MARKed into INTER_PASS_PTR@.RESETPOINT. Temporary space is allocated
beyond that point as needed, and at the end of the pass (in procedure
EOM) that workspace (and only that workspace) is RELEASEJ, leaving the
IFINFO record intact. In preparation for pass six (procedure
NEXT_PASS) the pointer to the IFINFO record (INTFACEPTR) is stored
into one of the PASSLINK fields, making the record accessible to the
next pass. During its execution, MEPASS5 recognizes the existence of
an interface for a sequential program when it encounters a PROG_CALL1
operator with a nonzero operand. The operand is the length (in bytes)
of the run-time jump table to be built before invoking the sequential
program, and is a direet indicator of the number of process ENTRY
routines to which the program will have access. The procedure
PROG_CALL was modified to count the number of interfaces encountered,

and the number of ENTRY routines made accessible in each one. That
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information is saved in the IFINFO record and left in the heap for
pass six. Refer to sections 5.2.4.4 and 5.2.4.8 for additional
information. |

The procedure GASE_LiST was modified to start the process of
converting the virtual Concurrent Pascal CASE statement construct to a
form suitable for the Microengine. The modiricatioﬁ merely tallies the
number of bytes by which the constant pool must be enlarged in order
to accommodate the current CASE statement's list of jump offsets. The
total amount by which all CASE statements enlarge the constant pool is
saved in the PASSLINK record (XJP_OFFSETS) for use by pass six. More
information on the Microengine CASE jump operator (XJP) and the way it
is handled by MEPASCAL can be found in [MICR79, REGE7T9] and section
5.2.4.3.

Procedure ADDRESS contains a deletion. On the virtual Pascal
machine, when a component variable is INITed, or passed as a parameter
(access right) to another system component, its address is pushed onto
the stack. That address is then incremented (FIELD operator) by the
length of the permanent variables in the compénent. As a result, the
top-of-stack word points to a word in the "middle™ of the component
variable's record, such that all the parameters (access rights) lie
above it, and all the permanent variables below (see figure 25). This
address will be loajded into the global base register (G) whenever a
process eXxecutes the code of the component type. Since the
Microengine hardware expects parameters and variables to lie above the
global base (see figure 19), the FIELD operation for system components
which is generated in the ADDRESS procedure must be dispensed with.
Sections 5.2.4.4, 5.2.4.5, 5.2.4.6 also contain discussions related to

this topic. At the time of writing it was noticed that a similar 1line
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of code appears at the end of the procedure SUB, and may also require
deletion.

The last change to pass five involves subscript handling for
strings. The virtual Pascal machine tacitly assumes that the
underlying real hardware is byte addressable. That means that the
address of a byte occupies the same amount of space (one word) as the
address of a worde On the Microengine., not all addresses (pointers)
have the same format. In fact, there are three different pointer
formats [MICR79, REGET8, REGET9], although only two are of importance
here; namely, word pointers (which occupy one word of memory) and byte
pointers (which occupy two words). The only addresses generated by
MEPASCAL which are not word pointers are pointers to elements of
arrays of characters (strings). When it produces the address of an
array element, pass six must know the virtual data type (BYTETYPE or
not) of the pointer's target object. This information is available in
MCPASS5 but not MCPASS6, so in MEPASS5 the object type (field KIND)
was added as a fourth operand to the INDEX2 operator. MEPASS6
generates the correct address format based on the value of that
operand. Section 5.2.4.2 contains a description of how that is
accomplished.

All of the code changes made in the first five passes are shown

in Appendix D.

5.2 CHANGES TO PASS SIX

Pass six contains more modifications than all of the previous
passes combined. Not only were the changes numerous, but some were
quite extensive. Besides changing the instructions to be generated,

the format of the pass and its output structures were also changed.
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5.2.1 Pass Output

As shown in figure 26, MEPASS6 takes its input from the heap and
intermediate code file, and produces additional heap information and
up to two intermediate code files.

The structures which pass six 1leaves in the heap are shown in
figure 27. Space for the PASSLINK and IFINFC records was allocated in
passes one and five, respectively. The fields in the PASSLINK record,
which are not pointers, have the following meanings:

OPTIONS=~ the set of compller options in effect, as determined by

pass one

LABELS~- the number of Jjump labels generated in pass two

BLOCKS-= the number of routine labels generated in pass four

CONSTANTS-- the calculated amount of constant pool space (in

‘bytes) needed for long constants, as determined by pass
three

XJP_OFFSETS-- the calculated amount of consant pool space (in

bytes) needed to accommodate CASE jump offsets, as

determined by pass five.
The meanings of the pointer fields is obvious from figure 27. In
general terms, the IFINFO record contains information regarding the
(possibly null) interface segment(s) in temporary file number four
(figure 26). In particular, the INTERFACES field contains the number
of interfaces found in the intermediate code, thus the number of
interface segments generated. INTERFACESIZES 13 an array which
contains the number of accessible process ENTRY routines for each
interface. The interfaces are implicitly numbered in the order of
their appearance in the intermediate code, and those numbers are used

for the array index. In the TABLEPART record, SEGDISTANCE contains the
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byte-measure equivalent of the header word in the final concurrent
code segment. See section 3.2.2 for a description of the header word.
STACKLENGTH is the stack requirement for the concurrent program. It is
a leftover from MCPASS6 and could have been eliminated. The meaning of
the other fields is obvious from figure 27.

MEPASS6 leaves five tables in the heap: JUMPTABLE, CONSTTABLE,
XJPTABLE, EXITICTABLE, and DATASIZETABLE. The first two tables are
used in exactly the same way as in MCPASS6 (section 4.2). XJPTABLE
contains case jump offsets. In the Pascal virtual machine these appear
in the object code proper, but the Microengine requires them to be in
the constant pool. Pass six removes the offsets from the code stream
and places them in XJPTABLE in the same manner that constants are put
into CONSTTABLE. Pass seven will combine the contents of the two
tables to form a single constant pool for the concurrent segment.
EXITICTABLE uses as many entries as there are routines in the
concurrent segment. Routine numbers are used to index into the table,
and the entries are the final-code EXIT-IC values for the routines.
The meaning of the EXIT-IC field in Microengine code files is given in
section 3.2.2. Routine numbers are also used as the index into
DATASIZETABLE, and the entries are the DATASIZE values for the
routines (see section 3.2.2).

In the conversion of MCPASS6 to MEPASS6 heap objects were added,
deleted, and retained. An explanation of the reason each object was
added or deleted will be helpful. The MCPASCAL compiler calculated
PROGLENGTH, CODELENGTH, STACKLENGTH, and VARLENGTH in pass six so that
pass seven could use those values as part of the five-word header for
the object code file (see figure 3). Microengine object files (figures

6 and 7) do not require that header, so those fields could be deleted
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from TABLEPART. (STACKLENGTH still reuains'through oversight.) In the
same record, BLOCKTABLE was used to convert routine labels to the
virtual addresses required by final-code CALL instructions.
Microengine routine~invocation instructions use the routine labels
themselves as operands, so the table was removed since the conversion
became superfluous. The routine stack requirement values held in
STACKTABLE are needed during MCPASS6 to help calculate the stack
requirements of routines which call other routines (see section 4.,2).
MCPASST retrieves those values and inserts them into the code stream
as operands to routine ENTER operators. Since Microengine object code
does not require that information, STACKTABLE is not left in the heap
by MEPASS6 and, as a consequence, does not appear in TABLEPART. It 1is
used during pass six, as in MCPASS6, and then discarded.

The additional heap objects are INTERFACE and XJP_OFFSETS in
PASSLINK, IFINFO, SEGDISTANCE in TABLEPART, XJPTABLE, EXITICTABLE, and
. DATASIZETABLE. Since all interface segments have the same structure
(section 3.4.1) which is known to the compiler (section 5.2.4.8), the
number of process ENTRY routines in an interface completely defines
it. The number of interfaces and the size of each one is determined by
MEPASS5 and left in the heap in the IFINFO record which is the target
of the pointer INTERFACE in PASSLINK. MEPASS6 generates interface
segments which are almost in final object-code form; much closer to
that form than the concurrent segment. IFINFO is left in the heap for
MEPASST so that when it scans the file of interface segments it will
know the layout of each segment. Otherwise, there would be no way to
determine, for example, the end of the constant pool and the location
of the EXIT-IC field without backtracking in the file.

XJP_QFFSETS was calculated in MEPASSS (section 5.1) and its
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function is analogous to that of CONSTANTS-- it tells MEPASS6 the
number of table entries needed in XJPTABLE to accommodate case jump
offsets which will be removed from the code. XJPTABLE is, essentially,
an extension of CONSTTABLE, but case jump offsets cannot be intermixed
with the long constants. The separation is required because an earlier
pass calculated constant-mode displacements under the
virtual-Pascal-machine assumption that case offsets would reside in
the code portion of the object file. Willy-nilly inclusion of the
offsets in the constant pool would invalidate those displacements in
all but the most extraordinary circumstances, Pass seven will combine
the contents of the two tables so that in the final code long
constants will reside in the constant pool ghead of all the case
offsets. This ensures that constant-mode displacements determined
previously will still  be valid, and yet allows pass six to easily
compute the operand to the Microengine XJP (case jump) operator (see
[MICRT9] and section 5.2.4.3).

EXITICTABLE is passed from MEPASS6 to MEPASS7 since pass six
cannot possibly know a routine's exit address before it has even
started scanning its code. This situation arises because, as figure 7
indicates, the EXIT-IC field precedes the code of its routine in the
object file. In MEPASCAL, pass six determines the EXIT-IC value as the
routine is scanned, and pass seven places it in the proper position.

Although there 1is no usage-before-availability problem with
object-code DATASIZE values (they are available as the VARLENGTH
operand in ENTER1 instructions), emitting them directly into the code
stream is undesirable. Pass seven 1is incapable of handling the
unpredictable appearance of values which are neither operators nor

operands, without extensive modification. It can, however, easily pull
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the values out of the heap table and put them in place when the final
code file is built.

MEPASS6 always generates a file (temporary file 2) of Microengine
machine code (with a sprinkling of virtual operators) for the
concurrent segment. Physically, it is a sequence of 16-bit integers,
and consists of only the code for the routines which make up the
concurrent program. The constant pool, procegure dictionary, and other
non-code items do not appear in the file, although pass six takes into
account their existence in the final object code. Since the hardware
requires routines (more specifically, the EXIT-IC fields of routines)
to begin on word boundaries, NOP (No OPeration) instructions may
appear between adjacent routines for alignment purposes. Routines
always end with an RPU instruction. There are three virtual
(non-Microengine) instructions which can appear in the file in order
to communicate information used by other parts of the compiler,
MESSAGE_?2 passes encoded error message data so that character error
messages can be printed by pass seven., EOM_2 tells pass seven when it
has reached the end of the file. NEWLIN 2 1is a crutch used by MEMNEM
to determine when the machine code corresponding to a new line of
source code has been reached (Appendix A). MEPASS6 also inserts
location counter values into the code stream (just as MCPASS6 does--
see section 4.2) as part of the mechanism for resolving jump
displacements. All four of these items, which are extraneous to the
final object code, will be removed in the next pass.

MEPASS6 generates an interface segment for every interface it
finds in the intermediate code. All of the segments are placed
end-to-end in a temporary file (file number four) as a sequence of

16-bit integers. Pass seven will concatenate the interface segments to
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the concurrent code segment, pack operators and operands into words,
and provide sufficient padding to ensure that each one begins on a
disk block boundary, thereby constructing a single, complete object
code file ready for execution on the Microengine. Section 5.2.4.8
contains an in-depth discussion of the mechanism in pass six which

generates the segments.

5.2.2 Pass Structure

The structure of MEPASS6 is similar to that of MCPASS6 (section
4.2), although there are some differences. As mentioned in the
preceding section, TABLEPART and PASSLINK were changed, and IFINFO was
added to the package of objects to be left in the heap for pass seven.
The input operators are the same except that DUPTOS1 has been added.
The output operators for the Pascal virtual machine have all been
replaced by Microengine operation codes. All Microengine codes are
included, even though some will not be wused, for the sake of
completeness. Since they are defined in the CONST section of the
program, the unreferenced opcodes do not add to the size of the
program's object code. Three non-Microengine output operators
(described in the preceding section) are also defined for handling
error messages, marking the end of the concurrent code segment, and
marking the start of each source line,

Several changes were made in the T"COMMON TEST OUTPUT MECHANISM"
portion of the pass because of the interface mechanism. Three
variables (IFPAGE OUT, IFPAGES_OUT, IFWORDS_OUT) were added to handle
page=buffer output to the interface file. That output mechanism is
exactly like the one used for intermediate concurrent code output,

except for the file designation. The file identifiers are OUTFILE
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(value=1) for the concurrent code file, and INTERFACEFILE (value=z})
for the interface segment file. File 3 1is the final object code file
to be generated by pass seven. File initialization (INIT_PASS routine)
and termination (NEXT_PASS routine) functions for all files used by
pass six are performed at the same time in identical fashion.

Procedure WRITE IFL has been expanded so that output can be
easily directed to either the concurrent file or interface file as
necessary. When the pass starts (procedure BEGINPASS), a switech
(GENNINGINTFAC) is set FALSE to indicate that an interface segment is
not currently being generated (concurrent code is being generated) and
that intermediate code output should be directed to the concurent
file. When an interface 1is encountered, the switch is set TRUE (in
procedure GEN_INTEhFACE) to indicate the opposite state of affairs.
After the interface segment has been completely generated, the switch
is returned to the FALSE setting. All output to files occurs through
procedure WRITE IFL, and on every invocation it tests GENNINGINTFAC to
determine the file to which the output should be directed. Duplicate
sections of code handle buffer management and output to each file. The
duplicate code is a violation of good programming practice, and could
be easily eliminated by the use of array variables. However, at the
time this mechanism was designed, the duplicate code arrangement was
an easier concept to deal with, and the amount of overhead is not
alarming.

The "OUTPUT PROCEDURES"™ section of code contains a number of
modifications which are due to two causes. First, unlike the
Concurrent Pascal virtual machine. Microengine operators use operands
of various lengths. In fact, for some instructions, a single operand

can have elther of two lengths, depending on its value. The
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Microengine instruction set is described in appendix B.5 of [MICR79].
Heterogeneous lengths do not affect the intermediate code produced by
MEPASS6 since it generates operators and operands which are all 16-bit
integers, but updating the final-code location counter becomes more
complicated. The new mechanism uses a new global type (TYPEOFCODE),
the values of which have the following meanings:
OPTR-=- The output data item is a Microengine instruction
OPeraToR. Length is always one byte;
UB=-- An Unsigned Byte operand. Length is always one byte;
SB=- A Signed Byte operand. Length is always one byte:;
DB-- A "Don't care®™ Byte operand. Length is always one byte;
B-- A "Big" operand. Length is one or two bytes, depending on the
value;
W-- A ¥ord operand. Length is always two bytes;
NOTME--The output data item is NOT a MicroEngine code item and
will be removed by pass seven, so length is zero.
The new procedure UPDLOC (UPDate LOCation counter) ensures that the
location counter (variable LOCATION) gets incremented correctly for
each type of intermediate code item. Every time a WRITEx or the
WRITEARG routine emits an item of output, a call is made to UPDLOC.
The numerical value of the item and its TYPEOFCODE value are provided
as parameters so that UPDLOC can determine the item's size, and
increment LOCATION accordingly. The WRITEx and WRITEARG parameter
1ists were modified to accept operand TYPEOFCODE values so they can be
passed on to UPDLOC, Notice that the NOTME value provides a way to
use the standard output procedures for generating intermediate code
instructions which will not appear in the final code, without also

causing an increment of the location counter.
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The second cause for modification concerns the generation of
interface segments. For the sake of consistency, the
interface-generation routine emits code by invoking the same output
procedures as the rest of the program. Without modification of the
procedures, generation of an Jinterface would cause the goncurrent
segment's location counter to be incremented. This is an undesired
side effect since locations within a segment must be relative to the
beginning of that segment. The remedy for that side effect is to test
the GENNINGINTFAC switch before calling UPDLOC. If the item just
emitted was sent to the interface file the switch will be TRUE, and
LOCATION will not be affected. Otherwise, it will be updated as
deseribed above.

The function DISPL (DISPLacement) is designed to return the
displacement of a variable from some base address. It had to be
entirely rewritten because of addressing differences between the two
target machines. In the virtual Pascal machine, displacements are
positive (for routine parameters) or negative (for local variables)
even-byte displacements from a data-space base register (either G or
B-- see figure 28). Constants are addressed relative to the starting
address of the constant pool which is calculated when the concurrent -
program starts execntion. The Mieroengine addresses both parameters
and variables with positive word offsets from registers B or MP, and
constants are addressed by word offset from the start of the segment.
The virtual machine can refer to the fields of the markstack by
addressing the words with offsets 0, 2, 4, 6, and 8 from, for example,
the local base. The first variable word after the markstack has
displacement 10, and the first parameter has displacement -2. In

contrast, the Microengine hardware does gpot allow access to the
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markstack, except by the LSL (Load Static Link) instruection [MICRTY].
The hardware automatically compensates for the markstack which is
between the base address and the first variable, so that the first
variable word has offset 1. The offset of the first parameter depends
on the number of variables, since the variables separate the
parameters from the base address. For example, if a routine has four
words of local variables and three words of parameters, the parameter
words have offsets 5, 6, and 7. The MEPASS6 version of DISPL
calculates displacements in the following way. The constant block will
immediately follow the segment header word in the object file, so a
constant's displacement is its word displacement within the constant
block plus one word. In "procedure®, "program", and "entry" addressing
modes (section 4.2) the displacement calculation takes into account
the following factors:

1) The displacements for variables must be positive, not
negative;

2) Parameters must be addressed as if they are an extension of
the variables area;

3) The first two words of variables are reserved for the source
line number and old global base register values, since the
Microengine has no markstack fields for them specifically;

4) The Microengine uses word, not byte, displacements.

In "process®™, "class"™, and "monitor"™ modes, the calculation is the
same, except that space for the two reserved words is of no concern
since no space for them exists in the component's permanent variable
record.

The displacement calculation for a "process entry® reference is

no more complex than the others, but the run-time structure of the
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concurrent/sequential interface, on which it 1s based, is somewhat
complicated. Figure 29 shows the arrangement of the stack after a
sequential program has invoked a process ENTRY routine and it has
begun executing. That stack state was reached in the following way.
The sequential program code pushed enough "blank" space onto its
operand stack to hold the value which the ENTRY funection will
eventually return. It also pushed the parameters which the ENTRY
routine requires, followed by the index of the prefix routine which
the program sought to invoke. The index is itself a parameter, and it
is critical that it always be pushed last onto the stack. The program
then executed an external routine call instruction, causing the
interface markstack to be constructed by the hardware. The interface
routine pushed its local variable with offset 1 (the prefix index
parameter) onto the stack for use as the selector value for its CASE
statement (see figure 17). [Execution of the case jump (XJP
instruction) consumed the top-of-stack operand, and execution of the
case code invoked the process ENTRY routine, causing the allocation of
its loecal variable space on the stack and the construction of its
markstack. As in other routines, local words one and two are reserved
for the source line number and old global base. The displacement
calculation for process ENTRY routine yariables is the same as for
class and monitor ENTRY routines. Parameters, however, are different
since, as the reader can see in figure 29, the interface markstack
sits between the 1local variables and parameters. Conceivably, there
should never be anything but the stack marker in that position, and
parameter displacements could be calculated as

(BYTE_OFFSET + TWOWORDS + FOURWORDS + ONEWORD) DIV WORDLENGTH

where TWOWORDS accounts for the two reserved local words, FOURWORDS is
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1
{
i SEQUENTIAL
PROGRAM
CPERAND
STACK
BUILT BY 4
SEQUENTIAL FUNCTION VALUE
PROGRAM
PARAMETERS
L PREFIX INDEX
BUILT DURING
INTERFACE INTERFACE
INVOCATION MARKSTACK
~
PROCESS
ENTRY ROQUTINE
BUILT DURING VARIABLES
ENTRY aowms{
INVOCATION PROCESS
ENTRY ROUTINE -
MARKSTATK
L

FIGURE 2¢., Ceonfiguration of the run-time stack after the execution of
a process ENTRY routine (a funsction, in this case) has begun. The
interface routine has no local varizbles.
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the size of the interface markstack, and ONEWORD accounts for the word
occupied by the prefix index which is an "extra™ parameter. That
calculation was not wused, however, since it seems to depend too
heavily on a favorable arrangement of the stack. Also, the machine
instruction set includes a number of -operators which can access the
data spaces of any markstack in the chain of static links. When one of
these "intermediate" instructions 1is used, variables are addressed
relative to the markstack to wﬁich they are normally considered loecal.
The interface routine invokes the process ENTRY routine with a CXL
inétruction which makes the static 1link field in the ENTRY routine's
markstack point to the interface's markstack. By directing the
"intermediate™ addressing operators to traverse just one static link
(operand value of 1) the interface parameters can be accessed as if
they are part of the ENTRY routine's local variable space. The
significance of all this is that the displacement calculation has to
only take into account the single word occupied by the prefix index.
Section 5.2.4.8 contains more information on the operation of the
interface mechanism.

The procedures BEGINPASS and ENDPASS carry out initialization and
termination functions specific to this pass of the compiler. As part
of the pass setup, the sizes of all the interfaces are copied from the
PASSLINK record to an array which is easier to access. Heap space is
allocated for the five tables which will be left for the next pass.
The current extent of the heap is MARKed, and then a temporary table
(STACKTABLE) is given space. Indices into the constant and case jump
offset tables are initialized to indicate empty tables. The total size
of the constant pool is calculated as the sum of the constants and

case jump table sizes since they will be combined in the object code
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file. The location counter is initialized so that it "points"™ to the
first byte of code proper to be generated. That byte follows the
segment header word and the constant pool. ENDPASS RELEASEs the heap
space which was used by STACKTABLE since that table will not be used
by pass seven. Heap space is then allocated for a TABLEPART record and
the table-identifying pointers are stored into it. The address of the
last meaningful word in the concurrent segment can be calculated from
the current location counter value and the number of routines in the
segment. At the end of the pass, LOCATION is the segment-relative
address of the word after the last Jinstruction in the segment. As
‘figure 7 shows, only the procedure dictionary comes between the last
routine (routine one) and the final word. There are as many entries
in the procedure dictionary as there are routines in the segment, and
each entry takes one word (two bytes), so the segment-relative address
of the last word is

LOCATION + (2 ® ROUTINES).

Four other routines were added to pass six. PICK_PUSHCONST
chooses one of the three Microengine instructions which push integeg
constants onto the stack, given the value of the constant to be
pushed. The difference between the instructions is their length, and
it seemed worthwhile to make the small effort required to make optimal
use of them to help reduce the size of the object code.
GEN_SAVELINE_SAVEGBASE generates the prologue for routines. It
generates code which, at run time, will save the source code line
number and the contents of the global base register in the local
variable space of the new routine. In every routine local word one is
reserved for the line number, and local word two is for the old global

base register. GEN_EXIT generates epilogue code which is the same for
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several routine modes-- restoration of the old global base register
and the actual return to the calling routine. GEN_INTERFACE generates
interface segments, and is presented in detail in section 5.2.4.8.

Six procedures were deleted and rewritten as in-line code. Each
of them was relatively small and was called from only one point in the
program, so in the interest of comprehensibility they were moved to
the places where they more logically belong. ENTERBLOCK and EXITBLOCK
were moved into the ENTER1 and RETURN1 (respectively) cases of the
SCAN routine. The comparison procedures COMPAREWORD, COMPAREREAL, and
COMPARESET were rewritten in the COMPARE1 case of SCAN, and

COMPARESTRUCT was inserted into the COMPSTRUC1 case.

5.2.3 Straightforward Instruction Conversions

Simply stated, the major concern of this project is to change the
representation of Concurrent Pascal programs without changing their
Semantics. In order to do that, each virtual instruction which can be
output by MCPASS7 was analyzed to determine what changes it causes in
the state of the virtual machiﬁe. For each one, a sequence of
Microengine instructions which would mimic those changes was chosen
for generation in place of the virtual instruction. The definitive
characterization of virtual machine state changes is the PDP-11/45
interpreter which realizes them. A source listing of the interpreter,
written in PDP-11 Assembly code, was available [ZEPKT4]. The listing
is commented with the same code written in a psuedo-Pascal/assembler
"language" which provides a certain (limited) amount of insight into
the function of each virtual instruction. Since, at least
superficially, both machines have a stack architecture, some

instructions could be substituted very simply. Those virtual



instructions and their substitutes are presented here.

The instructions which operate on integer (or word-length) and
real operands were among the simplest to convert since they perform
virtually identical actions on both machines. Figures 30 and 31 1list
the MCPASST output instructions, their actions, and the equivalent
Microengine code sequence fof word and real operators. Both machines
use 16-bit integers, where the low-address byte contains the low-order
bits-- PDP-11 format. Real numbers are handled differently on each
machine. The virtual machine uses an eight-byte format, whereas the
Microengine uses the PDP-11 single precision floating point format
which takes only four bytes [DIGIT6].

Figure 32 is a 1list of the instructions for set and structure
operations. Sets for the virtual machine have a fixed length of 16
bytes (128 bits). Set members are numbered from 0 to 127, and
membership is represented by turning the corresponding bit "on". The
Microengine hardware supports sets of variable length up to 255 bytes
(4080 bits), but fixed-length sets of 128 elements are used in this
project for the sake of simplicity. On the stack, Microengine sets
consist of two parts. The top-of-stack word is an integer which is the
number of words in the set proper, which is next on the stack. When it
is on the stack, the gombination of length word and membership bits is
referred to as the "set". When they are not on the stack, sets
consist of only the membership bits. The Microengine has no hardware
instructions specifically for pushing (popping) sets and automatically
appending (discarding) the length word. The instructions LDC (LoaD
multiword Constant), LDM (LoaD Multiple words), and STM (STore
Multiple words) can be used to push and pop the membership bits, but

the length word must be handled by additional instructions. The length
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VIRTUAL MICROENGINE
BERATOR RESULT OR ACTION NSTRUCTI
ABSWORD absolute value of TOS ABT
LDDWORD sum of TOS, TO0S-1 ADI
LNDWORD logicai END of TO3, TOS-1 LAND
CONVWORD real-value eguivalent of TOS FLT
COPYWCRD store TOS indirect through T0S-1 # STC
DECRWORD decrenent word indirect through TOS-1 # DUP1
' LDM (1)
SLDCO1
SBI
STO
DIVWORD integer quotient of TOS-1/TCS DVI
EQWORD boclean value of (T0S-1 = TOS) EQUI
GEWGRD boolean value of (T0S-1 > TOS) LEQI
LNOT
INCRWORD increment word indirect through T0S-1 # DU?1
LDM (1)
SLDCO1
ADT
ETO

FIGURE 30. Concurrent Pascal word {integer) virtuazl instructions and
their Microengine eguivalents, where TO0S 1is an integer whieh is the
tcp-cf-steck item and TOS-1 is the integer which was pushed just
before TOS. Execution of an instruction causes the stack operands to
be popped from the stack. The result (if any) is thern pushed cnte it.
Instructicns marked '¥' do not push s result,



VIRTUAL
CPERATOR

MULWCRD
1'SGWORD
NEWORD
NGWORD
NLWORD
ORJORD

FRIDWCRD

STRYORD

JCCHORD

1£3)

RESULT OR ACTION

boclean value of (T0S-1 < TOS)

TOS-1 MOD TOS

product of TCS, TO0S-1

2's complement of TOS

boolean value of (T0S-1 <> TOS)
bociezn value of (T0S-1 <= TOS)
boolean value of (T0S-1 >z TOS)
logiczl CR of TOS, T0S-1

TOS minus 1

T0S=-" minus TOS

T0S plus 1

FIGURE 20. (continued from previous page)
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MICROENGINE
INSTRLGCTIQON(S)

GEQI
LROT

10rI
MPI
NGI

NEQI

-
ta
0
k-l

(]
L
O
[t}

LOR

SLDCO1
SBI

SEI

SLDCC?
ADT
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VIRTUAL MICROENGINE
OPERATOR RESULT OR ACTICN INSTRUCTIQON(S)
ABSREAL absolute value of TGS . ABR
ADDREAL sum of TOS, TOS-1 ADR
CCPYREAL store TOS indirect through TOS-1 # STM (2)
LIVRELL quotient of TO0S-1/TOS DVR
EQREAL boolean of (TCS-1 = fOS) EQUREAL
GRREAL boolean of (TO0S-1 > TOS) LEQREAL
LROT
LSREAL boclean of (T0S-1 < TOS) GEQREAL
LNGT
LREAL product of TOS-1, TOS MPR
NEGRE&L negation of TOS NGR
NERELL toolean of {T0S-1 <> TOS) EQUREAL
LNOT
NGREAL boolezan of (T0S-1 <= TOS) LEQREAL
NLREAL boolean of (TC2-1 >= TCS) GEQREAL
SUBREAL TC8~1 minus TOS SER
TRUNCREAL TC5, truncated and converted to integer TNC

FIGURE 31. Concurrent Pascal virtual instructions for real values and
their Microengine equivalents. TOS and TOS-1 have the same meanings as
in figure 30, &tut are rezl values instead of integers. Instruction
marked '¥' does net push a result onto tke stack.



VIRTYAL
PERATOR

ANDSET

BUILDSET

COPYSET

EQSET

INSET

NESET

NGSET
NLSET
QRSET

SUBSET

CCPYSTRUC
EQSTRUC

CRSTRUC

LSSTREC

NESTRUC

NGSVRUC

NLETRUC

RESULT OR ACTION

=== SET INSTRUCTIONS =--
intersection of TOS, TOS-1

TOS set with a2 new member; New member

number is given by irteger TOS.

store TOS set indirect through T0S5-1 #

boolean value of set compare (TOS=-1

boolean value of test for inclusion of TO0S-1
member number {integer) in TOS set

boolean value of set comparison
(TOS-1 <> TOS)

boolean value of subset test (T0S-1 <= TOS)
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MICRCENGINE

UCTION

IKNT

SLDCOO
L3CB (127)
CHE

DIPY

SRS

URI

FJP (0)
ST™M (8)

EQUPWR

INH

EQUPWR
LNOT

LEQPWR

boolean value of superset test (T0S-1 »>= TOS) GEQPWR

union of TOS,

TO03-1 set less members of TCS=1 set

~== STRUCTURE INSTRUCTICNS —=-

TOS-1 sets

move TOSE€ to TOS-16 #

boolezan

boolean

boclean

boolean

boolean

boclean

value

value

value

value

value

value

ol

of

of

of

(TOS-18€

TOSE)

TOSE)

T0SE)

(TCS-1€@ <> TOSA)

(TOS-1€

(TCS-1é

<=

r=

I0SE)

TOSE)

UNI

DIF

MOV (size)
EQUBYT (size)

LEQBYT (size)
LNOT

GEQBYT (size)
LNOT

EQUEYT (size)
LNCT

LEQBYT (size)

GEQBYT (size)

FIGURE 32. Set and structure instructions., "TOSE&" mearns "the object to
which the top-of-stack word points™., Similarly {or "T0OS-18m, &M meang
nothing is left on the stack.
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word is discarded during the execution of the ADJ (ADJust set length)
instruction which forces the set to a length determined at compile
time. However, in this project an FJP (False JumP) to the next
instruction is used instead (see figure 32, COPYSET). The lengths of
sets never really need to be adjusted since they will be fixed, and
the FJP 1s presumed faster. Notice that structure operators use
pointers as stack operands rather than the structures themselves.

The virtual machine has several instructions for process control.
They are ATTRIBUTE, CONTINUE, DELAY, EMPTY, START, STOP, and WAIT
[BRIN7S, BRINTT, ZEPKT4]. Except for EMPTY, these all interact with
the kernel, either by 1issuing a call to a kernel routine, or by
accessing a fixed location known to the kernel and interpreter. Since
the kernel for the Microengine has not yet been designed, these
instructions have been "commented out™ of the code and must be
modified at some later time. EMPTY returns a boolean value indicating
whether a QUEUE variable is empty, without any kernel interaction. The
code sequence SLDCOO EQUI emulates this instruction on the
Microengine.

The three heap control instructions SETHEAP, NEWINIT, and NEW
have not yet been changed, but rather, "commented out". SETHEAP
initializes the heaptop pointer so that it points to the bottom of the

heap space, thus making the heap "empty™. The equivalent Microengine

code is:
SLDCO2 push heap pointer register (SPLOW) number
SWAP reverse TOS and TOS-1 words
SPR put TOS value in heap pointer register.

NEW allocates heap space for a new object and returns a pointer to it.
Figure 33 shows Microengine code which performs a similar function.

There are two unresolved issues here. The obvious one concerns the
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SLDCO% stack pointer register number (SP register)
LPR ; push stack pointer
LDCB (100) keep 100 bytes between heap and stack
SBI stack grows toward low addresses
sLDCo2 heap pointer register number (SPLOW register)
LPR push heap pointer
push object's length {choose one of 3 possible instructions)
ADI calculate heap pointer after allocation
LEQI test (SP - 100) <= (SPLOW + object length)
FJP (ok)
heap limit error code

ok: SLDCOz
LPR push heap pointer
STO store (indirect) pointer to object into

pointer variable

SLDCOZ SPLOV register number, used with SPR below
SLDCO2
LPR push heap pointer
push object's length
ADT calculate new heaptop
SPR set heap pointer register to new heaptop

FIGURE 33. Microengine code to emulate the NEW Pascal virtual
instruction. This code performs three general functions: 1) check for
collision of heap and stack, 2) store the pointer to the new object in
the object's pointer varizble, and 3) reset the heap pointer to the
next word of free space in the heap.
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nature of the "heap limit error code®™. Whether it should be a call on
a well-known kernel-routine or in-line code has not been determined.
The second issue was discovered at the time of writing, and is
centered on the problem of ensuring, at run time, that the stack and
heap will not collide. The virtual instruction NEW has an operand
which includes the stack requirement of the routine in which it
appears. During execution, it compares the extent of the heap after
the contemplated allocation, and the maximum extent of the stack
during the routine in order to determine if a collision is possible.
The MCPASCAL compiler generates the stacklength operand in pass seven
by referring to the routine's entry in STACKTABLE. In MEPASCAL,
however, STACKTABLE is removed by pass six, so pass seven does not
have routine stack requirements available to it. The code in figure 33
assumes (rather naively) that the routine's stack will not grow by
more than 100 bytes from its current position. This is a rather
arbitrary "safety factor®™ and not nearly as desirable as the original
mechanism. If possible, STACKTABLE should be passed on to MEPASST in
order to restore that mechanism. NEWINIT is the same as NEW, except
thét the newly-allocated heap space is 1initialized to zero. Its
Microengine equivalent is shown in figure 34. Besides the two issues
mentioned above, an additional concern is the large amount of space
consumed by the initialization code.

Sixteen other virtual instructions and their transformations will

be described here. They are:

COPYTAG EOM FALSEJUMP FIELD
FUNCVALUE INITVAR I0 JUMP
MESSAGE NEWLINE NOT POINTER
POP RANGE REALTIME VARIANT.

There are two Microengine instructions which are equivalent to

FALSEJUMP-- FJP and FJPL. The difference 1s that FJP uses a signed



next:

exit:

FIGURE 3%, Microengine code to emulate the Pascal virtual
FEWINIT, which allocates heap space

he object to zero. Compere with figure 33.
allocated z2nd the heap pointer updated,
word which inmediztely follous

SLDCO4

LPR

LDCB (100)
SBI

SLDCOZ

LPR

pusi object's
ADI

LEQI

FJP (ok)
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push stack pointer
stack-heap separation

push heap pointer
length

test (SP - 100) <= (SPLOW + length)

heap error code

3LDCo2
LPR
ST0

SLDCOo2
LPR

DUFP1

SLDCO2

SLDCO2

LPR

push object's
ADT

SFR

SLDCO2
LPR

GEQI

LNOT

FJP (exit)
SLDZ02
ADI

DUP1

DUZ1
SLDCOG
STO

UJP (next)

FJP (0)

push heap pcinter
store peinter to new object in pointer variatble

push object's base address; will be usead
later to scan through new object

get copy of pointer to new object

SPLOV register, used with SPR below

push heap pointer

length

calculzte new heaptop

set heap pointer to new heazptop

pusk new heartop
cbject scan peointer >= new heaptop?

point to next word in object
copy object scan pointer for use
by GZQI instruction in next iteration
push anothner copy for STOring the initial value
initial value to be inserted in object
set a word in the object to zero
prepare to iritialize next word in object

pop object scan pointer

instruction
2 new object and initializes
After the space has been
the heap peinter points to the
Lhe new object.

for
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byte operand whereas FJPL (False ‘JumP Long) uses a signed word
operand. While FJP takes less space, its range is also shorter. The
longer instruction is used for all false Jjumps, even though it might
be suboptimal, in order to keep code assembly simple. If both
instructions were used, code addresses could not be known in pass six
as they are now. JUMP also has two equivalents (UJP-- Unconditional
JumP, and UJPL-- Unconditional JumP Long), and the longer instruction
is always used, for the reasons just mentioned. FIELD'S equivalent is
INC (INCrement field pointer), except that the offset operand must be
converted to word measure. LNOT (Logical NOT) performs the same
function (boolean negation) on the Microengine as the virtual machine
instruction NOT.

The Microengine has no direct equivalent of POP, but FJP and NFJ
(Not equal False Jump; that is, jump if equal) can be combined into a
suitable substitute. POP has an operand which is the number of bytes
to be discarded from the stack. An odd number of bytes is never
popped since the stack consists only of whole words. Since no
Microengine instruction merely discards a variable portion of the
stack without side effects, the compiler generates a variable number
of NFJ(0) instructions and possibly one FJP(0) instruction. NFJ
compares the two top-of-stack words as integers and the jump is made
if they are equal. In either outcome the two words are discarded from
the stack. FJP tests the top-of-stack word, discards it, and jumps if
it is FALSE. Both instructions use a signed distance operand to
calculate the jump address. If the distance 1is zero, the next
sequential instruction will be executed, regardless of the test
results, and the stack operand(s) will be popped from the stack. Thus,

NFJ(0) is equivalent to POP(4), and FJP(0) to POP(2). Presumably, the
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number of bytes to be popped at any given time will be relatively
small, so the compiler generates enough NFJ(0) instructions such that
after their execution either no words or one word remains to be
popped. If one word remains, an FJP(0) 1s generated, otherwise not.

RANGE checks the top-of-stack integer against its operands to
ensure that the integer is within the range which they specify. If it
is not within the range, a run-time error occurs. The Microengine
operator CHK (CHecK) does the same thing (including triggering a
run-time error) except that the range-specifying operands are taken
from the stack, and the integer to be checked is the T0S-2 item. IO,
POINTER, and REALTIME interact with the kernel, so their equivalent
code has not been finalized. I0 and REALTIME must call the kernel in
all cases. POINTER ensures that pointer variables contain some nonzero
value. A run-time error results if the value 1is =zero, and the
Microengine equivalent of the error code is undetermined at this
time.

VARIANT also uses error code which 1is as yet undetermined, and
will also require changes to one of the earlier passes in MEPASCAL.,
Figure 35 shows how the instruction appears in the final code.
VARIANT assumes that the address of the variant record is the
top-of-stack word. Its first operand is the field offset of the tag
field, and the second is the set of tags (always one word long) for
which access is being requested. The tag field contains the bit number
of the tag which is currently "legal". During instruction execution,
the bit in the request set whose number is given in the tag is
examined. If that bit is not "on", a run-time error occurs, otherwise
execution proceeds. Notice that VARIANT does not alter the stack,

leaving the record address in place. Use of the bit pumber for the



- 103 =

0001 TYPE )
0002 IDENTIFIER = ARRAY[1..12] OF CHAR;

0003 no 1 2 3"

0004 ARGTAG = (NILTYP, BOOLTYP, INTTYP, IDTYP,

0605 my 5 6 ™

0006 PTRTYP, XTYP,  YTYP, ZTYP);

0007 RECTYPE = RECORD

0008 FIRST: INTEGER;

0009 CASE VENTTAG: ARGTAG OF

0010 "o 1

0311 NILTYP, BOOLTYP: (BOGL: BOOLEAN);
0012 "o 5 6 ™

0013 INTTYP, XTYP, YTYP, ZTYP: (INT: INTEGER);
0014 n3n

0018 © IDTYP: (ID:  IDENTIFIER);
D016 nyw

0017 PTRTYP: (PTR: REAL)

0018 END;

0619

0020 VAR  VREC: RECTYPE;

latadr k]
viial

00z2 BEGIN

0C23 VREC.VRNTTAG := INTTYP; "TAG IS 2"

0024 VREC.INT := 100; "USING BITS 2, 5, 6, 7"
0025

0026 VREC,VRNTTAG := YTYP; "TAG IS 6"

0027 VREC.INT := 200; "USING BITS 2, 5, 6, 7"
0028

0029 VREC.VRNTTAG := PTRTYP; nTAG IS 47

0030 VREC.PTR := 300.0 "USING BIT 4"

0031 END.

T T T T T TTe I T TT T ITT7TI7777717T77
7 MCPASCAL INTERMEDIATE CODE PASS 7 7
T Tt TI T T I TTTT e TTITTIT7 7T TI77TTT77TTITITT77
JUMP(2) )
BEGNPRCS(22)
LIE 22 GLOBLADD(-16) FIELD(2) PUSHCONS(2) COPYWCRD
LINE 24 GLOBLADD(-186)  VARIANT(2.9984) FIELD{L)
PUSECONS(100)  COPYWORD
LINE 25
LINE 26 GLOBLADD(-i6) TFIELD(2) ©PUSECONS(6) COPYWGRD
LINE 27 GLOBLADD(-16)  VARIANT(2,9984) FIELD(L)
PUSHCONS(200)  COPYWORD
LINE 28
LINE 29 GLOBLADD(-16) FIELD(2) PUSHCONS{4) COPYWORD
LINE 30 GLOBLADD(-16)  VARIANT(2,2048) FIELD(4)
LINE 31 CONSTADD(16) PUSHREAL COPYREAL  ENDPRCS

FIGURE 35. Zxample of the VARIANT virtual machine instruction, the
scurce code which produces it, and the firal code which surrounds it.
Tag bit numbers are shown above the identifiers. Some of pass seven's
output is not shown here since it is irrelevant.
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current tag value is apparently desirable when running on a FDP-11
since hardware shift instructions can then be used advantageously
[DIGIT6, ZEPKT4]. For the Microengine, however, it will be necessary
for the tag field to hold the yalue of the ouﬁrent tag bit, not its
number. That change has not been made, and the compiler pass which
must be modified has not yet been identified. Once that change has
been made, the equivalent Microengine code would be:

DUP1 save copy of record address

IND (word displacement) push current tag value
LDCI (tag set) push tags for which access is requested

LAND logical AND the two words together
SL.DCOO push word with all bits "off"™
EFJ (ok) if request ok, T0S-1 will have an "on" bit

variant error code
ok: next instruction.

If the NUMBER compiler option is specified, MCPASCAL generates
NEWLINE instructions at points in the object code which correspond to
the beginning of source lines. The NEWLINE instruction stores the line
number operand into a word of the local markstack. However, the
Microengine has no markstack space for the 1line number, and in
addition, its markstack fields are not generally accessable (section
5.2.2). The 1line numbering mechanism has been implemented by
specifically reserving the first word of local variable space in every
routine for the current line number. The Microengine code equivaluent
to NEWLINE consists of two instructions-- one of the "push constant®
instructions, and STL(1). The routine DISPL in MEPASS6 adjusts all
references to program variables to take into account the reserved
word. In addition to the push and store instructions, pass six also
puts the NEWLIN_2 yirtual instruction into the code stream. This is a
crutch for the intermediate code mnemonics program MEMNEM. NEWLIN_2
makes it possible for MEMNEM to identify the beginning of each source

line without resorting to a lookahead technique (see Appendix A).
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No Microengine code is generated when MESSAGE1 and EOM1 are
encountered in pass six. They are merely inserted into the
intermediate code as virtual instructions for use by pass seven.

In general terms, the virtual instruction FUNCVALUE pushes onto
the stack enough space to hold the value which will be returned by a
function which is about to be called. It pushes either one or four
wdrda, depending on the type of the return value. However, there 15 a
twist. Class and monitor entry routines expect the address of the
component'!s permanent variables to be the first "parameter™ pushed on
the stack. But the code generated by the compiler carries out the
actions:

1) push the address of the permanent variables record;

2) push space to receive the function value;

3) push parameters;

4) call the entry routine.
If the function-value space is placed directly on the top of the
stack, the permanent variables record address will not be in the
proper position. The function-value space ghould be placed hetween the
two top-of-stack words. FUNCVALUE performs this stack-space insertion
for class and monitor function entries. There are four equivalent
Microengine code sequences. As FUNCVALUE comes into MEPASS6, it has a
mode opgrand and a type operand. If the mode is "process entry® or
"procedure”, one or two SLDCO0 instructions are generated to push

space at run time for word-type or real-type function values. If the
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mode is "class entry™ or "monitor entry", the code sequences are:

HORD-TYPE REAL-TYPE

SLDCOO SLDCOO

SWAP SWAP
SLDCOO
SWAP.

At run time, these instructions will "insert™ one or two words of zero
between the permanent variables record address and the next word on
the stack.

Finally, INITVAR and COPYTAG were commented out of pass six since
they are never produced by pass five of the concurrent compiler. They
are presumably produced by the sequential compiler. Apparently, passes
3ix and seven of the two compilers were 80 similar that they were

combined, and are used by both translation systems.

5.2.4 "Difficult™ Instruction Modifications

The virtual instruction transformations described in the
preceding section were relatively easy to make since they are, for the
most part, independent of the underlying hardware architecture. The
transformations deseribed here were more difficult since these

instructions make use of some architectural assumptions.

5.2.4.1 Value and Address PUSH Instructions

Pass five generates four instructions for pushing values and
addresses onto the operand stack. They are PUSHCONST1 (PUSH the value
of a CONSTant), PUSHVAR1 (PUSH the value of a VARiable), PUSHIND1
(PUSH a value, INDirect), and PUSHADDR1 (PUSH an ADDRess). Pass six
analyzes these operators and their operands in order to select the
appropriate final-code instructions from nearly a dozen

possibilities.
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The operand for PUSHCONST1 is the 16-bit value of the constant to
be pushed onto the stack. For the virtual machine there is just one
instruction for pushing short (immediate) constants, but there are
three for the Microengine. Based on the value of the constant, MEPASS6
selects the hardware instruction which will take the least possible
amount of code space.

PUSHVAR1 has three operands: the virtual data type of the
variable, the addressing mode, and its displacement from either the
local or global base register of the virtual machine. If the variable
is a word or less, its type will be WORDTYPE and it can be pushed
directly. Otherwise, it must be pushed indirectly. The choice of the
direct-push instruetion to be generated depends on the variable's
mode, and is made by the MEPASS6 routine PUSHVALUE, discussed below.
The Microengine code sequence for an indirect push consists of two
instructions; one to place the address of the variable on the stack,
and another to actually use that address and replace it with that
location's content. The procedure PUSHADDRESS chooses the first of
these, from among several possibilities, based on the addressing mode,
and PUSHINDIRECT picks the second, based on the virtual data type.

When the PUSHADDR1 and PUSHIND1 intermediate-code instructions
are encountered by pass six, their operands are passed directly to the
routines PUSHADDRESS and PUSHINDIRECT, respectively. Those two
routines (described below) determine and generate the corresponding
final code.

The procedure PUSHVALUE uses a variable!s address mode to choose
among three Microengine instructions which push onto the stack the
value of a word in some data space. If the mode is "procedure", "class

entry", or "monitor entry" then the word will be (at run time) in the
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data space which is local to the routine active at that moment. The
Microengine instruction LDL (LoaD Local word) 1is generated for those
modes. The operand for LDL is the variable's displacement within the
local data space, and is calculated by the routine DISPFL, described in
section 5.2.2. "Process", "class", and "monitor"™ modes indicate that
the variable is a permanent variable of a system component, and so it
will be addressable by a displacement from the global base register.
(At run time the global base register will have been set so that it
points to the  gcorrect permanent-variables record in the
initial-process data space-- see sections 5.2.4.5 and 5.2.4.6.) So,
PUSHVALUE generates an LDO (LoaD glCbal word) operator and the
appropriate displacement. "Program™ mode variables will be in the
global data space of a sequential program, so they will be addressable
from the global base register, and an LDO instruction is generated.
Variables whose mode is "process entry" require special handling. If
the virtual displacement (the displacement as it comes from pass five)
is negative, the object being referenced is a yariable in the entry
routine’s local data space, and an LDL instruction will serve to push
it onto the stack during execution. If the displacement is not
negative, the object is a parameter (or function value) of the
routine. It cannot be addressed relative to the local base register
since it is local, not to the entry routine, but to the interface
routine which called it (see section 5.2.2 and figure 29). The object
can be addressed as an "intermediate"™ (meither local nor global--
lexically somewhere in between) word; that is, relative to its own
local base and the distance (in statio links) from the current local
base to the required one. To push the variable at run time, PUSHVALUE

generates an LOD (LOaD intermediate word) instruction which has two
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operands. One is the variable's displacement from its local markstack,
calculated by DISPL. The other is the number of static links which
must be traversed to reach the markstack to which the variable is
local. The instruction used to invoke the process entry routine (CxL)
makes the entry routine's statie 1link field point to the interface
routine's markstack, so only one static link needs to be traversed.

The PUSHADDRESS routine selects Microengine code to push onto the
stack the address of some data object. The strategy used to make the
selection is exactly the same as that used by PUSHVALUE, The
instructions which can be generated are LLA (Load Local Address), LAO
(Load Address, glObal), and LDA (LoaD intermediate Address). LLA is
generated for "procedure", "class entry", and "monitor entry"™ modes.
Lab is generated for "process", "class", "monitor", and "program®
modes. For "process entry"™ mode LLA is generated if the object is a
local variable. Otherwise, LDA is generated with a
static=link-distance operand of one 1in order to access the object
relative to the markstack of the interface procedure. Variables are
never located in the constant pool, so PUSHVALUE never has to deal
with constant-mode references. There are cases, however, where the
address of a long constant must be pushed onto the stack. For
constant-mode references PUSHADDRESS generates an LCA (Load Constant
Address) instruction. The operand for LCA is the offset (in words) of
the constant, relative to the start of the segment.

PUSHINDIRECT generates code which will push onto the stack the
data item which 1is the target of the top-of-stack pointer. For
objects of type WORDTYPE, REALTYPE, and SETTYPE that pointer occupies
one stack word. It is two words for BYTETYPE objects, however. The

routine generates an SINDO (Short INDex (0) and load word) for pushing
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word-length objects. During its execution, the instruction adds the
index (0, in this case) to the pointer and pushes the word which the
new pointer indicates. For reals, an LDM (LoaD Multiple words)
instruction is generated with an operand value equal to the word
length of Microengine real values-- two words. An LDM is also
generated to push sets indirectly. Its operand is the length of the
set to be pushed. The hardware actually supports sets of varying
length, but since the virtual machine only supports eight-word sets,
MEPASCAL only generates fixed-length sets, and so the operand to the
LDM is fixed at eight. Since the hardware expects to find the length
of the set as the top-of-stack word (see section 5.2.3), the routine
also generates an instruction to push the set's (fixed) length value.
For byte objects an LDB (LoaD Byte) instruction is generated. At run
time, however, this instruction expects the TO0S=1 word to be the
address of the first word of a byte array (two meaningful bytes per
word), and the TOS word to be the offset (in bytes) from that address
to the target byte. During execution, LDB consumes'both stack words
and leaves in their place a word which contains the target byte in the
low-order position, and zero in the high-order position. This
mechanism is quite different from that of the Concurrent Pascal
virtual machine. The virtual instruction PUSHBYTE assumes that the TOS
word by itself points directly to the target byte. Thus, there is an
implicit assumption that the underlying hardware is byte addressable.
Refer to the next section for information on how the Microengine byte

pointer is built.
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5.2.4.2 INDEX and BYTE Instructions
The virtual machine instructions PUSHBYTE and COPYBYTE have
equivalent Microengine instructions in LDB (LoaD Byte) and STB (STore
Byte). PUSHBYTE and LDB push the byte to which the top-of-stack item
points. COPYBYTE and STB write the low-order byte of the top-of-stack
word into the location where the TOS-1 item points. The actions of the
two pairs of instructions are identical; however, the pointers
required for the Microengine instructions are not the same as those
for the virtual instructions. Pointers on the virtual machine are all
alike-- one word long and measured in bytes. The Microengine uses
three pointer formats, from one to three words long. Packed field
pointers are of no concern here. Yord pointers are one word long,
apparently use byte measure, and point to the low-address byte
(low-order bits, even address) of a word. Word pointers are generated
by instructions such as LLA (Load Local Address). Byte pointers
consist of two words (see figure 36). The TOS-1 word is a word
pointer-- call the.byte to which it points the "base®. The TOS word
contains the offset (byte measure) from the base to the byte which is
the ultimate target [REGE78]. If MEPASCAL were to simply generate LDB
and STB in place of PUSHBYTE and COPYBYTE, at run time the Microengine
instructions will attempt to use the two top-of-stack words as a byte
pointer. In fact, the TOS word will be a pointer in wvirtual machine
format and the TOS-1 word will be other irrelevant data which must
remain untouched.
The solution to this problem with pointer formats is in the code
which generates byte pointers. Byte pointers are generated only for
references to Concurrent Pascal strings (ARRAY[N..M] OF CHAR). Notice

that in Concurrent Pascal and UCSD Pascal, CHAR variables (and CHAR
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constants when they are on the. stack) occupy only one word in which
the high-order byte 1s 2zero. Concurrent Pascal arrays of characters
are identical to UCSD Pascal packed arrays of characters (two
characters in a word). UCSD arrays of characters have one character
per word, an arrangement which is not supported by Concurrent Pascal.
In the final analysis, byte pointers are generated only when a byte is
referenced as an element of an array. The virtual instruction INDEX is
responsible for generating the final address of an array (any array--
CHAR or not) element just before being pushed on the stack or stored,
so it is the instruction which was modified to handle the Microengine
byte pointer format.

INDEX assumes that the TOS-1 word is a pointer to the base of an
array, and that the top-of-stack word is an integer index into the
array. During its execution, the instruction compares the index value
to the bounds of the array being referanced. If it falls outside, a
run-time error occurs, otherwise the index (adjusted to a zero base)
is multiplied by the length of an array element to yield the target
element's offset (in bytes) from the base of the array. The base and
offset are then added, leaving the address of the target element on
top of the stack. A direct conversion to a Microengine code sequence
would work, except in the case where the array elements are bytes. For
byte arrays, the final arithmetic addition of base address and offset
must be skipped in order to leave a Microengine byte pointer on the
stack. MEPASSS5 incorporates a change to the INDEX2 instruction which
it emits (section 5.1). In MCPASS5, INDEX2 has three operands. In the
MEPASCAL version of pass five, the instruction has a fourth operand
which is the virtual data type of the array elements. When INDEX1 is

encountered by MEPASS6, the type operand is used to determine if an



- 114 -
instruction should be generated to add the base address and element
offset. In retrospect, it seems that the LENGTH operand conveys the
same information as the TYPE operand-- the element is either BYTETYPE
or not (element lengh is either one or not). If the element length is
one byte, then it must need a byte pointer. If the length is used as
the discriminant, the type operand and the change to pass five become

unnecessary. The Microengine code which is equivalent to INDEX is:

push min. push minimum array bound
push max. push maximum array bound
CHK range check

push min. adjust index to zero base
SBI

{IXA (size) add base address and offset,

yielding element address},
where the IXA (IndeX Array) is pnot generated for a reference to a

BYTETYPE element.

5.2.4.3 CASEJUMP

There is a radical difference in the way CASE statements are
handled on each target machine. An example of a virtual machine CASE
statement is shown in figure 37, and the syntax is given in [HART76].
Notice that the CASEJUMP instruction follows the code for the cases.
This makes for a good deal of wild branching during execution, but it
also guarantees that pass 8ix of the compiler will be able to resolve
the displacements which are operands of the CASEJUMP operator. The
displacements are the distances to the code for each case. During
execution, the instruction checks the top-of-stack selector value
against the legal range defined by £he first two operands. If the
selector value is outside the range, a run-time error is triggered.
If it is in bounds, the selector is used to find the appropriate

displacement operand, which is then algebraically added to the virtual



0001 VAR

0002 &, B, C, D, E, F, SELCTR: INTEGER;
0003

0004 BEGIN

00CE & := 100;

0006 CASE SELCTR OF

7

0007 3z Bz 23
0008 8, 11: C := 3;
0009 : D := 4
0010 12: BEGIN
0011 E :=5;
0012 F := 5;
0013 END;
0014 6: F:=6
0015 END;
0016 F := 200;
0017 END,
T T TTrITTerrTTIrTI77TTIv IR 7 777777777
7 MCPASCLL INTERMEDIATE CODE PASS 7
T Tt T Ty T TiTTITTITTITIvIT7eeI77I7TT777777
JUMP{Z)
BEGNFRCS( %)
LINE 5 GLOBLEDD(-2)  PUSHCONS{100) COPYWORD
LINE £ PUSHGLBL{-14)  JUMP(138)
LIKE 7
LINE 7  GLOBLADD(-4) PUSHCONS(2) COPYWORD  JUMP(146)
LIKE 8
LIKE 8 GLCBLADD{-6) PUSHCONS{3) COPYWORD JUMP(124)
LINE 9
LINE 9 GLOSLADD(-E&) PUSHCONS(L) COPYWORD JUMP(102)
LINE 10
LINE 10
LId® 711 GLOELARD(-1C)  FUSHCONS(5) COPYWORD
LIKE 12 GLOBLATD(-12) PUSHCONS{5) COPYWORD
LINE 13  JUMP(58)
LINE 14

LINE 14  GLOBLADD(=-12)

LINE 15  PUSHCONS(6) COPYWORD  JUMP(32)

LINE 15
CLSEJUMP(3,9,-142,18,1€,-38,12,-130,-110,6,-136,-94LIKE
LINE 16  GLOBLADD(~12)  PUSHCONS(200) COPYWORD
LINE 17 EKDPRCS

FIGURE 37. MCPASCAL CASE statement.

15
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program counter to realize the case Jjump. Since there is not a fixed
number of cases in a CASE statement, the operator has a variable
number of operands.

The Microengine case jump operator (XJP), on the other hand, has
only one immediate operand, and it points to the place in the constant
pool where all the other necessary information can be found. The
constant pool information occupies as many words as there are cases,
plus two words. The first word i1s the minimum legal value for the
selector, and the second word is the maximum value. The next words
contain the displacements to the code for each case, relative to the
byte following the XJP instruction. As mentioned in section 5.2.1,
the XJP selector bounds and case offsets cannot be carelessly tossed
into the constant pool. Long constants are sprinkled throughout the
intermediate code stream until pass six removes and collects them in
the heap table CONSTTABLE. Earlier passes have counted the number and
relative positions of the 1long constants, and generated addressing
commands based on the assumption all case jump information would be in
the code stream. All case information which belongs in the constant
pocl is removed from the code stream and placed in XJPTABLE when
MEPASS6 encounters CASEJUMP1. When MEPASST generates the final object
code file it will emit one word which points to the end of the segment
(see figure 7) and then build the constant pool by dumping the
contents of CONSTTABLE and XJPTABLE, in that order. Addressing
commands for constants which are not for case jumps will be valid
because those constants have not changed position relative to the
start of the constant pool. (The routine which calculates
displacements for addressing commands-- DISPL in MEPASS6-- compensates

for the final-word pointer.) The value of the XJP operand
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(segment-relative offset of the selector bounds and case offsets) is
the offset of the required information in XJPTABLE (variable
XJPOFFSETPTR in MEPASS6) plus the size of CONSTTABLE (known from data
in the PASSLINK record) plus one word (the pointer to the segment's
final word). When CASEJUMP comes into pass six, the case offsets are
represented by case labels. The labels are guaranteed to be resolvable
into offsets since the location-counter value of each case label was
inserted into JUMPTABLE as it was encountered, and all the cases
appear in the intermediate code bhefors the CASEJUMPi operator. The
labels in the CASEJUMP1 instruction are used as indices into JUMPTABLE
to retrieve those location-counter values, and the differences between
them and the current value of the location counter are the offsets to
be inserted in XJPTABLE. The correct placement of the case offsets
complicates an otherwise trivial translation of CASEJUMP to the

Microengine code sequence:

push min. push minimun CASE index
push max. push maximum CASE index
CHK check: min, <z T0S=2 <= max

XJP (displacement) casejump using constant-pool CASE table.

5.2.4.4 Routine Invocation Instructions

The six virtual instructions CALL, INITCLASS, INITMON, INITPROC,
CALLPROG, and CALLSYS all invoke routines, but the circumstances which
surround the use of each, and the side effects produced by each one
vary.

CALL is the simplest of the six. In the final code, its operand
is a signed value which is the distance to be jumped in order to reach
the code of the called routine. During execution, the address of the
instruction after CALL is pushed onto the stack as the return address

and the operand is algebraically added to the virtual prozram counter
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so that the next instruction to be executed will be the first one in
the called routine. By pushing the return address onto the stack, CALL
begins the construction of the markstack (see figure 2) for the called
routine. The first instruction of the called routine will finish it
(see section 5.2.4.6). By the time CALL executes, other instructions
have pushed onto the stack space for the ~function wvalue and
parameters, if required by'tha called routine. Only non-ENTRY, monitor
EN%RI, and class ENTRY routines are invoked by CALL, so in execution
sequence, CALL is always followed by either ENTER, ENTERMON, or
ENTERCLASS, Along with other actions, these instructions finish
building the markstack. In MEPASS6, the Microengine instruction CPL
(Call Procedure Local) has been substituted for CALL, although it is
not quite equivalent. The operand to CPL 1is the called routine's
number. This happens to be the compiler-generated block label which
is an operand of CALL1. During its execution, CPL not only causes a
Jump to the called routine, but also completely builds ﬁhe markstack
and sets aside local variable space for the routine.

INITCLASS is used to invoke the initial routine (BEGIN..END.
block) of a class, Just before INITCLASS executes, other instuctions
have pushed onto the stack the address of the "middle™ of the record
containing the class's permanent variables (see figure 25), and the
parameters (access rights) required by the class. When the
instruction executes, it pops the parameters from the stack into the
component variable record, puts the return address on the stack, and
jumps to the class initial code.

In order to move this instruction to the Microengine, pass five
and the input syntax for pass six had to be changed. Even though

INITCLASS uses the address of the class variable in copying the
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parameters, it leaves it on top of the stack for later use in setting
the global base. For the Microengine, an STM instruction is used to
pop the parameters and, as a side effect, it consumes the class
variable address. The syﬁtax change involved adding an instruction to
duplicate the class address in order to leave a copy of it on top of
the stack for later use. The original pass six input syntax for an

init stat [HART76] was

===> varaddr --—> FIELD(disp) =---> arg list —--
|

|
—--> INIT(mode, label, parm length, var length) --=> .

In order to preserve the class address, DUPTOS was added, giving the
syntax

--=> varaddr ---> FIELD(disp) =-=> DUPTOS -==)> arg list ---
!

|
-—=> INIT(mode, label, parm length, var length) --=> ,

where DUPTOS translates to the Microengine hardware instruction DUP1.
Once the access rights have been put in the class variable, the
initial code for the class is invoked by a CPL instruction, so the
Microengine code for INITCLASS is

STM (paramsize) pop "paramsize®™ words into class variable
CPL (routine no.) invoke initial routine of class.

The operation of, and equivalent code for, INITMON is the same as
for INITCLASS. BEGINCLASS and BEGINMON instructions follow INITCLASS
and INITMON in execution. They complete construction of the mgrkstaek
and set the global base for the class or monitor.

INITPROCESS calls on the kernel to create a new process and get
it started in its own initial routine. The kernel pops the parameters
into the process variable and leaves its address on top of the stack.

After the kernel call, the original process merely discards the
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address. The equivalent Microengine code for the kernel call has not
yet been determined, and the instruction which pops the top-of-stack
word is FJP(0). The execution sequence is somewhat unclear since two
processes are executing eoncurrently after the kernel creates the new
process. During the execution of INITPROCESS, the original process
enters and returns from the kernel. The new process starts out in
kernel code and the first virtual instruction it executes is
BEGINPROC.

CALLPROG pushes the return address onto the stack and starts the
execution of a sequential program stored in a variable whose address
is on top of the stack. Because of the Microengine architecture, the
mechanism for starting a sequential program is entirely different, as
described in section 3.4. The code for invocation of a program is
given below, and assumes that the code variable address is on top of
the stack. In short, the code puts the address in the sequential
program's segment information block, and then calls the initial
routine in that segment. Figure 14 will be helpful for following all

the pointers which must be chased. The Microengine code is

SLDCO1 push CTP register number (-1)
NGI
LPR push pointer to TIB (CTP register content)

IND (11) push pointer to SIB vector (11th word in TIB)

INC (5) increment by 5 words to yield pointer to SEGBASE field
in SIB no. 129. (SIB 129 is second record in
SIB vector, each SIB is 5 words long, and SEGBASE
is first field in each SIB.)

SWAP

STO pop pointer to program variable into
SEGBASE field of SIB 129

CXL (129, 1) invoke initial routine of sequential program.

The ENTRY routines of a process are the routines which provide
operating system services to the sequential program running as a part
of that process. In the virtual machine, the sequential program

requests one of those services Dby executing the instruction
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CALLSYS(index), where the operand is the index of the service in the
sequential program prefix. CALLSYS is comparable to a conventional SVC
instruction. Several events must have taken place at the time of
sequential program invocation in support of CALLSYS, as described in
section 3.4.1. Just before the program starts, code in the concurrent
program puts on the stack a table of addresses of the process ENTRY
routines, This jump table (figure 16) remains on the stack while the
sequential program executes. CALLSYS uses this index operand to select
an ENTRY routine address from the Jjump table, and then causes a jump
to that address. The sequential program is, essentially, requesting
system services by number. Notice that the operating system and
sequential program must agree on the numbers assigned to the services.
The assignments are based on the order in which the service
identifiers appear in the interface definition (in the host process)
and in the prefix (in the sequential program). Suppose, for example,
that a process has eight ENTRY routines named OPEN, CLOSE, GET, PUT,
ACCEPT. DISPLAY, MARK, and RELEASE, and that the sequential program
SEQPROG will have access to the first six. That is, SEQPROG will only
be able to use the first six; in fact, it will not even know of the
existence of the other two. If the program and interface are defined
as

SEQPROG (A, B: INTEGER; C: SEQL_CODE TYPE);
ENTRY OPEN. CLOSE, GET, PUT, ACCEPT, DISPLAY;

then the sequential prefix must list those routines in tke same order
{(although the identifiers can be different):

PROCEDURE OPENFILE (parameter list);
PROCEDURE CLOSEFILE (parameter list);
PROCEDURE GETPAGE (parameter list);
PROCEDURE PUTPAGE (parameter list);
PROCEDURE READCONSOLE (parameter list);
PROCEDURE WRITECONSOLE (parameter list); .
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If the two sequences fall to matech (say the order of OPENFILE and
CLOSEFILE is reversed), the results of a CALLSYS instruction will not
be as expected (a call to OPENFILE will cause the process ENTRY
routine CLOSE to be executed). As 1long as the interface and prefix
definitions maintain the proper relationships, each progranm
(concurrent and sequential) can be altered and recompiled
independently of the other. This independence 1is possible because
routines are known and invoked by their address, and CALLPROG
indirectly takes the ENTRY routine address from the stack.

In the virtual machine the run-time jump table performs a mapping
function from the prefix index number known to the sequential program
to the corresponding ENTRY routine address-identifier. Since
Microengine routines are known and invoked by their routine pumberp,
and the invocation instructions wuse only Jimmediate operands, that
mapping function must be performed by the interface segment described
in sections 3.4.1 and 5.2.4.8. By the time the Microengine code
equivalent to CALLSYS executes, the code segments (both shared and
private to the host process) are configured as shown in figure 18. The
interface segment consists of only one routine which operates as
described in sections 3.4.1 and 5.2.4.8. On the Microengine, process
ENTIRY routines will be called by the interface routine, which is
itself called by the sequential program. The interface routine
requires a parameter which is the equivalent of the CALLSYS operand.
The code to call the interface routine is:

push index push parameter for interface routine
CXL (128, 1) invoke interface routine in interface segment.
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5.2.4,5 BEGIN Instructions

The virtual instructions BEGINCLASS, BEGINMON, and BEGINPROC are
always the first 1nstéuetion in the initial routine of classes,
monitors, and processes, respectively. In execution they are always
preceded by the corresponding INIT instruction. The BEGIN
instructions are generated by pass six when ENTER1 is encountered,
based on its mode operand. (ENTER1 also translates to the ENTER
instructions described in the next section.) In general terms,
BEGINCLASS checks for the possibility of a heap-stack collision during
the routine, finishes construction of the markstack (begun by INIT),
and sets the global base register so that it points to the ™middle™ of
the class variable (see figure 25).

Before describing the equivalent Microengine code itself, some
comments must be made concerning the actions of the compiler while
generating that code. When MEPASS6 encounters ENTER1, the instruction
operands are copied so that their values are preserved during the
compilation of the entire routine (the variables ARGx take on new
values almost every time a virtual instruction is read from the input
file). The "save"™ variables have the following meanings:

BLOCK=~ the numeric label by which the routine is known and which
will be used by Microengine instructions (CPG and CPL, for
example) to invoke the routine;

PARAMLENGTH-- the number of bytes of parameters for the routine;

VARLENGTH-- the number of bytes of 1loecal variables required for
this routine;

STACKLENGTH~- the number of bytes of extra stack space to be
reserved for the routine.

In the original compiler. PARAMLENGTH and VARLENGTH for initial
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routines of classes, monitors, and processes are always zero,
reflecting the fact that the permanent variables are not located on
the stack (rather, in the component variable record) and that the
parameters (access rights) are popped off the stack into the component
variable record by INIT. In MEPASCAL PARAMLENGTH and VARLENGTH always
contain the corresponding length values (modification made to pass
four-- see section 5.1). The length of the variables area is needed
to determine the 1location of parameters, since variables intervene
between the base (markstack) location and the parameters (see figure
19). After saving the instruction operands, AFTERBEGIN is set TRUE to
indicate that the compiler is now in a routine bédy. In prior passes,
NEWLINE instructions were generated for each source line, inecluding
lines in the declaration parts of routines. Since the intermediate
code for declarations has been removed, the declaration parts consist
of only NEWLINE operators. NEWLINE operators encountered gutside of
routine bodies (AFTERBEGIN = FALSE) are deleted from the code sent to
pass seven. TEMP and MAXTEMP are used to calculate the run-time stack
requirements of the routine (section 4.2). They are initialized at
zero since the compiler has not yet encountered any code which will,
at run time, push anything on the stack. The location counter (which
is relative to the beginning of the gegment) is incremented by two
words to account for the space which the routine's EXIT-IC and
DATASIZE fields will occupy in the final code (see figure 7).

After the compiler has completed the actions Hhich are common to
all routine modes, code is generated and other actions are taken,
based on the value of the mode operand. For "class"™ mode the routine's
DATASIZE value 1is inserted into its corresponding position in

DATASIZETABLE. DATASIZE is the number of words this routine requires
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for local variables. This is not the same as VARLENGTH. In "class"
mode, VARRLENGTH measures variable space in the class record, whereas
DATASIZE is the number of words which must be pushed on the stack for
variables. Since the parameters (access rights) and permanent
variables are in the c¢lass record, only two words of local variable
space are needed on the stack. These are the words for storing the
soﬁrce line number and old global base value. POPLENGTH is the number
of bytes of stack space which must be popped at the end of the routine
in order to return the stack to its configuration before the routine
invocation. It will become the operand to the RPU instruction which
terminates the routine, and in general, it is the number of bytes of
Stack space occupied by the routine's variables and parameters. For a
class routine there are two words of variables and one word of
parameters (the class record address left by code equivalent to
INITCLASS). Code is generated to save the source line number and the
old global base address, and store the new global base address into
the BP register. The address of the class record cannot be used
directly as the new global base since the Microengine hardware takes
into account the size of the markstack when variable and parameter

references are made (see section 3.4.2, fiéure 9, and figure 19).
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Consequently, the Microengine code sequence which 1is similar to
BEGINCLASS includes instructions to reduce the global base address by

the size of a markstack, as shown here:

push line no. save souce line number in local word 1

STL (1)

SLDCO6 push global base register (BP) number

LPR push global base value

STL (2) save global base in local word 2

SLDCO6 prepare to put new global base in BP

LDL (3) push class record address

SLDCO08 push size (bytes) of a markstack

SBI BP must point to bottom of imaginary markstack
SPR put new global base in BP register.

This code does pot include a check for heap-stack collision.
Presumably, that code can be added when MEPASS6 is modified to pass
STACKTABLE on to MEPASST as discussed in section 5.2.3. Also, there is
no code here to build any part of a markstack since it is built
completely by the Microengine code equivalent to INITCLASS.

The code for BEGINMON is the same as BEGINCLASS, except that
after the new global base has been established, z call must be made to
the kernel in order to initialize the monitor's gate.

Although the compiler actions are the same, the equivalent code
for BEGINPROC is much simpler than that for the corresponding class
instruction. The DATASIZE value (again, two words) is entered into the
DATASIZETABLE and the POPLENGTH is calculated as two words (line
number and old global base). POPLENGTH does not include the
"parameter” location containing the process record address because
that location is in the data space of the initializing process. The
equivalent code for INITPROC includes a FJP(0) instruction to pop the
component address (see section 5.2.4.4). The Microengine code for
BEGINPROC is

push line no. save source line number in local word 1
STL(1).



- 127 -
The kernel will handle establishment of the new global base address
and construction of the markstack. Notice that there is no old global

base since the process did not have any prior existence.

5.2.4.6 ENTER Instructions

The virtual instructions ENTER, ENTERCLASS, ENTERMON, ENTERPROC, and
ENTERPROG are always the first instructions of non-initial routines.
Non-ENTRY routines on the virtual machine always begin with an ENTER
instruction, and in execution sequence it is always preceded by CALL,
Generally, it checks for the possibility of a stack-heap collision,
finishes construction of the markstack begun by CALL, and sets aside
stack space for local variables. It does not affect the global base.
When it encounters an ENTER1 instruction with a "procedure®™ mode
operand MEPASS6 calculates the routine's DATASIZE and POPLENGTH values
and generates a simple code sequence. Unlike initial routines, local
variables actually reside on the stack, so DATASIZE is the number of
words the routine needs for explicitly declared 1loeal variables
(VARLENGTH) plus two words reserved for the source line number and old
global base. Although the latter is not pegcessary, it is included for
the sake of consistencey-- all boutines have local words one and two
reserved. The global base word could be removed as long as the
routines and calculations affected by that removal are also modified.
The calculated values for POPLENGTH and DATASIZE would have to be
reduced by one word, and the procedure DISPL would need to use a
separate calculation for determining variable displacements. The
number of bytes to be popped off the stack at the end of the routine
is determined by the length of the routine's parameters (PARAMLENGTH),

the size of the declared variables (VARLENGTH), and the two local
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reserved words. The sequence of generated Microengine code is

push line no. put source line number in local word 1
STL (1).

Just as for BEGINCLASS (section 5.2.4.5), there is no code here to
check for a stack collision, or to explicitly build any part of the
markstack.

ENTERCLASS is the first instruction of class ENTRY routines. Its
function on the virtual machine is the same as BEGINCLASS (section
5.2.4.5). Consequently, the machine code which is generated in place
of it is also the same. The compiler actions are different, however.
The DATASIZE value for the routine 1is the size of the explicitly
declared local variables (VARLENGTH) plus two words for the line
number and old global base. Unlike the code for ENTER, the code for
ENTERCLASS does use the local word reserved for the old global base,
At the conclusion of the routine, its parameters, the address of the
class record, its 1local declared, and its local reserved variables
must be removed from the stack, so POPLENGTH is the sum of
PARAMLENGTH, VARLENGTH, and three words.

ENTERMON is the first instruction of monitor ENTRY routines and
performs the same actions as ENTERCLASS. It also makes a call on the
kernel to request passage through the monitor's gate. MEPASSSH
calculates DATASIZE and POPLENGTH the same way as for ENTERCLASS, then
generates identical code. After the kernel call mechanism is known,
code will be generated to request gate entry from the kernel.

The virtual instructions ENTERPROG and ENTERPROC were difficult
to move to the Microengine because they are affected by the design and
operation of the concurrent-sequential interface. ENTERPROG is the
first instruction of the initial routine of a sequential program, so

in execution sequence it is always preceded by CALLPROG. It completes
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construction of the markstack begun by CALLPROG, checks for a possible
stack collision, and allocates stack space for the initial routine's
local variables. The local variables of the initial routines are the
global variables of the entire seduential program, so the instruction
also resets the global base register so that it points to the same
place as the local base register. In addition, the instruction sets to
the value 1, a word (JOB) in the kernel associated with the invoking
process. This is used to indicate that the process is in sequential
(user) code, not concurent (operating system) code. The Microengine
code generated in place of ENTERPROG 1is

push line no.

-STL (1) save source line number

SLDCO6 push global base (BP) register number
LPR push global base pointer

STL (2) save old global base

SLDCO6 BP register number for store

SLDC05 local base (MP) register number

LFR push MP

SPR store into BP.

The markstack was completely built by the Microengine instruction CIXIL
which invcoked the sequential program, so the code here does not do any
markstack construction. The source 1line number (in the sequential
program) and global base (pointer to the permanent variables record of
the host process) are saved, as for most other routine entries.
Finally, the sequential program's global base 1is established. No
action comparable to setting the concurrent/sequential switch in the
kernel is taken since the kernel has not yet been designed.

ENTERPROC is the first instruction of a process ENTRY routine,
and it follows CALLSYS in execution. In the virtual machine, it checks
for possible stack collision, finishes construction of the markstack,
establishes the process global base, and 2zeroes the JOB word for the

process in the kernel to indicate the execution of concurrent
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(supervisor) code, not sequential (user) code. Since the
concurrent/sequential interface mechanism (section 3.8) is so
different, the code which emulates ENTERPROC is not quite what one
would expect. On the Microengine, process ENTRY routines are not
called directly from sequential programs, as they are on the virtual
machine, Instead, they are invoked from the interface routine (see
figure 38).

The code which MEPASS6 generates is affected by the configuration
of certain pointers immediately after a process ENTRY routine is
invoked (see figure 39). Before the host process invokes the
sequential program the global base register points to the record
containing the permanent variables and access rights of the process.
Microengine code equivalent to CALLPROG starts the program, and code
equivalent to ENTERPROG stores the global base in the second local
variable as described above. The global base register is then adjusted
to point to the program's glcobal storage area-- thé same as the local
area at the time the program is started. During execution the local
base will change as routines are called and return, but the global
base remains fixed. The companion version of Sequential Pascal
apparently does not allow nested routine definitions. The global base
register is not altered when the interface routine is invoked by code
emulating CALLSYS, nor is it altered by the interface routine itself.
Even by the time code equivalent to ENTERPROC is about to execute, the
global base still points to the global variable area in the sequential
program. That code saves the source 1line number and global base
pointer in 1its own 1local space, and re-establishes the process's
global base pointer by fetching the second word in the (sequential

program) global space and storing it into the global base register.
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The Microengine code to do this is:

push line no.

STL (1) save source line number

SLDCO6 BP register number

LPR push global base pointer

STL (2) save copy of global base

SLDCO6 BP register number

SLD002 push process global base saved by ENTERPROG code
SPFR store into global base register.

The mechanism for indicating the return to supervisor code has not yet
been determined. The compiler calculates the ENTRY routine's DATASIZE
and POPLENGTH as the length of its declared local variables plus two
words to store the global base (of the sequential program) and source
line number. POPLENGTH .does not include the size of the parameters
since they are local to the interface markstack, not the ENTRY routine
markstack (see figure 39). Also, POPLENGTH does not include an extra
word to account for the component variable address "parameter®™ being
on the stack, unlike ENTERCLASS and ENTERMON code. The component
variable address never appears on the stack here since it is fetched

out of the global variable space of the sequential program.

5.2.4.7 END and EXIT Instru;tions

Eight virtual instructions terminate routines by restoring the
calling routine's enviromment. All of these use an RPU instruction on
the Microengine. RPU (Return from Procedure--User) cleans up the stack
in order to restore the stack to the condition it was in before the
routine was called. It has one operand which is the number of words
(not including the markstack) which must be popped in order to restore
the calling routine's stacktop. The instruction automatically restores
the caller's stack pointer (based on the operand) and local base
pointer, and causes a jump to the return address in the caller's code.

The instruction does not affect the global base pointer.
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The virtual instruction EXIT terminates routines which are
neither ENTRY nor initial routines. It performs the same function as
RPU on the Microengine, except that it also restores the caller's
global base pointer. Restoration of the global base is superfluous for
non-ENTRY and non-initial routines since the global base is not
changed by ENTER (section 5.2.4.6) and any system component routines
called by the routine restore the caller's BP register when they
return. The equivalent Microengine code is simply

RPU (POPLENGTH DIV WORDLENGTH),
where POPLENGTH is the value calculated when code for ENTER was
generated at the start of the routine.

ENDCLASS and EXITCLASS terminate the initial and ENTRY routines
of a class. Since the corresponding prologue instructions, BEGINCLASS
and ENDCLASS, change the global base register, the caller's global
base pointer must be restored before returning. The equivalent

Microengine code is:

SLDCO6 push global base register number
SLDLO2 push caller's global base pointer
SPR restore caller's global base

RPU (poplength div wordlength) return to calling routine.

ENDMON and EXITMON terminate monitor routines and are analogous
to ENDCLASS and ENTERCLASS. They perform the same function, except
that the monitor instructions call on the kernel to perform a gate
exit before restoring the caller's global base and returning. So, the
equivalent Microengine code consists of a kernel call followed by the
same code which was substituted for ENDCLASS and EXITCLASS.

EXITPROC terminates process ENTRY routines. It restores the
caller's (sequential program's) global base and sets the JOB switch in
the kernel to indicate the execution of sequential code. The

Microengine code for this is the same as for ENDCLASS plus some, as
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yet undetermined, code to indicate the return to user code.

ENDPROC terminates the initial routine of processes, and is
merely a return to the kernel to make the process "disappear®. The
Microengine code is just an RPU instruction.

EXITPROG is the 1last virtual instruction of a sequential
program's initial statement, and in general terms, it restores the
environment of the host process before the sequential program was
invoked. Since it manipulates several 1locations in the kernel, the
equivalent Microengine code has not been finalized. The code will,
however, end with an RPU instruction.

Every time one of the 1instruction sequences discussed in this
section is generated, the compiler enters the routine's STACKLENGTH
into STACKTABLE. This provides a record of the routine's stack
requirements for ecalling routines to use in calculating their own
stack requirements (see section 4.2). AFTERBEGIN is set FALSE so that
NEWLINE instructions for declaration source lines will not appear in
the final code. If the 1location counter is not on a word boundary a
NOP (No OPeration) is generated to force it to the required value.
Alignment is required for the next routine's EXIT-IC field (see figure

7.

5.2.4.8 PUSHLABEL (Interface Generation)

The action of PUSHLABEL in the virtual machine is quite simple--
it merely pushes the address of a process ENTRY routine onto the
stack. PUSHLABEL instuctions are used as part of the sequential
program invocation sequence to build the Jjump table shown in figure
16. The Jump table maps prefix routine indices to process ENTRY

routine addresses during the execution of CALLSYS instructions
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(sections 3.43.1 and 5.2.3.4). The concurent/sequential interface
mechanism for the Microengine is entirely different.

A skeletal concurrent process and interface definition are shown
in figure 40. The process gan provide as many as six operating system
services (P1 through P6) to sequential programs hosted by it. However,
the code loaded into the variable C, and invoked as SEQLPGM, will only
be offered three of these (P4, P6, and P3) for its use. The sequential
program is invoked in line 16, and it 1s here that the run-time jump
table is built to enforce access restrictions. When MEPASSS encounters
a PUSHLABEL instruection, it removes from the intermediate code the
instructions which build the Jump table, and generates a new code
segment called the interface segment. The interface segment consists
of only one routine (figure 17) and is placed in file number four
(figure 26). The structure of the segment is known by MEPASS6, so the
number of process ENTRY routines in the interface completely defines
it. This permits the pass to generate a Microengine code segment which
is extremely close to its final form. Pass seven will pack the code
into machine words, pad it out to an integral multiple of the size of
a disk block (512 bytes), and append it to the concurrent program's
code segment.

The occurrence of a PUSHLABEL operator informs MEPASS6 that it
has just found the start of an interface. The routine GEN INTERFACE
reads through the incoming interface and generates the interface
segment. The general machine-code form of the interface segment is
shown in figure 41. Before emitting any code, the routine turns on
the GENNINGINTFAC switch so that the routines which usually send
generated code to the concurrent code file will start putting code

into the interface segment file (see section 5.2.2). It also fetches
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0001 TYPEZ PRC = PROCESS;

0002 TYPE CODE = ARRAY[1..100C] OF INTEGER;

6003 VAR PERM1, PERM2, PERM3: INTEGER; CODEVAR: CODE;
ofele2!

0605 CROCEDURE ENTRY P1; BEGIN  END;

0006 PROCEDURE ENTRY P2; BEGIN  END;

0007 PROCEDURE ENTRY P3; BEGIN  END;

0008 PROCEDURE ENTRY P4;  BEGIN  END;

0009 PYOCEDURE ENTEY P5;  BEGIN  END;

0016 PROCEDURE ENTRY P6;  BEGIN  END;

0011

0312 PROGRAM SEQLPGM(X, Y, Z: INTEGER; C: CODE);
0013 ENTRY P4, P6, P3;

0014

0015 BEGIN

0016 SEQLPGM( 100, 200, 300, CODEVAR);

0017 END;

0018

0019 VAR - PRCV: PRC;

0020

00z37 BEGIN
0022 IKIT PRCV;
0023 END.

555555555565555555555555555555555555555555555R56555555555855555555555
MEPASCAL INTERMEDIATE CCDE PASS 5
585555555b55555558055b555555555556555555555555555555E55555555555555585
JUMP(1)  LKGCCNST(16,HEX-VAL:0000,0000,0000,0000,0000,0000,
0000,0000)

vl

5
5
5

LINE ENTER(2,3,0,0,0) RETURN(3)

5
LINE 6 ENTER(3,4,0,0,0) RETURN(3)
LINE 7  ENTER(3,5,0,0,0) RETURN(3)
LIKE € ENTZR(%,5,0,C,0) RETURN(3)
LIKE ]

0

H

ENTZR(3,7,0,0,0) RETURN(3)

LINE 1 ENTER(3,3,0,0,C)  RETURMN(3)

LIFE 15 ENTER(6,2,0,2006,0)

LINE 16 FPUSHLABL(5) PUSHLABL(8)  PUSHLABL(6)
PUSHCKST(100)  PUSHCKST(200)  BUSHCNST(200)
PUSHADDR(6,-2006)  CALLPROG  POP(6)

LINE 17 RETURN(6)

LINE 21 ENTER(6,1,0,2,0)
LINE 22  PUSHADDR(6,-2) DUP1TOS INIT(6,2,0,2006]
LINE 23 RETURN(§) EOM(2)

FIZURE 40. 4 concurrent process which invokes a sequential program,
and the intermediate code produced by MEPASSS., The second operand of
ZNTER is the routine number.
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mir.. case index
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RTNS words of
CASE statement

offsets
t
i
i
exit-ic
datasize (0)
SLDLO1 push the prefix index parameter
XJP (1) CASEJUMP-~case offsets start in word 1
NOP
UJPL (out) Jump if parameter out of range
CXL (129, label 1) call process entry routine
UJPL {out) Jjump out of CASE statement

CXL (129, label 2)
UJPL (out)

CXL (129, label RTHS)
UJPL (out) -

out: NC® ne operation, for word alignment
RPJ (1) return to caller (sequerntizl program)
€ datasize

1, segment id

FIGURE 21. General layout of an interface segment.
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the size of (number of routine 1labels in) this interface from the
array IFSEGSIZE which was loaded in procedure BEGINPASS from the
PASSLINK record in the héap. The previous pass counts the number of
interfaces in the concurrent program and the size of each one (see
section 5.1). For the rest of this discussion the number of routines
in the interface will be denoted "RTNS"™. The sizes (in bytes) of the
various items in figure 41 are:

1) @ last word-= 2
2) min. case index-- 2
3) max. case index-- 2
}) offsets—- 2¥RTNS
5) EXIT-IC-= 2
6) DATASIZE-- 2
T) pre-case code:
SLDLO1, XJP, NOP, and UJPL-= T
8) code for each case:
CXL, and UJPL-= 6
9) post-case code:
NOP and RPU-- 3
10) @ DATASIZE-- 2
11) value 1-- 1
12) segment id.-- 1.
The first word of a Microengine code segment points to the last word
in the segment (see section 3.2.2). For an interface segment, that
pointer value can be calculated as the number of words in the segment
less one word., Using the list above, that is

( ¢( + 2 +2%RTNS + 2 + 2 + T + 6%#RTINS +

§ : : + 1 + 1) DIV 2 "bytes per word"™) - 1,
or more concisely,
( 8*RTNS + 22) DIV 2.

GEN INTERFACE puts that value in the interface file. It then starts
building the constant pool which will only contain information
required for the XJP instruction: the minimum and maximum case indices
and the offset values for each case. The sequential program numbers
its prefix routines consecutively from 1 to RTNS, so 1 and RINS are

emitted as the index 1limits. For each case, the distance from the
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instruction after the XJP (NOP) to 1its code is its offset. The case
offsets are generated next. The offset for any case is four bytes (NOP
and UJPL after XJP) plus the size of the cases between the UJPL and
itself. Thus, the first four cases have offsets 4, 10, 16, 22. If the
cases are numbered from 0 to RTNS-1, a case's number (let it be KASE)
can be used to calculate its offset:

KASE ®* § "bytes per case™ + 1.
The next field in the output file 1is the interface routine's EXIT-IC
value, a segment-relative byte pointer to the epilogue code--the RPU
instruction. By a calculation similar to the one above, the pointer
value is
RINS # 8 + 18.

The size of the stack space required by the routine for local
variables, the routine's DATASIZE value, must be generated next.
Interface routines have no local variables, so the value is always
zero. The next section of the segment is the code itself. The first
instruction (SLDLO1--Short LoaD Local word 1) will, at run time, push
onto the stack the interface (prefix) index number of the process
ENTRY routine being accessed by the sequential program. The program
pushed the index while executing Microengine code equivalent to
CALLSYS (section 5.2.4.4)., XJP (case jump) is the next instruction. It
uses the top-of-stack index to select an offset from the case table
which always starts in word location 1 of the segment (location of the
minimum index word). That offset is added to the IPC to jump to the
corresponding case code. A no-operation instruction comes next,
although it might prove to be superfluous. It is generated only in
imitation of the way the UCSD Pascal compiler handles case jumps. If

the case index is not between the minimum and maximum values the next
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instruction (UJPL) jumps around the code for all cases. Since the
cases all have six bytes of code, the jump distance is 6¥RTNS. The
code for all the cases follows, but first the compiler must change the
order of the process ENTRY routine labels. In line 13 of the source
code in figure 40 the accessible ENTRY routines are given in the order
P4, P6, P3. Their corresponding routine labels are 6, 8, and 5, so the
prefix routine index numbers (which the sequential program uses to
call the routines) 1, 2, and 3 must map to concurrent routines 6, 8,
and 5, respectively. By the time the labels reach pass six, however,
their order has been reversed (figure 40, line 16 of the intermediate
code). The reverse ordering works for building the jump table for the
virtual machine, but it is the reverse of what is needed for the
Microengine. GEN_INTERFACE removes the PUSHLABEL instructions fom the
code stream and pushes the label numbers onto its own heap stack. The
labels are popped off as code is generated, so that, using the example
in figure %0, when the sequential program provides an index parameter
of 1, concurrent routine 6 (P4) is invoked. The code for each case
consists of two instructions-CXL (Call eXternal, Loecal routine) and
UJPL. The CXL operands are the segment number of the concurrent
segment (always 1), and the routine label of the process ENTRY routine
to be invoked when the case 1is executed. The jump instruction skips
around the other cases when the ENTRY routine returns. Its operand is
the number of bytes of code for the cases which follow. At compile
time, this is the size of the cases for which code has yet to be

generated. For the interface in figure 40 the case code would be
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CxL (129, 6)

UJPL (12)

CXL (129, 8)

UJPL (6)

CXL (129, 5)

UJPL (0).
A NOP 1is generated next for word alignment. Note that this is
necessary only because of the NOP which follows the case jump
operator. The procedure dictionary follows, and it cnsists of Jjust a
single entry since there is only one routine in the segment. The
value to be entered is the word address, relative to the start of the
segment, of the routine's EXIT-IC field. From figure 41 it can be seen
that the value is RTNS+3. The 1last word to be generated contains two-
one-byte fields. The high-order byte is the number of routines in the
segment, and the low-order byte 1s the segment number for this code
segment. Once they have been loaded into main memory, all interface
segments will have a segment number of 129 (see section 3.4.1), but
the compiler numbers them consecutively after the concurrent segment
number to help identify the segments within the code file. Finally,
the switch GENNINGINTFAC is turned off so that output goes into the

concurrent intermediate code file once again.
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6.1 RESULTS AND OBSERVATIONS

Although a good deal of work remains to be done in order to produce a
finished compiler. the work which has been completed so far is a major
contribution toward that goal. There have been two major results of
this project. First, modification of pass six is nearly complete. The
structure and intended operation of the pass have been documented in
this report, so completing the changés should not be difficult.
Secon&, and more importantly, this report provides a substantial base
of knowledge regarding the Concurrent Pascal virtual machine and
Western Digital Pascal Microengine, and how the architecture of the
former can be mapped to the latter, The software tools described in
Appendix A are less significant results, but should be of great help
to future workers, as they were to the author. The file transfer
program will be useful-- necessary, in fact-- even after the
development has been compléted and the MEPASCAL compiler is used for
production work.

The major observation during this project has been that small
architectural differences in target stack machines can have profound
consequences. The two target machines 3seem to be similar. In some
respects they are, but in others they are not; and those differences
turned out to be quite significant. These ramifications impact almost
every pass of a multipass compiler. Thus, porting a Concurrent Pascal
compiler to a new stack machine involves a substantial amount of
effort. The 1inability of the Microengine to call a routine whose

number is on the stack forced the design of a completely new mechanism
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for the concurrent/sequential program interface, and a host of changes
to the compiler. The position of the markstack relative to parameters
and local variables isA different in each machine and that forced a
change in the way pass six ocalculates displacements. The differences
in the location of tables for CASE statements was also a source of
major changes to pass six. The ENTER and BEGIN virtual instructions
have no analogs on the Microengine, and finding equivalent code
sequences for them was one of the hardest parts of the project, second
only to designing an interface mechanism. In short, the virtual
machine instruction set has been specialized for Concurrent Pascal
programs, but the Microengine has a more general-purpose instruction
set, and it is not easy to simulate one with the other.

By month, the time spent on the project was:

October-December, 1979; 60 hours spent studying preliminary
documents for the Microengine system;

February, 1980; 60 hours spent studying PDP-11 assembly code for
interpreter, kernel, and low=l1level interaction with
hardware;

March, 1980; 75 hours spent installing the Microengine, studying
accompanying documents, gaining familiarity with Microengine
system, and bringing up MCPASCAL on the 8/32;

April, 1980; 75 hours spent investigating Microengine
architecture and working with the system;

May, 1980; 75  hours spent investigating virtual machine
architecture and writing MNEM;

June, 1980; 75 hours spent studying the virtual machine
architecture. integrating MNEM into MCPASCAL. Started making

instruction modifications in the pass six code;
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July, 1980; 75 hours spent studying the Microengine code file

format, the architectures of the two target machines, and

asynchronous I/0 hardware on the Microengine;

August, 1980; 100 hours spent making more instruction

modifications, bringing up MEPASCAL on the Interdata 8/32,

writing the file transfer program (Appendix A),

designing the concurrent/sequential interface;

and

September, 1980; 75 hours spent making instruction modifications

and writing the interface segment generator;

October, 1980; 75 hours writing and integrating MNEM
MEPASCAL, and testing the file transfer program;

November, 1980; 40 hours spent writing this report
reevaluating the code modifications;

December, 1980; 200 hours spent writing this report
reevaluating the code modifications;

January, 1981; 100 hours spent writing this report
reevaluating the code modifications.

The times shown for the months March through October are probably

conservative.

into

and

very

Of the 1085 hours of effort, 420 hours (38.7%) were spent in

learning the stack machine semantics of both machines. If the future

work (described below) to complete the porting takes two months of

effort, then the learning effort is only 29.6% of the total.

Discounting the 1learning effort, six months of effort would be

required to port an operating system. We feel this is a minimal

porting effort for an operating system and all of its associated

Pascal utilities and applications programs.
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6.2 FUTURE WORK

Although the major modifications to the compiler have already
been made, work remains to produce a working compiler.

STACKTABLE should be left in the heap after pass six and used to
re-implement the heap-stack collision detection mechanism built into
the NEW, NEWINIT, BEGIN, and ENTER virtual instructions.

Integer and real formats will have to be changed. Since it runs
on an Interdata 8/32, MEPASCAL generates integer and real constants in
8/32 format. Microengine integers have their low-order bits in the low
address byte. The difference will probably only affect instructions
with word operands-- LDCI (LoaD Constant Integer), UJPL (Unconditional
JumP Long), and FJPL (False JumP Long)-- such that the operand bytes
will need to be swapped. This could be done in pass seven. Real
constants will have to be changed to the four-byte PDP=11 format.
This would be best done at the point in the compiler (prior to pass
six) where they are generated. Real constants are stored in the
constant pool, and it would be impossible at any other point to
distinguish a real constant from a string of the same length. Since
Microengine reals are only half as 1long as those generated by the
original compiler, the amount of space allocated for real variables
must be adjusted in pass four.

Displacement calculations for variables will also have to be
changed in pass four. The reason for the change involves the placement
of variables relative to the markstack. Figure 42 shows a record
variable on the virtual machine and the Microengine. Since pass six
calculates variable displacements by negating the displacement it
receives from pass five, the wrong "end"™ of multiword variables will

be referenced.
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PARAMETERS PARAMETERS
— INCORRECT
RECORD FIELD4
MARKSTACK OFFSET | _ _ _ -
(4 WORDS}
FIELD3
FIELD 4 FIELD2
____________ CORRECT Fil i i i o i s
FIELD3 RECORD FIELD1
OFFSET
{1 WORD)
FIELD?2
_____________ MARKSTACK
RECORD FIELD}
OFFSET
(-4 WORDS)

FIGURE 4z. Reccrd offsets for the Concurrent Pascal virtuzl machine
{left) and the Hicroengine (right). Currently the MEPASCAL compiler
caleculates incorrect displacement values, zs shown here.
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Space must be reserved in the permanent variable space of
monitors for the monitor gate (semaphore) address.

A change must be made to some pass prior to the code generator to
convert variant record tags from bit pumbers to bit wyalues.

The kernel call mechanism must be designed. The mechanism could
be calls to kernel routines which are well-known to the compiler.

The sequential compiler must be changed to pop the parameters
from the stack after a call to the interface routine. The number of
parameters pushed on the stack before calling the interface routine
varies with the process ENTRY routine being invoked, so the RPU
instruction which terminates the interface routine cannot pop the
parameters.

Some optimizations of the final code are possible. First, the
compiler always generates "long"™ jump instructions, regardless of the
size of the distance operand. A smarter compiler would use long Jjumps
only as required, but this would also complicate address calculations
considerably. Second, only LDL (LoaD Local word) and LDO (LoaD glObal
word) are generated to push onto the stack words from the local and
global variable spaces. Shorter, faster instructions exist for pushing
the first sixteen words in each space. Finally, it seems that the
local word reserved for the old global base might be done away with.
The local or global base register is saved as the static link,
depending on the particular instruction used to call a routine.
Perhaps the static link field of the markstack could be used to store
the old global base by judicious use of the various routine-calling
instructions. Before returning to the caller, the global base could be

restored by using the LSL (Load Static Link) instruction.
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Pass seven will have to be written. The pass must do the
following:
-— Generate the header block for the code file;
-- Insert non-code fields (DATASIZE, for example) into the
concurrent segment;
-- Build the constant pool for the concurrent segment;
—- Pack the code into words;
== Calculate jump displacements;
-- Pad to the next block boundary;
-- For each interface, pack the code and pad to a block
boundary.
Since pass seven is, at this time, only a program stub, a message
indicating compilation errors is always generated, even if the source
code is correct.
Finally, the compiler must be tested to ensure that it generates
the intended Microengine code, and that the generated code actually

behaves as expected when run on the hardware.
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INTERMEDIATE CODE MNEMONICS PROGRAMS

MNEM (MNEMonics) is a sequential Pascal32 program, adapted from
Robert Young's PASST, which prints intermediate and final code
mnemonics for MCPASCAL. It was written to help better understand the
architecture of the Concurrent Pascal virtual machine and the
operation of the MCPASCAL compiler by generating reasonably
intelligible operator mnemonics instead of the integer values produced
by the mechanism built into MCPASCAL.

The program 1s invoked by specifying pass numbers as driver
options. For example, entering the command

MCPASCAL SRCPGM,PR:,5,7

will cause mnemonics to be printed for the output of passes five and
seven. After each compiler pass executes, the driver program runs MNEM
if the pass terminated normally and the pass was specified by the user
in the list of driver options. The pass number is sent to MNEM as a
program parameter so that it knows which set of mnemonic literals
should be generated. Currently, MNEM will only work on the output of
passes five, six, and seven, since that of the other passes was not
nearly as useful to the progress of the project. If the user requests
mnemonics for one of the first four passes, the driver does pot call
MNEM, and prints a message to that effect. This allows the compilation
to proceed to its conclusion, even though the request cannot be
fulfilled.

After initializing I/O buffer variables and writing a pass
header, MNEM calls the routine which will actually scan the
appropriate intermediate code file. Each scanning routine (PASSS)
contains a structured constant table which contains the mnemonic

literals to be printed for each operator and the number of operands
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which the operator uses. An operator read from the input file is used
as an index into the table to fetch its mnemoniec character string and
number of arguments, which are then passed to a generalized
instruction output routine. That routine prints the character string,
reads the appropriate number of operands from the input file and
prints them. PASST has a mechanism for printing kind, type, mode, and
context mnemonics instead of the numerical values, but it was not
carried over into MNEM since it did not seem to be worth the extra
effort. No great inconvenience was experienced as a result. The
operator formatting routine implemented that mechanism by using four
parameters (KIND_ ARG, TYPE ARG, MODE_ARG, and CONTEXT_ARG). If, for
example, an operator has three operands, and the second one is the
addressing mode, MODE_ARG would have the value 2, and the other
parameters would have the value 0. Since the mechanism is unused in
MNEM, the four parameters are always 0.

Three instructions are handled by special routines when their
operators are encountered. They are  NEWLINE, CASEJUMP, and
LONGCONSTANT. When NEWLINE is found, the current line of output is
ended and a new one started in order to format the intermediate code
listing in parallel with the source 1listing. The other two
instructions have their own routines since they have a variable number
of operands. Each one prints the operator mnemonic and whatever
operands the instruction always has, determines the number of variable
operands, and prints them.

The output line length used in the program is 70 positions, which
corresponds to no physical device length. If the output is directed to
a disk file and the editor is used to peruse it, a line length of TO

ensures that all of the text for a 1logical line will fit on one
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physical line of the CRT. If a longer line length is used, a long line
of text will spill onto a second CRT line-- something this writer
finds extremely annoying.

MEMNEM (MicroEngine MNEMonics) prints intermediate code mnemonics
for code generated by the MEPASCAL compiler. It is analcgous to MNEM
in the way it is invoked and 1in its general structure. Currently, it
works only on the output of passes five and six. Pass five mnemonics
are generated just as in MNEM, but the output of pass six is handled
quite differently. In overall terms, the program scans the concurrent
segment, scans the interface segment, prints some of the values in the
PASSLINK record, and prints the contents of the heap tables.

The scan of the concurrent segment is straightforward, except
that jumps and new lines are handled a little differently from MNEM,
Microengine jump operators (UJPL and FJPL) have only one operand-- the
displacement to the destination. However, when pass six generates
these instructions the displacement is unknown. The Jump operand
emitted by it 1is the label of the destination. It then puts the
current value of the 1location counter into the code stream for pass
seven's use in calculating the displacement. MEMNEM prints jump
instructions just as any other, but then prints the location value and
flags it as a non-Microengine entity. Pass six also generates NEWLINE
operators which are not part of the Microengine instruction set. It
emits a NEWLINE virtual operator and the equivalent Microengine code
when it finds a NEWLINE input operator. The equivalent code consists
of two instructions-- one to push the line number onto the stack, and
the other to store it into the first word of the local variable space.
The store into local word 1 could be used to trigger output formatting

actions as in MNEM, except that the line number itself would be on the
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wrong output line. Rather than use a lookahead mechanism to check
every "push™ for a following STL(1), the virtual operator mechanism is
used, When NEWLINE is found by MEMNEM nothing is printed, but the
output pointer 1is forced to the next 1line so that the "push"™ and
STL(1) will be printed there. The non-Microengine operators MESSAGE
and EOM are flagged with asterisks.

After scanning the file which contains the concurrent code,
MEMNEM starts taking its dinput from the file of interface segments.
The number of segments in the file is fetched from the PASSLINK record
and then the content of each segment is printed. Printing the
interface segments is straightforwad, although not smooth or elegant,
since they consist of so many kinds of objects besides just straight
code.

Printing some of the PASSLINK fields is another straightforward,
field-by-field operation. Only non-pointer fields are printed.

The heap tables are printed 1last. The routine DUMP_TABLE simply
reads all the entries in a table and prints them. The entries for all
tables except CONSTTABLE are printed as 16-bit integer values.
CONSTTABLE entries are printed as byte values.

The source code for MNEM and MEMNEM follows.
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