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1.0 Introduction

Monte Carlo techniques have become widely used for the simulation of quan-

tum many-body systems. Ever since McMillan [1.1] observed that trial wave func-

tions chosen as products of correlation factors could be integrated via Monte Carlo

methods, the use of these methods in conjunction with the variational principle

has become widespread. Since then, various thermodynamic properties, as well

as ground-state wave functions for systems, have been successfully numerically

calculated using these techniques. The improvement of these techniques, both in

terms of efficiency and results, is a natural desired development.

The accurate calculation of various thermodynamic properties is closely re-

lated to the accurate calculation of the ground-state energy for a given system.

Furthermore, the accurate calculation of the ground-state energy is naturally de-

pendent on the form for the wave function that is chosen as the best to represent

the system and the estimated ground-state energy . For optimum results, one ob-

viously needs to begin with the best, or optimal, trial wave function. In particular,

one can use the variational method to improve the ground-state wave functions of

various systems, and use the Monte Carlo method of Metropohs, et. al. [1.2], to

carry out the integrations. That is, one can use the variational principle to im-

prove estimates for the ground-state wave function for some system, by minimizing

the variational energy with respect to the ground-state wave function. The Monte

Carlo method mentioned above is used in this process to calculate the variational

energy. Variational energies calculated in this manner are compared by examining
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their value and their statistical error. The minimum variational energy would be

that energy that has the lowest value, and the smallest error. If numerical tech-

niques are to be employed, one must know the error in the calculation to compare

numerical values of the energy. For a particular choice of the trial wave function, if

the variational energy is minimized (usually with respect to parameters in the trial

wave function), other thermodynamic properties of the system at hand are then

beUeved to be reasonably close, as obtained by the trial wave fimction. If it were

possible to examine a large family of wave functions quickly and efficiently, and

decide which of the family best represents the system at hand using this method,

it would be an invaluable addition to the theoretical description of any apphcable

system.

It is the intention of this paper to discuss the extent to which this is possible.

2.0 Principles Involved

At the center of any such discussion is the variational principle. The vari-

ational principle states that for any trial wave function, *r(R-), the variational

energy, E„, is given by

/m^r(R)ff(R)^,(R)
''''

-
/ciR|*T(R)P

^^-^^

and will be a minimum when the trial wave function is the ground-state eigen-

function of the Schroedinger equation. Thus, the variational energy constitutes a

rigorous upper bound to the ground-state energy, viz,

E„ > Eg, 3,
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The variational method usually consists of parameterizing some chosen form

of a wave function, as in $t(R, a, 6, c, • • •), then calculating the variational energy

in (2.1) for a chosen family of parameters. The idea is, of course, to determine

that set of parameters that minimizes f the variational energy, Ey. Then, the

wave function represented by this parameter set wiU be a goodf approximation to

the ground-state wave function.

The fact that the variational energy is a rigorous upper bound to the ground-

state energy means that a variational calculation involving the true ground-state

eigenfunction will yield the ground-state energy with zero error in the calculation.

As this is a central point, it is shown below.

Consider the expectation value of the Hamiltonian, {H)

{H) = \' '/ (2.2)
(*|*) ^ '

This is exactly equal to the ground-state energy if |*) is the ground-state eigen-

function of the Hamiltonian. The variance about the mean is of course

<t' = {H') - {H)' (2.3)

where

2 ^ {^\H'\<i>) ^ i^aiH-H]^)
^ ' (*|*) (*|*)

(2.4)

t Clearly, a global minimum in the energy is required.
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So, if 1^) is an eigenstate, then (2.3) becomes

2 (*|ff-^|*) /(*|^|*)'^
(T =

(*l*) V (*|*)
2

^ mmi_j,j{^m\ (2.5)

(*i*) v(*i*)y

= i;2 _ ^2 ^ Q

Thus, we see that if we calculate the expectation value of the Haniiltonian with

the exact eigenfunction, the result will be the exact ground-state energy with zero

variance and hence zero error, as shown by (2.5).

We now wish to take this a step further, and examine to what extent a iower

variance in a calculation such as this with some assumed form for the wave function

implies a better estimate of the 'true' ground-state energy of the system, regardless

of the details of the calculation (assuming it is done correctly). As suggested by

Umrigar, tt. al. [2.1], one might be able to , in theory, optimize families of wave

functions by minimizing the variance in a calculation of the variational energy with

respect to the wave function parameters, rather than minimizing the variational

energy itself. It is the purpose of this thesis to investigate this. Three basic points

will be addressed; (1) To what extent is this 'extended principle' valid?
; (2) How

well can it be apphed to the improvement of ground-state wave functions?
; (3)

What are some of the pitfalls of using it in this manner?.

Thus, the remainder of the thesis is organized as follows. In section 3.0 to

3.2, the VMC and other computational codes are discussed, and usefulness of the

extended principle is made clear. In section 3.3, the system that was used to test

the vahdity and usefulness of the extended principle is introduced. In section 4,
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some computational considerations are discussed. Section 5 contains the results

and discussion from the test system. Section 6 contains conclusions and sugges-

tions for apphcations of this method to different problems, and improvements that

may be explored in the future.

3.0 Methods for Testing the 'Extended Principle'

As stated earher, the variational method is basically a procedure in which

the variational energy is minimized with respect to wave function parameters.

Computationally, this means that eacii trial wave function must be put into a

variational code which calculates each variational energy. In a variational Monte

Carlo (VMC) schemef, this means that each wave function must be put into a

VMC code and equihbrated. Depending on the number of particles in the system,

satisfactory convergence may be very expensive (computationally speaking), even

on a large parallel machine.

In order to understand the possible usefulness of the so-called extended prin-

ciple, it is necessary to understand the details of a VMC calculation. This will

help illustrate the usefulness of the extended principle as a time saving method

for finding good candidates for improved variational wave functions.

3.1 The Variational Monte Carlo Scheme

The evalutation of the variational energy is done via the algorithm of Metropo-

hs, et. al. (the M(RT)2 algorithm) [1.2]. This is employed to carry out the

t Here, only Monte Carlo schemes are cUscussed



multi-dimensional integrations in (2.1). By using the M(RT)^ algorithm, we avoid

having to make any additional approximations, other than the fact that the inte-

grations will be done numerically. To use the M(RT)^ algorithm, the expression

for the variational energy (2.1) is written as

"""-J !dR\^T{RW[ ^r )' ^^-^^

The variational energy is then computed as the average of the local energy,

/ ff^T(R) \

V *t(R) J

evaluated at the particle positions (configurations) drawn from a probabiUty dis-

tribution proportional to

|^t(R)|'

/rfR|*T(R)P
^^'^^

The M(RT)2 algorithm generates points (i.e., the particle positions) with the de-

sired probabihty distribution (3.2). In general, if w{X) is the probabihty density

(Uke (3.2)), M(RT)2 generates a sequence of points Xo,Xi,... as those visited by

a random walker through X-space. The longer the walk, the closer the points it

connects approximate the desired distribution. The basic M(RT)2 algorithm is

illustrated below.

Say we are at a point Xn in the sequence. We wish to generate X^+i randomly

from the given distribution. This is done as follows:

1. Choose a trial point X< — this is a uniformly chosen random number

somewhere in a small cube about X„



2. Calculate

r =
ti'(Xn)

3. If r > 1, accept the move ^ let X„+i = Xt- Return to step 1.

If r < 1, still accept the move, but with a probability r => compare r with a

uniformly distributed random number (0, 1) and reject the move if this number is

greater than r.

4. If the trial step was rejected, put X„+i = X„ and generate Xn+2 from

X„ (by returning to step 1).

The walk can be started from any arbitrary point in position space.

Thus, one uses the M(RT)2 algorithm in the variational method to calculate

Ey, given a particular *t(R.). It should be clear from the above discussion that

the points in the sequence that the M(RT)2 algorithm generates are highly cor-

related. It therefore stands to reason that the energies thus calculated will also

be statistically dependent. Hence, estimates for the statistical error can no longer

be done assuming independent samples (energies, in this case). Since the M(RT)2

algorithm generates a sequence of points with the desired distribution, this prob-

lem is easily overcome. The random walk is allowed to progress for a long time,

long enough to generate a large number of points with the desired distribution.

Then, instead of using each point in this set, only points in the sequence that are

separated by fairly large number of other points in the sequence are used. These

points, that are, say, every lOO"' or so in the entire sequence, are then used to

calculate the integrals and errors. Doing this allows one to reassert the assump-
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tion of statistical independence, as points separated by many other points are not

nearly as highly correlated as points right next to each other in the sequence,

depending on the probabihty distribution chosen. It is also a good idea to allow

the random walker to move for a while before accepting any moves. This removes

any "memory" of a starting point in the sequence.

Therefore, we see that although the M(RT)^ algorithm is a convenient way

of samphng (3.2), it can be computationally expensive, due to the length of the

required random walk. As we shall see, the extended principle avoids much of this.

3.2 The VMC Scheme versus the 'Extended Principle'

If one were to 'optimize' a family of wave functions using the variational

principle via the M(RT)^ algorithm discussed above, it seems clear that it may well

take a great deal of computer time, due to the length of the walk and the fact that

the walk must be repeated for eacii wave function in the chosen family. However,

if one had a set of previously generated particle positions (configurations), and

one could successfully use this distribution of points to calculate a "minimizeable

quantity" for different wave functions, one could very quickly examine a family of

wave functions, since the M(RT)" algorithm need not be repeated. Clearly, if one

had the correct eigenfunction, then it would not matter what particle positions

were used. The average of the local energy would be the ground-state energy, and

the error would be zero, as discussed in section 2.0. This is the basic idea behind

using the extended principle, the minimizeable quantity being the variance in the
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variational, or average of the local, energy [2.1].

The idea is to do one walk through position space to generate the configura-

tions that will be used to average the local energy. A suitablej wave function is

chosen for the Metropohs walk, but instead of evaluating the variational energy

with the generated configurations, one simply writes out the particle positions at

each accepted stage in the walk as a "snapshot" of the system. These are the con-

figurations that are then used to calculate (3.1). It is understood that since the

generating wave function (i.e., the wave function that was used in the Metropohs

walk to generate the configuration) will not match the trial wave functions, the

"variational energy" that is calculated will not be correct, as the probabihty dis-

tribution, (3.2), will not match the trial wave function. However, one calculates

the standard error in this "variational" energy {E„) defined by

e. =

N

E(^-)^
/^^ \
E^".

t=i
N

t=l
N

N

(3.3)

(El) - {E.Y
N

where the summations naturally run over all of the stored particle positions, N,

that is, the i indexes are the snapshots of the system. Thus, as our extended

t Suitabihty arguments will follow in forthcoming sections
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principle states, this error will be the minimized quantity. Note that (3.3) is the

standard error, and is related to (2.3) by a factor of one over the square root of the

number of configurations. Therefore, the standard error will not just be a function

of the wave function, but of the configuration sets as well. This equation, (3.3), can

be very quickly calculated for sets of wave functions, much quicker than any useful

VMC run for each wave function. The utility of the extended principle should

now be clear; since we are not really concerned with the energy in the extended

principle, only the variance, we need not be concerned with a correctly weighted

evaluation of (3.1), and can thus skip the expensive walk through configuration

space for each wave function. This proposed algorithm using the extended principle

is summarized below:

1. Given a set of previously generated configurations, calculate (3.1) and (3.3)

for all wave functions desired.

2. Examine the errors in an appropriate way to determine the 'best' wave

function(s) from the family tested. As shall be seen later, this means comparing

the standard errors via the relative error.

3. Calculate the true VMC energy using the set(s) of wave functions from step

2 and see if the resulting errors and energies are lower than previous estimates,

thereby signaling a good candidate for a better trial wave function.

Clearly then, the method proposed may depend on the nature of the con-

figurations generated. Naturally, for (3.3) to be vahd, estimates of E^ must be

independent, and hence so must the configurations used, as mentioned earlier.
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However, there may be more subtle considerations for the generation of the con-

figurations, such as the extent of position space visited during the walk by the

M(RT)^ algorithm, and how close particles are allowed to come to one another.

These possibilities, and others, must be carefully evaluated.

3,3 The Liquid ^He System

To explore the various aspects of the proposed algorithm, the hquid ^He

system was chosen. This system was chosen primarily for two reasons. First, the

computation of macroscopic bulk properties of ^ He is seen as a proving ground for

many-fermion theories and methods. In fact, this system continues to receive much

scrutiny by condensed matter theorists [3.1]. Second, and naturally related to the

above, the description of the hquid ^He system constitutes a complex problem.

Most of the interesting many-body systems consist of a finite number of fermions,

and are difficult to model. Hence, the hquid 'He system is complex enough to

support a faster method of finding a better trial ground-state wave function.

Since 'He particles are fermions, the chosen wave function must be antisym-

metric. For fermi hquids such as 'He , a wave function of the form [3.2]

i^u(r.-,)

*T = D{R) X e ^ '<•?

(3.4)

= J|e-2"('-''> xZ?(R)

can be used. Here, D{R) is a Slater determinant of plane wave orbitals, and
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u{rij) is the pseudopotential. While (3.4) takes care of the symmetry requirements

(due to the Slater determinant), it unfortunately comphcates the random walk

in the Metropolis algorithm as it introduces the requirement of computing the

ratio of two determinants, in addition to the pseudopotential, at each step of the

walk to evaluate the transition probabihty [3.3] (see section 3.1). Again, this is a

complication that warrants a faster approach to finding better forms for a wave

function.

The pseudopotential, u{rij), in (3.4) that was chosen for this system is of that

used by McMillan [3.4]

u{r) =
b^'

This form is really due to the WKB solution of the Schroedinger equation using

the Lennard-Jones potential

v{r) — 4e
/Cr\12 //T\6

Vr / V r(7)

A pseudopotential was also chosen (more "optimally") by a Fermi-hyper-

netted-chain theory (FHNC/C) [3.5] calculation of u{rij). The details of this

calculation are found in reference [3.5].

These two approaches to the pseudopotentials were undertaken to expand the

'optimization' process into choosing the best two-body plus more-body correlated

wave function. By choosing different parameters in the pseudopotential, compar-

isons can be made at the two-body level aione, in addition to the higher order

correlations. These correlations are discussed in more detail below.
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It is assumed that the ^He hquid can be represented by a few particles in

a periodic box. That is, tliis simple model assumes that a VMC calculation on

a few particles restricted to a cube of a specific size interacting via appropriate

n-body potentials with periodic boundary conditions apphed at the sides of the

cube will accurately represent the ^He Uquid system. This model has proved to

be successful in representing this system [3.1], [3.2].

In addition to the two particle correlations, it has been found that three-, and

perhaps more-, particle correlations are important in a ground state energy cal-

culation of ^He [3.3]. In the present study, only three-body correlations ("triplet"

correlations) were apphed. This simphfies matters and speeds up the codes, as

opposed to including higher-order correlations. Exphcit three-body correlations

may be incorporated into the total wave function as follows [3.4]:

*T = -D(R) X exp

where

- 2 S ''('•''•) - T Z!S ^{rH)e(roK • nj
i<j i<j I

(3.5)

u{r)^u{r)-\t(-{r)-r^ (3.6)

The triplet correlation function ^ that was chosen is of the form used by Schmidt,

et. al. [3.6], [3.7]

^(r) = e-«—')/"")'
(3.7)

In (3.5) At is the triplet (Gaussian-hke) strength, and in (3.7), r^ is the center, and

wt is the width. Some triplet correlations are plotted in Figure 1, superimposed

on the Jastrow part, in order to illustrate their dependencies. Note that (3.6)

13



necessarily removes the possibility of counting two-particle correlations more than

once, clue to the introduction of the triplet term. Thus, the total wave function

(3.5) is a product of the two- and three-body correlations, and a Slater determinant

of plane wave orbitals. It should be pointed out that this form for the wave function

(3.5) is not very close to the true ground-state wave function, but it will suit the

purposes of testing the proposed method.

It should be noted that the finite size adaptation induced by the boundary

conditions forcing the correlations to vanish at the sides of the box has no real

effect on the magnitude of the correlations which minimize the variational energy

as these correlations turn out to be relatively short ranged in nature [3.3].

Finally, some remarks about the Hamiltonian for this system are in order.

The Hamiltonian chosen for the system was

i=l i<i<}<N

The first term is, of course, the kinetic energy of the system, and m is the mass of

the neutral ^He atom. The potential, V{rij), that was chosen was the Aziz pair

potential [3.8], which is a state-independent atom-atom interaction potential, and

which has been shown to be an accurate effective potential [3.3].

14
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Figure 1: The long dashed Hue is the FHNC/C pseudopotential in the Jastrow
part of the wave function. The group of solid Hues are the triplet correlation func-
tions for different values of Af, rt, and «;<. Note liow different triplet correlations
cross the two-body correlation in different regions, and at different angles. These
triplets are merely samples to illustrate how they appear and how they interact
with the two-body part.
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3.4 The Computational Codes

There are two basic codes that were involved in testing the proposed method;

a VMC code and an "analysis" code.

The VMC code actually serves two purposes. By implementing the M(RT)^

algorithm, this code is used to not only generate the configurations, but to calculate

variational energies as well. Thus, this is the code that generates the sets of appro-

priate configurations that are used to examine large famihes of wave functions for

maxima and minima in the variances. It is also used to "test" an indicated wave

function by calculating the "correct" variational energy and the error, to see if

this wave function gives rise to an energy and error lower than previous estimates.

The analysis code serves only one purpose. Given any set of particle configura-

tions, and a trial wave function, it evaluates the error in the (incorrect) variational

energy. The code has the abihty to examine large families of wave functions at

one time by reading sets of parameters that appear in the parameterized form of

the wave function, discussed above. Thus, each parameter set represents a differ-

ent wave function, and the error in the "variational energy" is calculated for each

parameter set. This code calculates the errors in such a way that the results from

other generated configurations can be easily combined, to aid in the investigation

of the configuration requirements.
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4.0 Some Computational Considerations

As was indicated earlier, tiie results of using the extended principle in the

proposed manner may be subject to subtleties in the generated configurations

themselves. Thus, the generation and use of these particle positions must be

carefully considered.

We have already seen that the configurations used must be approximately

statistically independent (section 3.2). As alluded to in that section, one needs to

ensure that, computationally, only independent points in the generated M(RT)^

sequence are used (this means independent particle positions) To serve this end,

most of the configurations were generated by using points in the M(RT)^ sequence

that were separated by 100 other points. This should be enough to, at least,

approximate statistical independence.

We must also carefully consider the wave function that is used to generate

these particle positions. In this case, only wave functions with a Jastrow factor

were used. The triplet contributions were not included in the wave functions that

were used to generate any configurations. The reasoning behind this is that it was

assumed from the start that a "less restricted" wave function that samples more of

configuration space would produce more useful configurations. The triplet contri-

bution to the wave function would tend to limit the volume of configuration space

that the random walk would visit, when used with the Jastrow factor, and is an

unnecessary comphcation at his level. Thus, only Jastrow factors were introduced

to the generation of the configurations. The Jastrow values (b) that were used

17



varied, again to examine the effect of this value on the generated configurations

and the final results. They ranged from a value of 6 = 0.5, to 6 = 1.15, that is,

from a broad wave function to a more narrow one. The FHNC/C pseudopotential

was also used in the Jastrow to generate some configurations. In Figure 2, plots

of the correlation functions used to generate configurations are shown.

In addition, the effect of starting the Metropohs walk must be considered. If

we start from lattice sites, as has been done previously [3.3], we may have to worry

about any "bias" this may introduce into the resulting configurations. So, it might

be a good idea to allow the M(RT)^ algorithm to walk for a while in position space

before accepting any points in the sequence, or writing out any particle positions.

This was done here. Typically, the walk was allowed to progress through 20 or so

accepted M(RT)^ moves before any variational energies were calculated and before

any particle positions were written out.

We must also decide on the number of particle positions that are needed. Here,

this problem was somewhat solved by the abihty of the analysis code to combine

results from different configurations. In the present case, all configurations were

generated with 2,000 particle positions in each. The analysis code could then

combine any number of these sets into error estimates for the variational energy,

as required by our extended principle.

Finally, when we have a set of errors associated with some set of possible wave

functions parameters, we must consider the extent to which we can distinguish the

errors from one another. This is naturally important when a decision on the

18



Figure 2: These two-body correlations are those that generated the configu-

rations that were used to analyze the wave functions. The solid line nearest the

left vertical axis is the McMillan form with b — 0.5. The next line (also solid)

to the right of this is for b = 1.00. The long dashed hne is 6 = 1.13 and the

medium dashed hne is for b = 1.15. The short dashed line is for the FHNC/C
pseudopotential.

1 .0

0.8
CO

O

w

en
c

o

C

O

0.6

0.4 -

0.2 -

/ / i

i

1

Û
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best wave function from the set must be made. This decision, and its hopeful va-

hdity, are the ultimate desired ends to using the extended principle in the proposed

manner.

5.0 Results and Comparisons

Since this thesis is concerned with examining the validity and usefulness of the

proposed algorithm, a set of parameters for the given form of the wave function

must be presented, for which a VMC calculation has determined a numerical

estimate of the variational energy, and an error. In Table 1, sets of parameters are

shown with their kinetic, potential, and total energies, and the estimated errors

for each. In each case, the VMC calculation was done in exactly the same way, to

ensure that no 'bias' entered these control results. Note also that the total energy is

not simply the sums of columns four and five, since the standard errors of the total

energies are too low. If columns four and five were simply added to yield column

six, their errors would add as the square root of the sum of the squared individual

errors. The total energy was actually calculated as the average of the sum of

the kinetic and potential energies per particle. Thus, the errors were calculated

accordingly. It is these sets of parameters that will be examined in detail in the

remainder of this thesis. These will be used to examine the parameter set(s)

that are indicated by the proposed algorithm, to see to what extent a reduced

variance imphes an improved estimate of the ground-state energy. Since these

computations were done equivalently, they naturally required the same amount of

20



Table 1: Variational Monte Carlo potential, kinetic, and total energies for the

test set of parameters. The Jastrow factor uses the FHNC/C pseudopotential.
All energies are in Kelvins. The reported errors are the standard errors in the

energies.

At rt Wt P. E. K. E. Tot. E.

-1.65 0.70 0.5 -14.643 ±0.042 12.958 ±0.044 -1.685 ±0.014

-1.85 0.65 0.5 -14.768 ±0.035 13.116 ±0.0.37 -1.6.52 ±0.012

-1.80 0.65 0.5 -14.728 ±0.032 13.098 ±0.0.35 -1.631 ±0.011

-1.90 0.65 0.5 -14.673 ±0.036 13.047 ±0.039 -1.626 ±0.012

-0.75 0.75 0.5 -14.540 ±0.039 12.921 ±0.043 -1.619 ±0.015

-1.75 0.65 0.5 -14.757 ±0.029 13.141 ±0.034 -1.616 ±0.012

-1.25 0.65 0.5 -14.708 ±0.036 13.119 ±0.0.39 -1.589 ±0.012

-0.75 0.65 0.5 -14.544 ±0.036 13.054 ±0.040 -1.490 ±0.017

-1.65 0.55 0.5 -14.674 ±0.039 13.209 ±0.044 -1.465 ±0.013

-1.90 0.55 0.5 -14.733 ±0.0.35 13.268 ±0.037 -1.465 ±0.011

-1.35 0.80 0.5 -14.484 ±0.036 13.023 ±0.0.37 -1.461 ±0.017

-1.85 0.35 0.5 -14.573 ±0.035 13.281 ±0.042 -1.292 ±0.019

computing time. This will be exploited later when the main advantage to using

this method is pointed out — the savings in computing time. Naturally, vahdity

arguments must proceed this.

At the purely two-body correlations level, the results from the proposed algo-

rithm quite clearly indicate that the FHNC/C version of the pseudopotential (see

section 3.3) is the best choice for the two-body interaction over all of the McMil-

lan parameters tested. Table 2 illustrates this by a showing a representative set

of wave function parameters along with their standard errors, as calculated via

(3.3). By examining this table, it is clear that in each case, the FHNC/C pseu-

dopotential in the Jastrow portion has the lowest standard error independent of

the wave function that was used to generate the configurations, and independent
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Table 2: Comparison of standard errors (from (3.3)), e,, for representative pa-
rameter sets. These are depicted in groups of three. The first group results were
calculated using configurations generated from a wave function with 6 = 1.13 (set

A), the second with b — 1.00 (set B), the third with the wave function utihzing
the FHNC/C pseudopotential (set C). The M below denotes the McMillan form of
the pseudopotential was used in the Jastrow portion of the wave function, and the
number following the 'M' is the value of b that was used. The FHNC/C denotes
the FHNC/C pseudopotential was used in the Jastrow of the trial wave function.
The Eyrnc below is the VMC calculated total energy, for the first group only. The
standard error in the VMC energies are also reported. The VMC results are in-

cluded to illustrate that the FHNC/C pseudopotential gives the best variational
result from this group.

Set Jastrow At rt Wt €s C'uTnc

M,1.15 -1.25 0.65 0.5 0.293 -1.486 ±0.017

A M,1.13 -1.25 0.65 0.5 0.291 -1.448 ±0.018

M,1.00 -1.25 0.65 0.5 0.764 3.390 ±0.072

FHNC/C -1.25 0.65 0.5 0.280 -1.589 ±0.012

M,1.15 -1.80 0.65 0.5 1.780

B M,1.13 -1.80 0.65 0.5 1.183

M,1.00 -1.80 0.65 0.5 1.652

FHNC/C -1.80 0.65 0.5 0.619

M,1.15 -1.90 0.55 0.5 0.383

C M,1.13 -1.90 0.55 0.5 0.338

M,1.00 -1.90 0.55 0.5 0.769

FHNC/C -1.90 0.55 0.5 0.276

of the triplet parameters.

However, notliing has been said about the possible numerical overlap in the

standard errors calculated. Thus, perhaps the errors shown are actually numer-

ically indistinguishable. This is resolved by considering the fact that, on the

average, all of the parameter sets generated illustrated this kind of behavior, i.e.,

that the FHNC/C pseudopotential gave the lowest standard error. Therefore, ac-

cording to the 'extended principle' that is being tested, this should have the lowest
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variational energy of these parameter sets. Thus, it is assumed that this is the

better wave function for this family. This is also shown by examining the VMC

variational energies. Note that in Table 2, the energy and error that is shown is

lower for the FHNC/C Jastrow than for the others, in the first group. This was

also true for all of the parameters that were examined via a VMC calculation.

Having established that the FHNC/C pseudopotential is best, at the Jastrow

level, for this form of the wave function, we may now turn our attention to the

three-body interactions level, i.e., the triplet level. As described above, for the

Jastrow level, it is assumed that the lower standard error corresponded to the

best choice of tested parameters. This was true due to the pattern in the 'average'

behavior of the parameter sets. However, at the triplet level, a more sensitive way

of distinguishing the standard errors is needed. That is, a 'good' way of examining

and comparing the standard errors from different parameter sets is needed (recall

that the 'error in the error' is not a calculated quantity).! The fact that a more

efficient and sensitive way of comparing the standard errors might needed can best

be seen from the following argument.

Suppose that parameter set 1 had the lowest standard error when sampled

using configuration set A. However, when configuration set B is used, parameter

set 2 is indicated. When configuration set C is used, parameter set .3 is indicated.

There are several possible explanations for this: (1) the method is very sensitive

to the generation of the configurations; (2) the standard errors for set 1, 2, and

t and if it were, what about the 'error in the error in the error'?
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3 overlap, and cannot be distinguished; (3) the standard errors are not being

compared properly; (4) none of these parameter sets are very good, meaning,

perhaps all three parameter sets are very far from the best one. A quick way to

ehminate at least some of this ambiguity is to try and find a different, perhaps

better way, of comparing the standard energies to one another. Notice that in

calculating the standard error, the 'incorrect energy' is also being calculated. As

explained in earher sections, these numbers correspond to the variational energy

from a VMC calculation. Up to this point, these 'energies' have been essentially

ignored, and all of the focus has been on the standard error. However, since the

standard error is merely the 'spread' in this number, it is conceivable that a small

standard error might result from a small 'energy', just because the 'energy' is

small. t In other words, the standard error in a big number might be big, while

the standard error in a small number may be smaUf. If this is the case, it may

not be wise to simply compare the standard errors alone. It may be better to

somehow take the size of the numbers into account, along with their errors. This

can be done by calculating the relative error for the numbers. With respect to the

discussion above, this number is the standard error, divided by the 'energy'. In this

manner, the errors are compared relative to the number that they are representing.

Consider Table 3a. In this table, the parameter sets shown are ranked in terms of

increasing standard error. In Table 3b, the same set of parameters are ranked in

terms of increasing relative error. Note that the order of increasing standard error

t recall that the 'energy' is very far from the correct value
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Table 3a: Parameter sets ranked in terms of increasing standard error, e, as
analyzed using configurations drawn from a generating wave function using the

FHNC/C pseudopotential. The E represents energies that are are not the cor-
rectly weighted variational energies. The e, values are the standard errors in

E calculated from (3.3), as in Table 2. E^mc are the VMC calculated energies.
The Jastrow factor that was used in the tested parameter sets was the FHNC/C
pseudopotential.

At rt Wt E e. Evmc (K)

-1.90 0.55 0.5 -1.333 0.276 -1.465 ±0.011
-1.65 0.55 0.5 -1.316 0.276 -1.465 ±0.013
-0.75 0.65 0.5 -1.316 0.278 -1.490 ±0.017
-1.25 0.65 0.5 -1.402 0.281 -1.589 ±0.012
-1.85 0.35 0.5 -1.264 0.287 -1.292 ±0.019
-0.75 0.75 0.5 -1.447 0.289 -1.619 ±0.015
-1.75 0.65 0.5 -1.528 0.296 -1.616 ±0.012
-1.80 0.65 0.5 -1.543 0.297 -1.631 ±0.011
-1.85 0.65 0.5 -1.559 0.300 -1.652 ±0.012
-1.90 0.65 0.5 -1.574 0.302 -1.626 ±0.012
-1.65 0.70 0.5 -1.722 0.326 -1.685 ±0.014
-1.35 0.80 0.5 -2.278 0.426 -1.461 ±0.017

Table 3b: Parameter sets ranked in terms of increasing relative error, Crei, analyzed
as Table 3a. The Crei are just the standard errors, e,, divided by E. E represent
energies that are not the correctly weighted variational energies.

At rt Wt E erel E.mc (K)

-1.35 0.80 0.5 -2.278 0.187 -1.461 ±0.017
-1.65 0.70 0.5 -1.722 0.189 -1.685 ±0.014
-1.90 0.65 0.5 -1.574 0.192 -1.626 ±0.012
-1.85 0.65 0.5 -1.559 0.192 -1.6.52 ±0.012
-1.80 0.65 0.5 -1.543 0.193 -1.631 ±0.011
-1.75 0.65 0.5 -1.528 0.193 -1.616 ±0.012
-0.75 0.75 0.5 -1.447 0.200 -1.619 ±0.015
-1.25 0.65 0.5 -1.402 0.200 -1.589 ±0.012
-1.90 0.55 0.5 -1.333 0.207 -1.465 ±0.011
-1.65 0.55 0.5 -1.316 0.210 -1.465 ±0.013
-0.75 0.65 0.5 -1.316 0.211 -1.490 ±0.017
-1.85 0.35 0.5 -1.264 0.227 -1.292 ±0.019
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in Table 3a also displays the behavior that the larger the number, the larger the

reported standard error, on the average. In Table 3b, the relative error inverts

this to a degree, but at least takes into account the magnitude of the 'energy'

that corresponds to a given calculated standard error. We see from both of these

tables that a much different picture can be deduced depending on how the errors

are compared. This is an important point, as the crux of this method requires the

comparison of errors of this nature.

Returning to our ambiguities, if in comparing the relative errors, the ranked

order (in terms of increasing relative error) of the parameter sets is essentially

the same regardless of the configurations used, then we may have found a good,

efficient way of comparing the variances (via the relative error). Furthermore, the

method itself may not be as sensitive to the configurations used as may have been

previously thought. These possibihties will be explored in more detail below.

Again, at the simple level of comparing the standard errors alone, consider

Table 4. In this table, the test parameters are ranked in order of increasing

standard error. We see that the set (At = -0.75, r^ = 0.75, Wt = 0.5) (which

shall be denoted (-0.75,0.75, .05) henceforth) is on top of the hst, therefore, is

indicated as the 'best' from the rest of the hst. However, in Table 3a, the set

(-1.90,0.55,0.5) is indicated. Here, the Jastrow that generated the configurations

was the 'optimal' numerical pseudopotential discussed above, while in Table 4, the

generating Jastrow was b = 1.00. We also see that neither of these parameter sets

possesses the lowest energy or error. This pattern (or rather the lack thereof)
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Table 4: Results from the proposed algorithm, on the test parameter set, ranked

in order of increasing standard error, e,. The E values are the unweighted energies

calculated via the proposed method. The e, are the standard errors in E. The
Evmc fire the VMC calculated variational energies. These results were analyzed
using 2,000 particle positions generated with a wave function using b=1.00.

At rt Wt E e* Evmc (K)

-0.75 0.75 0.5 -2.449 0.606 -1.619 ±0.015

-1.25 0.65 0.5 -3.058 0.614 -1.589 ±0.012

-1.75 0.65 0.5 -3.286 0.617 -1.616 ±0.012

-1.80 0.65 0.5 -3.317 0.619 -1.631 ±0.011

-1.85 0.65 0.5 -3.349 0.620 -1.652 ±0.012

-1.90 0.65 0.5 -3.383 0.623 -1.626 ±0.012

-1.90 0.55 0.5 -3.389 0.628 -1.465 ±0.011

-1.65 0.70 0.5 -3.126 0.630 -1.685 ±0.014

-1.65 0.55 0.5 -3.323 0.6.33 -1.465 ±0.013

-0.75 0.65 0.5 -2.977 0.634 -1.490 ±0.017

-1.85 0.35 0.5 -3.231 0.684 -1.292 ±0.019

-1.35 0.80 0.5 -2.445 0.688 -1.461 ±0.017

is indicative of the fact that the standard errors alone cannot be compared this

simply with confidence, and that different configurations do give different results

when the wave function is not the eigenstate.

Instead of using the standard errors alone, let us examine ranked fists of rela-

tive errors over the same configurations. In Table 3b, we see that (-1.35,0.80,0.5)

is on top, and we see that the energy for this set is quite poor. However, notice that

right below this parameter set, we see (-1.65,0.70,0.5), then (-1.80,0.65,0.5),

whose energies are among the lowest. Now examine Table 5. Here, the set nearest

the top of the fist are again those that have low energies. However, there are still

some parameter sets that are not high on the fist, but fiave low energies as wefi,
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Table 5: Results from the proposed algorithm, on the test parameter set, ranked

in order of increasing relative error, Crei- The E values are the unweighted energies

calculated via the proposed method. The Eyrnc are the VMC calculated variational

energies. These results were analyzed using 2,000 particle positions generated with
a wave function using b=1.00.

At rt Wt E Crel Evmc (K)

-1.90 0.65 0.5 -3.383 0.184 -1.626 ±0.012

-1.90 0.55 0.5 -3.389 0.185 -1.465 ±0.011

-1.85 0.65 0.5 -3.349 0.185 -1.652 ±0.012

-1.80 0.65 0.5 -3.317 0.187 -1.631 ±0.011

-1.75 0.65 0.5 -3.286 0.188 -1.616 ±0.012

-1.65 0.55 0.5 -3.323 0.190 -1.465 ±0.013

-1.25 0.65 0.5 -3.058 0.201 -1.589 ±0.012

-1.65 0.70 0.5 -3.126 0.202 -1.685 ±0.014

-1.85 0.35 0.5 -3.231 0.212 -1.292 ±0.019

-0.75 0.65 0.5 -2.977 0.213 -1.490 ±0.017

-0.75 0.75 0.5 -2.450 0.247 -1.619 ±0.015

-1.35 0.80 0.5 -2.445 0.281 -1.461 ±0.017

and should be indicated by our method. This leaves three possibihties. First, and

potentially most catastrophic, the method fails to predict the best parameter set

from the hst. Second, the standard errors are stiU not being compared as carefully

as they should be. Or third, the method is somewhat sensitive to the type of

configuration used.

We already know that the method works to some degree, since it pointed out

that the FHNC/C pseudopotential was best, at the Jastrow level. So, we really

have no reason to beheve that it would completely breakdown at the triplets level.

It does seems more Hkely that it would become increasingly difficult to exploit

differences in errors to draw conclusions, however. Therefore, a good assumption
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is that both the second and third possibihties mentioned in the preceeding

paragraph apply here.

It seems reasonable to beheve that the wave function that allows the random

walker to visit a larger volume of configuration space will lead to a more desirable

configuration. After all, the M(RT)^ algorithm samples position space with the

given probabihty distribution, and it seems reasonable that the system is best

represented by a sample that is distributed over a larger region of position space.

If Figure 2 is re-examined, it is clear that the lower the value of the parameter b,

the closer the particles are allowed to come, and thus the more configuration space

is 'seen'. Thus, this could mean that a lower value of b is best for generating the

configurations used in this algorithm. However, if the particles are allowed to get

too close, the energy increases dramatically (due to the strong repulsive core of

the potential), and a 'washing-out' eflfect occurs in the errors. This was the case

for the configurations generated with b=0.5. In this case, the resulting 'energies'

were so large, as were the errors, that a simple comparison, even through a relative

error calculation was futile. So, from this discussion one restriction is placed on the

generating wave function: It cannot allow the particles to get too close. However,

it still seems advantageous to use configurations that represent a large sample of

position space. If this behef is correct, then many of the ambiguities that still

finger in the results should be removed.

In each of the tables discussed, the unweighted energies and the standard and

relative errors were calculated from 2,000 stored particle positions. As mentioned

29



in an earlier section, there were five wave functions that were used to generate

configurations. Since we have ruled out the use of b=0.5 above, there are four

remaining parameters available: b=1.00, b=1.13, b=1.15, and the FHNC/C pseu-

dopotential. If we wish to test the hypothesis of the preceeding paragraph, we

want to use those sets that have 'seen' as much of configuration space as possible.

In terms of a single set, this is b=1.00. We have already seen some of these results

in the data presented. Now consider using all of these parameter sets. In doing

so, we will truly be visiting as much of position space as possible using these sets

of configurations. What was actually done here was to analyze the test set of

parameters using 2,000 particle positions from eacii set, and calculate the relative

error. Then, the average relative error was calculated, meaning, the average of

the relative errors for each of the parameter sets, from each configuration, was

calculated. This was done so that the average behavior over all of the sets could

be examined. The results of this calculation are shown in Table 6.

In this table, we see that all of the parameter sets near the top of the list have

energies at or below -1.61 K. So, we see that the method indeed does appear to

work, provided that; (1) The relative errors are used; (2) The configurations that

are used are varied enough to see as much of phase space as possible, provided the

particles do not come too close; and (3) The average behavior of the relative error

is examined, over all of the configurations. The method does work, in the sense

that low variance wave functions are better candidates for improved trial wave

functions, since they seem to lead to lower estimates of the variational energy.

30



'[p

Table 6: Rankerl relative errors in the E, e^ei- These relative errors are the
averages over all four types of coiifigtirations used, f'.e., each average relative error
is the average of the relative errors for each of the parameter sets over each of
the four configuration types that were used. The Eyrnc are the VMC calculated
variational energies.

At rt Wt Crel Evmc (K)

-1.90 0.65 0.5 0.191 -1.626 ±0.012

-1.85 0.65 0.5 0.192 -1.652 ±0.012

-1.80 0.65 0.5 0.192 -1.631 ±0.011

-1.75 0.65 0.5 0.193 -1.616 ±0.012

-1.65 0.70 0.5 0.194 -1.685 ±0.014

-1.25 0.65 0.5 0.202 -1.589 ±0.012

-1.90 0..55 0.5 0.204 -1.465 ±0.011

-1.65 0.55 0.5 0.207 -1.465 ±0.013

-1.35 0.80 0.5 0.213 -1.461 ±0.017

-0.75 0.65 0.5 0.214 -1.490 ±0.017

-0.75 0.75 0.5 0.214 -1.619 ±0.015

-1.85 0.35 0.5 0.227 -1.292 ±0.019

Now, we also see that the parameter set with the lowest energy, namely,

(1.65,0.70,0.5) does not have the lowest error. The (-1.80,0.65,0.5) set has the

lowest error. Compare

E^^c^ -1.685 ±0.014A'

with

E„ -1.631 ±0.011/1:.

Note also that the kinetic energy of the (-1.65,0.70,0.5) set is lower than the

others, although it does shghtly overlap that of the (-1.80,0.65,0.5) set, as an

examination of their errors reveal. Just because the (-1.65,0.70,0.5) parameter

set has the lowest energy, this does not necessarily mean that this is the best set
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of those available. Although it does have the lowest calculated energy, it also has

a relatively large error compared with its counterparts which also have energies

in the -1.61K range. The lower error wave function may be the most desirable,

particularly if it is to be used as an importance function in, say, Green's function

Monte Carlo (GFMC) [3.3], [5.1]. The reason being that since the (-1.80, 0.65, 0.5)

set had the lowest error, it may have more overlap with the ground-state energy

eigenfunction for this Hamiltonian, and its higher energy might be due to a mixing

of an excited state in with the variational ground state. Thus, the lowest energy

wave function may not be the best one to pick, depending on the intended use of

the wave function. This is not the only possibihty, however.

To investigate another possibihty, examine Figure 3. In this figure, a plot

of the first 5 wave functionsf from Table 6 appear. Again, all five of these wave

functions lead to variational energies below -1.61 A'. From this figure, note that

all five triplets appear to be quite similar to one another, as they all cross the

Jastrow in the same region. This is particularly striking in the case of the upper

four triplets, i.e., the sohd fine, the points, the short-dashed hue, and the medium-

dashed fine. Here, the triplets look very similar in shape and strength, and they in

fact are similar. The long-dashed fine is the (-1.65,0.70,0.5) triplet. This looks

the most different from the other 'indicated' triplets. The (-1.80,0.65,0.5) triplet

had the lowest error, and is the triplet represented by the short dashed hne. Notice

that it is also in the middle of the other four similar triplets. The fact that this

t 'wave function' is synonymous with 'correlation function' in this context
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Figure 3: The first five triplet correlations from Table 6. All of these correla-

tions give rise to wave functions that lead to VMC energies of —1.61 A' or less. The
solid line spanning the full vertical extent of the graph is the two-body FIINC/G
part, as before. The other solid hue is the (

— 1.90,0.65,0.5) triplet, the points rep-
resent the (-1.85,0.65,0.5) triplet, the short dashed Hne is the (-1.80,0.65,0.5)
triplet, the medium dashed line is the (-1.75, 0.65, 0.5) triplet, and the long dashed
line is the (-1.65,0.70,0.5) triplet. Note that all five triplets are similar with re-

spect to the region and manner in which they cross the two-body correlation hue.

1 .0
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triplet has the lowest error may, again, imply that it has the most overlap with

the true ground-state wave function. The fact that the other similar triplets also

he in the same region, and have low energies, may imply that these upper four

triplets are actually indicated due to some 'local minimum' in the relative error.

It is clear that the method did ehminate a large number of other parameter sets,

and the ones that were indicated all have low energies. On this finer scale, when

the triplets are similar to one another, the choice of the trial wave function should

be made from the indicated hst based on the use for the trial wave function. Per-

haps a GFMC study of these wave functions would help ehminate this remaining

ambiguity. Again, however, the method does seem to work within this framework.

How the residts are interpreted and used is more a function of the intended use of

the indicated wave function than anything else.

In Figure 4, the (-1.35,0.80,0.5) triplet is plotted along with the other five

triplets. As can be seen from Table 6, this would be among the worst choices

for the trial wave function. Thus, we can conclude from this and from Figure 4

that stronger triplets, that tend to keep the particles apart, are better for the ^He

system than are the weaker ones, for triplets of the form used here.

The point is, of course, that this method did eliminate a large set of wave

functions. Figure 5 illustrates this fact. Note that the general trend points to the

fact that low variance wave functions are good candidates for improved trial wave

functions, because they give rise to reduced variational energies. The cluster of five

at the lower left of the plot are the wave functions that are exhibiting low-variance
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Figure 4: This figure is similar to Figure 3, with the exception of the points.
These points represent the (-1.35, .80, .5) triplet. This is a 'bad' triplet, and is not
indicated b}' the proposed algorithm. Notice how this triplet crosses the two-body
part compared with the indicated triplets which are indicated by the soHd hues).

This implies that the stronger triplets are best for Hquid ^He. The long dashed
line is the FHNC/C pseudopotential in the Jastrow part.

1 .0

3.0
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Figure 5: Scatter plot of the VMC energies versus the average relative error.

The relative error is averaged over all four types of configurations. The line is

present merely to guide the eye. Notice tliat the trend indicates that low-variance

wave functions are good candidates for trial wave functions.
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behavior, and are therefore the best candidates from tiiis group for improved trial

wave functions. This is the desired end result from this method. Although we

are left with essentially five wave functions from which to choose, all of the others

have been eliminated from contention. On a much larger grid of parameters, the

benefits would be even greater.

Finally, now that the vahdity of the method has been estabhshed, the tremen-

dous savings in time can be illustrated. To calculate just one of the variational

energies shown in Table 1 took about 72 minutes on a CRAY-XMP. The code that

was used was a reasonably optimized version to take advantage of the machine's

vectorized structure. Therefore, to calculate all of the variational energies in Table

1 took a grand total of about 864 minutes. To run an analysis using all four of the

configurations, each with 2,000 particle positions, for the same set of parameters

took a grand total of about 24 minutes. Thus, the proposed method is about 36

times faster in this case than simply doing a VMC for each set of parameters,

on the CRAY-XMP. To break this down even farther, it took about 2 minutes to

analyze a single set of wave function parameters using the proposed method and

all 8,000 particle positions. If the codes were moved to, say a VAX 750, it would

take an estimated 14,400 minutes to analyze a single set using VMC, and thus

172,800 minutes (or about 4 months) to analyze this set of twelve parameters.

Using the proposed method, it would take about 3 weeks of CPU time. Thus, if

a smaller set of parameters were analyzed at a time to eUminate at least some of

the really 'bad guesses', it would not be necessary to use a parallel machine until a
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larger, and perhaps finer, grid of parameter sets were needed. Naturally, the time

estimates for the VAX are just that — estimates.

However, what if one need not use all four configurations to get the same

information? By implying earher that really five parameter sets were indicated

by the method since they were at the top of Table 6, and all have low energies, it

is also imphed that in a 'real' appfication of this procedure, one should examine

all five of these parameter sets in a VMC calculation. Therefore, an 'error bar'

has effectively been put on the relative errors that have been calculated. From

Table 6, we see that these five parameter sets are within about 2% of the lowest

relative error. Thus, in a real apphcation, since one would not have a hst such

as Table 1 (for if one did, there would be no need to use this method!), all of

the parameter sets that are within 2% to 5% of the lowest error should probably

be examined with a VMC calculation. Returning to the initial question, what

would happen if only two configuration sets were used? It seems reasonable to use

the b=1.00 and b=1.15 sets, as these two are far apart in terms of which regions

of phase space would be allowed to be seen during the random walk. This is

also supported by examining Figure 2. In this figure, we see that the 1.13 curve is

actually very similar to the 1.15 curve, and the FHNC/C curve. Thus, ehminating

these might not have an adverse affect, since these configurations might not be

adding that much 'new information'. Table 7 shows the residts from doing this.

Notice that the order of the indicated parameter sets is slightly different, however

the parameter sets that are within the 2 to 5% 'window' of the lowest relative error
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remain the same five parameter sets. Therefore, we have effectively extracted the

same information and did less work in the process. Here, the method is actually

about 72 times faster than a straight VMC calculation of all twelve sets. It cannot

be overemphasized that the final choice of the parameter set from the indicated

sets is contingent on the intended use of the trial wave function. It may suit the

problem at hand fine to simply take the first set that appears on either Table 6

or Table 7, even though this set does not possess the lowest VMC energy. The

method at the very least assures that these have among the lowest variational

energy and error. The general trend is supported by Figure 5, and one can readily

state that low-variance wave functions are good candidates for improved trial wave

functions.

6.0 Conclusions and Suggestions

Clearly from the results, this method does provide a fast way of finding a

near-optimal wave function of a given form. The method is certainly faster than

simple VMC calculations of the variational energy for each trial wave function.

As Table 1 indicates, the choice of wave function can have a rather large bearing

on the physical quantity of interest. In the case of Table 1, note that the kinetic,

potential, and total energies are given. These have different values for different

wave functions. This serves to underscore the fact that the proper choice of the

trial wave function should ultimately be made based on the intended use for the

wave function. The point is here that even if this method singles out two, or three,

39



Table 7: Ranked relative errors, Erel- These relative errors are the averages over

only two configurations used, i.e., each average relative error is the average of the

relative errors for each of the parameter sets over each of the two configuration

types that were used. The configurations that were used here are those that were

generated with a wave function of 6 = 1.00 and b = 1.15. The E^mc are the

variational energies calculated via the VMC code.

At rt Wt Crei Evmc (K)

-1.90 0.65 0.5 0.188 -1.626 ±0.012

-1.85 0.65 0.5 0.189 -1.652 ±0.012

-1.80 0.65 0.5 0.190 -1.631 ±0.011

-1.75 0.65 0.5 0.191 -1.616 ±0.012

-1.65 0.70 0.5 0.195 -1.685 ±0.014

-1.90 0.55 0.5 0.197 -1.465 ±0.011

-1.25 0.65 0.5 0.201 -1.589 ±0.012

-1.65 0..55 0.5 0.201 -1.465 ±0.013

-0.75 0.65 0.5 0.213 -1.490 ±0.017

-1.85 0.35 0.5 0.221 -1.292 ±0.019

-0.75 0.75 0.5 0.224 -1.619 ±0.015

-1.35 0.80 0.5 0.234 -1.461 ±0.017

or five possibihties, it is still computationally cheaper to do this, and then test the

definite possibihties with a more extensive computational method if necessary.

It also seems clear that the method is indeed dependent on the details of the

generation of the configurations. The two obvious requirements discussed thus

far are fairly simple to adhere to. First, the configurations that are used cannot

have particles that are too close together. In this case, this was dictated by the

b value in the McMillan pseudopotential. Second, the configurations used should

be very well distributed throughout position space. We thus see that a balance

must actually be struck here, between the amount of position space that the

configurations represent, and how close the particles are allowed to come. Some
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additional tests were also run on some configurations that were not generated

with a wave function that was similar to the form of the trial wave function at

all. These results indicated that it was possible to obtain a set of configurations

that would sample the triai wave function where it was very small, thus leacUng

to a large value of the local energy, and thus increase the estimate of the error.

This tends to place an additional restriction on the configurations used, or at least

point out a possible problem. If possible, the configurations should be generated

with wave functions that are similar to the family of trial wave functions that

are being tested. This would help reduce the chances of this problem occuring

at all. It should still be possible to, say, use modified numerical noise. It would

have to be modified to remove the close particle pairs, be properly scaled, and

be filtered such that it would not sample the trial wave function where it was

very small. This latter requirement, which constitutes a 'new' restriction on the

configurations, can be easily taken care of in another way, which will be discussed

below when improvements are suggested. Again, if the correct eigenstate is used, it

would not matter what particle positions were used — the variance, and hence the

standard and relative errors would be zero. In the present case, the configuration

space requirement was met by averaging the relative error over a variety of the

configurations, and the careful sampling of the trial wave function was handled by

generating the configurations with wave functions that were of the same form as

the trial wave functions.

Another possible 'pitfall' in this method is the manner by which the standard
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errors are compared. As we have seen, it is not necessarily sufBcient to simply pick

the lowest standard error. In using this method, it does seem to be necessary to

not throw away any information. Although the 'energies' calculated are not the

correctly weighted variational energies, we have seen that they actually provided

a valuable bit of information that provided for a more sharp indication of the best

wave function parameters from the group. The relative error served very well here.

There is at least one improvement that wiU be discussed below that should sharpen

the indication even farther, and might even allow the use of fewer configurations.

The indicated parameter sets indicated that the stronger triplets were, in

general, best for hquid ^He. In fact, the method indicated that the variational

energy was more sensitive to changes in the r^ parameter than the strength, to

a degree. Note that the Wt parameter remained constant for the test set. There

is no real reason for this, other than convenience. It should be pointed out here

that due to the speed of the method, a rather large number of parameter sets were

actually evaluated, including a few in which Wt was varied. The 'chosen twelve'

were simply representative choices from the set. The wave function for tins system

might be improved by introducing higher order correlations, such as four-particle

correlations, or state-dependent correlations, such as 'backflow' correlations [.3.-3].

In fact, as was mentioned in section 3.3, the assumed form for the trial wave

function (3.5) is very far from the true ground state wave function, and the method

will work better on a form that is closer to the correct ground-state wave function.

This is a subject for future study [3.3], [6.1].
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Another improvement that could be made has to do with the way that the

'energies' are calculated themselves by the proposed method. Consider doing the

following. At the time that the particle positions are written out, write out the

value of the generating wave function at that point, *gen(R-)- Then, rather than

averaging the local energy.

*t(R) J
'

average

The summations naturally run over all of the particle positions generated with

*3en(R)- This 're-weighting' of the variational energy has been suggested before

[6.1], and while this is still not the 'correct' variational energy, it is an improvement

over simply averaging the local energy alone. By re-weighting the local energy in

this manner, the generating wave function's effect on the results is taken into

account, at least to first order. This improved estimate of the variational energy,

combined with the estimate of the variance, may allow one to get by with using

very few configurations to extract the best wave function parameters from a group

of parameters. Thus, this improvement could speed up the method even more.

Furthermore, this would also tend to negate the problem that might occur if the

configurations used sample the wave function where it is small. If this were to

happen, the large value for the local energy would be re-weighted with a small

number, and thus contribute neghgibly to the final outcome.
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Finally, while it is certainly true that a zero-variance calculation of the lo-

cal energy implies an eigenstate of the Hainiltonian, one is usually faced with

comparing different approximate wave functions, none of which are eigenstates.

Furthermore, as we have seen, a non-zero local minimum in the variance (or rel-

ative errors, as were used here) does not necessarily indicate a more optimized

wave function, that is, an improved energy and a lower error than previous esti-

mates. The method did point to a group of wave functions, all of which possessed

low energies and relatively low errors, but the lowest energy wave function did

not have the lowest error. The determining factor in a final decision on the trial

wave function must be made based on this method and the use of the trial wave

function. The wave function with the lowest energy may not be the best choice.

If the wave functions are to be used as both generating and importance functions

for GFMC, the lower variance wave functions are of more interest than the lowest

energy ones. This method, if it is done carefully and correctly, assures one of a

wave function that possesses either a lower energy, or a lower error, or both, and

thus points to good candidates for improved trial wave functions.
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Abstract

The Rayleigli-Ritz variational principle may be used to optimize a many-

body wave function by minimizing the variational energy, a true upper bound to

the ground-state energy expectation value for a given Hamiltonian. This min-

imization is usually attempted by evaluating, for each trial wave function, the

multi-dimensional integrals entering into the energy expectation value. This pro-

cedure for a truly many-body problem, such as the description of the ground state

of Hquid hehum, may be both difficult and expensive to implement, even with

the accurate and relatively efficient evaluation of these integrals by Monte Carlo

methods.

The variational energy of an eigenstate of the Hamiltonian, calculated as

the average of the local energy evaluated at particle coordinates chosen with a

probability proportional to the square of the trial wave function, is stationary,

that is, it has zero variance. In this thesis, the variance in the expectation value of

an energy estimator for different variational wave functions averaged over a fixed

set of particle coordinates, is studied as a means of improving the optimization

procedure. For those trial wave functions which minimize or nearly minimize the

variance or relative error, the actual variational energies, calculated via the fuU

variational Monte Carlo procedure, are examined to study the extent to which

a wave function with a low relative error in the energy estimator imphes a low

variational energy.

The system used for such a test was hquid ^He. This hquid is modeled as 54



particles in a periodic box interacting via phenomenological potentials. Two and

three body correlations are included in the trial wave function. For a wide range of

parameters entering the correlations, wave functions which have the lowest overall

relative errors for several independent sets of particle coordinates are found to

have the lowest variational energies. Furthermore, wave functions which exhibit

low-variance behavior nearly minimize the variational energy. Analyzing wave

functions in this manner is typically 35 to 70 times faster than simple evaluation

and comparison of variational energies alone. Consequently, good candidates for

improved variational wave functions may be accurately and efficiently identified

by this variance minimization procedure.


