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Abstract
This dissertation consists of three essays in nonlinear macroeconomic modeling and

econometrics. In the first essay, we decompose oil price movements into oil demand

(stock market) shocks and oil supply (oil-market) shocks, and examine the response of

the stock market to these shocks. We find that when oil prices are “net-increasing”,

a stock market shock that causes the S&P 500 to rise by one percentage point will

cause the price of oil to rise approximately 0.2 percentage points, with a statistically

significant positive effect one day after the stock market shock. On the other hand, the

response of the stock market to an oil market shock is a decline of 6.8% when the price

of oil doubles. For other days, the initial response of the oil market to a stock market

shock is the same as in the net oil price increase case (by construction). We then analyze

the response of monetary policy to the identified stock market and oil market shocks

and find that short-term interest rates respond to the stock market shocks but not the

oil market shocks. Finally, we evaluate the predictive power of the decomposed stock

market and oil shocks relative to the change in the price of oil. We find statistically

significant gains in both the in-sample fit and out-of-sample forecast accuracy when

using the identified stock market and oil market shocks rather than the change in the

price of oil.

The second essay revisits the statistical specification of near-multicollinearity in the

logistic regression model using the Probabilistic Reduction approach. We argue that

the ceteris paribus clause invoked with near-multicollinearity is rather misleading. This

assumption states that one can assess the impact of near-multicollinearity by holding

the parameters of the logistic regression model constant, while examining the impact

on their standard errors and t − ratios as the correlation (ρ) between the regressors

increases. Using the Probabilistic Reduction approach, we derive the parameters (and

related statisitics) of the logistic regression model and show that they are functions of ρ,



indicating the ceteris paribus clause in the traditional account of near multicollinearity

is unattainable. Monte carlo simulations in the paper confirm these findings. We also

show that traditional near-multicollinearity diagnostics, such as the variance inflation

factor and condition number can fail to detect near-multicollinearity. Overall, the paper

finds that near-multicollinearity in the logistic model is highly variable and may not lead

to the problems indicated by the traditional account. Therefore, unexpected, unreliable

or unstable estimates and inferences should not be blamed on near-multicollinearity.

Rather the modeler should return to economic theory or statistical respecification of

their model to address these problems.

The third essay examines the correlations between income inequality and economic

growth using a panel of income distribution data for 3,109 counties of the U.S. We

examine the non-spatial dynamic correlations between county inequality and growth

using a System GMM approach, and find significant negative relationships between

changes in inequality in one period and growth in the subsequent period. We show that

this finding is robust across different sample sizes. We further argue that because the

space-specific time-invariant variables that affect economic growth and inequality can

differ significantly across counties, failure to incorporate spatial effects into a model of

growth and inequality may lead to biased results.We assume that dependence among

counties only arises from the disturbance process, hence the estimation of a spatial error

model. Our results indicate that the bias in the parameter for inequality amounts to

about 2.66 percent, while that for initial income amounts to about 21.51 percent.
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Chapter 1

Asymmetric Oil Price Shocks and the

Response of the Stock Market to Oil

Shocks

1.1 Introduction

Despite the constant development of alternative sources of energy, oil still accounts for

the largest fraction of primary energy worldwide. Data from the BP Statistical Review

of World Energy (2009), shows that oil accounted for 35 percent of global energy use in

2008, much higher than coal (29 percent), natural gas (24 percent), nuclear (6 percent)

and hydropower (5 percent). As a consequence of this heavy dependence on oil, and

based on past experience with oil shocks, a large body of research has attempted to

estimate the effect of an oil price shock on macroeconomic variables including GDP

(Hamilton 1983, 2003), inflation (Blanchard and Gali, 2009, and Bachmeier and Cha,

2011), and monetary policy (Bernanke, Gertler and Watson, 1997).1 A key paper
1See Hamilton (2003) and Kilian (2008) for reviews of the literature.
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by Hamilton (1983) documented a clear negative relationship between oil prices and

output. In that paper, Hamilton provided strong evidence that oil price changes could

be treated as exogenous to the U.S. economy. A variety of tests supported the assertion

that oil price increases are followed by decreases in output. Other studies, including

Rotemberg and Woodford (1996), Warnock and Warnock (2000), and Sensier and Van

Dijk (2004) have shown that this result extends to other macroeconomic variables such

as aggregate unemployment, wages and prices.

To the extent that oil price changes affect the macroeconomy, and thus firm cash

flows, they should also affect stock prices. Papers by Jones and Kaul (1996), Ewing and

Thompson (2007), Bachmeier (2008), and Miller and Ratti (2009) all confirm this view.

Driesprong, Jacobsen, and Maat (2008) provide evidence that stock markets overreact

to oil price changes, in the sense that there is a reversal of stock price changes in the

days after an oil price shock.

Kilian and Park (2009) offer an interesting alternative view of the response of stock

prices to a change in the price of oil. They argue that a drawback of existing studies is

that by treating oil price shocks as exogenous to the economy and hence stock returns,

reverse causality becomes a problem in regressions that relate oil price changes to stock

returns. Kilian (2009) showed that GDP responds differently to an oil price change

depending on the nature of the underlying shock. If the price of oil rises because of

a shock to oil supplies, GDP is expected to fall. If on the other hand the price of oil

rises because of a positive shock to world output, and thus the demand for oil, GDP is

expected to rise. Building on these findings, Kilian and Park (2009) argue that a similar

story can be told with respect to the response of the stock market following a change

in the price of oil. Oil price increases that are due to higher oil demand should cause

stock prices to rise. Higher oil prices should only be expected to cause stock prices to

fall if the higher oil price is due to a shock to the supply of oil. Using an identified
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vector autoregressive (VAR) approach, they show that oil supply shocks are bad for the

Center for Research in Security Prices (CRSP) value-weighted market portfolio, but oil

price increases due to increases in world output cause the portfolio to appreciate.

This chapter addresses the same issue as Kilian and Park (2009) but uses a different

dataset and a different approach to decomposing oil price movements into shocks to oil

supply and oil demand. Our dataset consists of daily data on U.S. oil and stock prices.

An advantage of our identification strategy is that it does not require the construction

of an index of world output, as in Kilian and Park (2009). Additionally, the identified

shocks can be used in a real time forecasting environment, as all of the data are available

in real time.

Of course, our empirical methodology has limitations. One potential criticism is

that the baseline estimates come from a bivariate VAR model of stock prices and oil

prices. While bivariate VAR models have frequently been used in the existing literature

(Kilian and Vigfusson, 2010; Hamilton, 2010; Bachmeier and Cha, 2011; Blanchard

and Gali, 2009), it is possible that there might be more than one macroeconomic shock

simultaneously affecting stock prices. Kilian (2009), which provides the basis for the

work done in Kilian and Park (2009), estimated a three-variable VAR model with three

shocks, and labeled one of the shocks a “precautionary” oil demand shock. The use of

daily data limits the series that can be included in the VAR model. We do not feel that

this limitation is too severe for the purposes of this chapter because our primary focus is

on the response of the stock market to an oil price shock, and our methodology provides

for a clean, valid identification of shocks to the price of oil, regardless of whether the

oil price shock could be broken down further into additional types of oil shocks.

A second potential criticism is that our identification relies on Hamilton’s net oil

price increase model. While we believe there is strong support for the net oil price

increase model in the literature (Hamilton 1996, 2003, 2010), we are aware that some
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researchers have recently questioned its use (Kilian and Vigfusson, 2010), which if cor-

rect would invalidate our identification restrictions. We make no attempt to refute the

findings of Kilian and Vigfusson, as that has been done by Hamilton (2010), but we will

note that though they fail to reject the null hypothesis of symmetric impulse response

functions for real GDP, but for unemployment, they conclude that, “the response esti-

mates look fairly asymmetric” at a one-year time horizon, and even state, “We certainly

would not want to rule out the existence of asymmetries in all possible applications

on the basis of our empirical evidence.” Thus, while we recognize that there are valid

questions about model specification with respect to real GDP, we do not believe there is

any evidence that would justify dismissing the net oil price increase model completely.

1.2 Empirical Analysis of the Effects of Oil Price Shocks

on the Stock Market

1.2.1 Data

Our dataset consists of daily data on the percentage change in the Standard and Poor’s

(S&P) 500 return and the percentage change in the price of the West Texas Intermediate

(WTI) crude oil in Cushing, for the period January 2, 1986 to February 28, 2011. The

data for the S&P 500 were downloaded from Yahoo! Finance, while the WTI spot crude

oil prices came from the U.S. Energy Information Administration.

Following the convention in the literature, we pretested the variables for station-

arity, carrying out an augmented Dickey-Fuller (ADF) test for both variables. The

conclusion for both variables is that they are nonstationary in levels but stationary in

first differences.2 Our conclusion that both variables are nonstationary in their levels
2The ADF test statistics were -1.2 in levels and -61.3 in differences for the S&P 500, and -0.7 in

levels and -59.2 in differences for WTI, against a 5% critical value of -2.86.
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opens up the possibility that they are cointegrated. A Johansen test for cointegration

indicated that the levels of the S&P 500 and the price of oil are not cointegrated.3

Based on these results, we proceed using a VAR model in differences. A VAR model in

differences is consistent with all of the papers cited in this chapter.

1.2.2 Methodology

Denote the percentage change in the S&P 500 return on day t by st, and the percentage

change in the WTI on day t by wt. Then a first-order reduced-form VAR model of stock

prices and oil prices4 can be written:

st = α0 + α1st−1 + α2wt−1 + est

wt = β0 + β1st−1 + β2wt−1 + ewt

(1.1)

This reduced-form VAR model is useful for forecasting purposes, but not for calculating

impulse response functions. Assume that there are two structural shocks, one a “stock

market” shock, denoted εmt, and the other an “oil market” shock, denoted εot. The

stock market shock captures shocks to the macroeconomy as well as other types of

noise beyond the macroeconomy. This shock, representing world aggregate demand as

in Kilian (2009), should have a positive effect on both stock returns (by raising expected

firm cash flows) and the price of oil (by raising the demand for oil). The oil market

shock, which represents current and expected future oil supply disruptions, should have

a negative effect on stock returns (by lowering expected firm cash flows) but a positive

effect on the price of oil (a greater supply of oil will cause the price of oil to fall).

We can then rewrite the reduced form VAR residuals in (1.1) to reflect the fact that
3The maximum eigenvalue test statistic for no cointegrating vectors versus one cointegrating vector

is 6.6 against a 95% critical value of 15.67. The trace test statistic for no cointegrating vectors versus
one cointegrating vector is 10.6 against a 95% critical value of 19.96.

4The Schwarz information criteria selected one as the optimal lag length.
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they are a function of the underlying structural shocks:

st = α0 + α1st−1 + α2wt−1 + aεmt + bεot

wt = β0 + β1st−1 + β2wt−1 + cεmt + dεot

(1.2)

Looking at the system (1.2) , it is clear that in the absence of further restrictions, it

is not clear what is meant by an “oil price shock”.5 The response of the stock market

following a change in the price of oil will depend on the underlying source of the oil

price movement.

The identification problem is thus to identify the coefficients a, b, c and d. The

coefficient a is the response of the S&P 500 return to a “one-unit” stock market shock,

b is the response of the S&P 500 return to a “one-unit” oil shock, c is the response

of the oil market to a “one-unit” stock market shock, and d is the response of the oil

market to a “one-unit” oil shock. We normalize the shocks by imposing a = d = 1. It is

standard to normalize VAR shocks in this way (see e.g. Blanchard and Quah (1989)).

This leaves two parameters to identify:

st = α0 + α1st−1 + α2wt−1 + εmt + bεot

wt = β0 + β1st−1 + β2wt−1 + cεmt + εot

(1.3)

Hamilton (1996) introduced the “net oil price increase” model. He argued that

changes in the price of oil should only affect the economy if the price of oil is high

relative to recent experience. His logic was as follows:

If one wants a measure of how unsettling an increase in the price of oil is

likely to be for the spending decisions of consumers and firms, it seems more

appropriate to compare the current price of oil with where it has been over

the previous year rather than during the previous quarter alone. (Hamilton
5See Kilian (2009) for further discussion of this point.

6



1996, p. 216)

Hamilton (2003) found that the data provide more support for comparison against the

prior three years rather than just the prior year, as in Hamilton (1996). Additional

evidence in favor of the asymmetric specification was provided in Hamilton (2010).

The focus of this line of research has largely been comparing the net oil price increase

model against a linear model in the context of predicting GDP growth.

Define the variable

rises = xs − x̃s

where xs is the natural logarithm of the average price of WTI in month s and x̃s is the log

of the highest price of oil in the previous 36 months (i.e., x̃s= max (xs−1, xs−2, . . . , xs−36)).

Then define the dummy variable

δs =


1 if rises>0

0 otherwise

to capture months that saw net oil price increases. The variable δs identifies months

for which oil shocks are expected to affect the economy.

We extend the net oil price increase model to the system (1.3).6 Oil market shocks

εo realized during net oil price increase months will cause a change in the price of oil,

which in turn affects the economy and stock prices. Oil market shocks in other months

would still cause the price of oil to change, but as they would not affect the economy,

there would be no response of stock prices (b = 0). On the other hand, a stock market

shock εmt should affect both the demand for oil and the price of oil regardless of whether
6Hamilton (1996, 2003, 2010) did not explicitly model feedback from the economy to the price of

oil.
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day t corresponds to a net oil price increase.

The estimation strategy is as follows. We estimate the reduced-form VAR for ob-

servations with δs = 0 and calculate the reduced form residuals:

st = α0 + α1st−1 + α2wt−1 + est (1.4)

wt = β0 + β1st−1 + β2wt−1 + ewt. (1.5)

Replacing the reduced form residuals and imposing b = 0,

st = α0 + α1st−1 + α2wt−1 + εmt

wt = β0 + β1st−1 + β2wt−1 + cεmt + εot.

We can then follow standard practice in the structural VAR literature (see e.g. Hamil-

ton, 1994) and use the relationship between the reduced form residual covariance matrix

and the structural shock covariance matrix to derive a system of three equations in three

unknowns:

var(est) = var(εmt) (1.6)

var(ewt) = c2var(εmt) + var(εot) (1.7)

cov(est, ewt) = cvar(εmt) (1.8)

The reduced form VAR estimates provide a consistent estimate of var(est), var(ewt),

and cov(est, ewt), which can be used to solve for var(εmt), var(εot), and c.

We then re-estimate the reduced-form VAR model for the δs = 1 observations. The
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structural model for this regime is

st = α0 + α1st−1 + α2wt−1 + εmt + bεot

wt = β0 + β1st−1 + β2wt−1 + cεmt + εot

We have the equations

var(est) = var(εmt) + bvar(εot) (1.9)

var(ewt) = c2var(εmt) + var(εot) (1.10)

cov(est, ewt) = cvar(εmt) + bvar(εot) (1.11)

These are three equations in four unknowns, var(εst), var(εot), c and b. However, as

we have a consistent estimate of c from above, there are only three unknowns. We use

the nleqslv nonlinear equation solver in R to find b. Using b̂ and ĉ, we can compute

the structural shocks using the following equations:

est = εmt + b̂εot

ewt = ĉεmt + εot

So we now have

 est

ewt

 =

 1 b̂

ĉ 1


 εmt

εot


or
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A−1

 est

ewt

 =

 εmt

εot

 where A =

 1 b̂

ĉ 1


To construct the confidence intervals for the above parameters, we use a bootstrap

procedure. The bootstrap is a modified version of the method outlined in Hamilton

(1994) and Benkwitz, Lutkepohl, and Neumann (2000). The algorithm is as follows:

1. Resample with replacement 6344 observations on the identified structural shocks.

Call these series ε̃m and ε̃o.

2. Set the pre-sample values s̃0 and w̃0 equal to the sample means of s and w,

respectively. The pre-sample values of the level of the S&P 500 and price of WTI

are equal to their values from January 1983 to December 1985. Set i = 1.

3. Generate observations for month i using the estimated model for the NOPI regime

as the data generating process7:

s̃t = α̂0 + α̂1s̃t−1 + α̂2w̃t−1 + ε̃mt + b̂ε̃ot

w̃t = β̂0 + β̂1s̃t−1 + β̂2w̃t−1 + ĉε̃mt + ε̃ot

Calculate the mean WTI value for month i. If that value is larger than the

maximum of WTI over the previous 36 months, move to step 4. Otherwise, discard

the data generated for month i and replace it with data generated imposing b = 0 :

s̃t = α̂0 + α̂1s̃t−1 + α̂2w̃t−1 + ε̃mt

w̃t = β̂0 + β̂1s̃t−1 + β̂2w̃t−1 + ĉε̃mt + ε̃ot

4. Increment i. Repeat step 3 if i < 37. The final bootstrapped dataset will have
7The data generating process was very time consuming using R, so we generated the data in C++

using the R package Rcpp (Eddelbeuttel and Francois, 2011).
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6344 total observations.

5. Estimate all parameters of the model using the bootstrapped dataset.

6. Repeat steps (1) through (5) 5000 times to get 5000 estimates of the parameters

of the VAR model. The standard errors of the parameters are the standard

deviations of the bootstrap estimates of the parameters.

1.3 Empirical Results

1.3.1 Coefficient Estimates

This section presents the results of estimating the reduced-form VAR model (1.4) and

(1.8) as described in section 2.2. Table 1.1 presents these results.

Table 1.1: Reduced Form VAR Estimates
δs = 0 δs = 1

S&P 500 WTI S&P 500 WTI

Intercept 0.0004 -0.0001 0.0000 0.0024
(2.17) (-0.39) (0.06) (2.52)

st−1 -0.0427 0.0316 -0.0278 0.1845
(-3.16) (1.10) (-0.81) (2.00)

wt−1 -0.0081 -0.0100 -0.0381 -0.0309
(-1.27) (-0.74) (-2.96) (-0.90)

Notes:

t− statistics are reported in parentheses below the estimated parameters. Bold-faced coefficients are significant at the

5% level

Using equations (1.6) and (1.8), we find that var(εmt) = var(est) = 0.000145, while

cvar(εmt) = cov(est, ewt) = 0.000027, implying ĉ = cov(est,ewt)
var(est)

= 0.182646. Solving for b̂

using equations (1.9) to (1.11), we get b̂ = −0.068236. Given these coefficient estimates,

we can write the structural VAR model as:
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st = 0.00036 − 0.04274st−1 − 0.00808wt−1 + εmt + bεot

wt = −0.00014 + 0.03163st−1 − 0.01005wt−1 + 0.18265εmt + εot

where b̂ = −0.068 during net oil price increase months and zero otherwise.

One rarely attempts to interpret the coefficient estimates of a reduced form VAR

model (Hamilton, 1994). Figures 1.1 and 1.2 are the impulse response functions for

each variable following the two shocks, under the two regimes.

When we are not in a net oil price increase month, a stock market shock that causes

the S&P 500 to rise by one percentage point will cause the price of oil to rise approx-

imately 0.2 percentage points. While it is difficult to directly compare our estimates

with Kilian and Park (2009), as they used monthly data and we are using daily data,

it is interesting

Figure 1.1: Response of the S&P 500 Return and WTI Crude Oil Prices to Each
Structural Shock: δs = 0
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to note that the immediate response of the price of oil8 is positive and significantly

different from zero, and then falls to zero thereafter. This is consistent with the price of

oil being an asset price that fully reflects new information immediately. Kilian and Park

found a slight (but statistically insignificant) positive response in the month of a shock

to aggregate demand, with the impulse response function rising for twelve months, and

being significant at a 5% level nine months after the shock. They did not report impulse

response functions beyond a twelve month horizon, so it is not known how persistent

are the effects of aggregate demand shocks on the price of oil.

By construction, the S&P 500 does not respond to the oil market shock contempo-

raneously, so there is nothing to say about the contemporaneous response of the S&P

500 to an oil market shock. There are no lagged responses of either variable to either

shock. This result is also in contrast to Kilian and Park (2009), who found that aggre-

gate demand shocks and oil market shocks both have a delayed but prolonged effect on

stock returns.

When we are in a net oil price increase month, the initial response of the oil price

to a stock market shock is the same (this is by construction). However, we also find

a statistically significant positive effect on the day after the stock market shock. This

suggests that when the price of oil is hitting new highs, traders initially underestimate

the effect of a stock market shock on the demand for oil. The response of the stock

market to an oil market shock is a decline of 6.8% when the price of oil doubles9.
8Kilian and Park studied the real price of oil, but at a daily frequency the distinction between real

and nominal oil price changes is likely to be trivial, though we have no way to test that proposition
given the lack of daily inflation data.

9Note that this requires the price of oil to double after it is already at a higher price than at any
point in the previous three years. Also note that the same logic does not apply to oil price decreases.
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Figure 1.2: Impulse Response Functions of the S&P 500 Return and WTI Crude Oil
Prices to Each Structural Shock: δs = 1
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How do these results compare with a model that treats the change in the price of

oil as an exogenous shock to the oil market? A regression of the stock market return on

its own lag, the contemporaneous change in the price of oil, and four lags of the price

of oil yields the following results (t− statistics in parentheses):

st = 0.00
(1.99)

− 0.04
(−3.05)

st−1 + 0.03
(5.21)

wt − 0.01
(−2.06)

wt−1 − 0.01
(−1.28)

wt−2 + 0.01
(1.36)

wt−3 + 0.00
(0.16)

wt−4

If one does not allow for the possibility that the price of oil responds to changes in

output, it will lead to a conclusion that adverse oil shocks have a positive effect on the

stock market.
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1.3.2 Historical Decomposition of the Stock Market and Oil

Market Shocks

Figure 1.3 plots the evolution of the identified stock market and oil market shocks.

To improve readability, the shocks are aggregated by summing up the shocks in each

month. One way to judge the identification is to ask whether specific identified oil

shocks reflect information about the oil market. At the beginning of the sample, there

was a large negative oil market shock as the OPEC cartel collapsed. There was a

large positive oil market shock in August 1990 at the time of the first Gulf War. The

identified shocks suggest that the fall of the price of oil in 2008 was partly due to a

negative stock market shock, but also partly to a negative oil shock, consistent with the

claims in Hamilton (2009) that the price of oil exceeded its “fundamental” value when

it rose above $140 in June 2008.

Figure 1.3: Evolution of Stock and Oil Market Shocks
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To assess the contribution of each of these shocks, we regress the stock return and

oil price change on the identified shocks seperately to see which is more important for

each variable. That is, we perform the following regressions:

st = α1 + α2εmt + et (1.12)

st = β1 + β2εot + et (1.13)

wt = γ1 + γ2εmt + et (1.14)

wt = δ1 + δ2εmt + et (1.15)

Because our interest is only to examine the proportion of the observed variation of these

variables that is explained by these shocks, we only report the R2 for each model. We

find (from model 1.12) that about 97.8% of the variation in stock returns is associated

with the stock market shock, while only about 0.03% of the variability in stock prices

(from equation 1.13) is associated with shocks that drive the oil market. This finding is

hardly surprising given that there are days with little or no changes in oil prices. The

stock market shock is shown to explain only 0.7% of the variation in oil prices, with

a huge proportion of the variation in oil prices (98.03%) explained by the oil-market

specific shock, εmt (equation 1.15).
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1.4 Macroeconomic Analysis

The previous section has shown that oil market shocks have a large and statistically

significant effect on the S&P 500 when those shocks occur in months where the price of

oil is higher than at any time in the previous three years. This section looks at how the

identified stock market and oil market shocks interact with important macroeconomic

variables. There are two motivations for this exercise. First, our identification restric-

tions are more credible if the identified shocks affect macroeconomic variables in ways

that are consistent with economic theory. Second, our identified stock market and oil

market shocks might provide new predictors for macroeconomic variables.

1.4.1 Monetary Policy

It has been argued that monetary policy plays a critical role in the transmission of oil

to the economy. Some authors have even gone so far as to conclude that without a

response of monetary policy, oil shocks would have little effect on the macroeconomy.

Consider the following quote from Bernanke, Gertler and Watson (1997):

Substantively, our results suggest that an important part of the effect of oil

price shocks on the economy results not from the change in oil prices, per

se, but from the resulting tightening in monetary policy (p. 39).

Bernanke, Gertler and Watson argued that oil shocks in the 1970’s and 1980’s would

not have been followed by recessions if the Federal Reserve had not tightened monetary

policy to prevent inflation following an increase in the price of oil.

This section examines the response of monetary policy to the identified stock market

and oil price shocks. In particular, we are interested in whether the Federal Reserve

responds differently to the stock market and oil market shocks. Kilian and Lewis (2011)

find no evidence that the Federal Reserve has responded to oil shocks in the past.
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Blinder and Reis (2005) even claim that ignoring oil shocks was an “innovation” of the

Greenspan Federal Reserve. Nonetheless, a regression of a monetary policy variable

on the change in the price of oil is unlikely to provide an informative answer to this

question. The price of oil responds to stock market shocks, and it is not controversial

to suggest that the Federal Reserve will respond to the stock market shock.

In this section we use the change in interest rates rather than the levels. Stock and

Watson (1999), Hangsden (2004), Crowder (2006), and Bec and Basil (2009) have found

evidence of a unit root in the federal funds rate. Campbell and Shiller (1987) provided

seminal research leading to a literature on testing the term structure of interest rates

using cointegration tests, which is built on the premise that interest rates are nonsta-

tionary. Shikida and Figueiredo (2010), using P −ADF tests andM−estimators that

properly deal with nonlinearities, demonstrate that testing for stationarity of interest

rates properly requires a great deal of caution. They concluded that the federal funds

rate is nonstationary. Consequently, we use the first difference of interest rates in the

analysis that follows.

We analyze the response of market interest rates to oil and stock market shocks

using daily data on the change in the federal funds rate, as well as the 30-day, 60-

day, and 180-day eurodollar rates from January 1986 to February 28, 2011. The data

are collected from the Federal Reserve Statistical Release H.15 of the Federal Reserve

Board. As demonstrated by Cochrane and Piazzesi (2002), the 30-day eurodollar rate

on the day before an FOMC meeting is an excellent predictor of federal funds rate

changes, and viewing the 30-day eurodollar rate as an average of the expected federal

funds rate over the next 30 days is a good approximation. We also consider the 60-day

and 180-day eurodollar rates to capture delayed Federal Reserve responses to oil shocks.

Denoting the average value of the interest rate series on day t as Rt, we do an OLS

regression of each of the interest rates on the identified stock market and oil shocks:
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Rt = α + βRt−1 + λεmt + ϕεot + et (1.16)

Table 1.3 summarizes the results.

Table 1.2: Response of Interest Rates to Oil and Stock Market Shocks

30-Day 60-Day 180-Day
FFR Eurodollar Eurodollar Eurodollar

α −0.0016 −0.0013 −0.0011 −0.0011
(−0.48) (−1.18) (−1.38) (−1.38)

β −0.1902 −0.0133 −0.0875 −0.0438
(−15.3) (−1.06) (−7.00) (−3.48)

λ −0.6574 −0.2709 −0.1004 −0.1596
(−2.37) (2.91) (−1.56) (−2.51)

ϕ 0.1991 0.0636 0.0458 0.0373
(1.57) (1.50) (1.56) (1.29)

R2 0.037 0.002 0.009 0.003
Notes:

t− statistics are reported in parentheses below the estimated parameters. Bold-faced coefficients are significant at the 5% level

The coefficient on the oil shock is positive but statistically insignificant in all four

regressions. This is consistent with the findings of Kilian and Lewis (2011) that the

Federal Reserve does not react to oil shocks. Something that is interesting is that

in three of the four regressions, the coefficient on the identified stock market shock

is negative and statistically significant. This suggests that the stock market shock is

capturing news about monetary policy (i.e., a lower than expected federal funds rate

target is a positive stock market shock) and news about productivity (which pushes

down expectations of inflation and implies a more expansionary path of monetary policy

in the future). The clear conclusion from these results is that short-term interest rates

do not respond to oil shocks, but that it would be very misleading to simply regress

the interest rate series on the change in the price of oil. Those results are presented in
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Table 1.3, where the regression equation is

Rt = α + βRt−1 + λwt + et

Table 1.3: Response of Interest Rates to Oil Price Change

30-Day 60-Day 180-Day
FFR Eurodollar Eurodollar Eurodollar

α 0.0016 -0.0012 -0.0011 -0.0011
(0.48) (1.09) (-1.38) (-1.38)

β -0.1897 -0.0153 0.1013 0.0463
(15.3) (-1.21) (8.10) (3.67)

λ 0.1504 -0.0156 0.0595 0.0362
(1.20) (-0.17) (2.06) (1.26)

R2 0.036 0.000 0.011 0.002
Notes:

t− statistics are reported in parentheses below the estimated parameters. Bold-faced coefficients are significant at the

5% level

1.4.2 Forecasts of Macroeconomic Variables

Having examined the (nonlinear) effects of stock market and oil price shocks on the

stock market, as well as the response of monetary policy to these shocks, we turn to

the question of whether the information from our decomposed stock market and oil

shocks improve the forecasts of macroeconomic variables. We examine both the in-

sample fit and the historical out-of-sample forecast performance of our model relative

to a benchmark model that includes only the change in the price of oil as a predictor.

The data used for the in-sample predictability tests are monthly data covering the

period February 1986 to February 2011. We consider a range of macroeconomic series

measuring inflation, output, interest rates, and money growth. The data on oil prices

were downloaded from the website of the Energy Information Administration. All other

variables were downloaded from the FRED database at the Federal Reserve Bank of
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Saint Louis. The variables used are listed in Table 1.5.

Table 1.4: Variables, Adjustments and Transformations
Variable Seasonal Adjustment Transformation

Core CPI Seasonally Adjusted log-difference
CPI (All Goods) Seasonally Adjusted log-difference
Federal Funds Rates Not Applicable Level
Federal Funds Rate (4) Not Applicable First Difference
Industrial Production Seasonally Adjusted log-difference
M2 Money Stock Seasonally Adjusted log-difference
PPI (All Commodities) Seasonally Adjusted log-difference
Core PPI Seasonally Adjusted log-difference
3-month T-bill Rate Not Applicable Level
Unemployment Rate Seasonally Adjusted Level

1.4.2.1 In-Sample Analysis

Denote by yt, the macroeconomic variable we want to predict, wt, the percentage change

in WTI oil price, εmt, the structural stock market shock, and εot, the structural oil shock.

We consider two non-nested forecasting models for each of the macroeconomic variables:

yt = α +
k∑
i=1

βiyt−i +
k∑
i=0

γiwt−i + et (1.17)

yt = α +
k∑
i=1

βiyt−i +
k∑
i=0

λiεmt−i +
k∑
i=0

ϕiεot−i + et (1.18)

where the lag-length , k, is chosen by the AIC, and et is the error term. Since these

are non-nested models, we cannot simply use the standard F−tests and t−tests to

determine which model fits better. Davidson and MacKinnon (1981) proposed the

J−test as an alternative way of comparing non-nested hypotheses. If (1.17) is the true

model, then the fitted values from (1.18) should not have significant coefficients when

added to equation (1.17). We test the null hypothesis that (1.17) is the best prediction
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model for the given macroeconomic variable as follows:

1. Estimate equation (1.18) by OLS and obtain the fitted values ŷt.

2. Estimate the model

yt = α +
k∑
i=1

βiyt−i +
k∑
i=0

γiwt−i +
k∑
i=0

ηiŷt−i + et (1.19)

A significant F−statistic on η0 = η1 = · · · = ηk = 0 implies a rejection of the null

hypothesis that (1.17) is the best prediction model for yt.

3. Estimate equation (1.18) by OLS and obtain the fitted values y̌t.

4. Estimate the model

yt = α +
k∑
i=1

βiyt−i +
k∑
i=0

λiεmt−i +
k∑
i=0

ϕiεot−i +
k∑
i=0

ηiy̌t−i + et (1.20)

A significant F−statistic on η0 = η1 = · · · = ηk = 0 implies a rejection of the null

hypothesis that (1.18) is the best prediction model for y.

Table 1.5 shows the J−test results. tjtest∆oil is the J−test statistic for (1.19) and tjtestnopi

is the J−test statistic for (1.20). Only for the federal funds rate do we fail to reject

the null hypothesis that model (1.17) provides the best predictions at a 5% significance

level. Interestingly, the J − test in some cases also rejects that (1.18) is the proper

specification.

1.4.2.2 Out-of-Sample Analysis

Significant in-sample predictability does not necessarily translate into good out-of-

sample forecasts. Structural breaks and the difficulty of obtaining precise parameter

estimates are reasons why a model might fit well in the full sample but fail to provide

improvements over simpler models in an out-of-sample forecasting experiment.
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Our forecasting models are based on models (1.17) and (1.18). The recursive one-

step ahead forecasting models are then given by:

ŷt+1|t = α̂ +
k∑
i=1

β̂iŷt+1−i|t +
k∑
i=0

γ̂iŵt+1−i|t (1.21)

ŷt+1|t = α̂+
k∑
i=1

β̂iŷt+1−i|t +
k∑
i=0

λ̂iε̂mt+1−i|t +
k∑
i=0

ϕ̂iε̂ot+1−i|t (1.22)

where the lag length, k, is chosen using the AIC.

We measure forecast performance using a mean squared forecast error (MSE) loss

function. Because the models (1.21) and (1.22) are non-nested, we compute Diebold

and Mariano (DM, 1995) test statistics to compare the forecasts of each macroeconomic

variable produced by the two models. The null hypothesis is that the forecasts of the

two models have equal MSE. That is

ξ
[
(ei,t+1|t)

2
]

= ξ
[
(ej,t+1|t)

2
]

where ξ is the expectations operator, et+1|t = yt+1− ŷt+1|t, and i and j index the models.

The DM test is carried out as follows. Define the loss associated with the use of model

k as

L(ek,t+1|t) = (ek,t)
2

where the form of L (·) follows from the assumption of MSE loss.

We want to test the null hypothesis

H0 : ξ
[
L(et+1|t)

i
]

= ξ
[
L(et+1|t)

j
]
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Table 1.5: In-Sample J-Test Results: Our Model Vs Change in Oil Price Model
Variable tjtest∆oil tjtestnopi Lags

Core CPI 2.0903 1.5674 6
CPI (All goods) 4.8163 5.3466 12
Federal Funds Rate 1.8579 3.3677 6
Federal Funds Rate (M) 2.4482 1.8915 3
Industrial Production 6.3452 0.0720 4
M2 Money Supply 4.7545 1.9526 5
PPI (All commodities) 3.5061 6.3345 7
Core PPI 2.9307 2.8989 6
3-month T-bill 3.7885 2.6677 4
Unemployment 4.7398 0.5227 9

Notes:
tjtestnopi is the J−test t−statistic of model (1.20)- our model and tjtest∆oil is the J−test t−statistic of model (1.19) - the
change in oil price model

Boldface numbers represent significant t-statistics. Significant t-statistics are a rejection of the null hypothesis that the

model in question provides better in-sample fit.

against the two-sided alternative

H1 : ξ
[
L(et+1|t)

i
]
6= ξ

[
L(et+1|t)

j
]

Define the loss differential series as10

dt = L(ei,t+1|t)− L(ej,t+1|t)

Diebold and Mariano (1995) and West (1996) showed that with non-nested models and

MSE loss, d is distributed normally with a zero mean. The null hypothesis can be

tested by regressing dt on a constant

dt = α + et

10In other words, simply take the difference in squared forecast errors at each date that a forecast
is made.
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and (using the Newey-West HAC corrected t−statistic) testing whether α is significantly

different from zero.

If DM > 1.96, then the average difference in forecast loss is different from zero and

hence model 2 forecasts better. If DM < −1.96, we conclude that model 1 forecasts

better. If−1.96 < DM < 1.96, we cannot reject the hypothesis that both models

forecast equally well.

Table 1.6 reports the results of the forecast comparisons for one-step ahead forecasts

of each of the macroeconomic variables. In only two cases, for the core CPI and the

PPI, does the change in the price of oil provide better forecasts of the macroeconomic

variables, and in both of those cases the difference in MSE is small and insignificant. In

five cases there is a statistically significant improvement in the forecasts of the macroe-

conomic variables when we first decompose oil price movements into the underlying

stock market and oil market structural shocks.

Table 1.6: One-step-ahead Forecasts
Variable MSE

∆oil
MSE
NOPI

DM
4oil/NOPI

Core CPI 0.0080 0.0082 -0.6085
CPI (All goods) 0.0679 0.0435 2.3718
Federal Funds Rate 0.0159 0.0143 0.5536
Federal Funds Rate (4) 0.0146 0.0112 1.9368
Industrial Production 0.5129 0.4929 0.5724
M2 Money Supply 0.0718 0.0449 3.5552
PPI (All commodities) 0.3969 0.4107 -0.3532
Core PPI 0.0675 0.0543 3.6614
3-month T-bill 0.0157 0.0025 5.7590
Unemployment Rate 0.0050 0.0005 4.7049

Notes:
Numbers in italics indicate that the given model has a lower MSE

Boldface DM test statistics indicates the model with the underlying structural shocks forecast better than the change in

oil price model

To ensure that the one-step ahead forecasts are not driven by outliers, we plot the

forecasts, as well as the forecasts errors. Figures 1.4 to 1.13 show no significant outliers
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that may possibly be driving our results. We conclude therefore that in many instances,

our new model forecasts better than the change in oil price model.

Figure 1.4: One-Step Ahead Forecasts and Forecast Errors - Core CPI Inflation

a.Forecast Errors for Each Model b. Actual Values Vs Forecasts
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Figure 1.5: One-Step Ahead Forecasts and Forecast Errors - CPI Inflation

a.Forecast Errors for Each Model b. Actual Values Vs Forecasts
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Figure 1.6: One-Step Ahead Forecasts and Forecast Errors - Federal Funds Rate:
1998:7-2011:2
a.Forecast Errors for Each Model b. Actual Values Vs Forecasts
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Figure 1.7: One-Step Ahead Forecasts and Forecast Errors - Change in Federal Funds
Rate: 1998:7-2011:2
a.Forecast Errors for Each Model b. Actual Values Vs Forecasts
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Figure 1.8: One-Step Ahead Forecasts and Forecast Errors - Industrial Production:
1998:7-2011:2
a.Forecast Errors for Each Model b. Actual Values Vs Forecasts
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Figure 1.9: One-Step Ahead Forecasts and Forecast Errors - M2 Money Supply: 1998:7-
2011:2
a.Forecast Errors for Each Model b. Actual Values Vs Forecasts
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Figure 1.10: One-Step Ahead Forecasts and Forecast Errors - PPI Inflation (All Com-
moditites): 1998:7-2011:2
a.Forecast Errors for Each Model b. Actual Values Vs Forecasts
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Figure 1.11: One-Step Ahead Forecasts and Forecast Errors - Core PPI: 1998:7-2011:2
a.Forecast Errors for Each Model b. Actual Values Vs Forecasts
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Figure 1.12: One-Step Ahead Forecasts and Forecast Errors - 3-Month T-Bill Rate:
1998:7-2011:2
a.Forecast Errors for Each Model b. Actual Values Vs Forecasts
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Figure 1.13: One-Step Ahead Forecasts and Forecast Errors - Unemployment Rate:
1998:7-2011:2
a.Forecast Errors for Each Model b. Actual Values Vs Forecasts
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Table 1.7 presents DM test statistics for the comparison of the same two models
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but at longer forecast horizons. To this end, we compute the MSE and DM test for

each of these variables for 3−, 6 -, 12-, and 24 - step ahead forecasts. For this exercise,

we use a direct estimation approach where we estimate a horizon-specific model and

form direct h-step ahead predictions of yt. The h-step ahead forecasts for the models

we estimate are:

ŷt+h|t = α̂ +
k∑
i=1

β̂iŷt−i|t +
k∑
i=1

γ̂iŵt−i|t (1.23)

ŷt+h|t = α̂ +
k∑
i=1

β̂iŷt−i|t +
k∑
i=1

λ̂iε̂mt−i|t +
k∑
i=1

ϕ̂iε̂ot−i|t (1.24)

The general pattern is the same at longer horizons as for the one-step ahead forecasts.

Using the change in the price of oil leads to inferior forecasts in almost all cases. In

many cases the difference in MSE is significant, so that we can conclude that the model

with decomposed oil shocks produces forecasts with a statistically significantly lower

MSE.

Table 1.7: Multi-Step Ahead Forecasts
Variable h = 3 h = 6 h = 12 h = 24

Core CPI −1.5938 −1.4154 −0.9195 −2.8265
CPI (All goods) 0.8298 0.5863 2.2315 −0.9233
Federal Funds Rate 0.5954 1.6435 1.4515 0.0013
Federal Funds Rate (4) 1.2032 2.3185 3.3973 2.4055
Industrial Production 1.1422 1.1958 1.0603 0.8037
M2 Money Supply 2.5946 1.9227 2.0282 1.6832
PPI (All commodities) 0.6961 −1.7363 1.5787 −1.2691
Core PPI 2.7733 3.0816 1.5161 2.2484
3-month T-bill 2.7820 2.9544 2.9680 0.4695
Unemployment Rate 3.5026 1.6606 2.8111 2.3971

NOTES:

Boldface numbers indicate that the model with the underlying structural shocks forecasts bettter than the change in the oil price model.
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1.5 Conclusion

Using daily data on the S&P 500 returns and the West Texas Intermediate (WTI)

crude oil prices for the period 1986-2011, and making use of Hamilton’s (1996, 2003,

2010) net oil price increase model, we identified stock market and oil market shocks

that affect the stock and oil markets. We show that the response of the stock market

differs depending on whether the price of oil has risen due to a stock market shock

raising the demand for oil, or due to an oil-market shock decreasing the supply of oil.

The stock market shock is shown to be associated with about 97.8% of the variation in

stock returns, while the oil-market shock accounts for over 98% of the variation in oil

prices.

We find that when we are not in a net oil price increase month, a stock market

shock that causes the S&P 500 to rise by one percentage point causes the price of oil

to rise approximately 0.2 percentage points. This is finding is consistent with the price

of oil being an asset price that fully reflects new information immediately. We also

find a statistically significant positive effect on the day after the stock market shock.

The implication is that every time the price of oil hits a new high, traders initially

underestimate the effect of a stock market shock on the demand for oil. On the other

hand, the response of the stock market to an oil market shock is a decline of 6.8% when

the price of oil doubles.

We then analyzed the response of monetary policy to the identified stock market and

oil price shocks using daily data on the change in the federal funds rate and the 30, 60,

and 180-day eurodollar rates. We found that short-term interest rates do not respond to

oil shocks, but that it would be very misleading to simply regress the interest rate series

on the change in the price of oil. We also considered whether the information from the

decomposed stock market and oil shocks improve the in-sample fit and the historical

out-of-sample forecast performance of our model relative to a benchmark model that
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includes only the change in the price of oil as a predictor. We concluded that the

model with the decomposed oil shocks produces better forecasts both in-sample and

out-of-sample.
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Chapter 2

Revisiting the Statistical Specification

of Near-Multicollinearity in the

Logistic Regression Model

2.1 Introduction

In econometrics, statistics and related disciplines, multiple linear regression models are

widely used to assess the relationship between two or more variables. The interpretation

and validity of these models is dependent upon the validity of individual regression

coefficient estimates. When the regressors in the model are not linearly related, they

are said to be orthogonal or independent. Traditionally, when the regressors are not

orthogonal and become almost perfectly related, estimates of the individual regression

coefficients may become unstable and the inferences based on the model may tend

to be misleading. This condition is known as multicollinearity (Mason, Webster and

Gunst, 1975). Multicollinearity occurs when variables in the model are correlated to

an extent that individual regression coefficient estimates become unreliable. When the
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variables have an exact linear relationship, they are said to be perfectly collinear. When

the relationship between the predictor variables is almost linear (but not exact), this

results in the phenomenon known as near-multicollinearity, the problem specifically

addressed in this paper.

The traditional account of near-multicollinearity in the linear regression model relies

upon a ceteris paribus clause which allows for the examination of the impacts on the

standard errors (se(β)) and asymptotic t − statistics (τ(β)) (or other test statistics)

as the correlation (ρ) between the regressors increases (|ρ| → 1), while holding the

parameter estimates β, σ2 and R2 at their current values (i.e constant). However,

β, σ2 and R2, as well as their associated variances and t − ratios are all functions of

ρ, changing as |ρ| → 1 (Spanos and McGuirk, 2002). Therefore, the ceteris paribus

clause is unattainable, making it necessary to re-evaluate the specification of near-

multicollinearity in statistical models (Spanos and McGuirk, 2002). Making use of the

notion of statistical reparametization, Spanos and McGuirk (2002) revisit the problem

of near-multicollinearity in the context of the linear regression model and conclude that

their:

revised account of the changes in the statistics ( ˆV ar(β̂);τ(β̂); R2) induced

by |ρ̂| → 1, shows that the traditional account needs to be thoroughly

amended; neither of the statistics ( ˆV ar(β̂);τ(β̂)) varies monotonically with

ρ̂, and there is no conflict between the relevant t-ratios and the R2(p. 392).

From the traditional perspective, Hosmer and Lemeshow (1989) note that the prob-

lems caused by the presence of near-multicollinearity in the logistic regression model

are similar to those in the linear regression model. However, because the conventional

discussion about near-multicollinearity in the linear regression model needs to be revis-

ited as noted by Spanos and McGuirk (2002), it follows that the traditional discussion

of near-multicollinearity in the logistic regression model needs to be revisited as well.
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The purpose of this paper is to re-examine the statistical specification of near mul-

ticollinearity in the logistic regression model. Making use of the Probabilistic Reduction

(PR) approach to model specification, we show that the logistic regression model pa-

rameters are functions of ρ. Like the linear regression model, the ceteris paribus clause

fails to hold for the logistic regression model, changing the traditional account of near-

multicollinearity for this discrete choice model, as well. Hence the specification of

near-multicollinearity for the logistic regression needs to be amended. A simple two

covariate case is simulated to examine what happens to the parameter estimates and

other statistics (e.g. asymptotic t-ratios, marginal effects, variance inflation factors) as

|ρ| → 1. In addition, some extensions for examining logistic regression models with

nonlinear index fucntions and binary covariates is presented as extensions to provide a

base for future research.

The paper proceeds as follows. As a prelude to the discussion of near-multicollinearity

in the logistic regression model, the next section reviews the traditional and revised ac-

counts of the specification of near-multicollinearity for the linear regression model. Sec-

tion 2.3 presents the traditional discussion of the logistic regression model, and using the

probabilistic approach, section 2.4 presents a revised account of near-multicollinearity

in the context of the logistic regression model with continuous covariates. Section 2.5

presents the results from a simulation study of the revised account presented in section

2.4. In section 2.6, we extend the analysis to specifications of the logistic regression

model with binary covariates and nonlinear index/predictor functions. Section 2.7 con-

cludes.
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2.2 Multicollinearity in the Linear Regression Model

In this section, we take a closer look at near-multicollinearity in the linear regression

model. In section 2.2.1, we review the usual account of near-multicollinearity, discuss

its consequences, and present conventional methods for detecting it. In section 2.3,

we present the revised account of near-multicollinearity as presented by Spanos and

McGuirk (2002).

2.2.1 Multicollinearity in the Linear Regression Model: The Traditional

Story

Consider the linear regression model

y = Xβ + e

where

y =



y1

y2

...

yT


,X =



x1,1 · · · xk,1

x1,2 · · · xk,2
... · · · ...

x1,T · · · xk,T


, e =



e1

e2

...

eT


∼ NT (0, σ2In)

Perfect multicollinearity occurs when at least one of the columns of X is a linear trans-

formation of the others (Bierens, (2007)). This situation can occur when the correlation

(ρ) between the regressors is equal to one in absolute value. Perfect multicollinearity

results in parameter identification problems since the (X
′
X) matrix is singular (see

Greene, 2000, p. 256). Thus, β̂ = (X
′
X)−1Xy, ŝ2 = ê

′
e

T−K , and Ĉov(β̂) = ŝ2(X
′
X)−1

are indeterminate.

On the other hand, if the smallest eigenvalue of the (X
′
X) matrix is very small
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such that det(X′X) ≈ 0, but (X
′
X) is still nondegenerate, then we have the associated

problem of near-multicollinearity. Simply put, near-multicollinearity occurs when ρ ≈ 1

or very close to 1. When the regressors are highly correlated in this way, the data matrix

is not well-conditioned, but the OLS estimators still exist. However, high correlation

among the regressors may lead to numerical instability in the precision and significance

of the estimates of β.

2.2.1.1 Effects of Near-Multicollinearity

Near-multicollinearity has significant consequences on the least squares estimates of

the linear regression coefficients. Greene (2000) summarizes the symptoms of near-

multicollinearity as follows:

• Small changes in the data produce wide swings in the parameter estimates.

• Coefficients may have very high standard errors and low significance levels even

though they are jointly significant and the R2 for the regression is quite high.

• Coefficients may have the “wrong” sign or implausible magnitudes (p. 256).

To examine the above discussion of near-multicollinearity, let ϑ be a unit vector of

length k. Following Bierens (2007), the V ar(β̂) = σ2ϑ
′
(X

′
X)−1ϑ. Now let Λ represent

diag
{
eig(X

′
X)
}
, and U the orthogonal matrix of the corresponding eigenvectors. Then

one can rewrite the X′X matrix as UΛU
′ . Denote by um, the mth row of the matrix U ,

and λm, the mth diagonal element of the eigenvector Λ. Then the variance of β̂ can be

rewritten as (Bierens, 2007):

V ar(β̂) = σϑ
′
UΛ−1U

′
ϑ = σ2

k∑
m=1

u2
m

λm
(2.1)

Now suppose λ1 < λm for m = 2, 3, . . . k and u1 6= 0, where λ1 is the smallest

eigenvalue. Then from equation (2.1), as λ1 → 0, the V ar(β̂) → ∞ . This implies
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that when near-multicollinearity is present, the variances and standard errors of the

coefficients will become inflated. Furthermore, confidence intervals for coefficients will

become wide and t−statistics will be smaller.

2.2.1.2 Detecting Near-Multicollinearity

How can one distinguish true parameter instability that results from near-multicollinearity

from other forms of model misspecification? Some researchers have suggested different

“rules of thumb” for detecting near-multicollinearity such as: (i) the Variance Inflation

Factor (VIF) (and Tolerance Index), and (ii) the Condition Number .

The V IF indicates how much the variance of a regression coefficient increases over

and above what it would otherwise be if the R2 of the regression were equal to zero. It

is therefore an index that quanitifies the degree of multicollinearity present in a model.

To see this, recall that the V ar(β̂i) can be written as V ar(β̂i) = σ2

σ
ii(1−R2

i
)
(Spanos and

McGuirk, 2002), where σii = 1
T

T∑
t=1

(xit − x̄i)2 and R2
i is the unadjusted R2 when xi is

regressed on the other explanatory variables. The Tolerance Index for xi, is defined as

1 minus the fraction of the variance between xi and the other regressors (1−R2
i ). The

Variance Inflation Factor (VIF) is the inverse of the tolerance. The V IF (β̂), and its

corresponding Tolerance Index can be written as (see O’Brien, 2007):

V IF (β̂) =
σ2

σii
σ2

σ
ii(1−R2

i
)

=
1

(1−R2
i )

and Tolerance(β̂) =
1

V IF (β̂)
= 1−R2

i .

If xi is orthogonal with the other predictor variables, then R2
i = 0, hence V IF (β̂) =

1. On the other hand, if there is near-multicollinearity between xi and the other re-

gressors, R2
i → 1 and V IF (β̂) → ∞ . Thus when V ar(β̂) is high, the V IF (β̂) is high

and Tolerance(β̂) is low. As a rule of thumb, a V IF > 10 is indicative of a significant
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multicollinearity problem (Marquardt, 1970). Despite its wide use and appeal, it must

be noted that the V IF is not without its deficiencies. A significant drawback of the

V IF is that it only detects overall near-multicollinearity problems that do not include

the constant term. The statistic is neither able to detect multiple near-singularities nor

determine the source of the singularities (Rawlings, Pantula and Dickey, 1998)

As examined earlier, an eigensystem analysis of the data matrix X′X can also be

used to detect the presence of near-multicollinearity. If there exists one or more almost

linear relationships between the explanatory variables, then one or more of the eigen-

values will be small. Let λ1, . . . , λk be the eigenvalues of the matrix X′X. Then the

condition number of X′X is defined as (Belsey, Kuh and Welsch, 1980)

κ =

[
λmax
λmin

] 1
2

where λmax is the maximum eigenvalue of the matrix X′X, and λmin is the smallest

eigenvalue of the X′X matrix. When the condition number of X′X is low, X′X is said

to be well-conditioned. On the other hand, if X′X has a high condition number, it is

said to be ill-conditioned.

Condition numbers can be extended to condition indexes for each principal compo-

nent. The condition index of X′X for the ith principal component, denoted κi is defined

as:

κi =
λmax
λi

i = 1, 2, . . . , k

A large number of condtion indices that are high is indicative of strong linear depen-

dencies in the data matrix X′X. An informal rule of thumb is that if (Belsey, Kuh and

Welsch, 1980):

• κ < 100 or κj < 10 multicollinearity is not a major concern.
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• 100 < κ < 1000 or 30 < κj < 100 multicollinearity is of moderate concern.

• κ > 1000 or κj > 100 multicollinearity is a serious concern.

Snee and Marquardt (1984) note that there is no difference between the rules of thumb

for serious near-multicollinearity when the V IF > 10, and when the condition number

(condition index): 100 < κ < 1000 or 30 < κj < 100. It must be noted that both

the V IF (and Tolerance) and the condition number only provide rules of thumb to

guide the modeler in detecting the presence of near-multicollinearity as there exists no

definitive thresholds for the detection of these problems in the literature.

2.2.2 Revisiting the Problem of Near-multicollinearity in the

Linear Regression Model

Spanos and McGuirk (2002) explore in detail the problem of near-multicollinearity in

the context of the linear regression model. In their paper, they argue that the traditional

discussion of near-multicollinearity reduces to two distinct issues: a structural issue

associated with high correlation among regressors leading to systematic volatility ; and

a numerical issue associated with the data matrix X′X being ill-conditioned leading

to erratic volatility (see Spanos and McGuirk (2002) for a detailed discussion). They

argue that even though the traditional account attempts to model erratic volatility, it

inadvertently leads to a discussion of systematic volatility (high correlation among the

regressors).

They consider the following linear model

y = β0 + βx1t + β2x2t + e e ∼ N(0, σ2IN)

The OLS estimators of β are:
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β̂0 = ȳ − β̂1x̄1 − β̂2x̄2, β̂1 =
σ̂33σ̂12 − ρ̂σ̂13

√
σ̂22σ̂33

(1− ρ̂2)σ̂22σ̂33

, β̂2 =
σ̂22σ̂13 − ρ̂σ̂12

√
σ̂22σ̂33

(1− ρ̂2)σ̂22σ̂33

where σ̂2 = σ̂11 − σ̂33σ̂12−2ρ̂σ̂12σ̂13
√
σ̂22σ̂33+σ̂22σ̂13

(1−ρ̂2)σ̂22σ̂33
, R2 = 1− σ̂2

σ̂2
11
, ρ̂2 =

σ̂2
23

σ̂22σ̂33
, and

σ̂ij = 1
T

T∑
t=1

(zit − z̄i)(zjt − z̄j), i, j = 1, 2, 3; z1t = yt; z2t = x1t; z3t = x2t (Spanos and

McGuirk, 2002)

Spanos and McGuirk (2002) show that the estimated variances of the above estima-

tors take the form:

V ar(β̂1) = Ts2

(1−ρ̂2)σ̂22
, V ar(β̂2) = Ts2

(1−ρ̂2)σ̂33
, s2 =

∑T
t=1 ê

2
t

T−3
;

and the corresponding t− statistics, τ(βi) are:

τ(β̂1) =
β̂1

s
√
T

√
(1− ρ̂2)σ̂22, τ(β̂2) =

β̂2

s
√
T

√
(1− ρ̂2)σ̂33

The estimators and their associated variances and t − ratios (both numerators and

denominators) are all functions of ρ̂. Note that s2 p−→ σ2, which is a function of ρ.

The conventional account of near-multicollinearity is associated with the effects of

|ρ̂| → 1, ceteris paribus. The ceteris paribus clause assumes that β̂, σ̂2, and R2 are

held constant, when analysing the impact as |ρ̂| → 1 on the statistics τ(β̂1), τ(β̂2), V ar(β̂1),

and V ar(β̂2). However, because β̂, σ̂2, and R2 as well as their associated variances and

t−ratios as shown above are all functions of ρ̂, the changes in these statistics are rather

different than the traditional account implies. Therefore the ceteris paribus assump-

tion fails to hold. Making use of the notion of statistical reparametization, Spanos and

McGuirk (2002) thoroughly revisit this issue and conclude that their

revised account of the changes in the statistics (V ar(β̂);τ(β̂); R2) induced
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by |ρ̂| → 1, shows that the traditional account needs to be thoroughly

amended; neither of the statistics (V ar(β̂);τ(β̂)) varies monotonically with

ρ̂, and there is no conflict between the relevant t-ratios and the R2(p. 392).

Spanos and McGuirk (2002) goes on to show that the problem of near-multicollinearity

in the linear regression model may be one of ill-condtioning (erratic volatlity), and

not necessarily always one of high correlation among regressors (systematic volatility).

These problems are likely to exist in nonlinear models, as well. In this paper, the

focus primarily is on the story concerning systematic volaility in the context of the

logistic regression model. We start by reviewing the statistical properties of the logistic

regression model.

2.3 Multicollinearity in the Logistic Regression Model

So far, we have discussed the traditional and revised accounts of near-multicollinearity

in the context of the linear regression model. In this section, we extend the discussion to

strong dependencies among the regressors in the logistic regression model. Section 2.3.1

reviews the traditional specification of the logistic regression model, while section 2.3.2

discusses the traditional approach to detecting and dealing with near-multicollinearity

in the logistic model.

2.3.1 The Logistic Regression Model

The logisitc regression model describes the relationship that exists between a binary

response variable and other categorical or continuous independent variables. The binary

response variable yi is binomial with mean parameter p, (i.e yi ∼ Bin(p)), and Xi is a

k x 1 vector of predictors or explanatory variables. The conditional mean of the logistic
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regression model is E(yi|Xi) = Prob(yi = 1|Xi) , such that

Prob(yi = 1|Xi; β) = p = F (Xi, β) = exp(β′Xi)
1+exp(β′Xi)

= 1
1+exp(−β′Xi)

,

P rob(yi = 0|Xi; β) = 1− p = 1− F (Xi, β) = 1
1+exp(β′Xi)

The logistic regression or logit model can be thought of as the canonical link for the

binomial distribution within the rather broad class of generalized linear models (GLM),

because it is the link function of E(yi|X) for which the predictor is linear, i.e.:

h(Xi, β) = ln
p

1− p
= β′Xi (2.2)

Unlike ordinary least squares regression, estimation of the parameters of the logistic

regression model is done using the method of maximum likelihood (Peng, Lee and

Ingersoll, 2002), or equivalently by iterative weighted least squares (IWLS) (Schaefer,

1985). The log likelihood function is derived from the joint probability distribution of

the dependent and explanatory variables, and can be written as:

Log − Likelihood l(β|y;X) =
∑n

i=1 f(yi|Xi; β)

=
∑n

i=1

[
yilog

(
exp(β′Xi)

1+exp(β′Xi)

)
+ (1− yi)log

(
1− exp(β′Xi)

1+exp(β′Xi)

)]
The objective during estimation is to find β that maximizes the above log-likelihood

function. Taking the derivative of the log-likelihood function and setting it to 0 results

in the score/gradient function. The parameter estimates β̂ are obtained by solving the

score function. Because the score function is highly nonlinear, and cannot be solved

analytically, a numerical iterative procedure, such as the Newton-Raphson algorithm

or the method of scoring must be used for estimation.

The β̂s in the logistic regression model can be interpreted as the marginal effect on
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the log of the odds ratio for a unit change in the ith regressor. In the case of a binary

regressor, say gender, exp(β̂i) is the the odds that the outcome is, say males compared to

females. The reliability of these odds, as well as their interpretation heavily depends on

the extent to which the regressors are collinear. Another useful measure for substantive

inference are the marginal effects or the change in probability of Yi = 1 given a one unit

change in Xk,i. That is, the marginal effect is
∂P(Yi = 1|Xi)

∂Xk,i

. Marginal effects can be

computed at the means of the explanatory variables or as the mean across the marginal

effects calculated for each observation (i.e. average marginal effects) (Greene, 2000).

2.3.2 Multicollinearity in the Logistic Regression Model: The

Traditional Story

From the traditional perspective, the problems caused by near-multicollinearity in the

logistic regression model are similar to those in the linear regression model (Hosmer

and Lemeshow, 1989). This follows from equation (2.2) which expresses the logit as a

linear function of the predictors. Therefore, similar to the linear regression model, the

presence of near-multicollinearity leads to near-singularity among the columns of the

matrix of explanatory variables. This in turn induces numerical instability in the max-

imum likelihood estimates, β̂, with severe consequences for their precision, evidenced

by inflated variances and deflated asymptotic t-values (Schaeffer, 1985).

Following Schaeffer (1986), consider the (l + 1)st iteration using the method of

maximum likelihood or IWLS:

β̂l+1 = β̂l + (X′V̂lX)−1X ′(y − π̂l),

where y is a n x 1 vector of the binary outcome variable,X is the nxk dimensional matrix

of regressors, π̂l is the vector of fitted probabilities using β̂l, V̂l = diag {π̂li(1− π̂li)},
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and π̂li is the ith element of π̂l. In the linear regression model (see equation 2.1) X′X =

UΛU
′ ; V ar(β̂) = σϑ

′
UΛ−1U

′
ϑ = σ2

k∑
m=1

u2
m

λm
, so that for λ1 < λm for m = 2, 3, . . . k and

u1 6= 0, a smaller λ1, leads to a higher variance of β. Intuitively, near-multicollinearity

in the logistic regression model should lead to an analogous problem, since the V ar(β̂) in

the logistic regression is approximated by (X′V̂X)−1, which is comparable to (X′X)−1

in the linear case. Define:

1. µ∗m for m = 1,..., k to be the ordered µ∗1 ≤ µ∗2 ≤ · · · ≤ µ∗k eigenvalues of the

(X′VX) matrix;

2. γ∗m for m = 1, ..., k to be the the eigenvectors of the (X′VX)matrix associated

with µ∗m; and

3. γ∗mj to be the jth element of γ∗m

Schaefer (1986) argues that assuming that there exists only one collinear relationship,

such that µ∗1 is close to zero (i.e. high near-multicollinearity), then without loss of

generality, µ∗1 ≤ 1
4
µ1,where µ1is the minimum eigenvalue of the (X′X) matrix. It can

further be shown that (Schafer, 1986):

V ar(βm) = (X′V̂X)mm

=
k∑
l=1

µ∗−1
l γ∗2lm ≥ µ∗−1

1 γ∗21m ≥ 4µ−1
1 γ∗21m

For somem, γ∗1m 6= 0 and V ar(βm) will be large as µ∗1approaches 0, resulting in imprecise

estimates (Schaefer, 1986). Higher variances of the estimated coefficients will “deflate”

asymptotic t-ratios or similar test statistics, resulting in low significance levels, as well.

Overall, due to the similarity between the logistic regression model and the multiple

linear regression model, the problems caused by near-multicollinearity in the logistic

regression model are implied to be similar to those in the multiple linear regression
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model (see Menard, 2010). Therefore just like linear regression, the traditional account

of near-multicollinearity in logistic regression must also be revisited, since the estimated

βs are still functions of ρ. In other words, the ceteris paribus clause implicitly

assumed by the traditional account of near-multicollinearity fails to hold for the logistic

regression model, as well. However, the analysis is not directly applicable to the logistic

regression model since the variance-covariance structure of the estimated parameters for

the logistic regression model is rather different than that of the linear regression model.

A convenient approach to examine near multicollinearity in logistic regression models

is using the log-odds specification given by equation (2.2) (McCullagh and Nelder 1983

p. 19). This approach is best motivated using the Probabilistic Reduction approach to

model specification.

2.4 The Probabilistic Reduction Approach and the

Logistic Regression Model

The probabilistic reduction (PR) approach provides a flexible approach to model speci-

fication that fully accommodates empirical modeling using both experimental and non-

experimental data. It makes use of the De Finetti represenation theorem to formally

reduce theHaavelmo distribution of the observable random covariates into a product

of univariate marginal and conditional distributions by imposing certain probabilistic

assumptions (Spanos, 1999). This approach to model specification provides a frame-

work for learning about the underlying sample data generating process (DGP), thus

improving upon the reliability of inferences, as well as their their accuracy. Spanos

and McGuirk (2001) conclude that the PR approach to model specification offers a

methodical framework for learning and modeling the actual DGP by viewing statisti-

cal models as a reduction from the Haavelmo (joint) distribution of all the observable
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vector stochastic processes, hence presenting a consistent approach for specification,

misspecification and respecification of statistical models.

As applied to the logistic regression model, the PR approach emphasizes the central

role that the inverse conditional distribution of the explanatory variables conditioned

on the nominal outcome variable of the logistic regression plays in model specifica-

tion. Bergtold, Spanos and Onukwugha (2010) emphasize the key role that the inverse

conditional distribution plays in providing relevant statistical information for speci-

fying the logistic regression model. Unlike previous studies that have recognized the

importance of the inverse conditional distribution in specifying and modeling the logis-

tic regression model by assuming linearity in the variables for the predictor functions

(See Andersen, 1972 and McFadden, 1976), the PR approach reparametizes the inverse

conditional distributions for the logistic regression model by allowing for nonlinearity

in the parameters, variables or both (Bergtold, Spanos and Onukwugha, 2010). This

reparametization allows for the re-examination of multicollinearity in the logistic regres-

sion model by providing a mechanism to specify the parameters and related statistics

of the logistic regression model in terms of the correlation between the explanatory

variables .

2.4.1 A Re-examination of Near-Multicollinearity in Logistic

Regression using the PR Approach

Following Bergtold, Spanos and Onukwugha (2010), for i = 1, . . . , N , let Yi ∼ Bin(1, p)

be a finite stochastic outcome process defined over the probability space S,F , P (·) where

E(Yi) = p and V ar(Yi) = p(1−p). In addition, for i = 1, . . . , N , letXi = (X1i, . . . , Xki)
′ ,

denote the vector of K stochastic observed covariates for the ith individual defined over

the same probabality space. Assume that the probability density function of Xi is given

by fX(Xi; θ), where θ is an appropriate set of parameters. S is called the support of
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Xi and Yi, and F is the borel field generated by (Yi,Xi). The joint probability mass

function can now be expressed as:

f(Y1, . . . , YN ,X1, . . . ,XN ;φ) (2.3)

where φ is an appropriate set of parameters.

As noted by Spanos (1999), equation (2.3) can reduced using a set of testable prob-

abilistic assumptions from the categories: Distribution (D), Dependence (M), and Het-

erogeneity (H). Assume that (Yi,Xi) is Independent and Identically Distributed (IID).

Imposing the probabilistic reduction assumptions mentioned above on equation (2.3)

results in:

f(Y1, . . . , YN ,X1, . . . ,XN ;φ)
I
=

N∏
i=1

fi(Yi,Xi;ϕi)
ID
=

N∏
i=1

f(Yi,Xi;ϕ) =
N∏
i=1

fY |X(Yi|Xi; β)·fX(Xi; θ)

(2.4)

where ϕi, ϕ, β and θ are appropriate sets of parameters and fY |X(Yi|Xi; β) is the con-

ditional distribution of Yi given Xi. Now let fX|Y (Xi; θj) for Yi = j, be the inverse

conditional distribution of of Xi given Yi with appropriate parameter vector θj. The re-

duction in equation (2.4) provides an adequate operational paradigm for defining logistic

regression models, where the adequacy of (2.4) is contingent upon the compatibility of

fY |X(Yi|Xi; β) and its inverse conditional. A sufficient condition for the compatibility

of fY |X(Yi|Xi; β) and fX|Y (Xi; θj), shown by Bergtold, Spanos and Onukwugha (2010)

is:

fX|Y=1(Xi; θ1)

fX|Y=0(Xi; θ0)
· fY (Yi = 1; p)

fY (Yi = 0; p)
=
fY |X(Yi = 1|Xi; β)

fY |X(Yi = 0|Xi; β)
(2.5)

Bergtold, Spanos and Onukwugha (2010) show that if fY |X(Yi|Xi; β) is conditionally
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distributed Bernoulli of the form:

fY |X(Yi|Xi; β) = h(Xi; β)Yi [1− h(Xi; β)]1−Yi (2.6)

where h(Xi; β) : Θβ → [0, 1], and Θβ is the parameter space associated with β, then

equations (2.5) and (2.6) together yield

h(Xi; β) =
p · fX|Y=1(Xi; θ1)

p · fX|Y=1(Xi; θ1) + (1− p) · fX|Y=0(Xi; θ0)
(2.7)

Using the identity that f(·) ≡ exp {ln(f(·)} it can be shown that

h(Xi; β) =
exp {η(Xi; β)}

1 + exp {η(Xi; β)}
= [1 + exp {−η(Xi; β)}]−1 (2.8)

where η(Xi; β) = ln
(
fX|Y=1(Xi;θ1)

fX|Y=0(Xi;θ0)

)
+ κ, and κ = ln

(
p

1−p

)
. The function η(·) is known

as the predictor or index function. Equation (2.8) is usually reparametized such that

β = β(θj, j = 0, 1). That is, the parameters β are reparameterizations of the parameters

θ0 and θ1 of the inverse conditional distribution.

Using the logistic density function h(Xi; β) = [1 + exp {−η(Xi; β)}]−1, the logistic

regression function for the conditional stochastic process Yi|Xi = xi, i = 1, . . . , N can

be written as:

Yi = h(Xi; β) + ui = [1 + exp {−η(Xi; β)}]−1 + ui (2.9)

To date, the literature examining multicollinearity in the the logistic regression

model has not captured the fact that β = β(ρ), where ρ is the correlation between

the explanatory variables when fX|Y (Xi; θj) is multivariate normal. From this vantage

point, one can show that the traditional account of near-multicollinearity and the in-

vocation of the ceteris paribus clause are unattainable. To see this, consider the simple
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variant of (2.8) written as:

η(Xi; β) = ln

(
fX|Y=1(Xi; θ1)

fX|Y=0(Xi; θ0)

)
+ ln

(
p

1− p

)
= β0 + β1x1 + β2x2 + ui (2.10)

As noted earlier, the index/predictor function can take many forms. That is, the

logistic regression model does not make any assumptions regarding the distribution

of the predictor or explanatory variables. Thus, the explanatory variables are not

constrained to be normally distributed nor assumed to be linearly related. Further-

more, the inverse conditional distribution can have homogeneous or heterogeneous vari-

ances within each group, giving rise to nonlinear relationships between the explanatory

variables (see Bergtold, Spanos and Onukwugha, 2010). To re-assess the impact of

near-multicollinearity here, we consider tthe more traditional case here with a logistic

regression model with explanatory variables that are normally distributed and have

homogenous variances. In equation (2.10), the predictor is linear, resulting from the

distributional assumption concerning the inverse conditional distribution

2.4.2 The Logistic Regression Model with Two Correlated Nor-

mal Covariates with Homogeneous Covariance Matrix

Assume that X = (x1, x2)′ and

 x1

x2

|Yi = j

 ∼ N


 µ1,j

µ2,j

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2




and ρ = Corr(x1, x2). The inverse conditional distribution function can be expressed

as (see Spanos, 1986: p 119-121 and Bergtold et al., 2010):

51



fX|Y=j(x1, x2; θj) =
(1−ρ2)

− 1
2

2πσ1σ2
· exp

{
−1

2
1

1−ρ2

[(
x1−µ1,j

σ1

)2

+
(
x2−µ2,j

σ2

)2

− 2ρ
(
x1−µ1,j

σ1

)(
x2−µ2,j

σ2

)]}

= exp

{
− 1

2(1−ρ2)

[
x2

1−2x1µ1,j+µ
2
1,j

σ2
1

+
x2

2−2x2µ2,j+µ
2
2,j

σ2
2

− 2ρ
x1x2−x1µ2,j−x2µ1,j+µ1,jµ2,j

σ1σ2

]}
(2.11)

Define 4j = − 1
2(1−ρ2)

[
x2

1−2x1µ1,j+µ
2
1,j

σ2
1

+
x2

2−2x2µ2,j+µ
2
2,j

σ2
2

− 2ρ
x1x2−x1µ2,j−x2µ1,j+µ1,jµ2,j

σ1σ2

]
, so

that (2.11) becomes f(x1, x2; θj) = exp{4j}. Then:

ln
fX|Y=1(x1, x2; θ1)

fX|Y=0(x1, x2; θ0)
= ln

exp{41}
exp{4o}

= 41 −40 (2.12)

Combining (2.11) and (2.12) for j = 0, 1, results in

41 −40 = − 1
2(1−ρ2)

[(
µ2

1,1

σ2
1
− 2ρµ1,1µ2,1

σ1σ2
+

µ2
2,1

σ2
2

)
+
(
−2µ1,1

σ2
1

+ 2ρµ2,1

σ1σ2

)
x1

+
(

2ρµ1,1

σ1σ2
− 2µ2,1

σ2
2

)
x2 −

(
µ2

1,0

σ2
1
− 2ρµ1,0µ2,0

σ1σ2
+

µ2
2,0

σ2
2

)
+
(
−2µ1,0

σ2
1

+ 2ρµ2,0

σ1σ2

)
x1

−
(

2ρµ1,0

σ1σ2
− 2µ2,0

σ2
2

)
x2

]

= − 1
2(1−ρ2)

[(
µ2

1,1−µ2
1,0

σ2
1
− 2ρ(µ1,1µ2,1−µ1,0µ2,0)

σ1σ2
+

µ2
2,1−µ2

2,0

σ2
2

)
+

(
2ρ(µ2,1−µ2,0)

σ1σ2
− 2(µ1,1−µ1,0)

σ2
1

)
x1 +

(
2ρ(µ1,1−µ1,0)

σ1σ2
− 2(µ2,1−µ2,0)

σ2
2

)
x2

]
(2.13)
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Using the relationships in equations (2.10) and (2.13), the corresponding logistic re-

gression model can be written as :

Yi = [1 + exp{−β0 − β1x1 − β2x2}]−1 + ui (2.14)

where

β0 = ln

(
p

1− p

)
− 1

2(1− ρ2)

[(
µ2
1,1 − µ2

1,0

σ2
1

− 2ρ(µ1,1µ2,1 − µ1,0µ2,0)

σ1σ2
+
µ2
2,1 − µ2

2,0

σ2
2

)]
, (2.15)

β1 =
1

2(1− ρ2)

[
2(µ2,1 − µ2,0)

σ2
2

−
(

2ρ(µ1,1 − µ1,0)

σ1σ2

)]
, and (2.16)

β2 =
1

2(1− ρ2)

[
2(µ2,1 − µ2,0)

σ2
2

−
(

2ρ(µ1,1 − µ1,0)

σ1σ2

)]
(2.17)

Clearly the parameters {β0, β1, β2} are all functions of ρ and thus change as |ρ| → 1. It is

difficult to mathematically show the magnitude and direction of change for βk, k = 0, 1, 2

as |ρ| → 1, because ρ appears in both the numerator and the denominator of βi. For

such an exercise, one would have to know which, the numerator or the denominator,

grows faster, which is somewhat dependent on the other parameters of the inverse

conditional distribution, as well. The behavior of β0, β1 and β2 is therefore examined

by simulating the above model and analyzing the dynamics of β0, β1 and β2 as |ρ| → 1.

2.4.3 The Variance and Standard Error of β

Schaefer, Roi and Wolfe (1984) and Gourieroux (2000) propose methods for deriving the

variance of the parameter estimates for the logistic regression model. These sources de-

rive the V ar(βi) using a method reminiscent of the generalized least squares estimator.
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Let

P (yi = 1|Xi; β) = pi = F (β′Xi) = Fi

Gourieroux (2000) shows that the asymptotic variance of β can be written as1

ˆV ar(β) =


n∑
i=1

[
f(β̂′Xi)

]2

F (β̂′Xi)
[
1− F (β̂′Xi)

]X′iXi


−1

= (X′V̂X)−1

(2.18)

where V̂ = diag[Fi(1 − Fi)]ni=1, f = F (1 − F ), and X is the n x k dimensional matrix

of predictors, and Xi is the ith row of X. Schaefer, Roi and Wolfe (1984) comment on

the effect of multicollinearity on V ar(βi) that “in practice, we have found that multi-

collinearity does indeed inflate the estimated variance and hence can cause precision

problems when identifying the effects of the independent variables”.

However, what has not been adequately pointed out by the traditional account of

near-multicollinearity is that as shown above, ˆV ar(βi) is a function of F (xiβ) and thus

ρ. That is, since β is a function of ρ (see equations (14) to (17)), as |ρ| → 1, β

changes, and so too does the ˆV ar(βi). As |ρ| → 1, if |β| → ∞, then F will aproach

0 or 1, depending on the sign of β. This implies that F (1 − F ) → 0 as |β| → ∞.

Examining equation (18), this suggests that the ˆV ar(βi)will likely follow the shifts in β

as |ρ| → 1, since f 2
i /[Fi(1− Fi) = fi. Simulations in the next section provide evidence

of this occuring, but it is not uniformly the case. This therefore calls into question the

traditional account that argues that the presence of near-multicollinearity inflates the

variances and standard errors of the estimators.
1See Gourieroux (2000), page 16 for complete derivation of this variance.
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2.5 Simulation and Graphics

This section of the paper presents simulation methods and results examining the simple

case presented in section 2.4.2 of a logistic regression model specified using a bivariate

normal inverse conditional distribution with homogenous covariance matrix. Section

2.5.1 presents some model simplifications that make the simulations smoother without

losing generality. Section 2.5.2 examines simulation methods. Section 2.5.3 presents

the results of the simulations using graphs of the estimated parameters and statistics.

2.5.1 Simplifications

The simplifications below substantially reduce the dimensionality of the problem being

simulated without necessarily limiting the generalizability of the analysis in any vital

way (e.g it may affect the scaling of the results).

2.5.1.1 Admissable Parameter Values

In light of the statistical reparametizations using the PR approach shown above, it

is important to determine the range of admissible values for which the model exists.

The importance of this is emphasized by Spanos and McGuirk (2002). Let Σ denote

the the variance-covariance matrix of the inverse conditional distribution, then Σ = σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

. Following this parametization, the above parameters {β0, β1, β2}

are valid when (Spanos, 1986):

det(Σ) = σ2
1σ

2
2(1− ρ2) > 0 (2.19)

Condition (2.19) states that the inverse conditional distribution given by equation (11)

will not exist when Σ � 0. Thus, during simulations if det(Σ) = 0 then zeros
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are assigned for all the parameter values and associated statistics for that

simulation run.

2.5.1.2 Simplification 1

Standardize the variables x1 and x2 by dividing them by σ2
k for k = 1,2, so that σ2

1=σ2
2 =

1. It follows that equation (2.19) becomes det(Σ) = (1− ρ2) > 0. Thus, the admissible

parameter range for ρ is ρ ε (−1, 1). Following this simplification, the parameters

{β0, β1, β2} from equation (2.19) reduce to:

β0 = ln
(

p
1−p

)
− 1

2(1−ρ2)

[
µ2

1,1 − µ2
1,0 − 2ρ(µ1,1µ2,1 − µ1,0µ2,0) + µ2

2,1 − µ2
2,0

]
β1 = 1

2(1−ρ2)
[2(µ1,1 − µ1,0)− 2ρ(µ2,1 − µ2,0)]

β2 = 1
2(1−ρ2)

[2(µ2,1 − µ2,0)− 2ρ(µ1,1 − µ1,0)]

(2.20)

2.5.1.3 Simplification 2

Further standardize the variables x1 and x2 by taking the following mean deviation form:

x̄1 = x1 − µ1,0 and x̄2 = x2 − µ2,0, where µk,0 = E(xk/Y = 0). Then µ̄k,0 = E(x̄k,/Y =

0) = 0 for k = 1, 2. Now let µ̄k,1 = E(x̄k,/Y = 1) = αk. Then µ̄k,1 = αk = µk,1 − µk,0

for k = 1, 2. . This further reduces the dimensionality of the parameters {β0, β1, β2}

from equation(2.20) to:

β0 = ln
(

p
1−p

)
− 1

2(1−ρ2)

[
µ̄2

1,1 − 2ρ(µ̄1,1µ̄2,1) + µ̄2
2,1

]
β1 = 1

2(1−ρ2)
[2µ̄1,1 − 2ρµ̄2,1]

β2 = 1
2(1−ρ2)

[2µ̄2,1 − 2ρµ̄1,1]

(2.21)
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2.5.2 Simulation Design

We use the PR approach described above to simulate binary choice data using the

relation specified in equation (2.10). Equation (2.10) expresses the log-odds as a linear

combination of the explanatory variables Xi. As shown in equations (2.15) to (2.17),

the coefficients, βk depend on the value of the means, µk,j and variances, σ2
k,j of the

conditional distribution fX/Y (Xi; θj). Simplifications 1 and 2 reduce the dimensionality

of βk even further, such that βs now only depend on µ̄k,j, p and ρ. The trajectories of

β0, β1 and β2 as |ρ| → 1 can be easily obtained by plotting their surfaces from equation

(2.21) as |ρ| → 1 for chosen values of µ11 and µ21; however, we chose to simulate for

two important reasons:

1. Firstly, while it is possible to derive and plot the dynamics of βi, i = 0, 1, 2 as

|ρ| → 1, no closed form solutions exist for their corresponding standard errors,

t − ratios and related statistics. Most of these statistics are functions of the

observed data and therefore cannot be readily derived in terms of the parameters

of the inverse conditional distribution.

2. Simulating using the PR approach to generate binary choice data is advantageous

because the PR approach is purely statistical, and hence requires no a piori the-

oretical assumptions. It therefore allows for the parsimonious description, spec-

ification, and simulation of models with near-multicollinearity and nonlinearities

(Bergtold, Spanos and Onukwugha, 2010).

The data generation process takes place in two stages. First, using a binomial random

number generator, we generate realizations of the vector stochastic process {Yi, i =

1, · · · , N}. Second, using Yi as the conditioning variable, the vector stochastic process

of predictors {Xi, i = 1, · · · , N} is generated from the inverse conditional distribu-

tions fX/Y (Xi; θj) using appropriate random number generators. Simulations follow
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the methods described in Bergtold, Spanos and Onukwugha (2010) and Scrucca and

Weisberg (2004).

Given simplifications 1 and 2, Monte Carlo simulations are conducted for differ-

ent mean pairs (µ̄11, µ̄21) = (0.5, 0.5), (2, 2), (0.5, 1), (−0.5,−0.5), (−2,−2), (0.5,−2),

(1,−1), (1,−2), and (2,−2), as well as for p = 0.6 and 0.95, where p = P (yi = 1|Xi; β).

Different values of p allow for the examination of the impacts, if any, of changing the

likelihood of “success”. The Monte Carlo simulations involved 400 runs, each run repli-

cated 200 times for all mean pair and p combinations. For each run, ρ was varied

between -1 and 1 by increments of 0.005 for each run. The max and min values for

ρ where 0.995 and -0.995, respectively. We calculate the mean of β0, β1, β2, their

associated standard errors (denoted se(β0), se(β1), se(β2)), t − ratios (τ(β0), τ(β1),

τ(β2)) and McFadden Psuedo-R2across replcations for each run. We also estimate the

mean of near-multicollinearity diagnostic statistics, including variance inflation fac-

tors (V IF (x1), V IF (x2)) and condition number (κ) across replications for each run.

Marginal effects and their associated p − values when severe near-multicollinearity is

present in the logistic regression model has not received much attention in the litera-

ture. Thus these statistics are estimated, and we calculate the means of these statistics

across replications for each run. Graphs of mean parameter estimates and statistics

across replications are developed for each mean pair and p combination as functions

of ρ. All simulations and graphics were done in MATLAB. The results are shown in

Figures 2.2 through 2.31 in section 2.5.3.
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2.5.3 Graphics

2.5.3.1 The β0 surface with varying ρ and different mean vectors of (µ̄1,1, µ̄2,1)

In view of the fact that following simplifications 1 and 2, βis are functions of ρ, µ̄1,1 and

µ̄2,1, the βi surfaces in equation (2.19) represent three-dimensional surfaces, and any

attempt to visualize them requires four dimensions. To make use of three-dimensional

graphs, one must keep one of the arguments constant. For our purposes, we keep µ̄1,1

and p constant (at µ̄1,1 = 2 and p = 0.6) and vary µ̄2,1 between -10 to 10. Again, it is

important to stress that these only serve to reduce dimensionality without necessarily

affecting the analysis in any crucial way. Figure 2.1 shows the β0 surface.

A glimpse of Figure 2.1 shows that the β0 surface consists of two wide swings as

|µ̄2,1| → 10. It is important to note that the choice of µ̄1,1 = 2 and p = 0.6 is arbitrary.

Several values of µ̄1,1 and p were considered but did not affect the general shape of β0

in any significant way. Since our goal is to assess the impact of near-multicollinearity

on β0, we consider in more detail the dynamics of the β0 surface as |ρ| → 1. These are

shown in Figures 2.2 and 2.3.

In order to utilize two-dimensional graphs, without loss of generality, we further hold

µ̄1,1 and µ̄2,1 constant. Figures 2.2 and 2.3 show the dynamics of β0 for p = 0.6 and

p = 0.95 respectively, estimated for nine different mean pairs of (µ̄1,1, µ̄2,1). From these

figures, it is clear that the choice of (µ̄1,1, µ̄2,1) greatly affects the shape and dynamics

of β0 as |ρ| → 1. When (µ̄1,1, µ̄2,1) is positive, say (0.5, 0.5) or (2, 2), β0 is in general

a downward-sloping function of ρ. When (µ̄1,1, µ̄2,1) is negative, say (−0.5,−0.5), or

(−2,−2), β0 in general slopes upward as ρ increases from -1 to 1.

When µ̄1,1 and µ̄21 have different signs, such as in panels f , g, h, and i in Figures

2.2 and 2.3, there is no distinct pattern of the dynamics of β0 as ρ changes. Equally

important to note are the (long) vertical swings that characterize β0 at some points
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where |ρ| gets very close to 1. A possible explanation for this is that these are points

Figure 2.1: The β0 surface with varying ρ, and varying µ̄2,1(µ̄1,1 = 2)

of numerical instability in the data (i.e. erratic volatility), not necessarily near-multicollinearity

that arises from systematic volatility. The more important message from Figures 2.2

and 2.3 is that in contrast to the traditional account of near-multicollinearity that in-

vokes the ceteris paribus clause - that β0 remains constant as |ρ| → 1 - our account

suggests that β0 fluctautes in a non-monotonic way as |ρ| → 1.
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Figure 2.2: β0 with varying ρ and different mean pairs (µ̄1,1, µ̄2,1): p = 0.6

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Plot of β∧
0 against ρ between X1 and X2

β∧ 0

ρ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-40

-35

-30

-25

-20

-15

-10

-5

0

Plot of β∧
0 against ρ between X1 and X2

β
∧ 0

ρ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Plot of β∧
0 against ρ between X1 and X2

β
∧ 0

ρ

(d) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (e) (µ̄1,1, µ̄2,1) = (−2,−2) (f) (µ̄1,1, µ̄2,1) = (0.5,−2)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Plot of β∧
0 against ρ between X1 and X2

β∧ 0

ρ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-40

-35

-30

-25

-20

-15

-10

-5

0

Plot of β∧
0 against ρ between X1 and X2

β
∧ 0

ρ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0

Plot of β∧
0 against ρ between X1 and X2

β∧ 0

ρ

(g) (µ̄1,1, µ̄2,1) = (1,−1) (h) (µ̄1,1, µ̄2,1) = (1,−2) (i) (µ̄1,1, µ̄2,1) = (2,−2)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Plot of β∧
0 against ρ between X1 and X2

β
∧ 0

ρ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Plot of β∧
0 against ρ between X1 and X2

β
∧ 0

ρ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-40

-35

-30

-25

-20

-15

-10

-5

0

Plot of β∧
0 against ρ between X1 and X2

β
∧ 0

ρ

61



Figure 2.3: β0 with varying ρ and different mean pairs (µ̄1,1, µ̄2,1): p = 0.95

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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2.5.3.2 The β1 Surface with varying ρ and different mean pairs (µ11, µ21)

In Figures 2.4, 2.5 and 2.6 we can see the dynamics of the surface of β1, where

β1 =
1

2(1− ρ2)
[2µ̄1,1 − 2ρµ̄2,1] , ρ ∈ (−1, 1), p = 0.60, 0.95
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Like the β0 surface, points of systematic volatility for the β1 surface are shown in Figure

2.4. There is no clear pattern of β1 as |µ̄2,1| → 10. It turns out, as was the case with the

β0 surface that the choice of µ̄2,1 affects the value of the β1 as well as the idiosyncracy

of its surface. Despite this, it must be noted again that fixing µ̄1,1 at 2 does not impact

the general shape of the β1 surface. In Figures 2.5 and 2.6, we examine the dynamics

of β1 as |ρ| → 1.

Figure 2.4: The β1 Surface with varying ρ and varying µ2,1 (µ1,1 = 2), p = 0.6
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Figure 2.5: β1 with varying ρ and different mean pairs (µ̄1,1, µ̄2,1): p = 0.6

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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Similar to Figures 2.2 and 2.3, we see that the β1 surface varies non-monotonically

as ρ changes. The ceteris paribus clause is unattainable since β1 is varies with |ρ| → 1.

In addition, even though we are modelling a structural issue - high correlation among

the regressors - which results in systematic volatility, we still find evidence of numerical

instability, evident in long vertical swings at points where |ρ| approaches 1 at the limit.
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Figure 2.6: β1 with varying ρ and different mean pairs (µ̄1,1, µ̄2,1): p = 0.95

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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2.5.3.3 The β2 Surface with varying ρ and different mean pairs (µ̄1,1, µ̄2,1)

Similar to the β0 and β1 surfaces, points of systematic volatility in the β2 surface:

β2 =
1

2(1− ρ2)
[2µ̄2,1 − 2ρµ̄1,1] ρ ∈ (−1, 1), p = 0.6, 0.95

are shown in Figures 2.7, 2.8 and 2.9.
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Figure 2.7: The β2 surface with varying ρ and varying µ̄2,1 (µ̄1,1 = 2)

The same information derived from the surfaces of β0 and β1 also apply here. β2

varies non-monotonially as |ρ| → 1, lending support to the view that the ceteris paribus

clause to near-multicollinearity is unattainable. Like in Figures 2.2 through 2.6 we still

see evidence of numerical instability in the data shown by the vertical swings at high

values of ρ in Figures 2.8 and 2.9. It must be stressed that even though these swings

are evidence of numerical instability in the data, it is not necessarily predictable. These

swings however do not show up in Figures 2.1, 2.4 and 2.7. This is because the data

used for these figures are not simulated.
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Figure 2.8: β2 with Varying ρ and different mean pairs (µ1i, µ2i): p = 0.6

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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Several interesting obervations can be made from the slices of the β2 surface shown in

Figures 2.8 and 2.9. Firstly, for (µ11, µ21) = (−0.5,−0.5), (−2,−2), (0.5,−2), (1,−1),

(1,−2), and (2,−2), β2 < 0. In other words, when one or both of the means are

negative, β2 is always negative. Also, notice the hump-shaped graphs in Figures 2.8

and 2.9 (panels f and h) and the U-shape curves of panel c. This implies that near-

multicollinearity may cause the coefficients to collapse as |ρ| → 1 (as in Figures 2.8 and
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2.9; f and g), or inflate (2.8 and 2.9 c).

Figure 2.9: β2 varying ρ and different mean pairs (µ̄1,1, µ̄2,1): p = 0.95

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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The overall finding derived from Figures 2.1 through 2.9 is that β0, β1 and β2 are

all functions of ρ and thus change as ρ changes. Consequently, assuming constancy

of β0, β1 and β2 as is the case in the traditional account of near-multicollinearity is

misleading, hence the traditional account needs to be ammended.
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2.5.3.4 The standard error of β0 surface with varying ρ and different mean

pairs (µ̄1,1, µ̄2,1)

Figures 2.10 and 2.11 show how the standard error of β0 changes as |ρ| → 1. The conven-

tional story about near-multicollinearity suggests that when severe near-multicollinearity

occurs, the standard errors tend to be very large. This implies one should expect a

Figure 2.10: The se(β0) with varying ρ and different pairs (µ̄1,1, µ̄2,1): p = 0.6

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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U-shaped graph centered around ρ = 0. However, the figures suggest that the standard

errors of β0, se(β0) do not always follow the conventional account. Our results for

the most part are in agreement with the discussion in section 2.4.3: we see that as β0

increases, the se(β0) increases as well, even though this pattern is by no means uniform.

Figure 2.11: The se(β0) with varying ρ and different (µ̄1,1, µ̄2,1): p = 0.95

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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2.5.3.5 The standard error of the β1 Surface with varying ρ and different

mean pairs (µ̄1,1, µ̄2,1)

The standard errors of β1 can be seen in Figures 2.12 and 2.13. Analogous to Figures

2.10 and 2.11, these standard errors look nothing like what the usual account suggests.

Only panels f and h of both figures have the typical U shape as |ρ| → 1 that the usual

account suggests.

Figure 2.12: The se(β1) with varying ρ for different (µ1i, µ2i): p = 0.6

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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Figure 2.13: The se(β1) surface with varying ρ for different (µ̄1,1, µ̄2,1): p = 0.95

(a) (µ11, µ21) = (0.5, 0.5) (b) (µ11, µ21) = (2, 2) (c) (µ11, µ21) = (0.5, 1)
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2.5.3.6 The standard error of the β2 surface with varying ρ and different

mean pairs (µ1i, µ2i)

The standard errors of β2, se(β2), shown in Figures 2.14 and 2.15 for various (µ̄1,1, µ̄2,1)

combinations, and p = 0.6, p = 0.95 look quantitatively and qualitatively similar to

se(β1) and se(β0). The conventional account that as |ρ| → 1, the se(β2) increases
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Figure 2.14: The se(β2) with varying ρ for different (µ̄1,1, µ̄2,1): p = 0.6

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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monotonically is again called into question. Similar to Figures 2.10 through 2.13, the

only noticeable U-shaped curves are in panels f and h.

An important conclusion derived from Figures 2.10 through 2.15 is that they call into

question the traditional account of the effects of near-multicollinearity on the standard

errors. When the variance inflates, it is not consistent either. Schaefer, Roi and Wolfe’s

(1984) conclusion, that “... we have found that multicollinearity does indeed inflate the
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Figure 2.15: The se(β2) with varying ρ for different (µ̄1,1, µ̄2,1): p = 0.95

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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estimated variance and hence can cause precision problems when identifying the effects

of the independent variables” is not entirely confirmed by the analysis here.

2.5.3.7 The τ(β0) surface with varying ρ and different mean pairs (µ̄1,1, µ̄2,1)

The traditional discussion about near-multicollinearity usually associates near-multicollinearity

with low t−statistics. As mentioned above, the traditional argument assumes that βis
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are constant, while the standard errors are inflated. Since the standard t− statistic is

calculated as βi/se(βi) (under the H0 : β̂i = 0) it follows then that near-multicollinearity

should result in low τ(βi). However, in light of the above discussion of the dynamics

of βi and se(βi), it should come as no surprise that the traditional argument is not

supported by the figures of the asymptotic t− statistics here.

Figure 2.16: The τ(β0) with varying ρ for different (µ̄1,1, µ̄2,1): p = 0.6

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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Figure 2.17: The τ(β0) with varying ρ and different (µ̄1,1, µ̄2,1): p = 0.95

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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Figures 2.16 and 2.17 show how τ(β0) changes as ρ changes for different p and

different mean pairs (µ11, µ21). In general, one observes no distinct pattern from these

figures. While one should expect an inverse U pattern for τ(β0) as |ρ| → 1 under the

traditional account, the figures suggest no monotonic relationship with ρ.
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2.5.3.8 The τ(β1) surface with varying ρ and different mean pairs (µ̄1,1, µ̄2,1)

In Figures 2.18 and 2.19, we present the dynamics of τ(β1). Similar to Figures 2.16

and 2.17, instead of τ(β1) monotonically decreasing and symmetric around ρ = 0 as

conventionally expected, there is no clear pattern for changes in τ(β1) as |ρ| → 1.

Figure 2.18: The Surface of the β1 t− statistics With Varying ρ for Different (µ1i, µ2i):
p = 0.6

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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(g) (µ̄1,1, µ̄2,1) = (1,−1) (h) (µ̄1,1, µ̄2,1) = (1,−2) (i) (µ̄1,1, µ̄2,1) = (2,−2)
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This result is expected because as noted earlier, β1 and se(β1) do not follow the
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traditional account. There is therefore no reason to expect that τ(β1) will.

Figure 2.19: The τ(β1) with varying ρ for different (µ̄1,1, µ̄2,1): p = 0.95

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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2.5.3.9 The τ(β2) surface with varying ρ and different mean pairs (µ̄1,1, µ̄2,1)

Figure 2.20: The τ(β2) with varying ρ for different (µ̄1,1, µ̄2,1): p = 0.6

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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(d) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (e) (µ̄1,1, µ̄2,1) = (−2,−2) (f) (µ̄1,1, µ̄2,1) = (0.5,−2)
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(g) (µ̄1,1, µ̄2,1) = (1,−1) (h) (µ̄1,1, µ̄2,1) = (1,−2) (i) (µ̄1,1, µ̄2,1) = (2,−2)
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Looking at Figures 2.20 and 2.21 which show the dynamics of the τ(β2) surface with

varying ρ for p = 0.6 and p = 0.95 respectively, we conclude that as far as the logistic

regression model is concerned, the much-emphasized monotonically decreasing asymp-

totic t − ratios reported in the literature are unattainable for the logistic regression
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model where near-multicollinearity is present in this case. This results because the

ceteris paribus clause is unattainable - βi are all functions of ρ and thus change (in

a non-monotonic way) as ρ increases. Consequently, the t − ratios all change non-

monotonically as |ρ| → 1, as well.

Figure 2.21: τ(β2) with varying ρ for different (µ̄1,1, µ̄2,1): p = 0.95

(a) (µ̄1,1, µ̄2,1) = (0.5, 0.5) (b) (µ̄1,1, µ̄2,1) = (2, 2) (c) (µ̄1,1, µ̄2,1) = (0.5, 1)
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(d) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (e) (µ̄1,1, µ̄2,1) = (−2,−2) (f) (µ̄1,1, µ̄2,1) = (0.5,−2)
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(g) (µ̄1,1, µ̄2,1) = (1,−1) (h) (µ̄1,1, µ̄2,1) = (1,−2) (i) (µ̄1,1, µ̄2,1) = (2,−2)
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2.5.3.10 The R2, Condition Number, and V IF surfaces with varying ρ and

different Mean Pairs (µ1i, µ2i)

We only show the surfaces of the R2, Condition Number, and V IF for {(µ̄1,1, µ̄2,1)} =

{(−0.5,−0.5), (2, 2), (0.5, 1), (2,−2)} because the surfaces of the other mean pairs are

similar to these. The traditional account of near-multicollinearity in the logit model

suggests that as |ρ| → 1, the measure of the model’s goodness-of-fit, R2 should not

change. This implies that we expect R2 to be constant as ρ→ 1.

Figures (2.22) and (2.23) show the dynamics of the McFadden pseudoR2 (hereinafter

referred to as R2) as |ρ| → 1. By the conventional argument, we expect the R2 to be

non-changing as |ρ| → 1, but a glance at Figures (2.22) and (2.23) indicates that this

is clearly not the case. The R2 is at its minimum at some point ρ∗, where ρ∗ 6= 0.

Figure 2.22: The McFadden pseudo R2 with varying ρ for different (µ̄1,1, µ̄2,1): p = 0.6

(a) (µ̄1,1, µ̄2,1) = (2, 2) (b) (µ̄1,1, µ̄2,1) = (0.5, 1) (c) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (d) (µ̄1,1, µ̄2,1) = (2,−2)
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Figure 2.23: The McFadden pseudo R2 with varying ρ for different (µ̄1,1, µ̄2,1): p = 0.95

(a) (µ̄1,1, µ̄2,1) = (2, 2) (b) (µ̄1,1, µ̄2,1) = (0.5, 1) (c) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (d) (µ̄1,1, µ̄2,1) = (2,−2)
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Figures 2.24 and 2.25 show how the condition number, κ changes as |ρ| → 1 for

p = 0.6 and p = 0.95 respectively. As noted by Menard (2002), much of the methods

for detecting near-multicollinearity, for example the V IF and κ can be obtained from

the multiple linear regression model using the same outcome and predictor variables

that one uses in the logistic regression model. Menard (2002) states that “because the

concern is with the relationship among the independent variables, the functional form

of the model for the dependent variable is irrelevant to the estimation of collinearity”

(page 76). Therefore, one can estimate the linear model, ignore most of the results but

still use these statistics that assist in diagnosing near-multicollinearity. Howver, Spanos

and McGuirk (2002) conclude that:

one should clearly distinguish between systematic and erratic volatility. If

the problem of concern is erratic volatility, matrix norm bounds based on

(XTX) not R (where R := [ρi,j]
m
i,j=1) should be used to quantify the poten-

tial erratic volatility associated with the particular X. Diagnostics based on

the matrices R and Rc(where Rc is the centered correlation matrix) such

as a condition number, can be misleading for quantifying erratic volatility,

and are completely ineffective for detecting points of systematic volatility.

(page 392)

Based on Spanos and McGuirk’s (2002) conclusion, it follows that Menard’s (2002) ac-

count (and the traditional discussion) of near-multicollinearity needs to be ammended.

Our results agree with Spanos and McGuirk’s (2002) conclusion. Following the rules

of thumb outlined by Belsey, Kuh and Welsch (1980), we expect a U-shaped κ that is

symmetric and monotonic around ρ = 0, with κ > 1000 as |ρ| gets close to 1. It turns

out however, as shown in Figures 2.24 and 2.25 that in no instance do we see a κ that

is U-shaped, monotonic or symmetric around ρ = 0 as |ρ| → 1. Even in cases when ρ

is as high as ±0.99, in no instance is κ > 1000, which brings into question the rules of
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Figure 2.24: The Condition Number with varying ρ for different (µ̄1,1, µ̄2,1): p = 0.6

(a) (µ̄1,1, µ̄2,1) = (2, 2) (b) (µ̄1,1, µ̄2,1) = (0.5, 1) (c) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (d) (µ̄1,1, µ̄2,1) = (2,−2)
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Figure 2.25: The Condition Number with varying ρ for different (µ̄1,1, µ̄2,1): p = 0.95

(a) (µ̄1,1, µ̄2,1) = (2, 2) (b) (µ̄1,1, µ̄2,1) = (0.5, 1) (c) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (d) (µ̄1,1, µ̄2,1) = (2,−2)
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thumb outlined by Belsey, Kuh and Welsch (1980) that are traditionally used as cutoffs

for detecting the presence of near-multicollinearity.

In Figures 2.26 -2.29 we show what happens to the V IF (x1) and V IF (x2) for

different mean pairs and p = 0.6 and p = 0.95. Again, contrary to the “generally

accepted” rules of thumb outlined by Marquardt (1970) that a V IF > 10 is indicative

of severe near-multicollinearity, our results show that V IF s are likely ineffective in

diagnosing near-multicollinearity.
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Figure 2.26: The Variance Inflation Factors (V IF ) of x1 with varying ρ for different
(µ̄1,1, µ̄2,1): p = 0.6

(a) (µ̄1,1, µ̄2,1) = (2, 2) (b) (µ̄1,1, µ̄2,1) = (0.5, 1) (c) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (d) (µ̄1,1, µ̄2,1) = (2,−2)
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Figure 2.27: The Variance Inflation Factor (V IF ) of x1 with varying ρ for different
(µ̄1,1, µ̄2,1): p = 0.95

(a) (µ̄1,1, µ̄2,1) = (2, 2) (b) (µ̄1,1, µ̄2,1) = (0.5, 1) (c) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (d) (µ̄1,1, µ̄2,1) = (2,−2)
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Figures 2.26 - 2.29 are for the most part L-shaped (not U-shaped, symmetric and

monotonic as the traditional account suggests). When p is high (0.95), V IF s seem

to perform better in detecting near-multicollinearity (see panels (b) and (c) of Figures

2.27 and 2.29), evidenced by a V IF (·) > 10. However, in panel (a) of each Figure,

only extreme cases of near-multicollinearity when ρ→ 1 are detectable, while in panel

(d), only extreme cases of near-multicollinearity can be detected when ρ → −1. This

pattern follows in the other panels, suggesting that the V IF s do not provide a definitive

approach to detecting near-multicollinearity.
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Figure 2.28: The Variance Inflation Factor (V IF ) of x2 with varying ρ for different
(µ̄1,1, µ̄2,1): p = 0.6

(a) (µ̄1,1, µ̄2,1) = (2, 2) (b) (µ̄1,1, µ̄2,1) = (0.5, 1) (c) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (d) (µ̄1,1, µ̄2,1) = (2,−2)
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Figure 2.29: The Variance Inflation Factor (V IF ) of x2 with varying ρ for different
(µ̄1,1, µ̄2,1): p = 0.95

(a) (µ̄1,1, µ̄2,1) = (2, 2) (b) (µ̄1,1, µ̄2,1) = (0.5, 1) (c) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (d) (µ̄1,1, µ̄2,1) = (2,−2)

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

35

Plot of the VIF of X
2
 against ρ between X

1
 and X

2

V
IF

 o
f 
X

2

ρ
−1 −0.5 0 0.5 1
0

5

10

15

20

25

Plot of the VIF of X
2
 against ρ between X

1
 and X

2

V
IF

 o
f 
X

2

ρ
−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

Plot of the VIF of X
2
 against ρ between X

1
 and X

2

V
IF

 o
f 
X

2

ρ
−1 −0.5 0 0.5 1
0

10

20

30

40

50

60

70

Plot of the VIF of X
2
 against ρ between X

1
 and X

2

V
IF

 o
f 
X

2

ρ

2.5.3.11 Marginal Effects

For the logistic regression model, in general inferences concerning the magnitude of a

covariate cannot be made directly using the βi coefficients. Marginal effects provide a

mechanism to measure the magnitude of a change in a covariate on the likelihood of an

event occuring (i.e Prob(Y = 1))
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Figure 2.30: A: The Marginal Effects of x1 with varying ρ for different (µ̄1,1, µ̄2,1):
P = 0.6

(a) (µ̄1,1, µ̄2,1) = (2, 2) (b) (µ̄1,1, µ̄2,1) = (0.5, 1) (c) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (d) (µ̄1,1, µ̄2,1) = (2,−2)
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Figure 21: B: The p− values of the Marginal Effects of x1 with varying ρ for different
(µ̄1,1, µ̄2,1): P = 0.6

(a) (µ̄1,1, µ̄2,1) = (2, 2) (b) (µ̄1,1, µ̄2,1) = (0.5, 1) (c) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (d) (µ̄1,1, µ̄2,1) = (2,−2)
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The marginal effects measure the change in predicted probability that results from

corresponding changes in the independent variables (Greene, 2000). The marginal

effects of the logistic regression model can be written as (see Bergtold, Spanos and

Onukwugha, 2010):

∂h(Xi; β)

∂Xi

= h(Xi; β) · (1− h(Xi; β)) · ∂η(Xi; β)

∂Xi

(2.22)

where all variables and functions are as previously defined.
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Figure 2.31: A: The Marginal Effects of x2 with varying ρ for different (µ̄1,1, µ̄2,1):
p = 0.95

(a) (µ̄1,1, µ̄2,1) = (2, 2) (b) (µ̄1,1, µ̄2,1) = (0.5, 1) (c) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (d) (µ̄1,1, µ̄2,1) = (2,−2)
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B: The p− values of the Marginal Effects of x2 with varying ρ: P = 0.95

(a) (µ̄1,1, µ̄2,1) = (2, 2) (b) (µ̄1,1, µ̄2,1) = (0.5, 1) (c) (µ̄1,1, µ̄2,1) = (−0.5,−0.5) (d) (µ̄1,1, µ̄2,1) = (2,−2)
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Greene (2000) notes that ∂h(Xi;β)
∂Xi

can be evaluated at the sample mean of the random

variable (marginal effects at the means or MEMs) or evaluated for each random variable

at every observation and then averaged across all observations (average marginal effects

of AMEs). For binary variables, ∂h(Xi;β)
∂Xi

is interpreted as the change in predicted

probability when a regressor changes in value from ’0’ to ’1’, holding all other regressors

constant at their observed values (Greene 2000).

While marginal effects have been broadly examined (see Greene (2000), Verlinda

(2006) among others), to the best of our knowledge, the examination of marginal effects

in the presence of multicollinearity in the logistic regression model has not received

comparable attention. In light of the fact that the βis are functions of ρ, and hence

change as ρ changes, it will be interesting to know how the marginal effects change as
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|ρ| → 1. Figures 2.30 to 2.31 show the marginal effects and associated p − values for

mean pairs (µ1i, µ2i) = (2, 2), (0.5, 1), (−0.5,−0.5), and (2,−2). These Figures show

that the marginal effects differ immensely for each mean pair as |ρ| → 1. That is, there

is no distinctive behavior or predictable response as |ρ→ 1| This result is not surprising

given the unstable nature of the βis and that h(Xi; β) is a function of βi.

2.6 Extensions

This section extends the analysis of near-multicollinearity to the logistic regression

model with continuous normal covariates with heterogeneous variance-covariance struc-

ture, as well as logistic regression models with binary covariates. We also examine

near-multicollinearity in the k−regressor case of the logistic regression model.

2.6.1 The Logistic Regression Model with Continuous Normal

Covariates, Different Mean Vectors and a Heterogeneous

Variance-Covariance Structure

If the variance-covariance matrix structure is heterogeneous (and unequal for j = 0, 1)

and fX|Y (Xi; θj) for Yi = j, then the predictor function takes the form (Bergtold,

Spanos and Onukwugha, 2010):

η(xi; β) = β0 +
K∑
k=1

βkxk,i +
K∑
j=1

K∑
l≥j

βj,lxj,ixl,i (2.23)

In the simple two variable case, this index function takes the form η(xi; β) = β0+β1x1+

β2x2 + β11x
2
1 + β12x1x2 + +β22x

2
2, so that the log-odds function becomes:
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ln
(
P (y=1|X;β)
P (y=0|X;β)

)
= ln

(
fX|Y=1(Xi;θ1)

fX|Y=0(Xi;θ0)

)
+ log

(
p

1−p

)
+ ui

= β0 + β1x1 + β2x2 + β11x
2
1 + β12x1x2 + +β22x

2
2 + ui

(2.24)

To see why this is interesting, equation(2.12) can be written to include the hetero-

geneity inherent in the variance-covariance matrix as follows:

fX/Y (x1, x2; θj j = 0, 1) =
(1−ρ2

j)
− 1

2

2πσ1jσ2j
· exp

{
−1

2
1

1−ρ2
j

[(
x1−µ1j

σ1j

)2

−2ρj

(
x1−µ1j

σ1j

)(
x2−µ2j

σ2j

)
+
(
x2−µ2j

σ2j

)2
]}

=
(1−ρ2

j)
− 1

2

2πσ1jσ2j
· exp

{
− 1

2(1−ρ2
j )

[
x2

1−2x1µ1j+µ
2
1j

σ2
1j(

2ρj
x1x2−x1µ2j−x2µ1j+µ1jµ2,j

σ1jσ2j

)
+

x2
2−2x2µ2j+µ

2
2j

σ2
2j

]}
(2.25)

Combining equations (2.12) and (2.25) gives:

ln
f1(x1,x2;θ,j)

f0(x1,x2;θ,j)
=

{
2(1−ρ2

0)
1
2 2σ10σ20

2(1−ρ2
1)

1
2 2σ11σ21

· exp{41}
exp{4o}

}
= ln

2(1−ρ2
0)

1
2 2σ10σ20

2(1−ρ2
1)

1
2 2σ11σ21

(41 −40)

= lnD(41 −40)

(2.26)

where D =
2(1−ρ2

0)
1
2 2σ10σ20

2(1−ρ2
1)

1
2 2σ11σ21

and 4j is as defined in equation (2.12). Plugging in 41 and

40 into (2.26) gives
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ln
f1(x1,x2;θj)

f0(x1,x2;θj)
= lnD +

[
1

2(1−ρ2
0)σ2

10
− 1

2(1−ρ2
1)σ2

11

]
x2

1 +
[

1
2(1−ρ2

0)σ2
20
− 1

2(1−ρ2
1)σ2

21

]
x2

2

+
[

ρ1

2(1−ρ2
1)σ11σ21

− ρ0

2(1−ρ2
0)σ10σ20

]
x1x2 +

[
µ11

2(1−ρ2
1)σ2

11
+ ρ0µ20

2(1−ρ2
0)σ10σ20

− µ10

2(1−ρ2
0)σ2

10
− ρ1µ21

2(1−ρ2
1)σ11σ21

]
x1 +

[
µ21

2(1−ρ2
1)σ2

21
+ ρ0µ10

2(1−ρ2
0)σ10σ20

− µ20

2(1−ρ2
0)σ2

20
− ρ1µ11

2(1−ρ2
1)σ11σ21

]
x2 +

[
ρ1µ11µ21

2(1−ρ2
1)σ11σ21

+
µ2

10

2(1−ρ2
0)σ2

10

+
µ2

20

2(1−ρ2
0)σ2

20
− µ2

11

2(1−ρ2
1)σ2

11
− µ2

21

2(1−ρ2
0)σ2

21
− ρ0µ10µ20

2(1−ρ2
0)σ10σ20

]}
(2.27)

Equation (2.27) can be rewritten as:

fX|Y=1(x1,x2;θ1)

fX|Y=0(x1,x2;θ0)
= exp

{
lnD + β11x

2
1 + β22x

2
2 + β12x1x2 + β1x1 + β2x2 + β0

}
= exp

{
β̃0 + β1x1 + β2x2 + β11x

2
1 + β12x1x2 + β22x

2
2

} (2.28)

where β̃0 = lnD + β0 and

β0 =
[ ρ1µ11µ21

2(1− ρ2
1)σ11σ21

+
µ2

10

2(1− ρ2
0)σ2

10

+
µ2

20

2(1− ρ2
0)σ2

20

− µ2
11

2(1− ρ2
1)σ2

11

− µ2
21

2(1− ρ2
0)σ2

21

− ρ0µ10µ20

2(1− ρ2
0)σ10σ20

]
,

(2.29)

β1 =
[ µ11

2(1− ρ2
1)σ2

11

+
ρ0µ20

2(1− ρ2
0)σ10σ20

− µ10

2(1− ρ2
0)σ2

10

− ρ1µ21

2(1− ρ2
1)σ11σ21

]
,

(2.30)

β2 =
[ µ21

2(1− ρ2
1)σ2

21

+
ρ0µ10

2(1− ρ2
0)σ10σ20

− µ20

2(1− ρ2
0)σ2

20

− ρ1µ11

2(1− ρ2
1)σ11σ21

]
,

(2.31)
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β11 =
[ 1

2(1− ρ2
1)σ2

11

− 1

2(1− ρ2
0)σ2

10

]
,

(2.32)

β22 =
[ 1

2(1− ρ2
0)σ2

20

− 1

2(1− ρ2
1)σ2

21

]
,

(2.33)

β12 =
[ ρ1

2(1− ρ2
1)σ11σ21

− ρ0

2(1− ρ2
0)σ10σ20

]
,

(2.34)

It is clear to see that β̃0, β1, β2, β11, β12 and β22, are all functions of ρj, j = 0, 1 and

as a result change as ρj changes.

2.6.2 The Logistic Regression Model with Binary Covariates

Assume now that X = (x1, x2)′ where X is distributed bivariate Bernoulli. Then we

can show that:

η(xi; β) = ln

(
f1(x1, x2|Y = j)

f0(x1, x2|Y = j)

)
+ log

(
p

1− p

)
= β0 + β1x1 + β2x2 + β12x1x2

For X = (x1, x2)′ distributed conditional bivariate Bernoulli,

fj(x1|Y = j) = rx1
j (1− rj)1−x1 ; j = 0, 1 (2.35)

where rj = Prob(x1 = 1|Y = j), and:
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fj(x2|x1 = k, Y = j) = qx2
jk (1− qjk)1−x2 ; j = 0, 1, k = 0, 1

(2.36)

making:

fj(x1, x2|Y = j) =
[
rjq

x2
j1 (1− qj1)1−x2

]x1 ·
[
(1− rj)qx2

j0 (1− qj0)1−x2
](1−x1)

; j = 0, 1,

(2.37)

where qjk = Prob(x2 = 1|x1 = l, Y = j); for k = 0, 1 and j = 0, 1.

From equation (2.37)

ln
(
f1(x1,x2|Y=j)
f0(x1,x2|Y=j)

)
= x1ln

[
r1q

x2
11 (1− q11)(1−x2)

]
+ (1− x1)ln

[
(1− r1)qx2

10 (1− q10)(1−x2)
]

− x1ln
[
r0q

x2
01 (1− q01)(1−x2)

]
+ (1− x1)ln

[
(1− r0)qx2

00 (1− q00)(1−x2)
]

= x1ln(r1) + x1x2ln(q11) + x1(1− x2)ln(1− q11) + (1− x1)ln(1− r1)

+ (1− x1)x2ln(q10) + (1− x1)(1− x2)ln(1− q10)− x1ln(r0)

− x1x2ln(q01)− x1(1− x2)ln(1− q01)− (1− x1)ln(1− r0)

− (1− x1)x2ln(q00)− (1− x1)(1− x2)ln(1− q00)

(2.38)

Further expanding and rearranging equation (2.38) yields
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ln
(
f1(x1,x2|Y=j)
f0(x1,x2|Y=j)

)
= x1ln

(
r1
r0

)
+ x1x2ln

(
q11

q01

)
+ x1(1− x2)ln

(
1−q11

1−q01

)
+ (1− x1)ln

(
1−r1
1−r0

)
+ x2(1− x1)ln

(
q10

q00

)
= (1− x1)(1− x2)ln

(
1−q10

1−q00

)

= x1ln
(
r1
r0

)
+ x1x2ln

(
q11

q01

)
+ [x2 − x1x2]ln

(
1−q11

1−q01

)
+ (1− x1)ln

(
1−r1
1−r0

)
+ [x2 − x1x2]ln

(
q10

q00

)
+ [1− x1 − x2 + x1x2]ln

(
1−q10

1−q00

)
,

(2.39)

giving rise to:

η(x1, x2; β) = β0 + β1x1 + β2x2 + β12x1x2 (2.40)

where:

β0 = κ+ ln
(

1−r1
1−r0

)
+ ln

(
1−q10

1−q00

)
= κ+ ln

[
(1−r1)(1−q10)
(1−r0)(1−q00)

]

β1 = ln
(
r1
r0

)
+ ln

(
1−q11

1−q01

)
− ln

(
1−r1
1−r0

)
− ln

(
1−q10

1−q00

)
= ln

[ (
r1
r0

)(
1−q11
1−q01

)
(

1−r1
1−r0

)(
1−q10
1−q00

)
]

= ln
[
r1(1−r0)(1−q11)(1−q00)
r0(1−r1)(1−q01)(1−q10)

]

β2 = ln
(
q10

q00

)
− ln

(
1−q10

1−q00

)
= ln

[ (
q10
q00

)
(

1−q10
1−q00

)
]

= ln
[
q10(1−q00)
q00(1−q10)

]

β12 = ln
(
q11

q01

)
− ln

(
1−q11

1−q01

)
− ln

(
q11

q01

)
+ ln

(
1−q10

1−q00

)
= ln

[
q11(1−q01)q00(1−q10)
q01(1−q11)q10(1−q00)

]
Further expansion of (β12) yields
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β12 = ln

[
(q11 − q11q01)(q00 − q00q10)

q01 − q01q11)(q10 − q10q00)

]
= ln

[
q11q00[1− q10 − q01 + q01q10]

q01q10[1− q00 − q11 + q00q11]

]

It can further be shown that β0, β1, β2, β12 are all functions of ρ, but the correlations

are expressed in terms of Yule’s Q. Yule’s Q is a numerical transformation that preserves

the rank order of the data and establishes a more traditional range to the index so

that −1 represents a perfect negative relationship, 0, no relationship and 1, a perfect

positive relationship (Bakeman et al. 1996), thereby providing a measure of association

to examine dependence among nominal variables. Mathematically, it can be expressed

as

Y ule′s Qjε(−1, 1) =
ρ00ρ11 − ρ01ρ10

ρ00ρ11 + ρ01ρ10

(2.41)

Since x1, x2 are binary, from equation (2.37):

ρ11 = fj(x1 = 1, x2 = 1) = rjqj1

ρ00 = fj(x1 = 0, x2 = 0) = (1− rj)(1− qj0)

ρ01 = fj(x1 = 0, x2 = 1) = (1− rj)qj0

ρ10 = fj(x1 = 1, x2 = 0) = rj(1− qj1)

Substituting ρ00, ρ11, ρ01, ρ10 from above into (2.41) and rearranging:

Qj =
qj1(1− qj0)− qj0(1− qj0)

qj1(1− qj0) + qj0(1− qj0)
for j = 0, 1 (2.42)

Ifβ12 = ln(1) = 0, then it can be mathematically shown that Q1

Q2
= 1. Goodman

(1965) points out an important relationship between Yule’s Q and the so-called cross-

product ratio. Denote by CPRj, the cross-product ratio. Goodman (1965) shows that

Qj =
CRPj−1

CRPj+1
, so that CRPj =

1+Qj
1−Qj .

Using equation (2.42), for j = 0, 1
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CPRj ≡
ρ00ρ11

ρ01ρ10

=
rj(1− rj)qj1(1− qj0)

rj(1− rj)qj0(1− qj1)
=
qj1(1− qj0)

qj0(1− qj1)
(2.43)

so that the ratio of cross-products is:

CPR1

CPR0

=

q11(1−q10)
q10(1−q11)

q01(1−q00)
q00(1−q01)

=
q11(1− q01)q00(1− q10)

q01(1− q11)q10(1− q00)
= exp(β12) (2.44)

Consequently, we can rewrite (2.44) as

CPR1

CPR0

=

1+Q1

1−Q1

1+Q0

1−Q0

=
(1 +Q1)(1−Q0)

(1 +Q0)(1−Q1)
= exp(β12) (2.45)

giving

β12 = ln

[
(1 +Q1)(1−Q0)

(1 +Q0)(1−Q1)

]
(2.46)

Similarly, we can show that β1 is also a function of CPRj and Qj as follows

β1 = ln
(
r1(1−r0)(1−q11)(1−q00)
r0(1−r1)(1−q01)(1−q10) ·

q01q10
q01q10

· q11q00q11q00

)
= ln

(
r1(1−r0)
r0(1−r1) ·

CPR0

CPR1
· q11(1−q00)
q01(1−q10)

)
From which it can be shown that

β1 = ln

(
r1(1− r0)

r0(1− r1)
· (1 +Q0)(1−Q1)

(1 +Q1)(1−Q0)
· q11(1− q00)

q01(1− q10)

)
(2.47)

Equivalently,

β2 = ln
(
q10(1−q00)
q00(1−q10)

)
= ln

(
q10(1−q00) q11(1−q01) q01(1−q11)
q00(1−q10) q11(1−q01) q01(1−q11)

)
= ln

(
CRP0

CRP1
· q11(1−q01)
q01(1−q11)

)
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Rearranging the above equation gives the equation for β2 in terms in terms of Yule’s Q

as follows

β2 = ln

[
(1 +Q0)(1−Q1)q11(1− q01)

(1 +Q1)(1−Q0)q01(1− q11)

]
(2.48)

2.6.3 The Multivariate Normal k-regressor Case with Homo-

geonous Covariance

Consider the binary response variable Y with mean p and a vector of k explanatory

variables denoted as X. Assume that the inverse conditional distribution of X given

Y = j is multivariate normal with homoegenous covariance matrix, i.e.

fX|Y (Xi, θj) = (2π)
k
−2 |V|− 1

2 exp{−1
2
(Xi − µj)′V−1(Xi − µj)′}

where µj is the vector of means for Xi conditional on Yi = j for j = 0, 1 and V is the

covariance matrix for Xi. Given the preditor function takes the form:

η(Xi; β) = ln
(
fX|Y=1(Xi;θ1)

fX|Y=0(Xi;θ0)

)
+ ln

(
p

1−p

)
Then:

ln
(
fX|Y=1(Xi;θ1)

fX|Y=0(Xi;θ0)

)
= ln

(
exp{− 1

2
(Xi−µ1)′V−1(Xi−µj)′}

exp{−1
2

(Xi−µ0)′V−1(Xi−µj}

)
=

ln

(
exp{− 1

2
(X′iV

−1Xi−2X′iV
−1µ1+µ

′
1V
−1µ1)}

exp{−1
2

(X
′
i
V−1Xi−2X′iV

−1µ0+µ
′
0V
−1µ0)}

)
= −1

2
(−2X′iV

−1µ1 + 2X′iV
−1µ0 + µ

′
1V
−1µ1 − µ

′
0V
−1µ0)

= [(µ1 − µ0)′V−1]Xi + [
1

2
µ
′

0V
−1µ0 −

1

2
µ
′

1V
−1µ1]. (2.49)
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The predictor function in this case takes the form:

η(Xi; β) = β0 + β′Xi. (2.50)

Using equation (2.49), the coefficients will take the following parameterizations in

terms of the parameters of the inverse conditional distributions:

β0 = ln
(

p
1−p

)
+ [1

2
µ
′
0V
−1µ0 − 1

2
µ
′
1V
−1µ1]; and

β = [(µ1 − µ0)′V−1].

Now consider the case where each element of the random vectorXiis standardized by

dividing by its repsective variance, so that V ar(Xm,i) = 1 for m = 1, ..., k. Then repar-

tition the covariance matrix V, so that V =

 1 ρ
′
m

ρm P−m

 , where cov(Xm, Xs) = ρm,s

since V ar(Xm,i) = 1 for m = 1, ..., k;ρm is the (k − 1 x 1) vector of correlation coeffi-

cients between Xm and all the other explanatory variables; and P−m is the remainder of

the covariance matrix V with 1s along the diagonal and correlation coefficients as the

off-diagonal elements. The repartition of V allows us to isolate the parameterization of

the coefficient βm for m = 1,...,k. Following Spanos and McGuirk (2002) and invoking

the use of the Schur lemma (p. 371):

V−1 =

 γ−1 −γ−1ρ
′
mP

−1
−m

−P−1
−mρmγ

−1 P−1
−mρmγ

−1ρ
′
mP

−1
−m + P−1

−m

,

where γ = 1− ρmP−1
−mρ

′
m. Thus:
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β =

 βm

β−m

 =

 γ−1 (µ1,m − µ0,m)− γ−1ρ
′
mP
−1
−m (µ1,−m − µ0,−m)

−P−1
−mρmγ

−1 (µ1,m − µ0,m) + [P−1
−mρmγ

−1ρ
′
mP
−1
−m + P−1

−m] (µ1,−m − µ0,−m)

 ,

(2.51)

where µj,m denotes the mthelement of µj for j=0,1; and µj,−m represents the

(k − 1 x 1) vector of µjwithout µj,m for j = 0,1.

Examining equation (2.51), it becomes apparent that βm is a function of the the

correlation coefficeints (i.e. ρm) between Xm and all the other explanatory variables.

Furthermore, it is affected by the correlation between the other explanatory variables

via P−1
−m, as well. As with the case with two binary variables, these correlations show up

in both the numerator and denominator of these parameterizations. Thus, the ceteris

paribus clause is not applicable in the k regressor case either. Furthermore, given the

direct relationship between the binary and multivariae case shown here, the general

findings from the simulations are likely applicable here, as well. That is, the magnitude

of βm and the var(βm) will likely follow each other (e.g. as βm increases, var(βm)

increases). Furthermore, the impact of near multicollinearity will likely be problem

and data specific. That is, a priori knowledge of the correlations between explanatory

variables may or may not lead to issues with systematic or erratic volatitily.

All three extensions can be used to further examine other cases of near-multicollinearity

in the logistic regression model. However, this is beyond the scope of this paper, and

so we leave this for future work.

2.7 Conclusion

The traditional account of near-multicollinearity heavily relies upon a ceteris paribus

clause which allows for the examination of the impacts se(β̂), and τ(β̂)as |ρ̂| → 1, while
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holding the parameter estimates β̂ and σ̂2 constant. However, as shown by Spanos and

McGuirk (2002) in the context of the linear regression model, β̂, σ̂2 as well as R2 and

their associated variances and t− ratios are all functions of ρ̂ and therefore change as

|ρ̂| → 1. The changes in these statistics are rather different than the traditional account

implies. Making use of statistical reparametization, Spanos and McGuirk (2002) show

that contrary to the argument of the traditional account se(β̂), τ(β̂) and associated

statistics are non-monotonic functions of ρ, and therefore propose an ammendment to

the traditional account of near multicollinearity.

Given the similarities between the logistic regression model and the linear regres-

sion model, it is no surprise that the traditional specification of near-multicollinearity

in the logistic model closely mirrors the traditional specification in the linear regression

model. In light of the work done by Spanos and McGuirk (2002), the primary objective

of this paper has been to revisit the statistical specification of near-multicollinearity in

the logistic regression model. Using the PR approach, we mathematically derive the

parameters of the logistic regression model (βi) and related statistics, and explicitly

show that thay are all functions of ρ. Monte carlo simulations confirm that the param-

eters, se(β̂), as well as τ(β̂) all vary with ρ. The implications of our findings are that

βi, se(β̂), and τ(β̂) fluctuate in a non-symmetric, non-monotonic way as |ρ| → 1, and

hence our analysis emphatically calls into question the much-invoked ceteris paribus

clause to near-multicollinearity in the logit model.

We also consider what happens to traditional multicollinearity diagnostics such as

the V IF s and κ. The usual account suggests that high near-multicollinearity results

in high R2, V IF (·), and κ. In other words, as the degree of multicollinearity increases

(|ρ| → 1), one expects monotonic, U-shaped graphs centered around ρ = 0. Our

analysis finds no evidence of this. This conforms to what Spanos and McGuirk (2002)

state, that “ (multicollinearity) diagnostics such as V IF (·) and κ can be completely
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ineffective for detecting points of systematic volatility” (p 392).

What do these findings imply for future research? So far, we have only considered the

simple 2− regressor case of the logistic regression model with continuous (normal) co-

variates with different mean vectors, but homogeneous variance-covariance structure. In

section 2.6, we extend the analysis to logistic regression models with contnuous (normal)

covariates, different mean vectors, but heterogeneous variance-covariance structure, as

well as logistic regression models with binary covariates and nonlinear index/predictor

functions. Our objective it to examine how nonlinearities affect the surfaces of rele-

vant statistics in the presence of near-multicollinearity via simulations similar to those

described in section 2.5. An equally important feature of the PR approach is that it

allows for the parsimonious examination and specification of near-multicollinearity in

logistic regression models with k regressors as shown in section 2.6.3.
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Chapter 3

The Spatial Dynamics of Growth and

Income Inequality: Empirical Evidence

Using U.S. County Level Data.

3.1 INTRODUCTION

The connection between income inequality and economic growth has captured the at-

tention of economists for over 50 years, since the seminal works of Kuznets (1955) and

Kaldor (1957). Kuznets hypothesized, in what became known as the inverted-U hy-

pothesis that as a country transitions from an agrarian sector to urban industrialization,

inequality at first increases, and later decreases leading to an inverted-U relationship

between growth and inequality. This empirical fact documented by Kuznets (1955)

withstood the test of time until the late 1970s after which it failed to provide an expla-

nation for the trend of rising inequality that characterized income distribution in the

United States thereafter.

Many studies exist that look into the evolution of inequality and growth in the
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U.S1. Justifications for the inverted-U relationship between inequality and growth – the

notion that inequality initially rises, but then eventually declines as societies progress

economically – are related to neoclassical arguments, which highlight a trend toward

income convergence over time. Over the past three decades, however, the growth liter-

ature has increasingly focused on endogenous growth theories. Thus it is not surprising

that the decrease in the significance of the inverted-U hypothesis coincides with the

development of endogenous growth theories in the 1980s, which more often than not

emphasize a trend toward income divergence over time – in other words, more income

inequality.

The analysis of income inequality in the U.S. until recently has been limited to the

state level. Data limitations have limited the extent to which such a study can be broad-

ened to a more disaggregated level. Williamson (1965) studies income inequality at the

regional level and shows that during the process of economic growth and development,

societies go through three stages of development of interregional inequality. In the first

stage, inequality increases, followed by a second stage of stable, yet high inequality, and

a final stage of neoclassical convergence of incomes – thus decreasing inequality. Thus

at the intra-country/interregional level, Williamson shows that inequality follows the

predictions of Kuznets’ inverted-U hypothesis.

This is a fascinating topic because various studies have found conflicting results

when examining the inter-country and even inter-state relationship between inequality

and growth. While it is the case that a significant number of these studies have found

a negative relationship between inequality and growth (see Alesina and Perotti, 1994;

Keefer and Knack, 2000; Persson and Tabellini, 1994), others have found a positive

correlation between inequality and growth (see Partridge, 2005; Ngarambe, Goetz and

Debertin, 1998). The fact that prior studies have found such different results gives
1The next section provides a brief review of this literature
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reason to believe that the more disaggregated nature of county-level data should provide

more insights into this seemingly never-ending inequality-growth debate.

This paper differs from previous work on this subject area in two significant ways.

First, unlike prior work which have focused on cross-sectional, country-level data, this

article examines the correlation between income inequality and economic growth using a

panel of income distribution data for 3,109 counties or county-equivalent administrative

units of the U.S2. Together, these counties account for over 99 percent of all counties

in the U.S. One advantage of using county-level data is that most of the measurement

errors that usually plague cross-country studies, such as intertemporal and international

comparability of data are reduced, since these data are collected and compiled using the

same statistical techniques for the same time periods within the U.S. The non-spatial

dynamic effects of inequality on growth are examined using the System Generalized

Method of Moments (SYSGMM) suggested by Arellano and Bover (1995) and Blundell

and Bond (1998).

The second contribution of this work is that the use of county-level data allows for

the examination of the spatial interactions (or lack thereof) which may exist between

counties. These spatial interactions are captured with the aid of a spatial contiguity

weights matrix. We assume that dependence among counties only arises from the

disturbance process, hence the estimation of a spatial error model. An unconditional

maximum likelihood function similar to Elhorst (2005) is fully developed, and used

to estimate the dynamic spatial panel regression model. The results from the non-

spatial approach are compared to those of the spatial model, and trends or outliers are

analyzed. Therefore, the consideration of county-level characteristics and data provide

a more comprehensive analysis of the link between income inequality and economic

growth, and pushes this inquiry one step closer toward more tenable results. This
2Louisiana is divided into parishes and Alaska into boroughs not counties. These are considered

county equivalents

103



advantage allows for the examination of a richer set of potential reactions of growth to

inequality and vice versa.

The results from the non-spatial dynamic models indicate that increases in income

inequality are significantly related with decreases in long run economic growth. These

results are shown to be robust across different model specifications and sample sizes.

However, these results are biased since they do not correct for the spatial effects that

may exist between counties. Incorporating spatial effects, the results from the spatial

error model indicate that the bias in the parameter for inequality amounts to about

2.66 percent, while that for initial income amounts to about 21.51 percent. The bias

in the parameter for education is relatively small (1.19 percent), while the difference in

the parameter for wages between the spatial and non-spatial models is essentially zero.

The rest of the paper is structured as follows. The next section reviews the devel-

opment of the major themes and provides a brief background of the approaches and

results of the literature on the relationship between income inequality and economic

growth. Section 3.3 provides a description of the data used and the methodology em-

ployed for the empirical analysis. Using the data from section 3.3, section 3.4 estimates

and provides regression results for the non-spatial model, while section 3.5 estimates

the spatial regression model. Finally, a concluding section attempts to identify trends

and outliers, as well as unanswered questions and puzzles that arise.

3.2 Background and Literature Review

3.2.1 Trends in U.S. County-Level Growth and Inequality

Over the last forty years, per capita real GDP growth in the U.S. averaged approxi-

mately 2 percent per year. Although one would expect that this growth is necessarily

good, it has been accompanied by a significant reduction in the share of income earned
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by the bottom 90 percent of households. In fact, many families have seen little increases

in their incomes, and these increases have been primarily the result of the growth of

two-earner households. Figures 3.1 and 3.2 show the average annual per capita real

GDP growth rates of U.S. counties in the 1970s and 2000s respectively.

A glimpse of Figure 3.1 shows that in the 1970s, real per capita GDP grew approx-

imately 3 percent annually (between 0.02 – 0.06 in most regions). However, several

Figure 3.1: Spatial Variation in U.S. County-Level Per Capita Income Growth: 1970 –
1980

Legend

-0.114316 - 0.000000

0.000001 - 0.020000

0.020001 - 0.060000

0.060001 - 0.094922
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exceptions must be noted. A particularly striking feature of the map is that counties in

the Great Plains region experienced relatively low growth. As a matter of fact, many

of these counties experienced negative growth, with only a few showing modest positive

growth (between 0 and 0.02). Many counties in the East and West coasts recorded

positive growth rates. Nonetheless, overtime, this pattern would change dramatically.

Three decades later (Figure 3.2), while some counties in the Great Plains region

still had low growth rates of per capita GDP, others had progressed in terms of growth.

In the Great Plains region, except for counties in the central Midwestern states, many

northern and southern counties experienced positive growth (between 0.02 - 0.06). On

the other hand, the East and West Coasts, which had recorded positive per capita

growth in the 1970s witnessed reduced growth rates (0.0 - 0.02) in the 2000s. Equally

important to note are counties in the Gulf Coast region which saw declining per capita

growth in the 2000s. Underlying these patterns are the immense differences between

counties. Thus, relating these differences to county characteristics such as migration

patterns, average wage per job per county, the degree of urbanization of counties, as

well as the level of income inequality within counties, can prove relevant in helping to

determine the sources of long run growth of these counties.

These trends seem to suggest a pattern of mobility and eventual convergence of

real GDP per capita, thus signifying movements toward economic equality across U.S.

counties. If this were indeed the case, one would expect that this growth would in fact

eventually benefit most residents of these growing counties. However, if anything, the

benefits of this growth seem to go disproportionately to the wealthy segment of the

population, leading to more inequality overtime.

Figures 3.3 and 3.4 show the trends in income inequality in U.S. counties in 1970

and 2000. We use the Gini coefficient as our measure of inequality. This coefficient

calculates the share of the area that encompasses the triangle defined by the line of
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Figure 3.2: Spatial Variation in U.S. County-Level Per Capita Income Growth: 2000 –
2007

Legend

Percent Growth

-0.804175 - 0.000000

0.000001 - 0.020000

0.020001 - 0.060000

0.060001 - 0.110000

perfect equality and the line of perfect inequality of the Lorenz curve. The Gini coeffi-

cient lies between 0 and 1. A Gini coefficient of 0 implies equal income for all earners,

while a Gini coefficient of 1 implies that one individual had all the income, while the

rest of the population had nothing. Thus, higher Gini coefficients reflect more uneven

distribution of incomes, and lower Ginis reflect societies characterized by more equal

distributions of income and wealth (Atkinson, 1970).
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Figure 3.3 shows that in the 1970s, in general, inequality was low (less than 0.38)

across many U.S. counties. Nonetheless, several exceptions to this pattern are notice-

able. High inequality (over 0.38) is present in counties in southern and Gulf states

such as Arizona, New Mexico, and Texas, with particularly high inequality in Edwards

(0.569) and Kenedy (0.579) counties in Texas. Isolated patches of high inequality are

also apparent in the Dakotas, particularly in Dewey (0.54) and Shannon (0.52) counties

of South Dakota and Emmons (0.45) county in North Dakota.

Figure 3.3: Spatial Variation in U.S. County-Level Income Inequality: 1970

Legend
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Figure 3.4 shows the distribution of family income thirty years later. Clearly, it is

noticeable that by 2000, inequality had risen across many counties, even in the hitherto

low-inequality counties. The West and Northeastern coasts, which in the 1970s recorded

low inequality, were, by 2000, stricken by severe income inequality (greater than 0.44).

Counties in the southern states, as well as those in the Gulf coast states which were

already experiencing high inequality in 1970, saw higher income inequality in 2000.

Figure 3.4: Spatial Variation in U.S. County-Level Income Inequality : 2000

Legend
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Several studies, using varying methods of analysis have sought to examine the effect

that such changes in inequality might have on long run economic growth rates. A review

of this literature is examined next.

3.2.2 Literature Review

The effects of income inequality on economic performance have been a contentious

issue among economists and policymakers for a long time. Different models and meth-

ods of analysis, have yielded different results, sometimes sharply different, sometimes

modestly. In this subsection, we provide a summary and a brief overview of the key

approaches in the inequality-growth literature. In so doing, we try to be representative,

rather than comprehensive, as we attempt to report completely on the findings and

issues.

The genesis of this profoundly important debate can be traced back to the highly

influential works of Kuznets (1955) and Kaldor (1957). The former shows that as

an economy progresses economically, inequality initially rises, and then subsequently

decreases, leading to an inverted-U process between inequality and economic growth.

The latter study shows that the marginal propensity to save in wealthier economies

exceeds that in poorer economies. Thus if GDP growth is positively related to the

fraction of income that is saved, then economies with more unequal income distributions

should grow unassailably more swiftly than their counterparts characterized by more

equal income distributions.

Several studies, using varying techniques and approaches, seem to be in accordance

with Kaldor’s findings. In particular, Forbes (2000), using the data on inequality as-

sembled by Deininger and Squire (1996) and an Arellano-Bond Generalized Method

of Moments technique with various robustness tests, shows a positive and significant

relationship between inequality and growth. Forbes, whose study focuses exclusively
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on the short and medium terms, notes clearly that this sturdy positive relationship be-

tween inequality and growth could fade, and/or possibly reverse in the long run. Li and

Zou (1998), who also use the aforementioned data assembled by Deininger and Squire

(1996), estimate a regression using both fixed-effects and random-effects models. Given

their model specifications, they find, in most cases, statistically significant evidence of

a positive inequality-growth relation.

Nonetheless, unlike the studies mentioned above, other papers have found a signifi-

cant negative relationship between income inequality and growth. Alesina and Rodrik

(1994) use a cross-country political economy model to test whether initial inequality is

statistically significant in forecasting long term growth. To do this, they regress, among

other variables, the Gini coefficients for land and income on the average growth rate

from 1960 to 19853. They show that regardless whether the land Gini or the income

Gini are entered into the regressions singly or collectively, a statistically significant neg-

ative correlation between inequality and growth is found. Alesina and Perotti (1996)

analyze this ineqiality-growth relationship through the role of political instability on

investment. They use the bivariate simultaneous equations model below:

INV = α0 + α1SPI + α2PRIM + α3PPPIDE + α4PPPI + ε1

SPI = β0 + β1PRIM + β2GDP + β3INV + β4MIDCLASS + ε2

where, INV, SPI, PRIM, PPPIDE, PPPI, GDP and MIDCLASS are indexes for total

investment; socio-political instability; primary school enrollment ratio in 1960; the

PPP value of the investment deflator in 1960 relative to the U.S; the deviation of the

PPPI relative to the sample mean; the initial per capita income; and the share of total

income of the third and fourth quintiles; respectively. Using the above equations they

conclude that “income inequality increases political instability, which in turn decreases

investment. After an extensive battery of robustness tests, we can conclude that these
3These variables are the initial level of per capita income and the primary school enrollment ratio.
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results in our sample of 70 countries are quite solid”. Keefer and Knack (2000) and

Panizza (2002) also find a negative relationship between growth and inequality.

Barro (2000) challenges the orthodoxy of a negative relationship between growth

and inequality. Using a broad panel of countries, he finds no clear general pattern

between the two variables. More precisely, he shows that for rich countries – countries

with per capita GDP over $2000 (1985 U.S. dollars) – the inequality-growth relationship

is positive, whereas for poor countries – those with per capita GDP below $2000 – the

relationship is negative. Nevertheless, the overall effects of inequality on growth and

investment, Barro concludes, are weak.

The study of the relationship between inequality and growth is not limited to cross-

national studies. Panizza (2002) points out that the problem with most cross-country

studies is based on the quality and comparability of the inequality data. He argues that

even though the data set assembled by Deininger and Squire (1996) greatly

improved the quality of the available data on income inequality, this data

set is far from being problem free (page 16).

A possible solution to this problem proposed by Panizza (2002) is to use regional data.

Using U.S. cross-state data for the period 1940 to 1980 and the GMM approach, he finds

a negative, but non-robust correlation between the Gini index and regional growth.

Partridge (1997, 2007) also studies inequality and growth at the sub-national level.

Similar to Panizza (2002), he emphasizes that redistribution policies that either enhance

or inhibit growth need not only occur at the national level, but at the sub-national level,

as well. In his 1997 paper, Partridge examines the inequality-economic growth relation-

ship using data on the 48 contiguous U.S. states, and a model similar to Persson and

Tabellini (1994) and Alesina and Rodrik (1994) briefly discussed above. Partridge finds,

using the Gini coefficient as the inequality measure, a positive relation between initial

inequality and subsequent economic growth in states with high inequality. However, he
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also finds that in states in which the middle quintile’s share of income is larger, growth

subsequently tends to increase. The positive relationship is in stark contrast to the

works of Persson and Tabellini (1994), and Alesina and Rodrik (1994), whose models

Partridge extend. To reconcile these differences, Partridge concedes that a weakness

of examining regional or state level data is that human and physical capital mobility

could hinder the extent to which regional/state governments engage in income redis-

tribution, making it necessary to take into account changes in migration patterns from

high inequality-stricken states to low inequality-endowed states.

A limited number of within-country studies have been carried out at the county-level

due limitations of existing data, or the unavailability of data altogether. However, the

recent development of new datasets, and resourceful use of previously available datasets,

allows for the possibility of measuring the county-level links between economic growth

and income inequality. Ngarambe, Goetz, and Debertin (1998) is an examination of

the joint determinants of inequality and economic growth for 1,257 counties in states

in the U.S. for the 1970 and 1980 decades. They check for reverse causality between

the two variables using a two stage least squares regression approach. Their empirical

results show that in the 1970s, increased regional income disparities in the U.S. South

significantly decreased growth, whereas in the 1980s, increased inequality complemented

growth.

None of these studies, however, considers an explicit role of space on growth and

inequality. Over the last few years, some in the profession have welcomed the view

that the location of spatial units can determine their growth, and this is reflected in

the general consensus that direct and indirect linkages between regions are crucial to

the understanding of their growth dynamics and income distribution. Thus recently,

the use of spatial econometric methods to analyze the role of location on growth is
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gaining significant ground.4 This article is the first of its kind that uses detailed U.S.

county-level panel data to explicitly uncover the role of geographical location on income

inequality and economic growth.

3.3 Data and Methodology

The primary sources of data for the estimation of the model come from the U.S. Census

Bureau and the Bureau of Economic Analysis Regional Economic Information System

(BEA–REIS). The data set contains observations for 3,109 counties of the U.S. from

1970 - 2007. The growth model estimated considers the determinants of the average

annual per capita income growth over 10-year horizons (except for the 2000-2007 period

where the average annual growth rate is over a 7-year period) at the county level.

Data on per capita personal incomes and the ensuing growth rates come from the

BEA – REIS. Following the convention in most economic growth and inequality stud-

ies, the average annual per capita income growth over ten-year periods is used as the

dependent variable5. On the one hand, while this long-term perspective is constrained

by data limitations, on the other hand, such a long-term perspective follows the norm

of most growth studies that strive to explain long- rather than short-run variations and

reduces annual serial correlation from business cycle fluctuations.

Before proceeding, it is worth pausing to note that this set-up (averaging over n

periods) is not without problems. Attanassio, Picci and Scorcu. (2000) identify four

drawbacks with this set-up. Firstly, they argue that annual data provide information

that is lost when averaging. Their second criticism stems from the fact that because the

length of business cycles varies over time and across space, and the interval over which

these averages are computed is arbitrarily fixed, there is no guarantee that business
4Abreu et al. (2005) provide a comprehensive review of this literature.
5See Barro (2000) and Partridge (1997)
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cycles are cut in the right way. In addition, averaging gets rid of the possibility of

considering cross-sectional heterogeneity in the parameters. Finally, they insist that

if averaging indeed measures the long-run effects, it prevents the analysis of short-

run effects which usually include the interesting dynamic interplay of forces acting in

opposite directions and/or different magnitudes. Hence averaging reduces, if not annuls

the effects of such short-run dynamics.

The choice of independent variables that affect growth are well grounded in the

literature, and their inclusion in the model shown hereinafter rests on the availability,

and/or reliability of data for the counties of interest. These independent variables are

dated at the start of each decade. This decreases the problem of endogeneity. Thus, by

using lagged variables, there should not be any direct reverse causality issues between

inequality and growth. By dating the variables at the start of each decade, this model

also follows the convention in the literature that posits that economic growth converges

to an equilibrium path based on initial conditions (Durlauf and Quah, 1999). To this

end, the level of per capita income at the start of each decade is included as a regressor

to account for convergence across counties (Barro and Sala-i-Martin, 1991, 1992; Goetz

and Hu, 1996). The use of this variable makes it possible to examine if poorer counties

were “catching-up” to wealthier ones during the period considered.

The data on county-level income inequality come from Nielsen (2002). Deininger

and Squire (1996) assemble a cross-country “high quality” data set on inequality. They

argue that any consistent and comprehensive data set on inequality must meet the

following criteria: Firstly, the data must use households or individuals as the unit of

observation; secondly, the sample must be representative of the population; and finally

the inequality measures must be based on comprehensive coverage of different income

and population groups. In this article, we argue that the Gini coefficients calculated

by Nielsen (2002) meet these criteria in that Nielsen (2002) calculates Ginis based on
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representative household incomes and income groups from Census data.

Other control variables considered include initial levels of human capital stock, and

the average wage per job per county. The role of human capital in determining subse-

quent economic growth is theoretically and empirically well grounded in the literature,

and so will not be emphasized here (see Romer, 1989; Barro, 2001). The percentage of

college-educated individuals per county aged 25 years and older is used as a proxy for

the stock of human capital in that county. County-level education data are obtained

from the U.S. Department of Agriculture, Economic Research Service (USDA-ERS).

Regional wages and regional growth are also inextricably related. The average wage

per job is included to capture labor market trends within counties. Wage data are

collected from the BEA-REIS. We hypothesize on the one hand that if the average

wage per job reflects labor costs, then wage rates inversely affect the growth of coun-

ties. On the other hand, relatively high wages or other factors that promote higher

levels of labor compensation may push inefficient firms into becoming relatively more

efficient. Furthermore, higher labor costs might lead to the adoption of new and better

technology, which enhances productivity. The higher productivity due to higher levels

of compensation permits the high-wage firm to stay competitive. Therefore, changes in

productivity would merely compensate for, if not exceed labor costs. As such, higher

wages might in fact enhance growth. Thus while it is known that local wages affect

regional growth, the direction of this effect is not particularly well known. The model

accounts for county-specific time-invariant characteristics as well as time-specific effects

with the inclusion of county and period dummies respectively. To this end, the base

growth model is expressed as:

growthit = α1yi,t−1 + α2Ineqi,t−1 + β1Edui,t−1 + β2Wagei,t−1 + δt + ϕi + εit (3.1)
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where yi,t−1is the natural log of per capita income of county i in period t − 1. In this

model, the left hand side is the average annual growth rate of per capita income of

county i in period t − 1. Ineqi,t−1, Edui,t−1, and Wagei,t−1 are the Gini coefficient,

education, and (the natural log of the) average wage per job, respectively. δt denotes

the unobservable time effects, and ϕi accounts for time-invariant county effects and

εit is the disturbance term. Table 3.1 provides the descriptive statistics, as well as a

summary of the data sources and brief definitions of the variables in the model.

Table 3.1: Summary Statistics and Data Sources
Variables, Definitions and Sources Year Mean Stdev Min Max

y : Real per capita personal incomea 1970 9.289 0.237 8.421 10.283
1980 9.827 0.232 8.642 10.813
1990 9.957 0.218 8.949 11.165
2000 10.121 0.226 9.019 11.457

Ineq : Gini coefficient of inequalityb 1970 0.373 0.046 0.237 0.579
1980 0.368 0.037 0.265 0.521
1990 0.379 0.039 0.013 0.561
2000 0.434 0.038 0.314 0.605

Edu: College completion ratec 1970 0.073 0.040 0.011 0.386
1980 0.115 0.054 0.028 0.478
1990 0.135 0.066 0.037 0.534
2000 0.165 0.078 0.049 0.637

Wage: Average wage per county per joba 1970 9.765 0.222 9.000 11.105
1980 10.147 0.212 9.561 11.560
1990 10.089 0.207 9.533 11.205
2000 10.194 0.203 9.621 11.315

Notes:

a. Bureau of Economic Analysis Regional Economic Information System (BEA – REIS)
b. Nielsen (2002)

c. United States Department of Agriculture Economic Research Service (USDA – ERS)
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3.4 Estimation and Results

3.4.1 The Non-Spatial Dynamic Model

For the ease of the ensuing discussion, (3.1) can be rewritten as:

growthit = α1yi,t−1 + α2Ineqi,t−1 +X
′

i,t−1β + δt + ϕi + εit (3.2)

where X ′i,t−1 contains the set of control variables for the stock of human capital, and

the average wage per job per county. This equation can be estimated using OLS, or

the traditional fixed and random effects methods specified in the panel data literature.

In fact, a Hausman specification test indicates that the random effects model is not

appropriate in this case. More precisely, a χ2 of 843.98 rejects the random effects

model in favor of the fixed effects model at any level of significance. However, it is well

known that yi,t−1 may be correlated with the error term, εit and therefore fixed and

random effects estimation lead to inconsistent results. In addition, the time-invariant

county-specific characteristics ϕi may be correlated with the control variables, rendering

OLS estimators biased. More so, Arellano and Bover (1995) show that the presence of

the lagged endogenous variable causes the OLS estimate of this variable to be downward

biased and inconsistent, even if the error terms are not serially correlated.

To avoid these problems, many dynamic panel studies of inequality and growth

use the Arellano and Bond fixed effects GMM estimator, which uses lagged levels of

all the control variables as instruments. Arellano and Bond (1991) show that for short

dynamic panels (N →∞, and T is fixed), equation (3.2) is first differenced to eliminate

the individual effects ϕi which are the major source of the bias in the OLS estimator.

This gives:
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yit−yi,t−1 = ς(yi,t−1−yi,t−2)+α2(Ineqi,t−1−Ineqi,t−2)+(X
′

i,t−1−X
′

i,t−2)β + (εit−εi,t−1)

(3.3)

where ς = (α1 + 1). It should be kept in mind that (3.3) controls for the time dummies

by taking into account deviations of the variables from their period means. Arellano

and Bond (1991) argue that a more consistent estimator can be obtained by using

instruments whose validity is based on the orthogonality between lagged values of yit

and the error term εit. Thus when t ≥ 3, the choice of the instruments depends on

correlations between yit − yi,t−1 and each of yit−1 − yi,t−2 and εit − εi,t−1. For example,

when t = 3, equation ((3.3)) becomes,

yi3 − yi,2 = ς(yi,2 − yi,1) + α2(Ineqi,2 − Ineqi,1) + (X
′
i,2 −X

′
i,1)β + (εi,3 − εi,2)

Therefore yi,1 is a valid instrument for yi,2 − yi,1, since they are correlated, and yi,1 is

not correlated with εi,3 − εi,2, unless these errors are serially correlated. At t = 4, by

the same argument, it can be shown that yi,1 and yi,2 are valid instruments. Also, since

Ineqi,t−1 and X
′
i,t−1 are predetermined, the values of these variables in the subsequent

periods are correlated with the current error terms. That is, E(Ineqi,tεit) 6= 0 and

E(X
′
i,tεit) 6= 0 for s > t and 0 otherwise. Consequently, in this case, at time s only

Ineqi,1, · · · , Ineqi,s−1 and X′i,1, · · · ,X′i,s−1 will be valid instruments in (3.3).

Blundell and Bond (1998) argue that using lagged levels are poor instruments for

first differences. They show that as α1 → 0 in (3.2), the Arellano and Bond GMM

estimator performs poorly. To be precise, they observe that when T is small, the first

differenced GMM estimator has a large downward finite sample bias. To this end,

Blundell and Bond (1998) propose the use of the System GMM which estimates two
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sets of equations - one set in levels that uses lagged first-differenced instruments, and

another set in first differences that uses lagged-level instruments. Studies by Blundell

and Bond (2000) and Blundell et al. (2000) show that the System GMM estimator

for equations such as equation (3.2) outperforms the first differenced GMM estimator.

To estimate the dynamic panel data model in this article, we therefore use the System

GMM estimator. Table 3.2 presents the estimates of the System GMM (SYSGMM).

For the purpose of comparability, the OLS, fixed effects (FE), random effects (RE), and

the Arellano and Bond GMM (A&B GMM) estimates are also presented.

Table 3.2: Estimation Results for the Non-spatial Model
Model OLS RE FE A&B GMM SYSGMM

yi,t−1 −0.0409
(0.0008)

−0.0121
(0.0009)

−0.0519
(0.0020)

−0.3636
(0.0255)

−0.3518
(0.0264)

Ineqi,t−1 −0.0342
(0.0038)

−0.0039
(0.0043)

∗ −0.0511
(0.0062)

−0.0561
(0.0137)

−0.0492
(0.0140)

Edui,t−1 0.1100
(0.0035)

0.0595
(0.0032)

0.1237
(0.0082)

0.0641
(0.0208)

0.0762
(0.0207)

Wagei,t−1 −0.0104
(0.0010)

0.0015
(0.0010)

∗ −0.0027
(0.0022)

* −0.0196
(0.0045)

−0.0251
(0.0041)

R2 0.3294 0.4798 0.5559
Observations 12430 12430 12430 6216 6216

Notes:

i . * implies insignificant at the 5 percent level.
ii. For the fixed effects model, R2 is the within-R2; the random effects model, R2 is the overall-R2.
iii. The standard errors are reported in parentheses. These errors are robust to heteroskedasticity of unknown form.

iv. The GMM estimates reported are all two step.

Table 3.2 shows that regardless of the estimation technique, changes in inequality

have significant impacts on the long-run growth dynamics of U.S. counties. In partic-

ular, since we are interested in the estimates from the SYSTEM GMM estimator, the

coefficient on inequality, - 0.0492 (and standard error of 0.0140) indicates that there

exists a statistically significant negative relationship between inequality at the start of

each decade, and growth throughout the decade, thus confirming the hypothesis that

income redistribution policies that seek to reduce inequality will have a significant pos-
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itive relationship on the growth of a county. This finding is in accordance with some of

the cross-country, as well as the within-country studies mentioned above.

Following the predictions of most theoretical models and prior empirical findings

in the literature, the significantly negative coefficient estimate of - 0.3518 for initial

income is evidence of convergence of incomes across U.S. counties. In addition, the

coefficient on education, used as a proxy for the stock of human capital, is positive

and significant as expected; indicating that an increase in the educated population of

a county is correlated with faster growth of that county. Wages are also shown to be

negatively related to economic growth.

3.4.2 Robustness of the Non-Spatial Model

The results suggested in Table 3.2 indicate a strong negative relationship between

changes in inequality and changes in economic growth across various model specifi-

cations, but more importantly so for the system GMM model. This negative sign of

inequality coefficient is in contrast with some of the well cited panel data studies of

inequality and growth, notably Forbes (2000) and Li and Zou (1998). As such, we

perform a set of sensitivity analyses to check if these results are robust across different

samples. The results of our sensitivity analyses are presented in Table 3.3. First, we

re-estimate the SYSGMM model without the inclusion of the period dummies. SYS-

GMM 1 shows the estimates from this model specification. The coefficient of lagged

income is still negative and statistically significant, providing support for hypothesis of

convergence across counties shown in Table 3.2. The coefficient of initial inequality is

still negative and significant, while that for college education is positive and significant

as expected. In this specification, the coefficient on wages wages are still negative and

significant.

Next, we drop the wage variable from the model, and assume a dynamic model
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in which growth is determined only by the initial levels of income, inequality, and

education. The period dummies are also included. Column 2 (SYSGMM 2) shows the

estimates from this specification. The results are again significant, and of the same signs

as before. To test how steady these results are, an interaction term between inequality

and education is included (SYSGMM 3). The results from this specification are slightly

different. While the coefficient on inequality is still negative and significant, that for

education is now negative. More surprising is the negative and significant coefficient of

the interaction term between inequality and education of - 0.6230. This result suggests

that counties that strive to enhance their growth by implementing policies aimed at

better education should attempt to adopt income redistribution policies that decrease

inequality as well.

Table 3.3: Sensitivity Analysis
Model SYSGMM 1 SYSGMM 2 SYSGMM 3 SYSGMM 4

yi,t−1 −0.1091
(0.0102)

−0.3416
(0.0277)

−0.3408
(0.0279)

−0.3515
(0.0267)

Ineqi,t−1 −0.0299
(0.0098)

−0.0479
(0.0142)

−0.1453
(0.0231)

−0.1436
(0.0229)

Edui,t−1 0.0400
(0.0157)

0.0544
(0.0201)

0.2341
(0.0560)

0.2036
(0.0561)

Edu ∗ Ineqi,t−1 −0.6425
(0.1308)

−0.6230
(0.1300)

Wagei,t−1 −0.0099
(0.0035)

−0.0255
(0.0041)

Observations 9325 9325 9325 9325

Notes:

SYSGMM 1. Estimates the SYSGMM model without the period dummies
SYSGMM 2. Includes period dummies; the wage variable is dropped.
SYSGMM 3. Includes period dummies and interaction between inequality and education.

SYSGMM 4. All variables and period dummies included.

One of the major criticisms of the models presented thus far is that they do not

account for the spatial relationships that exist between counties. The space-specific

time-invariant variables that affect economic growth and inequality can differ signifi-

cantly across counties, and failure to incorporate these variables into a model of growth

122



and inequality may lead to biased outcomes. One way to attempt to capture the role of

space was the introduction of the county-specific dummies, ϕi. However, if the data in

the model are pooled incorrectly, then the county-specific dummies cannot correct for

geographic differences entirely. Moreover, first-differencing essentially eliminates these

county-specific, time-invariant county characteristics. Consequently, there is need to ex-

plicitly suggest an alternative specification that corrects for spatial disparities between

counties.

In addition, the use of predetermined variables can be problematic because these

variables are either chosen based almost entirely on data availability. However, it is

known that the process of growth and inequality started long ago (m periods ago,

m → ∞) for which data are unavailable. Therefore, there is need to specify a growth

– inequality model that not only includes the explicit role of space, but indeed incor-

porates procedures that make it possible for researchers to test the appropriateness of

their assumptions about the initial observations as well.

3.5 The Role of Space in the Panel Growth Model

This section examines, using a spatial econometric technique, the correlation between

inequality in a county with a certain level of geographic proximity to other counties and

the economic growth process in these proximate counties. Inequality in one county can

affect the economic growth process in a neighboring county through several channels,

such as through the movement of labor, goods, services, and technology from one county

to its neighbor.

Despite the fact that the study of dynamic panel models has received considerable

attention lately, an extension of these models to include spatial effects has been quite

limited due to their difficulty of implementation using the current econometric software
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packages. Following Tobler’s First Law of Geography which states that “everything is

related to everything else, but near things are more related than distant things”; it

makes sense, at least from an intuitive point of view, to consider the role of space when

examining the inequality-growth relationship at the county level. In what follows, a brief

general review of the construction of the index of spatial dependence – the so-called

spatial weights matrix – is presented, followed by its implementation in the inequality

growth model.

3.5.1 The Spatial Weights Matrix

The proximity between the counties is measured using a spatial weights matrix, denoted

W . W is an N x N matrix, where N represents the number of geographical units

(counties) in space. A row and column exists for each county and the value in each

cell represents the spatial proximity between that county and another. The weights of

the matrix can be binary (1 or 0) if the units are spatially contiguous, or they can take

continuous values if, for example, an inverse distance measure between the two counties

is used. Thus this matrix allows for the consideration of the level of spatial interaction

(spatial autocorrelation) and spatial structure (spatial heterogeneity) between any two

or more counties. In other words, each element of the matrix, ωi(dil), measures the

spatial relationships between locations i and l, and can be interpreted as the effect of

a variable in location i on location l. The matrix can be more formally presented as:

W =



0 ωi(d12) · · · ωi(d1N)

ωi(d21) 0 · · · ωi(d2N)

...
... . . . ...

ωi(dN1) ωi(dN2) · · · 0


(3.4)
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where ωi, (i = 1, . . . , N) denotes the (known) real characteristic roots of W , and d is

equal to 1 or 0 if the counties are contiguous. The proper dependence representation of

W has been problematic. Consequently, many spatial econometricians have resorted to

a W which is most empirically expedient or conventional. However, because misspeci-

fication of W can distort the spatial analysis, thus affecting the Maximum Likelihood

Estimators (MLE), a review of the literature on the specification of W in spatial econo-

metric models by Griffith (1996) provides some rules of thumb for specifying W . He

concludes that:

1. “It is better to posit some reasonable geographic weights matrix specification

than to assume all entries are zero (the independent observations situation of

conventional statistics), the extreme case of under-specification”. In other words,

it is important to hypothesize a suitable W , rather than attempt to ignore the

role of space, because such under-specification might smother the standard errors

of an estimator, yet increase the mean squared error for the model.

2. “It is better to use a surface partitioning that falls somewhere between a regular

square and a regular hexagonal tessellation”.

3. “Relatively large numbers of areal units should be employed in the spatial statisti-

cal analysis”. Griffith suggests N > 60. Simulation experiments by Stetzer (1982)

show that small sample sizes magnify misspecification problems of W , while large

sample sizes decrease misspecification errors.

4. “Low-order spatial statistical models should be given preference over high-order

ones”.

5. “In general, it is better to employ a somewhat under-specified than a somewhat

over-specified geographic weights matrix” (p. 355).
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Based on these simple rules of thumb, a spatial contiguity matrix seems appropriate

for this study. N is large (N = 3, 109) so that the spatial contiguity matrix used is

3109 x 3109, and a spatial error model of order 1 is employed for the analysis.

3.5.2 The Dynamic Spatial Panel Growth Model

We present the dynamic model to include spatial error autocorrelation. The spatial

error autocorrelation model is chosen against the spatial lag model because the spatial

error autocorrelation model reduces the negative impacts of spatially correlated omitted

variables. This model also corrects for the bias that results from the use of spatially

correlated aggregate variables, as well as spatially correlated measurement errors that

usually plague most empirical studies. Moreover, Lesage and Pace (2009) note that

the spatial error model has an expectation equal to that of the conventional regression

model where independence between the dependent variable observations is part of the

maintained hypothesis. The spatial lag model on the other hand assumes dependence

between the variables, making the coefficients of the spatial lag model difficult to in-

terpret. Lesage and Pace (2009) also argue that in small samples, there may be an

efficiency gain from correctly modeling spatial dependence in the disturbance process.

To this end, assume now that

εit = ρWεit + uit = (IN − ρW )−1uit (3.5)

where ρ is the coefficient in the spatial autoregressive structure for the disturbance term

εit and uit ∼ N(0, σ2IN). The model in equation (3.2) can then be rewritten to include

spatial error autocorrelation as follows:

growthit = α1yi,t−1 + α2Ineqi,t−1 +X
′

i,t−1β + δt + ϕi + (IN − ρW )−1uit (3.6)
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Taking first differences and controlling for the time dummies by taking deviations of

the variables from their period means, the dynamic model can now be written as:

yit−yi,t−1 = ς(yi,t−1−yi,t−2)+α2(Ineqi,t−1−Ineqi,t−2)+(X
′

i,t−1−X
′

i,t−2)β+ (IN−ρW )−1(uit−uit−1)

(3.7)

The model in equation (3.7) can be estimated by GMM using appropriate instru-

ments. However, Elhorst (2003) notes that a major drawback to the GMM approach is

that it tends to overestimate the coefficient of the spatial autoregressive parameter ρ,

since ρ is unbounded from above using GMM. To estimate (3.7), an unconditional max-

imum likelihood estimation approach is used (Hsiao, Pesaran and Tahmiscioglu, 2002

and Elhorst, 2005). Hsiao, Pesaran and Tahmiscioglu (2002) show that MLE tends to

dominate the GMM appraoch in terms of the bias and root mean squared errors of the

estimators as well as the size and power of the test statistics. They also show that as N

increases, the MLE are more consistent and efficient than the GMM estimators. Before

proceeding with the analysis, it is imperative that the Maximum Likelihood function

be presented.

3.5.3 The Likelihood Function.

It is well grounded in the literature that the likelihood function for dynamic panel

models is contingent upon the assumptions made about the initial observations (Hsiao

2003). The predetermined explanatory variables are assumed to be generated by a

stationary process. This assumption is safe because first differencing transforms the

process from a non-stationary to a stationary one. For simplicity, equation (3.7) is now

written as:
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∆yit = ς∆yi,t−1 + α2∆Ineqi,t−1 + ∆X
′
i,t−1β + (IN − ρW )−1∆uit (3.8)

(3.8) is well defined for ∆yit for t = 2, 3, . . . , T but not for ∆yi1 because ∆yi0 is not

observed. In other words, the absence of pre-sample data for the explanatory and ex-

plained variables needed for first differencing the observations for each county implies

that ∆yi0 cannot be observed. In order to derive the likelihood function for the entire

sample, it is imperative that the probability function for ∆yi1 be specified as well. Fol-

lowing Hsiao, Pesaran and Tahmiscioglu (2002) and Elhorst (2003, 2005), the following

assumptions are made about ∆yi1 :

1. The control variables Ineqi,t−1 and X
′
i,t−1 that affect ∆yi1 are “weakly exogenous”

forcing variables; and

2. Either |ς| < 1, and the dynamic process started sometime in the past, say m pe-

riods ago. This assumption ensures that: E(∆yi1) = 0, V ar(∆yi1) = σ2
u2/(1 + ς)

for t = 3, 4, . . . , T andi = 1, 2, . . . , N . Or

3. The dynamic growth process started sometime in the past, not too far from the

0th period and the expected changes in the initial observations are the same

for all i = 1, 2, . . . , N . In this case, m is finite and so it can be shown that

E(∆yi1) = πi0IN , and V ar(∆yi1) = σ2
u

2
(1+ς)

(1 + ς2m−1), for t = 3, 4, . . . , T and

i = 1, 2, . . . , N . πi0 is an unknown and fixed parameter to be estimated, and IN

is the identity matrix.6 By recursive substitution, ∆yi1 can be written as:

∆yi1 = ςm∆yi,t−(m−1) +
m−1∑
j=0

ςjα2∆Ineqi,t−(m−1)

+
m−1∑
j=0

ςj∆(X′i,t−(m−1))β +
m−1∑
j=0

ςj(IN − ρW )−1∆ui,t−j

(3.9)

6πi0 is identical for all i = 1, 2, . . . , N , and so π0 is used in the remainder of the paper. Similarly
for πi,1, πi,2, · · · , πi,T .
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Given the assumption that Ineqi,t−1 and X′i,t−1 are generated by a stationary pro-

cess, as well as assumptions 2 or 3, it follows that E(∆Ineqi,t−1) = 0 and E(∆X′i,t−1) =

0. Consequently, E(∆yi1) = ςm∆yi,t−(m−1).However, since the observations for ∆Ineqi,t−1

and ∆X′i,t−1 for t = 1 are not observable, V ar(∆yi1) is unknown, and so is the prob-

ability function of ∆yi1. Various techniques for approximating the optimal ∆Ineqi,t−1

and ∆X′i,t−1 for t = 1 have been suggested.7 In this article, we follow the approach

proposed by Bhargava and Sargan (1983).

Consistent with Bhargava and Sargan (1983), since the model contains vectors of px1

time-varying explanatory variables, under the assumption that changes in the intial ob-

servations are the same for all counties such that E(∆yi1) = π0IN , (i = 1, 2, . . . , N), it

follows that the predictor of ∆Ineqi,t−1 and ∆X′i,t−1 is π0IN+π′t(∆Ineqi,t−1+∆X′i,t−1)+

ξ for (t = 1, 2, . . . , T ) In this set-up, ξ N(0, σ2
ξIN), π0 is a constant associated with the

mean of ∆yi1 and πt is the (pT + 1) x 1 vector of parameters. By construction, we can

now show that

∆yi1 = π0IN + ∆Ineqi0π1 + ∆X′i0π1 + · · ·

+ ∆Ineqi,T−1πT + ∆X′i,T−1πT + ∆ui1

(3.10)

where ∆ui1 = ξ +
m−1∑
j=0

ςj(IN − ρW )−1∆ui,1−j. Under the assumption that Ineqi,t−1

and X′i,t−1 are “weakly exogenous” forcing variables, it follows then that E(∆ui1) =

0, E(∆ui1∆u
′
i2) = −σ2(IN − ρW )−1((IN − ρW )

′
)−1, E(∆ui1∆uit

′
) = 0 for t =

3, 4, · · · , T and
7See for example Bhargava and Sargan (1983), Blundell and Smith (1991), Ridder and Wansbeek

(1989), and Nerlove and Balestra (1996).
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E(∆ui1∆u
′
i2) = σ2

ξIN + σ2{ 2
1+ς

(1 + ς2m−1)}((IN − ρW )−1((IN − ρW )
′
)−1)

≡ σ2(IN − ρW )−1{λ2σ2(IN − ρW )−1((IN − ρW )
′
)−1

+ [ 2
1+ς

(1 + ς2m−1)]IN}((IN − ρW )
′
)−1

(3.11)

where λ2 = σ2
ξ/σ2. In order to correctly identify the parameters in (3.10), N > pT + 1,

without which the number of parameters used to derive the matrix of the pre-sample

distribution of the initial values must be reduced. Also note that since |ς| < 1,

lim
T→∞
{ 2

1+ς
(1 + ς2m−1)} = 2

1+ς
, which is not a free parameter, in which case the esti-

mation of (3.11) is not possible. Therefore, to estimate equation (3.11), we make use

of assumption 3.

Denote by ϑ, the N x N matrix given by ϑ = λ2(IN − ρW )−1((IN − ρW )
′
)−1 +

[ 2
1+ς

(1 + ς2m−1)]IN . Also denote by Hϑ, the NT x NT matrix given by

Hϑ =



ϑ −IN 0 · · · 0 0 0

−IN 2IN −IN · · · 0 0 0

0 −IN 2IN · · · 0 0 0

...
...

... . . . ...
...

...

0 0 0 · · · 2IN −IN 0

0 0 0 · · · −IN 2IN −IN

0 0 0 · · · 0 −IN 2IN



(3.12)

Then the covariance matrix of ∆uit can be written as:

V ar(∆uit) = σ2{[IT ⊗ (IN − ρW )−1]Hϑ[IT ⊗ ((IN − ρW )
′
)−1]} (3.13)
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Now define θ=(α
′
2, β

′
, ς, π

′
)
′
, γ = (ρ, λ, 2

1+ς
(1 + ς2m−1))

′ , and ζ = (θ, σ2, γ
′
)
′ . Then

using the properties of equations (3.5) and (3.12), Elhorst (2003, 2005) shows that the

log-likelihood function for estimating the ML estimator of θ is given by:

log L(ζ) = −NT
2
log(2πσ2) +

N∑
i=1

log(1− ρωi)

− 1

2

N∑
i=1

log{1− T + 2T
1+ς

(1 + ς2m−1) + Tλ2(1− ρωi)2}

− 1
2σ2 ∆uit(θ)

′
H−1
ϑ ∆uit(θ)

(3.14)

where

∆uit(θ) =



(IN − ρW )(∆yi1 − π0IN −∆Ineqi0π1 −∆X′i0π1 − · · · )

(IN − ρW )(∆yi2 − ς∆yi1 − α2∆Ineqi1 −∆X
′
i1β)

...

(IN − ρW )(∆yiT −∆yi,T−1 − α2∆Ineqi,T−1 −∆X
′
i,T−1β)


To derive the profile likelihood function, the parameters of θ must be estimated

by concentrating out these parameters from their first-order conditions. An iterative

procedure for the numerical solution of the maximization problem must be used to get

these parameters. Also, since an appropriate value of m is needed, we set m = 1.

This implies that any differences between the results from this specification and the

specification from column 6 (SYSGMM) of Table 3.2 are the result of spatial effects.

Table 3.4 presents the results from this specification.

Table 3.4: Estimation Results for the Spatial Dynamic Model
Variable yi,t−1 Ineqi,t−1 Edui,t−1 Wagei,t−1

Coefficient −0.1367
(0.0277)

−0.0758
(0.0120)

0.0881
(0.0193)

−0.0162
(0.0042)

NOTES:

i. The standard errors are reported in parentheses. These errors are robust to heteroskedasticity of unknown form.
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As noted earlier, the estimates of the SYSGMM approach are biased because they

do not incorporate the explicit role that spatially localized patterns have on income

distribution and growth dynamics. Table 3.4 shows the magnitude of this bias. The

bias in the parameter for inequality is about 2.66 percent, while that for initial income

amounts to about 21.51 percent. The bias in the inequality parameter is relatively

small because even though T is short, N is relatively large. Education is still positively

correlated with growth, although, the bias in the parameter for this variable is relatively

small (1.19 percent). The result for wages is virtually unchanged.

3.6 Conclusion

This chapter reconsiders the correlations between economic growth and income inequal-

ity using U.S. county-level data. We first examine the non-spatial dynamic relationship

between inequality and growth. Contrary to previous studies that use dynamic panel

data techniques such as Forbes (2000) and, Li and Zou (1998), we find a significant

negative relationship between changes in the gini coefficient of inequality and changes

in the growth rates of counties in subsequent periods. We also find that this relationship

is stable across different sample sizes and model specifications.

However, we argue that the results reported using the non-spatial dynamic panel

specification may be biased because the geographical location of counties can prove

fundamental in determining their growth dynamics and income distribution. As such,

we specify a spatial error model to capture the spatial dynamic relationship between

inequality and growth. We find that the magnitude of the bias in the parameter for

inequality is about 2.66 percent, while that for initial income amounts to about 21.51

percent. We argue that the bias in the inequality parameter is relatively small because

even though N is relatively large, T is small. Education is still positively correlated
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with growth. However, the bias in the parameter for this variable is relatively small

(1.19 percent).
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