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NOMENCLATURE

r,e,z cylindrical coordinates used to describe the
undeformed configuration of the plate

h thickness of the plate

a outer radius of the circular plate

b outer radius of the mass

p mass density of the plate

t time variable

u,w radial and transverse displacements of the
middle plane, respectively

€ ,e„ total strains in the radial and
r e

circumferential directions, respectively.

o o

€ ,€^ radial and circumferential strains acting on
r e

the middle plane, respectively

c ,c^,c radial, circumferential and normal stresses,
r e z

respectively

N ,N membrane forces per unit length

T ,T kinetic energy of the plate and of
p m

concentric rigid mass, respectively.

U , U, strain energy due to stretching of the

middle plane and due to bending of the
plate, respectively

W work done on the plate by external forces

V/,^) stress functions

M ,M bending moments per unit length
r

q(r,t) time-variant loading intensity

Iv



E ,E ,E material constants in the directions
r e re

indicated by subscripts,

a ,a ,a elastic constants (compliance coef f iciences)

R radius ratio, = b/a

y mass ratio

a elastic constant ratio, = E^./E
r6 r

B elasitc constant ratio, = E./E

C elastic constant ratio, = E /E
r "

V Poisson's ratio, = a/fi

3
D flexural rigidity of the plate, = Eh /12

I action integral for the vibrating system

SI first variation of I

n,C admissable variations of w and u,

respectively

€ arbitrary infinitesimal constant

^,T dimensionless space and time variables,
respectivley

5W virtual work of transverse forces

X dimensionless transverse displacement

Q(?).Q (?) dimensionless loading densities

9{?)»f(?) shape functions

A,Af amplitude parameters

X nondimensional eigenvalue

u nondimensional angular frequency

cj, linear angular frequency

V



y,Z,H (6x1) vector functions

[M],[N] coefficient matrices

"ri missing initial values

VI



Chapter I INTRODUCTION

Anisotropic materials play an important role in modern

technology, because lots of new anisotropic materials, such

as reinforced plastics and composite materials, are being

used in missiles, aircraft, space vehicles, pressure

vessels and parts of structures to meet the special

requirements

.

In the past, materials, regardless of their

composition, were usually considered to be homogeneous and

isotropic because such assumptions make calculation simple.

However, these simplified assumptions often lead to

inadequate or incorrect results. Today, to meet the

sophisticated technology requiremehts , we need to consider

the anisotropic property of materials, that is, the

differences in elastic properties of materials in various

directions.

A circular anisotropic plate whose material symmetry

of aeolotropy at a point is in radial and tangential

directions is called an orthotropic plate.

The governing differential equations describing the

motion of thin circular plates, in general, are nonlinear

and coupled. Due to the complex nature of the resulting

governing equations, an analytical solution is very



difficult to obatain. Thus, approximate methods [1] of

analysis must be used.

Large amplitude vibrations of a clamped isotropic

circular plate with a concentric rigid mass at the center

have been studied by Handelman and Cohen [2], Chiang and

Chen [3] and Becker [4].

On the other hand, large amplitude vibrations of a

clamped orthotropic circular plate with isotropic core have

been studied by Huang [5]. Woo [6] payed attention to the

same problem except he limited the vibration to a small

amplitude. However, the addition of a concentric rigid

mass attached rigidly to the orthotropic circular plate has

received limited attention.

In this thesis Hamilton's principle is applied to

derive the basic differential equations for the problem of

the large amplitude of an orthotropic circular plate

carrying a concentric rigid mass at the center. Assuming

the system performs the harmonic vibrations, the time

variable is eliminated by employing the Ritz-Kantorovich

averaging method. Therefore, the basic governing

differential equations are reduced to a pair of ordinary

differential equations, which form a nonlinear boundary-

value problem with the associated boundary conditions. For

the purpose of numerical computation, this boundary-value

problem is converted to the related initial-value problem.



The relation among natural frequency, stiffness parameters

and mass ratio for free vibration as well as for forced

vibration are investigated, and presented by figures.

These results provide useful inf Oiir.ati on for the design of

the nonlinear vibration of an orthotropic circular plate

with a concentric rigid mass. The free and forced

vibration with variable parameters are also investigated;

their effects and the corresponding results are

illustrated. Finally, the radial and circumferential

stresses in free vibration are also determined. These

results of stress distribution also provide useful

information for stress analysis in industrial utilization.



Chapter II DERIVATION OF GOVERNING EQUATIONS OF MOTION

Consider the thin circular plate with a concentric

rigid mass M as shown in Fig. 1. The plate, except for a

concentric rigid mass M of radius b occupying the central

portion, is composed of an elastic, homogeneous and

cylindrically orthotropic medium bounded by the planes

2=+h/2. The plate is clamped at the outer edge of radius

a. In discussing circular boundaries problems, it is more

convenient to use cylindrical coordinates (r, e, z) and set

the origin at the center of the middle plane to describe

the motion.

Before deriving governing differential equations, we

have made the following assumptions

1. Any straight line normal to the middle plane before

deformation remains a straight line normal to the

neutral plane during deformation.

2. Normal stress, o is small in comparison with the

other stresses, and may be neglected.

3. Circular symmetry with respect to the z-axis is

retained during vibration.

4. The effects of stretching the middle plane of the

plate are included.



orthotropic plate

M,

-frigid mass

2

-^U

"^ *-r

w

Fig. 1. Circular Plate and Cylindrical Coordinate System



5. The vibration of the plate is not limited to the

infinitesimal

.

The radial and circumferential strain-displacement

relations derived from large deflection theory [8,10] are

as follows:

1 2e=u + -w-zw (la)
r r 2 r rr

e^= H _ z w (lb)
e r r r

where u(r,t) and w(r,t) denote the radial and transverse

components of the mid-plane displacement, respectively,

while the subscripted variables w and w represent the

first and second partial derivatives of w with respect to

r

.

The strain-stress relations in the polar coordinate

system are :

cf«= E^€^ + E ^€ (2a)
e e e re r

a = E ^€^ + E € (2b)
r re e r r

where <t and cr are normal stresses in the tangential and

radial directions respectively, E„ , E ^ and E are the^ -^ e re r

material constants (Young's modulus), and e and € are



normal strains in the tangential and radial directions

respectively.

The stress-strain relations in equations (2) can also

be represented in the form [9]

S= ^ll'^e -^ ^12^r

'r= ^12*^6 ^ ^22^r

(3a)

(3b)

where a. . are elastic constants.

Equations (3a) and (3b) can be written in matrix form

11 12

^12 ^22 J

r €
e

Let

A = 11 12

L ^12 ^22
X = e

B =

the matrix can be expressed symbolically

AX = B.

then

X = A~^ B

which implies



r J

22

^11^22 ~ ^12

- a
12

- a
12

^11^22 " ^12

^11^22 " ^12

11

^11^22 " ^12

thus a and a can be represented in terms of a. . , € and

6 by

^e
= 22

e_ - 12
2 ^e 2 r

^11^22 ^12 ^11^22 ~ ^12

(4a)

- a
a =
r

12
6_ +

11
2 "e ' 2 r

^11^22 " ^12 ^11^22 " ^12

(4b)

and
^e

= 22

^11^22 " ^12

(5a)

E =
r

11

^11^22 ^12

(5b)

- a
12

re 2
^11^22" ^12

(5c)

Here we define

a = ^re ^12

11
$ = 'e "22

11

c =
E a, , ,rill
^e ^22 ^

1/ = - 12

22
/8



Integrating the in-plane stresses across the thickness

of the plate, radial and circumferential bending moment per

unit length, M and M , respectively, are found to be

r J-h/2 r

= f"^J?^J (E € + E ^6^)zd2
J-h/2 r r re e

= I'^m [E (u + -^ w^ - zw )+E ^(- - - w )]zdz
J-h/2 " r^ r 2 r rr re'r r r "

^3
= v^r- (E w + - E ^w )

12 r rr r re r

= - D (w + - aw ) {6a)
rr r r

f+h/2 ,

^ = J-h/2 ^e
^^^

= I'^^il (E ^6 + E^6^)zdzJ-h/2 ^ re r 6 e

= f'^^^'/o [E „(u + ^ w^ - zw )+E^(- - - w )]zdz
J-h/2 "-re^r 2 r rr er r r '

^^'
r ^re ^ ^e,^r,i=

12- L-E— "rr-^ r^~U
r r

= - D (a w + i
/S w ) (6b)

rr r r

3
in which, D=E h /12 is the flexural rigidity of the plate.

In addition, a and /9 has the following restrictions

[Appendix A] :

< a < 1



and a < /S

In the same way, the expressions for the radial and

circumferential forces per unit length, N^ and N^ , are

obtained by integrating the respective stresses across the

thickness of the plate,

T J-h/2 r

= I-h/2 (^r^ ^ ^re^e^
^-

= E^(u^h +
I w2h)+E^^(fh)

= iiD 1 2 u
(,^)

, 2 r 2 r r'
n

= E^e^V^ i
w2h)+E^{Hh)

= ^ [a(u + \ w2)+^ H], (7b)
,2 r 2 r r
n

The Energy Method :

To formulate the boundary-value problem , we shall use

Hamilton's principle. The power of this approach is that

it furnishes automatically the correct number of boundary

conditions and the differential equation. In this system

10



during the motion, three kinds of energy and the work done

by the external forces are considered as follows:

U, = strain energy due to bending

U = strain energy due to stretching of the middle plane

T = kinetic energy

W = work done by the external forces

.

The strain energy due to bending can be expressed as

[10]

U.= -fj'^f? (J M w + -|- M^w )rdrde
b J0Jb^2 rrr 2r er

Substituting equations (6a) and (6b) into this equation,

one obtains

U,= -x L. L.[(w + — w )w +(aw +—w -w ]rdrde
b 2 Jo Jb"- rr r r' rr rr r r r r'

= rrD f^ (w ^+ 2-w w + ^„w^ ) rdr (8)
J b rr r rr r 2 r

r

Strain energy due to stretching of the middle plane

can be expressed as

U = \V^\^ (^N €% ^N^€*)rdrd0
s J0Jb^2rr 206

substituting equations (7a) and (7b) into this equation,

one obtains

fa fl2D,
, ,

1 2 , u.
, .12,,U = T , -^ [ ( U + -W +a- ) ( U +7rW ) ]s Jb I .2'-* r 2 r r' ^ r 2 r'-"

h

lcL^^^^\^l)^^{l)Ul)] rdr

h

12D

11



= ^[^[u^u w^sju uAw^^ n^iw^rdr (9)
,2 Jb rrrrrrrz 4r
n r

o o

where e and e„ represent the radial and circumferential
r e ^

strain at the mid-plane, respectively.

Kinetic energy due to translation can be divided into

two portions, one is the contribution of the plate portion

T , the other one is due to the concentric rigid mass
P

portion T . The radial component of velocity, in this

problem, is rather small in comparison with the transverse

component of velocity and can be neglected. Thus, only the

transverse component of velocity is considered in kinetic

energy.

T =
Iq'^JJ

-(phw^)rdrde = nph J^ w^ rdr (lOa)

where p is the mass per unit volume of the plate, and the

kinetic energy T is^' m

1 2
T = 4 M w^
m 2 c t

, (10b)
r=b '

where M is the concentric rigid mass,
c ^

The work done by the external forces can be expressed

as

W =
Jo"'JJ

q(r,t)w{r,t)rdrde (11)

where q(r,t) is the time-dependent external loading inten-

sity, assumed to be symmetric with respect to the z-axis

.

12



Consider the motion of the plate system between two

fixed instants t and t , and applying Hamilton's principle

, the first variation of the action integral 61 must be

zero

.

I is the action integral defined by

1= 111 (T +T -U^-U, +W)dt (12)
J t- p m s b

substituting equations (8), (9), (10a), (10b) and (11)

into equation (12) and taking the first variation of I, one

obtains 61.

61= -27rpheJ^lJ^ )7w^^rdrdt-€M^J*l rjw^^dt

-2rrD€j^l n^. ( rw^j.+orw^ )

|

Jdt + 2;rD€j^l H ( rw^j.^+w^^ )
|

^dt

-27rD€jJl '?{fw^)|bdt - 2;rD€j^lj^ n ( rw^j.j.j.+2w^^^)drdt

+ 2rrD€f^lf^ r\{^w - ^w )drdt
J t^J b ' r rr 2 r"0

12n-De ft

h^ -0J^l
C(2ru^+rwJ+2au) l^dt

12^06 ft

h^ -0
ft 3 laLl n(2ru w +rw +2auw )Ldt
J t^ ' ^ r r r rib

+ ^2n-De rt ra
2^{ru +u + ^w^+rw w +au )drdt

.2 Jt^Jb ^^ rr r 2 r r rr r
h

127rDe ft, faj^lj^ C(2au^+aw^+|/8u)drdt
h^ ' -O'b

13



127rD€ ft, fa
[^lj^)7l2w [u (l+a)+ru ^]+w^^( 2au+2ru^+3rw^ ) +w^|drdt
•Ob

+ 27reJ^lJ^ rjq(r,t)rdrdt

=

The necessary condition to let <5I=0 is that the in-

tegrands of the double integrals and the single integrals

must vanish separately. Thus, the double integrals provide

the governing differential equations of motion,

D(w + -w - -^w + -^w )+phw. . -q(r, t)
V rrrr r rrr 2 rr 3 r "^ tt ^

r r

= —;r(—u w +u w +u w +-U w +-UW + 77—w + —w w ) (13a)
2^r rr rrr rrrrrrr rr 2rr 2r rr

and
112 a 2 B

U +—U +-T—Vi +W W - -r—W - —rU =
rr r r 2r r r rr 2r r 2

r

(13b)

while the single integrals yield the boundary conditions

27rDr(w +—w )n
rr r r 'r

= ,

247rD , ^1 2 a ,_
r ( U +-;rW +—U C

2 ^ r 2 r r '^ =

(14a)

(14b)

1 fi

2/rDr{w + —w - —^w )n
rrr r rr 2 r

r

a 24n-D , a 1 2. a
. - ;;—rw (u +—U+-T-W )n ,

b ^2 rrr 2r'lb

- M^w^t^b = ° (14c)

14



The corresponding geometric boundary conditions for a

clamped orthotropic circular plate carrying a concentric

rigid mass are

w =0 w.= w =0
r=a r I r=b rlr=a

u = u , = (15a)
' r=a I r=b

which means transverse displacement at r=a and slope both

at r=a and r=b are equal to zero, and radial displacements

at mid-plane are also zero at r=a and r=b.

The geometric and natural boundary conditions are

supplemental to each other and add up to the right number

of boundary conditions. Their satisfaction ensures that

the solution of the differential equation is unique.

Since W ,.= and W
r I r=b r

= 0, equation (14c) can be
r=a ^

reduced to be

1
^

(w + — w )

rrr r rr
^ w^^L_w (15b)

b 27rbD ttlr=b

Now, introduce the stress function \/^(r,t)

12D r 2
>fi{T.t) =

2^^"r''" 2'^r.'''"^^
h

which has the following relations with N^ and N.

^ = N I* = N^ (16a)
r r 9r ©

where N and N must satisfy the equilibrium equation [11]
r

15



aN N -N.

-X-^- + —^ ^ = (16b)

Using these relations, equation (13a) and (13b) can be

transformed as follows :

D w + -w - -^w + -f w +Phw^^-q(r,t = - w \y) 17a)V rrrr r rrr 2 rr 3 r' '^ tt ^^ ' r r^'r ^ '

r r

^ + k^ - L^ ^ = J:_ E h(/9 - a^)w^ (17b)
r

At the mid-plane of the plate, the circumferential

o o

strain, €„ can be expressed as €.= u/r. Then from equations
o ©

(2), (7) and (16a) we can obtain

rE
u = ^-y— (v// - fv^) =

E E«-E^re re

The conditions for u to be vanished at r=a and r=b are

(,/, ^t) . =

For the purpose of simplification in mathematics, the

following dimensionless quantities are introduced

2
X = w/a , ? = r/a , R = b/a , y = M^/7rb ph ,

T = t(/SD/pha^)^, ^ = a^g^/ha ,

16



and Q = 12a22(|)'q

Then, the governing differential equations (17a) and (17b)

and boundary conditions (15a) and (15b) are converted into

the following non-dimensional forms :

2

^???? ?^???~ ^2^??' 73^?^ ^x^^-(i- |-)Q

f(i)^l- -j-)ix^4>)^ .

*??^ f*r -7^ * -ffx^ = ,

(18a)

(18b)

and ( X )t=i = °

< *? - ?<^ )? = 1
= °

(19)

( X^^^+ |X^^+ 2^X^t)?=R = °

Equations (18) and (19) form a set of nonlinear bound-

ary value problems describing the large oscillation of an

orthotropic circular plate with a concentric rigid mass at

the center of the plate.

17



Chapter III APPROXIMATE ANALYSIS

The differential equations of motion together with the

associated boundary conditions constitute a boundary-value

problem. Any solution to the problem defined by the

nonlinear differential equations must satisfy the boundary

conditions . It is usually very difficult to obtain

analytic (closed-form) solutions to the boundary value

problems, thus, the approximate method is usually applied.

The Ritz-Kantorovich averaging method [7], which has been

successfully applied to numerous elasticity problems, is

adopted to eliminate the time variable and reduce the

governing differential equations to a system of nonlinear

ordinary differential equations, which are the only

function of the space coordinate.

The Ritz-Kantorovich Method

Assuming the dynamic system performs the harmonic

vibrations, then the functions Q(? ,t) , x (? -t) and <|>(?,t) of

equations (18a) and (18b) can be expressed as

Q(?,T)= Q*{?)(5)sinuT (20a)

X(?,T)= A g(?)sin(JT (20b)

<^(?,T)= A^f(^)sin^uT (20c)

18



where A denotes a nondimensional amplitude parameter; u is

the nondimensional angular frequency; g(^) and f{^) are

shape functions to be determined corresponding to the

*
functions x and <p , respectively, and Q (^) is the

dimensionless loading function. Since equations (20a), (20b)

and (20c) can only satisfy equation (18b) , but not satisfy

equation (18a) exactly for all t, thus the residual may be

found and minimized by the use of Ritz-Kantorovich method.

For any instant of the dimensionless time t, the virtual

work of all the transverse forces as they move through a

virtual displacement, <5x = AsincjT ( <5g) , is

dW =
J^ k^6x ? d? (21)

where

*i = "nf?-^ ^nr -fjXf?^
-^x?* *'(rr-<i- ^i"

It is reasonable to require that the integral of this

virtual work over a complete period of vibration be zero

[12] , that is,

Jo"'''"
(<SW)dT = . (22)

19



Substitution of equations (20a), (20b), and (20c) into

*
(21), (5W can be represented in terms ofA, g(^), f(?), Q

(?) and sinuT,

dW= sin2uT{J^[g^^^^.|g^^^- ^g^^^^g^_^uV(l- |-)(h/Aa)Q*]

- sin'*(JT{J^[i|(Aa/h)^(l- |-)(g^f)^]ig?d?} dr

dg^d^i-dr

2

Then substituting <5W into equation (22) again and

integrating, one obtains

2

g""+ |g'"- -^g"+ -^9'- ^3 - 9(i- -|-)|(g'f)'

2 *

= (1- -J-)-^ (23a)

2 2
in which A!'=(Aa/h) and X=/8u are additional parameters

related to the amplitude and the angular frequency,

respectively.

Substitution of equations (20a), (20b) and (20c) into

the governing equation (18b) yields

f..+ if._ -L-f + _|_(g.)2 ^ (23b)

20



where the prime as the superscript denotes differentiation

with respect to ^, i.e., f'= df/d^. Based on this

operation, the time variable is eliminated from the

governing differential equations with an average minimum

error over a complete cycle of the motion. The assumed

harmonic motions are governed by the pair of nonlinear

ordinary nonlinear differential equations (23a) and {23b).

In the same way, substituting equations (20a), (20b)

and (20c) into equation (19), the boundary conditions can

be converted to be

( g )^=i
=

( g')^., =

( ^'\=R = °

(24a)

''-r ^^=1 = °

(
g"'+ |g' '- |yxg )^^^ =

In order to obtain a unique relationship between

amplitude, k, and frequency, X, an additional restriction,

which supplements the boundary conditions, must be set.

This requirement is fulfilled by introducing a

norminalization condition

( g )^^^ = 1 (24b)

21



Finally, The equations (23a), (23b) and boundary

conditions (24a), (24b) which constitute a nonlinear

eigenvalue problem describing the finite amplitude harmonic

response of an orthotropic circular plate, are expressed in

terms of shape functions f, g and their derivatives.

22



Chapter IV NUMERICAL ANALYSIS

Boundary value problems, as the name implies, have the

property that conditions are specified at two sets of

values of the independent variables. In constrast to the

boundary value problem, the initial value problems are

specified by one set of values of the independent variables

at the initial point. Consequently, the theory of the

existance and uniqueness of solutions to boundary value

problem is in a less satisfactory condition than the

corresponding theory for initial value problem. It should

be expected that numerical solution of a boundary value

problem for a given ordinary differential equation will in

general be a more difficult matter than the numerical

solution of the corresponding initial value problem. [13]

The nonlinear eigenvalue problems formed by nonlinear

ordinary differential equations (23a) and (23b), associated

with the boundary conditions (24a) and (24b), however, are

complicated. Hence it is more convenient to solve the

problem through the application of numerical integration to

the associated initial value problem.

For computational purposes, the associated initial

value problem is started by converting the nth-order

differential equation into n first order differential

equations. Then, apply the Runge-Kutta-Gill integration
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method [14] to integrate the differential equation from

initial point, with the guessed missing and the given

initial values, to final point. The value obtained at the

final point, in general, can not satisfy the given

conditions. This solution is then used to adjust the

initial missing values by the Newton-Raphson scheme in an

attempt to make the next solution come "closer" to

satisfying all of the necessary conditions. If these steps

are repeated and the iterative procedure converges, the

boundary conditions (24a) and (24b) will eventually be

satisfied

.

a^ General formulation .

Any nth-order differential equation, linear or

non-linear, may be reduced to a set of n-simultaneous

first-order differential equations [15]. In the same way,

Equations (23a) and (23b) can be reformulated to an

equivalent system of six first order equations.

dY - - *
2| = H(?,Y;X,Ar,y,Q ) R < ? < 1 (25a)

where

Y(^) =

g ^1
g' ^2
g'

'

— ^3
g. ,

,

V4
f

f

'

k\
(25b)
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Again, the prime as the superscript donates

differentiation, i.e., g'=dg/d?-, and H is the appropriate

(6x1) vector function defined as :

H =
2

- Iy.+^Y.- ^Yo +XY,+9(1- £-)J(y v^+y^yj^M 2-'3 3^2 $ '^'^2'e '3^5

2 *

- -V + —V - ^(y )^^6 2^5 2^^^2'

(26)

The boundary conditions (24a) and the normalization

condition, y. (R) = 1, can be expressed in the following

forms :

g • 1

g'

[M]Y(R) = g" ..ig.. - fyXg
"•

. f-
f^

?=R .

(27a)

and

[N]Y(1) =

g

g'

?=i

(27b)
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where [M] and [N] are the matrices

and

[M] =

1

-RXy/2

[N] =

1

1

1

1/R 1

-a

-a/R

1 J

1

(28a)

?=R

(28b)

^ = 1

The first row of [M] is the normalized condition,

y (R)=l, at point ?=R which is the Junction of the plate

and rigid mass. The physical meanings of the remaining

rows of [M], referring to the boundary conditions (24a),

are the conditions of zero slope, the shear force at the

inner boundary caused by inertial force of the rigid mass

and zero radial displacement. Likewise, the rows of [N]

define the boundary conditions of zero transverse

displacement, slope, and radial displacement at the outer

boundary of the circular plate, ^=1.

t> • Initial-Value Problem

To obtain a unique solution of equations (25a), six

boundary conditions must be specified at the boundary

points ^=R and ?=1 . However, for this boundary value

problem six given conditions are not specified at one
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boundary point. In order to integrate numerically the six

first-order nonlinear differential equations by computer,

the missing conditions must be specified with certain

guessing values. These values are called missing initial

values. If the unknown conditions at one boundary ^=R are

assigned for certain values, step by step integration of

equation {25a) from ^=R to ^=1 would become possible.

Obviously, the values of Y(^) at ^=1 thus obtained would

not, in general, satisfy the given conditions at the other

end. The problem is therefore to determine the correct

Initial values at ^=R so that all the given conditions at

^=1 can be satisfied. Thus, the corresponding initial-

value problem may be expressed as

dZ — - *

|| = H(?,Z;X,Af,y,Q ) R < ? < 1 (29a)

where
r Z.

Z(R) =

?=R

1

^1

RXy/2 - )7^/R

arjg/R
?=R

(29b)

The Z.(R), initial-value vector constructed from the

boundary and normalization conditions at ?=R, is identical

with Y^{R) in equation (25b), where i=l,2,...6,. The
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parameters r] ,ri^ and X in equation (29b) are unknown miss-

ing initial values and the eigenvalue. Substitution of the

initial values, Z(R), and equation (28a) into equation

(27a) yields a system of four equations.

[M]Z(R) =

r 1

L

(30)

?=R

which satisfy the boundary conditions at ?=R.

A solution of the initial value problem thus formu-

lated by equation (29) is symbolically denoted by

Z(^)= Z(R)+J^ H(?,Z;n^,)72,X,*',y,Q*)d?

= Z(R)+J| K(^,Z;n,K,y,Q*)d^ (31a)

where

f n^ 1

17
= (31b)

is an unknown vector to be determined. For any set of the

*
given parameters k, y and Q , the corresponding values rj

,T\ and X can be solved through the initial-value problem

such that the solution of equation (29) satisfies the three

given boundary conditions (27b)

[N]Z{l;n,K) =
r 1

(32)
? = 1
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Assume that Z ( 1 ; n , at ) is continuously dif ferentiable

with respect to 17 and k. Then, by a theorem in matrix

theory, for the system of equations (32) to have a unique

solution, a necessary and sufficient condition is that the

determinant of the Jacobian matrix, J = —^ •[[N]Z(l;rj,(^)|,

is not zero.

I.e., detl [N] ^ Z{1 ,T\,K)\ *

an

Hence, for any given values of a-, y and Q

Y{?)= Z(^;rj*,/^,y,Q*)

symbolically denotes a solution to the eigenvalue problems,

where

_*
n =

* ^

1

*

2

*

(33)

Thus, it is seen that solving the boundary value

problem (23) and (24) is equilvalent to obtaining a

continuous set of solutions to the related initial value

problem (29) which satisfy equation (32).

_ *
A root r} may be found by applying Newton-Raphson

iteration method [16] to solve equation (32). Starting
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with an initial guess n='?Q and given parameters k, y, and

*

Q , the iterative covergent sequence

^k4.1= ^k-^^'^k
k=0,l,2,3, n (34)

is generated, where Arj, is the correcting vector and the

subscript denotes k-th time of iteration.

Neglecting higher-order terras in the Taylor's series

expansion about rj. , one obtains

thus

^n^ = - {[N] -|-Z(l;nij.,'f)}"^-[N]Z(l;nj^,*f)

^^k

= - {[N](J^) J"^-[N]Z(l;njj.,A^) (35)

where, at the k-th step, the (6x3) Jacobian matrix (J.) is

defined as
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(^l^k
az

a^ ?=i

az. az. az.

Bn, 3.2 ax

az^ 3Z2 az2

an, 3.2 ax

^^3 ^^3 ^^3

3., 3.2 ax

3Z, 3Z, 3Z4

a..

aZ;

a^

!5
an.

3.,

aZj

3^

a..

9X

3Zj

ax

az^

ax

(36)

?=1

which represents a change of final values with respect to a

change in the initial value rj, while [N]Z{ 1 ; .. , /^)

represents the k-th error vector expressed as

[N]Z(l;nj^,A^) =

V^^gj^^^

(37)

Therefore, the correcting vector can be expresseci in matrix

form :
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tn =

"Arj.

An,

Lax

3^1 3^2 ax

az,

3n,

32^

3.2

3Z2

ax

^^3

3^1 3^2

3r,2

^^3

ax1 0-

1

-a 1.

3^4

ax

^^5 ^^5 ^^5

Bn, 3.2 ax

^^6 ^^6 ^^6

3Z. 3Z. az.

3r?. 3., ax

-1

J?=i.

ri

10
-a 1

?=1

I.e.,

A..

An,

AX

az.

az,

3.^

3..

3Z,
-a

3Z,

3., 3r?,

3Z.

3.^

az,

3^

-a
azj

3n, ax

az.

ax"

az,

aT

-a
az^

ax

-1

?=1L^e-^^s

(38)

?=1
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which provides the linear correction of the estimated data

ri , 77 and X. If the initial estimate of t\ is chosen in a

_*
sufficiently small neighborhood of the root 17 , the

_*
sequence (34) will converge to the root 17 . The matrix (J,

), must be evaluated at each step of the iteration process

in order to generate the correction vector A77, and then to

find the solutions. Thus, the associated variational

equations are introduced :

i^(i^) = 3^(ff) = (^)(|^) (39)

d?^ax ' 3)7 ^d^^ ^-='^ax' ax
*

The specific expressions, which result from performing the

operations indicated in equation (39) can be presented as

follows

:

d_,!!i, !!2
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3Z

9n^

d?^9r?

8Z, ^ az.

^'dri

9Z 3Z 9Z

2 az 3Z az az

(40a)

HI
3Z,

) =
3r}.

. 8Z. , 3Z_ - —
>-f^"2)(37r

d ^^1

df(3n7)

8Z,

97r

ci?^9n2

9Z,

97r

d ^^3

d?(9T^)

az

97?^

, 9Z, „ 9Z^ „ 9Z^ ^ 3Z„ 9Z.

d^'dn. e^9rj ^2^9,2 ^3^9n2 9rj
•)

2

9Z.2 9Z 9Z 9Z 8Z

(40b)

ri
9Z^

d?^3no

rl
9Z-— (—^'

az.

) =
9??

2

8Z,
= _i(lIi)+^( ^)-^(z w ^^

?^3rj2^^2*3r}2) ^^'^2)^8^2^
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H 3Z, 9Z,

d^^ax ' 9X

ri
92„ az

d^^ax ' ax

H 9Z.

d^^ax

az az az az

= -f(a>r'^^(a)r)-^(a)r)^>^<a)r)^2i

2 az az az az

^^(^-l-^fK^ax^^^^s^a^r^^^a^air^-^^e^ax^M

d 9^5 ^^

df^ax ^ ^ ax
6

9Z,az az az .„

d^^ax ' e^ax ' 2^ax ^ ^^^2^^ax '

(40c)

Also, variational equations at ?=R may be obtained by

taking derivatives of Z with respect to rj, , rj- and X

seperately, namely

r9z_i
Larj^J?=i

1

-1/R

,

{41a)
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1

a/R.

41b)

LaxJ ?=e=R yR/2 (41c)

Equations (40a), (40b) and (40c), 18 first-order equations,

and equations (41a), (41b) and (41c), the initial values,

constitute the variational problem. For a given vector rj

and given values of k and y , this derived problem and the

initial value problem (29) may be numerically integrated

simultaneously over the interval from ^=R to ?=1 with a

Runge-Kutta-Gill method. Evaluation of the resulting

solution to the variational problems at ^=1 provides the

values for each entry of the Jacobian matrix (J,),11

corresponding to the given values of rj- '^ and y . Recall

equation (38), which may be rewritten symbolically as

[aT,^] = (J^)"^[Z] .

Premultiply (J^) on each side of the equation, we obtain

(J^) [Arjj^] = [Z]
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Then, applying Gaussian Elimination method, we can

solve the matric equation easily, and obtain a set of

correcting vectors Arj, for this step k. Substitution of

this correcting vector into equation (34), we obtain a new

set of trial values for the vector rj. Repeating the same

procedure until the results converges within a specified

error bound which is usually related to the accuracy of the

integration method used.

-*
( i ) ( i

)

Having obtained a root rj * corresponding to k=k^-',

with a fixed y, the solutions corresponding to the value of

amplitude parameter k^^' are obtained. Next, in order to

obtain a solution for a higher value of k than at
"^

, the

method of continuation is applied. The value of amplitude

parameter k^"^' is perturbed to be

^(5 + 1)=, ^(3)+ ^^(J)^ j=0,l,2,3,...n .

For every new k, iteration is restarted from the previously

obtained values of ri=T\ ^
-^

' . If Ak^-^' is small enough for

n "^ to be within the new contraction domain of the Newton-

Raphson method, iteration will converge to the new root

- *
( i + 1

)

( i + 1

)

T\ '
•"

, corresponding to the new k^ "^ ' . Successive this

repetition until k reaches the reasonable large value.
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Chapter V Numerical Computation

The application of a numerical integration technique

is suggested for the analysis presented previously. Thus,

by integrating the initial-value problem (29) with a

fourth-order Runge-Kutta-Gill method, and performing the

successive iterations by Newton-Raphson method,

approximate numerical solutions to the boundary value

problem, (23) and (24), can be obtained. A FORTRAN 77

computer program listed in appendix B for numerical

calculation is available for this particular problem.

The following procedure of numerical computation is

suggested and used in the investegation of the problem :

First, the problem of free linear vibration is

*
considered . Thus, the loading parameter Q and amplitude

parameter k are set equal to zero; the elastic constant

ratios, a and /9, for the orthotropic plate are set equal to

a specific value. In this case the equation (23a), which

governs the transverse displacement, becomes linear. Then

the initial-value problem (29) and the associated

variational problem (40) and (41) can be integrated

numerically over the interval [R,l] with a set of estimated

initial values r?^ . By the Newton-Raphson method,
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successive correction and integration are carried out until

the error norm satisfies the inequality :

Max| [N]Z{1) I < O.lxio"^

where Maxi i , the maximum-element norm of the error vector,

is consistent with the forth-order Runge-Kutta-Gill

integration method with step size /j=l/40. Therefore, the

solution for the linear free vibration of the circular

_*
plate is obtained and the corresponding values of 17 are

stored. From this solution of the linear free vibration

the solutions of finite amplitudes can be examined with the

concept of neighboring solutions, which is called the

method of continuation. The discrete representations of

the resonance curves and accompanying solutions are found

by successively increasing the value of amplitude, * , and

re-starting the correction and integration procedure from

those values of (r?^, n , X) obtained in the solution

corresponding to the previous value of k. This process is

terminated when k reaches a reasonable large value, k^ , and

the corresponding initial values of (17^, ru> ^"') are

stored. At this stage the steady state response due to

forced vibration can be determined by a perturbation

technique . On setting k=k^ , {r)^, n^. X) = (rj^, xj^, x"*) ,

and applying a small load, Q (^), to the plate, the
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response is easily determined with a slight modification of

the above mentioned process. Namely, the type of loading,

«

Q {^) is held fixed while the value of k is gradually

decremented from k as the integration and correction

procedure of the initial-value method yields successive

solutions to the forced problem. Hence, distinct response

curves are obtained by merely changing the sign of Q {?).

The totality of this approach is illustrated schematically

in figure 2.

• solution point

m
K —

/ / /
k

•

• • •

/ /

/
A«

/
/ *

.' Q -0

/

Fig. 2.
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Figures 3 through 6 represent the graphs of the

dimensionless angular frequency vs the elastic constant

ratio, c. The results point out that the frequency

parameter cj for an axisymmetric free vibration of an

orthotropic circular plate carrying a concentric mass

increases as the stiffness parameter, c, increases, while

the radius ratio is held constant. These data provide the

starting frequency of nonlinear free vibration for

different materials which possess different stiffness

parameters. If the stiffness constant becomes unity, that

is c=1.0, then the orthotropic plate case is simplied to a

isotropic plate case. The results of linear free vibration

of isotropic circular plate with different mass ratio are

illustrated in Table 1. Close agreement with the results

found by Becker [5] and Chiang and Chen [4] is observed

directly.

The results in tables 2 through 5 list some of the

data set in figures 3 through 6, which illustrate the

influence of variations of stiffness parameters c on linear

angular frequency. The higher stiffness parameter causes a

higher angular frequency as the mass ratio is held fixed.

Figures 7 and 8 present the results determined for

nonlinear free vibration with various values of stiffness

parameter ( c=0 . 5 , 1.0, and 2.0), radius ratio ( R=0 . 1 and

0.3). At the same amplitude, the materials with a higher

41



stiffness parameter oscillate at higher resonant frequency,

while the materials with a low stiffness parameter

oscillate at a lower resonant frequency. In addition, the

lower stiffness material has a steeper resonant curve than

higher stiffness materials. The physical meaning of this

phenomenon is that the resonant frequency of higher

stiffness materials increases faster than that of lower

stiffness materials while the amplitude increases at the

same amount

.

In figures 9-14, forced nonlinear vibrations

areindicated with various values of stiffness parameters

(c=0.5, 1.0, and 2.0), radius ratios {R=0.1 and 0.3) and

*
acting force parameters (Q =0.0, -20.0, 20.0, -40.0 and

40.0). In practice it is the custom to plot iw/hi against

u . It is noted also that the quantity of amplitude is

negative on the response curves to the right of the free

*
oscillation curve for Q =0 and positive to the left of it,

which means that the motion is in phase with the external

* •

force when Q is postiive and 180 out of phase with the

external force when Q is negative. This behavior of

nonlinear resonance is similar to that found for the free

and forced oscillation of Duffing 's hard spring system for

a single degree of freedom [17].
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Chapter VI Stress Analysis

Stress distribution on the circular plate can be

obtained from the stress-strain relation and strain-

displacement relation [7]. The following symbols and

expressions are used to denote the stresses

o : radial bending stress
r ^

a -: circumferential bending stress

a"*: radial membrane stress
r

e

where

o^: circumferential membrane stress

b /Sh , ^ /8 ,

® 2a22(/8-a2)a ^^ ^ ^

a'"= + -^— (I)r - a22 ^?

and o = + — (4>^)

which are derived from equations (1) and (2), relate the

bending and membrane stresses to the dimensionless

deflection, X' and stress function,
<i>

, respectively.
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In terms of the previous assumptions.

X(?,T)= A g(^)sinoT

2 2
<t>{^,T}= A f(^)sin or

and when time, t, is equal to an odd multiple of n/2u the

maximum excursions occur, thus stresses become

b 2
<y a„„ar^22^ /8 /"aT

, , , , a
, ,

h " 2(/S-a^) ^

^b^ ^2
Ie!|2L = + _^_Zl__(crg..+ fgM (44)

h'^ ~ 2(fi-a) ^

m 2
^^^22^ ^ ,f,

2 - ^?

m 2

and
5

~ t '^^^

Figures 15 through 17 represent the radial bending

stresses; figures 18 through 20 represent the radial

membrane stresses; figures 21 through 23 represent the

circumferential bending stresses, while figures 24 through

26 represent the circumferential membrane stresses. All of

these stresses are calculated with radius ratio, R=0 . 3

,
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mass ratio, y=1.0, in the condition of free vibration,

i.e., Q =0.0. Also, the stress distribution at the inner

edge and at the outer edge of radial membrane stress and

radial bending stress are shovm in figures 27 through 30

From equations (44), it is noted the amplitude has a

great influence upon the distrubution of bending stress.

The system behaves as a linear property when the amplitude

is small, say, /c=0.2. On the contrary, a higher amplitude

causes stress to be larger and has a nonlinear

distribution. Also, elastic constant ratios a and ^, shape

functions f and g and their derivatives and location ?,

play an important role on the stress distribution.
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Table 2

Dimensionless Angular Frequency u

y = 1.0

0.1 0.2 0.3 0.4

0.5 8.1811 8.5052 9.2413 10.5576

1 .0 10.4410 11.1341 12.3858 14.4140

1.5 12.2449 13.2373 14.8760 17.4362

2.0 13.8016 15.0459 17.0044 20.0067

2.5 15.1942 16.6580 18.8941 22.2826

3.0 16.4667 18.1267 20.6112 24.3465

Table 3

Dimensionless Angular Frequency o

r = 2 .0

0.1 0.2 0.3 0.4

0.5 8.0053 7.9246 8.1674 8.8931

1.0 10.1994 10.3559 10.9334 12.1348

1.5 11.9530 12.3031 13.1261 14.6764

2.0 13.4673 13.9787 15.0009 16.8385

2.5 14.8224 15.4728 16.6659 18.7528

3.0 16.0610 16.8343 18.1789 20.4891
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Table 4

Dimensionless Angular Frequency cj

y = 8.0

0.1 0.2 0.3 0.4

0.5 7.1239 5.8871 5.3415 5.3524

1 .0 9.0084 7.6526 7.1365 7.2987

1.5 10.5241 9.0746 8.5618 8.8254

2.0 11.8730 10.3007 9.7813 10.1243

2.5 13.0139 11 .3950 10.8646 11.2746

3.0 14.0908 12.3928 11.8493 12.3179

Table 5

Dimensionless Angular Frequency u

y = 16.0

0.1 0.2 0.3 0.4

0.5 6.2795 4.6424 4.0171 3.9324

1.0 7.8941 6.0229 5.3642 5.3615

1.5 9.2006 7.1371 6.4345 6.4827

2.0 10.3351 8.0985 7.3503 7.4367

2.5 11.3536 8.9569 8.1639 8.2815

3.0 12.2864 9.7398 8.9035 9.0477
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Fig. 3. Dimenslonless Angular Frequency with R=0.1
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CONCLUSION

The energy method for deriving basic governing

differential equations has been presented in this thesis.

The merit of this approach is that it provides automatically

the governing differential equations and the correct number

of boundary conditions and their expressions.

An exact solution for the non-linear boundary-value

problem is very complicated. Thus, a approximate method

must be used. Based on the assumption of the existence of

harmonic oscillations, the Ritz-Kantorovich averaging method

is introduced to convert the partial differential equations

to ordinary differential equations by elimination of the

time variable, which makes the problem easy to solve. Then,

approximate numerical results can be obtained by the

initial-value problem method, the related Runge-Kutta-Gill

integration method, and the Newton-Raphson iteration method.

The use of numerical integration leads to a discrete

approximation of the continuous system.

It has been noted that the elastic constant ratio, c,

and mass ratio, , have great influence on the vibration.

At the same value of amplitude, the higher frequency

accompanies the higher stiffness and lower mass ratio ; on

the contrary, the lower frequency is related to the lower

stiffness and higher mass ratio.
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APPENDIX A

The generalized Hooke ' s law for the case of

cylinderical orthotropy can be writen in the form:

e 11 e 12 r

where a. . are elastic constants (compliance coef f iciences)

.

In general, the strain in a direction normal to an

applied tensile stress will be negative and the change in

the voliime of an element subjected to a tensile stress will

be positive. Thus, under tensile stress, the change of

volume V in an element will obey the inequality

Vo(e + €+ € ) > (A2)0^ r e z

when there is only a radial tensile stress o the volume
r

change can be expressed as

:

Vr(^12-' ^22-^ ^23^ ^ ° ^^^^

and for a circumferential tensile stress c

Ve^^ii-' ^12-*- ^13^ > ° (^^)

equations (A3) and (A4) can be rewritten as follow:

"''-<1 (A5)
^22 ^22
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^^2 ^13
, , , (A6:

^11 ^11

But, a a , and a are negative. Thus "^12'^^ 22
and

-a,„/a,, are restricted to values between and 1; i.e.,
12 11

^12
< ^^^ < 1 (A7)

^22

^12
< ^^^ < 1 (A8)

^11

from previous definitions on page 7, a = "^lo^^ll ^^^ ^ ~

a /a , the restrictions in equations (A?) and (A8) can be

rewritten as:

< a < 1 (A9)

Also, Poisson's ratio u = - ^yo^^ll' ^^^^^^^ °^ page

7, must be less than one. Hence

V = (-312/^11^/^^22/^11^ = a//9 < 1

or a. < ^ (AlO)
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APPENDIX B

C *

c *

C FREE VIBRATION OF A CLAMPED ORTHOTROPIC CIRCULAR PLATE *

C *

C WITH CONCENTRIC RIGID MASS AT THE CENTER *

C *

C R=0.3 VV=0.3 GAMMA=1.0 BETA= 'VARIABLE' *

C *

C *

C

C VARIABLES DESCRIPTION:
C

C A: AMPLITUDE PARAMETER
C DA: INCREMENT IN AMPLITUDE
C R: RADIUS RATIO
C DR: INCREMENT IN RADIUS RATIO
C H: STEP-SIZE FOR NUMERICAL INTEGRATION
C W: POISSON'S RATIO
C GAMMA: MASS RATIO
C DG: INCREMENT IN MASS RATIO
C ALPHA: ELASTIC CONSTANT RATIO
C BETA: ELASTIC CONSTANT RATIO
C C: ELASTIC CONSTANT RATIO (INVERSE OF BETA)
C QSTART: LOADING DENSITY
C *****************************************************

IMPLICIT DOUBLE PRECISION (A-H,0-Z) ,INTEGER(I-N)
INTRINSIC ABS.SQRT
DIMENSION Y(24) ,Q(24) ,TP(3,4) ,C(3) ,ER(3) ,D(6,41)
DIMENSION SP(50) .SRA(50) ,FRE(50) ,AMP(50)
CHARACTER *5 RR

112 F0RMAT(5X,I2,3X,'FREQ='.F8.4,3X,'AMP=',F8.4)
113 FORMAT(/,10X,'QSTAR=',F6.2,/)
114 FORMAT(/,10X,'BETA=',F5.2,/)
119 FORMAT(/,10X,'RADIUS RATIO=',F6.2 ,15,/)
120 FORMAT(/,10X,'MASS RATIO=',F6,2,/)

QSTAR=O.OD-0
A«O.OD-0
P=10.2158D-0**2
BETA=2.0D-0
GAMMA=O.OD-0
ALPHA=0.3D-0*BETA
DR=O.OD-0
DG=1.0D-0
W=0.3D-0
R=0.3D-0
H=2.5D-2
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LL=29
WRITE (6,113)QSTAR
WRITE(6,114)BETA
DO 510 IR=1,1

LL=LL-0
R=R+DR
WRITE(6,119)R,LL
DO 520 IG=1,1

IK=1

GAMMA=GAMMA+DG
WRITE(6,117)
WRITE (6, 120) GAMMA
WRITE(6,117)
WRITE(6,117)

C *** CONSTRUCT INITIAL VALUES
500 DO 10 1=1,24
10 Y(I)=0.0D-0

Y(l)=1.0D-0
Y(3)=-4.67D-0
Y ( 4 ) =-Y ( 3 ) / R+0 . 5D-0*R*GAMMA*P
Y(5)=0.82D-0
Y(6)=(ALPHA*Y(5))/R
Y(9)=1.0D-0
Y(10)=-1.0D-0/R
Y(17)-1.0D-0
Y(18)»ALPHA/R
Y(22)=»0.5D-0*R*GAMMA —
IF(IK.EQ.l) GO TO 600
DO 15 1=1,6

15 Y(I)-D(I,1)
C *** X=INDEPENDENT VARIABLE
600 X=R

DO 20 1=1,24
20 Q(I)=O.OD-0

DO 21 1=1,6
21 D(I,1)=Y(I)
C *** PERFORMANCE "RUNGE-KUTTA-GILL" INTEGRATION

DO 25 1=2, LL
CALL RKGPL(X,H,Y,Q,P,A,ALPHA,BETA,QSTAR)
DO 30 J=l,6

30 D(J,I)=Y(J)
25 CONTINUE
C *** ER(I)=ERROR VECTOR FOR BOUNDARY CONDITION AT X=1.0

ER(1)=D(1,LL)
ER(2)=D(2,LL)
ER(3)=D(6,LL)-ALPHA*D(5,LL)
DO 35 1=1,3
DER=DABS(ER(I))
IF(DER.GT.0.1D-5) GO TO 36

35 CONTINUE
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GO TO 900

36 CONTINUE
C *** TPd.J) IS THE JACOB IAN OF THE MAPPING OF INTERAL VALUES TO

C FINAL VALUES
TP(1,1)=Y(7)
TP(2,1)=Y(8)
TP(3,1)=Y(12)-ALPHA*Y(11)
TP(1,2)=Y(13)
TP(2,2)=Y(14)
TP(3,2)=Y(18)-ALPHA*Y(17)
TP(1,3)=Y(19)
TP(2,3)=Y(20)
TP(3,3)=Y(24)-ALPHA*Y(23)
DO 40 1=1,3

40 TP(I,4)=ER(I)
CALL GAUSSX(TP,C,3,4)

C *** C(I)=CORRECTION VECTOR
DO 76 1=1,6

76 Y(I)=D(I,1)
Y(3)=Y(3)-C(1)
Y(5)-Y(5)-C(2)
P=P-C(3)
DO 80 1=7,24

80 Y(i)=O.Od-0
Y(4)=-Y(3)/R+0,5D-0*R*GAMMA*P
Y(6)=(ALPHA*Y(5))/R
Y(9)=1.0D-0
Y(10)=-1.0D-0/R
Y(17)=1.0D-0
Y(18)=ALPHA/R
Y( 22 ) =0 . 5D-0*R*GAMMA
GO TO 600

900 SRA(IK)=DSQRT(A)
PP=ABS(P)/BETA
SP(IK)=DSQRT(PP)
WRITE(6,112)IK,SP(IK),SRA(IK)
IF (A.LE.0.09D-0)THEN
DA=0.01D-0
ELSE
DA=0.1D-0
END IF
A=A+DA
IK=IK+1
IF(IK.GT.50)GO TO 520
GO TO 500

520 CONTINUE
OPEN(UNIT=10,FILE='RR')
REWIND 10

DO 44 IK=1,50
FRE(IK)=SP(IK)
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AMP(IK)=SRA(IK)
WRITE(10,45)FRE(IK),A>IP(IK)

45 FORMAT(5X,2F10.4)
44 CONTINUE

CLOSE (10)

510 continue
550 CONTINUE

STOP
END

SUBROUTINE RKGPL(X,H,Y,Q,P,AP,ALPHA,BETA,QSTAR)
IMPLICIT DOUBLE PRECISION (A-H,0-Z) ,INTEGER(I-N)
DIMENSION Y(24),Q(24),DY(24),A(2)
A(l)=. 2928932188134524
A(2)=l. 707106781186 547
H2=0.5D-0*H
CALL DERIVL(X ,H,Y ,DY ,P ,AP ,ALPHA,BETA,QSTAR)
DO 13 1=1,24
B=H2*DY(I)-Q(I)
Y(I)=Y(I)+B

Q( I ) =Q( I ) +3 . OD-0*B -H2*DY ( 1

)

13 CONTINUE
X=X+H2
DO 60 J=l,2
CALL DERIVL(X,H,Y,DY,P,AP,ALPHA,BETA,QSTAR)
DO 20 I»l,24
B=A(J)*(H*DY(I)-Q(I))
Y(I)»Y(I)+B
Q( I) =Q( I) +3 .OD-0*B-A( J)*H*DY( I)

20 CONTINUE
60 CONTINUE

X=X+H2
CALL DERIVL(X,H,Y,DY,P,AP,ALPHA,BETA,QSTAR)
DO 26 1=1,24
B=.166666666666666*(H*DY(I)-2,0D-0*Q(I))
Y(I)=Y(I)+B
Q(I)=Q(I)+3,0D-0*B-H2*DY(I)

26 CONTINUE
RETURN
END

c

SUBROUTINE DERIVL(X ,H,Y ,DY ,P ,AP ,ALPHA,B ETA, QSTAR)
IMPLICIT DOUBLE PRECISION (A-H,0-Z) ,INTEGER(I-N)
DIMENSION Y(24),DY(24)
Cl=l .0D-0-ALPHA**2/BETA
DO 10 1=1,3

10 DY(I)=Y(I+1)
DY(5)=Y(6)
DO 15 1=7,9

15 DY(I)=Y(I+1)
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DY(11)=Y(12)
DO 20 1=13,15

20 DY(I)=Y(I+1)
DY(17)=Y(18)
DO 25 1-19,21

25 DY(I)=Y(I+1)
DY(23)=Y(24)
IF (AP,EQ.O.OD-0)THEN
DY(4)=-2.0D-0*(Y(4)/X)+BETA*Y(3)/(X*X)-Y(2)*BETA/(X*X*X)+P*Y(1)

&+9.0D-0*AP*Cl*(Y(3)*Y(5)+Y(2)*Y(6))/X
GO TO 90

ENDIF
DY(A)=-2.0D-0*(Y(4)/X)+BETA*Y(3)/(X*X)-Y(2)*BETA/(X*X*X)+P*Y(1)

&+9.0D-0*AP*Cl*(Y(3)*Y(5)+Y(2)*Y(6))/X+QSTAR*Cl/DSQRT(AP)

90 DY(6)=-Y(6)/X+BETA*Y(5)/(X*X)-(Y(2)*Y(2)*BETA)/(2.0D-0*X)
DY(10)=-2.0d-0*(Y(10)/X)+BETA*Y(9)/(X*X)-Y(8)*BETA/(X*X*X)+P*Y(7)

&+9.0D-0*AP*Cl*(Y(5)*Y(9)+Y(3)*Y(ll)+Y(2)*Y(12)+Y(6)*Y(8))/X
DY(12)=-Y(12)/X+BETA*Y(11)/(X*X)-(Y(2)*Y(8)*BETA)/X
DY(16)=-2.0D-0*(Y(16)/X)+BETA*Y(15)/{X*X)-Y(14)*BETA/(X*X*X)
&+9.0D-0*AP*Cl*(Y(3)*Y(17)+Y(5)*Y(15)+Y(2)*Y(18)+Y(6)*Y(14))/X

&+P*Y(13)
DY(18)=-Y(18)/X+BETA*Y(17)/(X*X)-(Y(2)*Y(14)*BETA)/X
DY(22)=-2.0D-0*(Y(22)/X)+BETA*Y(21)/(X*X)-Y(20)*BETA/(X*X*X)

&+Y(l)+9.0D-0*AP*Cl*(Y(3)*Y(23)-»yY5)*Y(21)+Y(2)*Y(24)4yY6)*Y(20))/X

&+P*Y(19)
DY(24)=-Y(24)/X+BETA*Y(23)/(X*X)-(Y(2)*Y(20)*BETA)/X

70 RETURN
END

c— —- ———«____—__-._—_———— - - —
SUBROUTINE GAUSSX(A,X,N,N1)
IMPLICIT DOUBLE PRECISION (A-H,0-Z) ,INTEGER(I-N)

DIMENSION A(N,N1),X(N)
DO 200 J=1,N
J1=J+1
IF (Jl.GT.N) GO TO 980

BIG=DABS(A(J,J))
M=J
DO 900 L=J1,N
IF (DABS(A(L,J)).LE.BIG) GO TO 900

M=L
BIG=DABS(A(L,J))

900 CONTINUE
DO 990 JJ=J,N1
DUMMY=A(M,JJ)
A(M,JJ)=A(J,JJ)

990 A(J,JJ)-DUMMY
980 CONTINUE

S=1.0D-0/A(J,J)
DO 201 K=J,N1

201 A(J,K)=A(J,K)*S
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DO 202 1=1,

N

IF(l.EQ.J) GO TO 202

AIJ=-A(I,J)
DO 204 K=J,N1

204 A(I,K)=A(I,K)+AIJ*A(J,K)
202 CONTINUE
200 CONTINUE

DO 300 1=1,

N

300 X(I)=A(I,N1)
RETURN
END
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ABSTRACT

The problem of free and forced nonlinear large

amplitude vibrations of a clamped orthotropic circular plate

with a concentric rigid mass is studied. Hamilton's

principle is applied to constitute the governing

differential equations and boundary conditions. Assuming

the existence of harmonic vibration, the time variable can

be eliminated by employing a Kantorovich averaging method.

Then, the governing differential equations for the problem

are reduced from nonlinear partial differential equations to

non-linear ordinary differential equations. The related

approximate numerical results can be obtained by using the

initial-value problem in conjunction with the Newton-Raphson

iteration scheme. The results reveal the effects of finite

amplitude and orthotropy of materials upon the dynamic

responses

.

The characteristics of nonlinear vibration as well as

radial and circumferential stresses are studied for various

mass ratios, radius ratios and elastic constant ratios. For

the purpose of comparison, the present orthotropis circular

plate problem can be reduced to a flat isotropic circular

plate problem by setting both elastic constant ratio and

mass ratio equal to 1. The results are in agreement with

prior work. [3,4]


