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Abstract—We consider a wireless sensor network tasked with
tracking a process using a set of distributed nodes. Here, multiple
remote sensor nodes estimate the physical process (viz., a moving
object) and transmit quantized estimates to a fusion center for
processing. At the fusion node a BLUE (Best Linear Unbiased
Estimation) approach is used to combine the sensor estimates
and create a final estimate of the state. In this framework,
the uncertainty of the overall estimate is derived and shown to
depend on the individual sensor transmit energy and quantization
levels, as well as the Kalman tracker uncertainty at the node.
Since power and bandwidth are critically constrained resources in
battery operated sensor nodes, we attempt to quantify the trade-
off between the lifetime of the network and the estimation quality
over time. Three different convex formulations of the underlying
non-convex Mixed Integer Non-Linear optimization problem are
presented. Unlike previous work, this effort incorporates the
operating state of the nodes into the decisions of the optimum bits
and transmission power levels based on a heuristic. Simulation
results for all formulations demonstrate the quality of the state
estimate as well as the extended lifetime of the WSN.

Index Terms—distributed tracking, distributed estimation,
wireless sensor networks, convex optimization

I. INTRODUCTION

N wireless sensor network (WSN) applications, a typical

pursuit is to take measurements or estimate the state of
a physical dynamical process at each of the independent,
spatially dispersed, sensors in the network. In the centralized
distributed estimation scheme [1], individual sensors perform
local processing and forward the data or estimates through
a communication network to a fusion node, which combines
the reports to form an estimate of the parameter or process.
Distributed estimation via wireless sensor networks presents a
variety of interesting challenges including the understandable
limits of communication bandwidth which introduce quanti-
zation error in addition to the error induced by noise in the
wireless channel. Another practical constraint is that of the
sensing nodes themselves, which have limited battery power.
Thus, a WSN estimation paradigm is desired which offers
acceptable performance (in mean squared error (MSE) or a
similar metric) while also being energy efficient so as to
prolong the lifetime of the WSN.

Distributed estimation incorporating the effects quantization
and/or communication has received significant interest in the
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recent past, and especially in the last decade. Early works
[2], [3] typically consider scenarios with spatially distributed
processors utilizing linear measurements with knowledge of
the joint distribution of the measurement noise. The authors in
[1] generalize distributed estimation to nonlinear observations
with the similar assumption of partially known statistics.
Early work on quantization [4]-[6] uses joint distributions of
the measurement noise for efficient estimation in distributed
systems while considering noiseless communication. The work
in [7] explores sequential signal encoding with power and
delay constraints on the distributed estimation framework. The
authors in [8] achieve the optimal quantization for distributed
estimation based on a training sample in unknown noise
statistics. The spatial correlation among sensor measurements
is accounted for in the design of quantizers for distributed
estimation in [9]. A class of maximum likelihood (ML)
estimators of a parameter are proposed in [10] which achieve
the estimation performance of the sample mean merely from
observations which are quantized to a single bit. Similarly, in
[11], ML estimates of a variance parameter from single bit
quantizations utilize a sequentially updated adaptive quantiza-
tion threshold.

A universal decentralized estimator is designed in [12]
which utilizes Best Linear Unbiased Estimation (BLUE) with-
out knowledge of the measurement noise statistics. In [13],
a BLU estimator is used while considering of the effect of
channel noise and measurement noise on the variance of the
estimator. Here, an upper bound for the variance is derived
which produces a power and rate efficient estimator. Using
the result in [13], the authors in [14] find an upper bound
on the variance of the BLUE which is used to design an
efficient estimator. A rate-constrained distributed estimation
scheme is designed in [15] which trades off the total rate used
by the WSN with the number of active sensors. Similarly, [16]
investigates the trade-off between number of active sensors and
the energy used by each sensor. The same authors (in [17])
introduce function-based network lifetime and optimize it to
produce a specified estimation accuracy at the fusion node.
The authors in [15], [17] both assume distortion free commu-
nication. The joint optimal energy allocation and quantization
level to minimize error in a binary symmetric channel with
non-zero cross over probabilities is analyzed in [18].

Distributed BLU estimators that are utilized in previous
work either consider only measurement noise variance or mea-



surement and quantization noise variances. The only previous
works that incorporate measurement, quantization, and channel
noise variance for use with a BLU estimator are [19] and
[13]. The work in [13] considers scheduling of sensor energy
transmission and quantization levels for local estimation at the
sensors from which other control actions are taken. Distributed
estimation is not implemented. This estimator follows from a
model [19] used to investigate the effect of channel fading on
the accuracy of a sensor node.

Prior efforts in distributed tracking are primarily concerned
with sensor scheduling and selection algorithms. In [20], the
lifetime of the network is optimized by determining how many
sensors to keep active. A detailed energy function is used
to construct an energy-usage based cost function which is
optimized. The authors in [21] formulate the sensor scheduling
problem in terms of disjoint set covers of the observation
space. Distributed tracking using WSNs is done in [22] where
quantization is accomplished by reducing the dimension of the
state variable such that the transmit power budget will be met.
Channel-aware distributed tracking is accomplished in [23]
by performing particle filtering at the fusion node, however,
only centralized tracking and transmission power levels are
considered. A unique alternative to the above is found in
[24] where sensor scheduling is formulated as approximate
dynamic programming problem which chooses a leader node
and a subset of observation nodes.However, while power con-
straints and channel noise are considered, quantization noise
is not. Unlike the prior works discussed, our work focuses on
optimizing the use of network resources after scheduling and
selection.

Once a subset of the sensors has been selected/scheduled,
how does the fusion center instruct the optimal quantization
and transmission of the node data? And how does it continue
to do this so as to prolong WSN lifetime? These are the
questions this paper attempts to add insights to. We consider
a time-based resource management problem and, specifically,
this work attempts to extend the authors’ concept of fairness
[25] (with respect to the operating state of each node) and
incorporates a heuristic which extends the lifetime of energy-
deficient nodes. Prior efforts have put significant focus on
the understanding of dependencies of channel conditions,
quantization level and measurement noise on ideal sensors for
distributed estimation for a single time instance. While some
modeling elements are similar, it is of particular distinction
to note the differences of this work from [13], [14], [16].
These works consider a total power constraint (or minimizing
total power) with the motivation of preventing nodes from over
utilizing power. We do not consider the total power, but the
minimization error. In addition to this, a total power constraint
is looser than individual node power constraints, which we
have implemented. These works, however, do not consider a
network total bandwidth constraint, or the decoupling of the
power and bit decision variables, as we have. It could even
be proposed that a total power constraint and a bandwidth
constraint are comparable given the correct antecedents. Fur-
thermore, the resulting methods typically are intuitively water-
filling-like algorithms; while our method (given the nodes are
already scheduled) has the behavior of a reverse-water-filling-
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Fig. 1. An illustration of the specified distributed estimation system in which

sensor nodes send Kalman filter updates.

like algorithm. An additional novel pursuit of this research
with respect to prior similar work is that it accounts for the
operating state of the sensor through time and explores the
effect of its consideration on WSN lifetime.

We formulate an optimization problem in which distributed
estimation takes into account the power and bandwidth con-
straints of wireless sensors nodes for repeated time instances.
This method uses a scalar BLU estimator which is adapted
for vector quantities and whose variance represents the effects
of process, measurement, quantization, and channel noise.
The minimization of this variance objective under the afore-
mentioned constraints is a non-convex Mixed-Integer Non-
Linear Program (MINLP). The relaxed (continuous) problem
is identified as a difference of convex functions (DC) and
approximated by a convex function [26] and solved using
Sequential Convex Programming (SCP). An additional convex
formulation (not DC) is also detailed, as well as a “worst case”
formulation which results in a more rapid solution.

Section II details the setup of the problem of interest while
Section III chronicles the formulation of the optimization
problem and introduces the heuristic scaling parameter. As
simulation results in Section IV demonstrate, the lifetime
of the WSN is extended with the inclusion this heuristic,
maintaining some menial loss of estimation performance. The
trade-off between consistent estimation accuracy and network
lifetime is investigated using the heuristic scaling developed
herein. We show that network lifetime can be extended to over
250% of the original by an appropriate choice of the heuristic
scaling parameter.

II. SYSTEM MODEL

The considered paradigm contains multiple remote sensor
nodes with power and bandwidth constraints which filter state
estimates and transmit them to a fusion center for processing,
as illustrated in Figure 1. It is the responsibility of the fusion
node to instruct each node on how to send its update at each
time instance via some orthogonal signaling scheme'. It is
assumed that the fusion node is not energy constrained in its

1For example, if FDMA is used then a fixed total bandwidth is divided among the
nodes. Thus, our method can be thought of as an adaptive bandwidth assignment FDMA
scheme.



transmissions and that the energy of receiving a transmission
at a sensor node is negligible. As power is not constrained
at the fusion node we assume practically noiseless feedback.
Parameters which the fusion node uses to control the optimal
reporting strategy or that it must take into account include:
the accuracy of the state estimate of each node, the level of
quantization, any effects of the noisy communications channel,
as well as the remaining transmit energy (battery life) of
each node. We consider a WSN with N spatially distributed
nodes. These nodes take measurements of a dynamic process
and update their local state estimates. The state estimate is
quantized and transmitted to the fusion node, which estimates
the state from the received reports.

A. Sensor Level Kalman Filtering
In these systems, the generalized state space model for the

nt" sensor is of the form
x(k+1) = fx(k),wk+1),k) (1)
Zn(k) = hn(x(k)a k) + Vn(k) (2)

where x(k) is the d-dimensional state of the true system at
time instance k. The functions f and h,, are the general-
ized state transition and observation functions. The process
noise vector w(k) ~ N(0,Q(k)) is assumed to be due to
disturbances and modeling errors, z,(k) is the observation
vector and v, (k) ~ N(0,R,,(k)) is the measurement noise
at node n, where Q(k) and R,,(k) represent the process and
measurement noise covariance matrices, respectively. We make
the normal simplifying assumptions about the noise processes
being zero mean, white, and uncorrelated. The goal for each
local sensor is to estimate x(k).

In this paper, the state transition function modeled in the
simulations of Section IV is “nearly constant velocity” (NCV)
propagation. The measurement model is a simple position-only
observation function. The next section details the estimation
of the state from the received Kalman updates.

B. Optimal Estimation from Kalman Updates

After a sensor node has measured the dynamical process and
updated its local estimate, it will have obtained a state vector
and covariance pair, {X, (k|k), P, (k|k)}. In practice, both the
state estimate and its covariance matrix would be quantized
and transmitted to the fusion node where a final estimate
is formed. However, to maintain simplicity in presentation,
we study the effect of quantizing and transmitting the state
information while assuming that the fusion center has error-
free knowledge of the covariance structure; this is a common
assumption adopted by other authors [13]. While the extension
of the analysis to additionally transmitting the covariance
structure simply involves sending more data (corruptible by
quantization and transmission), we delay this discussion for
future work. Instead, we evaluate our approach by testing
the sensitivity of it to the knowledge of the covariance
information. This is done by adding a random perturbation
to the covariance information and executing the forthcoming
methods, as shown in Section IV-D. Given the state estimate
at the node, the state vector is then quantized as

0%, (k|k)} = %, (K|E) +nl(k) Vn=1,....N (3

where nj(k) ~ N(0,R{(k)) is the quantization noise of
the n*" sensor at time k, with RY (k) the quantization noise
covariance. The quantized data is mapped to a bit stream or
other form suitable for transmission. Each bit of the data
stream consisting of b, bits is transmitted independently
(by means of some orthogonal signaling scheme) through
noisy wireless fading channels to the fusion node. The final

information received at the sensor fusion node is

Xn (K[k) Qfxn (klk)} + 0y, (F)
= Xn(k[k) +nj (k) + ng (k), @

V' n = 1,...,N, where n&(k) ~ N(0,RS(k)) is the
channel noise of the n'" sensor at time k due to imperfect
communication, with R (k) the channel noise covariance. We
make the standard assumption that the internal noise of the
state estimate, and the quantization and channel noises are all
uncorrelated, since each of these noises could be considered
as coming from independent sources.

At the fusion node, received state updates, affected by var-
ious noise sources, are combined linearly to form an estimate
of the actual process state. The predecessor of this estimation
paradigm was introduced in [25] where scalar measurements
of a deterministic source are used to make a single estimate
at the fusion node. The issue of combining Kalman states by
filtering is complicated by common process and measurement
noise [27] of the sequential state estimate reports from a
particular sensor. The methods typically employed are often
practically infeasible [28] and it should be noted that they are
avoided in our work by simply estimating the current state
from the only the most recently reported state estimates. We
extend the simple scalar estimator of our previous work to send
the elements of a vector state. In this case we consider each
element of the state vector independently and this results in the
centralized BLU-like estimator of the elements of x(k) which
are x'(k), i = 1,...,d. The BLUE at the fusion node then
determines an optimal number of bits and transmitting power
for each of the sensor nodes in order to minimize the total
variance of the elements of the state vector it is estimating.

We extend the simple scalar estimator in order to send
the elements of a vector state. The BLUE method for vector
estimates (cf. [29]) assumes the “measurements” (or reports
in this case) of the true state are of the form

X(k) = H(k)x(k) + U (k) )
where H(k) is a linear combining matrix and U(k) ~

N(0,P(k)) represents additive noise. In the notation we have
given so far

X(k) =[] (kl[k) %3 (k|k) -~ XN (kIR (6)
H(k) = [alIq| | Loy na
U(k) = [uf(k)ug(k) - up(k)]"

where I; is an identity matrix of size d X d. To maintain
unbiasedness, the linear combining matrix W (k) must satisfy
W (k)H(k) = I. The resulting vector BLU estimate is given
by

W (k)X(k) (N
[H (k)P (k)H(k)] " HT (k)P (k)X(k)

xprve(k)



where P(k) is a composite covariance matrix represented as

P(k) = diag{[P1(k|k)+R{+R{], ..., [Pn(klk)+Ry+RY]},
®)
i.e., block diagonal, for the case where the individual reports
are uncorrelated?. We define P} (k|k) as the variance of the
i*" element of the update vector at time % from sensor node
n. We assume these noise processes are uncorrelated in time,
as well as spatially across vector elements. Noting the lack of
a time index, this is reflected by RZ = E[nIn?"] = 021,
RS = Enénéf] = 621, Vi =1,...,d, n = 1,...,N,
where FE|[-] denotes the expectation operation. We repre-
sent the scalar variance terms as r&(k) = [R%(k)];; and
r&i(k) = [RS(k)];s Vi =1,...,d, which are the variances
of the elements of the noise vectors. Note that the channel
and quantization noise variances are functions of the power
transmission level and bits used for quantization.

We use the mean squared error associated with this BLU
estimator (also the variance), denoted D, as the metric of
uncertainty to be minimized. The trace of the BLU estimate
error covariance is taken to obtain a scalar quantity as

D(k) = tr {cov(xprve(k) — x(k))}
= o { (BT (b () E(R) '

N c -1 -t
= tr$ (SN [Pa(klk) + RS + R ) ©)
-1
_ 1

=¥ 1(Zn LR (k)i (k) +r (k))
:Zi=1 Di(k),

where D; (k) is the BLUE error variance for the i* element of
the state estimate. The above definition of D(k) follows since
i) the second equality produces, by definition, the matrix form
of the BLUE error covariance, ii) the third equality holds when
the reports from the nodes are uncorrelated, and iii) the fourth
equality is true when the noise terms are spatially uncorrelated.
Since we have made these assumptions?, (9) is our total
uncertainty metric. Under these assumptions, the calculation of
the optimal parameters for quantization and transmission allow
the elements of the state vector to be estimated individually
as

Torop = (Z (&L (kIK) —xl(k))?])

&, (k| k)
(@, (k[k) — 27 (K))?)’

N

N

(10)

Vi=1,...,d Letx; € [-W, W] with [-WW, W] the dynamic
range of the measurement source. Then for a scalar element
of the state vector,
W2

T 3(2bnk) —1)2
is the uniform quantization noise variance. Each b (k) €
[1, BW] is the number of bits used to quantize the i*" element
of the state estimate from sensor n to the fusion node. BW

(1D

2With the uncorrelated reports assumption, iii), we recognize that not all process noise
models possess the quality of being spatially uncorrelated. When not true, then the total
uncertainty in (9) becomes an approximation.

is the rate constraint for the entire system. The quantization
scheme is homogeneous across sensors for a quantization
level, with a set dynamic range for components of position,
velocity, et cetera. If the nt" sensor node communicates
using BPSK modulation for a Rayleigh fading channel then
a modulation scheme that produces a probability of error of
Pi¥(error|k) for the £ bit of the transmission, then the noise
due to the imperfect channel is

0 (1) — +2ALE P (error|k)
ng' (k) = b (k)1 i g (12)
0 1=>r0  Pyt(error|k)
where ALl = % is the quantizer step size. We now

assume: a) the bits in the transmit sequence have indepen-
dently distributed probability of error, i.e., Pit(error|k) =
Pi(error|k), c) there is as most one bit error in each transmit
sequence, and b) the channel noise variance is unchanged
during a transmission period. All of these are reasonable
assumptions for a slow fading channel with adequate channel
coding. Thus the noise variance contributed from the channel

is bl (k)1

réi(k) = Z (£2°AL2 PY (error|k)

=0

by, (k)—1
= Pi(error|k) x (ALf)? Z 4
=0
2
A %Pfl(erroﬂk),

which simplifies to

réi(k) =

n

4w? . 0.5T%

3 14+0.51% -
Where T, = W represents the average received signal-
to-noise-ratio, p!, € [p™™ p™a*] is the transmit energy level
for the i*" element of the n*" sensor. The minimum power
level per bit is p™" which is necessary to achieve a minimum
system SNR. The maximum power per bit in a transmission
is p™e®. The power level p? considers only the RF power
required at the node, and none of the power consumed by
other circuits in the device, which are considered negligible for
simplicity in our analysis. The average power of the Rayleigh
fading channel coefficient is |h,|? and Ny/2 is the channel
noise power spectral density.

The previous discussion has introduced an objective for
distributed estimation, which is optimal in the sense of min-
imizing an uncertainty metric which is a function of the
variance of the estimate. The next section nestles this objective
into the formal optimization statement which includes the
constraints on the control variables.

13)

III. OPTIMIZATION PROBLEM FORMULATION

It is desirable that optimization of quantization and transmit
energy levels produce a balanced trade-off between estimate
uncertainty and network lifetime. This trade-off is the subject
of the following discussion. The optimization problem initially
considers only the minimization of estimate variance under the
given constraints, while lifetime is considered when we discuss
energy-aware optimization. Assuming a subset of sensors has



already been selected, we want to find the optimal of number
of bits and transmit power levels that produce the best linear
unbiased estimate of the process state, given the maximum
resources allowed to be utilized. We perform the optimization
of the following method for all time steps in the scenario or
until the network has no active nodes (non-zero remaining
energy). The formal expression of the minimization problem
for a single dimension state vector is

minimize D(k)
subject to

SN ba(k) < BW

A (F)pn (k)bn (k) < pp™ (k) (14)
pn(k) *p;nal’ S 07 szi” 7pn(k) S 0
Vn=1,...,N.

Equivalently, the objective can be written as

minimize — D™Y(k),

which results in a simpler objective function (by removing the
inverse operating on the sum of inverted variance terms). The
total power resources expended by each node is p, (k)b (k).
Here p,, (k) and b, (k) denote the power and bits used by the
n'" sensor node at the k' time instance; A,, (k) € [1, 1] is the
weighting parameter, with fixed « a frugality parameter. A, (k)
is best defined as a weighting that reflects the resource policy
of each sensor based on its operating state, i.e., its remaining
energy in the battery (p/°™ in the above formulation). The
weighting adjustment parameter, «, determines how A, (k) is
updated. Low battery power would result in a large value for
A, (k) and vice versa, the role of A, (k) is discussed next in
Section III-C. The requirement that every node transmit at least
one bit (the —b,, (k) + 1 < 0 constraint) reflects the status that
selection and scheduling has already happened. The maximum
and minimum constraints defined for the p¢ (k) and b (k)
henceforth shall be referred to as “box-constraints”. The above
problem must be expanded to account for the information
transmitted for each of the elements of a multi-dimensional
state vector. Thus, the altered form for vector quantities is
written as

minimize — Zle D; (k)

subject to
Cl: Y0, 300 (k) < BW
C2: L MW (R (R) < i (k) (o
C3: b (k)+1<0
C4: pi(k) —proe <0
C5: ppim—ph (k) <0,
Vn=1,...,N, i=1,...,d.

This formulation is by nature non-convex in the variables p,
and b, and in reality is a mixed-integer non-linear program
(MINLP) with respect to the discrete values of the bits.
We convert this to a difference of convex (DC) functions
problem and solve the relaxed epigraph version of the problem
by introducing new ‘“uncertainty” variables ul (k), n =

1,...,N, i=1,...,d, where

un (k) = (i20) lcz %
Py (klk) + 7o (k) +ri ()
each of which is a scalar quantity. Recalling the dependency
of the channel and quantization noise on the power level
and number of bits variables, the new epigraph form of the
optimization problem is

minimize — Zle Zgil ul (k)
subject to (16)
i (kY 1 _
R = B Ry e
Vn=1,...,N, i=1,...,d,

in addition to constraints C1-C5. We make additional simpli-
fications to the uncertainty constraint by rewriting it as

. ) . 1

PO (k|k) + 750 (k) + r8 (k) — 0 <0
(noting that the function decreases in u!, (k) while the equality
constraint increases with respect to it, the substitution is
therefore adequate since the inequality introduced is strictly
active at the minimum). This form of the constraint however,
contains a convex function of power and bits, and concave
function of the introduced uncertainty variables (i.e., the u’s).
A first order Taylor approximation of the concave reciprocal
uncertainty term can be used to transform the difference of
convex (DC) functions constraint into an approximate convex
constraint. Thus the final convex approximation formulation
(abbreviated as CVX) is

minimize — Y0 SN i (k)

subject to
P (|k) + 7t (k) + rari(k) — (250600 <o
Vn=1,...,N, i=1,...,d,

a7
still subject to constraints C1-C5, where @, (k) is the iterated
point about which the Taylor approximation is taken. The
Sequential Convex Programming (SCP) iterations find a stable
upper bound to the original non-convex MINLP. Using SCP to
obtain an approximation to the DC program comes attached to
an increased computational effort as we must execute O(nm?)
operations to solve a SQP at each iteration (where m is the
number of constraints and n is the number of variables and
n < m). A total computational cost of O(nm?2L) results,
where L is the number of SCP iterations. Since the KKT
analysis does not provide any additional useful information
concerning the problem behavior [25], we use simulation
results to quantify the estimation performance of our relaxed
convex approximation. Although this Taylor approximation is
convex, the formulation experiences convergence issues be-
cause of the curvature of reciprocal function in the additional
constraint. Next we investigate the use of a linear function in
the added constraint to form a convex approximation which
bypasses the need for SCP.

A. Low Complexity Formulation

A simpler formulation that matches this problem and cir-
cumvents sequential convex programming is presented. If, for



Constraint Violation (if > 0)

-1/,
i

Substitution variable u or y

Fig. 2. An illustration of how the value produced by a negative linear
function minimized produces a reciprocal value corresponding to the negative
reciprocal function.

a moment, we relax some of the notation for the sake of clarity
in explanation, consider the objective obtained above (17):
Minimizing the negative of the sum of the uncertainty terms
implies minimizing each individually. The statement

(min —u) & (P + rq—ﬁ—rcg%)
L
(18)

=mazru — min {P+r?4r°}

maintains the truthfulness of what the substituted variable
is meant to force. Now a parallel is drawn for a different
substitutionary variable, y, playing an inverse role to u. The
objective is simply to minimize positive uncertainty (or —1

u
in the current notation).
(min y) & (P + r7+7r° <y)

=miny — min {P+r?4+r°} (19)

which has the same resulting effect as the reciprocal substi-
tuted term. Thus « corresponds to inverse uncertainty in (18),
and y simply to uncertainty in (19). This would now imply
that the new uncertainty variable should be

yn (k) = PO (klk) + i (k) + i (k).

To draw out a little more intuition, we plot the constraints
involving the substitutionary variables for the two formula-
tions. Maximizing the u’s will reduce the final objective of the
original non-convex problem written as (>, u!)~! is mini-
mized for maximum «,. Similarly, the y’s represent the noise
variance directly (and not the reciprocal) which will relates
the original objective when written as (3, yi —1, which is
minimized when y’’s are minimum. Figure 2'illustrates that
the graph of the two functions pursue reciprocal values of each
other and that » and y are both valid substitutionary variables
for the convexification of the problem. After inserting all of

the notable changes above, the final problem formulation is

minimize Z?Zl Zivzl v ()

(20)

subject to
P (klk) + it (k) + vt (k) — i (k) <0
YVn=1,...,N, i=1,...,d,

again still subject to constraints C1-C5. We call this new for-
mulation in (21) the Linear Constraint Convex Approximation
(LCVX) of the MINLP.

There are some convergence issues associated with the
reciprocal constraint convex form (CVX). These issues can
be mediated by tightening the tolerances which dictate the
stopping criterion for the optimization routine. In addition to
this, because the slope of the first-order Taylor approximation
is dependent on the noise variance offset in the constraint,
the difficulties associated with convergence vary from instance
to instance so that in many cases the reciprocal constraint
convex approximation achieves equal results than linear con-
straint convex form. However, the swift convergence of linear
constraint form provides the equivalent solution with more
consistency. In some sense, these comparisons are a moot
point since both approximations equally form convex upper
bounds to the original problem. For the sake of comparison,
the value of the objective functions of the previous convex
approximations are compared in Section IV-A with the same
objective evaluated with integer bits (which are rounded or
floored to satisfy the bandwidth constraint) from the continu-
ous optimized values. Thus the relaxed convex approximations
can be compared with the original mixed-integer non-convex
problem (which is solved using a branch and bound based
global solver). Next, the above approximations are further
reduced so that the number of variables is decreased and the
solutions to such simplifications provide a rapid upper bound
to the original MINLP.

B. Worst-Case Formulation

In the present convex formulations, there are d bit and trans-
mit energy parameters for each sensor node. It is desirable to
formulate this problem with an objective function D which ac-
counts for a single quantization and transmit energy parameter
for each of the sensor nodes. The reduction of these parameters
is done as follows. In the above (LCVX) formulation there
exist a choice of the number of bits and power transmission
level for each element of the state update for each node. If we
consider a system which chooses the number of bits and power
transmission level once for all elements of the state vector, the
we reduce the number of needed variables by 2N (d —1). This
transformation of the optimization problem is akin to requiring
worst-case satisfaction of the chosen solution, i.e., only one
of the uncertainty constraints will be active. An additional
N(d — 1) variables can be removed from the problem by
utilizing a single constraint with respect to the uncertainty
term per sensor node, instead of d of them. This form is
easily obtained by taking the maximum of the state covariances
for all state elements, the constraints now include only one
bit (p,,(k)), transmit energy (b, (k)), and uncertainty (y,(k))
variable per sensor node. This reduced variable “worst-case”
problem is written as

minimize d 25:1 y" (k)
subject to
max {P" (k[k)} + r2 (k) + (k) — y" (k) < 0
d Yo, b (k) < BW
dA™ (k)p" (k)b (k) < pre™ (k)
Vn=1,...,N.

(22)



TABLE I
CONVEX APPROXIMATION ALGORITHMIC DETAILS.

wC LCVX CvVX
Variables 2N 2Nd 3Nd
Constraints | 1+ 7N 14+ N(1+6d)
Runtime | O(N%) [ O(N3d®) [ O(N®d®L)

This representation of the convex program has a significant
difference from the previous (LCVX) form: the uncertainty
value being minimized is now the dimension of the state vector
times the worst MSE term of that state estimate. Thus, the
element of the state update vector with the largest variance
determines the quantization and power levels for all of the
elements of the state estimate for that node. Equivalently,
for that node this determines the number of bits all data are
encoded with and the transmission power level used. This
formulation upper bounds the original MINLP as well.

Continuing the analysis of this simplification we have
broken down the number of variables and constraints needed to
evaluate the preceding problems. The formulation in equation
(21) is the linear constraint convex formulation (LCVX) de-
rived alongside the reciprocal constraint convex approximation
(CVX) in (17). Both of these forms use the full number of vari-
ables and constraints (with the added uncertainty constraints)
from the original problem. The form in (22) is the worst-
case (WC) upper bound solution (worst-case in the sense of
the sensor node state estimate covariances), and simplifies the
problem by using a single bit and transmit energy variable
and the maximum covariance value of any of the elements of
an estimate at a particular node, thus reducing the number
of variables and constraints. Table I shows the number of
variables and their respective number of constraints given
N sensors, state vector dimension d, and L SCP iterations.
From these approximations we can glean the fact that the
worst-case upper bound will be considerably more efficient
when optimizing wireless sensor networks with a large number
of nodes, which might be running Kalman estimators for
two or three dimensions with higher order terms (velocity or
acceleration of states). Number of variables and constraints
for different convex approximate formulations of the optimal
power-quantization problem. N is the number of sensors, d is
the dimension of the state vector, and L is the number of SCP
iterations

C. Energy-Aware Optimization

The above formulations attempt to reduce the variance of
the fusion node estimate of the state by minimizing over
uncertainty as the free variable. Under this paradigm the
system will blindly use resources at each time iteration without
consideration of the need for future transmissions, for either
the sensor locally or its neighbors in the network. It was also
noted that the behavior of this configuration is unchanging for
differing channel or measurement noises between sensors, but
rather it continues in the presence of unequal noise levels to
follow the strategy of maximizing the transmit energy level
and bandwidth per transmission, within the permissibility of
the constraints. However, when the remaining energy for a
subset of the nodes is significantly disadvantaged from the rest
of the network, a reduction in the number of active sensors

Scale value
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Fig. 3. The energy-aware scaling as a function of remaining energy.

may occur prematurely, i.e., node batteries are depleted. The
results section will amply demonstrate this. As mentioned at
the beginning of this section, we want to develop a strategy
for preserving the energy of each node and thereby prolong
the lifetime of the network. We use a heuristic scaling to
alter the way in which a disadvantaged (in remaining energy)
node is constrained in energy usage. A weighting function,
L(prem(k), p™it k), is used to decide the level of transmit
energy frugality. This preserves the battery life of nodes with a
dwindling operating states. A possible schema for this scaling
function, currently implemented, is

. 1
An(k) = L(pie™ (k) p™, ) = ey (23)
Ck+ (1 - Oé) : nq‘,mr,
p
Vn=1,...,N, Vk, where p/°" is the remaining power at

node n while p™ is the average initial power allocated to
each node. These weights are updated at each iteration and

used to create the constraint

An(k) -3 Pl (k)DL (k) < pLe™ (k) (24)
7
V k,n, where p, and b,, are the power per bit and number of
bits used in the current transmission interval. This is used in
place of the previous remaining energy constraint (C2). A plot
of the scaling value versus current energy level for o = 0.1 and
p?™ = 100 is shown in Figure 3. This illustrates how a lower
remaining power will result in a more frugal energy policy. A
difficultly which becomes apparent is how to gracefully let a

node deplete its energy. The constraints of the problem

P> pl (k) and Y pl (k)b (R)An (k) < ppm (k)

(25
are conflicting for low remaining energy with a large value of
A, (k) > 1, which causes the problem to become infeasible.
Thus, it was determined that if

pmin cd-A, > p'rem
n n

n

then A,, is set to 1 and node n is allowed to be depleted. This
feature is plainly visible in Section IV-B. The next section
details the simulation of the above optimization problem with
and without this heuristic scaling procedure.



IV. SIMULATION RESULTS

We consider the distributed estimation of an object moving
in two dimensions®. Each sensor maintains a position-velocity
(PV) state estimate of the object. Power, time, and distance val-
ues are given in generic pu, tu, and du units, respectively, and
are not necessarily equivalent to any standard units, but merely
serve as a reference. Likewise, the number of bits should
not be reflective of any particular wireless communication
standard, but is only a part of the illustration of the optimiza-
tion strategy. The sensor takes position measurements with
uncorrelated measurement noise, which has variance 0721 =1
along both axes. The true trajectory starts at [0,0, vy, v,]T
(where v, = v, = ldu/tu) and evolves with a nearly constant
velocity (NCV) or Velocity Wiener process model [29]. The
true process noise variance level is 0.8 as well as the assumed
process noise of the local filters. The number of sensors in each
of the following scenarios is N = 4. The communications
parameters are as follows: The total allowable rate is set to
BW = 60 bits per channel use and the dynamic range of
observation is W = 10, with an offset region of [0,20] for
the x— and y—axis. The Rayleigh fading channel coefficient
is |hn|? = 1 and Ny = 0.5 is the channel noise power spectral
density coefficient. The maximum and minimum transmit
energy are p"* = 40pu and p™" = 5pu, respectively. We
first illustrate that all methods perform comparably and their
differences are measured against the single-instance global
solution. Then, a pair of single run scenarios are shown for
the purpose of illustrating the performance of the system for
a typical run. Finally, multiple Monte Carlo runs are executed
to characterize average performance.

A. Comparison of Convex Formulations to a Single-Instance
Global Solution

The results for the linear constraint convex (LCVX) approx-
imation should theoretically be very close if not equal to the
reciprocal constraint convex approximation (CVX). This pair
of formulations along with the worst-case (WC) approxima-
tions of the original problem are shown in the single instance
optimization results given in Table II along with the exact
global solution. The relaxed and integer value solutions are
shown for comparison. This table shows the objective values
computed from the original objective in (9) using the final
decision variables determined by the convex approximations.
Performance is compared to the exact (branch and bound)
global solution*. In order to make an accurate comparison, the
relaxed solution (rlxd) of the optimization problem is rounded
(or floored, to maintain the total bandwidth constraint) and
the original objective is then computed for comparison. This
comparison also illustrates that the effect of integer relaxation
is minimal in terms of achieved cost function values. The two

3 As noted in Section II-B, the objective in (9) becomes an approximation of the MSE
for spatially correlated noise. For a moving object in a field of sensors, the process
noise among nodes is correlated. The application here was not selected to match the
uncorrelated case observed in our objective, but rather for illustration purposes. Other
work breaches the correlated process for these scenarios, e.g., in [30].

4LINGO® was used to find the globally optimal branch and bound solution. The
optimal solution was returned with a dual certificate equal to it with sufficient numerical
precision.

TABLE II
OBIJECTIVE VALUES FOR CONVEX FORMULATIONS.

wC LCVX CVX Global

rixd int rixd int rixd int
Case A 6.533 7.522 5.499 6.036 5.605 5.658 3.588
Case B 10.674 11.211 9.318 9.213 | 9.372 9.324 5.665

cases considered in this juxtaposition of solutions represent
uniform operating states, with readily available energy for
each node (Case A); and a highly energy constrained scenario
with uneven operating states where improper utilization of
resources would cause sensor nodes to become inoperable
(Case B). The heuristic parameter is set to o = 0.1 for both
cases. As expected, the linear constraint convex (LCVX) and
reciprocal constraint convex (CVX) formulations both achieve
nearly the same value. We note that the reciprocal constraint
formulation converges very slowly and convergence can be
improved by providing tighter tolerances and more iterations.
However, we quickly reach the relative floating point accuracy
of the numeric solution. This is a result of the difficulties
explained in Section III-A. The worst-case approximation
(WC) also does well but with performance inferior to the
other convex approximations. This difference is due to non-
uniformity in the covariance of the state estimate. For uniform
state estimate variance, the LCVX and WC methods will be
exactly the same. However, if there are differences in the
covariance of the elements of the state estimate the WC will
still uniformly split the bandwidth and power chosen for a
particular sensor between the elements of the state estimate
to be transmitted. Thus, the minimum BLU-like objective
is only achieved for the most noisy element of the state
estimate. Whereas the LCVX method can increase bits and
transmit energy for noisier elements of the state estimate
and thus maintain an overall lower BLU-like objective. This
could be thought of as a reverse-water-filling-like property, i.e.,
attempting to match the estimate variance with more precision
in the channel and quantization variance. The WC treats all
elements of the state estimate covariance equally when they
are not equal, resulting in using more bandwidth and power
necessary for some estimates and not enough for others. The
advantage of WC gained in computational speed is implied by
the runtimes shown previously in Table I. We next analyze the
behavior some typical single run time-based results common
for LCVX.

B. Single Object Tracking Run with Non-uniform Initial En-
ergy Resources

For the following scenarios linear constraint convex
(LCVX) and worst-case (WC) approximations are shown here,
as the LCVX and CVX methods perform similarly. The initial
power allocated for this scenario is p,*" = 4000pu for
n = 1,4 and p™ = 2000pu for n = 2,3. The methods
are shown both with and without the energy-aware heuristic
(i.e. « = 1 and a = 0.1, respectively). For a« = 1 this
implies A, (k) = 1, V k,n. We additionally compare our
methods to some static policies utilizing the minimum and
maximum transmit energy levels. The minimum benchmark
utilizes half the bandwidth and evenly allocates it amongst all
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Fig. 4. Simulation scenario truth trajectory for single object tracking run.

active sensors. The maximum benchmark utilizes the entire
bandwidth evenly allocated to all sensors. These are denoted
“Min Bench”, and “Max Bench” in the legends. The plot
in Figure 4 shows a two dimensional plot of the object
true trajectory. Figure 5 shows the individual power usage,
number of bits used by a healthy and unhealthy sensor node
in the system, in this case, sensors 1 and 2, respectively. Note
that for the LCVX and CVX methods, the maximum bits
and energy levels are selected at each time instant until the
unhealthy nodes (2 and 3) deplete their energy resources and
stop functioning.

After this, the remaining collaborating nodes have twice
as much available bandwidth with which to transmit their
states. This being the case, the remaining sensors use their
energy reserves quickly since the optimization greedily uses all
available bandwidth, also maximizing transmit energy levels,
where possible. It is plain that the sensors deplete their energy
resources quickly and stop tracking at about 9¢u. The bench-
mark methods provide us an intuitive upper and lower bound
on resource usage and possible sensor node lifetimes. While
the LCVX and WC follow the usage patterns of the maximum
usage benchmark, the allocation is not optimal because it
does not consider the influences of any noise sources, as we
will see in the next section and the comparison of the error
performance. When the energy-aware heuristic is applied to
LCVX and WC (denoted in the legend with an appended
“EA”) for o = 0.1, nodes 2 and 3 no longer deplete their
energy resources, but rather these nodes function to almost
20tu. It is easy to see the conditions near the depletion of
sensor battery which result in setting A,,(k) = 1, as mentioned
in Section ITI-C. We next compare the LCVX and WC methods
alongside our benchmark methods for multiple Monte Carlo
runs and apply some performance metrics.

C. Monte Carlo Simulation Analysis

The following results are obtained by executing multiple
Monte Carlo (MC) runs. The starting energy in the single
tracking run is the same here but results are averaged over
50 runs. We will now define several metrics by which to
compare the methods of interest. In the case of a static policy,
the lifetime is simply the number of iterations that can be

run before the battery is depleted, i.e., LT = {%J
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Fig. 5. Single object tracking run: Transmit energy and quantization levels

for a healthy and unhealthy node of the network, with and without the energy-
aware heuristic (aw = 1 vs. a = 0.1).

However, when power and quantization are determined dy-
namically based on the noise levels, then the lifetime is a
probabilistic quantity, and no explicit function can be offered.
Instead the lifetime value is determined during simulations
and its probabilistic occurrence represented by Monte Carlo
averages. We define the lifetime as

N
1 Tem
LT =arg max § + ; I(pye™(k)) > €y, (26)
where
0 p < Pmin
I(p) = 27

and € is the node outage threshold. We also define the error
measure by which we will approve our methods. We use a
normed measure since we are consider a vector state. Define
the Root Mean Square Normed Error (RMSNE) to be

RMSNE(k) = /Elllx(k) — %pus(k)|?, (28)
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RMSNE, and analytic BLUE variance for the various methods.

where ||-|| is the £3-norm. The performance of the optimization
methods versus the benchmark methods introduced in the
previous section in terms of total power usage and RMSNE
is shown in Figure 6. We clearly see that the LCVX and
WC methods are comparable with the maximum benchmark,
with LCVX having slightly better error performance than
WC, as expected. The methods are nearly equivalent with
and without the energy-aware heuristic up to about 9¢u when
the methods not employing the heuristic deplete their energy
reserves. While the energy-aware enabled methods continue
tracking at a somewhat reduced error performance, since they
are conserving energy resources. The minimum benchmark
maintains a higher error throughout the simulations, as it uses
the fewest resources, with the exception of the very end of
the energy-aware methods as they are forced to use fewer
bits than even the minimum benchmark method. We have also
include the analytic value of D from equation (9), which is
dependent direct on the various noise variances determined
by the choice of transmission power and quantization. While
not directly proportional, this metric instructs us on what we
should expect in the relative values of the RMSNE for the
different methods.

Our evaluation of the energy-aware optimization can be
performed by observing how average RMSNE and lifetime
are affected by the heuristic scaling parameter, a. To do
this, we find the RMSNE(k), and then average across time
k=1,..., K. For these comparisons we also find the average
lifetime for each « value. Figure IV-C clearly shows that the
lifetime is greatly extended by using reasonably small values
of a. It also demonstrates that the increase in error is moderate
relative to the naive approach. As expected, the LCVX always
has much lower error than the WC method, while the WC
method maintains slightly longer lifetimes for the same values
of «. The probability of outage is the probability that the
remaining percentage of nodes at any given time instance falls
below a threshold. In our case, the running lifetime of each
node is recorded and the WSN is considered inoperable when
the fraction of nodes with remaining energy drops below the
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Fig. 7. The trade-off of lifetime versus average error performance and its
affect on the system probability of outage.

threshold number of nodes (e = 0.75 in this case). For a single
run the WSN is either operable or not (0 or 1) at each time
instance. However, this is averaged over 50 MC runs, thus
this provides a probability of outage, Pr(k) € [0, 1] at each
time instance, k. We note in Figure 7(b) that the probability
of outage for the network is extended for o = 0.1 to 350% for
LCVX and to 250% for WC. The LCVX and WC formulation
have differing probability of outage performance for the reason
given in Section IV-A, and it follows that slightly worse
error performance would indicate a more energy-conservative
network.

At this juncture it is important to point out that we do
not explicitly investigate the scalability problem because of
the assumption that sensor scheduling has been completed.
The scalability of distributed estimation in wireless sensor
networks in terms of either number of sensors or percentage
of active sensors has been extensively explored in other
works (e.g., [12]-[14]). These metrics of performance for
a scheduling algorithm are indicators of the energy savings
offered by the algorithm. As a thought experiment, if we
assume the lifetime of a single node to be the number of (not
necessarily consecutive) operational time instances, then it is
intuitive if we schedule one sensor at each time step then we
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Fig. 8. The scalability of the scheduled subset size.

would have the network lifetime proportional to the product
of the number of sensors and the lifetime of a single node. For
our illustrations, if we assume a schedule that cycles between
sets of sensor nodes of the same size and LT is the lifetime
of a subset of N < M sensors in a M node network, the
relationship of overall WSN lifetime to that of the subset will
be

M
LTWSN X WLT (29)

This is actually a lower bound since smarter scheduling could
further increase the WSN lifetime by preventing disadvantaged
nodes from being depleted (e.g. [31]). The vital issue with
respect to the scalability of the network in this case is chiefly
that of how to divide up the limited bandwidth. Indeed, there
is a maximum number of scheduled nodes such that each
node can transmit all components of the local updated state
vector. As the network increases in size, the optimization is
constrained is a smaller feasible space, as each element of
each state vector must have at least one bit (since the nodes
have been scheduled). The maximum network size based on
single bit (minimum) quantization is
Nma.r - %7
where d is the dimension of the state vector. In addition to
this upper bound on scheduled node subset size, single bit
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Fig. 9. Covariance sensitivity tests for the LCVX and WC approximations
for several values of .

quantization can introduce significant errors, especially for a
large dynamic range. Thus, we expect with increasing network
size that the errors increase until no more sensors can be utilize
in the scheduled set. We have included an illustration of this
in Figure 8, where we have shown results for the LCVX and
WC methods (since LCVX and CVX have equivalent results
for the appropriate optimizing parameters). The setup is the
same as the basic scenario described in Section IV-B (but with
the adjustment of BW = 100). Figure 8 demonstrates the
increasing average RMSNE for increasing number of sensors,
particularly as the number of sensors approaches the limit in
(30), which is 25 for Figure 8.

D. Sensitivity Analysis for Unknown Covariance

The nature of the problem set forth in this work demands
knowledge of the covariances of the estimates at each node.
This extra information is not considered in the transmission
of data from the sensor nodes to the fusion center. We
therefore wish to determine the sensitivity of the quantiza-
tion and transmit energy level decision variables to random
perturbations in the covariances, which are used to determine
them. These perturbations are generated from Chi-squared
distribution with one DOF, i.e., x%(1,p) = ZLZ? for
k = 1 with independent Z; ~ N(0,p). In Figure 9 the
optimization is carried out with randomly perturbed covariance



information and the results are averaged over 50 Monte Carlo
runs. The variance parameter (p) of the perturbation is swept
from zero (no perturbation) to five. Figure 9 clearly illustrates
the small average error which is introduced for the linear
constraint convex (LCVX) and worst-case (WC) approxima-
tions at various values of a. The same also demonstrates that
the lifetime remains largely unaffected by perturbations to
the covariance information. For all the methods the original
objective (9) decreases for non-zero covariance perturbation.
This is because more bits and higher transmit energy levels
are selected to reduce noise and compensate for the additional
noise introduced by the variance perturbation. However, the
final estimation accuracy depends on the actual state covari-
ance. Thus, more accurate estimates are obtained for perturbed
covariance values, while lifetimes for such perturbations are
decreased.

V. CONCLUSIONS

The distributed estimation scheme presented in this work
utilizes a resource constrained uncertainty objective which is
a non-convex MINLP. Formulations from the relaxed, convex
approximated, scalar case were applied in estimating a state
vector from distributed nodes. It was found that the linear
constraint convex approximation and its worst-case upper
bound are well suited for problem, both in performance
and relative runtime. The energy-aware heuristic introduced
allowed for the extension of network lifetime while delivering
adequate estimation results, clearly expressing the trade-off
between lifetime and estimation accuracy. Monte Carlo runs
demonstrated that lifetime increases for decreasing heuristic
parameter, which is also reflected in the probability of outage.
While error also increases, it is only minute and does not
significantly affect the estimation results.
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