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I. INTRODUCTION

The progressive freezing of a liquid charge, knovm as Normal

Freezing, has long been used for purification of materials, Hovfever,

not until ultrahigh-purity germanium was needed for semi-conductor work

was much thought given to theoretical analysis of normal freezing.

The first quantitative investigation of this process and the

related process of zone melting vras undertaken by Pfann (l) in 1952.

Since then, the successful application of these processes has aroused

considerable interest in applications of the processes auid has stimulated

study of the accompanying transport phenomenon.

From the theoretical point of view, this process is equivalent to

single-crystal pulling. The fvindamental principle employed in the

separation of solute (impurity) from the solvent during normal freezing

is based on the fact that, when a solution solidifies, the equilibrium

composition of the originating solid phase differs from the composition

of the liquid phase. In other words, the separation basically depends

on the phase equilibrium behavior of the solution charged. Therefore,

for an vinderstanding of segregation phenomena in normal freezing and

related processes, it is essential to consider, firstly, the equilibrium

behavior of the solvent (major component in mixture) and the solute

(impurity) as described by their phase diagrams.



A. General Discussion of Phase Dia/yrams

There are various types of binary equilibrivun diagrams. In many

cases, those diagrams bocorae q.uite complicated; however, they usually

can be considered as combinations of the simpler types of systems.

Therefore, a complete understanding of the simple types of systems will

allow interpretation of the most complicated phase diagrams encountered.

For the purpose of this study, consideration will be given to only two

of these simple types i simple eutectic systems and solid solution

systems.

Simple Binary Butoctic System

The simple binary eutectic phase diagram is sho>jn in Figure 1-1.

In this type of system, solutions of two components A and B always yield

only pure A or pure 3 as solid phases. Point C and D represent the

melting points of pure A and pure B respectively.

The curve CG represents the concentrations of solutions saturated

with A at temperatures between C and P. In a like manner, curve DG

represents the concentrations of solutions saturated with B at tempera-

tures between D and H. At point G, three phases are in equilibrium;

namely, a solution saturated with A and B, solid phase A, and solid

phase 3, A lowering of temperature below F must result in the complete

solidification of solution G. The temperature F is named the "eutectic

temperature" and the composition 3, the "eutectic composition."

The phase behavior is best understood by considering what happens

when cooling a mixture of A and B. If an xansaturated mixture of compo-

sition x^ at temperature t^ is cooled, only a drop in temperature
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results until the temperature tp is reached, At this point, tp, x^,

the solution 'beccmes saturated and a small drop in temperature t^

causes solidification. The solid phase will be pure A and this solid

is in equilibriiom with the saturated solution of composition x-.

Continued cooling results in additional pure A separating out, and the

composition of the saturated solution changes along line CG. At a

temperature of t^, pure solid A is in equilibrium with a saturated

solution of composition x,. I-Jhen the temperature F is reached, another

solid phase 3 appears. Further cooling causes A and B to crystallize

from the saturated solution in the fixed composition E; this crystalli-

zation will continue until all of the solution has solidified. /JTien the

composition of the system is within the area CFG, solid crystals of

pure A may be removed. Similarly, pure B can be obtained when starting

with compositions bot'.voen points E and B.

Binary Solid Solution System

In the same manner that two liquids may dissolve in each other to

form a liquid solution, two solids may dissolve in each other to form

a solid solution. These solutions are homogeneous and their compositions

may vary over wide limits. Figure 1-2 shows the phase diagram for the

case where the melting points of all solutions are between those of the

pure components. Although not shovna for this type of system, these curves

can exhibit a maximum or a minimum.

In this diagTcun, points C and D represent the melting points of

pure A and B respectively. The upper, or liquidus, curve indicates the

temporature and composition of tho saturated liquid solution. Points

on this curve give the temperature of the initial solidification. The



LlfiUlP SOLUTlOfsJ

B COMPOS \TlOfNi

Fifl.l-2. SIMPLE PH/^SE D\/^GRat-) FDR A

BIN/^Ry SOLID SOLUTION SySTEM.



lovror, or solidus, curve indicates the temperature at which the final

solidification or initial melting occurs. Any horizontal line, such as

x_y_, indicates compositions of the liquid and solid phase which are in

equilibrium at the temperature t-. Cooling a liquid solution of compo-

sition X- f
at temperature t, , to temperature tp only results in a drop

of the temperature. At this point, a lov/ering of the temperature will

result in the formation of a small amoxint of solid solution of compo-

sition y_. Thus, the composition of the melt will change and move

towards x,. Further cooling to t, will cause the composition of the

solid solution to change to y., thus depleting A from the liquid and

causing the liquid concentration to approach x^. As cooling continues,

the composition of the melt will change along the liquidus line towards

point C, and the composition of the solid solution will change along

the solidus line in the same direction, irhen temperature t. is reached,

an infinitesimal amount- of melt of composition x. will be in equilibrium

with the solid solution of composition y ., the same composition as the

original melt x. , and the mixture will be completely solidified.

In practice, and for the reason of simplicity in theoretical analysis

of the freezing process, it is convenient to approximate the phase diagram

with straight liquidus and solidus lines for dilute solutions of solid

solution systems as sho^im in Figure 1-2. The restriction to low solute

concentrations is not a serious limitation, as normal freezing is usually

applied to just such cases. Hence, it is convenient to describe the

salient feature of solid-liquid equilibrivim by means of equilibrium

distribution coefficient, K , the ratio of concentrations of the solid
o

and the liquid in equilibrium, i.e.C /C. Duo to the assumption of
3

straight liquidus and solidus lines, this coefficient oan be considered



as a constant for a given solid solution system , Obviously, the

equilibrium distribution coefficient is zero for eutootio systems,

B, General Discussion of Ilormal Freezing

Normal freezing is a process developed to purify impure materials

by freezing. During normal freezing of systems of initially uniform

concentration, equilibrixim between solid and liquid exists only at the

freezing interface, and the solute (impurity) is rejected by the

freezing solid. For both eutectio and solid solution systems (K < l)

,

a redistribution of the solute occurs, A qualitative description of

the redistribution for a solid solution system is shoim in Figure 1-3

•

From a theoretical viei-rpoint, the solute redistribution curve in

a solid must satisfy the following conditions: (l) It must rise from

K C at the beginning of the crystal, (2) The area between C and C
O O u ij u \ > OS

must be equal to the area between C. and C for conservation of solute,
Jj o

For solid solution systems, Pfann (l) developed a theoretical

expression for solute redistribution in the solid with the assumptions

that diffusion of the solute in the solid is negligible and mixing in

the liquid phase is complete. The assumption of complete mixing in the

liquid phase, hovrever, is questionable from a practical point of view.

Tiller, Jackson, Rutter, and Chalmers (2) have derived an expression

for solute redistribution assx^ming that liquid phase mixing is negligible

and mass transfer in the liquid is due only to diffusion. Their expressions

for the concentration profile in both the liquid and solid phases -were

first obtained for the steady state condition. Then the expressions

of solute redistribution were obtained with the assumption that both
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profiles will approach the steady state results exponentially without

changing the "shape" of the profile in the liquid. The constant for

the exponential decay was detenainod from the material balance of the

solute and proper boundary conditions. Their approximate expressions

were later confirmed by Smith, ot al. (3).

Smith, et al, (3) and Hulme (4) derived a theoretical expression

for the case of diffusional mass transfer in the liquid without the

assumptions used by Tiller, et al,

Wilcox (5) first studied the normal freezing of outeotio-forming

organic systems. He successfully derived an expression for solute

redistribution for an infinite charge with pure diffusional mass transfer

in the liquid.

From a fluid-mechanical vievrpoint, the solute rejected and accumu-

lated near the freezing interface might be transported avray from the

interface not only by diffusion, but also by convection. In order to

take this convective effect into account, ".vagner (6) has suggested a

boundary layer approach for the analysis of this problem. Here, he

assumed that the solute moved purely by diffusion in a thin layer

adjacent to the interface, and outside of this layer, complete mixing

prevailed.

Bupton, Prim, and Slichter (7) have derived an expression for

solute redistribution for systems forming solid solutions based on this

approach vrith a quasi-steady state assumption. For euteotic-forming

systems, theoretical analysis has been made by Wilcox (5) using a

similar approach.

In practice, the theoretical separations are seldom attained.

Ilany workers (8,9,10) have observed this effect for normal freezing
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and the related zone melting process. The failure of the theoretical

analycis is thought to be due to interfacial instability called

"constitutional subcooling," which causes the formation of a nonplanar

interface. This phenomenon, first recognized by Chalmers (8), results

in the trapping of liquid at the freezing interface and hence occlusion

of liquid in the solid phase.

The major objective of this investigation was to obtain quantitative

results on this subject, A brief quantitative analysis and experimental

observations concerning this phenomenon are presented in Chapter IV

aiid Chapter VI.
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II. THS0R;-;TICAL DSVlULOPMiSNT FOR MASS TRANSPiJH IN NORMAL FRSSZEIG

A. Introduction

In the introductory chapter to this work, it was noted that the

nixing condition in the liquid phase plays an important role in the

segregation attained by normal freezing. In this chapter, the differential

equations and boxmdary conditions for normal freezing are derived for

both the case of pure diffusional mass transfer (no-mixing case) and the

case of partial mixing (boundary layer approach). For the purpose of

the present work, only solutions for eutectio-forming systems are

presented,

B, Derivation of the Differential Squation,

Boundary Conditions, and Solutions

The most convenient coordinate system for the analysis of this

process io a moving coordinate system. Instead of a moving interface,

the process is pictured as a steady bulk flovr toward the interface.

The interface is located at z = vrith the positive z-axis extending

into the liquid. The interfaces are assumed planar and the cross-section

\iniform, so that the problem becomes a one-dimensional one. Furthermore,

the density and diffusivity are assumed to be independent of concentration

and temperature, although the density may be different in the solid and

liquid. Diffusion in the solid is assumed to be negligible. liith these

assumptions and the coordinate system, the equation of continuity for
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the solute in the liquid phase becomes

D£l!|, (R
!3^|C

^ |£
-: (2-1).

oz 1

For simplicity in analysis, the following dimensionless groups

are introduced,

zR p
_ Z (By

. ^o

tR^ p

Substituting these expressions into equation (2-1), there is obtained:

2

which is the desired differential equation governing diffusive mass

transfer in normal freezing.

Common Boundary Condition

Figure (2-1) shows the fluxes at the freezing solid-liquid inter-

face. Making a material balance at the interface, there is obtained:

E^(C - Cj + D
II

= at z = (2-3).

Again substituting Tl, $ and t and letting 5 = C /C , there results:
s so

11+ (§ - §g) = at Tl - (2-4).

*
This equation is valid also for the related process of zone melting.
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This boundary condition is common to both the boxindary layer and the

diffusion models.

Diffusion Kodol

Another boundary condition can be obtained under the assumption

that the solute does not diffuse very far from the moving interface.

Furthermore, if the amount of melt originally charged is very large

compared with the freezing rate, the solute diffuses only a short

distance into the liquid. This physical argument suggests

C = C at z = «>
; (2-5)

or in dimensionless form -
•

$ = 1 at Tl = » ' :, (2 - 6),

In addition, the condition of uniform initial concentration gives

the following initial condition:

C a C at t = (2-7)

or written in dimensionless form, " '

§ = 1 at T = , ,

' ,,.-> (2-8).

For eutectic-forming systems, two separate regimes must be recognized

during the normal freezing process: (l) the liquid phase solute concen-

tration at the interface is less than the eutectic composition, C , smd

the solid formed contains pure solvent only, (2) as more solid forms, the

solute concentration of the liquid at the interface reaches the eutectic

concentration and solute and solvent are deposited thereafter. For

convenience in analysis, we refer to the first regime as the "Initial

Period" and the second as the "Final Period."

The boxaidary conditions for the normal freezing of eutectic-forming
^
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systems can now be stated:

(a) For the initial period, it is obvious that § equals zero,
s

Hence, equation (2-3) "beoomes

II
- -$ at 11 - (2 -9).

(b) For the final period

C
" = § at -q =

^o

equation (2-3) becomes

dll
'" " s

$- - § at n = (2 - 10).

This means that until $ at 1] = reaches §, $ is zero and $ is

calculated from equations (2-2), (2-9), (2-6), and (2-8) during the

initial period.

Solution for the Initial Period
"^S

Per the initial period, where s =0 and §^ ^v < 5, the problem
s T1=0 ' ^

is, therefore, not to find the solute concentration in the solid, but

to determine the^ duration of the initial period. The solution of

equations (2-2), (2-6), (2-8), and (2-9) has been obtained by l7ilcox(l2)

by means of Laplace Transformation and is:

§ = 1 - i erfc (I^-t-^) + ^-(1 - Ti + T)e-'^erfc(^!^^^)
2/7 2/F .i

Equation (2-11) gives the concentration of solute in the liquid as a

function of time and distance from the interface. For the solid phase,
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the composition profile is represented by

^3 - (2 - 12).

In order to predict the duration of the initial period, the concen-

tration at the freezing interface is required. This is fovmd by setting

T] equal to zero in equation (2-11) to obtain:

Vo - H^ U * erf 4 ) * /'^
"^^'' (2-"^-

The initial period persists until the liquid concentration at the inter-

face reaches the eutectic composition. Thus, the duration of the initial

period r can be obtained by setting 5_^q = § in equation (2-13).

2 + T /T" IT' I

.

% - -2-^ (1 ^ erf^ ) . /^ e-V4 (2 - I4)

The total length of solid frozen without any impurity can be

determined from r .
o

The duration of initial period, calculated from equation (2-14)

for various §, is sho-ivn in Figure (2-2), Because equation (2-14) is

rather luiwieldy, it is of interest to find a limiting form for large

values of T. If we let t -> «, equation (2-11) simplifies to

§ = 1 + (1 + T - n)e"'^ . (2 - 16)

and equation (2-14) becomes

*T^»0
" 5 -^ 2 + T^ (2- 17).

Ivilcoz (12) has shown that equations (2-16) and (2-17) are valid

for T (or T ) greater than 5 with an error loss than 2fo,



17

"Z
o

o
A.

,

o

u
h
o
LU

D

>
p
<:
-J
tu

QW^

J I .1

Fig. 2-2. THE DURAT/O^S OF INITIAL PER/OD RoR

PlFFUSlON MOPEL-.



19

From Figure (2-2), ve see that t increases with increasing |.

Recalling the definitions of these quantities,

O Z / 3x2 . _, /^S\
T„ = -rr- (--) or t R (--) =
o D 'p/ o z^p/ p

c
-^

^ c .

-

o

WQ note that for a given system (a fixed C ), the amount of pure material

obtained (which is proportional to t R ) decreases with increasing

initial concentration, C , and increasing freezing rate.

Solution for the Final Period

lOien § Q = §, equations (2-2), (2-6) and (2-10) describe the solute

concentrations in the solid and liquid phases. In addition, an "initial

condition" for t = t is given by equation (2-11), the solution from

the initial period. This problem has also been solved by Vfilcox (l2)j

the solution is given for the liquid phase as:

i - l+(T^-'n+§- l)e"''^ + i- {-Tl(l - e""^) - T^(l + e""^)

. (T, - 1).-Vf !_—t
J

. (T, * 7,)erf [-—t
] }

t t

(2-18)

and for the solid phase as

T T + 2 /t7 /T -t /4
§3 = -^+-^-^erf-^+ /^e ^ (2-19)

where t. is the dimensionless tine from beginning of terminal period,

T^ = (t -T^).

During the final period, the solute concentration in the solid
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is increasing; and after sufficient time has 'elapsed, a steady state

condition will be reached whore the solute concentration in the solid

asymptotically approaches C . This is dictated by the assumption of an

infinite quantity of liquid, for when the process is viewed as a flow

toward the interface, it v^ill be reco^jnized that material balance consid-

erations require this steady state condition. In other words, after

sufficient time, the flow of solute toward the interface must equal the

flow of solute avray from the 'interface, i.e. s = 1.
' s

It is easily confirmed that as 7, tends to infinity, equation (2-l8)

and equation (2-19/ approach the steady state solution:

§=!+(§- l)e~^

and $ = 1 . • .

s
-,....

A sketch of a solid composition profile illustrating the initial,

final and steady state periods is presented in Figure (2-3).

Boundary-Layer ^odel ,
-•".

.

Needless to say, pure diffusional mass transfer is seldom realized

in a fluid because of the convective effect due to temperature and/or

density differences in the liquid phase. If convection is negligible,

the solution obtained in the previous section is valid. However, when

convection occurs in the liquid phase, it is necessary to develop

another mechanism, taking into consideration both convection and

diffusion. A boundary layer approach has been suggested by Wagner (6),

in which he assxaiaed that inside the boundary layer, mass transfer is by

diffusion only, while outside it, complete mixing prevails.
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Quasi-Steady State Solutions -
'

Inside the boundary layer, the solute continuity oq.uation, equation

(2-2), applies,
6R p

On the outor edge of the boundary layer, 7] = -— {-^) = b, it is

assumed that convection insures the uniformity of bulk liquid concen-

tration. Stated mathematically:

C

§ = 5^-0- at'q = b (2 - 20).
''o

The initial condition, equation (2-8), and the boundary condition at

T| = 0, equation (2-4), remain unchanged.

With this idealized mechanism, the solution for prediction of

segregation in normal freezing has been obtained by Uilcox (5) for

eutectic systems xmder a quasi-steady state consideration, assuming the

solute contained within the boundary layer to be negligible in comparison

vrith that of the bulk liquid. That is, after a very short transient

period, tho rate of change of solute concentration within the boundary

layer, —, is small in comparison to the flovr of solute through the

boundary layer. Under this quasi-steady state assumption, the continuity

equation (2-2) become

a

d o dy « / X

As noted previously, the concentration profiles resulting from the

normal freezing of eutectic-forming mixtures have tv/o regions. These

are discussed separately.

1. For the initial period in vrhich pure solvent freezes out,

equations (2-21), (2-20) and (2-9) yield the solution:
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-T|

§ = 5^^ for - Tl - b •
'. (2 - 22)

and 5 = $^ for b - 11 (2 - 23).

The duration of the initial period can be calculated by setting $ ^ = §

in equation (2-21) to obtain

Neglecting the solute contained in the boundary layer, a solute

material balance gives

dg d§
b

'"
^o = ^-rfe -

' (2-24)

where g is the fraction frozen during the initial period.

For an estimation of g , a plot based on equation (2-24) is shown

in Figure (2-4) which gives the value of g for various values of 5

and b. Recalling the definitions of 5 and b

C

. o

6R p

from Figure (2-4), one again observes that for a given system (fixed

values of C , p , p , and D) , higher solute concentration (C ) and

freezing rate (R ) produce lower yields of pure solvent (g ).z o

2. For the final period in which solute appears in the solid

phase, no solution has been obtained by means of the boundary layer

approach. However, for the usual normal freezing, § is large due to
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dilute solutions originally chaxgod and b is small because of the low

freezing rate. Under these conditions, it is seen from Figure (2-4)

that the initial period is quite large, i.e. the final period is snail

and becomes unimportant. For example, if | « 30, and b = 1, the initial

period persists until the charge is 91^ frozen. Therefore, neglecting

the consideration of this short period is of no serious practical

consequence.
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III. COI-IPUTEH SOLUTION FOR SOLUTE REDISTRIBUTIOIT

BY THE BOmJDARY LAYER APPROACH

A. Introduction

The solute redistribution in normal freezing l^y the boundary layer

approach has been derived in the last chapter under a quasi-steady state

approximation, in which the overall material balance has been made by

assuming the size of the boundary layer was negligible and that it

contains an insignificant amount of impvirity. However, as was pointed

out by Chalmers (13), the boundary layer thickness for natural convection

lies in the order of magnitude of 10~ cm. Therefore, the accuracy of

quasi-stearly state solution becomes poor when the amount of initial melt

is small.

Another deficiency of the quasi-steady state approximation is the

absence of an initial transient period, ^rilcox (l) has suggested an

analytical solution for this unsteady state period by assuming the

initial transient to be the period in which the concentration at the

outer edge of the boundary layer remains the same as that of the original

charge, C . In other vrords, when the concentration in the bulk C
b

becomes greater than C^, the transient period stops and the quasi-steady

state solution beoomos valid thereafter. From a physical vioivpoint,

this assumption seems over-simplified. In fact, a more precise boundary

condition at the outer edge of the boundary layer must be obtained in

order to solve this problem without losing the physical significance.

Without this new boundary condition, the exact solution from equations
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(2-2), (2-4), (2-19) and (2-8) 'can not, in gonoral, be obtained analyti-

cally or even numerically. ,.;;

B, Derivation of the Boxindary Condition

Considering the material balance at the outer edgo of the boundary

layer, it is apparent that the mass flux diffusing out of the boundary

SC
layer is -D ^— . Hence, the total mass diffusing out of the boundary

^^ z=6

layer per iinit time is -DA :r~ » where A is the cross-sectional area

of the tube. By the boundary layer approach, the solute diffusing out

will be completely mixed and iiniformly distributed in the bulk liq.uid,

A solute material balance yields

= (1 - 5 - R^t)A^ (3-1)
z=6

-da|^
9z

or expressed in dinensionless form

9§
d$, 3T1b

(3-2).dt L - b - T

Integration of eq.uation (3-2) yields

where "a" is the integration constant and is evaluated from the following

bo\indary condition, l.Tien t = 0, «, = 1, this implies that a «= 1.

Substituting the expression for §, in equation (2-20) gives

^ ' l-J L - b- T
^"^ at 71 = b (3-4).



27

C. Solid Solution Systems with Constant Distribution Coefficient

Equations (2-2), (2-4), (3-4) and (2-8) will be sufficient to

define this problem. Unfortunately, no analytical solution has been

derived as yet, Hovrever, a numerical solution by means of finite

difference is presented here.
2

In finite difference form, x—, rfr and —r will take the forms (14),

^i,j+l
"

'i.1
^

Lr

1+1, n ^i-i,.i

2A'f1

-i+i,.i
" 25, . + 5 ."1--1,',1,

i^-l])^

Here, At is an interval in t, and AT] in Tlj j is the number of the

step along the r-axis; i the step number alon,[j the Tl-axis,
2

The trvmcational error for —r- and — by taking the finite difference

2 2
forms are ~- and —^ respectively, and that for ^ is ~. Therefore, for

the finite difference equation to be convergent, the follovring condition

must be satisfied:

ATl5 At^ At .

12^-T- = 2"

AT „
, At " '^ •

This mesh ratio happens to be the same as Landau (14) used in his

finite difference solution of normal freezing imder diffusion model.

Then, the finite-difference equation corresponding to the governing



-l,j 1 - (1 - K )AT1 -1,J (3-6).
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differential equation (2-2) becomes ' ''.'''.

^i,j+i = ^^'^m^h^i^i-" ^^-WF^h-i,i (3-5).

Equation (2-4) "becomes

where §(--l,j) represents the hypothetical point outside the interface, or

1 + (1 - K^)AP
r
\.

o

The initial condition is

§(i,o) = 1 for all j (3-7).

The boundary condition outside the boundary layer, equation (3-2), can

be expressed as

At ~
A-n L - b - T

or - $ _ 5

A,j.l ^.^_ .,^-^^A,j (3-8)
At At "^ •

.

where 5(A,j) is the point on the edge of boundary layer and §(o,j) on

the interface.

Equation (3-8) can be rewritten as

In carrying out a solution, wo divide the boundary layer thickness, b,

into A equal intervals and initially set § equal to 1.0 over the entire

interval of the boundary layer as stated in equation (3-7). The values

of 5^ inside the boundary layer, where raass transfer occurs by diffusion

only, wore calculatsd by equation (3-5), except for the two end points

$(-l>j) and §(A,j) which will be obtained by equations (3-6) and (3-9).
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This process was ropeatod until j reached tho value by which the denomi-

nator of equation (3-9) approached zero, i.e. the liquid originally charged

vras solidified except for a snail amount which vras essentially the length

of the boundary layer. § can be obtained from the relation that
s

§g = K^$(o,j) at each j,

Calculations were made for K =0.2 and 0.02 and for b = 1, 2 and
o '

5. It was found necessary, in general, to make AT) approximately 0.05

and At = 0.C0125, or to make Ati smaller and keep the ratio \ '^ '
^ eaual

At

to 2.

It is clearly sho;ni in equation (3-9) that, in addition to the

parameters b and X , the parameter 1/6 will also affect the concentration

profile in the liquid phase, and hence, the segregation curve, $ . As"
s

was pointed out by Chalmer (13), the boundary layer thickness for natural

convection lies in the order of magnitude 0.1 cm. Our calculations are,

therefore, based on 1/6 = 100 and 50, which is equivalent to a total

amount of charge of the order of magnitude of 10 cm. for normal freezing.

Generally speaking, a correct solution to any mass transfer problem

must satisfy an overall material balance. For tho case of normal freezing,

this means that the area betv^een $ =1.0 and the § curve must eoual theo s

area between § = 1 and the § curve (see Figure 3-1),

This can be vn?itten analytically:

T 1-t/L

J (1 - § )dT = ; ($ - l)d71 .

•

(3 _ 10).Go
It vras found that the computer solution described above did satisfy

this condition for all cases investigated.
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û.



31

D, Simple Sutectic-Forminf: Systems

It is clearly shot-m in Figure ( 2-4) that the final period is

unimportant for the usual normal freezing of eutcctic-forming systems.

Therefore, only the initial period is discussed here.

During the initial period, no solute is incorporated in the

freezing solid. Hence, we may simply set K equal to zero in the previous

calculations,

E, Results and Discussions

Solid Solution System

The liquid phase concentration profiles calculated by the finite

difference method for a sample value of K , b, and l/6 is presented in

Figure (3-2). The quasi-steady state solution is also plotted for

comparison. The corresponding solid phase concentration profiles are

shoim in Figure (3-3).

In those figures, the fraction frozen, g, was obtained from the

following relation:

. tR^ p^ ,tR p , , IR p ,

or T = gL '.

(3 _ i;|L),

Figures (3-4) and (3-5) summarize the results of calculations for

K^ equal to 0,2 and 0,02 respectively. It can be seen in these figures

that the quasi-steady state solution is acceptable if the diraensionless

boundary layer, b, is small and the value of 1/6 is large, which is the

usual case in normal freezing. This is due to the fact that the amount
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of solute accuaulated in the boundary layer is negligible compared with

that in the bulk liquid when the fraction frozen is snail. But the aaount

of solute accumulated in the boundary layer is relatively more significant

when the fraction frozen becomes large. Therefore, the neglect of this

quantity in the material balance would result in large deviations from

the exact solution obtained by finite-difforence calculation. For instance,

in Figure (3-3), the deviation at g = C.l is 4.8^, while at g = 0.8, the

deviation is 13.6ji,

Another obvious failing of the quasi-steady state approach is the

neglect of a transient period. In fact, the solid initially frozen out

should follow a short transient period before the quasi-steady state

results would be valid. In any case, it is quite obvious that the

concentration of the solid initially frozen out predicted by the quasi-

steady state solution is K^ instead of K as it should be, when considering

an initially uniform liquid and a constant distribution coefficient.

This deviation is clearly shoim in Figures (3-3), (3-4), and (3-5).

Mlcox (l) has derived an equation to correct this deviation.

However, his correction is based on an over-simplified assumption and

would not be valid vrhen the value of b is large (high freezing rate).

A typical comparison between his solution and the finite-difference

calculation is shorn in Figure (3-6). Wilcox's solution seems consistent

with the flnito-difforonoo oaloulatlon up to g » 0.1 for tho oaae where

1/6 is very small. In Figures (3-4) and (3-5), concentration profiles

in the solid phase obtained by three methods for various values of K .
o'

1/6 and b are plotted. It is clearly seen that in some cases Wilcox's

solution is valid only iii a very short initial period and in some other

cases, e.g. in tho case K^ = 0.2 and b = 5, it is not valid.
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Simple Sutectic-Forain,':; Systems '

"

For eutcctic-forning systems, the comparison betv/een the quasi-

steady state solution and the exact solution obtained by the finite-

difference calculation applies only to the initial period. Figure (3-7)

shovrs the results obtained by both methods as well as applying VJilcox's

solution to eutectic systems under different dimensionless freezing rates.

In similarity to the solid solution systems, it 3hov;s that for higher

freezing rates and smaller charges (smaller l), the approximation of the

quasi-steady state solution becomes poor. For example, when 1/6 = 50,

b = 2,5 and an original concentration of one tenth of the eutectic

concentration, the quasi-steady state solution predicts no pure solid

formed, while the finite-difference calculation shows that 10 per cent

of the charge is obtained pure. It is clearly shovm that laicox's

solution is valid only in a very short initial period for the case of

b = 1, and again is not valid for b greater than 2,

F. Conclusion

All results of the finite-difference calculation show that the

accuracy of the quasi-steady state depends on whether the amount of

solute accumulated in the boundary layer is significant. Therefore,

the question of whether the initial transient period is important depends

on the freezing rate, distribution coefficient, and the length of the

charge. It is concluded that when the values of K (in solid solution

systems) and 1/6 are small and the solidification is carried out at a

sufficiently high freezing rate, the approximation of the quasi-steady

state solutions becomes poor. However, for ordinary normal freezing,
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2
the values of l/b lie in the order of magnitude of 1 x 10 , and the

freezing rate is very low. The quasi-steady state approximation is,

therefore, applicable '.rithout serious error.
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IV. TIEKIAL COXSILSIL^TIOIIS AND COilSTITUTIONAL SU3C00LETG

HI NOEI.IAL FRSSZDTG

A. Instruction

Of the assumptions made in obtaining the foregoing solutions to

solute redistribution problems, the assumption of a planar freezing

interface is the most troublesome. Vlhen a solution undergoes a normal

freezing process, the liquid in contact with the advancing solid-liquid

interface will, in general, have a composition higher than that of the

bulk liquid (K < l). Hence, the liquidus temperature of the liquid

in contact with the interface is lower than that of the liquid at a

greater distance from the interface. In other words, the liquidus

temperature of the bulk liquid becomes higher than that of the interface,

and possibly exceeds the imposed temperature adjacent to the interface

(see Figure 4-1). Waen this condition occurs, there will be a region

ahead of the intorfaco in which there is a greater thermal driving force

than exists at the interface, and thus the planar interface becomes

unstable. IVo manifestations of this instability have been proposed:

(l)According to Landau (19) » a layer of subcooled liquid rapidly

freezes, entrapping solute. This is a cyclic process which repeats

itsolf when sufficient suboooling is again established,

(2) Because of the suboooling, any protuberonce on the interface will

tend to grow ahead of the interface. Chalmers (13) has shown

that this leads to a cellular structure with spaces between cells

where liquid may become trapped. This type of interfacial structure
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has "been observed in metallurgical systems.

In both cases, the instability occurs only if the T and T„ curves

in Figure (4-1) intersect. Hence, the condition for stability of the

planar interface is

dT^

ds"

< dT
dz (4-1).

z=0z=0

Equations based on this condition have been remarkably successful

in predicting the onset of the non-planar interfacial structure for

systems forming solid solutions. -.

Various equations based on this stability criterion are derived

for both diffusion and boundary-layer models in the following sections.

Experimental results have been obtained and are presented and discussed

in Chapter YI, .
'

B, Imposed Temperature Profile in the Liquid Phase

Assxjmptions

The following assumptions were made in order to simplify the

problem. They are listed here for convenience, although some are

discussed later, in Chapter VI.

(a) The temperature profile is a function of z only, although

radial heat transfer has boon oonsidored by- means of heat

input from the surrounding,

(b) The freezing interface is planar,

(c) Natural convection in the liquid phase is negligible,

(d) The solid-liquid interface is at its equilibrium temperature.

(e) The heat transfer coefficient from the tube to the surrounding
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air is constant. •

(f) For the low freezing rate used in normal freezing, a CLuasi—

steady state treatment suffices for our purpose,

(g) The temperature of ambient air surrounding the tube is constant.

Derivation of the Governing Differential Sq^uation and the Boundary

Conditions

By using the foregoing assumptions, the differential equations

governing heat transfer in the liquid phase may be derived (5). A

heat balance over a differential element, as shown in Figure (4-2), yields:

-k (~) . ttH^ + R p^C T . nR^ ''' ' - '

'

^dz z+Az z 1 p z+Az

= h(T - T )2nmz - k (~) nR^ + R p.C T nR^ (4-2).
^ z a' Mz'z z"^! p z

\t
/

2
Dividing through by knR Az and taking the limit as Az -> 0, we

obtain the differential equation

"7l*\f-MT-Tj -
*

; (4-3)
dz

where „ 2h , k
and a

RPnC p^C
.

^1 p :^.
- '^l p

The boundary conditions necessary for a complete solution are as

follows;

(a) As z -5> oo, T^ -> T- and T -> T_, i.e. the temr)eratures for

both liquid in the tube and the ambient air surrounding the tube at a

distance far from the freezing interface approach the steady room

temperature,

(b) At z = 0, T = T , i.e. at the interface, the temperature is

the liquidus temperature of the solution at the interface.
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Solution

The honogenGOus part of equation (4-3) givos the general solution

of the form of - ...

-R^ + A^ + 4»S -R - /r^ + 4a3
m /Z/2 \ /Z/Z \T = a^exp( ^-^ z) + a^expC ^^^j z) .

A particular solution of equation (4-3) is .

T = T . .

*
a

Therefore, the solution to equation (4-3) is

-R + /r^ + 4c^3 _R - /r^ + 42-3

T = a^exp(—2 ^-2 2) + a2exp(—2 ^—5 z) + T^ .

Boundary conditions (a) and (b) give "^ '.

- a^ = ag = (T3- V ' -

Therefore, the desired tenporature profile may be expressed as

R + /r + 4^3
T = (T^ - Tjexp(- " ^" z) + T^

or, in dimensionless form

T - T R + /R + 43^3
a. / z ' z "^ V /, ,v

T , g
= exp( ^ z) (4-4).

e a

C, The Liquidus Temperature Profile

dT^
If a is the slope of the liquiduo line, m - —•. and T is the

ClO o

freezing point of the pure solvent, then the folloxiring should represent

equilibrium temperatures for dilute solutions;

T3 = T^-mC (4.5)

where we talce the value of m to be positive.
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Diffusion I-Iodel /,.*".;

Substituting the expression for C as given by equation (3-11)

into equation (4-5) gives the liquidus temperature profile:

Tg = T^ - mcj_l - i«rf(^^^) + -^1 - 7] + T)e-'^erfc(3-^^)

Boundary-Layer Model

Similarly, if the C in equation (4-5) is eliminated by means of

equation (3-22), the liquidus temperature profile for this model is

T^ = T - mC ^ (4 - 7)3 o o -b \T r/

e ' •

If we mal-ce an overall material balance by neglecting the solute

contained in the boundary layer during the initial period, we obtain

S = r^ - (^-8).
P

Elimination of C, between equations (4-8) and (4—7) gives

mC e'"''^
-''

^E = ^0-77^ TTb (4-9),
(1 - gp)e

D. Incubation Distanoe for the Oocurrence of Constitutional Suboooling

Since constitutional subcooling can not exist until an enriched

boundary layer has formed, it follows that cells should not form imme-

diately when solidification begins, even if luiiform values of 4^ and
dz

R are immediately established. The critical condition will not occur
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tmtil the initial transient has reached the stage at which the concentration

gradient at the interface has a value such that the gradient of the

equilihriun temperature exceeds that of the imposed tenperature as

expressed in equation (4-1). It follows that there must he an "incubation

distance" for the occurrence of constitutional subcooling. It can be

derived by substituting expressions for T_ and T into equation (4-1).

Diffusion Kodel

Substituting the expressions of T_ and T from equations (4-6)

and (4-4), respectively, in equation (4-1), there is obtainedt

raC H
'•'o^z f /t ^-t/4 2 + t /, X. /r n\

n_ + /nf + 4^3
2

= (^. - ^J ' ^ i.
— = G (4 - 10)a e' 2d?

or IX?

mC R
= F(t) (4 - 11)

o z

where F(t) is defined as

F(t) = /I e-^/4 . 2^ (1 , erf 4: ) .

XT'
A plot of ^^

^

vs. T is given in Figure (4-3). The incubation
o z

period is expressed as the time elapsed since the start of freezing.

Boundary-Layer Model

In equation (4-1), substituting the expressions for T_ and T

from equations (4-9) and (4-4), it is found

-^— °^ , ^
mC R = 1 _ g (4 - 12)

o z ^p

where g is the fraction frozen at the onset of subcooling.



i.o :2.o 3.0 4^0 ^o ^^0 J^a ^o f.o 10.0
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A plot of
^g ^

vs. , _ ^ on log-los paper, shov/n in Figure (4-4),

gives straight linos with unit slope.

Notice that all systems follovring the diffusion model oould be

correlated with a single relationship, whereas an adjustable parameter

appearing in the boundary-layer model allovrs for different behavior

among otherwise similar systems,' ,

!

.

i
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Fcg. 4.-^ Indication of incubation

distance for boundary Ujer ynodel.
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V. EXP3HBENTAL SQUIPIffilJT, PROCSDUPil AIID SYSTEMS

A. General Description of Squipment

The apparatus used for conducting normal freezing experiments

consisted of a refrigerated metliyl alcohol bath and a drive mechanism

to control the freezing rate. The bath temperature was controlled and

kept approximately at -5 C for all runs, with the maximum variation

less than - 0.1 C, To keep the bath at a uniform temperature, it was

agitated by a l/l2 H.P. Fultork Labmotor operating a stirrer.

The drive mechanism was essentially an electric clockmotor located

approximately 1 meter above the bath (see Figure 5-1). Spindles of

different sizes (-jj" to 1" diameter) could be attached to the shaft of

the clockmotor in order to vary the freezing rate.

A thin thread, connected to the glass tube containing the charge,

was tied and wound several turns on the spindle. The spindle rotated at

a constant rate of one revolution per 12 hours. Hence, the tube would

descend at a constant rate in the ranges of 0.065 to 0.25 inch per

hour, depending on the selected size of the spindle.

Temperature was measured by a copper-constantan thermocouple

fabricated from 0.002 inch diameter wire and suspended in the liquid at

a fixed position relative to the tubo. As freezing progressed and the

solid-liquid interface moved toward the thermocouple, readings vrere

recorded at definite tines so that the relative position of the thermo-

couple could be determined from the knovm freezing rate. The time at

which the thermocouple touched the interface was also recorded.
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freezing apparatus .
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Temperature profiles were determined in both the liquid and solid phases,

A tube specially designed to produce a monocrystal was used for the

study of constitutional supercooling. This tube had a spiral capillary

end as recommended by Spendiarov and Aloksandov (ll) for grovring single

anthracene crystals. For all runs, it was necessary to remove dissolved

gas from the specimen. This was accomplished by submerging the entire

tube in the bath until the contents had become solid, then evacuating

the tube and allowing the solid to melt. I'lhen this process was repeated

three times, the specimen was effectively degassed, and no bubble formation

during normal freezing was observed. To be certain the degassing process

did not redistribute the solute, the liquid was mixed by rocking the tube

in order to insure a vmiform composition before each run,

';;-^' - 3, Bxporimental Procedure

In making a typical experimental r\m, the tube with spiral capillary

end was filled with approximately 40 grams of the speoiman solution. After

nucleating a small crystal with a cold source in the capillary spiral, the

tube was hung vertically over and just touching the bath by rotating the

shaft of the cloclanotor. The motor was turned on and the tube allowed

to descend into the bath. Usually, it would take several days' for the

completion of a run. After the entire specimen had frozen, the drive

was stopped and the tube was raised incrementally, so that approximately

one seventh of the specimen melted each time. Generally, two hours

were required to complete the melting of each portion. Care was exercised

at this point, as the interface tends to be rounded. However, upon

standing a time, the interface becomes flat. Each melted portion was
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transferred to a weighing bottle and weighed to l/lO milligram,

A Baush and Lonb rofractomoter was used to neasure the refractive

index of each increment. A composition curve versus refractive index

had been determined from mixtures of Imown composition and was used to

convert refractive indices to compositions. All the refractive indices

o +
were read at 25.0 C to an accuracy of - 0.0001. The calibration curves

for all systems employed in this work are given in Appendices III, IV, suid V.

C, Systems

For the purpose of experimental investigation of the phenomena of

constitutional subcooling, only binary solutions of the eutectic-forming

type were employed. The reason for this choice is due to the advantage

that if one controlled the bath temperature considerably above the

eutectic temperature, the presence of solute (impurity) can only be

explained in terms of liquid trapping.

Three systems were investigated:

Cyclohexane solute in benzene solvent,

Benzene solute in cyclohexane solvent.

Chloroform solute in benzene solvent.

For all three systems, the initial concentrations were very lovr,

(approximately 1 mole ^) , but the minimum workable concentration was

restricted by the loncertainty in the composition analysis.

The benzene and cyclohexane used in this study were Phillips

Petroleum Company's pure grade hydrocarbons. The chloroform was a

Fisher Scientific Company's Certified Reagent. The solutes and solvents

vrere subjected to no special treatment before use.
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YI. EXP3RII.E1ITAL RESULTS AlID DISCTJSSICITS POE TEIMPERATUHS

PROFILES AIID COITSTITUTIOILiL SUBCOOLDIG

» A. Imposed Tenporature Profiles

ThiG imposed -temperature profile plays an important role in the

occurrence of constitutional subcoolingj as may be seen from equations

(4-ll) and (4-12). The quasi-steady state treatment presented in

Chapter IV yielded the following expression for the imposed temperature

profile in normal freezing: ..

T - T R + /r^ + 4^3

rp _ ^
= exp(- -^ ^-^ z) (4-4).

e a
• T — T

Equation (4-4) indicates that a plot of In r^ ~- versus z should

R + /r^ + 4a0
give a straight line with slope equal to

^
' ^ • The term

T in equation (4-4) refers to ambient temperature and was asstuned constanta

in the derivation. It is very close to the room temperature everywhere

except the position near the surface of the freezing bath. This ambient

temperature has been measured at various positions near the bath. The

temperature readings are presented in Table 1,

TABLE I. At.nBISIJT TEI.IPHR.iTURE ITEAR TKS BATH

Distance from freezing interface, inch Temperature °C
7.0

li 17.4
2-1 21.0

• 25.5
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Based on this data, an average ambient air temperature for that section

between and 2 cm from the interface (the region in which the temperature

measurements were made) would be 15 -2 C.

Prom the expression for the imposed temperature profile, the liquid

temperature gradient at the freezing interface can be obtained by simply

differentiating equation (4-4) with respect to z and letting z equal

zero. Thus, .....-

" - (\-V-^-^-i—- „ . : (^-D-

Temperature measurements have been made for several runs. The

semi-log plots of experimental results using pure benzene \inder two

different freezing rates are presented in Figure (6-1), Both of these

runs give straight lines as predicted by equation (4-4).

A further test of equation (4-4) would be to calculate the heat

transfer coefficients and determine if their values lie in a reasonable

range. The value of heat transfer coefficients can be calculated from

the slope of those semi-log plots along vrith knovm freezing rate, R ,z

and thermal diffusivity, a, •
' -

The calculated values of heat transfer coefficients are presented

in Table II, which shows that h for both runs is essentially constant,

as one would expect, and is in good agreement with the range of 0,2 -

10 given by LIcAdams (15),
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TA3L3 II. ViiLU3S 07 HEAT TRAITSFSH COSPPICIEITTS

. C/iLCULATED FROM E>TSRII.IS!TTAL DATA

mm NO. R (in - hr"-"-) 1i(BTU hr"-"" ft"^ °P"^)

II - 7 0.065 0.40

II - 8 & 9 0.100 0.41

Discussions ,

Effect of Natural Convection in the Liquid It is obvious that in

the liquid phase, natural convection caused by tenperature differences

and/or density differences during normal freezing is possible. In

problems such as this, the usual procedure is to employ an "effective

thermal conductivity," k ^„; however, it is unnecessary in this problem*

Equation (4-4) gives the shape of the temperature profile as exponential

with distance from the interface, and it contains two adjustable constants,

Of and 0. . ,

Here, it vras convenient to compensate for the neglect of natural

convection effects in the liquid by adjusting the value of the heat

transfer coefficient contained within p. The justification for this

procedure is found in the good fit of the data to equation (4-4) and in

the fact that the value of the heat transfer coefficient is quite reasonable,

Ambient Temperature, T^ As shown in Figure (6-1), the imposed

temperature profile has the form of exponential decay v^ith respect to

distance from the interface, z, provided the ambient temperature is

constant. However, the measured ambient temperature near the freezing

interface is not constant but varies with z. It is obvious that T
a

would be a function of z in equation (4-3); hence, instead of a constant
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coefficient, a variable coefficient ordinary differential equation scorns

more reasonable. However, an avoraged ambient temperature by direct

measurement in the short range near the freezing interface satisfies

the physical situation and conveniently simplifies the mathematical

manipulations,

3, Constitutional Subcoolin/?

In order to investigate the phenomenon of constitutional subcooling,

a series of runs were performed with dilute solutions of eutectic-forming

organic mixtures at very low freezing rates (0,065 to 0,1 inch per hour).

Three systems vrere investigated:

(1) Cyclohoxane solute in benzene solvent,

(2) Benzene solute in cyclohexane solvent,

(3) Chloroform soluto in benzene solvent.

The densities of each component at 20°C are (16):

Benzene 0,8790 g/ml
Cyclohexane

. 0,7791 g/ml
Chloroform ' 1,4984 g/ml

Solid-liquid equilibria have been reported for these two systems (l6)

and each has been fo;md to exhibit simple eutectic behavior with no solid

solution formation. The phase diagrams for these two systems are given

in Appendices I and II.

As was mentioned in Chapter IV, two different models have been

proposed to describe the occurrence of constitutional subcooling,

Boundary-Layer L'odel

The instability condition as expressed by the boundary layer
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approach, equation (4-12), can be put in the following form:

DG ^
«^

1 - g^
~ mH C^

p z o
M.--r}

'-:^-"^-
(6-2).

In order to test this relationship, the fraction of pure benzene

obtained by normal freezing was experimentally determined for benzene-

cyclohexane solutions of various initial concentrations at each of two

freezing ratss. These results are presented in Table III. If one talces

logarithms and rearranges equation (6-2), the following expression is

obtained:

P o a

For a given system at a constant freezing rate, equation (6-3)

indicates that a plot of ln(r —-) versus ln(7~) should result in a
S o

straight line of unit slope. Figure (6-2) shows that the experimental

results for each of the two freezing rates, given in Table III, are

fitted quite well by straight lines with unit slope, as predicted.
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TABLE III. FRACTION OF CIIAEGfE OBTAIl^D.AS PURE SOL^/SNT

FOR VARIOUS n:iTL\L CONCENTRATIONS AT T/fO DIFFERENT FREEZIIvG RATES

FOR CYCLOII'SXAITB IN BENZENE SYSTEM

Run No. C (mole ^ benzene) S R (inches p(

1-15 1.3 0.443
•

0.065
1-21 1.0 0.479 0.065
1-22 1.3 0.259 0.065
II-2 1.0 0.53 0.065
II-3 0.6 0.732 0.065
II-4 1.76 0.0835 0.065
II-6 0.35 0.818 0.065

1-16 0.45 0.587 0.100
1-13 0.81 0.265 0.100
1-19 0.48 0.478 0.100
1-20 0.25 0.729 0.100



63

10

A-o

0,0 65 Inch f^er hour
o. I 00

\oo 2oo

/<^

Boo 1000

fi'g. ^-2 Logarithm ( i-^?^ Versus looAn'thm

•

( Co / j'or cyc/oher.ane Solute, m
benzene Solycnt.



64

A further test of equation (6-2) vrould bo to evaluate the boundary

layer thickness, 6, and determine whether this parameter is realistic.

One value of 5 can be evaluated for each freezing rate, providing the

temperature gradients at the interface, the diffusivity, and the slope

of the liquidus line are knovm. The slope of the liquidus curve was

calculated (l?) with the assumption that the solution behaved ideally,

and the diffusivity was estimated by the method of Vfilke and Chang (l8).

These quantities are 66°C/mole fraction and 1.4 x 10~^cm /sec, respec-

tively. The temperature gradients for each freezing rate determined from

Figure (6-1) are 6.3 C/cm and 6.4 C/cm for freezing rates of O.O65 in/hr

and 0.100 in/hr, respectively, *"

Using those numerical quantities in eq.uation (6-2), the calculated

values of 6 are 0.10 cm and 0.12 cm, respectively, for R = O.O65 in/hr

and S^ = 0.100 in/hr. These calculated values of 5 are slightly larger

than the range of 10""^ to 10" cm quoted by Chalmers (13), but are well

within the range of 0. 05 to 1.0 cm obtained by Vilcox (8) from an experi-

mental study of zone melting of organic systems. They, thereby, add

support to the boundary layer model.

The fact that the same value of 6 was obtained for each freezing

rate provides additional support. Per it is expected that 6 should be

a function only of liquid phase agitation, and therefore, for freezing

rates considerably lover than the convective flow, one would expect 6

to be independent of freezing rate, v .

The fact that the calculated values of 6 were found independent of

freezing rate, and that heat transfer coefficients evaluated from the

temperature profile data were also independent of freezing rate, suggests
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a slightly different troatment of the data presented in Figure (6-2).

If the term G in equation (6-2) is elininated by means of equation

(6-1), the resulting equation, in effect, contains two paranetors, namely,

the boundary-layer thickness, 6, and the heat transfer coefficient which

is included in 3

:

C —
2^
—

\^ -^ /^ ^;2 ;°^(--d"^ (6-4).i-s ^..- , , ^
z .

Follovrin/j the above discussion, these t;;o parameters should be

independent of freezing rate and could be evaluated from the two lines

in Figure (6-2) by a trial-and-orror procedure. The parameters so

determined were 6 = 0.11 cm and h = 0.42 BTU hr ft" °F , which shows

fairly good agreement with the values previously calculated. Thus, the

same value of heat transfer coefficient has been determined from temperature

profile measurements and mass transfer measurements.

Although constitutional subcooling in this system appears to be

explained quite well in terms of the boundary-layer model, the experi-

mental data were also compared against the diffusion model. This model,

equation (4-I4), however, predicts yields of pure benzene much less

than were observed. For e::ample, a O.4 mole ^ solution frozen at a rate

of 0.10 inch per hour yielded 59^j of the initial charge as pure benzene,

while equation (4-IO) predicts yields of y-^ to 6^ based on the experi-

mentally determined range of the temperature gradient, G.

It will be noted that the boundary layer model expresses the yield
as a fraction frozen, while the diffusion model gives the time at which
constitutional subcooling occurs. The fractional yield is easily
calculated for the diffusion model using the freezing rate, tube diameter,
and amount of charge by equation (3-11).V = SL (3 _ 11)
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From a fluid-mechanical vioTTpoint, the system under study can be

described as a quiescent liquid above a horizontal solid surface enclosed

•vdthin a relatively small diametGr tube. Heat and mass transfer processes

occur vrithin the system and, therefore, teciporature and concentration

gradients exist in the liquid. Although the evidence in favor of the

boundary-layer model is convincing, the success is, nevertheless, sur-

prising, because this fluid-mechanical description of the system would

seem to sugt-i^est the appropriateness of the diffusion model. The most

obvious explanation is that some degree of liquid mixing exists as a

result of free convection currents. Thermally induced free convection

would appear to be absent because the temperature gradient is such that

the lowest temperature occurs next to the interface. However, for this

system, there is the possibility of free convection induced by concen-

tration gradients. The concentration of cyclohexane is highest at the

interface; and, because an increase in cyclohexane results in a decrease

in liquid density, the liquid next to the interface would be loss dense

than the bulk liquid. This mechanism was also invoked by '.\'ilcox (8)

to explain results obtained from zone melting mixtures of organic compo;inds.

To test this free convection mechanism, attempts were made to obtain

pure cyclohexane by normal freezing of dilute solutions of benzene in

cyclohexane. Here, concentration induced density gradients should not

lead to free convection, and ono might expect this system to be described

better by the diffusion model.

Diffusion Model •
:

'

. -

"

Both equations (4-li) and (4-12) contain the dimensionless group
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( „ p ) which Indicates the extent of constitutional suboooling. Vnth

the system of benzene solute in cyclohexane solvent, the value of the

diffusivity will be the same as before; but m, the slope of the liq.uidus

curve, was calculated to be 2.44 C/mole^ (17) for cyclohexane as opposed

to 0.66 C/moleJj for benzene. The gradient, G, is expected to be the

same order of magnitude. Hence, operating conditions for the production

of pure cyclohexane should be more stringent (smaller R and C ) than

were necessary for the product of pure benzene. This was verified experi-

mentally when it was observed that a 1 mole ^ solution of benzene in

cyclohexane frozen at a rate of 0,065 inch per hour produced no pure

cyclohexane; while at the same freezing rate, a one mole 5^ solution of

cyclohexane in benzene yielded approximately -50^ of the charge as pure

benzene. Because of the uncertainty in analyzing the dilute solutions

required for the production of pure cyclohexane, it was not possible to

test eq.uations (4-11) and (4-12) quantitatively with this system. However,

several solid phase composition profiles were obtained at various freezing

rates and initial concentrations. All profiles were similar to that

shorn in Figure (6-3) and exhibited the characteristic steady state region

(C/C^ = l.O) required by the diffusion model.

This type of profile is similar to that expected for systems forming

solid solutions. However, it has been shovm that when trapping occurs,

eutectic systems behave like solid solution systems. For when trapping

occurs, the apparent solid phase concentration can be given by

=s = ^^ z=0 (6 - 5)

where f is the surface void fraction. This expression may thus be regarded

as a pseudo-distribution relationship which is analogous to that for a
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solid solution. I.liere equation (6-5) is valid, one expects that solid

phase profile equations derived for solid solutions vould also apply to

eutectic systems (17).

Referring to Fic^ure (6-3), the area enclosed by C/C = 1.0 and the

solid-phase concentration profiles from g = to the steady state region

is a measure of the segregation obtained by normal freezing. An analytical

expression for this area can be obtained using, the solid-phase profile

equation derived by Tiller, et al., (2) for systems with nonzero distri-

bution coefficients. Here, the distribution coefficient, K , has been
o

replaced by the surface void fraction, f.

The left hand side of equation {6-6) is quite easily evaluated from the

experimental solid-phase composition profile, and thus, a value of f

may be calculated for each run. These calculated values of f are listed

in Table IV, where it is observed that essentially the same value of f

is obtained for each run. In terms of the trapping mechanism, this would

imply that the interface morphology was essentially constant for all runs.

To further test the proposed composition induced free convection

mechanism, chloroform solute in benzene solvent was investigated. This

is another system in vrtiich concentration gradients produced by the

freezing process should not induce free convection and, hence, should

be described by the diffusion model.
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R ( inches/hotir) f

0.065 0.085
0.130 0.080
0.100 0.080
0.100 0.085
0.163 0.085

TABLE r/. VALUES OF f CALCULATED PHOM E^IUATIOK (6-6)

FOR 3ElT.ZSin3 SOLUTE ET CYCLOHEXAIJE SOLVENT

RUIT NO. C (mole '^ bonzeno)

11-11 1.00
11-12 1.85
III-l 2.00
III-2 2.00
III-3 2.00

Vfhen two dilute solutions were subjected to normal freezing at the

lowest attainable freezing rate (O.O65 inch per hour), the yields of

pure benzene were found to be in agreement with the predictions of the

diffusion model. A 0.42 mole f^ solution yielded 425^ of the charge as

pure benzene, while a 15/3 yield was obtained from a 0.55 Qole /j solution.

Using the tenperature gradients obtained from Figure (6-I), equation

(4-11) predicts yields of 27 and 18^ respectively, for these solutions.

'rhile the adjustable parameter, 6 , imparts considerable flexibility

to the boundary layer model in correlating experimental results, it

decreases the efficacy of the model for predictive purposes. Because

yields predicted by this model depend rather strongly on the value of 6

and tend to approach those of the diffusion model as 6 becomes large, the

problem lies in assigning a realistic value to this parameter. If the

value obtained for the chloroform in benzene system (6 = 0.10 cm) is used

along with the exporimontally dotormined range of G, equation (4-12)

predicts yields of 87^ for the 0.42 mole io solution and 78^"^ for the

0.55 nole ^ solution. Even if the boundary layer thickness is increased

to 0.5 cm, the results (82^,0 and 64/^, respectively) are still much higher

than found experimentally. It, therefore, seems safe to state that this

system is described better by the diffusion model.
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VII. CONCLUSION

It has been shown that the 'boundary layer model is applicable to

normal freezing of the Benzene-Cyclohexane system, and that the diffusion

model is applicable to the Cyclohexane-Benzene and Benzene-Chloroform

systems. Because those tv;^o groups of systems can also be classified on

the basis of the variation of liauid density with solute concentration,

it is concluded that when the lio.uid density of the solute is less than

that of the solvent, free convection will occur and the boimdary layer

modal is appropriate. Conversely, when the liquid density of the solute

exceeds that of the solvent, no free convection is possible and the

diffusion model is appropriate,

l.'ith the appropriate model, the onset of constitutional subcooling

can be correlated and reliably predicted by means of theoretical eauations.

Although equations have been applied only to normal freezing here,

equations based on the same stability criterion can be derived easily

for the related process of zone molting. The most strild.ng manifestation

of this phenomenon is the severity of operating conditions required to

produce pure material from eutectio-forming organic systems,

'/Hiore conditions are such that constitutional subcooling exists,

liquid is trapped by the resulting irregular interface as freezing occurs.

Tho results from sovoral systems show that under these conditions normal

freezing of eutoctic systems produces solid phase composition profiles

characteristic of systems forming solid solutions. The effective distri-

bution coefficient for such systems can be explained in terms of a surface

void fraction.



72

ACa'OV.-LSDGI.ENT

The author wishes to express his sincere appreciation to Dr. Benjamin

G. Kyle, whose advice and consultation have contributed very greatly to

the completion of this /rork, I also wish to express my thanks to the

Computer Center of Kansas State University for the use of IBM 1410

Computer,



73

/APPENDIX I. PHASE DIAGRAM FOR

BENZENJE-CyCt-OHE/ANJE SySTEM.

(TiymT>cfyyianSy '''PhySiCo-ChemJcal

constaht-s oF Binary Systems,

.vol.3, Interscience C/9So).j

(0 ao 30 4-0 S"o Go To 8o

MOL& PBZ. CE>iT CyCLOHEXANE

9© (oo



74

/\P?cNDIX JL.

u

tiJ

lU
a
Z
at

h

-10

-To

'do \-

-9

PHASE DIAGRAM FOR

BHMZENE -CHLOROFORM SYSTEM

\T\mrnermar>s
,

"' Phusico- Chemical

consfcKri^S of Binarcj Syst-ems '

vol.3, Ir^-^erscience Cl^6o
>)

10 2o 30 4o 5"0 <^o 7o 5o . Qo /oo

Mole per cent cHLORopofiM



5>

75

VO

^

^̂
^

w>

<M



76

! 1

>^ ^ ^
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A??3I:DE^. VI. TYPICIL COI.PUTEH PROGRAI^

• FOS FIKITS-DIFFEHEIJCE CALCULATiaiS

100
101
102
200
201
202

1

2

DUvENSIONC ( 50) , CL ( 50)
?0?.i.L'!.T(5H ELIbFlO.2)
F0HI.':AT(3H P=F6.4)
?OH:aT(6F12.6)
F0ILM^T(6H TILIii=F10.2)

FORI.ijlT(lOF12.6)

?02LIAT(F12.6)
]:x=o.05

DT=0.00125
Pli^lO. _---___-
B=l ________
p=0.02 ________
;-mrT:](3,lCl)RLD

°

E2AD(1,202)(C(J),J=1,22)
L=l .

K=l
C0=((1.+(1._?)*DX)/(1.-(1._P)*DX))*C(3)
C(l)=(00+C(l))/2.
IX)2J=2,21

AK=K+100*(L-1)
CL(j) = (0.5+DT/(DX*2.))*C(j+l) + (0.5-i)T/(DX*2.))*C(j-l)
CL(1)=((1.+(1._P)*DX)/(1._(1._P)*DX))*CL(3)
CL(22) = (G(2l)-C(22))*(l./(B*(DX/D'r)*(ELD-l.)-Ai:*DX)) + C(22)
IF(K-100)3,3,4

. b
- K

3 iX) 5 J=l,22
5 G(J)=CL(J)

K=K+1
GO TO 1

4 CS=P-CL(2)
?ffiir:i;(3,2oo)M

;SITE(3,201)(CL(J),J==2,22)
irariS(3,202)CS
L=L+1
K=K-100
c;(j)=CL(j)

K=K+1
GO TO 1
END *

1.0 1.0 1.0
1.0 1.0 1.0
1.0 1.0 1.0
1.0 1.0 1.0

1.0
1.0
1.0
1.0

1.0
1.0
1.0

1.0
1.0
1.0
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lIOLENCLATiraS

a, a_ , a_ — constants of integration

2 •
''

A — cross-sGctional area of glass tube, cm

b = 51^ /l) — dimensionless boxindary layer thickness

C — solute concentration in liquid at distance z from interface,

mole-fraction

C, — bulk liquid concentration, mole-fraction

C — eutectic composition, mole-fraction

C — initial solute concentration in liquid, mole-fraction

C — heat capacity, cal/gm C

C — solute concentration in solid, mole-fraction
s

D — binary diffusivity, cm /sec

dT
G = -r- _Q — temperature ^adient in liquid phase at the freezing

'' " interface, C/cm

g — fraction frozen

g — fraction frozen for initial period

g — fraction of charge obtained as pure solvent

g — fraction of charge obtained at the onset of cubcooling (solid

solution system)

g^ — fraction frozen when steady state is reached (diffusion model)

h — heat transfer coefficient betvreen the tube and the ambient air

K — equilibrium distribution coefficient

K^ — effective distribution coefficient

k — thermal conductivity

1 — the length of total charge, cm
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IP.

L = —

r

the length of total charge, om

n — slope of liquidus line

H — rate of freezing

5 — radius of tuhe

t — tine
. „

T — temperature in the liquid

T — temperature of surroundings
Si

T — equilibrium temnerature of the solution in contact with the interface
e

T^ — equilibrium temperature

T — freezing point of the solvent .

Z^ — distance dovm solid from first solid frozen out
o

z — distance from interface

Z — incubation distance for diffusion model

a — thermal diffusivity

2h , •

'

3 = -r,
' n dimensionless heat transfer group
zip

6 — boundary-layer thickness, cm
n

5 = g relative eutectic composition
o

zE p

T) = —rr- (—-) — dimensionless distance from interface

p — density of solid
s

p^ — density of liquid -

tR^ Pg
2T = —=r— (-—) — dimensionless time

Pi .-..-

T — duration of initial period

T^ — dimensionless time- from beginning of terminal period, t. = (t-t )
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§ = C/C — dimensionless conoontration
o

§, = C,/C — dinensionless bulk concentration
13 DO

5 = C /C — dimsnsionless solute concentration in solid
s so

• . :/ .

.''
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Normal freezing of three eutsctic-forming organic systems has

been studied experimentally and the occurrence of constitutional sub-

cooling has been clearly established. This phenomena, previously

observed in systems of metallurigical interest and until now only

postulated in organic systems, results in the instability of a planar

solid/liquid interface and leads to solute trapping. This trapping

mechanism q.uantitatively explains why eutectic-forming systems exhibit

solid-phase concentration profiles identical to those expected of

systems which form solid solutions. The onset of constitutional

subcooling can be correlated and reliably predicted by means of

theoretical eq.uations.

In order to derive the expressions for the onset of constitutional

subcooling, the temperature profile in the liquid phase has been set

up based on a simplified model. It is shovm to be in fairly good

agreement with directly measured temperature data.

The approximation of quasi-steady state employed in solving the

concentration profile of the boundary-layer model has been discussed

and compared with an exact solution obtained from a finite-difference

calculation.

Although the process of normal freezing with no liquid phase

agitation would appear well-described by a diffusion model, free

convection induced by concentration gradients renders a boundary layer'

more appropriate when the liquid density of the solvent exceeds that

of the solute.


