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NOMENCLATURE

A Nuclide mass

a. Parameter equal to A/8 Mev

B Binding energy

E Excitation energy of compound nucleus

E Average energy of n gamma ray emitted from compound
Yn

nucleus

E Total efficiency for detection of metastable gamma ray

I Angular momentum of target nucleus

J Angular momentum of compound nucleus

I Orbital angular momentum

m Neutron mass

N, Number of levels in compound nucleus with angular
momentum J

N Number of gamma rays emitted from excited nucleus
Y

P Probability that angular momentum changes from J to J+l
following compound nucleus de-excitation

P^ Photopeak area for metastable state for zero decay time

s Spin angular momentum

R Nuclear radius

t Irradiation time

T Nuclear temperature

t , Decay time of metastable state
wl

t „ Decay time of stable state
w2

Epi-cadmium Neutron energy range available in the rotary specimen
rack (for cadmium covered samples)
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RSR

Thermal

a

A
RIGID

a

o_

P(J)

Neutron energy range available in the rotary specimen
rack (for bare samples)

Neutron energy range in the thermal column

Internal conversion coefficient

Rigid moment of inertia

Cross section for formation of metastable state

Cross section for formation of stable state

Decay constant of metastable state

Decay constant of stable state

Level density factor or spin cut off factor

Standard deviation of Gaussian curve

Level density with momentum J



1.0 INTRODUCTION

Compound nucleus formation may occur when a nucleus is bombarded by a

neutron. The excited states formed can lose their excitation energy by:

1. particle and/or gamma ray emission directly to a stable state

energy level,

or

2. particle and/or gamma ray emission to metastable and stable state

energy levels.

Nuclides which form metastable and stable states are called nuclear

isomers. Besides the difference in energy of the isomeric states, there is

a large difference in their angular momentum which tends to slow down the

transition from metastable to stable state allowing the metastable state to

have a measurable half life. The metastable state is thus characterized by

having a measurable half life, otherwise, it is identical to an excited state.

The isomeric cross section ratio gives the proportion of each isomer

formed due to a nuclear reaction, and will be defined in this work as the

cross section for formation of the metastable state divided by the sum of the

cross sections for metastable and stable state formation.

Various authors have used the statistical model for compound nucleus

formation to calculate isomeric cross section ratios (30). This model is

valid if the nucleus is excited considerably (several Mev) . The distribution

of the many angular momentum levels acquired by the nucleus under such condi-

tions is called the density of levels and is given by (21)

p(J) = p(0)(2J + l)exp(-(J + l/2) 2 /2o 2
)

where

J angular momentum of the level



p(0) = density of the level with an angular momentum equal to zero

o level density parameter

The angular momentum of a metastable state contrary to an excited state,

can be determined (5) due to its measurable half life compared to the very

short time (less than 10
-13 seconds) the excited state takes to decay.

Using angular momenta and the level density equation the isomeric cross

section ratio can be theoretically calculated. Nuclear parameters needed to

calculate the ratio are:

1. spin of original nucleus

2. spin of isomeric states

3. spin of compound state formed

4. method of compound nucleus de-excitation

5. angular momentum change following each step of compound nucleus

de-excitation

6. probability of forming states of a given angular momentum following

each step in the de-excitation process.

The purpose of the present work was to experimentally determine the

isomeric cross section ratios for Re-188,188m, Cs-134,134m, and Sc-46,46m

using (n,y) reactions and to compare them with the ratios calculated

theoretically using the statistical model. This comparison also allows the

level density parameter, o, to be determined for various steps in the de-

excitation process



2.0 THEORETICAL DEVELOPMENT

2.1 Compound Nucleus Formation and De-excitation

In 1936 Bohr proposed his theory of the compound nucleus. The basic

ideas of this theory are (13):

1. The incident particle is absorbed by the initial, or target nucleus

to form a compound nucleus.

2. The compound nucleus disintegrates by ejecting a particle (proton,

neutron, alpha particle, etc.) or a gamma ray, leaving the final, or

product nucleus.

It is assumed that the mode of disintegration of the compound nucleus is

independent of the way in which the latter is formed, and depends only on the

properties of the compound nucleus itself, such as its energy and angular

momentum. The two steps of the compound nucleus formation and de-excitation

can then be considered separate processes:

1. incident particle + initial nucleus + compound nucleus

2. compound nucleus + product nucleus + outgoing particle

The nucleus is generally considered a system of particles held together

by very strong short-range forces. When the incident particle enters the

nucleus, its energy is quickly shared among the nuclear particles before re-

emission can occur, and the state of the compound nucleus is then independent

of the way it was formed. That this conclusion is reasonable can be shown by

the following arguments: On being captured, the incident particle makes

available a certain amount of excitation energy, which is nearly equal to the

kinetic energy of the captured particle plus its binding energy in the com-

pound nucleus. The magnitude of the excitation energy can be calculated from

the masses of the incident particle, target nucleus, and compound nucleus, and



the kinetic energy of the incident particle. Consider, for example, the

capture of a neutron by Sc-45 to form the excited compound nucleus (2jSc )*

21
Sc 45 +

o
n 1 - ( 21

Sc 46 )* (1)

The masses of the interacting neutron and nucleus are 1.00898 and 44.97008

amu, or a total of 45.97906 amu; that of the compound nucleus is 45.96949

amu, (28). The mass excess is 0.00961 amu, corresponding to 8.95 Mev, to

which must be added the kinetic energy of the incident neutron. In the case

of a slow neutron, the kinetic energy may be neglected. If the incident

neutron has a kinetic energy of 1 Mev, the excitation energy is nearly 9.95

Mev and the energy of the compound nucleus is greater than the energy of the

ground state of Sc-46 by this amount. The 8.95 Mev is called the binding

energy B. If E is the energy of the incident particle then the excitation

energy E is
o

E = B + E (2)
o i

Immediately after the formation of the compound nucleus, the excitation energy

may be considered to be concentrated on the captured particle, but after a

very short time interactions among the nuclear particles take place leading

to a rapid distribution of this excitation energy among the other particles.

The distribution presumably takes place in a random way. At a given instant,

the excitation energy may be shared among a group of nucleons; at a later

time it may be shared by other nucleon groups, or it may eventually again be-

come concentrated on one nucleon or combination of nucleons. In the latter

case, if the excitation energy is large enough, one nucleon, or a combination

of nucleons, may escape, and the compound nucleus disintegrates into the pro-

duct nucleus and outgoing particle. The energy that must be concentrated on



a single nuclear particle or group of particles in order to separate it from

the compound nucleus is called the separation or dissociation energy, and for

nuclei with mass number above 25 it is about 8 Mev.

As a result of the random way in which the excitation energy is distrib-

uted in the compound nucleus, the latter has a lifetime which is relatively

long compared with the time that would be required for a particle to travel

across the nucleus. The latter time interval, sometimes called the "natural

nuclear time," is of the order of magnitude of the diameter of the nucleus

divided by the speed of the incident particle. If the incident particle is

9
a 1-Mev neutron, its speed is about 10 cm per sec. Since the diameter of

-12
the nucleus is of the order of 10 cm, the time required for a 1-Mev neutron

-21
to cross the nucleus is of the order of 10 sec. Even a slow neutron with

a velocity of 10 cm per sec would need only about 10 sec to cross the

nucleus. During its relatively long lifetime, the compound nucleus "forgets"

how it was formed, and the disintegration is independent of the mode of forma-

tion. The compound nucleus may be said to exist in a "quasi-stationary"

state, which means that although it exists for a time interval which is very

long compared with the natural nuclear time, it can still disintegrate by

ejecting one or more nucleons. These quasi-stationary states are usually

called virtual states or virtual levels in contrast to bound states or bound

levels, which can decay only be emitting gamma radiation.

There are many ways in which the excitation energy of the compound

nucleus can be divided among the nuclear particles and, since each distribu-

tion is assumed to correspond to a virtual level, there are many possible

virtual levels of the compound nucleus. It is reasonable to assume that if

the energy of the incident particle is such that the total energy of the sys-

tem, incident particle plus target nucleus, is equal to the energy of a level,



the probability that the compound nucleus will be formed is much greater than

if the energy falls in the region between two levels.

Each excited state of the compound nucleus, whether bound or virtual,

has a certain mean lifetime which is the average period of time during which

the nucleus remains in a given excited state before decaying by emission of

either a particle or a gamma ray. The reciprocal of the mean lifetime is the

disintegration constant, which gives the probability per unit time of the

emission of a particle or gamma ray. The mean lifetime is generally very

-13
short, approximately 10 seconds. An exception to this is the metastable

state of an isomer which, in most cases, has a measurable half life.

The mode of de-excitation is dependent, as explained above, upon the

energy of the incident particle. De-excitation of the compound nucleus formed

by slow neutron capture occurs principally by emission of gamma radiation. A

number of gamma rays are emitted until finally de-excitation to the ground

state or the metastable state occurs. On the other hand, when a compound

nucleus is formed by capturing a 14 Mev neutron, the nucleus has sufficient

energy to de-excite by particle emission. For the same available energy of

the emitted particle, neutron emission is much more probable than proton

emission, which in turn is more probable than alpha emission. The reason for

this is the emergent coulomb barrier in the case of charged particle emission.



2.2 Derivation of Equations

The quantum numbers for the individual nucleons in a nucleus arise in

the solution of the Schrodinger wave equation. The orbital quantum number

i is restricted to zero or positive integers. The spin quantum number s has

the value 1/2 for neutrons, protons and electrons, i.e., all elementary

particles. The total angular momentum of a neutron or proton will be equal

to the vector sum of the angular momenta due to the orbital motion and the

spin (i * s) . The nucleus as a whole will possess angular momentum I which

is the vector sum of the orbital and spin angular momenta of all the neutrons

and protons of which it is composed.

When a nucleus with total angular momentum I is bombarded by incident

particles the compound nucleus formed will have total angular momentum J

given by

J - I * (£ * s) (3)

where I and s are the quantum numbers of the incident particle. For thermal

neutrons it is assumed that only s wave neutrons (12), I - 0, are captured,

i.e., no orbital angular momentum is imparted to the target nucleus. The

total angular momentum of the compound nucleus will be

J = I * s (4)

If the nucleus is excited several Mev and therefore the statistical model can

be applied (5) it is possible to determine the level density, i.e., the number

of levels per Mev. Instead of speaking of the angular momentum of each

Individual level, at high excitation energies, one therefore speaks of the

distribution in angular momentum of levels within a small energy interval.

The number of levels in the excited nucleus N with total angular momentum
J

J is



Nj = N(J) - N(J + 1) (5)

where N(J) is the total number of levels with angular momentum less than or

equal to J. Bloch (6) has found that N(J) is given in the first approxima-

tion by a Gaussian law, therefore

N(J) « exp(-J 2 /2o 2
) (6)

where o is a constant called the spin density parameter. Substitution of

expression (6) into (5) gives

N « exp(-J 2 /2o 2
) - exp[-(J + l) 2 /2o 2

] , (7)
J

Factoring exp[-(J 2 + J + l/4)/2o 2
] out of each term in expression (7) gives

the form

Nj <* exp[-(J 2 + J + l/4)/2o 2 ]{exp[(J + l/4)/2o 2
] (8)

- exp[-(J + 3/4)/2o 2
]} .

For small exponents ex = 1 + x hence expression (8) becomes

Nj « exp[-(J + l/2) 2 /2o 2 ][l + (J + l/4)/2a 2 - 1 + (J + 3/4)/2a 2
] (9)

which gives

N = B[(2J + l)/2o 2 ]exp[-(J + l/2) 2 /2o 2
] (10)

J

where B is a proportionality constant. If J = 0, N, is

N = (B/2o 2 )exp[-(l/2) 2 /2o 2
] (11)

o

or

N = (B/2o 2 )(l - l/8o 2
) (12)

o

since l/(8o 2
) << 1

B = 2o 2N (13)

Equation (10) becomes

Nj = NQ (2J + l)exp[-(J + l/2) 2 /2o 2
] (14)



The density of levels with angular momentum J is therefore given by the

level density (6)

p(J) = p(0)(2J + l)exp[-(J + l/2)
2
/2o

2
] (15)

where p(0) is the density of levels with zero total angular momentum.

Huizenga (21) has found, by comparing experimental and theoretical

isomeric cross section ratios, that the spin density parameter o is in the

range o = 3 to o = 5 for various isomers. In this case, it was assumed that

o does not vary during compound nucleus de-excitation. It is possible to

calculate a value for o following each step in the de-excitation process ,i .e.

,

following the emission of each gamma ray, by using the nuclear temperature

and the rigid moment of inertia.

Ericson (12) has shown that

o

2 can be expressed as

o
2

= (2tt)
2

AT/h
2

(16)

where A is the moment of inertia of the nucleus, T is the nuclear temperature

and h is Planck's constant.

The excited nucleus can be thought of as a rotator with moment of inertia

A. At high excitation energies of the nucleus A is believed to be given by

the rigid moment of inertia (12)

A
RIGID

=
( 2 / 5 > mAR2 < 17 >

where m is the nucleon mass, A is the number of nucleons within the nucleus

-13 1/3.
and R is the nuclear radius (1.2 x 10 A ).

The nuclear temperature T is defined by

1 „ d£np(A,E)
T dE C18)

where p(A,E), the level density, is a function of the number of nucleons

within the nucleus and the excitation energy of the nucleus (5) . Weisskopf
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(5) has shown that the level density can be estimated by*

p(A,E) = C exp[2(aE)
1/2

] (19)

where C and a_ are parameters which are adjusted empirically. Substitution of

the level density given in Eq. (19) into the definition of the nuclear tem-

perature, Eq. (18), gives

1 . d£n{c exp[2(aE)
1/2

]} .

T dE

Following differentiation of Eq . (20) the nuclear temperature is

(20)

T = (E/a)
1/2

. (21)

A few values of a_ have been determined experimentally for odd A nuclides (5)

but not for even A nuclides. For high excitation energies where the statis-

tical model is valid Wing (33) has stated that the nuclear temperature can be

expressed as a function of excitation energy as follows

E = aT 2 - T (22)

where a = A/8 . (23)

To determine E used in Eq . (22) it is necessary to calculate the average

energy of the gamma ray emitted. The average energy of a gamma ray emitted

from an excited nucleus is (33)

E . « E - E = 4(E /a - 5/a
2

)

1/2
(24)

yl o 1 o — ~

where E and E are the excitation energies before and after gamma ray
o 1

emission respectively. The average energy of the n gamma ray emitted is

E
yn " En-1 " E„ = *<W* " »'* >

1/2
(25)

* This is the same level density as given in Eq. (15) expressed in terms of

A and E instead of J. Their derivations are completely independent.
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Using Eqs. (16), (17), (22), and (25) it is therefore possible to calculate

o following the emission of each gamma ray.

After an excited nucleus emits a gamma ray there will be a change in

the distribution of the angular momentum within the nucleus. For a rela-

tively large excitation energy (>2 Mev) the nucleus will contain many nuclear

levels each having numerous values of J before and after gamma ray emission.

The de-excitation will be primarily by dipole gamma emission (I = 1) since the

probability of gamma ray emission decreases rapidly as I increases, e.g., the

probability of I - 1 is 10 times greater than for I = 2 for a 1 Mev gamma ray

The level density factor o can be used to calculate the probability of

going from a state of J to a state of J + 1 following gamma emission from the

relationship

P(J + 1)
rJ+J+l p(J) + p(J + 1) + p(J - 1)

*

Likewise the probabilities of going from J to J and from J to J - 1 are

(26)

J+J p(J) + p(J + 1) + p(J - 1)
(27)

P ,

p(J ~ 1) (28)
J+J-l p(J) + p(J + 1) + p(J - 1)

After the emission of a single gamma ray, the total angular momentum will be

redistributed between the three angular momentum states. Gamma rays will be

emitted from an excited nucleus until the excitation energy becomes so low

that it is no longer energetically possible for a gamma ray to be emitted.

The number of gamma rays emitted will be a function of the original excita-

tion energy. To determine the isomeric cross section ratio, probability

values must be calculated following each gamma ray emitted. After the emis-

sion of the last gamma ray there will be two different angular momentum
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states available for population, the metastable and stable states of the

isomers. The distribution of the population will depend on the angular

momenta of the metastable and stable states. The nuclear states following

gamma ray emission will populate the isomeric state having the closest

angular momentum to their own, for example, if the metastable and stable

states have angular momenta of I = 5 and 1=2 respectively and four gamma

rays are emitted in going from the excited to the isomeric states then

following emission of gamma ray number three the states with angular

momenta of 0, 1, 2, 3 will populate the stable state while those with

angular momenta of 4, 5, 6, 7,...., will populate the metastable state.

Defining P as the absolute probability t'lat the nucleus will have an
J
f

angular momentum of J
f
before the emission of the fourth gamma ray then the

cross section ratio is

6 <=°

x i ; = I p
t

(29)
6
1
+ 6

2 J
f
=4

J
f

where 6 and 6 are the cross sections for the formation of the metastable

and stable states respectively. Eq. (29) may be used to calculate the iso-

meric cross section ratios using either constant or calculated values of the

level density parameter o as indicated above.
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3.0 EXPERIMENTAL DEVELOPMENT

3.1 Theory

It is possible to calculate the isomeric cross section ratios by

determining the disintegration rates, A knowledge of the mode of decay, half

life, irradiation time and decay time is necessary.

The rate equation for the formation of the metastable state is that of

an independently decaying isomer, i.e.,

dN /dt = R -AN (30)
1 si 1 1

where

R = N(f)6
i

(31)
si 1

and N is the number of target atoms, <p is the number of neutrons per second

per cm 2
, and 6 is the cross section in cm 2

. Assuming
<J>

to be constant, R,
1 S -L

would be a constant for each sample. Solving Eq. (30) by separation of

variables gives
-x lt

A
1
N
1

=
ll (1 " e } (32)

where AN is the disintegration rate of the product formed and t is the

irradiation time.

In the cases under consideration, the metastable state decays completely

to the ground state, hence a parent-daughter relation exists. The rate

equation for the formation of the ground state is

dN /dt = R - AN + AN (33)
2 s2 2 2 11

The subscript 2 refers to the ground state. From Eqs. (32) and (33)

dN
2
/dt + A

2
N
2

= R
s2

+ h - R^e (34)
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The solution to Eq. (34) is obtained by solving the homogeneous equation

dN
2
/dt + A

2
N
2

= (35)

and adding the particular solution. The solution to the homogeneous equation

is

-At
N
2

= Ce (36)

The particular solution is obtained by using the method of undetermined

coefficients as follows: a solution of the form

-At
N
2

= ae + b (37)

is assumed, where a and b are the coefficients to be determined. If the

derivative of Eq. (37) is taken, then

dN /dt = -aA e . (38)

Substituting Eqs. (37) and (38) into Eq . (34) gives

-A^t -At -A,t
-aA,e + A„ae + A„b = R„ + R, - R,e . (39)

1 2 2 52 si si

Equating coefficients of Eq . (39) gives

-aA + aA = -R (40)
1 2 si

A b = R + R (41)
2 s2 si

thus

and

a = R /(A - A ) (42)
si 1 2

b = (R
sl

t
| 2

)/X
2

. (43)

Equation (37) becomes

N = (R,/(^, " U)e + (R + RJ/A (44)
2 si 1 2 si s2 2
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Therefore from Eqs. (36) and (44) Eq . (34) has a solution of the form

-At -At
N
2 = Ce + (ii/<

X
i

- X
2
))e + ( ll

+
i2

)/A
2

• (45)

Applying the boundary condition that the number of ground state atoms at zero

time is zero to Eq . (45)

= Ce° + (R,/(X " A ))e° + (R + RjM
o (46)

si 1 2 si s2 2

solving for C

C =
"ll

/(A
l

' V " (I
sl

+
s2
)A

2 '
(47)

From Eq. (45)

-A_t -At -A
2
t

A
2
N
2

=
(ll

+
s2

)(1 " e } + (A
2sl

/(A
l " A

2
))(e " e )m (48)

In this work the isomeric cross section ratios were determined by counting

the same sample for both the metastable and stable state isomers. Therefore

R
L

= N<J)6
1

(49)

|2
= N<f.6

2
. (50)

Dividing both sides of Eq . (48) by R, and applying Eqs. (32), (49), and (50)
si

gives

AN,
2 2 -At , -At

JY" d - e
>

= 6~ [(6
1
+ 6

2
)(1 " e }

11 1

A 6 -At -At
(e

X
- e

Z
)] . (51)

A -A
1 2

By rearranging Eq. (51) the ratio of the cross sections is given by

^2 _ 1
(

¥2 n ~\\
6, -A

2
t A

1
N
1

k e ;

(1 - e )

A -At -A
?
t

(e - e )] - 1 . (52)
Ar A

2
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Up to this point, no correction has been made for radioactive decay

following sample irradiation. This correction is made by multiplying (AN)
, , 1 i wl

L wl 2 w2
by e " and (AN.) . by e ' ' where t , and t ,, are the decay times for

2 2 w2 wl wz

the metastable and stable states respectively.

For nuclides with a half life much greater than the counting time, so

that significant decay does not occur during counting, the ratio of cross

sections becomes

(53)

f\ xt \ 2 w2
A

(AN) e
&
2 1

f

2 2
w2 ~h\ A

2 -V "V,,
1

1
(1 - e

2
) (A N ) e

L Wl 1 2

where (AN)
n

and (A N_) ., are the disintegration rates of the sample after
J. i Wl 2 2 wZ

waiting times t ., and t _ respectively out of the reactor.
wl w2 J

The disintegration rates can be expressed as

(\lVwl " V E
T1 w*>

and

(A
2
N
2>w2 " A

2
/E

T2
(55 >

where A
n and A„ are the count rates at time t . and t „ and Emn and Emo are12 wl w2 Tl T2

the total efficiencies for detecting the metastable and stable state gamma

rays.

When the half life of the metastable state is very short, such that there

is appreciable decay during counting, and also the irradiation time, t, is

much greater than the half life, the disintegration rate of the metastable

state can be expressed as

A
L

N
1

=
ll < 56 >

A
1
N
1

= \h < 57 >
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where R, is the saturation activity and N. is the number of radioactive
si ' si

atoms after saturation. Hence,

R. = N<|>6, . (58)
si 1

The number of radioactive atoms present after a decay time of t , seconds is
wl

-At
N _ = N

n
e

W
. (59)

wl si

The number of disintegrations in counting time t seconds is given by

N , » N , - N , (60)
tl wl cl

where N is the number of radioactive atoms present after counting. Eq . (60)

becomes

-At
N n

= N , - N , t (61)
tl wl wl

-At
N , - N . (1 - e

C
) (62)

tl wl

therefore

-At -At
N . = N.e

i Wi
(1 - e

L C
) . (63)

tl si

Multiplying both sides of Eq. (63) by A gives

also

-At -At
A.N . = A.N.e

Wi
(1 - e

C
) (64)

1 tl lsl

-At -At
A,N , - R n e

l Wi
(1 - e

X C
) (65)

1 tl si

hence

AN
R. = —r~ ^-^ —— . (66)
si -A.t .. -A.t

1 wl ,. 1 Cv
e (1 - e )

The rate of formation of the ground state, Eq . (33), becomes

dN./dt = R - A N_ + R (67)
I si I I si
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here R . is not a function of the irradiation time t. The solution to the

homogeneous equation will be the same as that of Eq . (36). The coefficients

In the particular solution are

a = 1/(X
2

- X
x ) (68)

and

b = R
2
+ R

sl
. (69)

Therefore, the particular solution is

N 1 /V
,

J2
+R

sl
.

Adding the homogeneous and particular solution, Eq . (67) has a solution of

the form

-At j -At |2
+R

2 1 2

Applying the boundary condition that the number of stable state atoms at zero

time is zero gives

R +R
C = - 1 - J32__sl

( 71)
A o — Ai A o

Finally,

2" (R.+R) -At -X.t R,+R
1

N _ z^. s2 si I
, 1 i

, s2 si (io\
*- A~ — A-. A~ o

—
i o

and

~ K ryX. An — A,t — A/jt

X
2
N
2

=
(1
s2

+ R
s^

(1 " e } + A~^T (e " e } * (73)

Dividing Eq. (73) by X^ and applying Eqs. (58) and (66) gives
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A N (6_ + 6_)(1 - e
2

)

A
2

X
1
C "V

2 2 2 1 e - e .
, 7/ .

xin ~ -Kt
n

-a r
+

a -a
1

( 5tf:
—

} (74)

1 tl t 1 wl,-, 1 c. 2 1 1 tl
6 e (1 - e )

Rearranging gives the equation for the isomeric cross section ratio

«
x

^N^d - e
2

)e
X Wl

6+6 X -At -A„t -At

2 2 A
2
-A

1

where

also

(75)

N
tl

= A
tl

/E
T1

(76)

At
X
2
N
2

= A
2

e /E
T2

(77)

and A , = number of counts in t seconds for metastable state
tl c

A_ = count rate of stable state after waiting time t _.
2. w L

It is to be noted that in all results recorded in this study the isomeric

cross section ratio is defined as

6,

6+6 6

1 + —
6
1

(78)



20

3.2 Materials Used and Reactions Studied

Isomeric pairs produced by neutron-gamma reactions on Sc-45, Cs-133, and

Re-188 vr/ere studied. The materials irradiated were: Semi-Elements Inc.

powdered scandium oxide 99.99%, Semi-Elements Inc. crystaline cesium oxide

99.95%, and powdered 1 Fairmont Chemical Co. rhenium metal 99.99%. Table I

shows the half lives and gamma rays of the isomeric pairs produced!:: Sc-46,

46m, Cs-134,134m, and 1 Re-188, 188m. The decay schemes of these isomers are

shown in Figures 1 through 3, and their gamma ray spectra are shown in Figures

4 through 9.

Since Sc-45 and Cs-133 are 100% isotopica-My abundant, irradiation of the

scandium oxide and cesium oxide produces Sc-46,46m and' Cs-134 , 134m only.

Rhenium metal contains 37.07% Re-185 and 62.93% Re-187. Nuclides produced by

irradiating natural rhenium metal are Re-186 (90 hr) , Re-188 (17 hr) and Re-

188m (20 min) . It is obvious that a short irradiation time (less than 0.5

min) makes it possible to avoid the undesired excessive Re-186 activity. To

determine the significance of the gamma ray interference of Re-186, samples

of the rhenium metal were irradiated for 0.5 minutes and counted both after

decay of the 20 minute Re-188m and the decay of the 17 hour Re-188. The count

rate left due to the Re-186 was found to be negligible compared to the count

rate of the Re-188 isomers.



Table I. Gamma ray energies and half
lives of nuclides studied.
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Parent Isomer
nuclide produced

Sc-45 Sc-46m

Sc-46

Cs-133 Cs-134m

Cs-134

Gamma rays
(Mev)

Half
life

0.142 1

'

0.885 +
, 1.12 +

0.127 1", 0.138

0.563, 0.569, 0.605 1",

0.796 +
, 1.04, 1.17, 1.37, 1.97

19s

85d

3.2h

2.07y

Re-187 Re-188m

Re-188

0.064 1
, 0.169

0.155 +
, 0.478, 0.633,

0.828, 0.931, 1.13, 1.31,—

18.7m

16. 7h

t Specific gamma rays used in this study
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Figure I Decay Scheme of Sc— 46 ,Sc — 46.
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Figure. 2 Decay Scheme of Cs — 134 , Cs — 134.
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3.3 Sample Irradiation

Cross section ratios were determined for three ranges of neutron ener-

gies; RSR, epi-cadmium and thermal. The RSR and epi-cadmium neutrons were

obtained in the rotary specimen rack of the Kansas State University TRIGA

Mark. II reactor. The average cadmium ratio in the rotary specimen rack,

defined as the ratio of the saturation activity of a bare indium foil to the

saturation activity of the same foil completely covered with 40 mil cadmium,

is approximately 4. At a reactor power level of 100 kilowatts, the total

12 2
flux, as determined by bare gold foils, was approximately 1.57 x 10 " n/cm -

sec, and the average epi-cadmium flux, as determined by gold foils wrapped

11 2
in 40 mil cadmium, was approximately 2.59 x 10 " n/cm -sec. Thermal neutrons

were obtained in the reactor thermal column where the flux was approximately

9 2 +
10 n/cm -sec 1". To avoid shutting the reactor down after each thermal neu-

tron irradiation a Flex-O-Rabbit pneumatic transfer system with nitrogen

supply was used.

One mg of each sample to be irradiated was placed in a small polyethylene

vial inside a standard polystyrene irradiation container, Figure 10. To keep

the geometry constant during counting, each sample, except scandium samples,

was removed from the reactor following irradiation and mounted on scotch tape.

It was then placed in a clean polyethylene vial along with a polyethylene

insert which held the sample in a fixed position. Samples to be irradiated

in the epi-cadmium energy range were placed in 40 mil cadmium cups, irradiated

in standard polystyrene vials, then taken out of the cadmium cups and fixed

for counting as described above. Due to the short half life o.f the Sc-46m

isomer all scandium samples were mounted on scotch tape and inserted in poly-

"'" General Atomic special report number CACP-874.
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ethylene vials prior to irradiation. Blank samples containing scotch tape,

washer, insert and vial were irradiated and counted under the same conditions

as the scandium oxide samples, and the count rate was negligible.

Irradiation and decay times were chosen such that the detector was never

exposed to count rates in excess of 1,000 cps. This precaution was taken in

order to reduce phototube fatigue and hence minimize detector drift. A

scintillation detector containing a 2 x 2 inch Nal(Tl) crystal was always

used to measure the activity of the sample before counting it by the stand-

ardized system to make sure that its count rate was equal to or less than

1,000 cps.
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3.4 Counting

3.4.1 General Considerations

Isomeric cross section ratios can be determined by:

Method 1. Following the buildup in gamma ray activity of the stable

state due to the direct decay of the metastable state into

the stable state.

Method 2. Employing absolute counting and measuring the disintegra-

tion rates of the metastable and stable states separately.

Under one or more of the following conditions it is very difficult to use

Method 1.

(A) A large difference exists between the metastable and stable state

half lives.

(B) Half life of the stable state is very long.

(C) Stable state decays primarily by beta decay.

Each of the isomeric pairs investigated in this work, as indicated

below, satisfies at least one of the above conditions. Absolute counting,

Method 2, had therefore to be used in every case.

Bishop (4) used the first method to measure the cross section ratio of

Cs-134,134m. He stated that his results could be in error since the stable

state a c tivity increased only 5% in eight hours due to the large difference

in the half lives of the metastable and stable states (3.2 hours and 2.07

years)

.

The Sc-46,46m isomeric pair (19 sec, 85 day) is an example of condition

(A) . The buildup in Sc-46 due to the decay of Sc-46m could not easily be

followed. During irradiation of Sc-45 the activity of the 19 second Sc-46m

became very intense compared to the activity of the 85 day Sc-46, which made



35

it difficult to measure the Sc-46 activity in presence of the Sc-46m. To

measure an increase in the activity of the Sc-46 due to direct decay of the

Sc-46m the Sc-46 has to be counted immediately upon removal from the neutron

flux before appreciable decay of the Sc-46m occurs. In actual experimental

trials, a factor of 100 decrease in the activity of the sample in the first

two minutes was observed. This change in sample activity caused the Sc-46

photopeak to drift several channels due to short term drift of the photo-

multiplier tube and hence made it impossible to obtain accurate buildup of

the Sc-46 state. An attempt to remove the Sc-46m gamma ray (0.142 Mev) using

a lead absorber was made but production of lead X-rays was excessive and

caused problems similar to those described above. Assuming the 0.142 Mev

Sc-46m gamma ray and the lead X-ray could be completely eliminated, only a

very small buildup of the Sc-46 could have been measured. Method 2 had there-

fore to be used.

Re-188 decays to the ground state primarily by emitting betas. Only

about 1% of the decay occurs by beta emission followed by gamma ray emission.

The gamma coy buildup in Re-188 activity due to the decay of the Re-188m

state is extremely small. Interference of the Re-188m internal conversion

electron and gamma rays prohibited integral beta counting.
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3.4.2 Absolute Counting

The count rate A of a gamma radioactive sample in the photopeak energy

range is related to the number of its radioactive atoms N, and its decay

constant A by

A = E
T
AN (79)

where ET is the efficiency of counting. For a Nal(Tl) crystal E™ can be

expressed as follows

E=EEEEEEEEE (80)TEPIXGABCR
where

E = Intrinsic efficiency

E = Peak-to-total ratio
P

E = Internal conversion (electron conversion) factor

E = Iodine X-^ay escape peak factor

E = Geometry factor

E = Absorption factor
A

E = Backscatter factor

E = Coincidence summing factor

E
R

= Branching ratio factor

The relative importance of any one of the above factors is dependent, among

other things, upon the particular type of decay scheme, gamma ray energy,

counting system, source location and type of crystal.

Intrinsic Efficiency

A gamma ray entering a crystal may lose its energy in one of three ways,
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photo-electric interaction, Compton scattering, or pair production. The

probability that the interaction in the crystal will produce a photon with

energy large enough to cause an interaction with the photo-cathode and be

detected by the counting system is called the intrinsic efficiency. This

intrinsic efficiency is a function of the incident gamma ray energy, and the

size, type, and shape of the crystal. Extensive work has been done on calcu-

lating the theoretical intrinsic efficiency of right circular cylindrical Nal

crystals using point and disk sources (19). Hence, the theoretical intrinsic

efficiency can be used to determine the disintegration rate of a source from

experimental count rate data.

Peak-To-Total Ratio

The pulse-height distribution obtained by a scintillation detector for

a monoenergetic gamma ray is unique. If all pulses due to radiation scattered

off the radiation shield, beta absorber or other material in the vicinity of

the detector are accounted for and subtracted from the total spectrum, the

area under the resulting pulse-height distribution curve yields the total num-

ber of photons detected by the crystal due to the source in a given time. If

a multi-channel pulse-height analyzer is used, the integration can be accom-

plished by the simple addition of the channel counting rates, since all pulses

are accounted for, in one channel or another.

Since it is normally difficult to obtain measurements under ideal condi-

tions, use is usually made of a very convenient quantity: the photo-efficiency

or peak-to-total ratio. This quantity, E , is the ratio of the number of

counts falling under the photopeak to the total number of counts. The peak

area is normally defined as that of a symmetrical Gaussian shape, fit to the

peak of the experimental photopeak.
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By applying the peak-to-total ratio to the experimentally determined

photopeak area, the total area under the gamma ray spectrum curve can he

obtained.

Internal Conversion

A nucleus in an excited state can pass spontaneously to a state of the

same nucleus, but of lower energy, either by emitting a gamma ray with an

energy hv equal to the difference between the energies of the two nuclear

states, or by giving the energy to an electron in the K, L, ...., shell of

the same atom. When the energy is given to the electron, it is called in-

ternal or electron conversion. The electron is ejected with kinetic energy

hv - E„ , hv - E
T

, ...., where E„, E. , are the binding energies of the

electrons in the K, L, ...., shells, respectively (29).

The internal conversion coefficient, a, is defined as

X N

<"f'T < 81 >

g g

where

N = Number of electrons per disintegration

N = Number of gamma rays per disintegration

X Probability of an electron interaction per unit time

X = Probability of a gamma ray interaction per unit time

The total probability X, is therefore

X = X
e
+ A

g
= A

g
(1 + °° < 82 >

where a is the total internal conversion coefficient defined as

a = a
R
+ a

L
+ (83)



The a , a , refer to the internal conversion coefficients for the K,
K L

L , shells respectively. In the L shell there are levels L , L andY '
I* II

L giving a a , and a .

I II III

The fraction of de-excitations giving a gamma ray is

e
g rrr • <8*)

In addition to the properties of the initial state, the conversion coeffi-

2
cients are strongly dependent on the following parameters: k, where kmc is

the transition energy; Z, the atomic number, L the angular momentum change and

finally, on the change in parity.

If the nuclear angular momenta for initial and final states are J and J
f ,

the field radiated can have any angular momentum L for which

AJ - | J - J
f
|<L< J + J

f
. (85)

The internal conversion coefficient is therefore

a - 5>L aL , 1>L - 1 (86)

L L

where A, represents the relative intensities of the gamma rays, of angular

momentum L, which are in competition with the conversion electrons. To

determine the values of A,, it has been found that for a magnetic or electric

multipole

_t±2 s R << x ( 87 )

where R is the radius of the nucleus and X is the wavelength.

Also, for magnetic, Mi, and electric, En, multipoles, where i and n

correspond to values of L for each multipole,

1 - An 8 Ai s (K/L)a(L;En) - a(K;En) ,

An An a(K;Mi) - (K/L)a(L;Mi) K }
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where K/L is the ratio a(K)/a(L), and a(L;En) is the internal conversion

coefficient for the L shell corresponding to electric poles of order 2 . In

most cases

A
lr » 1.0 • (89)

Internal conversion coefficients have been measured experimentally for

several of the radioactive nuclides, these are tabulated in the Nuclear Data

Sheets (26) . Rose (29) has theoretically calculated internal conversion

coefficients for nuclides with Z numbers from 25 to 95.

Iodine X-Ray Escape Peak

A gamma ray may excite an iodine ion in a Nal(Tl) crystal causing it to

emit a 28.4 Kev gamma ray. When this occurs, a peak is formed with energy 28.4

Kev less than the energy of the photopeak, called the "escape peak." At high

incident gamma ray energies, e.g., the 0.885 Mev of Sc-46, Nal(Tl) scintilla-

tion spectrometer resolution would not separate the escape peak from the

photopeak. However, at energies below 150 Kev, e.g., the 142 Kev of Sc-46m,

the two peaks do appear separately and a correction must therefore be applied

to the photopeak. Since the photopeak has the higher intensity and the higher

energy of the two, it is more convenient to use the photopeak alone for making

intensity measurements.

Axel (1) has calculated the fraction of iodine x-rays escaping as a

function of source geometry and incident gamma ray energy, Figure 11. He used

the following geometry identification:

(A) Very "poor" geometry, which is the case of a source in contact

with the crystal; it corresponds to a cone with a half angle of

90°.
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(U) intermediate geometry is the case ol crysta] subtending with the

source a cone whose half angle is 60°.

(C) Very good geometry is the case of a well colllmated beam Incident

normally, i.e., when the source is at a great distance from the

crystal.

The true photopeak area for gamma rays with energy less than 150 Kev

can therefore be determined by applying the iodine x-ray escape peak correc-

tion factor to the experimentally measured photopeak area.

Geomet ry

The geometry factor E is the fraction of the total source radiation

which is emitted in a direction such that it will strike the sensitive volume

of the detector. In most cases, isotropic sources are used, hence, initially

all directions are equally probable. The configuration of the source and

detector determines the fraction of the source radiation reaching the detector

Kohl (24) gives methods for calculating EG for different source and de-

tector arrangements. Methods of calculating geometry factors are also given

in Price (27) and Crouthamel (10).

It is evident that in actual experimental work, the geometry factor must

be calculated for the particular source and detector configuration used.

Absorption

Gamma ray absorption may occur in the air, sample backing, and/or con

tainer, crystal shield, and external absorber. The number ot gamma rays

entering a crystal is given by

-u.
f
(E )x

T
N N

Q
e (90)

where N o is the number of gamma rays emitted by the sample, U„,(K ) i * . i hi
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total absorption coefficient for a gamma ray of energy E (16) , and x„ is

the total thickness of absorber. For multiple absorbers

MT
(E )x

T
= UA

(EQ )xA
+ u

fi
(E )x

B
(91)

where subscripts A and B refer to materials A and B.

Applying the absorption factor to the experimentally measured number of

gamma rays incident upon the crystal corrects for the number of source gamma

rays absorbed before reaching the crystal.

Backscatter

One of the most important considerations in obtaining good data in

scintillation spectrometry is the design of the radiation shield. For con-

venience it is desirable to reduce the background radiation level to a point

where corrections to the data will be small for the moderate strength sources

usually prepared in the laboratory.

In any type of analysis of data obtained on the scintillation spectrometer

a differentiation must be made between the response of the detector to direct

radiation from the source and spurious scattered radiation arising from inter-

action with the surrounding material; i.e., source holder, beta absorber and

radiation shield.

This scattered radiation results from two types of interaction, the

photoelectric process and Compton scattering.

The photoeffect is of particular importance in shield design since the

cross section for this process is high for low energy photons, particularly

in materials such as Pb . This process results in the production of x-rays

characteristic of the absorbing material.

The major source of spurious radiation from the shield is due to Compton

scattering. The energy distribution observed by a detector from Compton
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scattering off the walls of the radiation shield depends upon the particular

geometrical arrangement of source, shield and detector.

In actual experimental work the backscatter effect can be made negligible

by using a large graded shield, see Section 3.4.4.

Coincidence Summing

If two gamma rays are in cascade a third peak of area N, appears in the

spectrum (coincident sum peak) when both gammas are completely absorbed in

the crystal. There is also a statistical probability that two independent

gamma ray transitions, taking place within the resolving time of the linear

amplifier, be completely absorbed in the crystal. If additional area in the

sum peak due to these accidental sum events is N . , the total sum peak will be

N = N + N . (92")1N

T b ab K
'

This area can be measured experimentally and added to the photopeak area N,

to correct for summing. The sum correction factor is

S = (N
x

4- N
T
)/N

1
(93)

Branching Ratio

In a complex de-excitation process the number of gamma rays per disinte-

gration may be equal to or less than unity (22) . The branching ratio is

defined as the number of gamma rays per disintegration. In absolute counting

it is essential to include this ratio. Such ratios can be obtained from

references (10 and 26)

.

Other Factors

Temperature variations and instability of the counting system will also

affect the obtainment of accurate data. Ball (2) has determined the tempera-

ture coefficient for Nal(Tl) to be -0.1% per degree C. The phototube dynodes
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are a] so temperature sensitive, having a temperature coefficient of approxi-

mately -0.2% per degree F (23). Phototube fatigue can cause errors due to

spectrum shift (7, 9). High voitage stability also is important because a

1% change in high voltage on a ten stage phototube will result in a 7% change

in output signal.

It is therefore necessary to maintain the Nai(Tl) scintillation detector

at a fairly constant temperature. The choice of photomultiplier tubes is

important, tubes with CuBe dynodes have more stability than CsSb dynodes with

respect to spectrum shift.
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3. A. 3 Modified Absolute Counting Equations

For an isomeric pair the ratio of the disintegration rates at the end

of the irradiation period is given by

X„N ET1 A°

m7
= €^ (94)

11 T2 1

where subscript 1 refers to the metastable state, subscript 2 to the ground

state and superscript to the activity at the end of irradiation.

Each of the efficiency terms E and E . is composed of the nine factors

indicated in Section 3. A. 2. These terms have, however, been simplified as

follows:

a) The peak to total ratio and intrinsic efficiency were combined to

form a peak intrinsic efficiency term E .

rfci

b) All samples were counted in the same position, the geometry factor

was therefore canceled in the ratio.

c) The radiation shield surrounding the counting system was designed

to minimize backscattering . Actual data showed that backscattering

was negligible.

d) Spectra obtained showed extremely small areas under the summation

peaks, the coincidence summing factor was therefore dropped.

As extra precautions, the temperature of the counting system was kept constant

within * 2°F and a very stable high voltage supply was used.

Under the conditions indicated above Eq . (9A) takes the form

A
2
N
2

E
1
P
2

AN E PO
11 2 1

where

P = photopeak area
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E = E„E
T E E E . (96)

PE I X A R
v '

The intrinsic peak efficiency of a 3 x 3 inch crystal with a 1/2 x 1-1/2

inch well was determined by Ross (30) for gamma ray energies between 0.32 and

1.2 Mev. By comparing the intrinsic peak efficiency for a 3 x 3 inch solid

crystal to the 3x3 inch well crystal and using the accurately known intrinsic

peak efficiency for solid 3x3 inch crystals in the energy range 0.01 to 0.32

Mev the intrinsic peak efficiency for the 3x3 inch well crystal was determined

for gamma ray energies of 0.01 to 1.2 Mev, see Figure 12.

Internal conversion coefficients have been determined experimentally for

most materials (26). Where possible these experimental values were used; if

different values were determined by different authors the values were averaged

as shown in Table II. For scandium, theoretical values were taken from Rose

(29) and averaged with an approximate value determined experimentally (26)

.

In this work, Axel's (1) (very poor geometry) values were used for the

iodine escape peak correction factor since the source was inside the 3x3

inch well crystal.

Table III gives the numerical values for the efficiency factors used,

indicating references from which the values were obtained, and energies of

the gamma rays investigated.



Table II. Internal conversion coefficients

4M

Energy
Isomer Reference (Mev) K/L

Cs-134m

Cs-134

Sc-46m

(26) 0.127 2.2

2.6

2.8
2.6
Avg.

2.55

2.55

(26) 0.605 6.4

7.0
6.3
7.7

7.2

Avg.

6.9

0.0047
0.0057
0.0058
Avg.

0.0054

0.00078 0.00618

(26) 0.796 7.3
8.0
7.0

7.3
Avg.
7.4

0.00251
0.00261
Avg.

0.00254

0.000344 0.00288

(26) 0.142 10 1

(29) 0.142 10.9 2.73

0.125

0.994

0.997

0.349

Sc-46

Re-188m

Re-188

(26) 0.885

(26) 0.0635

(26) 0.155 0.70 0.40
0.79 0.29
Avg. 0.37
0.75 0.353

0.474

0.0008 0.999

2 0.333

0.828 0.54 7
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Table III. Efficiency values for scandium
cesium and rhenium

Isomer Energy
(Mev)

E
PE

E
I

E
X

E
A

E
R

E

a b c d e

Cs-134m 0.127 1.00 0.125 0.942 0.964 1.00 0.114

Cs-134 0.605 0.352 0.994 1.000 0.981 0.981 0.343

Cs-134 0.796 0.283 0.9972 1.000 0.993 0.725 0.199

Re-188m 0.0635 1.000 0.333 0.826 0.944 1.000 0.269

Re-188 0.155 0.980 0.547 0.959 0.969 1.000 0.508

Sc-46m 0.142 1.000 0.349 0.952 0.966 1.000 0.321

Sc-46 0.885 0.250 0.999 1.000 0.984 1.000 0.249

Sc-46 1.112 0.205 0.999 1.000 0.985 1.000 0.204

Reference number

a 30

b see Table 2

c 1

d 16

e 10, 26
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3.4.4 Counting Equipment

A block diagram of the counting equipment used is shown in Figure 13.

It consisted of a Technical Measurements Corporation 256 channel pulse height

analyzer, a Hewlett Packard Model J44-561-B digital recorder, a Harshaw inte-

gral line gamma ray scintillation detector with a Dumont 6363 photo-multiplier

tube, a Technical Measurements Corporation Model DS-13 transistorized pre-

amplifier, a John Fluke Model 400-BDA power supply, a Reactor Experiments

Incorporated pneumatic transfer system with a nitrogen gas supply, and an

external timer.

The scintillation detector was composed of a hermetically sealed 3x3

inch Nal(Tl) crystal with a 0.015 inch aluminum entrance window attached to

a photo-multiplier tube through an optical coupling medium.

A large graded radiation shield (26 x 26 x 24 inches outside dimensions)

,

Figure 14, was designed to reduce the background radiation level to a negli-

gible value compared to that of the sample activity. It had 2 inch thick

lead sides constructed from lead bricks; the bricks were supported by 1/4 inch

plywood sides and a 3/4 inch plywood top and bottom. The inside of the shield

was lined with 20 mil cadmium and 20 mil copper in that order.

The photoelectric process is very high for high Z materials, therefore

low energy (0.072 Mev) characteristic x-rays are produced from the lead. The

cadmium lining reduces the effect of these lead x-rays and the copper decreases

remaining lead x-rays and any cadmium x-rays produced.

Compton scattering is caused by radiation being scattered from the walls

of the shield, this radiation would enter the detector with reduced energy.

The large dimensions of the shield reduced the probability of Compton scatter-

ing. The scintillation detector was located inside the shield so that the
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Nal(Tl) crystal was centered, i.e., the crystal was positioned at a maximum

distance from any scattering surface. Figure 15 shows to what extent the

shield reduces the background radiation and also shows the effect the small

ungraded shield (4-1/2 x 8 x 8 inches) has compared to the large graded

shield on the lead x-rays and Compton scattered radiation.
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3.5 Experimental Procedure

To experimentally determine the isomeric cross section ratios each

sample was subjected to the following steps in sequence:

1.) Irradiated in RSR, epi-cadmium and thermal energy neutron fluxes

as explained in Section 3.3. Table IV contains the irradiation

times and neutron flux values used.

2.) Counted using the counting system described in Section 3.4.4.

Table IV shows the decay, irradiation and live-counting times

and the number of sets of data taken per isomer, N.

3.) Experimental data were analyzed using the IBM computers as follows:

The area under the photopeak was determined by feeding the experi-

mental photopeak data points, corrected for background, into the

IBM 1410 computer which fit them to a Gaussian curve (photopeaks

are theoretically Gaussian shaped) by the method of least squares

combined with Taylor's expansion (see Appendix B) . The area under

the Gaussian curve which "best fit" the experimental data was then

computed. This program is called TOTAL PEAK AREA. This Gaussian

area was fed into another computer program, called CROSS SECTION,

which corrected it for the Compton distribution and calculated the

isomeric cross section ratios (see Appendices C and D)

.

The goodness of fit of the photopeak to the Gaussian curve was checked by

comparing several hand calculated total-peak areas to computer calculated

Gaussian areas. The difference' did not exceed 0.76%. To check for skewness,

the experimental photopeak and Gaussian plots were compared and found to

match very closely.

Table V contains the output of the TOTAL PEAK AREA program for a Cs-134
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sample. The symbols IMIN and IMAX are the minimum and maximum channel numbers

used for the Gaussian fit, X ZERO is the channel number corresponding to the

maximum peak count rate SMAX, LAMBDA is the reciprocal of the standard devia-

tion SIGMA, N is the number of iterations and AREA is the total peak area

computed.

The output of the CROSS SECTION program for several Cs-134,134m experi-

mental runs is listed in Table VI. The sample number, run number and neutron

energy used are listed for each sample where BARE, CD, and TN correspond to

RSR, epi-cadmium and thermal neutron energies respectively. The L and H

designate the energy of the stable state gamma rays used, for Cs-134 L repre-

sents the 0.605 Mev gamma ray and H represents the 0.796 Mev gamma ray.
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Table IV. Experimental neutron irradiation and counting data

I c:ninpT* Neutron
Energy

Approximate
Flux

Time

Analyzed N Irradiation Decay Counting
(n/cm --sec) (Min) (Min) (Min)

Sc-46m 9 RSR 1.57 X 10 12 5.0 3.0 0.1

9 Epi-cadmium 2.59 X 10 11 30.0 3.0 0.1

9 Thermal 1.00 x 10 10 15.0 3.0 0.1

Sc-46 18 RSR 1.57 X 10 12 5.0 990.0 2.0

18 Epi-cadmium 2.59 X 10 11 30.0 930.0 10.0

18 Thermal 1.00 X 10 10 15.0 75.0 10.0

Cs-134m 9 RSR 1.57 X 10 12 10.0 30.0 0.5

9 Epi-cadmium 2.59 X 10 11 21.0 30.0 0.5

9 Thermal 1.00 X 10 10 126.0 30.0 0.5

Cs-134 18 RSR 1.57 X 10 12 10.0 1570.0 2.5

18 Epi-cadmium 2.59 X 10 11 21.0 1480.0 5.0

18 Thermal 1.00 X 10 10 126.0 1000.0 20.0

Re-188m 9 RSR 1.57 X 10 12 0.50 2.0 0.65
9 Epi-cadmium 2.49 X 10 11 0.50 2.0 0.50
9 Thermal 1.00 X 10 10 0.75 4.0 0.75

Re-188 9 RSR 1.57 X 10 12 0.50 600.0 3.0
9 Epi-cadmium 2.59 X 10 11 0.50 580.0 3.0

9 Thermal 1.00 X 10 10 0.75 565.0 3.0



Table V. Total peak area output for Cs-134

59

KANSAS STATE UNIVERSITY IBM 1410 COMPUTING CENTER

CESIUM SAMPLE NUMBER 5 RUN 3 HIGH ENERGY GAMMA

IMIN = 114 IMAX = 135

X ZERO LAMBDA SMAX

12100000E 03

12119428E 03

12126837E 03

12128569E 03

12128188E 03

12127456E 03

.12126954E 03

.12126702E 03

.12126595E 03

.12126554E 03

12126539E 03

.12126535E 03

.12126534E 03

.12126534E 03

.12126534E 03

.12126534E 03

.12126534E 03

X ZERO

.12126534E 03

.11893620E-00 .84000000E 04 1

.13007930E-00 .84026821E 04 2

.13976240E-00 .84059102E 04 3

.14736640E-00 .84074474E 04 4

.15264860E-00 .84077792E 04 5

.15584030E-00 .84076918E 04 6

.15752880E-00 .84075751E 04 7

.15833760E-00 .84075104E 04 8

.15870370E-00 .84074852E 04 9

.15886560E-00 .84074768E 04 10

.15893680E-00 .84074751E 04 11

.15896840E-00 .84074760E 04 12

.15898250E-00 .84074768E 04 13

.15898900E-00 .84074776E 04 14

.15899200E-00 .84074776E 04 15

.15899330E-00 .84074776E 04 16

•15899400E-00 .84074776E 04 17

SIGMA SMAX AREA

.62895257E 01 .84074776E 04 .13254809E 06
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Table VI. Experimental cross section ratios for Cs-134,134m.

CESIUM-134.134M ISOMERIC CROSS SECTION RATIOS USING RSR ENERGY NEUTRONS

CESIUM 1A RUN 4 L

CROSS SECTION RATIO
.78790230E-01

DEVIATION
0.34341498E-03

CESIUM 1 RUN 5 BARE L
CROSS SECTION RATIO

.81422338E-01
DEVIATION

0.85228344E-03

CESIUM 1 RUN 6 BARE L

CROSS SECTION RATIO
.82004229E-01

DEVIATION
0.85908803E-03

CESIUM 3 RUN 1 BARE L

CROSS SECTION RATIO
.10977229

DEVIATION
0.11188897E-02

CESIUM 5 RUN 1 BARE L

CROSS SECTION RATIO
.95990109E-01

DEVIATION
0.79232687E-03

CESIUM 5 RUN 2 BARE L

CROSS SECTION RATIO
.11290119

DEVIATION
0.89429421E-03

CESIUM 5 RUN 3 BARE L
CROSS SECTION RATIO

.11261656
DEVIATION

0.90195594E-03

CESIUM 1 RUN 4 BARE H
CROSS SECTION RATIO

.77190453E-01
DEVIATION

0.84137300E-03

CESIUM 3 RUN 1 BARE H
CROSS SECTION RATIO

.10251345
DEVIATION

0.10289201E-02

CESIUM 3 RUN 2 BARE H
CROSS SECTION RATIO

.10631084
DEVIATION

0.10582762E-02

CESIUM 3 RUN 3 BARE H
CROSS SECTION RATIO

.10642979
DEVIATION

0.10634656E-02

CESIUM 5 RUN 1 BARE H
CROSS SECTION RATIO

.84005292E-01
DEVIATION

0.84554964E-03
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Table VI (continued)

CESIUM-134.134M ISOMERIC CROSS SECTION RATIOS USING RSR ENERGY NEUTRONS

CESIUM 5 RUN 2 BARE H

CROSS SECTION RATIO
.98994307E-01

DEVIATION
0.96357354E-03

CESIUM 5 RUN 3 BARE H

CROSS SECTION RATIO
.98740876E-01

DEVIATION
0.96980123E-03

CESIUM-134,134M ISOMERIC CROSS SECTION RATIOS USING EPI-CADMIUM ENERGY NEUTRONS

CESIUM 1 RUN 1 CD L

CROSS SECTION RATIO
.11481271

DEVIATION
0.94057398E-03

CESIUM 1 RUN 2 CD L

CROSS SECTION RATIO
.11101626

DEVIATION
0.88398753E-03

CESIUM 1 RUN 3 CD L

CROSS SECTION RATIO
.10704106

DEVIATION
0.88967377E-03

CESIUM 2 RUN 1 CD L

CROSS SECTION RATIO
.10002317

DEVIATION
0.87615392E-03

CESIUM 2 RUN 3 CD L

CROSS SECTION RATIO
.10113262

DEVIATION
0.87946661E-03

CESIUM 3 RUN 1 CD L

CROSS SECTION RATIO
.98242106E-01

DEVIATION
0.96321761E-03

CESIUM 3 RUN 2 CD L

CROSS SECTION RATIO
.97946310E-01

DEVIATION
0.95993211E-03

CESIUM 3 RUN 3 CD L

CROSS SECTION RATIO
.98721384E-01

DEVIATION
0.96963127E-03

CESIUM 1 RUN 1 CD H

CROSS SECTION RATIO
.98312148E-01

DEVIATION
0.96478090E-03
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Table VI (continued)

CESIUM-134.134M ISOMERIC CROSS SECTION RATIOS USING EPI-CADMIUM ENERGY NEUTRONS

CESIUM 1 RUN 2 CD H
CROSS SECTION RATIO

.93223213E-01
DEVIATION
.87398482E-03

CESIUM 1 RUN 3 CD H
CROSS SECTION RATIO

.89528577E-01
DEVIATION
87008814E-03

CESIUM 2 RUN 1 CD H

CROSS SECTION RATIO
.96473118E-01

DEVIATION
.89932143E-03

CESIUM 2 RUN 2 CD H
CROSS SECTION RATIO

.95367250E-01
DEVIATION
.89689066E-03

CESIUM 3 RUN 1 CD H

CROSS SECTION RATIO
.93169962E-01

DEVIATION
98790682E-03

CESIUM 3 RUN 2 CD H
CROSS SECTION RATIO

.83295691E-01
DEVIATION
.87304863E-03

CESIUM 3 RUN 3 CD H
CROSS SECTION RATIO

•89631971E-01
DEVIATION
.94632178E-03

CESIUM-134,134M ISOMERIC CROSS SECTION RATIOS USING THERMAL ENERGY NEUTRONS

CESIUM 1A RUN 3 H TN
CROSS SECTION RATIO

.12244014
DEVIATION

0.70298035E-03

CESIUM 1A RUN 4 H TN
CROSS SECTION RATIO

.11981199
DEVIATION

0.69657445E-03

CESIUM 2A RUN 1 H TN
CROSS SECTION RATIO

.14511012
DEVIATION

0.97218021E-03

CESIUM 2A RUN 2 TN H
CROSS SECTION RATIO

.14625925
DEVIATION

0.97715834E-03
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Tabic VI (continued)

CESIUM-13A ,13AM ISOMERIC CROSS SECTION RATIOS USING THERMAL ENERGY NEUTRONS

CESIUM 2A RUN 3 TN H

CROSS SECTION RATIO
.14810361

DEVIATION
0.98280353E-03

CESIUM 2A RUN A TN H

CROSS SECTION RATIO
.14716425

DEVIATION
0.98017585E-03

CESIUM 3A RUN 1 TN H

CROSS SECTION RATIO
.14710435

DEVIATION
0.10451636E-02

CESIUM 3A RUN 2 TN H

CROSS SECTION RATIO
.14577727

DEVIATION
0.10402470E-02

CESIUM 3A RUN 3 TN H

CROSS SECTION RATIO
.11850617

DEVIATION
0.97688604E-03

CESIUM 3A RUN 3 TN L

CROSS SECTION RATIO

.14535749

DEVIATION
0.10602766E-02

CESIUM 3A RUN 4 TN L

CROSS SECTION RATIO
.14991611

DEVIATION
0.81956269E-03

CESIUM 3A RUN A TN H

CROSS SECTION RATIO
.14636307

DEVIATION
0.10436764E-02

CESIUM 4A RUN 1 TN H

CROSS SECTION RATIO
.14410237

DEVIATION
0.96286845E-03

CESIUM 4A RUN 2 TN H

CROSS SECTION RATIO
.14475282

DEVIATION
0.96580575E-03

CESIUM 4A RUN 6 TN H

CROSS SECTION RATIO
.14458023

DEVIATION
0.96745119E-03

CESIUM 4A RUN 4 TN H

CROSS SECTION RATIO
.14528558

DEVIATION
0.97019256E-03
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Table VI (continued)

CKSlUM-nA , T34M ISOMERIC CROSS SECTION RATIOS USING THERMAL ENERGY NEUTRONS

CESIUM 1A RUN 1 L TN
CROSS SECTION RATIO DEVIATION

.11599509 0.49854665E-03
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4.0 RESULTS AND DISCUSSION

4.1 Theoretical Sample Calculation

From Eq. (29), Section 2.2, it is obvious that the isomeric cross section

ratio is a function of the probability P
T

. Also Eqs . (26), (27), and (28)
J
f

show that P
T

is a function of the level density p(J) which in turn is a func-
J
f

tion of the level density factor o. Therefore, values of a are needed to

calculate isomeric cross section ratios. As indicated in the same section, a

may have a definite value, e.g., 3, 4, ...., or it may be calculated following

the emission of each gamma ray. The following is a sample isomeric cross

section ratio calculation for the Cs-134,134m isomer using a calculated o.

To determine the first calculated o for Cs-134,134m, the excitation

energy following thermal neutron bombardment of Cs-133 is calculated from Eq.

(2) in Section 2.1:

E
q

= [(132.9472 + 1.008986) - 133.94896]931

= 6.731 Mev

also

a = A/8 = 134/8 = 16.75 Mev"
1

. (23)

The Cs-134 nuclear radius is given by

R = 1.2 x 10~ 13 A1/3 cm (97)

-13 1/3 -13
- 1.2 x 10 (134) = 6.138 x 10 cm .

The rigid moment of inertia is

ARIGID
=

< 2 / 5 ) mAR (17)

= 0.4(1.675 x 10" 2Agm) (134) (3.77 x 10
_25

cm
2

)

= 3.39 x 10"47 gm-cm2 .
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The energy of the first gainma ray, emitted from the excited nucleus is

E , = E
rt

- B, = 4
Yl 1

_2. _ 5_

± a
2

(24)

therefore

1
f
16.

6.731 _ 5 =2.48 Mev
Yl '.75 280.56

and the energy of the excited state following the emission of the first gamma

ray is

E = E - E
1 Yl

= 6.73 - 2.48 - 4.25 Mev .

Eq. (22) allows the determination of the nuclear temperature since

E
±

= aT - T

(98)

(22)

hence

Now from Eq . (16)

T -a T - a~ E =

T - 0.0597 T - 0.2538 =

T - 0.535 Mev .

2 B y-2
= A

RIGID T * (16)

a
2 m (3.39 x 10

47 gm-cm2
) (0.535 Mev) (1.606 x 10

6
erg/Mev)

-54 2 2
1.112 x 10 erg sec

o = 5.11

therefore a 5.11 following the emission of the first gamma ray. A new o

must be calculated following the emission of each additional gamma ray. This

process is repeated until E , Eq . (24), becomes imaginary, hence there is not

enough excitation energy for an additional gamma ray to be emitted. Following

the steps outlined above, o was 4.43, 3.6, and 2.57 after the emission of the
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second, third and fourth gamma rays respectively. After obtaining the four

values of o, the isomeric cross section ratio was calculated for each o using

angular momenta J = I + 1/2 and J = I - 1/2. The following is a sample iso-

meric cross section ratio calculation, using a a of 5.11 as determined above,

for Cs-134,134m, when J = I - 1/2 = 3.

The level density is

p(J)-p(0)(2J + l)e-<
J+1/2)2/2<l2

(15)

therefore

P<2) =P(0) [ (2)(2) + l 1 e-
(2+1/2)2/2(5 - U)2

= p(0) 4.436

p(3)=p(0) [ (3)(2) + l]e-
(3+1/2)2/2(5 - 11)2

= p(0) 5.536

p(4)=P(0) l (2)W + lle-^
+ 1/2)2/2<5 - 11 >

2

= p(0) 6.107 .

The probabilities of going from J to J - 1, J, and J + 1 are

P = P = P = £l£i (26)
2 J+J-l 3+2 P (2) + p(3) + p(4)

V

= 4.436 p(0)
(4.44 + 5.54 + 6.11)p(0)

= 0.276

where the subscript 2 corresponds to the angular momentum state of 2 and the

superscript 1 corresponds to the probability distribution after the emission

of the first gamma ray. Also111 , Q X

P o
= P t_t

= p ,_,
= ^ (27)

3 J+J 3+3 p( 2 ) + p( 3 ) + p (4)
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= 0.344

and

\ lp

j.j+ i
= lp

3.4
= °- 380 - (28)

For Cs-134,134m the competing angular momenta levels for the metastable

and intermediate level are 8 and 5. Therefore, if one considers the case in

which 2 gamma rays are emitted in going to the metastable or stable state of

Cs-134, it is assumed that states which, after the first gamma ray de-

excitation, have angular momenta 0, 1, 2, 3, 4, 5 or 6 will populate the

intermediate level and decay directly to the stable state. On the other hand,

states with angular momenta of 7 or above will populate the metastable state.

Hence, for the above example the isomeric cross section ratio following

the emission of the second gamma ray will be zero because, as shown above, the

maximum angular momentum a state could have is less than 7.

After the emission of the second gamma ray a acquires a value of 4.43 as

indicated above. This a value was used to calculate the following probabili-

ties

2 2 2
P P P
2+1 2+2 2+3

2 2 2
P P P
3+2 3+3 3+4

2 2 2
P P Pr
4+3 4+4 4+5

from *P
2

from P„

P, from
1
P.

.

4

Hence the respective probabilities of having states with angular momenta of

J = 1, 2, 3, 4 and 5 are

2 12
P = P P
1 2 2+1

2 12 12
P = P P + P P
2 2 2+2 3 3+2

2 12 12 12
P = P P + P P + P P
3 2 2+3 3 3+3 4 4+3
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2 12 12
4 3 3+4 A 4^-4

2 12
and *P_ = V V _.

5 4 4*5

The above procedure must be repeated for the rest of the gamma rays emitted.

See Section 4.3, Table IX for a complete tabulation of o's and isomeric cross

section ratios.

Table VII contains sample IBM 1620 computer output for Cs-134,134m

theoretical calculations. Included in it is the output for J = I + 1/2 and

J = I - 1/2, for calculated o's and constant o's from 3 to 5. Column one gives

the angular momentum before gamma emission, JI, column two, JFI, gives the

probability of an excited state having the angular momentum in column one,

column three gives the angular momentum following gamma ray emission, JF,

column four, FJF, gives the probability that an excited state will have angular

momentum given in column three, and column five, SUM FJF, is the summation of

probabilities given in column four.

It is of interest to note that for o's of 3, 4, and 5 Table VII is also

valid for Sc-46,46m since I = 7/2 for Sc-45 and Cs-133. Similar theoretical

calculations were performed for Re-188,188m, Tables VIII, IX, and X contain

tabulated results for the above three isomeric pairs.
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TABLE VII. THEORETICAL ISOMERIC CROSS
SECTION RATIOS FOR CS-134.134M

CS-133+N=CS-1 34+GAMMA CALC SIGMA J = I -*- 1 / 2

N~R. SPIN DI C^T. AFTER EMISSION OF GAMMA RAY NO 1

SPIN CUT OFF FACTCR= 5.103
MULTIPOLARI TY OF GAMMA-RAY EMISSION
JF (MAX)=JI (MAX)+L= 5.00

JI JFI JF FJF SUM FJF
.0 0.00000000 0.0 0.00000000 0.00000000

1.0 0.00000000 1.0 0.00000000 0.00000000
2.0 o.oooooooo 2.0 0.00000000 0.00000000
3.0 0.00000000 3.0 0.31105010 0.31105010
4.0 0.10000000E+01 4.0 0.34298049 0.65403059

5.0 0.34596945 . 1 OOOOOOOE + 1

NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 2

SPIN CUT OFF FACTOR= 4.426
MULTIPOLARI TY OF GAMMA-RAY EMISSION
JF (MAX)=JI (MAX)+L= 6.00

JI JFI JF FJF SUM FJF
.0 0.00000000 0.0 0.00000000 0.00000000

l.o 0.00000000 1 .0 0.00000000 0.00000000
2.0 0.00000000 2.0 0.898P5724E -01 0.89885724E-01
3.0 0.31 105010 3.0 0.22076145 0.3106471

7

4.0 0,34298049 4.0 0.3562831

3

0.66693030
5.0 0. 34596945 5.0 0.23019569 0.89712599

6.0 0.10287401 0. 10000000E + 01
R. SPIN DIST. AFTER EMISSI ON OF GAMMA RAY NO 3

SPIN CUT OFF FACTOR= 3.601
MULTIPOLARI TY OF GAMMA-RAY EMISSION 1

JF (MAX)= JI (MAX)+L= 7.00

JI JFI JF FJF SUM FJF
.0 0.00000000 0.0 0.0 0000 000 0.00000000

1 .0 0.000000 00 1 .0 0.22'484959E--01 0.22384959E-01
2.0 C.89885724E-01 2.0 0.10183412 0. 12421907
3.0 0.22076145 3.0 0.24365124 0.36787031
4.0 0.35628313 4.0 0.290^4S46 0.65841577
5.0 0.23019569 5.0 0.22641772 0.88483349
6.0 0.10287401 6.0 .9222 74 1 3E-0 1 0.97706090

7.0 0.22939070E-01 0.99999997



71

TABLE VI I (CONTINUED)

NCR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 4

SPIN CUT OFF FACTOR= 2.507
MULTIPOLARITY OF GAMMA-RAY EMISSION
JF(MAX)=JI (MAX)+L= 8.00

JI JFI JF FJF SUM FJF
.0 0.00000000 0.0 0.33609777E-02 0. 33609777E-02

1.0 0.22384959E-01 1.0 0. 39787994E-01 0. 43 14897 1 E-01
2.0 0.10183412 2.0 0.14731053 0.19045950
3.0 0.24365124 3.0 0.26024232 0.45070182
4.0 0.29054546 4.0 0.28031407 0.73101589
5.0 0.22641772 5.0 0.17899504 0.91001093
6.0 0.92227413E-01 6.0 0.72592408E-01 0.98260333
7.0 0.2293907CE-01 7.0 0. 1 55 581 1 1E-01 0.99816144

8.0 0.18385390E-02 0.99999997

INPUT DATA FOR
CS-133+N=CS-134+GAMMA CALC SIGMA J=I+l/2

5

+.0O0OO0OOE+00 JI= 00.0
+.00000000E+00 JI= 01.0
+.00000000F+00 JI= 02.0
+.0O000000E+00 JI= 03.0
+. 1 OOOOOOOF+01 JI= 04.0
2

+.13294720E+03 +. 13394896E+03 + . 1 0089860E+0 1 +. 1 3400000E+03
1
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TAPLE VI I (CONTINUED)

CS-1^3+N=CS-134+GAMMA CONST SIGMA J=I+l/2
N~R. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 1

SPIN CUT OFF FACTOR= 3.000
MULTIPOLARI TY OF GAMMA-RAY EMISSION
JF(MAX)=JI (MAX)+L= 5.00

JI JFI JF FJF SUM FJF
.0 0.00000000 0.0 0.00000000 0.00000000

1 .0 0.00000000 1.0 0.00000000 0.00000000
2.0 0.00000000 2.0 0.00000000 0.00000000
3.0 o.oooooooc 3.0 0.41623791 0.41623791
4.0 0. iOOOOOOoe + 01 4.0 0.34^1 3632 0.75937423

5.0 0.24062577 0. 10000000E + 01

JI JFI
.0 0.00000000

l.o 0.00000000
2.0 0.00000000
3.0 0.41623 791
4.0 0.34313632
5.0 0.24062577

N~R. SPIN DIST. AFTER FMISSION OF GAMMA RAY NO 2

SPIN CUT OFF FACTOR= 3.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF (MAX)=JI (MAX)+L= 6.00

JF FJF SUM FJF
0.0 0.00000000 0.00000000
1.0 0.000^0000 0.00000000
2.0 0.14707479 0.14707479
3.0 0.29036347 0.43743826
4.0 0.35? ra099 0.78°94925
5.0 0.16190906 0.95185831
6.0 0.48141696E-01 . 10000000E+0

1

NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 3

SPIN CUT OFF FACTOR= 3.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF (MAX)=JI (MAX)+L= 7.00

SUM FJF
0.00000000

01 0.40038654E-0]
0. 19607066
0.4^932158
0.78125577
0.94442970

6.0 0.48141696E-01 6.0 0.47540447E-01 0.99197014
7.0 0.80298129E-02 0.99999995

JI JFI JF FJF
.0 0.00000000 0.0 o.ooooocoo

1.0 0.000000 00 1 .0 0.40O38654E
2.0 0.14707479 2.0 0.15603201
3.0 0.29036347 3.0 0.30325092
4.0 0.35251099 4.0 0.28193419
5.0 0.16190906 5.0 0.16317393
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t<\BLE VI I (CONTINUED)

JI JFI JF
• 0.00000000 0.0

1.0 0.40038654E-01 1.0
2.0 C. 15603201 2.0
3.0 0.30325092 3.0
4.0 0.28193419 4.0
5.0 0.16317393 5.0
6.0 0.47540447E-01 6.0

NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 4

SPIN CUT OFF FACTOR= 3.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF(MAX)=JI (MAX)+L= 8.00

FJF SUM FJF
0.55095211E-02 0. 5509521 1E-02
0.57267517E-01 0. 62777038E-01
0.18357869 0.24635572
0.28170671 0.52806243
0.26207724 0.79013967
0.14629662 0.93643629
0.52122822E-01 0.98855911

7.0 0.80298129E-02 7.0 0. 10324816E-01 0.99888392
8.0 0.11160321E-02 0.99999995

NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 5

SPIN CUT OFF FACTOR= 3.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF(MAX)=JI (MAX)+L= 9.00

JI JFI JF FJF SUM FJF
.0 0.55095211E-02 0.0 0.78802997E-02 0. 78802997E-02

1.0 0.57267517E-01 1.0 0.76640559E-01 . 84520858E-01
2.0 0.18357869 2.0 0.19446793 0.27898878
3.0 0.28170671 3.0 0.27584457 0.55483335
4.0 0.26207724 4.0 0.24103258 0.79586593
5.0 0.14629662 5.0 0.13832980 0.93419573
6.0 0.52122822E-01 6.0 0. 5 1479447E-01 0.98567517
7.0 0.10324816E-01 7.0 . 1 2447056E-01 0.99812222
8.0 0.11160321E-02 8.0 0. 1 7487258E-02 0.99987094

9.0 0.12898839E-03 0.99999992
NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 6

SPIN CUT OFF FACTOR= 3.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF(MAX)=JI <MAX)+L= 10.00

JI JFI JF FJF SUM FJF
.0 0.78802997E-02 0.0 0. 10546128E-01 0. 10546 128E-01

1.0 0.76640559E-C1 1.0 0. 891322 15E-01 0. 99678343E-01
2.0 0.19446793 2.0 0.20590352 0.30558186
3.0 0.27584457 3.0 0.26897576 0.57455762
4.0 0.24103258 4.0 0.22835245 0.80291007
5.0 0.13832980 5.0 0.13030538 0.93321545
6.0 0.51479447E-01 6.0 0.50877318E-01 0.98409276
7.0 C.12447056E-01 7.0 0. 1 3354523E-01 0.99744728
8.0 0.17487258E-C2 8.0 0. 23041847E-02 0.99975146
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TARLF VI I (CONTINUED)

JI JFI JF
.0 •0000n000E-99 0.0

1.0 .0000000OE-99 1.0
2.0 .000OO000E-99 2.0
3.0 .00000000E-99 3.0
4.0 .10000000E+01 4.0

5.0
R. SPIN DIST. AFTER EM I SSI

CS-133+N=CS-134+GAMMA CONST SIGMA J= I +1/2
N~R. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 1

SPIN CUT OFF FACT0R= 4.000
MULTIPCLARITY OF GAMMA-RAY EMISSION
JF (MAX)=JI (MAX)+L= 5.00

FJF SUM FJF
•000O0O00E-99 .000OO0O0E-99
•0OOO0O00E-99 .0000O000E-99
.00000000E-99 • 00000000E-99
.34522179E+00 . 34522 179E+00
.34567589E+00 .69089768E+00
.30910232E+00 . 10000000E + 01

)N OF GAMMA RAY NO 2

SPIN CUT OFF FACTCR= 4.000
MULTIPCLARITY OF GAMMA-RAY EMISSION
JF (MAX)= Jl (MAX)+L= 6»00

JI JFI JF FJF SUM FJF
.0 .00000000E-99 0.0 .00C00000E-99 • 0OOO00O0E-99

1.0 .00000000E-99 1.0 .00OO0000E-99 . 00000000E-99
2.0 .0O0O0O00E-99 2.0 . 1 0389458E+00 . 10389458E+00
3.0 .34522179E+00 3.0 . 2 399 1 9 1 5E+00 . 3438 1 373E+00
4.0 .34567589E+00 4.0 . 358 1 8978E+00 . 7020035 1E+00
5.0 .30910232E+00 5.0 .2 1232425E+00 .91432776E+00

6.0 .85672217E-01 . 99999997E+00
NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 3

SPIN CUT OFF FACTCR= 4.000
MULTIPCLARITY OF GAMMA-RAY EMISSION
JF (MAX)=JI (MAX)+L= 7.00

JI JFI JF FJF SUM FJF
.0 .000O00O0E-99 0.0 . OO00O00OF-99 .0O0000O0E-99

1.0 .00000000E-99 1.0 . 24867469E -0

1

. 24867469E-0

1

2,0 .10389458E+00 2.0 . 1 0877950E+00 . 1 3364696E+00
3.0 .23991915E+00 3.0 . 24990884E+00 . 38 355580E+00
4.0 .35816978E+00 4.0 . 28875442E+00 . 6723 1022E+00
5.0 .21232425E+00 5.0 .2 1860913E+00 . 8909 1935E+00
6.0 .85672217E-01 6.0 . 87635260E-01 . 9785546 1 E+00

7.0 .21445332E-01 . 99999994E+00
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TABLE VI I (CONTINUED)

N*R. SPIN DIST. AFTFR FMISSICN OF GAMMA RAY NO 4

SPIN CUT OFF FACTOR= 4.000
MULTIPOLARI TY OF GAMMA-RAY EMISSION 1

JF (MAX)=JI (MAX)+L= 8.00

JI JFI JF FJF SUM FJF
.0 .00000000E-99 0.0 . 3 1227259E-02 . 31227259E-02

1.0 .24867469E-01 1.0 . 34837277E-01 . 37960002E-01
2.0 .10877950E+00 2.0 . 1 2644978E+00 . 16440978E+00
3.0 .24990884E+00 3.0 . 2 31 42357E+00 . 39583335F+00
4.0 .28875442E+00 4.0 . 27064458E+00 . 66647793E+00
5.0 .21860913E+00 5.0 . 2001 0314E+00 . 86658 1 07F+00
6.0 .87635260E-01 6.0 .99538 1 69E-01 . 966 1 1923E+00
7.0 .21445332E-01 7.0 . 2901 50^6E-0 1 . 995 1 3426F+00

8.0 .48656470E-02 . 99999990E+00
NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 5

SPIN CUT OFF FACTOR= 4.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF (MAX)=JI (MAX)+L= 9.00

JI JFI JF FJF SUM FJF
.0 .31227259E-02 0.0 .43746820E-02 .43746820F-02

1.0 .34837277E-01 1.0 .4571 7747E-01 . 50092429E-01
2.0 .12644978E+00 2.0 . 1 3229694E+00 . 18238936E+00
3.0 .23142357E+00 3.0 . 2 2593492E+00 .4083242 8E + 00
4.0 .27064458E+00 4.0 . 2508 5716E+00 . 659 1 8 144F+00
5.0 .20010314E+00 5.0 . 193 1 1447E+00 . 85229591E+00
6.0 .99538169E-01 6.0 . 1 01 762 1 8E+00 . 95405 809E+00
7.0 .29015036E-01 7.0 . 36782588E-01 . 99084067E+00
8.0 .48656470E-02 8.0 .8 1569506E-02 . 99899762E+00

9.0 .10022490E-02 . 99999986E+00
NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 6

SPIN CUT OFF FACTOR= 4.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF (MAX)=JI (MAX)+L= 10.00

JI JFI JF FJF SUM FJF
.0 .43746820E-02 0.0 . 57409943E-02 . 57409943E-02

1.0 .45717747E-01 1.0 .522 19832E-01 . 57960826E-01
2.0 .13229694E+00 2.0 . 1 38367 17E+00 . 19632799E+00
3.0 .22593492E+00 3.0 . 2 1957587E+00 .41 590386E+00
4.0 .25085716E+00 4.0 .2 3943053E+00 . 65533439E+00
5.0 .19311447E+00 5.0 . 1 85 53340E+00 . 84086779E+00
6.0 .10176218E + 00 6.0 . 1040 1388E +00 . 94488 167E +00
7.0 .36782588E-01 7.0 .4145 1823E-01 . 98633349E+00
8.0 .81569506E-02 8.0 . 1 148 1654E-01 . 9978 1514E+00
9.0 .10022490E-02 9.0 . 1 997 1824E-02 . 9998 1232E + 00
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TABLE VI I (CONTINUED)

CS-133+N=CS-134+GAMMA CONST SIGMA J=I+l/2
N~R. SPIN OIST. AFTER EMISSION OF GAMMA RAY NO 1

SPIN CUT OFF FACTOR= 5.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF (MAX)=JI (MAX)+L= 5.00

JI JFI JF FJF SUM FJF
.0 0.00000000 0.0 0.00000000 0.00000000

1.0 0.00000000 1.0 0.00000000 0.00000000
2.0 0.00000000 2.0 0.00000000 0.00000000
3.0 O.OOOOOOOC 3.0 0.31328689 0.31328689
4.0 0.10000000E+01 4.0 0.34324141 0.65652830

5.0 0.34347171 C . 10000000E + 01
NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 2

SPIN CUT OFF FACTOR= 5.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF (MAX)=JI (MAX)+L= 6.00

SUM FJF
0.00000000
0.00000000

•01 0.86973414E-01
0.30250033
0.65*82262
0.89098300
0.10000000E+01

NOR. SPIN DIST. £FTER EMISSION OF GAMMA RAY NO 3

SPIN CUT OFF FACTOR= 5.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF(MAX)=JI (MAX)+L= 7.00

FJF SUM FJF
0.00000000 0.00000000
0.19549424E-01 . 19 549424E-01
0.89911018E-01 0.10946044
0.22233271 0.33179315
0.28290689 0.61470004
0.24142568 0.85612572
0.11162265 0.96774837

7.0 0.32251667E-01 0. 10000000E+01

JI JFI JF FJF
.0 0.00000000 0.0 0.00000000

1 .0 0.00000000 1.0 0.00000000
2.0 0.00000000 2.0 0.86973414E
3.0 0.31328689 3.0 0.215*2692
4.0 0.34324141 4.0 0.35332229
5.0 0.34347171 5.0 0.23516038

6.0 0.10901702

JI JFI JF
.0 0.00000000 0.0

1.0 0.00000000 1.0
2.0 0.86973414E-01 2.0
3.0 0.21552692 3.0
4.0 0.35332229 4.0
5.0 0.23516038 5.0
6.0 0.10901702 6.0
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TABLE VI I (CONTINUED)

N~R. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 4

SPIN CUT OFF FACTOR= 5.000
MULTIPOLARITY OF GAMMA-RAY EMISSION
JF(MAX)=JI (MAX)+L= 8.00

JI JFI JF FJF SUM FJF
.0 0.00000000 0.0 0.23505461E-02 0. 23505461E-02

1.0 0.19549424E-01 1.0 0.26984861 E-01 0. 29335407E-01
2.0 0.89911018E-01 2.0 0.10324004 0.13257544
3.0 0.22233271 3.0 0.20387995 0.33645539
4.0 0.28290689 4.0 0.26344540 0.59990079
5.0 0.24142568 5.0 0.22032989 0.82023068
6.0 0.11162265 6.0 0.1269488? 0.94"'17950
7.0 0.32251667E-01 7.0 0.43882833E-01 0.99106233

8.0 0.89377066E-02 0. 10000000E+01
NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 5

SPIN CUT OFF FACTOR= 5.000
MULTIPOLARITY OF GAMMA-RAY EMISSION
JF(MAX)=JI (MAX)+L= 9.00

JI JFI JF FJF SUM FJF
.0 0.23505461E-02 0.0 0.32445539E-02 0. 32445539E-02

1.0 0.26984861E-01 1.0 0. 34908295E-0 1 0. 38 1 52848E-0

1

2.0 0.10324004 2.0 0.10669130 0.14484414
3.0 0.20387995 3.0 0.19714555 0.34198969
4,0 0.26344540 4.0 0.24259871 0.58458840
5.0 0.22032989 5.0 0.21203574 0.79662414
6.0 0.12694882 6.0 0.12994364 0.92656778
7.0 0.43882833E-01 7.0 0. 55959885E-01 0.98252766
8.0 0.89377066E-02 8.0 . 1 5 145322E-0 1 0.99767298

9.0 0.23270542E-02 0. 10000000E+01
NOR. SF'IN DIST. AFTER EMISSION OF GAMMA RAY NO 6

SPIN CUT OFF FACTOR^ 5.000
MULTIPOLARITY OF GAMMA-RAY EMISSION
JF(MAX)=JI (MAX)+L= 10.00

JI JFI JF FJF SUM FJF
.0 0.32445539E-02 0.0 0.41972366E-02 0.41972366E-02

1.0 0.34908295E-01 1.0 0. 39324040E-0 1 . 4352 1 276F-01
2.0 0.1066913C 2.0 0.11024001 0.15376128
3.0 0.19714555 3.0 0.18977510 0.34353638
4.0 0.24259871 4.0 0.23007002 0.57360640
5.0 0.21203574 5.0 0.20313659 0.77674299
6.0 0.12994364 6.0 0.13299050 0.90973349
7.0 0.55959885E-01 7.0 0.63431286E-01 0.97316477
8.0 0.15145322E-01 8.0 0. 2 15 520 16E-01 0.99471678
9.0 0.23270542E-02 9.0 0.471 29892E-02 0.99942976

10.0 0.57025478E-03 0. 10000000E + 01
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TABLE VI I (CONTINUED)

JI JFI
.0 0.00000000

1.0 o.onno^ooo
2.0 0.27598292
3.0 0.34433494
4.0 0.37968214

CS-133+N=CS-134+GAMMA CALC SIGMA J=I-l/2
N~R. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 1

SPIN CUT OFF FACTOR= 5.103
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF (MAX)=JI (MAX)+L= 4.00
JI JFI JF FJF SUM FJF
.0 0.00000000 0.0 0.00000000 0.00000000

1.0 0.00000000 1.0 0.00000000 0.00000000
2.0 0.00000000 2.0 0.27598292 0.27598292
3.0 0.10000000E+01 3.0 0.34433494 0.62031786

4.0 0.37968214 . 10000000E+01
NOR. STIN DIST, AFTER EMISSION OF GAMMA RAY NO 2

SPIN CUT OFF FACTOR= 4.426
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF (MAX)=JI (MAX)+L= 5.00
JF FJF SUM FJF
0.0 O.OOHOOOOO 0.00000000
1.0 0.63992546E-01 0. 63992546E-0

1

2.0 0.19580893 0.25980147
3.0 0.36007035 0.61987182
4.0 0.25618715 0.87605897
5.0 0.12394102 0.99999999

NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 3

SPIN CUT OFF FACTOR= 3.601
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF(MAX)=JI (MAX)+L= 6.00
SUM FJF

0.82625023E-02
0.79974626E-01
0.29635544
0.59417042
0.85296295
0.96870554
0.99999997

NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 4
SPIN CUT OFF FACTOR= 2.507
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF(MAX)=JI (MAX)+L= 7.00

JI JFI JF FJF SUM FJF
.0 0.8?6?50?3E-0? 0.0 . 1 0767 1 78E-0

]

. 1 0767 ] 78E-01
1.0 0.71712124E-01 1.0 0.10208195 0.11284912
2.0 0.21638082 2.0 0.23483615 0.34768527
3.0 0.29781498 3.0 0.30085656 0.64854183
4.0 0.25879253 4.0 0.22140822 0.86995005
5.0 0.11574259 5.0 0.10188329 0.97183334
6.0 0.31294439E-01 6.0 . 24854081 E-0

1

0.99668742
7.0 0.33125550E-02 0.99999997

JI JFI JF FJF
.0 0.00000000 0.0 0.82625023E--02

1.0 0.63992546E--01 1 .0 0.71712124E--01
2.0 0.19580893 2.0 0.21638082
3.0 0.36007035 3.0 0.29781498
4.0 0.25618715 4.0 0.25879253
5.0 0.12394102 5.0 0.11574259

6.0 0.31294439E--01
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T'ARLF VI 1 (CCNT INUFD)

NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NC 1

SPIN CUT OFF FACTCR= 3.000
MULTIPOLARI TY OF GAMMA-RAY EMISSION 1

JF (MAX)= JI (MAX)+L= 4.00

JI JFI JF FJF SUM FJF
.o .oooooonoE-99 o.o .oooooooof-99 .ooonooooE-99

1.0 .00OO0000E-99 1.0 .000r0000F.-99 .000O0OOOF-99
2.0 .OOOOOOOOF-99 2.0 . 3 5 134308E+00 . 35334308E+00
^.0 . 100O00O0E+01 3.0 .35445395F+00 . 70779703F+00

4.0 .29220295E+00 . 99999998E+00
NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 2

SPIN CUT OFF FACTOR= 3.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF (MAX)=JI (MAX)+L= 5.00
FJF SUM FJF

.00^00000E-99 .000OO0OOE-99
•96191736E-01 . 96 19 1 736F-0

1

.25361772F+00 . 34980945F+00
•37604104E+00 . 72 585049F+00
.20383790E+00 . 92968839F+00
.7031 1546E-01 .99999993E+00

N OF GAMMA RAY NO 3

CUT OFF FACTOR= 3.000
POLARITY OF GAMMA-RAY EMISSION 1

JF (MAX)=JI (MAX)+L= 6.00
FJF SUM FJF

• 13236469E-01 . 1 3236469E-0

1

.10457671E+00 . 1 1 78 1 3 1 7F+00

.27243565E+00 . 39024882E+00

.31056642E+00 . 7008 1 524F+00
•21288498E+00 . 91 37002 2F + 00
.72232484E-01 . 98 593270E+00
.14067161E-01 .99999986E+00

JI JFI JF
.0 .00000000E-99 0.0

1.0 .0O000000E-99 1 .0

2.0 .35334308E+00 2.0
3.0 .35445395E+00 3.0
4.0 .29220295F+00 4.0

5.0
R. SPIN DIST. AFT EM I SSI

SPIN
MULT
JF(M

JI JFI JF

.0 .00000000E-99 0.0
1.0 .96191736E-01 1.0
2.0 .25361772E+00 2.0
3.0 .3760410AE+00 3.0
4.0 • 2O383790E + f'O 4.0
5.0 •70311546E-01 5.0

6.0
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N~R. SPIN 01 ST. AFTER FM I SSI ON OF GAMMA RAY NO 4

SPIN CUT OFF FACTCR= 3.000
MULTIPCLARITY OF GAMMA-RAY
JF(MAX)=JI (MAX)+L= 7.00

EMISSION

JT JFI
.0 .13236469E-01

1.0 . 10457671E + 00
2.0 .27243565E+00
3.0 .31056642E+00
4.0 .21288498E+00
5.0 .72232484E-01
6.0 .1A067161E-01

N~R. SI IN DIST. AFTFR

JI JFI
.0 .14390283E-01

1.0 . 126-3348E+00
2.0 .26027115E+00
3.0 .29798269E+00
4.0 .19776073E+00
5.0 .82337506E-0]
6.0 .18877636 E-01
7.0 .23463345E-02

N~R. SPIN HIST. AFTFR

JI

.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

J

.1734

.1318

.2619

.2827

.1936

.8452

.2373

.3848

.3261

FI

2843E-01
0192E+00
8327E+00
9366E+00
4544E+00
4674E-01
3246E-01
6076E-0?
0697E-03

JF FJF
0.0 .14390283E-01
1.0 .12603348E+00
2.0 .26027115E+G0
3.0 .29798269E+00
4.0 .19776073E+00
5.0 .82337506E-01
6.0 .18877636E-01
7.0 .23463345E-02

FMISSICN OF GAMMA RAY NO
SPIN CUT OFF FACTCR= 3

MULTIPCLARITY CF GAMMA
JF (MAX ) = JMMAX)+L= 8.
JF FJF
0.0 .1 7342843F-01
1.0 .13180192E+00
2.0 .26198327E+00
3.0 .28279366E+00
4.0 .19364544E+00
5.0 .84524674E-01
6.0 .23733246E-01
7.0 .38486076E-O2
8.0 .3261 0697E-03

EMISSION CF GAMMA RAY NC
SPIN CUT CFF FACTCR= 3

MULTIPCLARITY CF GAMMA
JF(MAX)=JI (MAX)+L= 9.
JF FJF
0.0 .18136610E-01
1.0 .13735145E+00
2.0 .26008216E+00
3.0 .27632088E+00
4.0 .18882346E+00
5.0 .86773532E-01
6.0 .26543974E-01
7.0 .53033731E-02
8.0 .62657107E-03
9.0 .37690839E-04

SUM FJF
.14390283E-01
. 14042376E+00
.40069491E+00
•69867760E+00
•89643833E+00
.97877583E+00
.99765346E+00
•99999979E+00
5

• 000
-RAY EMISSION
00
SUM FJF

. 17342843E-01

. 14914476E+00

.41112803E+00

.69392169E+00
•88756713E+00
.97209180E+00
•99582504E+00
.99967364E+00
.99999974E+00
6

.000
-RAY EMISSION
00
SUM FJF
•18136610E-01
.15548806E+00
.41557022F+00
•69189110F+00
•88071456F+00
•96748R09E+00
•99403206E+00
•99°33543F+00
.99996200F+00
.99999969E+00
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TARLF VI I (CONT INUFO)

CS-133+N=CS-134+GAMMA C0N5T SIGMA J=I-l/2
NCR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NC 1

SPIN CUT OFF FACTOR= 4.000
MULTIPOLARI TY OF . GAMMA-RAY EMISSION 1

JF(MAX)=JI (MAX)+L= 4.00

JI JFI JF FJF SUM FJF
.0 0.00000000 0.0 0.00000000 0.00000000

1.0 0.00000000 1.0 o.oonooooo 0.00000000
2.0 0.00000000 2.0 0.30095026 0.30095026
3.0 0. 10000000E+01 3.0 0.34929506 0.65024532

4.0 0.34975465 0.99999997
NCR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 2

SPIN CUT OFF FACTCRs 4.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF (MAX)=JI (MAX)+L= 5.00

JI JFI JF FJF SUM FJF
.0 0.00000000 0.0 0.00000000 0.00000000

1.0 0.00000000 1.0 0.72033322E--01 0.72033322E-01
2.0 0.30095026 2.0 0.21106909 0.28310241
3.0 0.34929506 3.0 0.36571824 0.64882065
4.0 0.34975465 4.0 0.24306934 0.89188999

5.0 0.10810998 0.99999997
NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 3

SPIN CUT OFF FACTOR= 4.000
MULTIPOLARITY OF GAMMA-RAY EMISSION
JF (MAX)=JI (MAX)+L= 6.00

FJF SUM FJF
0.90455656E-02 0. 90455656E-02
0.7601 2569E-01 . 85058 134E-01
0.22186444 0.30692257
0.29789922 0.60482179
0.25319021 0.85801200
0.11202371 0.97003571
0.29964233E-01 0.99999994

JI JFI JF
.0 O.OOOOOOOC 0.0

1.0 0.72033322E-01 1.0
2.0 0.21106909 2.0
3.0 0.36571824 3.0
4.0 0.24306934 4.0
5.0 0.10810998 5.0

6.0
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TABLE VI I (CONTINUED)

NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 4

SPIN CUT OFF FACTOP= 4.000
MULTIPOLARI TY OF GAMMA-RAY EMISSION 1

JF(MAX)=JI (MAX)+L= 7.00

JI JFI JF FJF SUM FJF
.0 G.90455656E-02 0.0 .95452584E-02 0. 95452584E-02

1.0 0.76012569E-01 1.0 0. 89050287E-0

1

0. 98 595545E-01
2.0 0.22186444 2.0 0.20732605 0.30592159
3.0 0.29789922 3.0 0.28211530 0.58803689
4.0 0.25319021 4.0 0.23446223 0.82249912
5.0 0.112^2371 5.0 0.12888300 0.95138212
6.0 0.29964233E-01 6.0 0.4 1 1 1 7 1 73E-0

1

0.99249929
7.0 0.75006044E-02 0.99999989

N~R. SPIN HIST. AFTFR EMISSION OF GAMMA RAY NO 5

SPIN CUT OFF FACTOR= 4.000
MULTIPOLARI TY OF GAMMA-RAY EMISSION 1

JF(MAX)=JI (MAX)+L= 8.00

JI JFI JF FJF SUM FJF
.0 0.95452584E-02 0.0 . 1 1 1 8 2466E-0

1

0. 1 1 182466E-01
1.0 0.89050287E-01 1.0 0.906842 17E-01 0.10186668
2.0 0.20732605 2.0 0.20424415 0.30611083
3.0 0.28211530 3.0 0.26419637 0.57030720
4.0 0.23446223 4.0 0.22890153 0.79920873
5.0 0.128883C0 5.0 0.13346073 0.93266946
6.0 0.41 117173E-01 6.0 0. 5 2860578E-0

1

0.98553003
7.0 0.75006044E-02 7.0 . 1 2 768068E-0

1

0.99829809
8.0 0.17017847E-02 0.99999987

NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 6

SPIN CUT OFF FACTOR= 4.000
MULTIPOLARITY OF GAMMA-RAY EMISSION 1

JF(MAX)=JI (MAX)+L= 9.00

JI JFI JF FJF SUM FJF
.0 0.11182466E-01 0.0 . 1 1 387647E-0

1

. 1 1 387647E-0

1

1.0 0.9068421 7E-01 1.0 .921620 10E-0

1

0.10354966
2.0 0.20424415 2.0 0.19861697 0.30216663
3.0 0.26419637 3.0 0.25475843 0.55692506
4.0 0.22890153 4.0 0.22245898 0.77938404
5.0 0.13346073 5.0 0.13816190 0.91754594
6.0 0.52860578E-01 6.0 0. 60408980E-0

]

0.97795492
7.0 0.12768068E-01 7.0 0. 1 8247041 E-0

1

0.99620196
8.0 0.17017847E-02 8.0 . 34473605E-02 0.99964932

9.0 0.35054097E-03 0.99999986
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N~R.
CS-133+N=CS-134+GAMMA CONST SIGMA J=I-l/2

SPIN DIST. A C TER EMISSION OF GAMMA RAY NO 1

SPIN CUT OFF FACTOR= 5.000
MULT IPOLARI TY OF GAMMA-RAY
JF (MAX)=JI (MAX)+L= 4.00

EMISSION 1

JI JFI
.0 0.00000000

1.0 0.00000000
2.0 G.OOOuOOOO
3.0 0.10000000E+01

JF FJF
0.0 0.00000000
1.0 0.00000000
2.0 0.27761588
3.0 0.34471244
4.0 0.37767167

SUM FJF
0.00000000
0.00000000
0.27761588
0.62232832
0.99999999

NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 2

SPIN CUT OFF FACTOR= 5.000
MULTIPOLARI TY OF GAMMA-RAY EMISSION 1

JF(MAX)=JI (MAX)+L= 5.00

JI JFI
.0 0.00000000

1.0 0.00000000
2.0 0.27761588
3.0 0.34471244
4.0 0.37767167

NOR. SPIN DIST. AFTER

JF FJF
0.0 0.00000000
1.0 0.62401027E-01
2.0 0.19170333
3.0 0.35635542
4.0 0.25982069
5.0 0.12971953

EMISSI ON OF GAMMA RAY

SUM FJF
0.00000000
0.62401027E-01
0.25410435
0.61045977
0.87028046
0.99999999

m:

SPIN CUT OFF FACTOR= 5.000
MULTIPOLARI TY OF GAMMA-RAY EMISSION
JF(MAX)=JI (MAX)+L= 6.00

JI JFI JF

.0 0.00000000 0.0
1.0 0.62401027E-01 1.0
2.0 0.19170333 2.0

3.0 0.35635542 3.0

4.0 0.25982069 4.0
5.0 0.12971953 5.0

FJF
0.75028549E-02
0.64716050E-01
0.19849734
0.28655659
0.26802517
0.13352935

SUM FJF
0.75028549E-02
0.72218904E-01
0.27071624
0.55727283
0.82529800
0.95882735

6.0 0.411726^8E-01 0.99999998
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TARLF VI I (CONTINUED)

N~R. SPIN DIST. AFTFR EMISSION OF GAMMA RAY NO 4

SPIN CUT OFF FACTCR= 5.000
MULTIPOLARI TY OF GAMMA-RAY EMISSION
JF(MAX)=JI <MAX)+L= 7.00

JI JFI JF FJF SUM FJF
.0 0.75028549E-G2 0.0 0. 778 1 2042E-02 0. 778 1 2042E-02

1.0 0.64716050E-01 1.0 0. 74548332E-01 0. 82 329536E-01
2.0 0,19849734 2.0 0.18270396 0.26503349
3.0 0.286556S9 3.0 0.26798379 0.53301728
4.0 0.26802517 4.0 0.24578010 0.77879738
5.0 0.13352935 5.0 0.15267262 0.93147000
6.0 0.411 72638E-01 6.0 . 56349430E-0

1

0.98781943
7.0 0.121 80540E-01 0.99999997

NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 5

SPIN CUT OFF FACTOR= 5.000
MULTIPOLARI TY OF GAMMA-RAY EMISSION
JF (MAX)=JI (MAX)+L= 8.00

JI JFI JF FJF SUM FJF
.0 0.77812042E-02 0.0 0.8963 3992E -02 . 89633992E-02

1.0 0.74548332E-01 1.0 0. 746842 51 E-01 . 83647650E-01
2.0 0.18270396 2.0 0.17732872 0.26097637
3.0 0.26798379 3.0 0.24783070 0.50880707
4.0 0.24578010 4.0 0.23766168 0.74646875
5.0 0.15267262 5.0 0.15710613 0.90357488
6.0 C.56349430E-01 6.0 0. 7 2277478E-0

1

0.97585235
7.0 0.12180540E-01 7.0 . 20772085E-0

1

0.99662443
8.0 0.33755184E-02 0.99999994

NOR. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 6

SPIN CUT OFF FACTOR= 5.000
MULTIPOLARITY OF GAMMA-PAY EMISSION
JF (MAX)=JI (MAX)+L= 9.00

JI JFI JF FJF SUM FJF
.0 0.89633992E-02 0.0 0. 8979741 5E-02 0. 8979741 5 E-02

1.0 0.74684251E-01 1.0 . 74705334E-0

1

. 83685075 E-0

1

2.0 0.17732872 2.0 0.16994750 0.25363257
3.0 0.24783070 3.0 0.23603214 0.48966471
4.0 0.23766168 4.0 0.22877652 0.71844123
5.0 0.15710613 5.0 0.16164375 0.88008498
6.0 0.7227747PE-01 6.0 . 8 2405690E-0

1

0.96249067
7.0 0.2077208'E-Ol 7.0 0. 29746890E-0

1

0.99223756
8.0 C.33755184E-02 8.0 0.6883542 1 F-02 0.99912110

9.0 0.87886239E-03 0.99999996
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4.2 Scandium- 4 6 ,46m Isomers

The average experimentally measured isomeric cross section ratios for

Sc-46,46m were 0.4955 * 0.063, 0.5645 * 0.0365, and 0.5048 * 0.0500 for RSR,

thermal, and epi-cadmium energy neutrons respectively, Table VIII. Either 9

or 18 sets of data were taken per isomer, Table IV. The above isomeric cross

section ratios are averages of the total number of sets of data obtained. The

deviation listed is one half the difference between the maximum and minimum

isomeric cross section ratios.

The angular momentum of the parent nuclide, Sc-45, was I = 7/2; the angu-

lar momenta of the Sc-46m and Sc-46 states were 7 and 4 respectively, Table

VIII.

In calculating the theoretical isomeric cross section ratio, as explained

above, all excited states with angular momentum equal to or greater than 6

were assumed to populate the metastable state following the emission of the

last gamma ray. Isomeric cross section ratios were computed using J I + 1/2

= 4 and J = I - 1/2 = 3 for values of constant a ranging from 3 to infinity

and number of gamma rays emitted, N , ranging from 3 to 6, Table VIII. These

theoretically determined ratios were always smaller than the experimental

ratios, the ratios obtained for J = 4 being much closer than the ones using

J = 3, Table VIII and Figure 16.

The Chart of the Nuclides (8) lists 10 and 13 barns for the formation

cross sections of Sc-46 and Sc-46m respectively. This gives a cross section

ratio of 0.435 which agrees relatively well with the experimental ratios

determined in this work.
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Table VIII. Isomeric cross section ratios for

Sc-46,46m using (n,y) reactions

Target
Spin (I)

Competing
levels

Capturing
state

Level density
factor (a)

N
Y

Calculated
ratio

7/2 7, 4 J = I + 1/2 = 4 3

3

3

3

3

4

5

6

0.0481
0.0556
0.0636
0.0658

4

4

4

4

3

4

5

6

0.0857
0.1091
0.1334
0.1477

5

5

5

5

3

4

5

6

0.1090
0.1439
0.1798
0.2034

6

6

6

6

3

4

5

6

0.1236
0.1657
0.2088
0.2384

7

7

7

7

3

4

5

6

0.1327
0.1796
0.2276
0.2610

8

8

8

8

3

4

5

6

0.1389
0.1892
0.2402
0.2767

10

10

10

10

3

4

5

6

0.1464
0.2007
0.2555
0.2947

00

00

oo

00

3

4

5

6 .

0.1605
0.2222
0.2840
0.3280

2.108
+

1.621 1
"

2

3

0.0174
0.0379
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Table VIII (continued)

Target Competing
Spin (I) levels

Capturing
state

Level density
factor (o)

N
Y

Calculated
ratio

7/2 7, 4 j . i - 1/2 - 3 3

3

3

4

4

4

5

5

5

00

oo

00

3

4

5

3

4

5

3

4

5

3

4

5

0.0000
0.0141
0.0212

0.0000
0.0299
0.0486

0.0000
0.0412
0.0686

0.0000
0.0688
0.1182

2.

1.

108
+

621+
2

3

0.0000
0.0059

Experimental Ratios

RSR energy Thermal energy Epi--cadmiiurn energy

0.4955 * 0.0630 0.5645 * 0.0365 0.5084 * 0.0500

Calculated o
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4.3 Cesium-134,134m Isomers

For the Cs-134, 134m isomers the average experimental isomeric cross

section ratios were 0.0952 * 0.0178, 0.1368 * 0.0165, and 0.1057 * 0.0153

for RSR, thermal and epi-cadmium energy neutrons respectively, Table IX.

The angular momentum of Cs-133 before neutron bombardment was I = 7/2.

The angular momenta of the Cs-134m and Cs-134 states are 8 and 4 respectively

with an intermediate level between the Cs-134m and Cs-134 levels having angu-

lar momentum of 5, Table IX. In all calculations, if there was an intermediate

energy level between the metastable and stable state it was assumed that the

competing angular momenta are those of the intermediate level and the meta-

stable state (21)

.

Following the emission of the last gamma ray, all excited states with

angular momenta equal to or greater than 7 were assumed to populate the meta-

stable state. Ratios were calculated using constant a ranging from 3 to in-

finity and calculated a for J = I + 1/2 = 4 and J = I - 1/2 = 3.

Using a a value of 8, with a J = I + 1/2 = 4, and N between 5 and 6, the

theoretical ratios were between 0.08178 and 0.1157, Table IX, which agreed

with the experimental ratios, Figure 17.

It is worth mentioning that Bishop (4) determined experimentally the

isomeric cross section ratio of Cs-134, 134m by following the buildup of Cs-134

from decay of Cs-134m. His reported value was 0.09; also Hughes (20) gave a

value of 0.10 for the same ratio. These two values agree with the experimental

ratios found in this work.
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Target
Spin (I)

Competing
levels

Capturing
state

Level density
factor (a)

N
Y

Calculated
ratio

7/2 8, (5), 4 J = I + 1/2 = 4 3

3

3

3

3

4

5

6

0.0000
0.0080
0.0114
0.0143

4

4

4

4

3

4

5

6

0.0000
0.0215
0.0339
0.0458

5

5

5

5

3

4

5

6

0.0000
0.0323
0.0528
0.0734

6

6

6

6

3

4

5

6

0.0000
0.0397
0.0552
0.0928

7

7

7

7

3

4

5

6

0.0000
0.0449
0.0753
0-.1063

8

8

8

8

3

4

5

6

0.0000
0.0485
0.0818
0.1157

00

00

00

oo

3

4

5

6

0.0000
0.0617
0.1056
0.1450

4.43*

3.60|
2.51

2

3

4

0.0000
0.0229
0.0174

7/2 8,(5), 4 J = I - 1/2 = 3 3

3

3

3'

4

5

0.0000
0.0000
0.0024
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Table IX (continued)

Target
Spin (I)

Competing
level

Capturing
state

Level densi
factor (o)

ty N
Y

Calculated
ratio

7/2 8, (5), 4 J = I - 1/2 = 3 4

4

4

5

5

5

CO

oo

00

4.43+

3.60|
2.51 +

3

4

5

3

4

5

3

4

5

2

3

4

0.0000
0.0000
0.0075

0.0000
0.0000
0.0122

0.0000
0.0000
0.0265

0.0000
0.0000
0.0033

RSR energy

Experimental Ratios

Thermal Epi-cadmium

0.0952 ± 0.0178 0.1368 * 0.0165 0.1057 * 0.0153

Calculated a
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THEORETICAL and EXPERIMENTAL ISOMERIC

CROSS SECTION RATIOS for Cs-134, 134m
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4.4 Rhenium-188,188m Isomers

The average experimental isomeric cross section ratios for Re-188,188m

were 0.1578 * 0.0145, 0.1618 * 0.010, and 0.1381 ± 0.0124 for RSR, thermal,

and epi-cadmium energy neutrons respectively.

The angular momentum of the parent nuclide Re-187 was I = 5/2. The

angular momentum of Re-188m and Re-188 were 4 and 1 respectively, there is

also an intermediate level with angular momentum 2.

Theoretical ratios were determined by assuming th^t all excited states

with angular momenta equal to or greater than 4 would populate the metastable

state following the emission of the last gamma ray.

Using a o » 3, J I - 1/2 = 2, and N between 4 and 5 theoretical ratios

were between 0.1386 and 0.1737, Table X, this range includes the experimental

values, Figure 18.



Table X. Isomeric cross section ratios for

Re-188,188m using (n,y) reactions.
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—

Target
Spin (I)

Competing
levels

Capturing
state

Level density
factor (o)

N
Y

Calculated
ratio

5/2 4, (2), 1 J = I + 1/2 = 3 3

3

3

3

4

5

0.2741
0.2992
0.3013

4

4

4

3

4

5

0.3512
0.3952
0.4120

5

5

5

3

4

5

0.3896
0.4427
0.4670

00

00

00

3

4

5

0.4606
0.5291
0.5660

5.15
+

3.75 +

2.99 +

2

3

4

0.3805
0.3616
0.3648

5/2 A, (2), 1 J = I - 1/2 = 2 3

3

3

3

4

5

0.1065
0.1386
0.1737

4

4

4

3

4

5

0.1429
0.1938
0.2475

5

5

5

3

4

5

0.1621
0.2234
0.2868

00

00

00

3

4

5

0.2000
0.2815
0.3630

5.15
+

3.76+

2.99 +

2

3

4

0.0000
0.1466
0.1698
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Table X (continued)

Experimental Ratios

RSR energy Thermal energy Epi-cadmium energy

0.1578 * 0.0145 0.1618 ± 0.0100 0.1381 * 0.0124

t
Calculated a
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ISOMERIC CROSS SECTION RATIOS
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4.5 Conclusions

Matching experimentally determined isomeric cross section ratios with the

corresponding theoretically calculated ratios for the three isomeric pairs

Sc-46,46m, Cs-134,134m, and Re-188,188m led to the following conclusions:

1.) In the case of Re-188,188m, theoretical and experimental values

agreed very well for a a between 3 and 4, N =4 and J = I - 1/2,

Figure 18. Also, very good agreement was found using a calculated

a when N = 4 and J = I - 1/2, Table X. It is to be noted that in
Y

both cases agreement was obtained for J = I - 1/2 and that values

obtained using J = I + 1/2 were far from being in agreement with

experimental values.

2.) In the case of Cs-134,134m, theoretical and experimental values

agreed for a o between 7 and 8, N =6 and J = I + 1/2, Figure 17.

Using a calculated a, experimental ratios were greater than the

theoretical values. Also, theoretical cross section ratios obtained

using J = I + 1/2 were in much closer agreement with the experimental

values than for J = I - 1/2.

3.) For Sc-46,46m the theoretically calculated values were always less

than those experimentally determined for all values of o provided N

was less or equal to 6, Figure 16. The average number of gamma rays

emitted from an excited nucleus is approximately 4 (15) . In this

work N = 6 was chosen as an arbitrary maximum, although agreement

could have been obtained between theoretical and experimental ratios

by increasing N above 6.
Y

4.) The statistical model seems to be applicable to the Re-188,188m

isomeric pair for the same range of o (3 to 5) and N = 4 as found
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to give agreement in several other cases reported in the literature

(4), and (31). On the other hand, agreement in the case of Cs-134,

134m was only obtained by using higher values of N and o. For Sc-46,

46m the statistical model does not seem to hold.

5.) For the experimentally determined isomeric cross section ratios no

obvious energy dependence was noted with the exception that the

ratios were higher for thermal energy neutrons than for either RSK

or epi-cadmium energy neutrons, Figure 19. As expected, the ratios

determined for RSR and epi-cadmium energy neutrons were in agreement

within the limits of experimental error.
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5.0 SUGGESTIONS FOR FURTHER STUDY

In this work isomeric cross section ratios were studied using (n,y)

reactions produced by reactor neutron bombardment. Although extensive work

has been done using this type of reaction there are still several isomers

which have not been investigated, e.g., Y-90,90m, Pd-109,109m, Pd-lll,lllm,

Yb-177,177m, and Pt-199,199m.

Isomeric cross section ratios may also be determined for (n,xp) , (n,2n),

(p,n), (p,p), and (y»n) reactions where the p represents some type of charged

particle and x is an integer. Relatively little work has been done using any

of the above reactions.

Newer models of nuclear structure are being developed and calculations

similar to the ones done in this investigation will be needed to check the

applicability of these models.
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APPENDIX A

Description of IBM-1620 Computer Program
Used to Calculate Theoretically Isomeric

Cross Section Ratios.

The following program computes the isomeric cross section ratio for

isomers produced by (n,y) reactions. The probability of the excited nucleus

decaying from a state J, to state J
f , following gamma ray emission, is assumed

to be proportional to the density of final states with spin J
f

. The total

normalized yield of J ^ is given by the following formula:

J +1

\
/

P(J )6
f J J

— \ i f

? J.+Ji
1

/ H P(J
* :

vi j
f
-*i

\ J
f=i

Jr l
l

F
j >

—— ^— (A-D

where

P(J
f
) = (2J

f
+ l)exp[-(J

f
+ l/2)

2
/2o

2
] (A-2)

and

6
j j 1 if

l

J
i

" J
f I 1 * 1 l

J
i
+ J

f I
(A" 3 >

if

= otherwise ,

where % is the multipolarity of gamma emission and a is the level density

factor.

Constant and calculated values of o were used, a was calculated using

o 2 = $ (A-4)
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where the rigid moment of inertia A isB RIGID

A = 2/5 mAR2 (A-5)
RIGID

and the nuclear temperature T is given by

E . , = aT
2

- T (A-6)
n+1

also the average energy of the gamma ray emitted is

E • = E - E ^ - 4(E /a - 5/a2 )
1/2 (A-7)

yn+1 n n+1 n

where

1i = Plancks constant divided by 2tt

m = nucleon mass

A = atomic mass

R = radius of nucleus

a = A/8

E = energy of excited level before emission of n gamma ray

st
E , , = energy of excited level before emission of n+1 gamma ray

If E - E , , is less than or equal to zero the program will halt since

s t
the energy of the n+1 gamma ray would be less than or equal to zero.



LOGIC DIAGRAM FOR
APPENDIX A

07

f START :

( READ IN

V PROGRAM

CALC

SIGMA

<-i

CALC
FML, FLL, |<-

SUM

NGE =

NGE-I

—>(yes j—

»

GO TO

90

GO TO

809
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Table A. Symbols used in the theoretical isomeric cross

section ratio calculations.

Symbol Meaning

NFJI

FJK(I)

SIGMA

AORIG

AFORM

ANEUT

E0

NGE

ULL

BLL

FML

FLL

RHO(I)

I

L

CJI

JI

JFI

JF

FJF

FJFS(I)

Equals I + 1/2

Probability that state J . = y is formed upon
neutron bombardment

Level density factor

Atomic mass of the original nucleus before
neutron bombardment

Atomic mass of the excited nucleus

Neutron mass

Excitation energy following neutron bombardment

Number of gammas emitted

J
f
+ H upper limit on outer sum

|J
f

- 2. 1 lower limit on outer sum

J . + I upper limit on inner sum

| J. - l\ lower limit on inner sum

Level density

Spin of the original nucleus

Multipolarity of gamma ray emitted

Angular momentum, 0, 1, 2, ...., 1+ 1/2

Momentum after neutron bombardment

Probability that the momentum is JI

Momentum after gamma emission

Probability that the momentum is- JF

Same as FJF
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C NORMALIZED SPIN DISTRIBUTION IN NUCLEAR REACTIONS
C FOLLOWING GAMMA RAY EMISSION USING A CALCULATED
C Of? A CONSTANT SIGMA 11/25/64 G. G. SIMONS
r

c

DIMENSION RHO( 100) ,FJK ( 100 ) ,FJFS( ICO) ,PJF( 100)
10 FORMAT! 1X12HENERGY LEVEL

»

3X12HR I G I D MOMENT 8X5HS I GMA . 9X4HTEMP

)

11 FCRMAT(3X7Hl=JC-.5.7X7HI=JC-» . 5»8X6HFJK( 1

)

»8X6HFJK(2) )

1

2

FORMAT (2XE10.4»6XE1 0.4 »4XE 10.4 »4XE 10.4 »// )

99 FORMAT ( 13 )

109 F0RMAT(50H )

111 FORMAT (F6.3)
775 F0RMAT(24X36HMULTIP0LARITY OF GAMMA-RAY EMISSION 12)
776 F0RMAT(46HN0R. SPIN DIST. AFTER EMISSION OF GAMMA RAY NO 12.//)
778 FORMAT(24X20HSPIN CUT OFF FACT0R=F6.3)
7R0 FORMAT(2X2HJI .8X3HJFI 9X2H JF . 8X3HF JF 10X9HSUM FJF)
78? FORMAT (F5. 1.1XE15.8,1XF5.1.3(1XE15.8))
783 FCRMAT(22XF5.1 .2MXE15.8) )

990 FORMAT < E 1 5 . 8 5XF5 . 1 )

6616 F0RMAT(4( E10.4) )

6617 F0RMAT(4X31HENERGY OF EMITTED GAMMA RAY IS F10.4.//)
6663 FCRMAT(4(E15.8 ) )

7779 FCRMAT(?4X18HJF(MAX)=JI(MAX)+L=F6.2.//)
1001 DO 101 1=1,100

PJF( I )=0.0
RHO( I) =0.0
FJK( I )=0.0
FJFS( I )=0,0

101 PJC( I )=0.0
100 READ 109

PUNCH 109
Q001 READ 99.NFJI

DO 142 I = ltNFJI
142 READ 990tpJK( I

)

»CJI
NGF = 10.

QOn? NGC=1
RFAD 99.LL
GO TO (98.908) »LL

908 READ 6663.ACRIG.AFCRM.ANFUT.AA
READ 99 • L

EO = ( (ACRIG+ANEUT)-AFCRM)*931.
A = AA/8.
RR = ( 1.2E-13*( AA**< 1./3. ) ) )**2

RIGID = .4*1 .6745E-24*AA*RR
809 YY=( (EO/A)-(5./A**2) )

IF(YY) 1001,1001.338
338 EGAM = 4.*SQRT(YY)

FN = EO-FGAM
TFMP = ( ( 1 ./A)+SQRT( ( 1 ./A ) **2+4 .*EN/A ) )/2.
SIGMA = SQRT(RIGID*TEMP*1.4406E+28)
SIGMA = SIGMA*1.F+10
EO = EN
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GO TO 6666
or p

c

a n 99 . N G

F

on RFAD 111 SIGMA
PFAD 99 , L

*666 PUNCH 776, NGC
PUNCH 778, SIGMA
CL = L

PUNCH 775 ,L

FJMAX=CL+CJI
PUNCH 7779,FJMAX
J = CJI
CJ = J

1=0
IF(CJI-CJ) 133, 134*133

133 FJ1=0.5
CO TO 155

134 FJ] =0.
155 FJ=FJ1
255 1=1+1

ARG=-( ( (FJ+.5)**2.)/ <2.*S1GMA*SIGMA) )

RHO( I ) = ( 2.*FJ+1. )*EXP(ARG)
FJ=FJ+1.
IF(FJ-FJMAX-2.*CL>25 5,2 55»2 56

256 FJS=FJ1
J = l

37? ULL-FJS+CL
BLL=ABSF(PJS-CL )

CJ = BI I.

IF(FJ1 )88, 1813, 1812
1813 JT =CJ

GO TO 375
1812 JI =CJ-.5
375 FM[_ = CJ + CL

FLL=ABSF( CJ-CL

)

CI=FLL
I F(FJ1 )88, 1814, 1815

1 814 I =C

I

GO TO 1816
1 81 5 I =C I -.5
1816 SUM=0,
370 SUM = SUM+RHO( 1 + 1 )

1 = 1+]

CI=CI+1.
IF(FML-CI )371,370,370

371 IF(SUM) 1371 ,1372,1371
1371 FJFS( J)=FJFS( J)+(FJK< J1+1)*RH0( J )/SUM)
1372 CJ=CJ+1.

JI=JI+1
IF(ULL-CJ)373,375,375

373 J=J+1
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FJS-FJS+1.
IF(FJMAX-FJS)3 74.3 72.37 2

**74 FJ = FJ1
FSUM=0.
AVF=n.
dc ??? 1=1 »j
AVE=FJ*FJ*FJFS(

I

)+AVE
22:? FJ = FJ+1.

JJ=FJMAX+I.
1 = 1

SUM=0.
PUNCH 780
SUM=SUM+FJFS( I

)

FJ=FJ1
PUNCH 781.FJ.FJM I

)

»FJ»FJFS( I ) .SUM
I F(NFJI-1 )88.1264»1263

1 263 DC 263 I=2»NFJI
FJ=FJ+1.
SUM=SUM+FJFS( I )

263 PUNCH 782»FJ,FJK( I ) ,FJ,FJFS( I ) .SUM
1 264 FJ=FJ+1.

I=NFJI+1
150 SUM=SUM+FJFS( I )

PUNCH 783»FJ»FJFS( I ) .SUM
1 = 1+1
FJ=FJ+1.
IF(FJMAX-FJ) 140.150.150

140 NGF=NGF-1
NGC=NGC+1
TF(NGF-1)19. 18.18

18 DC 166 1=1.100
FJK( I )=FJFS( I )

RHC( I )=0.
166 FJFS( I )=0.

NFJI=NFJI+L
CJI=FJMAX

19
88

GC T:

GC t:

STCP
END

(90.809) »LL
1001
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APPENDIX B

Description of IBM-1410 Computer
Program Used to Fit Photopeak Experimental

Data to Gaussian Curves.*

To evaluate the isomeric cross section ratio it was necessary to deter-

mine the gamma ray photopeak area. This program written in FORTRAN II per-

forms an iterative calculation, using the method of least squares and Taylor's

expansion, to "best fit" photopeak experimental data to Gaussian Curves.

The photopeak of a gamma ray spectrum obtained by using a Nal(Tl) crystal

is normally distributed. A normal distribution, often called a Gaussian dis-

tribution, has a density function

n(x) -X. exp[-(x - xn ) /2o ]
(B-l)

y2TT £
u

the area under this curve is unity, that is

CO

/ n(x) dx = 1 . (B-2)
— 00

Integrating over a finite interval will give the total peak area. Using the

equations

S(x) = S exp[-(x - x )

2
/2o

2
] (B-3)

max o —

and

CO

AREA = / S
max

exp[-(x - x
Q )

2
/2£

2
]dx = S

max
o ^2P (B-4)

— CO

where

x = channel number corresponding to the peak count

* Subprograms GAUSS and FUNCT programmed by Dr . J. 0. Mingle were used with

slight modifications.
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= channel number

S = peak count rate
max r

2
o_ = variance or spread of photopeak

The portion of the photopeak that was fit to the Gaussian curve was one channel

less than 0.5 S on the low energy side and one channel greater than 0.3 Smax OJ b max

on the high energy side. This was an arbitrary choice.

The method of least squares was used where the minimum squared error is

E = I IS. - S exp[-6(x. - x )

2
]j

2
. (B-5)L

. ' i max ^ l l o J
'

l

In equation (B-5)

3 - l/(2o 2
) (B-6)

S. = i tSl count rate
i

x. = i channel number .

l

Taking the partial dervatives of E gives

\ -
|§

- - 2 I {[S
t

- Smax exp[-e(x
1

- x
o )

2
]] (B-7)

[-S
max

exp[-S(x
1

-
Xo )

2
)] [-(.j-x/lj

or

R = IE = o = y JS ,-S exp[-g(x. - x ) ]

j

1 3g h l i max ri HX I o '

expt-BCx^ - x )
2 ](x.-x )

2

i o l o

(B-8)

and (B-9)

R
2

=
^T

=
°

=
?

fS
i

" S
max

exPt"^xi " x
o
)2

!
«*[-*<*! "V^VV3x

o
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To determine x and B, R, and R
?
were expanded in a Taylor's expansion,

3R. 3R.

1 10 o oo 3v ° 3B
(B-10)

or

3R 3R
R, = = Rin + Ax —t + AB —i-

1 10 ° 8x 36
o

(B-ll)

and

3R
R
2

= = R2Q + Ax
Q
_J + Af

3R,
(B-12)

Eqs. (B-ll) and (B-12) contain 2 unknowns AxQ and AB. These may be determined

by forming the matrix

G
ll

= Rl<V e)

G
2l

= R
1
(1.05x

o
,B)

G
31

= VV 1 * 05^

G
12

= R
2
(x

o
,B)

G
22

= R
2
(1.05x

q
,B)

G
32

= R
2
(x

o»
1 * 056)

and evaluating each "G" element in the matrix by using Eqs. (B-8) , (B-9) and

experimental data. The partials of R, and R
2

can then be determined using the

above matrix elements. The above "G" terms are redefined as

3R

'21
1

R
1
(1.05x

Q
,B) - R

1
(x

o ,B)

3x. 0.05x
(B-13)

3R

'22
2

R
2
(1.05x

o
,B) - R

2
(x

o
,B)

3x 0.05x
(B-14)

3R1 R!(x
o
,1.05B) - R

1
(x

Q
,B)

31 3B 0.05B
(B-15)

3R
2

R
2
(x

o
,1.05B) - R

1
(x ,6)

32 33 0.05B
(B-16)
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Using the standard matrix method Eqs. (B-ll) and (B-12) can be solved for

Ax
,

Ax = —n 32 12 31
fB-17)

° G G - G G
21 32 22 31

and from Eq. (B-ll)

-G ni
- G 01 Ax

Ag = —it -A± 2_ (B-18)
G
31

This is only the first approximation to Ax and A3. To check the approxima-

tion a new x and 3 were calculated

2
x = 1

x + A
X
x (B-19)

o o o

and

2
B = 1

B + A
1
g (B-20)

where the superscripts correspond to the number of iterations. From Eq. (B-3)

2
Smav

2
Smav exp[(x„ - x

rtrt
)(x„ - x J/2o

2
]

(B-21)
max max ri o oo o oo — J

o

or

2 2 2
S = S exp[6(x - x ) ] . (B-22)
max maxQ o oo

If at this stage Ax <<x and A3 <<: 6 then an accurate value for x^ and 3 has° o o o

been determined. Iteration was continued until this was true. The total peak

area, following the k iteration, is given by

AREA -
k
S =

R
S o (2ir)

1/2
(B-23)

max —

where

o = -±— (B-24)- (26)1/2



116

LOGIC DIAGRAM FOR

APPENDIX B

start:
READ IN

PROGRAM

PUNCH

IMINS, I MAX

€>
CALL

FUNCT

CALCULATE

MATRIX ELEMENTS

G M G|2

G 2 |
G 2 2

G 3I G 32

READ
IN

DATA

CALL

GAUSS

Z3Z
DETERMINE

S(J) < 0.3 SMAX FOR I+l < IMAX

S(J) < 0.5SMAX FOR I -I < IMAX

PUNCH
XZ, XL,

SMAX, N

RETURN
TO

GAUSS

CALCULATE

MATRIX ELEMENTS

G 2 |
G22

G 3I G 32

CALCULATE
XZ, XB,

SMAX

SOLVE TAYLORS
EXPANSION FOR

DZ AND DB

RETURN CALCULATE

SIGMA

CALCULATE

XL, AREA

PUNCH
SIGMA,

SMAX, AREA
END
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Table B. Symbols used in the fitting of data to a Gaussian curve.

Symbol Meaning

CHMAX

CHMIN

X

S(J)

SMAX

AMAX, XZERO

IMINS

IMAX

XZ

XL

N

XB

DZ

DB

SIGMA

LAMBDA

AREA

GAUSS

FUNCT

Maximum channel number used as input data

Minimum channel number used as input data

Channel number

Count rate of J data point

Maximum count rate

Channel number corresponding to SMAX

Lowest channel number used in the curve fitting

Highest channel number used in the curve fitting

Same as IMAX

Lambda = l/o_

Number of iterations

2
Beta = l/(2£ )

AxQ = xQ - xQO

AB = 6 - 3Q

Standard deviation of Gaussian curve (a)

A = l/o

Area under Gaussian curve

Name of subprogram which fits experimental data
to Gaussian curve

Name of subprogram which forms matrix elements
from 8E/86 and 3E/8x„
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The sense switches do not alter the program on off position. Only

sense switch one is used. When it is on, the following additional statements

are executed

PUNCH IMINS, IMAXS

Calculate XL, AREA after each iteration

PUNCH AREA, XZERO, LAMBDA, SMAX, N.
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C

C

SO

100

MAI N

GAUS
FORM
FORM
FORM
DIMF
COMM
READ
READ
IMAX
JJ =

KK =

DO 1

READ
CALL
SIGM
ARFA
WRI T

WRIT
GO T

CALL
STOP
END

PR
SI A

AT(
AT(
ATI
NSI
ON
IN

IN

CH
CH

00
IN

GA
A =

: 5

EX

OGRAM
N CUR
4F1.0.
?H0»4
2 X * E

1

ON CH
COUNT
PUT T

PUT T

AMAX
MIN
MAV
I - J

put t

USS( I

i./x
SMAX*
UTPUT
UTPUT

IT

TO FIT EXPERIMENTAL PHOTOPEAK DATA TO A

VE PROGRAMMED RY SIMONS
0)
X^HX ZERO, 1 2 X5H SIGMA, 1 2 X4HSMA X , 1 2X4 HA RE A

)

4.8,3 ( 2XF14.8 )

)

AN(200) ,COUNT( 200)
.CHAN
APE 5,1, CHMAX,CHMIN
APE 5,1, AMAX, SMAX

J,<K
APE 5*1 CHAN! I ) , COUNT ( I

)

MAX, SMAX, XZ,XL, AREA)
L

( 1 . /XL)*SQRTF( 2.*3. 141 5926)
TAPE 6,2
TAPE 6.3. XZ.SIGMA. SMAX. AREA

C LEAST SQUARES FIT TO GAUSSIAN PROGRAMMED BY MINGLE
C MODIFIED BY SIMONS
C SS 1 ON FOR IMINS* IMAXS, XZ» XL ITERATION PRINTOUT

SUBROUTINE GAUSS ( 1 MAX* SMAX *XZ » XL. ARE A)
DIMENSION G(3.2).XX(2).X(2 00).S(200)
COMMON S.X
N = l

XZ=IMAX
SMAX] =SMAX
TMAX1=IMAX+1
DO 200 I=IMAX1 .40n
IF( .3*SMAX-S( I ) ) 2 00. 2 00 .201
IMAXS=I
GO TO 202
CONTINUE
DO 210 I=IMAX1.400
J=2*IMAX-I
IF( .5*SMAX-S( J) )2 10*210*211
IMINS=J
XL=SORTF( .69 31471 8) /FLOAT ( I MAX- J)

GO TO 212

201

200
202

21 1
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210 crwTINUF
21? XR=.5*XL**?

IF1SFNSF SWITCH 1)400,411
400 WRITE OUTPUT TAPE 6 . 450 . I M I NS . I MAXS
450 F0RMAT(?H0 .7HIMIN = I5.4X7HIMAX = 15./)

WRITE OUTPUT TAPE 6.451
451 F0RMAT(2H0 .4X6HX ZERO , 12X6HLAMBDA , 13x4HSMAx .9xlHN//

)

451T F0RMAT(2H0»6X4HAREA)
401 IF(SENSE SWITCH 1)499.411
499 XL=SORTF(,:.*XB)

AREA = SMAX*( 1 . /XL ) *SQRTF ( 2. *3. 1415926)
WRITE OUTPUT TAPE 6 452 .XZ .XL .SMAX »N
WRITE OUTPUT TAPE 6. 4511

45? E0RMAT(2X.E14.8.?(4XE14.8) .15)
WRITF OUTPUT TAPE 6.452. AREA

411 XX( 1 )=XZ
XX(2 )=XB
DO 300 1=1.2
CALL FUNCT(XX(2 ) .XX ( 1 ) , IM I NS . IMAXS.G( I ,1 ) »G( 1 ,2) .SMAX)

300 XX( 1 )=XX( 1 )*1.05
XX( 1 )=XZ
XX(2)=XX(2)*1.05
CALL FUNCT(XX(2 ) .XX ( 1 ) , I MI NS . I MAXS »G < 3 1 ) .G(3»2) .SMAX)
XX( 2)=XR
00 301 J=?.3
DO 301 1=1 ,2

301 G( J, I ) = (G( J. I )-G( 1 , I ) )/( .05*XX( J-l ) )

DZ=(-G( 1 .1 )*G( 3,2)+G( l.?)*G(3.1 ) )/(G(2.1 ) *G < 3 »2 )-G ( 2 .2 ) *G ( 3 • 1 ) )

DB=(-G( 1.1)-G(2.1 )*DZ)/G(3.1 )

XZ=XZ+DZ*0.5
XB=XB+DB*0.5
N = N+1
SMAX=SMAX1*EXPF(XB*( FLOAT

(

IMAXl-XZ )**2)
IF(ABSF(DZ/XZ)-l.E-6 ) 305. 305. 401

305 IF(ARSF<DB/XB)-l.E-6 ) 306.306.401
306 XL=SORTF( 2.*XB)

ARFA = SMAX*( l./XL)*SORTF( 2. *3. 1415926)
RETURN
FND

: GAUSSIAN FUNCTION PROGRAMMED BY MINGLE
SUBROUTINE FUNCT ( XB . XZ

.

IMI N . I MAX. Rl .R2 .SMAX

)

DIMENSION S( 200) »X( 200)
COMMON S.X
R1 = 0.

R2 = 0.
DO 100 I='MIN.IMAX
A = XB*(X( I )-XZ)**2
C=FXPF(-A)
Rl=Rl+( S(

I

)-SMAX*C)*C*A/XB
100 R2 = R?+(S( I )-SMAX*C)«C*(X( I )-XZ )

RETURN
END
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APPENDIX C

Description of IBM-1620 Computer Program Used to Calculate
Isomeric Cross Section Ratios from Experimental Data

Section 3.1 contained a development of the equations used to calculate

isomeric cross section ratios from experimental gamma ray spectra data.

For the case where no appreciable decay occurred during counting the

equation obtained was

A t
((>1)

6
2 1 , <Ww2 e

2 ^
n -V ,

A
2 -V -VUl

67
=

^TTT 1 V~ (1 - e )_ VS (e
"

e )1_1
1 /. 2 ) ,. „ N lwl 12

(1 " e (XlVwl e

where

<Xl"l>wl
A
1
E
T2

For the case where significant decay did occur during counting, the

equation obtained was

-At At -

6
X

X
l
N
tl

(1 " e > e

67+67
=

r
A
2 .. "Alt -A 2 t . =*PxT

(C' 3)

1 2 {(A
2
N
2
) - (- _ x

)[e - e ] \(1 - e )

where

A

X
2
C
w2

A 6

AN = -r
2— (C-4)

2 2 E^

and

N -^ (0-5)
ti fc

T1
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This program, called ISOMERIC CROSS SECTION RATIOS and written in

FORTRAN II, uses the half lives of the isomers, irradiation, decay and

counting times, photopeak area and detector efficiencies to determine the

cross section ratios from Eq. (C-l) or Eq. (C-2) above.

The area due to photoelectric gamma ray interaction with the Nal(Tl)

crystal is computed by subtracting the area due to Compton scattered gamma

rays (Appendix D) from the total area under the photopeak. This total area

was calculated using the PHOTOPEAK program, Appendix B.

The deviation listed is the standard deviation due to counting statistics,

i.e., square root of the count rate.

Table C lists and defines the input and output symbols used.



Table C. Symbols used in the experimental isomeric
cross section ratio calculations
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Symbol Meaning

TRANS

AMETA

STAB

TW1

TE1

TCI

TW2

TE2

TC2

CHL01

CHHI1

CRL01

CRHI1

CHL02

CHHI2

CRL02

CRHI2

HALF1

HALF2

1 if no decay occurs during counting and 2 if

decay occurs during counting

Total peak area of metastable state given in

counts per x minutes

Total peak area of stable state given in counts
per y minutes

Time after irradiation until start of count for

metastable state

Irradiation time of metastable state

Counting time of metastable state (x minutes)

Time after irradiation until start of count for

stable state

Irradiation time of stable state

Counting time of stable state (y minutes)

Minimum channel number of metastable state

Maximum channel number of metastable state

Sample count rate minus background corresponding
to channel CHL01

Sample count rate minus background corresponding
to channel CHHI1

Minimum channel number of stable state

Maximum channel number of stable state

Count rate minus background corresponding to CHL02

Count rate minus background corresponding to CHHI1

Half life of metastable state in minutes

Half life of stable state in minutes



124

Table C (continued)

Symbol Meaning

EFF1

EFF2

CROSS

DEV

X

Y

Efficiency of detector for metastable state

Efficiency of detector for stable state

Cross section ratio

Standard deviation

See Figure D

See Figure D
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SIMONS
TWO IF

)

C ISOMERIC CROSS SECTION RATIOS PROGRAMMED BY G G
C TRAMS IS ONE IF NO DECAY OCCURS DURING COUNTING AND IS
C DECAY OCCURS DURING COUNT INC

If) FORMAT (50H
20 F0R.1AT(6F10.01
30 F0RMATI4X19HCR0SS SECTION RAT I ,4X9HDE V I AT I ON

)

AG F0RMAT(5>XE14.8.6XE14.8)
41 RFAD 10

RFAD ?u,av,FTA, STAB, TRANS
RFAD 2CTW1 »TE1»TC1 ,TW2»TE2»TC2
RFAD 21- »CHL01,CHHI 1 CRLC1 , CRHI 1

RFAD 20,CHL02»CHHI2»CRL02»CRHI2
RFAD 20* HALF! HALF2
RFAD 2CEFF1 ,EFF2
CH'.Ol = CHL01 + 1.
CH.-II2 = CHHI2-1.
CHL02 = CHL02rl.
CHHI1 = CHHI1-1.
AMETA =AMETA/TC1
STAB = STAP/TC2
CO^Pl = ( (CRHI1+CRL.01 )/2. ) *< CHHI 1-CHL01 ) /TCI
COMP? =

( ( CRHI 2+CRL02 ) /2. ! * ( CHH I 2-CHL02 ) /TC2
PH0T1 = AMETA-CO^P]
PHOT? = STAB-C0MP2
ALAM1 = 0.693/HALF]
ALAM? = 0.693/HALF2
IF(TRANS) 1.2

1 BUS = l./( l.-EXP(-ALAM2*TE2) 1

CUS=(EFF1/EFF2 ) * ( PHOT 2 /PHOT 1 ) *EXP ( ALAM2*T W2 ) /EXP ( ALAM 1*TW 1

)

DUS = 1 .-EXP(-AI_AM1*TE1 )

FUS=( ALAM2/( ALAM1-ALAM2) )* ( EXP < -ALAM1*TE1 ) -EX° { -ALAM2*TE2 )

)

RAT = BUS*(CUS*DUS-FUS)-1.
CROSS = 1 ./( 1 . + RAT )

GO TO 3

? BUS = ALAM]#PHCT1*TC1*U.-FXP(-ALAM2*TE2) )/EFFl
CUS=PH0T2*EXP( ALAM2*TE2 ) /EFF2
DUS=( ALAM2/( ALAM2-ALAM1 > ) *

(

EXP ( -ALAM1 *TE 1 ) -EXP ( -ALAM2*TE2 )

)

FUS = 1./(EXP(-ALAM1*TW1)*U .-EXP(-ALAM1*TC1) )

)

CRCSS=(BUS/(CUS-DUS> )*FUS
3 DEVI = SORT< (AMETA/TC1 ) + (CCMPl/TCl H

DEV2 = SQRT( (5TAB/TC2) + (C0MP2/TC2) )

AM = (DEV1/PH0T1)
AG -- (DEV2/PH0T2)
DEV = ( AM+AG)*CROSS

10PUNCH
PUNCH
PUNCH
GO TO
END

30
40
41

CROSS, DEV
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APPENDIX D

Subtraction of Compton Scattered Gamma Rays from the Photopeak Area

As mentioned in Section 3.5 experimental photopeak data were fit to a

Gaussian curve, and then the counts due to Compton scattered gamma rays fall-

ing under the photopeak were subtracted. The following explains how the

Compton distribution was subtracted.

As seen in Figure D the photopeak curve begins to deviate from the

Gaussian curve for channel numbers with count rates less than 1/2 S_„ v on the

low energy side and less than 1/3 S on the high energy side of the peak.J max & oj

To determine the correct area due to Compton scattered gamma rays the following

steps were executed for each gamma ray photopeak investigated:

1.) Gamma ray photopeak was plotted.

2.) Gaussian curve was hand fitted to the photopeak.

3.) Line AB was drawn (Figure D) between the points of minimum count

rate on each side of the peak.

A.) Point of intersection between line AB and Gaussian curve was found,

this determined the number of channels X and Y (Figure D)

.

5.) Area of Gaussian curve below line AB was determined, this was the

Compton area portion of the Gaussian curve.

Several photopeaks were plotted for each gamma ray investigated. X and Y were

found invariant for each energy gamma ray. Feeding the channel numbers with

the minimum count rates on each side of the peak into the computer and fixing

X and Y for each energy gamma ray, the area due to Compton scattering was

therefore determined. This area was subtracted from the Gaussian area.
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ABSTRACT

Isomeric cross section ratios using (n,y) reactions induced by reactor

neutron bombardment were determined in this work for the isomeric pairs Sc-46,

46m and Re-188,188m, which have not been investigated before, and for the

isomeric pair Cs-134,134m which was previously studied (1) using a different

approach from the one used in this investigation.

The TRIGA Mark II Reactor was used to irradiate samples of scandium

oxide, cesium oxide, and rhenium metal in the following locations/conditions;

rotary specimen rack/bare, rotary specimen rack/cadmium covered, and thermal

column/bare. The corresponding neutron energies in these locations will

henceforth be designated as RSR, epi-cadmium, and thermal respectively. The

cross section ratios were determined by a modified absolute counting method

using a 3 x 3 inch well scintillation detector and a 256 channel analyzer.

The IBM-1410 computer was programmed to determine the area under the photo-

peaks by fitting the gamma photopeak data to a Gaussian curve using a least

squares method combined with Taylor's expansion. The IBM-1620 computer was

programmed to subtract the area due to Compton scattered gamma rays from the

total area under the photopeak found above and then to calculate the experi-

mental isomeric cross section ratios.

Isomers
Neutron Energy

RSR Thermal Epi-cadmium

Sc-46, 46m

Cs-134,134m

Re-188,188m

0.4955*0.0630

0.0952*0.0178

0.1578*0.0145

0.5645*0.0365

0.1368*0.0165

0.1618*0.010

0.5048*0.0500

0.1057*0.0153

0.1381*0.0124



Each value given in the above table is an average of at least 9 individual

results obtained from completely independent experiments.

The isomeric cross section ratios were also calculated using the sta-

tistical model for compound nucleus formation. By matching the theoretically

calculated and experimentally determined cross section ratios the applica-

bility of this model was determined for the isomeric pairs studied.

The following conclusions were drawn:

1.) In the case of Re-188,188m, theoretical and experimental values

agreed very well for a a between 3 and 4, N =4 and J=I-l/2
Y

where I is the angular momentum of the parent element (Re-187)

.

Also, very good agreement was found using a calculated a when

N =4 and J=I-l/2. It is to be noted that in both cases agreement
Y

was obtained for J=I-l/2 and that values obtained using J=I+l/2

were far from being in agreement with experimental values.

2.) In the case of Cs-134,134m, theoretical and experimental values

agreed for a between 7 and 8, N =6, and J=I+l/2. Using a calcu-

lated a, experimental ratios were greater than the theoretical

ratios. In constrast to the case of Re-188,188m, theoretical

cross section ratios obtained using J=I+l/2 were in much closer

agreement with the experimental values than those obtained using

J-I-l/2.

3.) For Sc-46,46m, the theoretically calculated values were always

less than those experimentally determined for all values of a

provided N was less than or equal to 6. The average number of

gamma rays emitted from an excited nucleus, as stated by several

investigators, is approximately 4. In this work N =6 was chosen



as an arbitrary maximum, although agreement could have been ob-

tained between theoretical and experimental ratios by increasing

N above 6

.

Y

4.) The statistical model seems applicable to the Re-188,188m isomeric

pair for the same range of o (3 to 5) and N =4 as found to give

agreement in several other cases reported in the literature. On

the other hand, agreement in the case of Cs-134,134m was only

obtained by using higher values of N and a. For Sc-46,46m the

statistical model does not seem to hold.
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