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INTRODUCTION

Frechet first considered abstract spaces in his thesis in 1906 I 4 J.

Much of the developement of the concept of a topological space may be found in

Kausdorff 1 s C-rundzur-:e ler Mcngeniehre f
6~] and in the early volumes of

Fundamenta Kathematica . From this research two fundamental concepts have

developed: that of a toplogical space and that of a uniform space. Andre Weil

was the first to formalize the notion of a uniform space in a paper in 193? [WJ*

The concept of a uniform space developed from the study of topological groups

and has presented many new ideas to the study of metric spaces. One of these

is the concept that the finest uniformity for a metrizable space is the one in-

duced by a metric ^12J . J. R. Isbell has done work using uniform spaces in

the study of the algebra of functions f? ~|
•

This report is devoted to the examination of several properties of uni-

form spaces and the relationship between uniformities and pseudo-metrics.
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RELATIONS

In the study of uniform spaces the subsets of a carteian product X ">C X

of a set X with itself arc considered. These subsets are relations or ordered

pairs. If is a relation, then U"1 is the set of all (x,y) such that (y,x)

is in U. The process of taking inverses is involutory. If U = U-1 , then U is

said to be symmetric. If U and V are relations, then U«V is defined as the

set of all pairs (x,z) such that for some y it is true that (y,z) is in U and

(x,y) is in V. This operation between relations is called composition. It is

easily shown that composition is associative. The inverse of a composition is

the composition of the inverses in the reverse order. The identity relation

is defined to be the set of all (x,x) such that x is in X. This identity re-

lation will be referred to as the diagonal and denoted by £± . For each sub-

set A of X, the set U [a] is defined to be the set of all y such that (x,y)

is in U for some x in A. If x is a point of X, then U TxJ is defined to be

U [fc]] • It can be shown that for each U and V and each A in X it is true

that U«V [a] is equal to U [V
| AJ ] .

To complete the list of needed properties of relations, an important lemma

is included.

LE^-IA I : If V is symmetric, then V«U"V =
(J

jv [x] X v [y] : (x.y)

is in .

Proof:

Ety- definition V«U«V is the set of all pairs (u,v) such that for some x

and y in X, (u,x) is in V, (x,y) is in U and (y,v) is in V. Since V is sym-

metric, this is the set of all (u,v) such that u is in V [x] and v is in V

£yj for some (x,y) in U. However, u is in V £xj and v is in V £yj if and

only if (u,v) is in V [x] X V [y] . Thus V*U*V = £(u,v) : (u,v) is in
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ior some (x,y) in U [ence V«U*V is equal to

is in U

DEFINITION OF UNIFORM SPACE

A uniformity for a set X is a non-empty family Zt of subsets of X X X

such that:

(a) each member of 21 contains the diagonal
;

(b) if U is in 21 , then U"1 is in U ;

(c) if U is in tt, then V«V C U for some V in tl;

(d) if U and V are members of Z( , then Ufl V is in Z( ;

(e) if U is in # and U C V C X X X, then V is in *Ll .

The pair (X, V. ) is called a uniform space.

For a given space X there exists many different uniformities, ranging from

the set of all subsets of X X X which contain /-±> to the set whose only member

is X X X. It follows from condition (a) that each member of ZC is a neighbor-

hood of , but the converse is not true. If X is the set of real numbers

with the usual uniformity for X of the family of all subsets of X ><• X such

that ^(x,y) : | x-y| <T r| is contained in U for some positive number r,

then consider the j\x,y) : Jx-yj < 1/(1 +
| y| ) 1 . This set is a

neighborhood of the diagonal but is not a member of 21 since it fails to

satisfy condition (c).
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DEFINITION OF BASE AND SUBBASE

A subfamily Q of a uniformity H is a base for V, if. and only if each

member of 2/ contains a member of (3 . From this definition if is evident

that C8 determines 21 entirely, for each member of (S is in *L( and a subset

U of X X X belongs to 21 if and only if U contains a member of o3 • A sub-

family ^ is a subbase for U if and only if the set of all finite inter-

sections of members of ^ is a base for H .

To characterize a base for a uniformity the following theorem is given.

THEOREM I : A family & of subsets of X X X is a base for some uniform-

ity for X if and only if:

(a) each member of contains the diagonal s\
;

(b) if U is in C3 • then U" contains a member of (3;

(c) if U is in <g , then VoVcU for some V in <3 ;

(d) the intersection of two members of <S contains a member of (S .

Proof:

It is obvious that given a family <3 of subsets of X X X satisfying these

four conditions, then <3 forms a base for some uniformity 71 . Therefore it

suffices to show that if is a base for some uniformity K , then the four

conditions are satisfied.

Let ^ be a base for some uniformity 2/ , then by definition each

member of % contains a member of <g and each member of <S is in 2( . Since

each member of % contains the diagonal, it is evident that each member of <3

contains the diagonal. If U is in @ , then U is in It . Since V. is a

uniformity, U~ is in U and hence contains a member of (3 . If U

is in <S , then U is in 'U and there exists a V in V such that V*V C U.
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however, V in 11 implies there exists a \r\ in <3 such that V-| is contained

in V. Then V«»V-| C V«V, v:hich implies that V-j »l| is contained in U. For

the last condition, let 3-j and B£ be members of <3 . Then Bj and B£ arc in K

and hence Ej O B2 is in ^ , and thus Bj Ci Efe contains a member of (3 •

The property of being a subbase is not as easy to characterize as the

property of being a base. However, the following theorem will be needed in

the study of uniform spaces.

THSCRZM II : A family <> of subsets of X X X is a subbase for some

uniformity of X if:

(a) each member of contains the diagonal Z\ ;

(b) for each U in £ the set U~' contains a member of S ;

(c) for each in £ there is a V in ^ such that y«V C U. In

particular, the union of any collection of uniformities for X is a subbase for

a uniformity for X.

Proof:

It suffices to show that the family <S of finite intersections of

members of ^ satisfy the conditions of theorem I,

If U-j
, U2, Un and V-j

,
Vj?, Vm are subsets of X XX such that

and Vj are in i and if U = .11 U-? and V = ,f\ V*. then it is obvious that

the first condition is satisfied. By observing that V C U " (or V*V C U)

whenever Vj_ C Uj_ ' (or V^*. Vj_ C Uj_) for each i, then the remainder of the

conditions in Theorem I follow immediately.
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DEFINITION OF UNIFORM TOPOLOGY

If (X, 1L ) is a uniform space, then the topology of the uniformity

71 or the uniform topology, is the family. of all subsets T of Z such that

for each x in ? there is a U in % such that U [xj C T. To verify that 3

is a topology it suffices to show that J is closed under an arbitrary union

of its members and the intersection of any two members.

Let T u be any arbitrary set of elements of and let T = U T ,

.

Let x be an element of T; then x is in some T ^ . Hence there exists a U

in % such that U [x] C T^ and therefore U [xj is in T and T is in «7 .

Let Ti and T2 be elements of J and let x be an element of T = T^ f\ Tg*

Since x is in T, then x is in T
1

and x is in T2 . However x in T-j implies that

there exists a U in U such that U [x] C T
1
and since x is in T2 there exists

a V in V. such that V [x] C T2 . It follows that (U (\ V) [x] is con-

tained in T-j H T2; consequently, T is an element in £ and ^ is a topology.

The relation between a uniformity and the uniform topology will now be

examined.

THEOREM III : The interior of a subset A of X relative to the uniform

topology is the set of all points x such that fx J C A for some U in 1/ .

Proof: :

Let 3 = £ x : U [xj C A for some U in
"ft

"l , If x is in B, then

there exists a U in ti such that [x] C A. Since is in V. there exists

a Y in Zl such that V«V C U. Thus if y is in V [x] , then Y [y] C Y«Y fx] C
U [x]c A and therefore y is in E. Hence V [x] C B and B is open. By de-

finition B must contain every open subset of A and therefore B is the interior

of A.
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COROLLA?.! ; U j^xj is a neighborhood of x for each U in the uniformity

u .

Proof:

The proof follows directly from the results of the previous theorem.

For a topological space (X,-J" ), a collection of open sets (J$ is called

a neighborhood system of x if x in A, A a member of ~3
, implies that there

exists a in © such that x is in U C A. Therefore, with the preceding

corollary, the following theorem shows the correspondence between a base for a

uniformity and one for a neighborhood system.

TH5QR5;: IV : . If © is a base (or subbase) for the uniformity K , then

for each x the family of sets U [x] for U in 6 is a base (subbase

respectively) for the neighborhood system of x.

Proof:

It was stated in the previous corollary that U [x^J was a neighborhood

of x for each U in V . Therefore if <3 is a base (or subbase) of 1i ,

then U fx
J

is a neighborhood of x for all U in <5B. Hence the family of

sets U [x] for each x and for in <g is a base (or subbase) for the neighbor-

hood system of x.

The following theorem is used later to assure the existence of a

symmetric base for H .

THEOREM V : If U is a member of the uniformity U , then the interior of

U is also a member; consequently the family of all open symmetric members of 2/

is a base for 1(

.

Proof:

From the results of Theorem III it is evident that the interior of a

subset M of X X X is the set of all (x,y) such that for some U and some V in

ft >
U [x] XV [y] C M. Since 21 is a uniformity, <U H V) is in U and



hence the interior of M is f(x,y) : V [x] X V [y] C M for some V in

2( 1 . If U is in 11 , then the symmetric member V = (U f) U~* ) of 21 is

such that V»V»V C U and, according to lemma I, V»V«V = (J [ V [x] X V [y]

(x,y) is in V
J

. Hence every point of V is an interior point of U and, since

the interior of U contains V, the interior of U is a member of Zi .

As a result of this theorem, many of the proofs for the remaining

theorems will use the fact that there exists a symmetric base for each uni-

formity U .

The concept of closure is considered next since this property provides a

method for comparing topological spaces.

A point x is a point of accumulation of a set A C X if and only if U [x]

intersects A - for each U in *U . Thus x is in the closure of a set

A C X if and only if U [x]intersects A for each U in It .

TEBOREM VI : The closure, relative to uniform topology, of a subset A of

X is f) £ U [a] : U in 2/]. The closure of a subset M of X X X is f)

ju»:>U : U in 2/j.

^roof

:

Let x be an element of A and U a member of t( . This implies that [xj

H A is non-null. If y is in U [x] f) A, then (x,y) is in U. [AJ =

£ x : (x,y) is in U for some y in A? and since (x,y) is in U and y is in

A, x is an element of U [a] . Thus x in A implies that x is in U ^A~j .

If x is in f] U [Aj , it is evident that x is in the closure of A.

For the proof of the second part of the theorem, if U is a symmetric

member in 11, then U [xj X U [y] intersects a subset M of X X X if

and only if (x,y) is in U [u]x^T

[vj for some (u,v) in M. Thus U [x] X

U [yj intersects M if and only if (x,y) is in (J |"
T

J [u] X [y] :

(u,v) is in X j .
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Zy lemma I, this is the set U»M«U and the following result is obtained; that

(x,y) is in M if and only if (x,y) is in f] fu»M*U : U is in t( j .

Therefore the closure of M is f] j 1>M»U : U is in 2y .

Now the following theorem which shows the existence of another base

for 2t can be proved.

THEOREM VII : The family of closed symmetric members of a uniformity Zl

is a base for ^/ .

Proof

:

If U and V are members of H such that V*V*V C U, then by preceding

theorem V*V»V contains the closure of V. Thus U contains a closed member W of

H and W H II ' is a closed symmetric member of 11 contained in U. Hence

the set of all closed symmetric members of t( is a base for 2( •

From the previous two theorems it is evident that a uniform space is

always a regular, for each neighborhood of a point x contains a neighborhood

V £xj such that V is a closed member of It > sr'd therefore V fx J is

closed. Hence a space with a uniform topology is a Hausdorff space if and

only if each set consisting of a single point is closed. However, the closure

of the set [x^ is f\ ju [x] : U is in Z/| , and thus a space is

Hausdorff if and only if f] fu : U in 2u is the diagonal £i . In this

case the space is said to be Hausdorff or separated.

UNIFORM CONTINUITY

If f is a function on a uniform space (X, 2/ ) with values in a uniform

space (Y, V), then f is uniformly continuous relative to V and TT if and

only if for each V in V~the set J(x,y) : (f(x), f(y)) is in v] is a

member of 2( • This definition can be stated in several ways. For each

function on X to Y, let f
2 denote the induced function on X X X to Y X Y

ivrhich is defined by f
2
(x,y) = (f(x), f(y)).
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Then f is uniformly continuous if and only if for each V in y there is a U

in K such that f9 ftfj C V« Another way of stating this definition is that

if X = Y is the set of real numbers and 2( = is the usual uniformity of X,

then f is uniformly continuous if and only if for each positive number r

there is a positive number s such that
|
f (x) - f(y)j is less than r when-

ever
J

- yj is less than s. The analogy botwecn this definition and the

usual one in analysis is quite apparent.

If f is a function on X to Y and g is a function on Y, then (g f^ =

^2°?? where the subscript 2 denotes the induced function. From this it can

be seen that the composition of two uniformly continuous functions is a

urdformly continuous function. If f is a one-to-one map of X onto Y and both

f and f are uniformly continuous, then f is called a uniform isomorphism ,

and the spaces (X, 11 ) and (I, If ) are said to be uniformly equivalent. The

composition of two uniform isomorphisms, the inverse of a uniform isomorphism,

and the identity map of a space onto itself are all uniform isomorphisms, and

therefore the set of all uniform spaces is divided into equivalence classes

composed of uniformly equivalent spaces. A property which is possessed by

every uniform space in a given equivalence class is called a uniform , invariant .

This definition is entirely analogous to the definition of a topological in-

variant.

The follovring theorem states the relationship between uniform iso-

morphisms and homeomorphisms.

TjflSOHEM VIII : Each uniformly continuous function is continuous re-

lative to the uniform topology, and hence each uniform isomorphism is a

homeomorphism.
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Proof:

Let f be a uniformly continuous function on (X, 1L ) to (Y, V*) and

let U be a neighborhood of f (x) . Then there is a V in 2^ such that V

[f(xj] C U, and f"' [v [f(x)j] = £y: f(y) is in V [f(x)]> =

f y : (f (:•:), f(y)) is in V [f(x)J j
. Hence the set f~' [f(x)j]

is equal to f2
' [v] (x) and is a neighborhood of x. Therefore continuity

is established.

The final statement in the theorem follows directly from the definition

of a homcoraorphism.

If f is a function on a set X to a uniform space (Y, then it is

not generally true that the family of all sets fp~' [^vj for V in #*is

a uniformity for X. The problem is that there may exist a subset of X X X

Which contains some set f2
~' PV ] , but is not the inverse of any subset

of Y X Y. However the following theorem provides a means for developing a

uniformity from this set.

THEOREM IX : If f is a function on a set X to a uniform space (Y, 2T)

,

then the family of all sets f2
~' jVjfor V in W is a base for a uniformity

for X.

Proof

:

It is evident that f^ preserves inclusions, intersections, and inverses.

Therefore it is only necessary to show that for each member U of f there is a

V in V such that f^' [y]. f2
"'

[V] C fjf' [ u] . If V*V C U and (x,y)

and (y.a) belong to f2
~' [v] , then both the points (f(x), f(y)) and (f(y),

f(z)) belong to V, and hence (f(x), f( z )) is in V*V. Thus for each U in 2T

there exists a V in V such that f-l [v] ° f2
"'

[y] C t{ '

[u] and

therefore the family of inverses of V is a base for a uniformity 2L for X.
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It can be shown that f is uniformly continuous relative to UL and ,

and in fact that 21 is smaller than any other uniformity for which f is

uniformly continuous Fl2 J .

If (X, 21 ) is a uniform space and Y is a subset of X, then by the pre-

vious statements there is a smallest uniformity such that the identity map of

Y into X is uniformly continuous. In this case the members of ^'are simply

the intersections of the members of 2( with Y X Y. This is sometimes called

the trace of "2( on Y X Y. The uniformity V is called the relativization of

2( to Y, or the relative uniformity for Y, and (Y, 2r ) is said to be a uniform

subspace of (X, H ).

PRODUCT UNIFORMITIES

In the preceding discussion it is stated that there is always a unique

smallest uniformity which makes a map of a set X into a uniform space uniformly

continuous. This idea may be extended to a family F of functions such that

each member f of F maps X into a uniform space (I*, Z( -r). The family of

all sets of the form f

£

1

[ u] = £(x,y) : (f(x), t(y)) is in U, 7 ,

for f in F and in 2tfl is a subbace for a uniformity V. for X, and K is

the smallest uniformity such that each map f, and element of P, is uniformly

continuous. This loads to the following definition of the product uniformity.

If (X
a , IX is a uniform space for each number a of an index set A,

then the product uniformity for)( |V-
a : a is in k] is the smallest uniformity

such that the projection into each coordinate space is uniformly continuous.

THEOREM X : The topology of the product uniformity is the product

topology..
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Proof

:

The family of all sots of the form f(x,y) : (^a»ya ) in u ] » - or a in

A and U in is a subbase for the product uniformity. If x is a member

of the product space, by application of theorem IV a subbase for the neighbor-

hood system of x (relative to the uniform topology) may be obtained from this

subbase for the product uniformity. Therefore the family of all sets of the

form ^y : (^lYa) ^n ^\ 'Ls a subbase for the neighborhood system of x.

Hence the family of all finite intersections of the sets of this form provide

a base for the neighborhood system of x. However, a base for the neighbor-

hood system of x relative to the topology of the product uniformity is the

family of finite intersections of sets of the form |*y : ya is in U
£
xa]j

for a in A and U in 7Lk , and those sots my also bo written as fy

is in U "| . Thus the base for the neighborhood system of x relative to the

topology of the product uniformity is the same as the base for the neighbor-

hood system of x relative to the product topology, and hence the product tooology

is the topology of the product uniformity.

THEOREM XT : A function f on a uniform space to a product of uniform

spaces is uniformly continuous if and only if the composition of f with each

projection into a coordinate space is uniformly continuous.

Proof:

Bfj definition of the product uniformity, if f ''is uniformly continuous

with values in the productV jV : a in A*? , then each projection Pa is

uniformly continuous and hence the composition P£
" f is uniformly continuous and

the necessity of the theorem is proved.

The sufficiency part of the theorem states that if the composition of f

with each projection is uniformly continuous, then f is uniformly continuous.
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Therefore if f is uniformly continuous for each a in A and U a member of

the uniformity for Xa , then the set £(u-,v) : (P»f(u), P«f(v)) is in U "I

is a member of the uniforr.iity V of the domain of f . This set can be written

as follows:

f
2

' [(x,y) : xa ,y.) in u]

whore £(x,yj : (xa,ya ) in uj is a subbaco for the product uniformity.

Kcnce the inverse under fp of each member of a subbase for the product uni-

formity belongs to V and therefore f is uniformly continuous.

The developement of the relationship between uniformities and pseudo-

metrics for X will be considered next.

A pseudo-metric is a distance function on the cartesian product X X X

which satisfies the conditions for a metric except that it may equal zero for

for two distinct points.

THBO:^: XII : Let (X, ZL ) be a uniform space and let d be a pseudo-

metric for X. Then d is uniformly continuous on X X X relative to the product

uniformity if and only if the set [ (x,y) : d(x,y) <r j is a member of U
for each positive r.

Proof:

Lct Vd,r
=

£( >:'^ : d (xiy) < r
j • If U is a member of Z( , then the

sets f((x,y), (u,v)) : (x,u) is in u] and [((x,y), (u,v)) : (y,v)

is in ul arc members of the product uniformity for X X X, and the family of

all sots of the form j((x,y), (u,v)) : (x,u) in U and (y,v) in U j is

a base for the product uniformity. Therefore if d is uniformly continuous on

X X X, then for each positive r there exists a U in 21 such that, if (x,u) and

(y,v) are in U, then

d(x,y) - d(u,v) < r.
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In particular, letting (u,v) = (y,y), it follows that, if (x,y) is in

U then d(x,y) < r. Ilcncc U C Vd r and therefore Va p is in 2^ .

To prove the sufficiency of the theorem, let (x,u) and (y,v) belong to

Vd,r» ^d,r an clement of 11 . This implies the folloT.ri.ng two inequalities:

(a) d(x,y) ^ d(y,v) + d(v,u) + d(u,x);

(b) d(u,v) ^ d(v,y) + d(y,x) + d(x,u).

Nov; (a) implies that d(x,y) ^2r + d(u,v) and (b) implies that d(u,v) ^ 2r

+ d(x,y). Therefore Jd(x,y) - d(u,v) <C 2r and it follows that if
r

is 21

for each positive r, then d is uniformly continuous on X X" X.

METRIZATIOK

Every pseudo-metric d for a set X generates a uniformity in the following

way. For every positive number r lot equal £(x
fy) : d(x,y) < r

j .

Then (V^r ) = Vdt3*, Vd>r f\ VdjS equals Ydjt where t is the minimum of r

and s, and the composition of Vd>r with itself is equal to Vd 2r. From this

it is apparent that the family of all sets of the form Vj „ form a base fora, r

a uniformity for X. This uniformity is called the oseiido-metric uniformity ,

or the uniformity generated by d.

The uniformity generated by d can be described in an other way. By

theorem XII a psuedo-mctric d is uniformly continuous relative to a uni-

formity V if and only if Vd r is in Vfor each positive r. Therefore the

uniformity H generated by d can be described as the smallest uniformity for

Which d is uniformly continuous on X X X. This leads to the statement that a

uniform space (X, H ) is said to be pscudo-metrizable (or metrizable) if and

only if there is a pseudo-metric (metric, respectively) d such that 2( is the

uniformity gene-rated by d.
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Before progressing to the metrization theorem it is necessary to provo

the following lemma.

HETRIZATION LEMMA : Let j*Un , n = 0,1,2, • • »j be a sequence of subsets

of X X X such that U
Q
m X X X, each Un contains the diagonal, and Un+1 • Un+1

*

Un+1 C Un for each n. Then there is a non-negative real-valued function d

on X X X such that

(a) d(x,y) + d(y,z)^ d(x,z) for all x,y,z:

(b) Un C £(x»y) : d (x»y)< 2
~n

j C Un-1 for each positive integer n.

If each Un is symmetric, then there is a pseudo-metric d satisfying

condition (b).

Proof:

Define a real-valued function f on X X X as follows:

- jl/2n if (x,y) is in U -y- U.
f (x,y) = <

( if (x,y) is in Un for all n.

For each x and each y in X let d(x,y) be the greatest lower bound of

**Sj I^CxitXj+i) : i = 0» l|2,'",n"^ over all finite sequences xq,

x
l»

* '
' ,xn+l such khat x = xq and y = x^+i. To show that the triangle in-

equality holds consider any three points x,y,z in X. Then d(x,y) = greatest

lower bound of the summation of all finite chains connecting x and y.

However, when considering all finite chains connecting x and y, it is obvious

that the one passing from x to z to y is included in the summation. This

would be true for any three points in X X X. Hence it is quite obvious that

the triangle inequality holds.

The proof of condition (b) will be dono in two parts. The first part,

Un C [(x,y) : d(x,y) < 2-n^ , follows from the fact that since d(x,y) is

always less than or equal to f(x,y), then Un C {(
x»y) • d (x.y) < l/2n j .
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The second part of condition (b) states that if d(x,y) is less than l/2n ,

then (x,y) is in Un-1 . This reduces to showing that f (x
Q ,

xn+1 ) <T 2

^\ |"f(xi,xi+i)
"j

. This last inequality is easily shown to be valid

for n = 0. For the rest of the proof consider the ^> |

f(xit xj+i) : i = r »

, . .,s 1.. as the length of the chain from r to s+1, and let a be the length

of the chain from to n+1. Let k be the largest integer such that the chain

from to k is of length at most a/2, which implies that the length from

k+1 to n+1 is at most a/2. By the hypothesis, each of the two, f (xq, xk ) and

f(x
k
,x
n+1

) is at most 2(a/2) = a and certainly it is true that f(xk , is

at most a. If m is the smallest integer such that 2~m^a, then (xq, x
k ),

(xkt xk+i) and (xk+1 ,
xn+1 ) all belong to Um and therefore (x

Q ,
X +^) is in

Um-1* Hence f (x0» xn+l) ^ 2"m+1 ^: 2a and the proof is completed.

If U
n is symmetric, then f (x,y) = f (y,x) for each pair (x,y) and hence

there exists a pseudo-metric which satisfies condition (b).

The metrization theorem first appeared in the paper by P. Alexandroff

and Urysohn in 1923t in which the authors were seeking a solution to the

general metrization problem. Their results stated that a topological Hausdorff

space (X, ) is metrizable if and only if there is a uniformity with a

countable base such that -J is the uniform topology. While this does not

give a satisfactory solution to the topological metrization problem, it does

satisfy the metrization problem for uniform spaces. The following form of the

theorem first appeared in Andre Weil's monograph • ^e Pro°^ given

here is the arrangement of A.H. Frink's proof as given in Bourbakie .

Metrization THEOREM : A uniform space is pseudo-metriable .if and only if

its uniformity has a countable base.
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Proof

:

If a uniformity U for X has a countable base V0' V1' V2*"' then it is

possible to construct by induction a family of sets Uq,U^, U2> such that each

U is symmetric, and the composition of Un with itself twice is contained in

U , and also U C V for each positive integer n.
n-i n w n

The family of sets U is then a base for *U , and upon applying the

metrization lemma it follows that the uniform space (X, t( ) is pseudo-metriz-

able.

This theorem implies that a uniform space is metrizable if and only if

its uniformity has a countable base and it is Hausdorff

.

A uniformity for a set X may be derived from a family P of pseudo-metrics

in the following fashion. Letting Vp>r equal j"(x,y) : p(x,y) < r ^ ,

the family of all sets Vp
>r for p in P and r positive is a subbase for a uni-

formity IX for X. This uniformity is defined to be the uniformity generated

by P and can be described in several ways. By theorem XII the uniformity

generated by P is the smallest uniformity which makes each member of P uniforml

continuous on X X X [~9
, p. 18?J .

Corresponding to the metrization theorem for topological spaces is the

classification of these uniformities generated by families of pseudo-metrics.

This might be referred to as the generalized metrization problem for uniform

spaces. The solution is given by the following theorem.

THEOREM XIII : Each uniformity for X is generated by the family of all

pseudo-metrics which are uniformly continuous on X X X.

Proof

:

Let (X, K ) be a uniform space and let P be the family of all pseudo-

metrics for X which are uniformly continuous on X X X.
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The uniformity generated by P is smaller than V. by theorem XII. However,

the metrization lemma shows that for each member U of U there is a member p

of P such that the set ^(x,y) : p(x,y)
J

is contained in U, and there-

fore H Is smaller than the uniformity generated by P. Thus each uniformity

is generated by P and the proof is completed.

The following theorem yields a characterization of those topologies which

can be the uniform topology for some uniformity.

THEOREM XIV : Each uniform space is uniformly isomorphic to a subspace of

the product of pseudo-metric spaces and each uniform Hausdorff space is iso-

metric to a subspace of the product of metric spaces.

Proof:

Let X be a space and P be the set of all pseudo-metrics on X X. If

into Z where f is defined by f(x) = x for each x in X and p in P. Let the

p-th coordinate space of this product be assigned the uniformity of the pseudo-

metric p, and let Z have the product uniformity. Then the projection of Z

into the p-th coordinate space is the identity map of X onto the pseudo-

metric space (X, p), and it follows from Theorem XI that the uniformity gener-

ated by P is the smallest having the property that the map of X into Z is

uniformly continuous. Since f is one-to-one, this is a uniform isomorphism of

X onto a subspace of the product of pseudo-metric spaces. The proof for the

uniform Hausdorff space is ommitted.

As a result of this theorem which states that each uniform space is homco-

morphic to a subspace of a product of pseudo-metrizable spaces, the following

corollary can be stated.

COROLLARY : A topology 3 for a set X is the uniform topology for some

Let f be the map of X
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uniformity for X if and only if the topological space (X, J3 ) is completely

regular.

Proof:

The proof uses the fact that a space is completely regular if and only

if it is homeomorphic to a subspace of a product of pseudo-metric spaces Q?

,

p. 134j .

The remainder of this paper is devoted to the clarification of the re-

lationship between uniformities and pseudo-metrics. A family P of pseudo-

metrics for a set X is said to be a ftage if and only if there is a uniformity

£( for X such that P is the family of all pseudo-metrics which are uniformly

continuous on X X X relative to the product uniformity derived from U . A

direct description of the gage generated by a family P of pseudo-metrics can

be given. The family of all sets of the form V
p p

for p in P and r positive

is a subbase for the uniformity of the gage. Therefore a pseudo-metric q is

uniformly continuous on the product space if and only if for each positive

number s the set V_ contains some finite intersection of sets V„ _ for n inp,s p,r i

P. This remark establishes the following theorem. A detailed proof can be

found in Nagata's paper f| J .

THEOREM XV : Let P be a family of pseudo-metrics for a set X and Q be

the gage generated by P. Then a pseudo-metric q belongs to Q if and only if

for each positive number s there is a positive number r and a finite subfamily

Pi 1 P2 »* * Pn
of P such that f) fvpi>r : i = 1,2, • • •

, n j is contained

- Vq,s '

Each concept which is based on the notion of a uniformity can be described

in terms of a gage because each uniformity is completely determined by its

gage. The following theorem simply summarizes the major ideas and is given

without proof.



THEOREM XVI : Let (X, K ) bo a uniform space and let P be the gage of

. Then:

(a) The family of all sets V
p
for p in P and r positive is a base for

the uniformity 2C .

(b) The closure relative to the uniform topology of a subset A of X

is the set of all x such that the p-distance (x, A) = for each p

in P.

(c) The interior of a set A is the set of all points such that for some

p in P and some positive number r the sphere V
r {JxJ C A.

(d) Suppose P is a subfamily of P which generates P. A net* Sn , n in

D in X converges to a point s if and only if p(S
n , s), n in D

converges to zero for each p in P.

(e) A function f on X to a uniform space (Y, ir) is uniformly continuous

if and only if for each member q of the gage Q of V it is true that

q»f
2 is in P. Equivalent^, f is uniformly continuous if and only

if for each q in Q and each positive number s there is a p in P and

an r positive such that, if p(x,y) < r, then q(f(x), f(y)) < s.

(f) If (Xa , U & ) is a uniform space for each member a of an index set

A and Pa is the gage of 2/ a . then the gage of the product uniformity

for X^[ X
a : a in is generated by all pseudo-metrics of the

form q(x,y) = Pa (x , ya ) for a in A and p in P .

* A net is a pair (S, < ) such that S is a function and <: directs the

domain of S p f p. 65 ~\
.
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Frechet first considered abstract spaces in his 1906 thesis. The early

development of this concept can be found in Kausdorff's C-rundzunje der Mengen-

lehre. From this early research two fundamental ideas have developed: that

of a topological space and that of a uniform space. Andre Weil was the first

to formalize the idea of a uniform space in a paper in 1937. The study of

uniform space developed from the study of topological groups as is evident

by the similarity of the defining properties for a uniformity and a topo-

logical group.

The defining properties and characterizations of a base and a subbase

for a uniformity are given since a uniformity is determined entirely by its

base or subbase. These two concepts are then extended to the uniform topology

of a space XXX.

The definition and necessary and sufficient conditions for uniform

continuity are stated for a uniform space. These conditions provide a

different base for a given uniformity U, and enable one to show the existence

of a smallest uniformity for space.

The concept of a smallest uniformity is extended to the product space

and is used to prove that the topology of the product uniformity is the pro-

duct topology. This result leads to the necessary and sufficient conditions

for a pseudo-metric or metric on the space X to be uniformly continuous on

X X X.

k

The last section is concerned with the generalized metrization problem

for uniform spaces. A solution of this problem is given by the Metrization

Theorem. This solution enables one to state most of the previous results

in terms of a pseudo-metric on the space.


