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Abstract 

Soil erosion is one of the most important of today’s global environmental problems. Over 

the past few decades, soil conservation practices were implemented to reduce soil erosion in the 

United States. However, excessive sediment still remains among the most prevalent water quality 

problems. Agricultural fields and in particular ephemeral gullies (EGs) are considered to be a 

major contributor of sediment. The overall goal of this study was to improve modeling utility to 

identify and quantify sources of sediment. Specific objectives were: (1) to develop and 

demonstrate a method of field-scale targeting using Soil and Water Assessment Tool (SWAT) 

and to use this method as a targeted, flexible approach to pay explicitly for sediment-yield 

reductions; (2) to evaluate topographic index models (Slope Area [SA], Compound Topographic 

Index [CTI], Slope Area Power [SAP] and Wetness Topographic Index [WTI]) and a physical-

based model (Overland Flow Turbulent [OFT]) in predicting spatial EG location and lengths. 

Black Kettle Creek watershed was the focus of an innovative project to pay for modeled 

field sediment reductions. An Arc-Geographical Information System (GIS) tool bar was developed 

that post processed SWAT hydrologic response unit output to field boundaries and prepared 

maps of high-priority fields by sediment, total nitrogen, and total phosphorus and was 

demonstrated to be useful for field-scale targeting. Calibrated SWAT model was used to 

establish baseline sediment yields. Various Best Management Practices (BMPs) were simulated 

and payments to implement each BMP for a given field were calculated. This study helped to 

guide determination of appropriate farmer support payments and quantified the important 

influence of BMP type and site-specific conditions for use in targeting conservation practice 

funding to achieve maximum soil-loss reductions per dollar spent. Extreme care should be used 

in selecting the source of spatial model input data when using SWAT for field-level targeting. 

Automated geospatial models were developed in a GIS environment to spatially locate 

and derive length of EGs using topographic index and physical based models. EG predictions 

were better for the SA model among the four topographic index models tested. Individual 

calibration of topographic index model threshold for each application site was needed. An OFT 

model (physical based model), which utilized topography, precipitation, soil, landuse/landcover 

and SWAT-based runoff estimates, did not need individual site calibration, and may have 

broader applicability than empirical based models.  
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demonstrate a method of field-scale targeting using Soil and Water Assessment Tool (SWAT) 

and to use this method as a targeted, flexible approach to pay explicitly for sediment-yield 

reductions; (2) to evaluate topographic index models (Slope Area [SA], Compound Topographic 
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based model (Overland Flow Turbulent [OFT]) in predicting spatial EG location and lengths. 
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field sediment reductions. An Arc-Geographical Information System (GIS) tool bar was developed 

that post processed SWAT hydrologic response unit output to field boundaries and prepared 

maps of high-priority fields by sediment, total nitrogen, and total phosphorus and was 

demonstrated to be useful for field-scale targeting. Calibrated SWAT model was used to 

establish baseline sediment yields. Various Best Management Practices (BMPs) were simulated 

and payments to implement each BMP for a given field were calculated. This study helped to 

guide determination of appropriate farmer support payments and quantified the important 

influence of BMP type and site-specific conditions for use in targeting conservation practice 

funding to achieve maximum soil-loss reductions per dollar spent. Extreme care should be used 

in selecting the source of spatial model input data when using SWAT for field-level targeting. 

Automated geospatial models were developed in a GIS environment to spatially locate 

and derive length of EGs using topographic index and physical based models. EG predictions 

were better for the SA model among the four topographic index models tested. Individual 

calibration of topographic index model threshold for each application site was needed. An OFT 

model (physical based model), which utilized topography, precipitation, soil, landuse/landcover 

and SWAT-based runoff estimates, did not need individual site calibration, and may have 

broader applicability than empirical based models.
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Chapter 1 - Introduction 

 1.1 General Background 

"The threat of nuclear weapons and man's ability to destroy the environment are really 

alarming. And yet there are other almost imperceptible changes - I am thinking of the exhaustion 

of our natural resources, and especially of soil erosion - and these are perhaps more dangerous 

still, because once we begin to feel their repercussions it will be too late." (p. 144, The Dalai 

Lama's Little Book of Inner Peace: 2002, Element Books, London).  

Soil erosion affects both agricultural areas and natural environment, and is one of the 

most important of today’s global environmental problems. Annual soil losses are in excess of 50 

Mg/ha in a few areas around the world, and are up to 100 times faster than the rate of soil 

formation, indicating that soil is lost nearly a half-centimeter layer every year (Banwart, 2011). 

David Montgomery (2007a) reported that agriculture is a major source of soil erosion (Figure 

1.1). The location of the agricultural field and the farming practice implemented determine the 

magnitude of soil losses. Many countries including top four crop-producing areas (United States 

[U.S.], China, India and Brazil) are losing topsoil at an alarming rate (Figure 1.2). Reduction in 

top soil results in reduction of soil quality and thereby soil’s suitability for agriculture or other 

vegetation. Projection in future show that global growth of human population and wealth 

requires a major intensification of agricultural production to meet expected 50% increase in 

demand for food in 2030 and possibly a doubling by 2050 (Godfray et al., 2010). Meeting the 

demands of food with decreasing top soil due to soil erosion is a challenge.  

Soil erosion’s main off-site effect is the movement of sediment and agricultural pollutants 

into streams and reservoirs. This is generally referred to as non-point source (NPS) pollution. 

NPS pollution results in sedimentation and eutrophication of our streams and reservoirs and 

poses a significant threat. It also impacts natural ecosystems, and negatively affects the use of 

water for drinking, household needs, recreation, fishing, agriculture, transportation and 

commerce. Hargrove et al. (2010) emphasized the need to reduce NPS pollution by reducing soil 

erosion, which is considered a high-priority issue for many states in the U.S. and is crucial to the 

future quality of life for our citizens. 

  



2 

 

Figure 1.1 Comparison of rates of soil erosion from agricultural fields under conventional 

agriculture (n = 448) and geologic erosion rates from low-gradient continental cratons (n = 

218), soil-mantled landscapes (n = 663), and alpine terrain (n = 44). Shaded area represents 

range of the USDA. T values (0.4–1.0 mm/yr) were used to define tolerable soil loss (Source: 

Montgomery, 2007b). 

 

 

Figure 1.2 Soil degradation around world (Source: P Rekacewicz, UNEP/GRID-Arendal). 

 

 

Clean Water Act, established in 1972, led to state and federal agencies making great 

strides in reducing total levels of water pollution. Pollution from NPSs, such as agricultural 

fields, remained a major concern. Section 319 of the Water Quality Act in 1987 authorized the 

U.S. Environment Protection Agency (EPA) to cooperate with other agencies and institutions to 
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establish the NPS program, in which funds were provided to each state, territory and tribe to 

implement NPS pollution controls, such as soil conservation practices or best management 

practices (BMPs). The BMPs help in reducing NPS pollution depending on the type of practice 

and location of implementation. Figure 1.3 shows that soil erosion rates can approach those 

under native conditions when BMPs are implemented.  

 

Figure 1.3 Probability plots of rates of soil erosion from agricultural fields under 

conventional (e.g., tillage) and conservation agriculture (e.g., terracing and no-till 

methods), with erosion rates from areas and plots under native vegetation, rates of soil 

production, and geologic rates of erosion (Source: Montgomery, 2007b). 

 

Over the past few decades in the U.S., BMPs of various kinds were implemented in 

agricultural fields to reduce NPS. Hargrove et al. (2010) reported that the soil erosion in 

agricultural landscapes has generally decreased, especially over the past 50 years due to 

implementation of BMPs. However, excessive sediment and pollutants remain among the most 

prevalent water quality problems. This could be due to not implementing the BMPs in highest 

sediment-producing agricultural fields, and also due to not addressing fields with ephemeral 

gully (EG) erosion. Summarizing the conclusions of a national conference on issues that threaten 

sustainability of federal reservoirs, Hargrove et al. (2010) concluded that improved 
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understanding of sources and rates of sedimentation was one of the three greatest needs for 

research:  

“One of the biggest research needs is to identify and quantify the significant sediment 

sources and their delivery rates to reservoirs for a range of ecosystem types and climatic zones. 

All potential sources need to be considered, including uplands, riparian areas, streambanks, and 

stream channels. The contribution of ephemeral gullies to upland erosion needs to be quantified. 

Simulation models need to be developed that account for all sources of sediment and that predict 

the impact of management practices.” (pp. 15A-16A) 

Watershed models play an important role in water quality and assessment and 

improvement programs. Results from watershed models such as Soil and Water Assessment Tool 

(SWAT) have been used to target general areas where soil conservation measures were needed, 

but they have been less effective at making field-level recommendations. Also, little progress has 

been made in applying these theoretical model results to the practical challenge of allocating 

conservation practice funding to meet specific soil-loss objectives. Currently available watershed 

models fail to locate or simulate EGs, even though they are considered to be a major source of 

sediment. There is a need to spatially locate and derive length of EGs so that estimates of EG 

sediment load can be achieved using process based models or regression equations.  

 1.2 Study Goals and Objectives  

This study focused on improving the SWAT model capability to target specific 

agricultural fields with the greatest soil erosion potential and demonstrate a better method to 

allocate conservation practice funding. This study also attempted to predict spatial location and 

length of EGs using topographic and physical-based models.  

Four chapters were organized to support the purpose of this study. The goals and 

objectives of each chapter are described below. 

 

Chapter 2 - Field-Level Targeting using SWAT: Mapping Outputs from HRUs to Fields 

and Assessing Limitations of GIS Input Data 

The goal was to demonstrate a method of field-scale targeting using ArcSWAT. Specific 

objectives are as follows: 
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(1) Demonstrate the use of ArcSWAT output mapped at the field scale for conservation 

practice targeting; and 

(2) Assess the impact of topography, soil, land use, and land management source data on 

field-scale targeting results. 

 

Chapter 3 - Field-Scale  Conservation Practice Targeting, Funding, and Assessment using 

SWAT 

The goal was to develop a targeted, flexible method to ensure attainment of sediment-

reduction objectives by paying farmers explicitly for sediment-yield reductions using watershed 

modeling. Specific objectives were to:  

1) Identify cropland fields with the highest soil erosion potential, and accurately quantify 

baseline sediment yields; 

2) Simulate and evaluate the effectiveness of various BMPs for each identified field using 

a calibrated SWAT model; and 

3) Design a farmer friendly in-field sign-up sheet that calculates field-specific payments. 

 

Chapter 4 - Predicting Ephemeral Gully Location and Length using Topographic Models 

The goal was to evaluate existing topographic index models (SA, CTI, SAP and WTI) in 

predicting EG location within agricultural fields according to two metrics: occurrence (presence 

or absence within a given area) and length (total accumulated length within a given area). 

Specific objectives were to:  

(1) Develop a GIS-based methodology to locate and derive length of EGs using existing 

topographic index models; 

(2) Compare and evaluate the impacts of DEM resolution (2 m, 10 m, 30 m) and landuse 

data source (NASS, field reconnaissance) on EG occurrence and length predictions; and 

(3) Evaluate the impacts of topographic index thresholds (T) on EG occurrence and 

length predictions. 

 

Chapter 5 - Predicting Ephemeral Gully Length using Physical Model  

The goal in this study was to develop a model in a geographic information system (GIS) 

environment to predict length of EGs utilizing a physical-based Overland Flow Turbulent (OFT) 
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equation developed by Montgomery and Dietrich (1994), which makes use of topography, soil, 

landuse/landcover, and precipitation factors. The specific objective was to:  

(1) Compare and evaluate performance of the OFT and SA models in predicting EG 

length. 
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Chapter 2 - Field-Level Targeting using SWAT: Mapping Outputs 

from HRUs to Fields and Assessing Limitations of GIS Input Data
1
 

 Abstract 

Soil erosion from agricultural fields is a fundamental water quality and quantity concern 

throughout the United States (US). Watershed models can help target general areas where soil 

conservation measures are needed, but they have been less effective at making field-level 

recommendations. The objectives of this study were to demonstrate a method of field-scale 

targeting using Arc-Soil and Water Assessment Tool (SWAT) and to assess the impact of 

topography, soil, land use, and land management source data on field-scale targeting results. The 

study was implemented in Black Kettle Creek watershed (7,818 ha) in south-central Kansas. An 

Arc-Geographical Information System (GIS) toolbar was developed to post-process SWAT 

hydrologic response unit (HRU) output to generate sediment yields for individual fields.  

The relative impact of each input data source on field-level targeting was assessed by 

comparing ranked lists of fields on the basis of modeled sediment-yield density (Mg ha
-1

) from 

each data-source scenario. Baseline data of field-reconnaissance land use and management were 

compared to National Agricultural Statistics Service (NASS) and National Land Cover Dataset 

(NLCD) data, 10 m Digital Elevation Model (DEM) topography were compared to 30 m, and 

Soil Survey Geographic Database (SSURGO) soil data were compared to State Geographic Database 

(STATSGO).  

Misclassification of cropland as pasture by NASS and aggregation of all cropland types 

to a single category by NLCD led to as much as 75% and 82% disagreement, respectively, in 

fields identified as having the greatest sediment-yield densities. Neither NASS nor NLCD data 

include land management data (such as terraces, contour farming, or no-till), but such inclusion 

changed targeted fields by as much as 71%. Impacts of 10 m versus 30 m DEM topographic data 

and STATSGO versus SSURGO soil data altered the fields targeted as having the highest 

                                                 

1
 This chapter was published in Transactions of the ASABE: Daggupati, P., K. R. Douglas-Mankin, A. Y. 

Sheshukov, P. L. Barnes, and D. L. Devlin. 2011. Field-level targeting using SWAT: Mapping output from HRUs to 

fields and assessing limitations of GIS input data. Trans. ASABE 54(2):501–514. A copy of granted permission to 

reprint the journal article is presented in Appendix C. 
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sediment-yield densities to a lesser extent (about 10% to 25%). SWAT results post-processed to 

field boundaries were demonstrated to be useful for field-scale targeting. However, use of 

incorrect source data directly translated into incorrect field-level sediment-yield ranking, and 

thus incorrect field targeting. Sensitivity was greatest for land use data source, followed closely 

by inclusion of land management practices, with less sensitivity to topographic and soil data 

sources. 

 2.1 Introduction 

Soil erosion and sedimentation are fundamental water quality and quantity concerns 

throughout the U.S. Soil erosion from agricultural fields is a major contributor of sediment yields 

into surface waters. Watershed models, both empirical and process-based, are used for watershed 

management, planning, development, and best management practice (BMP) implementation. 

Process-based models, such as the Soil and Water Assessment Tool (SWAT; Arnold et al., 

1998), have been used widely to assess the extent of soil erosion as affected by agricultural land 

use and management practices at both field and watershed scales (Pandey et al., 2007). 

Strategic targeting and prioritization of areas that need BMP implementation is the key to 

effective watershed management (Mankin et al., 2004; Diebel et al., 2008). Identifying fields or 

critical source areas (CSAs) with the greatest sediment-yield potential and targeting these fields 

or areas for educational and implementation efforts would efficiently allocate time, money, and 

educational resources (Pionke et al., 2000; Strauss et al., 2007; White et al., 2009; Busteed et al., 

2009; Tuppad et al., 2010). Targeting can be separated into two phases: (1) an assessment phase, 

in which BMPs and/or source areas are identified and prioritized, and (2) a planning phase, in 

which a stakeholder group considers BMPs and source areas targeted by the assessment process 

along with other information to target actions, such as educational efforts or financial support. In 

Kansas, watershed modeling has been widely used in the assessment targeting phase to quantify 

and prioritize pollutant yields from BMPs and source areas (Devlin et al., 2005; Nejadhashemi et 

al., 2011). In this study, the term "targeting" generally refers to this assessment-phase targeting. 

Over the past few decades, empirical-based and process-based models have been used 

widely to identify CSAs. Tim et al. (1992) integrated simulation modeling with a geographic 

information system (GIS) to identify CSAs in Nomini Creek watershed in Virginia. Sivertun et 

al. (1998), Sivertun and Prange (2003), and Barnes et al. (2009) used GIS and a Revised 
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Universal Soil Loss Equation (RUSLE) (Renard et al., 1991) based model to identify CSAs in 

which to implement conservation practices. Tripathi et al. (2003), White et al. (2009), and 

Busteed et al. (2009) used the SWAT model to identify and prioritize CSAs. 

The SWAT model can be effective for identifying CSAs because it uses a distributed 

hydrologic modeling approach that utilizes spatially distributed climate, topography, soils, land 

use, and land management practices (Gassman et al., 2007; White et al., 2009). SWAT 

subdivides the watershed into subwatersheds and further into hydrologic response units (HRUs), 

areas within a subwatershed that have unique combinations of land use, soil, and slope. The 

HRU-level output can be referenced to the original land areas having the specific characteristics 

of each HRU and thus can be used to identify CSAs that exceed a threshold pollutant yield value 

(Busteed et al., 2009; Ghebremichael et al., 2010). HRUs may spread across several fields, or a 

given field may contain several HRUs, each with different pollutant yield potential (Figure 2.1). 

However, the management unit for crop BMP implementation typically is the field, not the HRU, 

because the entire area within a field receives the same crop type, tillage, and management 

practices. Farmers or landowners typically are not willing to manage field subareas differently. 

Therefore, HRU-level output must be aggregated or disaggregated to produce field-level output 

when the intention is to use the modeled information for practical targeting of BMP 

implementation. 
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Figure 2.1 Locations of HRU areas (in red) with the greatest SWAT-estimated sediment 

yield in relation to field boundaries 

 

The SWAT model requires input data and parameters that describe the characteristics and 

distribution of topography, soils, land cover, and weather within the watershed. Watershed 

modelers can readily download these input data from various data sources. The SWAT model is 

sensitive to the quality of land use, topographic, and soil data and the preprocessing techniques 

used to prepare and input these data (Romanowicz et al., 2005). Inamdar and Naumov (2006) 

used SWAT to determine annual sediment yields and identified CSAs of erosion for the Buffalo 

River watershed. They used a land use/land cover (LULC) layer downloaded from the EPA 

BASINS website and manually updated the LULC layer by using 2002 digital ortho quarter 

quads. They concluded that the accuracy and resolution of the cropland areas delineated on the 

LULC layers are critical for reliable sediment predictions. Zhan et al. (2009) used the SWAT 

model to simulate runoff and sediment yield by changing LULC layers (from 1990 and 2000) in 

the Chao River catchment in China. Their results showed that the LULC change had little 

influence on runoff but had more influence on sediment yield. 
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Chaubey et al. (2005) evaluated the effect of digital elevation model (DEM) resolution 

(from 30 to 1000 m) on SWAT model predictions. They found that the DEM resolution affected 

the watershed delineation, stream network and subbasin classification, and the model predictions. 

Dixon and Earls (2009) used the SWAT model to test the sensitivity of DEM resolution (30, 90, 

and 300 m) and resampling techniques in predicting streamflow. They concluded that model 

predictions were sensitive to DEM resolution, and resampling may not be an adequate technique 

for modeling streamflow using the distributed watershed model. Chaplot (2005) determined the 

impact of DEM resolution (20 to 500 m) and soil map scale (1:25,000; 1:250,000; and 1:500,000 

scale) by using SWAT to simulate runoff, sediment, and NO3-N loads. They concluded that a 

DEM resolution of 50 m was required to simulate watershed loads, and decreasing the DEM 

resolution beyond 50 m affected the predictions of nitrogen and sediment yields. They also 

concluded that the detailed soil map needed to be considered to accurately estimate the 

watershed loads. Wang and Melesse (2006) and Peschel et al. (2006) evaluated the effects of soil 

layer (SSURGO and STATSGO) on modeling predictions and found that the SSURGO soil layer 

predicted streamflow better than the STATSGO soil layer. 

Heathman et al. (2009) used SWAT to evaluate the impact of different combinations of 

GIS-based soil data (SSURGO and STATSGO) and land use data (GAP and NASS) on 

streamflow prediction. The two land use layers studied resulted in greater differences in 

predicted streamflow than the two soil layers studied. Veith et al. (2008) used SWAT to assess 

high and low resolution land use management data on flow, sediment concentration, and P 

concentration at the outlet of a small watershed (<100 ha). Their results showed that the high-

resolution data can enable the model to provide valuable water quality information, while the 

low-resolution data can be used for initial problem-solving efforts. Research has evaluated the 

difference in modeled watershed-scale yields of flow, sediment, and nutrients resulting from 

input data having a range of spatial resolutions. In these studies, changes in spatial representation 

of topography, soils, and land use were assessed by comparing impacts on watershed-scale 

yields. However, very few studies have assessed the impact of spatial data resolution on the 

representation or modeling accuracy of watershed models at the individual field scale. 

Therefore, objectives of this study were to (1) demonstrate the use of ArcSWAT output 

mapped at the field scale for conservation practice targeting, and (2) assess the impact of 

topography, soil, land use, and land management source data on field-scale targeting results. This 
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study focused on evaluating common datasets that were readily downloadable from the internet 

or manually prepared. 

 2.2 Project Area and Project Setting 

The city of Wichita in south-central Kansas undertook the Equus Beds Aquifer Storage 

and Recovery (ASR) project, which diverted water from the Little Arkansas River watershed 

through bank storage (diversion) wells during high flows. In 2007, approximately 1.3 million m
3
 

(350 million gal) of water was injected into the Equus Beds aquifer. However, for every 3,800 

m
3
 (1 million gal) of water injected, an average of 6.4 Mg (7 tons) of sediment needed to be 

removed prior to injection (Steele, 2006), representing a substantial treatment expense. Steele 

(2006) conducted a water quality monitoring study and concluded that the Black Kettle Creek 

subwatershed of the Little Arkansas River watershed delivered the greatest sediment yields 

compared with other subwatersheds. This led to initiation of a project with the goal of reducing 

sediment yields from Black Kettle Creek watershed by cost-sharing implementation of targeted 

conservation practices in agricultural fields with the greatest soil erosion potential. 

Black Kettle Creek watershed is a 7,818 ha (19,295 acres) subwatershed of the Little 

Arkansas River watershed (360,000 ha) located within McPherson and Harvey counties in south-

central Kansas (Figure 2.2). Primary land uses in the watershed are cropland (84% of total area) 

followed by rangeland (12%), urban area (2%), and forests (2%). The cropland is predominantly 

wheat, followed by sorghum, soybeans and corn. The major pollutant concerns in this watershed 

are sediment and phosphorus (Steele, 2006). 
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Figure 2.2 Field boundaries and stream network for Black Kettle Creek watershed. 

 

 2.3 Methods 

The Soil and Water Assessment Tool (SWAT), a widely used, watershed-scale, process-

based model developed by the USDA Agricultural Research Service (ARS) (Arnold et al., 1998; 

Neitsch et al., 2005; Gassman et al., 2007; Douglas-Mankin et al., 2010), was used to identify 

and target the specific fields with the greatest soil erosion potential. 

 2.3.1 SWAT input data 

Watershed and subwatershed boundaries were delineated with U.S. Geological Survey 10 

m  10 m DEM (USGS, 1999) or 30 m  30 m DEM (USGS, 1999) depending on the modeling 

scenario. Watershed and subwatershed boundaries for all model runs were set using a minimum 

stream-definition area of 500 ha, which defined nine subbasins with the 10 m DEM and seven 

subbasins with the 30 m DEM. Slope categories of 0% to 2%, 2% to 4%, and >4% were used for 
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all the modeling scenarios to capture low, medium, and high slopes in the watershed (Figure 

2.3). Relative to the 10 m DEM, the 30 m DEM overestimated the watershed area in the 0% to 

2% slope class by 2.1% but underestimated the area in the 2% to 4% class by 1.9% and 

underestimated the area in the >4% class by 49.8%, although the total area in the >4% class was 

less than 5% of the watershed area in both DEM cases (Table 2.1) 

 

Figure 2.3 Slope classifications (10 m and 30 m DEM) for Black Kettle Creek watershed. 

 

 

Table 2.1 Characteristics of 10 m and 30 m DEM data for Black Kettle Creek watershed 

Slope 

Category 

(%) 

10 m DEM 

 

30 m DEM 

Area 

(ha) 

Mean 

Slope 

(%) 

Overall 

Slope 

(%) 

Area 

(ha) 

Mean 

Slope 

(%) 

Overall 

Slope 

(%) 

>4 281 5.17 

2.58 

 141 4.89 

2.18 2-4 1027 2.7  1007 2.6 

0-2 6487 0.96  6620 0.97 
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Soil data were derived from either the Soil Survey Geographic (SSURGO) database 

(USDA-NRCS, 2005) or the State Soil Geographic (STATSGO) database (USDA-NRCS, 1994) 

depending on the modeling scenario (Figure 2.4). The SSURGO soil layer was prepared using a 

SSURGO processing tool (Sheshukov et al., 2009) that converted the SSURGO data to a format 

compatible with ArcSWAT. The soil series in the SSURGO database for the Black Kettle Creek 

watershed included a broader range of hydrologic soil groups and USLE K values than the soil 

associations in the STATSGO database. The STATSGO soil data overestimated the watershed 

areas in the higher-runoff hydrologic soil groups (C and D) and in the highest erosivity class (K 

of 0.37) relative to the SSURGO data (Table 2.2). 

 

Figure 2.4 Soil classifications (SSURGO and STATSGO) for Black Kettle Creek 

watershed. 
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Table 2.2 Characteristics of SSURGO and STATSGO soil data for Black Kettle Creek 

watershed 

Parameter 

Area (ha) 

SSURGO STATSGO 

Hydrologic 

soil group 

A 2.8 0 

B 841.5 0 

C 4778.1 5265.3 

D 2186.4 2504.4 

ULSE K 

0.37 6965.8 7796.4 

0.32 768.8 0 

0.28 50.1 0 

0.20 22.2 0 

0.01 2.8 0 

 

The LULC data were derived from the 2001 National Land Cover Dataset (2001) (Homer 

et al., 2004), the USDA National Agricultural Statistical Service (USDA-NASS, 2008), or from 

field reconnaissance survey data depending on the modeling scenario (Figure 2.5). The NLCD 

land cover was compiled for all 50 states utilizing Landsat 5 and Landsat 7 imagery centered on 

a nominal collection year of 2001 (Yang, 2008). The NASS land cover was produced for each 

state utilizing the Thematic Mapper (TM) instrument on Landsat 5, Landsat 7 ETM gap-filled 

data, and Indian Remote Sensing (IRS) Advanced Wide Field Sensor (AWiFS) on Resourcesat-

1. The NASS land cover was developed based on satellite imagery taken during mid-July of each 

year (Mueller and Seffrin, 2006). The NASS land cover data are assessed mostly for agricultural 

areas, and NLCD land cover data are suggested for use in non-agricultural areas 

(www.nass.usda.gov/research/Cropland/metadata/metadata_ks08.htm). The metadata of the 

NASS land cover (USDA-NASS, 2008) used in this study reported classification errors 

(omission and commission errors) of 9.68% and 12.52% for sorghum, 8.74% and 6.93% for 

soybeans, and 4.48% and 4.48% for winter wheat. The NLCD land cover data distinguished 21 

different data classes, while the NASS land cover data distinguished 84 classes; however, the 

non-agricultural classes (e.g., rangeland, pasture, woody wetlands) in the NASS land cover data 

are derived from the NLCD land cover data. 

In the case of field reconnaissance survey data, the field data were developed using the 

common land use unit (CLU) field boundary shapefile, obtained from the USDA Natural 

Resource Conservation Service online geospatial data gateway (USDA-NRCS, 2004). Each 

field's land cover was manually edited based on a field-by-field reconnaissance survey conducted 
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by the authors in November 2008 and October 2009. The difference in the total cropland area in 

the NLCD land use layer and the field layer was minimal, which indicates that there was not 

much of a temporal difference of cropland from 2001 to 2009 in this watershed (Table 2.3). 

However, the three LULC data sources produced different estimates of total area in each land use 

category (Table 2.3) as well as spatial location of land uses (Figure 2.5). For example, Figure 2.5 

shows that a field identified as grain sorghum (GRSG) by the field reconnaissance was identified 

largely as rangeland (RNGE) by NASS and general agriculture (AGRL) by NLCD. Similar 

disagreement was observed at numerous locations in the study watershed. As a result, over the 

watershed as a whole, NASS underestimated cropland by 1076 ha relative to field 

reconnaissance and overestimated rangeland by a similar area (1109 ha) (Table 2.3).SWAT 

parameters ALPHA_BF, EPCO, and ESCO were adjusted from the default SWAT parameters 

for all the scenarios in this study. ALPHA_BF was set to 0.028 based on the baseflow filter 

program (Arnold and Allen, 1999; Nathan and McMahon, 1990), while EPCO of 0.8 and ESCO 

of 0.2 were used based on experience in a nearby watershed (Gali, 2010). 
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Figure 2.5 Land use/land cover classifications (field reconnaissance, NASS, and NLCD) for 

Black Kettle Creek watershed. 

 

Table 2.3 Characteristics of field reconnaissance, NASS, and NLCD land use/land cover 

data for Black Kettle Creek watershed 

Land Use 

Category 

SWAT 

Abbreviation 

Land Use Data Source 

Field 

(ha) 

NASS 

(ha) 

NLCD 

(ha) 

Winter wheat WWHT 4529 3917 0 

Soybean SOYB 609 518 0 

Grain sorghum GRSG 801 424 0 

Corn CORN 210 197 0 

General agriculture AGRL, AGRR 1 18 6060 

Sum of cropland -- 6149 5073 6060 

Rangeland RNGE 685 1794 912 

Forest FRSD 156 166 157 

Forested wetlands WETF 26 10 30 

CRP CRPP
[a]

 25 0 0 

Alfalfa ALFA 23 0 0 

Grassed waterway GRWY
[a]

 72 0 0 

Urban URLD, URMD, URHD 658 733 604 

Water WATR 2 18 30 
[a]

 Created crop parameters in land cover/plant growth database 
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 2.3.2 Representation of Hydrological Response Units (HRUs) 

HRUs in SWAT do not have spatial reference. However, this limitation was overcome by 

redefining the topographic, soil, and land use thresholds to 0%, which retained all combinations 

of topography, soil, and land use in the model output and allowed reconnection of HRU output 

back to its original position in the landscape (Gitau et al., 2006). Another method was used by 

Ghebremichael et al. (2010), who defined HRUs according to field boundaries to maintain the 

spatial location of crop fields. In contrast to the Ghebremichael et al. (2010) approach, this study 

set the topographic, soil, and land use thresholds to 0% so that all slope, soil, and land use 

combinations in the watershed were captured and then post-processed HRU results to represent 

field-level results, as described below. A summary of input data sources used in each modeled 

scenario is presented in Table 2.4. The number of HRUs varied from 1456 to 216 depending on 

the scenario (Table 2.4). 

 

Table 2.4 Source data used for each modeled scenario 

Scenario 

No. of 

HRUs 

No. of 

Sub- 

basins 

Source Data Designations 

Soils
[a]

 

Topo- 

graphy
[b]

 

Land 

Use
[c]

 

Land 

Mgmt.
[d]

 

Tillage 

Mgmt.
[e]

 

0 1456 9 S 10 F T R 

1 1112 7 S 30 F T R 

2 1169 9 S 10 F N C 

3 1133 9 S 10 A N C 

4 800 9 S 10 L N C 

5 319 9 O 10 F N C 

6 344 9 O 10 A N C 

7 216 9 O 10 L N C 

8 1338 9 S 10 F T C 

9 1292 9 S 10 F N R 
[a]

 S = SSURGO, and O = STATSGO. 
[b]

 10 = 10 m DEM, and 30 = 30 m DEM. 
[c]

 F = field reconnaissance of land uses/crop types, A = NASS (USDA-NASS, 2008), and L = 

NLCD (Homer et al., 2004). 
[d]

 T = digitized satellite image of terraced areas, and N = assume no terraces. 
[e]

 R = field reconnaissance of no-till or high-residue fields, contour farming, and C = assume 

conventional tillage only. 

 2.3.3 Representation of conservation practices in SWAT 

The fields with conservation practices (e.g., terraces, contour farming, no-till) were 

identified from either the field reconnaissance survey or analysis of the digital ortho imagery 

(KGS, 2002; USDA-NRCS, 2004). Combinations of land cover, conservation structures, and 
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tillage practices (e.g., wheat crop with terraces and conventional tillage) were created in the 

SWAT database by copying the data from its original land cover (e.g., wheat) and assigning a 

new land cover name (e.g., wheat with terrace) and crop code (CPNM) (e.g., TWHT). The 

terrace structural practice (12% of cropland area), assumed to be coupled with contour farming, 

was simulated by reducing the curve number (CN) by six units (USDA-SCS, 1972; Neitsch et 

al., 2005; Arabi et al., 2008) and reducing USLE practice factor values to 0.1 (Wischmeier and 

Smith, 1978; Arabi et al., 2008). The contour farming practice alone (0.02% of cropland area) 

was simulated by reducing the CN by five units and reducing USLE practice factor values to 0.5 

(Arabi et al., 2008). The no-tillage or residue management practice (5% of cropland area; no 

overlap with terrace practice fields) was simulated by reducing the CN by two units (Arabi et al., 

2008) and increasing Manning's roughness coefficient for overland flow (OV_N) to 0.14 for no 

residue, to 0.20 for 0.5 to 1.0 Mg ha
-1

 residue, and to 0.30 for 2 to 9 Mg ha
-1

 residue (Neitsch et 

al., 2005; Arabi et al., 2008). Arabi et al. (2008) used a procedure that adjusted the USLE 

practice factor (USLE_P) and minimum USLE cover factor (USLE_C0) to incorporate the 

impact of residue biomass on erosion and transport of nutrients from upland areas because the 

current version of SWAT does not incorporate the impact of residue biomass on erosion. The 

residue biomass left on the surface in all no-till fields was assumed to be 500 kg ha
-1

 (Arabi et 

al., 2008), based on experience by the authors in the study watershed. 

The baseline scenario (scenario 0, Table 2.4) represented the best resolution and most 

accurate data available from each source: HRU slopes from 10 m  10 m DEM data, soil 

distribution and characteristics from the SSURGO database, land use and crop types from the 

field reconnaissance data, structural land management (terrace) locations by the digital ortho 

imagery, and tillage management practices (no-till, contour farming) from the field 

reconnaissance data. Other scenarios were developed by varying the input data source, as shown 

in Table 2.4, and comparing the output results. 

Daily precipitation data for the watershed were obtained from the Hesston weather station 

(Harvey County) located about 10 km northeast of the watershed and the Goessel weather station 

(McPherson County) located about 15 km east of the watershed. Temperature, solar radiation, 

wind speed, and relative humidity data were obtained from the Newton (Harvey County) weather 

station located about 25 km south of the watershed. Missing data were adjusted by using 

SWAT's weather generator. Each SWAT scenario was simulated for the period from 1992 to 
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2009 (18 years). Annual average precipitation and temperature over the study period were 795 

mm (31.2 in.) and 13.9°C (57°F). Data from 2006 to 2009 were used for model validation, and 

data from 1995 to 2006 (12 years) were used for all field targeting analyses. The HRU, Subbasin, 

and Reach outputs files were exported and written as tables in the Access database 

(SWATOutput.mdb). 

 2.3.4 Model validation 

Modeled streamflow for the baseline condition and selected scenarios was evaluated 

using measured flow data collected from 1 January 2006 to 31 July 2009 at the outlet of Black 

Kettle Creek watershed. Stream stage was recorded at 15 min intervals using an automated stage 

recorder (6700 water sampler, 730 bubbler flow module, Isco, Inc., Lincoln, Neb.) and averaged 

for each 24 h period (midnight to midnight). Average daily water depth was used with surveyed 

stream cross-sectional area, surveyed longitudinal channel slope, and estimated channel 

roughness coefficient (Cowan, 1956) to estimate average daily streamflow using Manning's 

equation (Grant and Dawson, 2001). 

The statistical parameters used to evaluate the relationship between the observed and 

simulated streamflow were coefficient of determination (R
2
), Nash-Sutcliffe model efficiency 

(NSE) (Nash and Sutcliffe, 1970), and percent bias (PBIAS), as recommended by Moriasi et al. 

(2007). The R
2
 value indicates the consistency with which measured versus predicted values 

follow a best fit line, with 1.0 being optimal (Santhi et al., 2001). The NSE has been widely used 

to evaluate the performance of hydrologic models (Wilcox et al., 1990). The NSE value can 

range from 1 to  , where a value of 1 indicates perfect model fit. PBIAS measures the average 

tendency of the simulated data to be larger or smaller than their observed counterparts. The 

optimal value of PBIAS is 0.0%, with positive values indicating model underestimation bias and 

negative values indicating model overestimation bias (Gupta et al., 1999). 

For the baseline (scenario 0), the model agreement with observed flow data was 

satisfactory to good for monthly statistics of R
2
 (0.75), NSE (0.66), and PBIAS (-18.1%) (Table 

2.5) using performance ratings proposed by Moriasi et al. (2007). The annual average observed 

and simulated flows were also in good agreement. For the other selected scenarios, the model 

agreement with monthly observed flow data was satisfactory based on NSE (0.50 to 0.65) but 

more variable based on PBIAS (very good for two scenarios <10%, good for one scenario 
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<15%, satisfactory for one scenario <25%, and unsatisfactory for two scenarios) depending on 

the modeling scenario (Table 2.5). The annual average observed and simulated flows for other 

scenarios were in close agreement. Further detailed calibration was not done in this study to 

avoid site-specific empiricism and bias of parameters, as the goal of this study was to compare 

different scenarios with different data sources. 

 

Table 2.5 Monthly model validation statistics for selected scenarios 

Scenario
[a]

 R
2
 NSE 

PBIAS 

(%) 

Annual 

Avg. Flow 

(m
3
 s

-1
) 

Observed -- -- -- 0.29 

0 0.75 0.66 -18.1 0.30 

2 0.68 0.64 -6.9 0.31 

3 0.55 0.48 -12.4 0.34 

4 0.59 0.52 -3.0 0.31 

5 0.62 0.60 -24.6 0.36 

6 0.53 0.45 -31.8 0.38 

7 0.56 0.48 -26.1 0.39 
[a]

 0 = S10FTR, 1 = S30FTR, 2 = S10FNC, 3 = S10ANC, 4 = S10LNC,  

5 = O10FNC, 6 = O10ANC, 7 = O10LNC, 8 = S10FTC, 9 = S10FNR, 

where S = SSURGO, O = STATSGO, 10 = 10 m DEM, 30 = 30 m DEM, F = field 

reconnaissance of land uses/crop types, A = NASS (USDA-NASS, 2008), L = NLCD 

(Homer et al., 2004), T = digitized satellite image of terraced areas, N = assume no 

terraces, R = field reconnaissance of no-till or high residue fields, and C = assume 

conventional tillage only. 

 

Stream sediment data were not available for calibration. Model results were validated 

using published measurements of sediment yields from small cropland drainage areas in Kansas 

(Holland, 1971). According to Holland, cropland areas in the Black Kettle Creek watershed area 

had sediment yields ranging from 2.78 to 5.86 Mg ha
-1

 year
-1

 (1.24 to 2.48 ton acre
-1

 year
-1

). 

Before 1971, typical cropland areas in this region had minimal implementation of conservation 

practices and few terraces. Modeling results for the top 25 fields, also with no conservation 

practices or terraces, ranged from 2.83 to 5.50 Mg ha
-1

 year
-1

 (1.14 to 2.26 ton acre
-1

 year
-1

), in 

good agreement with measured sediment yields. Further sediment calibration was not considered 

to be warranted for this study. 
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 2.3.5 Tool to map HRU to field boundaries 

To identify specific fields for targeting, the SWAT HRU output had to be mapped to the 

actual field boundaries. Converting SWAT HRU output to field-level results and identifying the 

fields that produced the greatest sediment yields involved several steps after running SWAT: (1) 

calculate average annual sediment for HRUs from SWATOutput tables, (2) join to FullHRU 

shapefile, (3) process FullHRU shapefile, (4) convert FullHRU shapefile to Grid, and (5) use 

zonal statistics to get pollutant yields for each field. These steps are time consuming and labor 

intensive. Therefore, an ArcGIS-based SWAT Targeting Toolbar (Figure 2.6) was developed 

with ArcGIS-Visual Basic to post-process the SWAT output and prepare maps of sediment, total 

phosphorus, and total nitrogen yields for a user-defined land-area boundary. The toolbar was 

divided into two menu items: the SWAT Output Processing tool, and the Watershed Targeting 

tool. 

 

Figure 2.6 Overview of SWAT targeting toolbar. 
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The SWAT Output Processing menu opened the Excel spreadsheet-based SWAT Output 

Processing tool. This tool read the SWAT output tables that were stored in an Access database 

(SWATOutput.mdb) and exported average annual sediment, total nitrogen, and total phosphorus 

yields for HRUs and subbasins. 

The Targeting menu opened the Watershed Targeting tool that was built with Model 

Builder in the ArcGIS environment. This tool needed output from the SWAT Output Processing 

tool, FullHRU shapefile (generated in SWAT model run), and boundary of interest (e.g., fields, 

subbasins, counties). Once the inputs were satisfied, the tool produced maps of area-weighted 

average annual pollutant yields (sediment, total phosphorus, and total nitrogen yields) for the 

user-defined boundary. In this study, the CLU field boundary shapefile was used. Because this 

project involved identifying and targeting the fields producing the greatest sediment yields, we 

used only the sediment-yield analyses in this study. Using these tools and procedures, area-

weighted average annual sediment yields were developed for each field for each scenario. 

 2.3.6 Data resolution assessment 

The area within each CLU field boundary was calculated using GIS. A substantial 

number of small parcels in the CLU field boundary represented windbreaks, field borders, 

grassed waterways, and other small (<1 acre) areas that were less than a typical farm field-

management unit. Since the focus of this study was on field-level targeting, these sub-field units 

were not relevant. Therefore, a threshold of 0.4 ha (1 acre) was applied, which reduced the 

number of field parcels included in analyses for this study from 677 to 593. 

For each modeling scenario, field-scale sediment-yield density (Mg ha
-1

) for each of 593 

fields in the watershed was ranked from high to low. We used four subsets of fields in this 

ranking for comparison: the top 10% of fields (60 fields), top 20% of fields (118 fields), fields 

that summed to equal the top 10% of total field sediment yields (Mg), and fields that summed to 

equal the top 20% of sediment yields. The number of fields that contributed to the top 10% or 

20% of sediment yields varied by scenario. These methods were referred to as the top 10% of 

fields, 20% of fields, 10% of yields, and 20% of yields, respectively. The ranking thresholds 

selected in this study were chosen for two reasons. First, project funding was available to pay for 

management practices on about 10% to 20% of the watershed's land area. Second, previous 

studies (Parajuli et al., 2008; Tuppad et al., 2010) have shown that the benefit of targeting 
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(relative to random placement) diminishes substantially after practices have been implemented 

on the "most critical" 20% of land area. 

The individual fields identified as in the top percentage of fields and top percentage of 

yields were compared among modeling scenarios. Scenario 0, or S10FTR (abbreviations 

described in Table 2.4), was considered to be the baseline scenario because SSURGO soils data, 

10 m DEM, field-by-field land use reconnaissance assessment, and inclusion of terraces and no-

till practices were considered to constitute the available input data that best represented actual 

conditions of the watershed. Comparisons were conducted by spatially overlapping two different 

scenarios in the GIS framework. For example, the shapefile of scenario 1 was overlapped with 

the shapefile of scenario 0 to obtain a new shapefile that showed fields that were in agreement 

between both scenarios. 

The goal in this study was to identify the specific fields that should be targeted for 

conservation practice implementation and cost-share funding. If a given scenario produced a 

ranked list with the same fields as the comparison scenario, it was considered to be in agreement. 

Agreement between each pair of scenarios was assessed by reporting the percentage of fields that 

appeared in corresponding ranked subsets for both scenarios as a percentage of the number of 

fields in the scenario that best represented actual conditions (as stated above). 

 2.4 Results and Discussion 

 2.4.1 Impact of data source on characteristics of top-ranked fields 

Source of soil, slope, land use, and land management data impacted the field-scale sediment 

yields simulated by SWAT, and these changes were not uniform across fields in the study 

watershed. In many cases, the ranking of field-scale sediment-yield densities (Mg ha
-1

) changed 

as a result. 

Characteristics of the ten fields with the greatest field-scale sediment-yield density for 

each scenario are summarized in Table 2.6. Modeled HRUs within a field that were not 

identified as cropland were labeled "noise." Even scenarios based on field reconnaissance LULC 

data (scenarios 0, 1, 2, 5, 8, and 9) had 1.1% to 3.0% of field area incorrectly modeled as non-

cropland ("noise") area. The source of this noise was in the conversion of the field 

reconnaissance data shapefile (based on CLU field boundaries) into raster format during input to 

SWAT. Greater noise was observed in fields using NLCD LULC data (scenario 4 with 7.2%; 
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scenario 7 with 7.3%) and NASS LULC data (scenario 3 with 22.3%; scenario 6 with 28.6%). 

The NLCD and NASS data are already in raster form when input to SWAT, so noise from these 

data are directly caused by inaccurate land use assignment. The NASS data included more 

detailed categories of LULC than NLCD (Table 2.2) but more often incorrectly identified 

cropland as rangeland, which was the primary factor in causing 3 to 4 times more field area to be 

misclassified as cropland for NASS than NLCD on the top sediment-yielding fields (Table 2.6). 

 

Table 2.6 Average characteristics for top 10 sediment-yielding fields from each scenario. 

HRUs within a field that were not identified as cropland were labeled "noise." 

Scenario
[a]

 

Avg. No. 

of HRUs 

per field 

Total 

Ten-Field 

Area (m
2
) 

Noise 

Area 

(m
2
) 

Noise 

(%) 

Average 

Slope 

(%) 

Slope
[b]

 

(%) 

 

Hydrologic 

Soil Group
[b]

 

 

USLE 

K Factor
[b]

 

0-2 2-4 4-10 B C D 0.32 0.37 

0 13 236,116 2,652 1.1 2.5 66 25 9  15 80 5  15 85 

1 11 117,009 3,542 3.0 2.2 65 30 4  17 78 6  15 85 

2 17 101,172 1,735 1.7 2.5 58 35 7  19 72 9  15 85 

3 15 175,215 39,076 22.3 2.4 75 24 2  11 75 14  1 99 

4 12 47,711 3,455 7.2 3.0 23 43 37  24 76 0  16 84 

5 12 134,224 2,326 1.7 2.7 48 38 14  0 90 10  0 100 

6 12 202,800 57,932 28.6 2.4 69 28 3  0 97 3  0 100 

7 8 66,337 4,825 7.3 3.2 26 45 29  0 100 0  0 100 

8 16 123,559 2,167 1.8 2.3 89 33 5  15 45 40  15 85 

9 18 181,652 3,308 1.8 2.7 55 38 7  25 52 24  25 76 
[a] 0 = S10FTR, 1 = S30FTR, 2 = S10FNC, 3 = S10ANC, 4 = S10LNC, 5 = O10FNC, 6 = O10ANC, 7 = O10LNC, 8 = S10FTC, and 9 = S10FNR,  

where S = SSURGO, O = STATSGO, 10 = 10 m DEM, 30 = 30 m DEM, F = field reconnaissance of land uses/crop types, A = NASS (USDA-

NASS, 2008), L = NLCD (Homer et al., 2004), T = digitized satellite image of terraced areas, N = assume no terraces, R = field reconnaissance of 

no-till or high residue fields,  
and C = assume conventional tillage only. 

[b] Percent of total ten-field area in slope, hydrologic soil group, or K-factor category for a given scenario. 

 

Use of STATSGO data (scenarios 5, 6, and 7) forced all soils to have a K factor of 0.37 

(Table 2.2), so obviously the same shift was observed in the top ten fields (Table 2.6). Similarly, 

STATSGO data only contained hydrologic soil groups C and D (Table 2.2), so these soil groups 

also would be expected to be more heavily represented in STATSGO scenarios. As a result, 

hydrologic soil groups for the top ten fields consistently shifted toward greater percentage of 

group C soils for the STATSGO scenarios (5, 6, and 7), with 90% or more of the targeted fields 

having group C soils compared to 80% in scenario 0 and 61% in the overall watershed (Table 

2.2). 

Compared to corresponding scenarios based on field LULC data (scenario 0) (Table 2.6), 

use of NLCD LULC data (scenario 4) had little influence on the percentage of field area having a 

given K factor (e.g., area with K = 0.37 changed from 85% to 84%), a small reduction in field 
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area having hydrologic soil groups C and D (e.g., area with group D changed from 5% to 0%), 

and a large increase in the field area with 2% to 4% and >4% slope classes (e.g., area with slope 

>4% changed from 9% to 37%). The NLCD data resulted in 29% (scenario 7: STATSGO) and 

37% (scenario 4: SSURGO) of the area of the top ten fields falling within the >4% slope class, 

compared to 3.6% of the total watershed (Table 2.3), 10 m DEM), which was much greater than 

any other scenario (Table 2.6). We conclude that the net result of the use of NLCD data was the 

increasing importance of non-land-use factors for field selection. 

Use of NASS LULC data (scenario 3) had almost the opposite effect of NLCD data 

(scenario 4). These data increased the K factor to 0.37 for almost all targeted field areas, shifted 

about 5% of both B and C group soils to hydrologic soil group D, and decreased the field areas 

with >4% slope classes compared to corresponding scenarios based on field LULC data 

(scenario 0) (Table 2.6). From a process perspective, the impact of the incorrect classifications of 

cropland as pasture decreased the influence of LULC on the highest ranked sediment-yielding 

fields and led to greater influence of soil factors (greater area of high K factor and hydrologic 

soil group D) on the ranking. For example, the top ten sediment-yielding fields in scenario 0, 

none of which contained pasture, were found to average 30.7% pasture area (range of 25 to 36%) 

based on NASS data used in scenario 3. By comparison, the top ten sediment-yielding fields in 

scenario 3, again based on NASS data, averaged 12.5% pasture area, but ranged from 0% to 

31%. The reduced percentage of cropland area in scenario 3 fields led to the greater importance 

of soil factors in contributing to simulated sediment yield in the top-ranked fields. 

 2.4.2 Impact of data source on field sediment-yield Rank 

Output maps showing the top 10% and 20% of fields and the top 10% and 20% of yields 

were prepared with GIS for all modeling scenarios. Examples in Figure 2.7 show maps of the top 

10% and 20% of fields and yields for scenario 0 (baseline). The number of fields, percentage of 

total area, and spatial location of fields in the watershed varied between scenarios and methods 

(by field and by yield) (Table 2.7). Depending upon the data source scenario, different fields 

were identified as the greatest sediment yielders, as demonstrated in Figure 2.8 for the top 20% 

of sediment yields for all scenarios. 
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Figure 2.7 Top 10% and 20% of watershed fields and sediment yield for the baseline 

scenario 0. 
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Figure 2.8 Number, percentage of watershed area and percentage of sediment yields of 

fields included in each ranking method for each modeled scenario. 
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Table 2.7 Number, percentage of watershed area and percentage of sediment yields of 

fields included in each ranking method for each modeled scenario 

 Scenario
[a]

 

Ranking Method
[b]

 

10%Y 20%Y 10%F 20%F 

Number  0 14 25 60 118 

of fields 1 16 26 60 118 

 2 17 29 60 118 

 3 11 25 60 118 

 4 (AGRR) 45 82 60 118 

 4 (WWHT) 46 81 60 118 

 5 15 27 60 118 

 6 10 20 60 118 

 7 (AGRR) 37 75 60 118 

 7 (WWHT) 39 79 60 118 

 8 15 27 60 118 

 9 12 22 60 118 

Area 0 2.5 5.4 12.3 20.0 

(% of  1 3.1 5.8 12.4 22.0 

watershed) 2 2.6 6.0 13.5 23.6 

 3 2.6 6.4 13.6 25.7 

 4 (AGRR) 5.2 11.9 7.2 19.8 

 4 (WWHT) 5.2 11.9 8.2 18.3 

 5 2.2 4.9 13.2 23.4 

 6 2.6 5.5 14.5 24.9 

 7 (AGRR) 4.2 10.0 7.2 17.6 

 7 (WWHT) 4.4 10.7 7.1 16.9 

 8 2.0 4.7 12.5 21.0 

 9 3.0 5.2 14.8 23.5 

Sediment 0 10 20 40.5 50.0 

yield 1 10 20 38.4 52.4 

(% of total) 2 10 20 38.9 58.0 

 3 10 20 33.7 48.2 

 4 (AGRR) 10 20 13.3 31.3 

 4 (WWHT) 10 20 13.7 28.5 

 5 10 20 42.0 61.9 

 6 10 20 39.1 52.9 

 7 (AGRR) 10 20 15.2 30.0 

 7 (WWHT) 10 20 15.6 31.2 

 8 10 20 42.0 56.5 

 9 10 20 41.5 57.9 
 

[a]
 0 = S10FTR, 1 = S30FTR, 2 = S10FNC, 3 = S10ANC, 4 = S10LNC, 5 = O10FNC, 6 = O10ANC, 7 = O10LNC, 8 

= S10FTC, 9 = S10FNR, where S = SSURGO, O = STATSGO, 10 = 10 m DEM, 30 = 30 m DEM, F = field 

reconnaissance of land uses/crop types, A = NASS (USDA-NASS, 2008), L = NLCD (Homer et al., 2004), T = 

digitized satellite image of terraced areas, N = no terraces, R = field reconnaissance of no-till/high-residue fields, C 

= conventional tillage only; AGRR = general row crop for all cropland, WWHT = winter wheat for all cropland. 

[b]
 10%Y (20%Y) = fields with top 10% (20%) of watershed sediment yield (Mg) ranked by field sediment-yield 

density (Mg ha
-1

), and 10%F (20%F) = top 10% (20%) of fields ranked by field sediment-yield density. 
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Depending upon the scenario, the top 10% of ranked fields (10%F; 60 fields) represented 

7.2% to 14.8% of the total watershed area, and the top 20% of fields (20%F; 118 fields) 

represented 17.6% to 25.7% of the total watershed area (Table 2.7). Comparing the different 

scenarios for the same number of fields revealed that more area was accumulated for the top 60 

or 118 fields when the highest-ranked fields were larger, as would be expected. 

The number of fields required to accumulate a given threshold of the total sediment yield 

for all fields in the watershed varied by scenario (Table 2.7). The top 10% of sediment yield 

(10%Y) was simulated to come from as few as ten fields (scenario 6, O10ANC) and as many as 

45 fields (scenario 4, S10LNC) and from as little as 2.0% of the watershed area (scenario 8, 

S10FTC) to as much as 5.2% (scenario 4). Estimates for the top 20% of yields ranged from 20 

fields (scenario 6) to 82 fields (scenario 4) and from 4.7% of the watershed area (scenario 8) to 

11.9% (scenario 4). The percentage of total watershed sediment yield from the top-ranked fields 

also varied among scenarios (Table 2.7). For example, the top 10% of sediment-yielding fields 

generated as little as 13.3% (scenario 4, S10LNC) to as much as 42.0% (scenario 5, O10FNC; 

and scenario 8, S10FTC) of the total field-scale sediment yield in the watershed. 

The two scenarios using the NLCD LULC data (scenarios 4 and 7) required more fields 

to accumulate the 10% and 20% yield thresholds and accumulated a smaller percentage of the 

watershed area in the top 10% and 20% of fields compared to other scenarios (Table 2.7). The 

NLCD coverage assigned all cropland to a single land use category, in this case general 

agriculture (AGRR; Table 2.3), which assigned parameters according to a typical summer crop 

(Neitsch et al., 2005). This forced the NLCD scenarios (4 and 7) to model the fields that actually 

grew winter wheat (WWHT) as AGRR, which has a greater USLE Cmin factor (0.2 for AGRR 

vs. 0.02 for WWHT) and a different crop phenological cycle (summer vs. winter growing 

season). In this watershed, winter wheat fields were smaller (mean area 13 ha) than other crop 

fields (mean area 20 ha). Even though winter wheat land would have been expected to have less 

contribution to erosion than summer cropland, the small winter wheat fields were modeled to 

have a greater Cmin factor and thus greater sediment yields. Greater inclusion of these fields 

increased the number of smaller fields included in the top-ranked sediment-yielding fields. 

To test the impact of the default crop assignment by NLCD, we ran additional scenarios 

identical to scenarios 4 and 7 except that all NLCD cropland was assigned parameters consistent 

with WWHT. The number of fields in each ranking method changed only minimally (Table 2.7), 
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and the specific fields identified between the two methods were largely in agreement (e.g., 78% 

agreement in fields identified in the top 20% of sediment yields). 

The results summarized in Table 2.7 demonstrate a fairly consistent relationship among 

the top-ranked fields (with the greatest sediment-yield densities) between the number of fields 

and the percentage of watershed area covered by those fields. For the top 118 sediment-yielding 

fields analyzed in this study (Table 2.7), the relationship was linear, with a slope (expressed as 

fields per percentage of total watershed area) ranging from 4.6 to 6.9 and averaging 5.6 fields per 

percentage for eight of the ten scenarios. For model results using the NLCD data, however, 

slopes were much greater for both scenario 4 (9.3 fields per percentage) and scenario 7 (10.4 

fields per percentage), because of the greater inclusion of WWHT fields, as discussed above. 

This indicates that all data sources, except NLCD, were fairly consistent in describing the 

relative distribution of sediment yields within the watershed. 

The spatial distribution of top sediment-yielding fields was variable among the scenarios 

(Figure 2.8). Targeted fields for the baseline (scenario 0) were distributed throughout the 

watershed. This suggests that a dispersed targeted approach (Diebel et al., 2008), in which fields 

are targeted by specific characteristics but may be dispersed throughout the watershed, would be 

most effective for targeting fields for BMP implementation. This is contrary to the conclusions 

of Diebel et al. (2008), who suggested greater efficiency from an aggregated targeted approach, 

in which fields are targeted by specific characteristics but may be aggregated only from within a 

specific subwatershed. Although the aggregated approach might lead to more dramatic, localized 

impact from a given BMP implementation effort, results of this study show that it would miss 

fields in other subwatersheds with greater sediment-yield reduction potential. 

 2.4.3 Impact of data source on spatial field targeting 

Some of the fields targeted by the baseline (scenario 0) also appeared in many of the 

other scenarios (Figure 2.8), but many did not. This study evaluated the importance of each data 

source in determining the spatial location of fields with the greatest sediment-yield densities by 

determining the percentage of agreement between paired scenarios in terms of fields above a 

given threshold ranked by sediment-yield density. 
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 2.4.3.1 Topography 

Varying DEM data resolution from 10 m (scenario 0, S10FTR) to 30 m (scenario 1, 

S30FTR) changed the top-ranked fields included in each analyzed subset (Table 2.8). Agreement 

ranged from 76% (for 20%Y) to 93% (for 10%F). However, differences in identified fields were 

greater for the top 14 to 25 fields (79% to 76%) than for the top 60 to 118 fields (93% to 90%). 

The relative lack of agreement for the highest-ranked fields probably related to the relative 

underestimation of fields in the highest slope class (>4%), which have the greatest potential for 

erosion (Table 2.1). Agreement between the 10 m and 30 m DEM scenarios was better than for 

other input data categories tested (Table 2.7), indicating that 30 m resolution was adequate to 

capture the gently rolling topography of this watershed. 

 

Table 2.8 Targeting comparison: agreement of fields included in targeted lists between 

rankings by four methods. Paired scenario comparisons have different source data for only 

one category 

Test 

Category 

Scenario
[a]

 

 

Agreement in Ranked Fields 

(%)
[b]

 

From To 10%Y 20%Y 10%F 20%F 

Topography 0 (10) 1 (30)  79 76 93 90 

Soils 2 (S) 5 (O)  71 79 80 90 

 3 (S) 6 (O)  89 72 82 85 

 4 (S) 7 (O)  60 73 73 81 

Land use 2 (F) 3 (A)  35 31 25 43 

 2 (F) 4 (L, AGRR)  60 59 40 58 

 2 (F) 4 (L, WWHT)  35 34 18 45 

Crop type 4 

(AGRR) 

4 

(WWHT) 

 72 78 72 82 

Land 0 (TR) 8 (TC)  36 48 66 76 

management 0 (TR) 9 (NR)  36 48 61 76 

 0 (TR) 2 (NC)  29 32 48 68 
[a]

 0 = S10FTR, 1 = S30FTR, 2 = S10FNC, 3 = S10ANC, 4 = S10LNC,  

5 = O10FNC, 6 = O10ANC, 7 = O10LNC, 8 = S10FTC, 9 = S10FNR,  

where S = SSURGO, O = STATSGO, 10 = 10 m DEM, 30 = 30 m DEM, F = field reconnaissance of land uses/crop 

types, A = NASS (USDA-NASS, 2008), L = NLCD (Homer et al., 2004), T = digitized satellite image of terraced 

areas, N = assume no terraces, R = field reconnaissance of no-till or high residue fields, and C = assume conventional 

tillage only; AGRR = general row crop for all cropland, WWHT = winter wheat for all cropland. 
[b]

 10%Y (20%Y) = fields with top 10% (20%) of watershed sediment yield (Mg) ranked by field sediment-yield 

density (Mg ha
-1

), and 10%F (20%F) = top 10% (20%) of fields ranked by field sediment-yield density. 
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 2.4.3.2 Soils 

Changing the input soil dataset from SSURGO (scenarios 2, 3, or 4) to STATSGO 

(scenarios 5, 6, or 7) changed the top-ranked fields included in each analyzed subset (Table 2.8). 

Agreement in field selection ranged from 60% (NLCD for 10%Y) to 90% (field for 20%F). 

Agreement tended to increase as the number of fields and targeted area included in the subset 

being compared increased. Simulations using the NLCD source data generally resulted in less 

agreement than using NASS or field data because the greater uniformity of LULC for the NLCD 

data reduced the influence of non-soil-related factors and increased the influence of soil-related 

factors on the field rankings. This result implies an interactive effect between soils and LULC in 

ranking fields by sediment-yield density. 

In some scenarios, there was slightly less agreement between results from different soil 

data sources than between results from different topographic data sources. Generally, however, 

the agreement was similar, ranging from about 75% to 90% within the top 20% of ranked fields. 

 2.4.3.3 Land use 

Changing land use data source from field (scenario 2, S10FNC) to NASS (scenario 3, 

S10ANC) or NLCD (scenario 4, S10LNC) had a major impact on field rankings (Table 2.8). 

Agreement with field scenario 2 was similar for NASS scenario 3 (25% to 43%) and NLCD 

scenario 4-WWHT (18% to 45%), and both were lower than NLCD scenario 4-AGRR (40% to 

60%). In the case of NASS, the lower agreement was influenced by fact that the NASS land 

cover data often classified parcels of rangeland in the middle of agricultural fields and also 

occasionally had rangeland in place of agricultural crops. Greater agreement between scenario 2 

(field) and scenario 4-AGRR (NLCD) than for scenario 4-WWHT (NLCD) indicated that many 

of the targeted fields actually grew summer crops, and imposing the WWHT crop type, with 

lower Cmin, removed these fields from the top rankings and reduced agreement. This can be 

observed more directly with the comparison of scenario 4-AGRR and scenario 4-WWHT, which 

showed that 18% to 28% of the fields from one ranking did not agree with the other due to the 

change in crop designation from summer row crop to winter wheat. 

Agreement between the pairs of land use data source comparisons ranged from 18% to 

45% between scenario 2 (field) and scenario 3 (NASS) or scenario 4-WWHT (NLCD) and from 

40% to 60% between scenario 2 and scenario 4-AGRR (NLCD). For these land use cases, 

agreements were less than for the topography and soil data source comparisons (ranging from 
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60% to 93%), indicating that having accurate land use designations was more critical than 

topography or soils in targeting the highest sediment-yielding fields in this watershed. 

 2.4.3.4 Terrace and tillage management 

Changing the land management data from inclusion of terraces, contour farming, and 

tillage management (scenario 0, S10FTR) to inclusion of only terraces (scenario 8, S10FTC), 

only contour farming and tillage management (scenario 9, S10FNR), or neither (scenario 2, 

S10FNC) had a major effect on the top-ranked fields included in each analyzed subset (Table 

2.8). Agreement ranged from 29% (scenario 2 for 10%Y) to 76% (either scenario 8 or 9 for 

20%F). 

These results confirmed the importance of including not only land use but also current 

practice in identifying fields for targeting. In this case, it is likely that inclusion in the model of 

management practices that had already been implemented on the fields with the greatest potential 

sediment-yield densities reduced sediment yields enough to remove many of those fields from 

the highest ranked (i.e., targeted) subsets. For many fields with the highest rankings in scenarios 

2 through 7, modeling the implementation of terraces and/or contour farming and no-till resulted 

in sediment-yield density reductions adequate to remove those fields from the targeted list. This 

provides support that these practices (identified by field reconnaissance) appear to have been 

correctly placed in areas that otherwise would have been high-loss areas. Shifting from baseline 

(scenario 0) to the combination of terraces, contour farming, and no-till (scenario 2) resulted in 

less agreement in field selection than shifting to either terraces (scenario 8) or contour farming 

and no-till (scenario 9) alone. This modeling result indicated that, in some cases, multiple 

practices are needed to reduce sediment-yield potential enough to remove a field from the 

targeted list. 

 2.5 Conclusions 

Agricultural fields with the greatest soil erosion potential were identified using 

ArcSWAT. An ArcGIS toolbar was developed to aggregate SWAT HRU output by field and 

prepare maps of high-priority fields by sediment, total nitrogen, and total phosphorus yields, 

although only sediment-yield rankings were assessed in this study. 

The fields ranked by SWAT as having the greatest sediment-yield densities (Mg ha
-1

) 

changed with resolution in topographic and soil data sources. Changing from 10 m to 30 m DEM 
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topographic data and from STATSGO to SSURGO soil data altered the fields identified as 

yielding the most sediment by about 10% to 25%, depending upon the areas of the included 

fields as well as interactive effects with other input data sources. 

Land use and management data source had the greatest influence on fields identified as 

having the greatest sediment-yield densities. Changing from field reconnaissance to NASS or 

NLCD land use data altered the fields selected as yielding the most sediment by 40% to 70%. 

Changing just the management data by including terraces and/or contour farming and no-till 

independently altered the selected fields by 25% to 70%. 

Results of this study clearly demonstrate that use of incorrect or improper resolution 

source data can directly translate into incorrect field-level sediment-yield ranking, and thus 

incorrect field targeting, when using SWAT. Fields with high sediment-yield density in this 

study appeared to be most sensitive to land use data source (field reconnaissance, NASS, or 

NLCD), followed closely by inclusion of land management practices (terraces, contour farming, 

and no-till). Both DEM (10 m or 30 m) and soil (SSURGO or STATSGO) data source also were 

very important, although to a lesser extent than other inputs. 
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Chapter 3 - Field-Scale Conservation Practice Targeting, Funding, 

and Assessment using SWAT
2
 

 Abstract 

Watershed models have been widely used to estimate soil erosion and evaluate the 

effectiveness of conservation practices at different temporal and spatial scales; however, little 

progress has been made in applying these theoretical model results to the practical challenge of 

allocating conservation practice funding to meet specific soil-loss objectives. Black Kettle Creek 

subwatershed (7,809 ha) of Little Arkansas River watershed (360,000 ha) in south central Kansas 

was the focus of an innovative project to target conservation practice funding and pay directly 

for modeled sediment reduction. Detailed data (10-m DEM topography, SSURGO soils, and a 

manually developed landuse/landcover layer) were input into the SWAT model, and the 

calibrated model was used to quantify soil-erosion for each field. Various BMPs (no-till, 

conservation till, contour farming, terraces, contour grass strips, riparian buffers, and permanent 

grass), both singly and in selected combinations, were simulated and the effectiveness for each 

field was determined.  

The mean BMP effectiveness for top 250 fields ranged from 52% to 96% for single 

BMPs and 85% to 94% for selected combinations of BMPs. Permanent grass produced the 

greatest average single-BMP effectiveness (96%) followed by Terraces (with contour farming) 

(78%) and No-till (72%). No-till + Terrace (with contour farming) had the greatest combined-

BMP effectiveness (94%). From these field-scale sediment-reduction estimates, payments to 

implement each BMP for a given field within the watershed were calculated. An in-field sign-up 

sheet was developed with field-specific sediment-loss-based payments calculated for each BMP 

option. Targeting of conservation practices based on payments scaled directly by project 

outcome (in this case, dollars per ton of sediment reduction) using a modeling approach allowed 

                                                 

2
 This chapter was modified from a manuscript draft submitted to J. of Soil and Water Conervation: Daggupati, P., 

K.R. Douglas-Mankin, A.Y. Sheshukov, and P.L. Barnes.  (submitted 5/11/11). Paying for sediment: Field-scale 

conservation practice targeting, funding, and assessment using SWAT. J. Soil Water Conserv. JSWC-D-11-00053. 

This manuscript was still under review at the time of publication of this dissertation. 
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flexibility for both adopters (farmers) and funders (project staff) while assuring the project 

objective (i.e., sediment reduction) was met.  

 

 3.1 Introduction 

Soil erosion from cropland can be reduced by strategic selection and placement of 

agricultural conservation practices in the highest sediment producing areas or critical source 

areas (CSAs) (Pionke et al., 2000; Strauss et al., 2007; Busteed et al., 2009; White et al.,2009; 

Tuppad et al., 2010a). Watershed models have been widely used to estimate soil erosion, identify 

CSAs, and evaluate effectiveness of best management practices (BMPs) at various temporal and 

spatial scales. Ability of watershed models to process spatially distributed input data (climate, 

topography, soils, landuse, and land management practices) has led to identification of the CSAs 

within a watershed in many studies (Tripathi et al., 2003; Busteed et al., 2009; White et al., 2009; 

Daggupati et al., 2011). In Bracmout et al. (2006), Arabi et al. (2008), and Tuppad et al. (2010b), 

alteration of input parameters within one watershed model, the Soil and Water Assessment Tool 

(SWAT), allowed simulation of BMPs and evaluation of the effectiveness at different scales. 

Douglas-Mankin et al. (2010a) and Tuppad et al. (2010b) showed that both structural BMPs 

(e.g., grassed waterways, terraces, filter strips) and non-structural BMPs (e.g., no-till, 

conservation till, strip till) could be assessed and targeted with SWAT. 

Many modeling studies have quantified water-quality impacts of BMP implementation, 

focusing on sediment, nutrient, or bacteria loads; this study focused on sediment. The water 

quality benefits of crop rotation, riparian buffer, and strip-cropping practices in two watersheds 

in central Iowa resulted in a 15% to 60% decrease in median sediment loading at the watershed 

level (Vache et al., 2002). Benefits of using BMPs ranged from 5% to 99% sediment loss 

reduction at farm level (5% to 99% less sediment entering streams) and 1% to 2% reduction at 

the watershed level (1% to 2% less sediment exported at the watershed outlet) (Santhi et al., 

2006). The lower reduction at the watershed level was due to very small implementation area 

compared to watershed area. Watershed level sediment loss reductions were greatest for terraces 

(over 60%), whereas other practices ranged from 30% to 40% (Gassman et al., 2006). Structural 

BMPs in good condition and in current conditions reduced average annual sediment yield by 

16% to 23% and 7% to 10% at the watershed outlet (Bracmort et al., 2006). Conversions of 40%, 

50%, 75%, and 100% of cropland from conventional tillage to conservation tillage resulted in 
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sediment loss reductions of 20%, 26%, 33%, and 40%, respectively, at the watershed outlet 

(Dalzell et al. 2004). The implementation of individual BMPs reduced sediment loads from 3% 

to 37% at the watershed level with even higher reductions at the subwatershed and field levels 

(Tuppad et al., 2010b).  

Establishing, implementing, and maintaining environmentally effective BMPs can be 

costly (Gitau et al., 2004). Implementation of a BMP that costs less and gives more reduction in 

pollution load would be desirable. BMP optimization techniques (single and multiple objective 

functions) have been used to recommend the best possible BMP(s) among various different 

possibilities to achieve maximum pollutant reduction with minimum increase in cost from 

implementation and maintenance (Maringanti et al., 2009). BMP optimization techniques use 

heuristic search algorithms, such as genetic algorithms, to obtain an optimal solution (Gitau et 

al., 2004). Various studies have used BMP optimization techniques to select and place BMPs 

(Gitau et al., 2004; Arabi et al., 2006; Maringanti et al., 2009; Veith et al., 2008; Chaubey et al., 

2010); however, none of these studies have demonstrated how to use model results to improve 

farmer BMP adoption. Published studies have used watershed models to develop hypothetical 

scenarios or best-case scenarios to achieve a particular water quality goal for making watershed 

management recommendations (e.g., sediment load reduction as a result of implementing a 

selected BMP in 20% of the highest priority area), but little progress has been made in applying 

theoretical model results to the practical challenge of allocating conservation practice funding to 

maximize soil-loss reductions. 

The goal of this study was to use watershed modeling to meaningfully support targeting 

and funding of conservation practice implementation explicitly for sediment yield reductions. 

Specific objectives were to 1) identify cropland fields with the highest soil erosion potential, and 

accurately quantify baseline sediment yields; 2) simulate and evaluate the effectiveness of 

various BMPs for each identified field using a calibrated SWAT model; 3) Design a farmer 

friendly in-field sign-up sheet that calculates field-specific payments 

 3.2 Methods 

 3.2.1 Study area 

Black Kettle Creek watershed is a 7,809 ha (19,295 ac) subwatershed of the Little 

Arkansas River watershed located within McPherson and Harvey counties in south central 
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Kansas (Figure 3.1). Primary land use in the watershed was cropland (84% of total area) 

followed by rangeland (12%), urban area (2%), and forest (2%). The cropland was 

predominantly wheat (58% of total cropland) followed by sorghum (10%), soybean (8%), and 

corn (3%). A water quality monitoring study conducted by Steele (2006) found that the Black 

Kettle Creek watershed delivered the greatest sediment yields in south central Kansas. This led 

to initiation of a project with the goal of reducing sediment yields from Black Kettle Creek 

watershed through cost-sharing implementation of targeted conservation practices in agricultural 

fields with greatest soil erosion potential. Many people in this watershed are aware of the water 

quality problems and are engaged in various educational programs and demonstration projects. 

 

Figure 3.1 Little Arkansas watershed and Black Kettle Creek watershed. 

 

 3.2.2 The Soil and Water Assessment Tool (SWAT) model 

This study utilized the SWAT model, version 2005 (ArcSWAT 2.1.6), a widely used, 

watershed-scale, process-based model (Gassman et al., 2007; Douglas-Mankin et al., 2010b) 

developed by the USDA Agricultural Research Service (ARS) (Arnold et al., 1998; Neitsch et 

al., 2005). The SWAT model divides the watershed into a number of subwatersheds based on 



45 

 

topography. Each subwatershed wasfurther divided into hydrologic response units (HRUs), 

which are the smallest landscape component of SWAT used for computing hydrologic processes. 

Flow, sediment, nutrients, and other constituent yields are simulated at the HRU level, summed 

to the subwatershed level, and then routed through the channels, ponds, reservoirs and wetlands 

to the watershed outlet. The SWAT model uses the Modified Universal Soil Loss Equation 

(MUSLE) (Williams, 1975) to estimate sediment yield at the HRU level. In-stream sediment 

transport was modeled using a modified Bagnold’s equation, which is a function of peak channel 

velocity. Sediment is either deposited or re-entrained through channel erosion depending on the 

sediment load entering into the channel. SWAT does not explicitly simulate ephemeral gully 

erosion. 

 3.2.3 Data input 

Extreme care needs to be taken in selecting the model input data when using SWAT for 

field-level studies (Daggupati et al. 2011). The topographic dataset was prepared from the U.S. 

Geological Survey (USGS) 10 m  10 m Digital Elevation Model (USGS, 1999). The soil 

dataset was developed from the Soil Survey Geographic (SSURGO) database (USDA-NRCS, 

2005) with a processing utility (Sheshukov et al., 2011) that converted the SSURGO dataset into 

an ArcSWAT compatible format. Landuse/landcover (LULC) data were derived manually using 

the CLU (Common Landuse Unit) field boundary shapefile. Each field landcover in the LULC 

data was manually edited based on a field-by-field survey conducted by the authors in November 

2008 and October 2009. Structural and non-structural management practices were derived from 

field surveys, whereas farming operations such as planting, harvesting, and manure application 

were derived by consulting extension specialists. Sets of unique combinations of landcover, 

conservation structures, and tillage practices (e.g., wheat crop with terraces and conventional 

tillage) were created in the SWAT database by copying data from its original landcover dataset 

(e.g., wheat) and assigning a new landcover name with a crop code parameter (CPNM) in SWAT 

(e.g., TWHT for wheat with terrace). The final LULC dataset was extensively checked to 

confirm that management practices were accurately represented for every field in the watershed.  

Daily precipitation data for the watershed were obtained from the Hesston weather station 

(Harvey County) located about 10 km northeast of the watershed and the Goessel weather station 

(McPherson County) located about 15 km east of the watershed. Temperature, solar radiation, 
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wind speed, and relative humidity data were obtained from the Newton (Harvey County) weather 

station located about 25 km south of the watershed. Missing daily weather data (e.g., 94 days 

[Hesston] and 81 days [Goessel] over the 2006-2009 calibration period) occurred primarily 

during the winter (dry) season and were adjusted for both calibration and scenario runs using a 

stochastic weather generator embedded in SWAT. Each SWAT scenario was simulated for the 

period from January 1, 1990, to July 31, 2009.  

 3.2.4 SWAT model setup 

During watershed delineation, a minimum subwatershed drainage area was set at 500 ha 

(1,235 ac), which resulted in 9 subwatersheds in the Black Kettle Creek watershed. Three slope 

categories (0-2%, 2-4%, and >4%) were used to identify areas of low, medium, and high slopes. 

The HRUs in SWAT do not have spatial reference, but this limitation was overcome by 

redefining the topographic, soil, and landuse thresholds to 0%, 0%, 0% (Gitau et al., 2006; 

Busteed et al., 2009; Daggupati et al., 2011), which forced simulation of every combination of 

slope category, soil type, and landuse type, resulting in 1,456 HRUs. Management practices 

(structural and non-structural) and farming operations were simulated by modifying SWAT 

management files for each HRU that represent individual farm fields within the watershed.  

 3.2.5 Model calibration and evaluation 

Model predictions can be considered more reasonable and representative of hydrologic 

processes in a study area once a model is calibrated (Morasai et al., 2007). Flow calibration was 

performed for the period from 01/01/2006 to 07/31/2009 using daily measured stream flow 

recorded at the outlet of the watershed (Figure 3.1). An automated baseflow filter program 

(Arnold and Allen, 1999) was used to estimate the relative contributions of surface runoff and 

base-flow at the outlet of the watershed, and a baseflow recession constant (ALFA_BF, Table 3.1) 

was determined.  Sediment calibration was performed for the period from 01/01/2006 to 

01/31/2008 using total measured monthly sediment load at the watershed outlet. Daily 

calibration of sediment was not performed due to the lack of daily sediment data.  

The SWAT model was first calibrated for flow and then for sediment. During flow 

calibration, the model was first run using baseline parameters. The daily hydrograph (time series 

plot) of observed and model simulated flows were plotted and model statistics were calculated. 

Based on the nature and shape of daily hydrograph, the corresponding baseline parameters 
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(affecting flow) were either increased or decreased from their respective baseline within the 

ranges shown in Table 3.1. (For example, if simulated surface flow was high compared to 

observed flow, then curve number (CN2), soil available water (SOL_AWC), and soil 

evaporation, and compensation factor (ESCO) were decreased) After editing the parameters, the 

model was run again, and daily flow hydrograph and model statistics were evaluated to check 

improvements. Fine tuning of parameters were done until (1) shape (peaks and base flow) of 

observed and predicted hydrographs were reasonably similar, and (2) maximum Nash-Sutcliffe 

Efficiency (NSE) between observed and simulated stream flow was attained.  

 

Table 3.1 SWAT model calibration parameters 

Variable Description Model range Value used 

Hydrology    

CN2 Curve number 2 ±5 -3 

ESCO Soil evaporation compensation factor 0 to 1 0.8 

EPCO Plant uptake compensation factor 0 to 1 0.2 

ALFA_BF  Baseflow recession constant (days) 0 to 1 0.2 

ALFA_BNK Baseflow factor for bank storage (days) 0 to 1 0.04 

Gw_Revap Groundwater revap coefficient 0.02 to 0.2 0.04 

Ch_K2 Channel hydraulic conductivity (mm/hr) -0.001 to 500 2 

SURLAG Surface runoff lag coefficient 1 to 24 2 

SHALLST Initial depth of shallow aquifer (mm) 0 to 1000 600 

SMTMP Snow melt base temperature (ºC) -5 to 5 -3 

GWQMIN Depth of water in shallow aquifer require for 

return flow (mm) 

0 to 5000 4 

Sediment    

CH_EROD Channel erodibility factor 0 to 1 0.4 

CH_Cov Channel cover factor 0 to 1 0.1 

CH_N(2) Channel Manning’s roughness coefficient 0 to 1 0.014 

SPEXP 

 

Exponent factor for channel sediment routing 1 to 2 1 

SPCON Linear parameter for channel sediment routing 0.0001 to 0.001 0.0004 

LAT_SED Sediment concentration in lateral flow (mg/L) 0 to 5000 100 

SLSUBBSN Average slope length 10 to 150 multiplied by 1.5 

from default 
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Once flow was calibrated, the model was calibrated for sediment using total measured 

monthly sediment load at the watershed outlet. Sediment calibration was also done by adjusting 

and fine tuning sediment related parameters as shown in Table 3.1 until maximum NSE between 

observed and simulated monthly sediment loads was attained.  

The model statistics reported for flow and sediment calibration were coefficient of 

determination (R
2
), Nash-Sutcliffe model efficiency (NSE) (Nash and Sutcliffe, 1970), percent 

bias (PBIAS), root mean square error (RMSE), and RMSE to standard deviation ratio (RSR) 

(Moriasi et al., 2007).  

 3.2.6 Targeting cropland with greatest soil erosion potential 

Daggupati et al. (2011) reported that SWAT HRU output must be downscaled to the field 

level for practical simulation of BMP implementation. A similar approach was used in this study. 

Average annual sediment yields over a 12-year period (1995-2006) were calculated for each 

HRU from the calibrated SWAT model. A conversion utility within the SWAT HRU-to-Field 

Toolbar in ArcMap GIS (Daggupati et al., 2011) was used to convert an HRU-level output to 

area-weighted field-level output to identify the fields with greatest soil erosion potential. Total of 

593 fields were ranked from highest to lowest based on average annual field-scale sediment yield 

density (Mg ha–1). The top 20% of fields with the highest sediment yields (118 fields) were 

identified and selected for preliminary targeting activities (Figure 3.2). During routine ground-

truthing of model input data and results, project staff found that ephemeral gullies could also 

contribute significantly to land erosion. Thus, fields with ephemeral gullies were manually 

identified and added separately to the SWAT-generated targeting map (Figure 3.2). For each 

ephemeral gully, size and estimated sediment yield values were recorded based on visual 

observation by trained personnel. The combined SWAT and ephemeral gully targeting map was 

presented to farmers, which helped communicate project methods and kindle interest in 

participation in BMP implementation. 
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Figure 3.2 Top 20% fields by current sediment yield and fields with ephemeral gullies 

identified by field reconnaissance. 
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 3.2.7 BMP simulation and effectiveness 

Individual BMPs and combinations of BMPs were selected a priori by local extension 

personnel together with the Project team to be candidates for farmer adoption based on BMPs 

that were currently in the watershed and that would be effective in reducing sediment yields. 

Effectiveness of each BMP in the targeted fields was simulated using the calibrated SWAT 

model, similar to Gitau et al. (2006) and Tuppad et al. (2010 a, b). Baseline sediment yields were 

established for each CLU field using the SWAT HRU-to-Field Toolbar based on current field 

conditions. The list of BMPs that were simulated is given in Table 3.2.  

 

Table 3.2 Selected BMPs 

Single BMPs Combinations of BMPs 

No-till No-till + Contour farming 

Conservation till No-till + Terraces (+ Contour farming) 

Contour farming No-till + Contour grass strips 

Terraces (+ Contour farming) 

Contour grass strips 

No-till + Riparian vegetative buffer 

Conservation till + Contour farming 

Riparian vegetative buffer strip  Conservation till + Terraces (+ Contour farming) 

Permanent grass Conservation till + Contour grass strips 

 Conservation till + Riparian vegetative buffer 

 Contour grass strips + Riparian vegetative buffer strip 

 

BMP descriptions and SWAT parameters modified to represent each BMP are given in 

Table 3.3. Combinations BMPs were represented simply by combining two single BMPs. For 

example, the No-till + Contour farming BMP was represented by modifying parameters of No-

till and contour farming. The effectiveness, EBMP for each BMP in every field was calculated 

using Eq. 3.1: 

      
(                                              )

                       
     (3.1) 
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Table 3.3 SWAT model parameters changed to represent best management practices 

(BMPs) 

BMP 

SWAT 

variable 
Initial parameter Parameter used Source 

Riparian buffer 

(RB) 
FILTERW 0 m 6 m 

USDA NRCS recommends 6 m minimum RB 

width 

Bracmort et al. (2006), Arabi et al. (2008) 

used FILTERW for RB  

No-till (NT) 

Cmin 

Row crop: 0.2 Row crop: 0.1 Maski et al. (2008) NT = 0.43 TILL 

Wheat: 0.03 Wheat: 0.03 
SWAT default for close grown row crops, 

wheat 

CN2 Varies 
Reduce CN2 by 2 

units 

Maski et al. (2008) ∆2-3 for TILL vs. NT 

Waidler et al. (2009) ∆2 for TILL vs. NT 

Arabi et al. (2008) reduce CN for NT 

Tillage 

Chisel plow or 

Tandem disc 

(EFTMIX: 0.3; 

DEPTIL: 100 mm) 

Generic no-till 

(EFTMIX: 0.05; 

DEPTIL: 25 mm) 

Waidler et al. (2009) 

Conservation 

tillage (CT) 

Cmin 

Row crop: 0.2 

(SWAT default) 
Row crop: 0.15 Maski et al. (2008) NT = 0.43 TILL 

Wheat: 0.03 Wheat: 0.03 
SWAT default for close grown row crops, 

wheat 

CN2 Varies 
Reduce CN2 by 2 

units 

Maski et al. (2008) ∆2-3 for TILL vs. NT  

Waidler et al. (2009) ∆2 for TILL vs. NT  

Arabi et al. (2008) reduce CN for NT 

Tillage 

Chisel plow or 

Tandem disc 

(EFTMIX: 0.3; 

DEPTIL: 100 mm) 

Generic conservation 

till (EFTMIX: 0.2; 

DEPTIL: 100 mm) 

Waidler et al. (2009) 

Terrace (Tr) + 

Contour 

farming (CF) 

P factor 1  0.1 
Wischmeier and Smith (1978) P factor range 

0.1-0.18 

CN2 Varies Reduced by 6 units 
Arabi et al. (2008) recommends 6 units for 

terraces 

Contour 

farming (CF) 

P factor 1  0.6 
Wischmeier and Smith (1978) P factor range 

0.5-0.6 (for 0-9% slope) 

CN2 Varies Reduced by 3 units 
Arabi et al. (2008) recommends 3 units for 

contouring 

Strip cropping 

or Contour 

grass strips 

P factor 1 0.45 

Wischmeier and Smith (1978) P factor range 

0.38-0.45 (Type B: mostly crop/some grass 

strips, 0-9% slope) 

CN2 Varies Reduced by 3 units 
Arabi et al. (2008) recommends 3 units for 

contouring 

Permanent 

grass 

C factor 
Row crop: 0.2;  

Wheat: 0.03 
Big bluestem: 0.003 

Waidler et al. (2009) 
CN2 Varies Reduced by 5 units 

Mgmt.  Varies 

Management 

operation changed to 

Big bluestem 
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 3.2.8 Cost calculations 

The payment to farmers for BMP implementation was based on simulated sediment yield 

reductions, which varied by field and by BMP implemented. The payment for a field to 

implement a particular BMP was calculated based on Eq. 3.2: 

P      ( )  [             (
 

  
)          (

 

  
)]      (  )        (

 

 
)  (3.2) 

For example, if field #525 (3.11 ac, Appendix A) produced a baseline sediment yield of 2.76 

t/ac, and if the farmer of that field decided to implement the no-till practice, then we would pay 

the farmer according to the simulated sediment yield after implementing no-till practice, in this 

case 0.87 t/ac. The payment that the farmer would receive for implementing no-till practice on 

that field (showing full precision values) would be (2.7630 – 0.8694) t/ac × $100/t × 3.1068 ac = 

$588.30. 

The unit cost of $100/t was the amount that the expert management team decided to set as 

payment for each ton of sediment yield reduction. The project team estimated that it would 

require about $100 per acre for farmers to convert to no-till; thus, we expected to treat about 

2,700 ac with the $270,000 project funds, which represented 16.7% of the total cropland area. 

With the assumption that our anticipated BMP (no-till) would achieve about 72% sediment 

reduction (Table 3.5) from an initial sediment yield of 4 t/ac, we anticipated to achieve a total 

sediment yield reduction of about 12%, which exceeded our goal of achieving 10% sediment 

yield reduction under the USDA Conservation Innovation Grant budget. Because contracts were 

signed for a five-year period, the sediment reduction being purchased averaged $20/t/yr for the 

project period.  

 3.2.9 In-field signup sheet 

An individual in-field sign-up sheet (Appendix A) was prepared in Microsoft Excel with 

the Visual Basic for Application computer language for each field. A database of baseline and 

BMP-simulated sediment yields for each field was created. On selecting the field number of 

interest, the values of field area (ac/field), estimated initial average annual soil loss (t/ac), 

estimated new average annual soil loss (t/ac) for each new BMP, and payment for each BMP 

($/field) were generated automatically from the database. The developed in-field sign-up sheets 

were delivered to the extension specialists, who discussed them with the owners of the targeted 
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fields. The sign-up sheet specified the exact payment for each BMP for each field, thus providing 

clear choices for the BMP selection.  

 3.3 Results and Discussion 

 3.3.1 Model evaluation 

Results of the calibration runs conducted for daily, monthly, and annual measured and 

simulated streamflows at the watershed outlet are presented in Table 3.4. Based on the ratings 

proposed by Moriasi et al. (2007), the model performance was considered good for monthly 

streamflows when evaluation was based on NSE (> 0.65), very good when based on RSR (≤ 

0.60), and excellent when based on PBIAS (< ±10%). According to these values, the SWAT 

model was found acceptable for streamflow simulations. The model was also calibrated at the 

watershed outlet for monthly and yearly average sediment yields (Table 3.4). According to 

Moriasi et al. (2007), the monthly performance was found satisfactory when based on NSE (> 

0.50) and good when based on RSR (≤ 0.60) and PBIAS (< ±30%). The model performance of 

sediment was inferior to flow but was considered sufficient for estimating sediment yields in this 

project. 

 

Table 3.4 Calibrated model statistics for flow and sediment 

Constituent Period R
2
 NSE PBIAS RMSE RSR 

Flow Daily 0.46 0.45 4.6% 0.94 0.64 

 Monthly 0.70 0.69 4.4% 0.32 0.55 

 Yearly 0.96 0.89 7.5% 0.07 0.29 

Sediment Monthly 0.55 0.51 16.8% 1.44 0.53 

 Yearly 0.88 0.85 17.4% 1.16 0.32 

 3.3.2 Field targeting 

Output of the SWAT model was processed using the tools developed by Daggupati et al. 

(2011) to calculate average annual sediment yields for each field within the watershed. Top 20% 

fields with the greatest simulated soil erosion were identified in Figure 3.2 as red. Most of the 

identified fields were frequently close to streams. 91% of the identified fields were within 0.16 

km (0.1 miles) to a stream (using the National Hydrography Dataset GIS layer) and all were 
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within 0.8 km (0.5 miles). In this watershed, 57% of HRUs with higher slopes (>2%) were seen 

closer to the stream, resulting in higher sediment yielding HRU’s which further resulted in high 

sediment producing fields. Targeting these fields should provide more direct benefits than field’s 

further uphill and hydrologically disconnected from the streams. 

Recent studies showed that ephemeral gully erosion was considered a major source of 

sediment in many states, especially in Kansas (Douglas-Mankin et al., 2011) and it needs to be 

addressed when sediment producing fields were identified. SWAT does not simulate ephemeral-

gully erosion, thus the fields with the observed ephemeral gullies were manually added to the 

map of targeting fields. Ephemeral gullies were present in 4% of fields (shown in black, Figure 

3.2). Few ephemeral gullies were seen in No-till fields (Daggupati et al., 2010).  

Accuracy of the modeled field-level predictions was validated using published 

measurements of sediment yields from small cropland drainage areas in Kansas (Holland, 1971). 

According to Holland, cropland areas in Black Kettle Creek Watershed produced sediment yields 

ranging from 2.8 to 5.5 Mg ha
–1

 yr
–1 

(1.24 to 2.45 t ac
–1

 yr
–1

). Prior to 1971, typical cropland 

areas in this region had minimal implementation of conservation practices and few terraces. 

Calibrated modeling results for the top 25 fields, with no conservation practices or terraces 

implemented, ranged from 3.1 to 5.8 Mg ha
–1

 yr
–1 

(1.38 to 2.58 t ac
–1

 yr
–1

), which were in good 

agreement with measured sediment yields. These results confirmed that the field-level targeting 

conducted in this study provided realistic representation of sediment yields from actual fields 

supporting the use of SWAT model for targeting individual fields.  

 3.3.3 BMP effectiveness 

A database was created that included simulated baseline sediment yield and sediment 

yield for each BMP on every field. The effectiveness of each BMP compared to the baseline was 

calculated in top 250 fields. Mean BMP effectiveness of a single BMP ranged from 52% to 96% 

whereas mean BMP effectiveness for a combined BMP ranged from 85% to 94% (Table 3.5). 

The permanent grass BMP scenario produced the maximum mean BMP effectiveness among all 

single BMPs, whereas the No-till + Terraces (+ Contour farming) combination appeared to have 

greatest reductions in the combined-BMP category. 

The effectiveness of each BMP spatially varied by field (Table 3.5). For example, No-till 

BMP had a mean effectiveness of 72% with a range of 59% to 81% among 250 fields. Similar 
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variability was observed for all BMPs simulated in this study. Model predictions captured the 

unique, variable soil, slope and landuse conditions present on each field that interacted with each 

BMP to produce a given sediment-reduction result. This result demonstrated the importance of 

using field-specific modeling results for field targeting instead of generalized percent reductions 

for given practices.  

 

Table 3.5 Statistics of sediment yield reductions for simulated BMPs for top 250 fields 

BMPs Min Mean±Stdev Max 

No-till 59% 72±5% 81% 

Conservation till 42% 52±5% 67% 

Contour farming 45% 53±2% 68% 

Terraces (+ Contour farming) 70% 78±2% 87% 

Contour grass strips 54% 61±1% 69% 

Riparian vegetative buffer strip (on contour) 62% 62±0% 63% 

Permanent grass 95% 96±1% 100% 

No-till + Contour farming 76% 87±2% 92% 

No-till + Terraces (+ Contour farming) 80% 94±3% 98% 

No-till + Contour grass strips 85% 93±2% 96% 

No-till + Riparian vegetative buffer 76% 87±2% 92% 

Conservation till + Contour farming 75% 85±2% 90% 

Conservation till + Terraces (+ Contour farming) 70% 88±3% 91% 

Conservation till + Contour grass strips 85% 87±1% 91% 

Conservation till + Riparian vegetative buffer 67% 85±3% 89% 

Contour grass strips + Riparian vegetative buffer strip 76% 87±2% 92% 

 

Standard deviations of mean BMP effectiveness were 5% or less for all BMPs simulated 

(Table 3.5). This shows that a majority of fields performed within a reasonably small range of 

sediment-yield reductions. However, field targeting attempts to identify the fields with the 

greatest benefits of implementation, not the average benefits. The differences between mean and 

maximum reductions for a given BMP were typically 1.5 to 4.5 times greater than the standard 
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deviation. Again, this demonstrates the value of using modeling results to identify these fields 

with the greatest potential for impact.  

The modeled BMP effectiveness for selected BMPs was compared to the values reported 

in Devlin et al. (2003) and Merriman et al. (2009). The mean effectiveness of the selected BMPs 

(No-till, contour farming, terraces, riparian vegetative buffer and permanent grass) was within 

10% of the mean effectiveness reported in published studies (Table 3.6). These comparison 

results verified that sediment-yield reductions for BMPs simulated in this study were represented 

reasonably well.  

 

Table 3.6 Comparison of BMP effectiveness for selected BMPs 

Selected BMPs Mean BMP effectiveness 

(This study) 

Mean BMP effectiveness 

(Literature) 

No-till 72% 75%
[a]

;78%
[b]

 

Contour farming 53% 43%
[b]

 

Terraces (+ Contour farming) 78% 85%
[b]

 

Riparian vegetative buffer 62% 72%
a
;76%

[b]
 

Permanent grass 96% 95%
[a]

 

[s]Devlin et al. (2003). [b]Merriman et al. (2009) 

 3.4 Conclusions 

The SWAT model was used successfully to identify the agricultural fields with greatest 

sediment potential in the Black Kettle Creek Watershed. The model was calibrated for flow and 

sediment to assure and field-level sediment yields were validated with the historic local data. 

Fields that had ephemeral gullies were identified manually and were included for targeting, as 

the SWAT model cannot identify ephemeral gullies.  

Various BMPs (single and combined) were simulated for each field and their 

effectiveness was calculated. The effectiveness of a particular BMP was different for each field 

based on its unique combinations of slope, soil and existing landuse. Payment to implement each 

BMP for a given field was calculated. An in-field signup sheet was developed to facilitate farmer 

signup for BMP implementation for each of the selected fields. The variability of sediment 
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reduction results among fields demonstrated the important influence of site-specific conditions in 

estimating soil-loss reductions possible with given BMPs.  

Results from this study demonstrated the usability of the watershed modeling to identify 

cropland fields with highest sediment potential, to guide farmer support payments and quantify 

the important influence of BMP type and site-specific conditions for use in targeting 

conservation practice funding. 
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Chapter 4 - Predicting Ephemeral Gully Location and Length using 

Topographic Index Models 

 Abstract 

Ephemeral gullies (EGs) are channels resulting from concentrated overland flow, often 

forming in a similar location every year, and that add to producers’ management efforts and 

costs. Locating EGs and implementing conservation practices is of highest importance. 

Predicting length of an EG is very crucial to estimate sediment load using process based models 

or regression equations. Topography plays an important role in the formation of EGs. This study 

investigates the possibility to predict EG location and length within agricultural fields according 

to two metrics: occurrence (presence or absence within a given area) and length (total 

accumulated length within a given area) using four topographic index models (Slope Area [SA], 

Compound Topographic Index [CTI], Slope Area Power [SAP] and Wetness Topographic Index 

[WTI]). Also, impacts of Digital Elevation Model (DEM) resolution, landuse and thresholds 

were evaluated.  

Automated geospatial models were developed to locate and derive length of EGs. Results 

show that SA model better predicts the EG occurrence and lengths than other models tested. The 

SA and CTI model predictions had similar pattern in terms of locating EG trajectory, however, 

the CTI model had greater discontinuity along the trajectory. The method developed to derive 

length in this study was sensitive to discontinuity and hence the performance of CTI model was 

poor.  

The thresholds varied among the study regions (T = 30 for S1 and T = 50 for S2) tested 

using SA model. No one threshold can better predict the occurrence and length of EGs. 

Therefore, individual calibration of model for each application site thresholds is needed. Finer 

resolution DEMs (e.g., 2 m) predicted EG location and lengths better compared to coarser 

resolution DEMs (10 m or greater). Coarser resolution DEMs can be used to locate larger 

classical gullies in agricultural fields or gullies in rangeland. When considering EGs only within 

agricultural fields, accurate landuse characterization is needed. 
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 4.1 Introduction 

Soil erosion by water is a major land degradation problem facing the world 

(Montgomery, 2007). It results in transporting sediments, nutrients and pesticides to surface 

water bodies, degrading water quality. It also results in removing organic matter, nutrients, and 

topsoil, decreasing soil fertility, and water holding capacity within agricultural fields. Soil 

erosion by water in agricultural fields occurs predominantly by three processes: interrill and rill 

erosion, ephemeral gully (EG) erosion and classical gully erosion. Table 4.1 describes the 

differences between rill erosion, EG erosion and classic gully erosion. This study focuses on EG 

erosion.  

 

Table 4.1 Charecteristics of erosion (Foster, 1986) 

Rill Erosion  Ephemeral Gully Erosion  Classical Gully Erosion  

Rills are normally erased by 

tillage; they usually do not recur 

in the same place  

Ephemeral cropland gullies are 

temporary features, usually obscured by 

tillage; recur in the same location  

Gullies are not obscured 

by normal tillage 

operations  

May be of any size but are 

usually smaller than ephemeral 

cropland gullies  

May be of any size but are usually larger 

than rills and smaller than permanent 

gullies  

Usually larger than 

ephemeral cropland gullies  

Cross sections tend to be 

narrow relative to depth  

Cross sections tend to be wide relative to 

depth; sidewalls frequently are not well 

defined; headcuts are usually not readily 

visible and are not prominent because of 

tillage  

Cross sections of many 

gullies tend to be narrow 

relative to depth; sidewalls 

are steep; headcut usually 

prominent  

Flow pattern develops as many 

small disconnected parallel 

channels ending at ephemeral 

cropland gullies, terrace 

channels, or where deposition 

occurs; they are generally 

uniformly spaced and sized  

Usually forms a dendritic pattern along 

depressional water courses, beginning 

where overland flow, including rills, 

converge; flow patterns may be 

influenced by tillage, crop rows, terraces, 

or other unnatural features  

Tend to form a dendritic 

pattern along natural water 

courses; nondendritic 

patterns may occur in road 

ditches, terraces, or 

diversion channels  

Occurs on smooth side slopes 

above drainageways  

Occurs along shallow drainageways 

upstream from incised channels or 

gullies  

Generally occurs in well-

defined drainageways  
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Soil is removed in shallow 

channels but annual tillage 

causes the soil profile to 

become thinner over the entire 

slope  

Soil is removed along a narrow flow 

path, typically to the depth of the tillage 

layer where the untilled layer is resistant 

to erosion, or deeper where the untilled 

layer is less resistant; soil is moved into 

the voided area from adjacent land by 

mechanical action (tillage) and rill 

erosion, damaging an area wider than the 

eroded channel  

Soil may be eroded to 

depth of the profile and 

can erode into soft 

bedrock  

 

EG erosion is referred to as concentrated flow erosion, mega-rill erosion or shallow gully 

erosion. EG erosion was first comprehensively discussed by Foster (1986). Differences between 

EG and rills are not always very clear. EGs are larger than a rill and smaller than a classical 

gully. Flow in rills is usually classified as part of overland flow that occurs uniformly across a 

slope even though it is concentrated in rills; however, flow in EGs is clearly channelized (Foster, 

1986). In some cases, the rills concentrate gradually down slope and finally form a clear EG 

(Figure 4.1).  

 

Figure 4.1 Ephemeral gullies and rills. 

 

EGs are defined in literature in different ways. According to Soil Science Society of 

America (2001) EGs are “small channels eroded by concentrated overland flow that can be easily 

filled by normal tillage, only to reform again in the same location by additional runoff events”. 

Hauge (1977) and Poesen (1993) distinguished EGs from rills with a cross-sectional area of 929 
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cm
2
 (i.e. 1 square foot) or greater. According to Grissinger (1996a, b), EGs are produced by 

concentrated flow erosion in swales or other topographically controlled locations and may be 

either a continuous extension of drainage network or they may be discontinuous. Smith (1993) 

defined EGs as small drainage channels that, if not filled in, would become permanent features 

of the drainage network. In this study, EGs in agricultural fields are defined as channels that tend 

to form during a precipitation event along natural drainage lines, when vegetation cover is 

minimal, and when concentrated flow of water has enough energy to detach soil. It was also 

observed that EGs can act as conduits to transport sediment originally detached from rills (Figure 

4.2).  

Figure 4.2 Ephemeral gullies as collector of sediment. 

 

The importance of EG erosion is well established (Thorne et al., 1986; Poesen et al., 

1996; Nachtergaele and Poesen, 1999; Poesen et al., 2003). Despite its importance, only few 

process-based erosion models have included EG subroutines. However, these models do not 

predict the location of EGs; location of each EG must be given as input to the model. Simple 

means of predicting the location of EG initiation is needed (Vandaele et al., 1996a; 

Vandekereckhove et al., 1998; Desmet and Govers, 1997; Knapan et al., 2010). Souchere et al. 

(2003) reported that the development of models that are able to predict location, length and 

cross-sectional area of EGs is of great importance.  

The concept of a topographic threshold is widely used to predict locations in the 

landscape where gullies develop (Moore et al., 1988; Vandaele et al., 1996a; Vandekerckhove et 

al., 1998, 2000; Desmet et al., 1999; Knapan et al., 2010; Poesen et al., 2011). It was first 
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proposed by Horton (1945) and stated that a channel incision occurs when a threshold force is 

exceeded. Patton and Schumm (1975) first applied this concept to geomorphological study by 

examining the relationship between drainage area and valley slope for stable and unstable 

channel systems. Begin and Schumm (1979) combined the drainage area and valley slope by a 

shear stress indicator (τ) and reported that the channel initiation occurs above a threshold value 

of shear stress indicator (τcr) within uniform geomorphic and hydrologic conditions.  

 τ = (c Ɣ) A
rf
 Sv (4.1) 

where τ is a shear stress indicator (N/m
2
), c is a constant, Ɣ is the weight per unit volume of water 

(kg/m
3
), A is drainage area (m

2
), rf is an exponent, and S is valley slope gradient (m/m). Other 

studies used slope and drainage area to represent channel incision and have found that an inverse 

relationship exists between drainage area and local slope and is represented by power-type 

equation (Begin and Schumm, 1979; Vandaele et al., 1996a). 

Another concept that is widely used to identify the location of EGs is unit stream power. 

The EG formation depends on “generation of concentrated surface runoff of sufficient magnitude 

and duration to initiate and maintain erosion, leading to channelization” (Thorne et al., 1984). 

Concentrated surface runoff can be represented by specific stream power, which is a function of 

discharge, slope and channel width. Drainage area multiplied by slope gives a parameter that can 

be used to represent total stream power (Desmet et al., 1999). 

The importance of topographic parameters such as slope and drainage area in locating 

EGs is well established. Another topographic parameter, plan curvature or convergence, also 

contributes to EG formation as it provides the measure of the degree of flow convergence along 

the cross-section of a flow path (Zeverbergen and Thorne, 1987). Moore et al. (1991) indicated 

that slope (S), upstream drainage area (A) and plan curvature were primary topographic 

attributes that can be derived directly from Digital Elevation Models (DEMs) using Geographic 

Information System (GIS) in the form of regular raster grids. Primary topographic attributes were 

combined in some form (e.g., SAs or ln(As/S)) to characterize the spatial variability of specific 

processes occurring in the landscape; these combinations of primary topographic attributes are 

commonly referred to as topographic index models, topographic indices, secondary topographic 

attributes, compound attributes, or compound indices (Moore et al., 1991). In this study 

topographic index models will be used to represent combinations of primary topographic 

attributes.  
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Several topographic index models were studied over the past few decades to predict the 

location of EGs. Thorne et al. (1986) used CTI (compound topographic index) model to predict 

EG formation: 

 t = SA PLANC (4.2) 

where t is a topographic EG index value, S is local slope (m/m), A is upstream drainage area 

(m
2
), and PLANC is plan curvature (m/100). Parker et al. (2007) tested the CTI model to predict 

EG locations in a GIS environment for different sites and found out that the critical threshold for 

t values (T) varied from 5 to 62 depending on the study site, and the general pattern of EGs 

predicted did not change when T varied between 10 and 100.   

Moore et al. (1988) used two methods to estimate EG location: SA (slope area index) 

model 

 t = SAs (4.3) 

and WTI (wetness topographic index) model 

 t = ln(As/S) (4.4) 

where t is a topographic EG index value, S is slope gradient (m/m) and As is unit upstream 

drainage area (m
2
/m). Moore et al. (1988) found out that EGs were constrained to areas for 

which ln(As/S) > 6.8 and SAs > 18. Vandaele et al. (1996b) reported that the EG locations in a 

study area in south Portugal were better predicted using ln(As/S) > 9.8 and SAs > 40.  

Vandaele et al. (1996a) used the SAP (slope area power index) model: 

 t = SAs
b
 (4.5) 

where t is a topographic EG index value, S is slope gradient (m/m), As is unit contributing area 

(m
2
/m) to locate EGs, and b is commonly assumed to be 0.4 (Vandalele et al., 1996a,b; Desmet 

et al., 1999). Vandaele et al. (1996a) tested the model in Kinderveld catchment in Spain and 

found out that SAs
0.4 

> 0.486 (i.e., T = 0.486) was needed for locating initiation points of EGs. In 

separate studies, Desmet et al. (1999) reported that T = 0.75 and Vandaele et al. (1996b) reported 

that T = 1.0 performed better in predicting location of EGs in their study areas.  

The topographic index models discussed above were used to locate the EGs. None of 

these studies used these topographic index model results to derive the length of an EG, even 

though the importance of length is well established (Woodward et al., 1999; Nachtergaele et al., 

2001a, b; Capra et al., 2005; Gordon et al., 2007; Capra et al., 2009; Poesen et al., 2011). Length 

of an EG is considered to be an important parameter as it is needed as an input by process-based 
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models, such as EGEM and WEPP to estimate EG sediment losses (Woodward, 1999). 

Nachtergaele et al. (2001 a, b) reported that a strong correlation exists between EG length and 

volume of soil eroded. Length of an EG can also be used to estimate EG volume using simple 

models that relate length (L) to volume (V) (Capra et al., 2005; 2009; Poesen et al., 2011). 

Gordon et al. 2007 reported that topographic models are used to locate the potential EGs but 

there is no method currently available to predict EG length.  

Therefore the goal of this study was to evaluate existing topographic index models (SA, 

CTI, SAP and WTI) in predicting EG location and length within agricultural fields according to 

two metrics: occurrence (presence or absence within a given area) and length (total accumulated 

length within a given area). Specific objectives were to (1) develop a GIS-based methodology to 

locate and derive length of EGs using existing topographic index models, (2) compare and 

evaluate the impacts of DEM resolution (2 m, 10 m, 30 m) and landuse data source (NASS, field 

reconnaissance) on EG occurrence and length predictions, and (3) evaluate the impacts of 

topographic index thresholds (T) on EG occurrence and length predictions.  

 4.2 Study Area 

Two study areas where EGs are a major concern were selected. Study area 1 (S1) is 

located in Douglas County in north eastern Kansas, and study area 2 (S2) is located in Reno 

County in south central Kansas (Figure 4.3). The S1 has an area of 4,359 ha (10,771 ac) 

(cropland 43%) and S2 has 1,927 ha (4,762 ac) (cropland 81%). Grain sorghum and corn were 

the major crops in S1 whereas wheat was the major crop in S2. The EGs in S1 were smaller 

(mostly single EGs; average length: 210 m) and narrower whereas the EGs in S2 were larger 

(mostly branched EGs; average length: 408 m) and wider. Discussion on estimating length of 

EGs in the study areas is given in section 4.2.1.  
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Figure 4.3 Study areas (S1 and S2) and digitized ephemeral gullies. 

 

 4.2 Methods 

4.2.1 Digitizing EGs in study areas  

EGs were seen in many agricultural fields across the study areas during field 

reconnaissance surveys in 2009 and 2010. Field measurements of EG characteristics (e.g., 

length, width, depth) were not possible because access to the agricultural fields in both study 

watersheds was limited, as land-owner permission was needed before entering fields. Because of 

this limitation, we drove on public roads in the study areas and recorded the fields that were 

observed to have EGs. During field visits, a Common Landuse Unit (CLU) field boundary 

shapefile was edited in ArcGIS on a laptop computer to record fields that had EGs. An 

Earthmate LT-40 GPS (Delrome, Yarmouth, ME) was used to determine the spatial location of 

the field. In the lab, the shapefile of fields that had EGs was overlaid on a corresponding aerial 

image. Various aerial images ranging from 1995 to 2011 were available in the study areas. The 

2010 National Agricultural Imagery Program (NAIP) aerial image was selected for S1 and 2003 

Digital Ortho Quarter Quadrangle (DOQQs) aerial image was selected for S2 because EGs were 



69 

 

clearly located on them; aerial images from other years were acquired during the crop growing 

season when a crop was fully established, and hence locating EGs on them was difficult. 

EGs were manually digitized over the aerial images in the study areas in the fields where 

EGs were observed during field visits. Extreme care was taken in digitizing the trajectory of each 

EG located on the aerial image. Starting and ending points of an EG were difficult to determine 

precisely. Color changes on an aerial image and expert judgments of author were used to digitize 

accurately with an approximate 5% error. For example, the color of an EG located on an aerial 

image was white in a field otherwise colored green/brown/grey. The starting/ending point of an 

EG was chosen to be the point where color changed from green to white, and the EG digitization 

proceeded along the trajectory of the EG until the color changed from white back to the other 

color. Google Earth together with hill shade images (which enhanced the relief of the surface) 

were used to verify/cross check the location during digitizing process. Many EGs (69% in S1 and 

38% in S2) were seen on the aerial image within the study area but were not visible from the 

windshield during the field visit for several reasons: (1) EGs were located far away from roads or 

obscured by topographic features, (2) there were established crops concealing the EGs during 

field visit, or (3) multiple EGs were located within one field. EGs that were located on the aerial 

image but were not seen during field visit were also digitized. Since this study compared model 

simulated EGs to observed EGs (i.e., digitized EGs on aerial image), including all EGs was 

considered justifiable. Finally, the digitized EGs were used as observed or reference data to 

evaluate performance of the topographic index models. 

4.2.2 EG topographic index models and thresholds 

Four widely used EG topographic index models were used to predict EG location (Table 

4.2). EG topographic index models determine presence or absence of an EG at each point (i.e., in 

a pixel) within a given area for which topographic EG index value (t) (Eqs. 4.2 through 4.5) 

exceeds a threshold value (T). For each topographic index model, three T values spanning the 

range of thresholds reported in literature were used to predict EG location (Table 4.2). 
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Table 4.2 EG topographic index models and thresholds tested in S1 

Model Equation Thresholds (T) References 

SA t = SAs (Eq. 4.3) 5 18 40 Moore et al. (1988); Vandaele et al. (1996a) 

CTI t = SAPLANC (Eq. 4.2) 12 62 100 Thorne et al. (1986); Parker et al. (2007) 

SAP t = SAs
0.4

 (Eq. 4.5) 0.3 0.5 1 Vandaele et al. (1996a,b); Desmet et al. (1999) 

WTI t = ln(As/S) (Eq. 4.4) 6.8 9.8 12 Moore et al. (1988); Vandaele et al. (1996b) 

S – Local slope (m/m) 

A – Upstream drainage area (m
2
) 

As – Upstream contributing area per unit contour length (m
2
/m) 

PLANC – Plan curvature (m/100) 

 4.2.3 Data inputs for topographic index models 

A DEM provides key data needed for topographic index models. Topographic attributes 

such as slope, upstream drainage area, and plan curvature are directly derived from DEMs. The 

common data structure of DEM is a square grid, because this raster format has efficiency of 

computation and ease of processing (Tarboton et al., 1991). DEMs generally are available at 

different resolutions. Coarse 10 m and 30 m resolution DEMs are readily available to download 

for entire United States from U. S. Geological Survey (USGS) website 

(http://seamless.usgs.gov/). Finer resolution DEMs, such as Light Detection And Ranging 

(LIDAR) (e.g., 2 m resolution DEM), are available only in a few selected areas within United 

States. Many studies have investigated the impact of DEM resolution for evaluating model 

responses to change in topographic attributes and have concluded that DEM resolution 

substantially affects topographic attributes and thereby model results (Holmes et al., 2000; 

Chaubey et al., 2005; Parker et al., 2009; Momm et al., 2011).  

Impacts of DEM resolution (2 m, 10 m, and 30 m) on the performance of topographic 

index models to correctly predict EG location were evaluated. DEMs of 2 m, 10 m and 30 m 

resolution for S1 were downloaded from USGS website 

(http://seamless.usgs.gov/website/seamless/viewer.htm) and were used as inputs to the 

topographic index models. Cheney Lake watershed, which includes study area S2, has 1 m 

LIDAR data. To maintain consistency between the study areas (only 2-m DEM was available for 

S1), the 2-m DEM was resampled (nearest neighbor assignment technique) from the 1-m DEM 

for use in this study.  

http://seamless.usgs.gov/
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In this study only EGs within agricultural fields were of interest. Therefore, landuse was 

used to mask out areas other than agricultural fields. Daggupati et al. (2011) reported that 

landuse has a major impact on modeling results for field-scale targeting. Therefore, this study 

evaluated the impacts of USDA National Agricultural Statistical Service (NASS) and field 

reconnaissance landuse (field) data sources on the performance of topographic index models to 

correctly predict EG location within agricultural fields . NASS 2010 landuse, which was 

downloaded from USDA-NASS website (http://www.nass.usda.gov/), was used. From Section 

2.3.1, it is seen that NASS predicts rangeland pixels in the middle of agricultural land due to 

training and classification errors. However, in this study, the errors were corrected using GIS 

techniques, such as resampling (nearest neighbor assignment technique ) and expanding, and a 

corrected NASS landuse was used. Field landuse was manually prepared in S1 by digitizing field 

boundaries over high resolution aerial image. Care was taken so that waterways were not 

included in the digitized landuse. In S2, field landuse was developed using CLU field boundary 

shapefile. In both study areas, land cover for each field was manually edited based on a field 

reconnaissance survey and using NASS 2010 landuse as reference.  

 4.2.4 Methodology to locate EGs 

An automated geospatial model was built in GIS environment (ArcGIS v.10) using model 

builder platform (Figure 4.4) to locate EGs for each of the topographic index models. The 

geospatial model requires elevation (DEM), landuse and roads as inputs. Once the inputs are 

satisfied, the model calculates topographic attributes such as local slope, upstream drainage area, 

unit upstream drainage area, and plan curvature from the DEM.  

Pits are small depressions within the DEM that interrupt flow networks. Generally, these 

small DEM depressions are filled for watershed analyses as they hinder flow-path determination 

and, therefore, derivation of other hydrologic parameters. But in the process of filling, many 

natural depressions that are important to EG formation also get filled. Therefore, the process of 

pit removal was not applied to the DEM. Recent studies on gullies by Kim (2007) and Bussen 

(2009) also did not fill DEM pits. Local slope in percent (%) was computed using deterministic 

eight direction (D8) algorithm (O’Callagham and Mark, 1984), and later the percent slope was 

divided by 100 to get local slope in m/m. The flow direction and flow accumulation grids were 

also computed using the D8 method. Flow accumulation for each cell, calculates the cells that 

http://www.nass.usda.gov/
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are upstream to a given cell. Drainage area (m
2
) was calculated by multiplying the number of 

cells accumulated by the cell area (square of the cell resolution). Unit upstream drainage area 

(m
2
/m) was calculated by dividing the drainage area (m

2
) by cell resolution (m) of the DEM. The 

plan curvature (m/100) was calculated using a method proposed by Zeverbergen et al. (1987) and 

Moore et al. (1991). At a given cell, a positive value indicates that the surface is convex, 

negative value indicates concave, zero value indicates flat (ESRI, 2011). The plan curvature was 

multiplied by -1 to convert it to a more easily usable (positive) value for calculating EG 

topographic indices, since EGs form only in areas of negative plan curvature. Once the required 

topographic parameters are generated, the geospatial model calculates the topographic index 

value (t) for each pixel in the study area, and compares that value to the user-defined thresholds 

(T) for the topographic index model being used. If the pixel value of t was greater than T then the 

EGs were located in the form of pixels on the output raster (Figure 4.5). Since our interest was to 

identify EGs only in agricultural fields, the geospatial model uses landuse and roads to clip out 

non-agricultural areas.  
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Figure 4.4 Geospatial model for locating EGs using four different topographic index models. 

 



74 

 

Figure 4.5 Ephemeral gullies (EGs) located as pixels in an agricultural field in study area 1 

(S1).  

 

 4.2.5 Methodology to estimate EG length 

Several post processing techniques were developed to derive length of EGs from the 

output raster (generated for each topographic index model from the geospatial model discussed 

above) using following steps. 

 Pixels that represent EGs in output raster of a topographic index model were 

converted into a polyline shapefile (Figure 4.6.a).  

 The polylines within the trajectory of an EG were sometimes disconnected (Figure 

4.6.a) (i.e., some points along an apparent EG trajectory did not meet the given 

threshold). To make the polylines continuous within the trajectory of an EG, the 

polylines were “snapped” to each other using a snapping rule of 5 m (i.e., two lines 

that were 5 m apart, or less, were joined) (Figure 4.6.b). Higher snapping distance (> 

5 m) resulted in lines snapping to other lines that were not part of the EG trajectory 
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and hence distorting the shape along the trajectory (most prevalent in branched EGs). 

Hence, snapping distance greater than 5 m was not used in this study.  

 The length of the polylines were calculated, and lengths smaller than 10 m were 

removed (Figure 4.6.c). 

 At this point, each polyline had its own identification number, and many EGs were 

represented by multiple polylines. Catchments were developed separately using the 

DEM (blue lines Figure 4.6.d), and each individual polyline within a catchment was 

given a unique id (Figure 4.6.d). The size of the catchment is user defined and can be 

varied. In this study 1 hectare catchments were used. All individual polylines within a 

catchment were dissolved to one single polyline, and was considered as an EG with a 

unique id.  

 EGs smaller than 50 m were removed.  
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Figure 4.6 Steps in deriving the length of ephemeral gullies (EGs): (a) EG raster converted to polyline, (b) polylines snapped, 

(c) length of EGs calculated and smaller lengths <10 m deleted, and (d) EGs were given unique id. Black polylines represent 

EGs, and blue polygons represent EG catchments.  
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Several EGs were long and branched, as shown in the Figure 4.7. In such cases, the size 

of catchment can be increased (so that it includes the entire branched EG) or the catchments can 

be manually edited to capture branched EGs. However, in this study no changes were made to 

the catchment size. Thus, each segment of the branched EG in a different catchment was 

considered a separate EG. Currently available process-based models (e.g., EGEM, REGEM) that 

simulate EG erosion are capable of simulating un-branched EGs only (i.e., each branch was 

calculated by a separate pass through the computer program). Therefore, single EGs developed 

using this method can be used as direct input to those models to estimate EG erosion.  

Using the above mentioned steps, EGs were given a length and a unique identification 

number so that they can be used either as input to the process-based model or to estimate volume 

using L-V relations. It should be noted that lengths obtained by this method are potential lengths 

derived from topographic attributes and do not consider any processes occurring during the 

formation of EGs. Also, it should be noted that some discontinuity within lengths may still exist 

along an EG trajectory. The above mention steps are tedious; therefore, an automated geospatial 

model was developed in ArcGIS environment using model builder platform (Figure 4.8) to 

derive the length of EGs.  

 

Figure 4.7 A branched ephemeral gully (EG) in an agricultural field in study area 1 (S1).  
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Figure 4.8 Geospatial model for estimating ephemeral gully length. 

 

 4.2.6 Evaluating the performance of topographic index models 

Each of the topographic index models first identifies EGs location in the form of pixels, 

and later lengths were derived using several post processing techniques. Each topographic index 

model capability to predict location and length was assessed by three methods: 1) visual 

evaluation of EG trajectories, 2) error-matrix assessment of model performance in correctly 

identifying EG occurrence (presence or absence) within a given area, and 3) statistical 

assessment of model performance in correctly identifying EG length (total accumulated length) 

within a given area. 

 4.2.6.1 Visual evaluation of location and lengths  

There is no established method to compare and evaluate the performance of topographic 

index models. Desmet et al. (1999) compared percentage of predicted EG pixels that 

corresponded to the location of observed EG pixels. Parker et al. (2007) used visual 

interpretation by comparing potential EGs pixels generated by the model to observed EGs pixels. 

In this study, location of EG (model predictions along the trajectory) and derived lengths was 

evaluated using visual interpretation. Visual interpretations gives a general understanding of each 

model performance.  
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 4.2.6.2 Occurrence evaluation 

Statistical analysis using an error matrix approach was carried out to evaluate the 

occurrence (presence or absence) of EGs in a given area. Error matrix (also called confusion 

matrix, correlation matrix, or covariance matrix) summarizes the relationship between two 

datasets: often an observed dataset and a predicted dataset. Error matrix is often used in medical 

and biological sciences. It is also used in reporting the accuracy of landuse data (e.g., NASS and 

NLCD) based on ground truth data. Error matrix approach was used by Gutierrez et al. (2009) 

and Meyer and Martinez-Casosnovas (1999) to predict the location of gullies in rangeland for 

models developed by regression analysis using observed gully data.   

In this study, we used the presence-absence model of the error matrix (Table 4.3). One-

hectare catchments within agricultural fields were used. Occurrence of an EG within a catchment 

was treated as a binary variable (1: presence and 0: absence) for each catchment based on 

predicted and observed EGs present within that catchment. For example, 1 and 1 were recorded 

in the catchment attribute table under the predicted and observed columns if both predicted and 

observed EGs were present in a catchment, 1 and 0 for predicted EG present and observed EG 

absent in a catchment, and so on. The observed EGs are the digitized EGs over an aerial image 

based on field reconnaissance survey, and the predicted EGs are the EGs generated by each of 

the topographic index models. Finally, the error matrix recorded the frequencies of the four 

possible types of prediction from analysis of predicted and observed EGs for each catchment 

(Table 4.3): (a) true positive (both predicted and observed EGs are present), (b) false positive 

(predicted EGs present and observed EGs absent), (c) false negative (observed EGs present and 

predicted EGs absent), and (d) true negative (both predicted and observed EGs absent). 

Frequencies are recorded in an error matrix using Table 4.3 format for each topographic index 

model. All the processes discussed above were automated using a geospatial model in GIS 

environment (ArcGIS v.10) using model builder platform (Figure 4.9) and the output of error 

matrix table was generated in Excel format.  

Several statistics (Appendix B) can be calculated using the error matrix table. In this 

study, false positive rate, false negative rate, and kappa (κ) statistics (occurrence statistics) were 

used to evaluate the topographic index model performance. Correct classification rate is 

generally used to predict the accuracy of a model; however, this statistic is very simple and 

sometimes misleading. In this study κ was used to predict the accuracy of a model. A good 
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model should have higher κ with optimal (lower) false positive and false negative rates. Higher 

false positive rate does not necessarily indicate model error because the model may be indicating 

areas or catchments with high vulnerability to gullying, but the processes have not developed yet. 

However, high false negative rates are considered to be an error in model performance (Gutierrez 

et al., 2009). 

 

Figure 4.9 Geospatial model to develop error matrix table. 

 

 

Table 4.3 Error matrix table to evaluate the occurrence (presence or absence) of EGs in a 

catchment 

Error Matrix 
Actual 

Totals 
present absent 

Predicted 
present a (true positive) b (false positive) a+b 

absent c (false negative) d (true negative) c+d 

Totals a+c b+d N 

N: Total number of catchments; a: no of catchments in which both observed and predicted EGs present; b: number 

of catchments where only predicted EGs present and observed EGs absent; c: number of catchments where observed 

EGs present and predicted EGs absent; d: number of catchments where both EGs absent.  

 4.2.6.3 Length evaluation 

There is no standard procedure to evaluate the EG length derived from topographic index 

models. In this study, we compared the total cumulative predicted length of EG generated by the 

topographic index model to that of the observed EG length (digitized over aerial images) in each 

catchment for which both predicted and observed EGs were present (‘a’ column in error matrix 
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table). The data needed for analyzing the length are generated using an automated geospatial 

model (Figure 4.10).  

Statistics (length statistics) used for comparison are coefficient of determination (R
2
), 

Nash-Sutcliffe efficiency (NSE), and estimation bias (PBIAS). The above statistics are generally 

used to evaluate watershed model (such as SWAT, AnnAGNPS, etc.) performance based on 

measured and model predicted flow data (Moriasi et al., 2007) and are discussed in detail in 

Section 2.3.4 and 3.2.5. NSE and R
2
 value of one indicates perfect model fit where predicted 

lengths by model are closer to the observed or digitized lengths. The optimal value of PBIAS is 

0, with low-magnitude values indicating accurate model predictions. Positive values indicate 

model underestimation bias, and negative values indicate model overestimation bias 

 

Figure 4.10 Geospatial model to generate data for length analysis in catchments where both 

observed and predicted ephemeral gullies are present. 

 

Each topographic index model along with a corresponding threshold (Table 4.2) was 

evaluated using the above mentioned location, occurrence and length evaluation procedures in 

S1. DEM resolution (2 m, 10 m, 30 m) was compared and evaluated using all topographic index 

models while the Landuse (NASS, Field) was compared and evaluated using SA and CTI 

models. The best topographic index model, DEM resolution, and landuse data source were 

selected and were further evaluated using a range of thresholds in S1 to understand how 

thresholds affected topographic index model performance in predicting occurrences and lengths 

of EGs. Further, the best topographic index model was applied in S2 to evaluate how the 

thresholds affected topographic index model performance in a different geographic location.  
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 4.3 Results and Discussions 

 4.3.1 Visual interpretation of location and lengths of EGs  

Figure 4.11 shows output maps of location and derived lengths for SA (Eq. 4.3, T = 18), 

CTI (Eq. 4.2, T = 62), SAP (Eq. 4.5, T = 0.3) and WTI (Eq. 4.4, T = 12) models using the given 

thresholds (T value noted for each equation) with 2 m DEM and field landuse. The visual 

interpretations of the output maps showed that the SA and CTI models predicted the EG location 

(in the form of pixels along the trajectory of the observed EGs) better than SAP and WTI models 

(Figure 4.11) for given thresholds.  

 

Figure 4.11 Output maps of location and derived lengths for SA, CTI, SAP, WTI model in 

an agricultural field in study area 1 (S1). 

(a) Aerial image (left) and digitized EGs (right) 
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(b) Location (left) and derived lengths (right) for SA model (Eq. 4.3, T = 18) 

 

 

(c) Location (left) and derived lengths (right) for CTI model (Eq. 4.2, T = 62) 
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(d) Location (left) and derived lengths (right) for SAP model (Eq. 4.5, T = 0.3) 

 

(e) Location (left) and derived lengths (right) for WTI model (Eq. 4.4, T = 12) 

 



85 

 

The WTI model was not able to predict the location of EGs in our study area using T = 

6.8 and T = 9.8, although these thresholds successfully predicted EG location in another region 

(Portugal and Australia: Vandaele et al., 1996b; Moore et al., 1988). Increasing the T to 12 

improved predictions of EG locations. Momm et al. (2011) also used T = 12 as threshold in a 

small field in Kansas for WTI model to locate EGs. However, T = 12 tends to over-predict the 

location of EGs. Increasing the threshold would have improved the predictive capabilities; 

however, such simulations were not done in this study.  

The SAP model under-predicted the location of EGs for all three thresholds tested. 

Desmet et al. (1999) reported that lower values of b in the SAP model (Eq. 4.5) better predicted 

EG initiation points. In our study we used b = 0.4 in the SAP model, which may have contributed 

to this poor performance.   

SA and CTI models have similar pattern in predictions because both models have a 

strong influence of slope and upstream drainage area, and a strong positive correlation exists 

between upstream drainage area and plan curvature (which was included in CTI only). However, 

closer observations revealed that the CTI model predictions were more discontinuous along the 

trajectory (Figure 4.12). Discontinuity using CTI model was due to the inclusion of plan 

curvature, which identifies the areas of reduced flow convergence in the landform topography 

and removes those pixels from the model predictions (Parker et al., 2007). Parker et al. (2007) 

reported that the CTI model is a better model to locate EGs, as this model is capable of removing 

areas with reduced flow convergence.  
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Figure 4.12 Closer observation of CTI model along the trajectory of EG (right). Light blue 

arrows (left) show discontinuity along the trajectory of the EG 

 

Field observation of EGs by the author during precipitation events revealed that the EGs 

were discontinuous initially, since flow rate was not enough to maintain concentrated flow 

within the areas of reduced flow-convergence along the EG trajectory; however, the EGs become 

continuous as the precipitation event progressed and flow rate increased. During an EG-forming 

precipitation event, the precipitation excess is stored as puddles along the natural drainage line 

(or flow-convergence line). As the precipitation event progresses, the puddles collect water from 

upstream rills as well as from nearby furrows. The puddles of water gradually join and a 

continuous stream forms along the natural drainage line. Soil erosion occurs within the drainage 

line, which leads to formation of an EG. This EG lengthens until the flow path intersects an area 

of reduced flow convergence within the natural drainage line. Similarly, EGs form along 

different segments of a given natural drainage line. With more precipitation excess, flow from 

upstream EG segments increase to the point that erosion occurs within the area of reduced flow 

convergence and connects upstream and downstream EG segments. The flow volume increases 

as it moves downstream resulting in widening and deepening of the EG. With enough flow, an 

EG finally becomes continuous along a drainage trajectory. The underlying processes within the 

formation of EG are more complex than discussed here. Several researchers around the world are 

still trying to understand the processes underlying the formation of these EGs.  
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Figure 4.11 shows the lengths derived from location predictions for each topographic 

index model for selected thresholds. Visual interpretations revealed that WTI (Eq. 4.4) and SAP 

(Eq. 4.5) models were not able to predict length correctly along the EG trajectory. The CTI (Eq. 

4.2) model was also not able to predict the length due to its greater discontinuity of pixels along 

the trajectory (Figure 4.12), which was discussed earlier. The methodology developed in this 

study to derive lengths overcame small discontinuities by snapping together EGs separated by 5 

m or less. The SA (Eq. 4.3) model predictions appeared to be better than other topographic index 

models. Similar length predictions were seen for other thresholds. 

 4.3.2 Occurrence analysis using error matrix  

Error matrix tables were developed, and statistics of false positive rate and false negative 

rate were used to analyze the performance of each topographic index model and their 

corresponding thresholds, DEM resolution, and landuse data source in S1 (Table 4.4).  

 4.3.2.1 Impacts of DEM resolution  

The false positive rate decreased from 54% to 1% and false negative rate increased from 

21% to 97% as the DEM resolution increased from 2 m to 30 m for T = 5 in the SA model 

(Table 4.4). Similar trend was seen in other thresholds in SA model and also in other topographic 

index models (CTI, SAP, and WTI). Higher false negative rates and lower false positive rates 

with 10 and 30 m DEM resolutions indicated poor model performances. Comparison of 2 m vs. 

10 m vs. 30 m DEM resolutions using output maps revealed that 10 m and 30 m DEM 

resolutions greatly underestimated EG occurrence compared to 2 m DEM resolution (Figure 

4.13) 
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Figure 4.13 EG occurrence comparison for 2 m, 10 m, 30 m DEM resolutions. 

 

 4.3.2.2 Impact of Landuse 

The false positive rate either slightly decreased or remained same and the false negative 

rate increased as the landuse changed from field to NASS in SA and CTI models for all 

thresholds. The NASS landuse was rectified using GIS techniques so that pixels representing 

rangeland in the middle of agricultural fields were resampled with surrounding majority pixels. 

However, there were still a few fields that were incorrectly predicted as rangeland (i.e., were 

found to be agricultural fields from field reconnaissance). Because of this error, the EGs were 

not predicted by the model even though there were observed EGs present, which thereby slightly 

increased false negative rates.  

In this study, the catchments within agricultural fields were used (i.e., the catchments 

were clipped to field landuse so that grassed waterways, forested lands etc. were not included), 

resulting in relatively similar false positive rates among the NASS and field landuse data 

sources. However, the NASS landuse data source predicted EGs in the waterways and forested 

areas by the side of agricultural fields (Figure 4.14). In this analysis, these EGs were not 

considered. Therefore, the users should be aware that NASS landuse predicts EGs when they not 

actually present (e.g., in waterways) and do not predict EGs when they are actually present (e.g., 

cropland misclassified as rangeland).  
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Table 4.4 Occurrence statistics for four different topographic index models 

Threshold 
SA Method 

Threshold 
CTI Method 

Statistics 2 m 10 m 30 m Statistics 2 m 10 m 30 m 

Field NASS Field Field Field NASS Field Field 

5 
False positive rate 54% 52% 25% 1% 

12 
False positive rate 35% 30% 7% 0% 

False negative rate 21% 27% 37% 97% False negative rate 18% 36% 65% 98% 

18 
False positive rate 27% 25% 8% - 

62 
False positive rate 9% 9% 2% - 

False negative rate 21% 37% 66% - False negative rate 32% 47% 95% - 

40 
False positive rate 10% 10% 3% - 

100 
False positive rate 5% 6% 1% - 

False negative rate 38% 43% 83% - False negative rate 51% 62% 95% - 

 

Threshold 

SAP Method 

Threshold 

WTI Method 

Statistics 
2 m 10 m 30 m 

Statistics 
2 m 10 m 30 m 

Field Field Field Field Field Field 

0.3 
False positive rate 7% 6% 0% 

6.8 
False positive rate - - - 

False negative rate 49% 83% 100% False negative rate - - - 

0.5 
False positive rate 1% 1% - 

9.8 
False positive rate - - - 

False negative rate 86% 96% - False negative rate - - - 

1.0 
False positive rate 0% 0% - 

12.0 
False positive rate 34% 10% 5% 

False negative rate 98% 100% - False negative rate 23% 60% 80% 
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Figure 4.14 EGs predictions in waterways when using NASS landuse. 

 

 4.3.2.3 Impact of Thresholds 

The false positive rate decreased from 54% to 10% and false negative rate increased from 

21% to 38% as thresholds increased from 5 to 40 in the SA model using field landuse and 2 m 

DEM resolution (Table 4.4). Optimum false positive and false negative rates (lower values of 

false positives and false negatives) were seen for T = 18. However, further investigation of the 

role of thresholds in correctly predicting the occurrence and length of EGs is discussed below. 

Similar trends were also seen in the case of the CTI model, in which there was a decrease in false 

positive rate and increase in false negative rate as the threshold increased from 12 to 100. 

Optimum false positive and false negative rates were not found with the selected thresholds in 

case of CTI. The CTI model also resulted in higher false negative rates. Because it could not 

predict the location along the trajectory (seen earlier), the performance of the CTI model was 

considered poor.  

In the case of SAP model, false positive rate decreased from 7% to 0% and false negative 

rate increased from 49% to 98% as thresholds increased from 0.3 to 1.0 (Table 4.4). Optimum 

false positive and false negative rates were difficult to obtain as this model was used to locate the 
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initial location of EGs not the trajectories (discussed earlier). Hence the performance of this 

model was also considered poor. In the case of WTI model, thresholds of 6.8 and 9.8 could not 

predict the locations, resulting in no statistics being calculated. However the model predicted 

locations using T = 12.0. The false positive rate was 34%, and false negative rate was 23% 

(Table 4.4). Both false positive and false negative rates were near optimum, and increasing the 

threshold further may have improved the model predictions (but was not done in this study).  

The results show that the error matrix approach (occurrence analysis) produces a similar 

result as visual interpretation. Also, the importance of thresholds in EG predictions was well 

established. Further analysis to examine thresholds using SA model is discussed below.  

 4.3.3 Length Analysis 

Catchments in which both observed and predicted EGs were present were extracted and 

compared using NSE, R
2
 and PBIAS for all models and their corresponding thresholds using 2 m 

DEM and field landuse (Table 4.5).  

SA model with T = 5 resulted in poor model agreement while T = 18 and 40 resulted in 

very good agreement based on R
2
, NSE and PBIAS statistics (Table 4.5). In the case of CTI 

model, T = 12 resulted in poor model agreement while T = 62 and 100 resulted in good 

agreement (Table 4.5). Increase in thresholds resulted in good agreement in both model 

predictions. The model agreement for SA model was better compared to CTI model for higher 

thresholds based on statistics. The inclusion of plan curvature in the CTI model resulted in 

discontinuity and thereby lower EG lengths (discussed earlier), which led to the observed poor 

agreement compared to SA model.   

In the case of the SAP model, model agreements were good despite the poor results found 

from occurrence statistics (Section 4.3.2). The reason for this is due to the fact that only 

catchments in which EGs (both predicted and observed) were present were considered for 

analysis, and the SAP model had very few catchments with EGs (both predicted and observed) 

present (103 for T = 0.3, 26 for T = 0.5 and 5 for T = 1.0). Because of this, the statistics appeared 

better, however, as seen earlier, the model predictions by SAP model is not capable of predicting 

location of EGs along the trajectory and had poor occurrence analysis results. Therefore, even 

though the length statistics were better, the model performance was considered poor. WTI model 
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with T = 6.8 and 12.8 did not yield results because no EGs were predicted at those thresholds. 

However, T = 12 resulted in poor model agreement.   

 

Table 4.5 Coefficient of determination (R2
), Nash-Sutcliffe model efficiency (NSE) and percent 

bias (PBIAS) for all four topographic index models and their corresponding threshold (T) 

values in the S1 study area 

Statistics SA CTI SAP WTI 

 T = 5 T = 12 T = 0.3  

R
2
 0.11  0.56

 
 0.21 - 

NSE  -6.14  -0.04
 
 0.66

 
 - 

PBIAS (%) -194.2
 
 -79.7 20.4

 
 - 

 T = 18 T = 62 T = 0.5  

R
2
 0.58

 
 0.45  0.15

 
 - 

NSE  0.66
 
 0.48

 
 0.53  - 

PBIAS (%) -41.4 60.2 54.5
 
 - 

 T = 40 T = 100 T = 1.0 T = 12 

R
2
 0.53

 
 0.41  0.37

 
 0.27  

NSE  0.86  0.60
 
 0.72

 
 -0.35  

PBIAS (%) 14.6 65.3
 
 41.3 -59.7

 
 

 4.3.4 SA Model analysis using different thresholds 

Occurrence and length statistics revealed that threshold values play a major role in 

predicting the occurrence and length of EGs. Further analysis of the SA model, which was the 

most promising from the above analyses (Section 4.3.1 through 4.3.3), was used to explore 

response to varying thresholds in study area S1 (and verified in S2).  

The SA model was analyzed using thresholds of 10, 18, 25, 30, 40, 50, 70, 100, 150 and 

200 in S1. For each threshold, the SA model was executed using 2 m DEM and field landuse. 

The model performance was evaluated using occurrence and length statistics procedures 

discussed earlier. Figure 4.15 shows the statistics of false positive rates, false negative rates, and 

κ for each of the threshold analyzed in a graphical format. The false positive rates rapidly 

decreased from 38% to 7% as T increased from 10 to 50 and on further increase of T from 50 to 

200 resulted in gradual decrease to 1%. The false negative rates gradually increased from 20% to 

25% as T increased from 10 to 30 and as T increased further from 30 to 200 there was a rapid 

increase from 25% to 89%. The κ rapidly increased from 0.22 to 0.46 as T increased from 0 to 
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30, attained a peak of 0.48 at T = 50, and gradually decreased to 0.15 as T increased to 200. 

Increase in T value resulted in a decreased number of pixels meeting the critical threshold value, 

resulting in reduced lengths predicted by the model. Because of this, number of EGs predicted 

decreased, resulting in lower catchments predicting the presence of EGs even though there were 

observed EGs present and hence resulting in higher false negative rates. Increase in thresholds 

(resulting in reduced length predicted by model) also results in lower number of catchments 

where predicted EGs present while the observed EGs were already absent resulting in lower false 

positive rates.  

In studies related to EGs, the thresholds which results in lower false positive and false 

negative rates and higher κ better predict the occurrence of the EGs. False positives improved 

(decreased) as T increased, but the reverse trend was observed for false negatives, which became 

worse (increased) as T increased. Thresholds from 18 to 30 resulted in near-optimum false 

negatives, and T = 25 to 40 produced near-optimal κ (Figure 4.15). Higher κ was seen at T = 50, 

but false negatives were also higher than for lower T values. From Figure 4.16, T = 25 and 30 

was close to best fit line, however, T = 30 crosses the best fit line and the statistics of NSE and 

PBIAS were better for T = 30 (NSE: 0.86; PBIAS: 5.2%) compared to T = 25 (NSE: 0.83; 

PBIAS: 13.8%). 
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Figure 4.15 Occurrence statistics for different thresholds using SA model in S1. 

 

 

Figure 4.16 Observed and predicted lengths for different thresholds in S1. 
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The SA model was executed in S2 (study area 2), which was of different climatological 

region) using above mentioned procedures. The results are shown in Figure 4.17 and Figure 4.18. 

The shapes of the lines that represent false positive rate, false negative rate and κ in S2 were 

similar to that of S1. In S2, the false positive rates were higher and false negative rates were 

lower for all thresholds compared to statistics in S1. The false negative rate gradually increased, 

unlike in S1 where there was sudden increase in false negative rate after 30. Interestingly, in S2, 

the κ was 0.37, false negative rate 67%, false positive rate 4% compared to κ 0.15, false positive 

rate 1%, false negative rate 89% in S1 at threshold 200. This shows that this model was able to 

predict the location of EGs along the main trajectory even at higher thresholds in S2 (Figure 

4.19). Higher false positive rates in S2 were because EGs identified along the edge of terrace 

bounds (Figure 4.20). These EGs were not seen on the aerial images and field investigation is 

needed to verify their existence along the edge of terrace bounds. The optimum false positive 

rates, false negative rates and κ close to peak were seen for thresholds 40 and 50. Higher κ was 

seen at threshold 70 but false positives and false negatives were not optimum similar to S1. From 

Figure 4.18, it was seen that thresholds 40 and 50 crosses the best fit line, however, statistics of 

NSE and PBIAS were better for threshold 50 (NSE: 0.85; PBIAS: -3.9%) compared to threshold 

40 (NSE: 0.84; PBIAS: -10.9%).  

Threshold 50 better predicts the occurrence and length of EGs in S2, while threshold 30 

better predicted in S1. Threshold that better predicted in one study area did not predict in another 

study area even though the study areas are within 290 kilometers (180 miles). This may indicate 

that every place or region is unique, and a given EG topographic index model needs to be 

calibrated over a range of thresholds to find the best threshold that optimally predicts the 

occurrence and lengths for the given region.  
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Figure 4.17 Occurrence statistics for different thresholds using SA model in S2. 
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Figure 4.18 Observed and predicted lengths for different thresholds in S2. 

 

Figure 4.19 Predicted EG lengths at thresholds 25, 50 and 200 in S2. 
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Figure 4.20 EGs along terrace channels. 

 

 4.4 Conclusions 

The performance of existing topographic index models (SA, CTI, SAP and WTI) to 

predict the EG locations was evaluated. Also, impacts of thresholds, DEM resolution and landuse 

data source were also evaluated. A methodology was developed to derive length using the 

topographic index models and was evaluated.  

Results of visual interpretation show that the SA model better predicted the EG location 

and lengths than other models. The SA and CTI model predictions had similar pattern in terms of 

locating EG trajectory, however, the CTI model predictions had greater discontinuity along the 

trajectory. The method developed to derive length in this study was sensitive to discontinuity, 

and hence the performance of CTI model was poor. Occurrence and length statistics also show 

that SA model better predicted the occurrence and length of EGs than other models. The SAP 
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model performed poorly among all the models in predicting occurrence and lengths because this 

model was used to find the initiation points where EGs start. The WTI model was not able to 

predict the occurrence and lengths at T = 6.8 and 9.8, however it improved prediction of location 

and lengths at T = 12. Further testing of the model was not done in this study.  

Different threshold values were required by the SA model to predict the occurrence and 

length of EGs in S1 (study area 1, T = 30) and S2 (study area 2, T = 50). The need for different 

thresholds among study regions indicated that other factors that vary among the regions and were 

not included in the topographic index models influence EG occurrence and length prediction. 

Therefore, individual calibration of topographic index model threshold for each application site 

is needed.  

Finer resolution DEMs (e.g., 2 m) are needed to predict occurrence and length of EGs. 

Coarser resolution DEMs (10 m or greater) cannot locate EGs but may be useful for locating 

larger classical gullies in agricultural fields or gullies in rangeland. When considering EGs only 

within agricultural fields, field landuse is recommended over NASS landuse as NASS landuse 

results in either over or under predictions.  

The EG locations predicted using these topographic index models were not accurate 

without calibration. Inclusion of other factors that vary by region, such as land management 

practices, precipitation characteristics, and soil properties, would likely improve EG model 

performance.  
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Chapter 5 - Predicting Ephemeral Gully Length using Physical 

Model 

 Abstract 

Ephemeral gully (EG) erosion has been recognized as a major source of sediment in 

agricultural watersheds. Over the past few decades, soil conservation practices have been 

implemented to control soil erosion from sheet and rill erosion. However, excessive sediment 

still remains among the most prevalent water quality problems in the U.S. Major factors affecting 

the formation and development of EGs include precipitation, soil, topography and landuse/land 

management practices. Over the past few decades, models to predict location of EGs used only 

topography and have ignored other factors. Predicting length of an EG is also considered to be an 

important research need. In this study the goal was to predict the location and length of EGs in 

Goose Creek watershed using Overland Flow Turbulent (OFT) model, which explicitly includes 

topographic, precipitation, soil, and landuse/landcover factors. The precipitation excess, an input 

parameter in the OFT model, was derived using SWAT model and simplified Curve Number 

(CN)-based ArcCN-Runoff (ACR) tool in an ArcGIS environment. The performance of OFT 

model was also compared with Slope Area (SA) model (from Chapter 4).  

Results showed that the OFT model with precipitation excess derived using SWAT 

model performed better that using the ACR tool. Errors in runoff estimation translated into errors 

in EG simulation. The OFT model with precipitation excess derived using SWAT model resulted 

in slightly over-predicted lengths compared to the observed data. The soil critical shear stress 

(τcr) values derived in this study added uncertainty that appear to have contributed to this 

overestimation. More accurate estimation of field-scale τcr would improve EG simulation and 

needs further investigation. The performance of OFT and SA models was similar. However the 

SA model was calibrated for a subwatershed of the tested study area while the OFT model was 

not calibrated. This result provides support that the physical-based model may have broader 

applicability than the empirical based model to predict EG lengths.  
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 5.1 Introduction 

Over the past few decades, soil conservation practices have been implemented to control 

soil erosion from interrill and rill erosion, but their impacts on ephemeral gully (EG) erosion is 

unclear. The National Resource Inventory (NRI) reported that there has been a 42% decrease in 

sheet and rill erosion in the United States between 1983 and 2003. However, excessive sediment 

remains among the most prevalent water quality problems in the U.S. (Hargrove et al., 2010). 

Recent studies (Foster et al., 1986; Poesen et al., 1996; Nachtergaele and Poesen, 1999; Poesen 

et al., 2003; Hargrove et al., 2010; Knapan and Poesen, 2010; Poesen et al., 2011) have shown 

that EG erosion is a major contributor of sediment and needs immediate attention.  

Soil loss due to EG erosion can contribute about 10% of the total soil loss in small 

watersheds (Poesen et al., 1996). However, in actively eroding areas, the contribution of EG 

erosion can range from 30% to as high as 100% of the total soil loss (Casali et al., 1999). 

Contribution of EG erosion varies geographically. In the United States, EG erosion contributed 

from 17% of total soil loss in New York State to 73% in Washington State (Robinson et al., 

2000). In central Belgium, the EG erosion accounted for 44% (Poesen et al., 1996) while in the 

Mediterranean and southern Portugal regions, the EG erosion contributions were as high as 83% 

(Vandaele et al., 1996). In the Loess Plateau of China, the contributions of EG erosion ranged 

from 41% to 91% (Zheng and Gao, 2000).  

EGs are concentrated flow channels of various sizes which mostly form along the natural 

drainage lines, when vegetation cover is minimal, and when runoff energy of water (precipitation 

excess) exceeds critical shear stress of soil. EGs erode topsoil, but tillage fills them in, often with 

less-productive subsoil. If not corrected, EGs may grow into permanent gullies. As noted in the 

studies above, EGs may contribute more to soil loss each year than sheet and rill erosion. Factors 

that affect the formation and development of EGs include precipitation, soil, topography and 

landuse/land management practices.  

EGs form only after a threshold precipitation intensity and duration are attained. Very 

few studies have investigated threshold precipitation events required for EG formation, and those 

studies typically are restricted to small areas and examined over short time periods (Carpa et al., 

2009). The threshold precipitation needed for the formation and development of EGs varied 

geographically depending on soil conditions and initial soil moisture content. Various studies 
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have reported threshold precipitation of 14.5 to 22 mm (0.57 to 0.86 in) for cropland. Minimum 

precipitation depths of 15 mm (0.59 in) in winter and 28 mm (1.10 in) in summer were needed 

for the formation of EGs, based on a study spanning a 15-year period in central Belgium 

(Nachtergaele et al., 2001a). Casali et al. (1999) reported that a 17 mm (0.66 in) total water depth 

and peak precipitation intensity of 54 mm/hr (2.12 in/hr) were needed for EG formation in 

Navarra region (Spain). Cerdan et al. (2002) found a precipitation depth of 28.5 mm (1.10 in) 

and maximum 6-minute intensity of 15 mm/hr (0.59 in/hr) in December and 21.6 mm (1.12 in) 

depth and 98 mm/hr (3.86 in/hr) 6-minute intensity in summer resulted in the formation of rill 

EGs in a cropland area. Capra et al. (2009) observed EG formation for an 8-year period. They 

used an antecedent precipitation index, the maximum value of 3-days precipitation (Hmax3-d), a 

simple surrogate for soil water content, and reported that a Hmax3-d threshold of 51 mm (2.28 

mm) was needed for EG formation.  

The formation of the EGs has been described in literature as a topographic phenomenon 

(Patton and Schumm, 1975; Throne et al., 1986; Montgomery and Dietrich, 1994). Topographic 

attributes, such as upstream drainage area (used as surrogate for flow), slope, and plan of 

curvature, are key topographic controls in the formation process. Over the past few decades, 

these attributes are combined in several forms and are used to find locations of EGs (discussed in 

Section 4.1 and 4.2.1). 

Soil (particularly top soil) resistance to concentrated flow erosion plays an important role 

in the formation of EGs (Poesen et al., 2003). Knapan et al. (2007) hypothesized that gully 

initiation at a given location in the landscape is not only hydrologically and topographically 

controlled, but is also controlled by erosion resistance of top soil. Knapan and Poesen (2010) 

proved their hypothesis using field studies on Belgium loess topsoils. The erosion resistance of 

top soil is commonly referred to as soil critical shear stress (τcr), threshold at which shearing 

forces of concentrated water flow initiate soil erosion. Soil critical shear stress is influenced by 

factors such as soil moisture content, bulk density, particle size distribution, random surface 

roughness, void space, flow resistance, soil erosivity, surface sealing and crusting, and freezing 

and thawing (Nearing et al., 1989). Soil critical shear stress values are difficult to define 

precisely because they vary considerably even for similar soil conditions (Foster, 1986). Very 

few studies have reported τcr values that resulted in the formation of EGs. Nachtergaele et al. 

(2002) and Poesen et al. (2003) reported that τcr during peak flow ranged between 3.3 and 32. 2 
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N/m
2
 (mean = 14 N/m

2
) for EGs eroded in silt loam (loess-derived) topsoils in Belgium, and 

between 16.8 and 74.4 N/m
2
 (mean=44 N/m

2
) for EGs formed in stony sandy loams in Portugal. 

Poesen at al. (2011) stressed for the need to collect and report τcr values leading to EG formation 

in a range of environment.  

Landuse plays an important role in EG formation, and several recent studies have 

documented that a gradual or sudden shifts in landuse resulted in triggering of gullying or the 

increase in gully erosion rates (Poesen et al., 2011). Field observations in central Belgium 

showed that an increase in area under maize resulted in an increased EG erosion risk 

(Nachtergaele, 2001, as cited in Poesen et al., 2011). Poesen et al. (2011) stressed the need for 

more research on the drivers of landuse changes causing increased or decreased gully erosion 

risk. Landcover or vegetative biomass has a direct impact on the formation of EGs. 

Vandekerckhove et al. (2000) reported that landcover has greater influence than climatic 

conditions in explaining topographic thresholds for different areas. Landcover affects the τcr 

values directly; i.e., reduction in biomass (either above or below ground) results in lowering the 

erosion resistance of top soil (τcr), which influences EG formation. Prosser and Slade (1994) 

demonstrated through flume experiments that increase in vegetation cover results in decreasing 

susceptibility of valley floors to gully formation. Plant roots also affect the formation of EGs. De 

Baets et al. (2006, 2007) demonstrated that τcr increased with fibrous roots due to increase in soil 

cohesion compared to tap-rooted plant species.  

Empirical and process-based models have been developed to quantify EG erosion at both 

field and watershed scales. Woodward (1999) developed a process-based EG Erosion Model 

(EGEM) that was tested by Nachtergaele et al. (2001a). In this model, locations of EGs and EG 

length were given by the user. Gordon et al. (2007) developed a Revised EGEM (REGEM) to 

address the limitations of EGEM. They made many improvements to the EGEM model, and also 

incorporated it as a subroutine within Annualized Agricultural Non-Point Source Model to 

predict inter-rill, rill, and EG erosion. One limitation with REGEM was that it still required users 

to input the location of EGs.  

Considering the difficulty with use of EG process-based models, simple empirical models 

for EG volume estimates were developed. Nachtergaele et al. (2001 a, b) observed strong 

relationship between EG volume and EG length in Mediterranean environment using 112 field-

measured EGs. The relation between volume and length is represented as V = 0.048 L 
1.29

 with a 
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coefficient of determination (R
2
) of 0.91. Capra and Scicole (2002) and Capra et al. (2005) 

confirmed similar relationships in their study area (Italy), and used data from 92 EGs to develop 

V = 0.0082 L
1.42

 with an R
2
 of 0.64. Zhang et al. (2007) reported similar relation using 21 EGs in 

north eastern China, and developed V = 0.015 L
1.43

 with an R
2 
of 0.67. All these models (both 

process-based and empirical-based) require the location and length for them to quantify sediment 

losses.  

In the earlier chapter (Chapter 4), the potential length of EGs was derived spatially using 

various topographic index models and, in particular, explored the threshold sensitivity of the SA 

model. Models that were used in the earlier chapter were purely based on a topographic approach 

and did not consider precipitation, soil, and landuse/landcover parameters. Knapen et al. (2010) 

and Poesen et al. (2011) stressed the importance of including precipitation, soil, and landuse 

parameters in modeling the location of EGs.  

Therefore the main goal in this study was to develop a model in a geographic information 

system (GIS) environment to predict length of EGs in agricultural fields utilizing a physical-

based Overland Flow Turbulent (OFT) equation developed by Montgomery and Dietrich (1994), 

which makes use of topography, soil, landuse/landcover, and precipitation factors. The objective 

of this study was to compare and evaluate performance of the OFT and SA models in predicting 

EG length. The lengths predicted from this study can be used to estimate sediment loads from 

EGs using regression equations or process based models such as EGEM. 

 5.2 Background for OFT Model 

Three processes have been identified as important in the formation of EGs (Montgomery 

and Dietrich 1994): 

(a) EG formation by overland flow, in which flow exerts a boundary shear stress in 

excess of critical shear stress; 

(b) EG formation by seepage, in which seepage gradients entrain surficial material as a 

result of water flowing through and emerging from the soil;  

(c) EG formation by land sliding.  

Most of the EGs observed during the field surveys across the state of Kansas were 

formed due to overland flow (Daggupati et al., 2010). According to Montgomery and Dietrich 

(1994), gully formation by overland flow occurs either in laminar or turbulent flow regimes. 
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Flow over bare or less-vegetated soils often is considered turbulent, and flow over grassy or well 

vegetated surfaces generally is laminar (Prosser and Abernethy, 1996). Since our interest was on 

EGs forming in agricultural fields as a result of tillage, the turbulent flow regime was considered 

as the flow regime for overland flow.  

Montgomery and Dietrich (1994) derived discharge per unit contour length (q, m
3
/m) 

assuming steady-state precipitation intensity (P, mm/hr) over a surface with uniform infiltration 

capacity (I, mm/hr): 

   (   )  (5.1) 

where a is drainage area per unit contour length (m
2
/m) and (R – I) is precipitation excess 

(mm/hr). Contour length is defined as length along the contour (line of constant elevation). 

Discharge per unit contour length can also be expressed by the product of flow velocity (v) and 

flow depth (h) (Montgomery and Dietrich, 1994; Anderson and Anderson, 2010). Flow velocity 

can be expressed using Manning’s equation: 

   
 

 
         (5.2) 

where n is Manning’s resistance coefficient (second/m
1/3

), R is hydraulic radius (m), and S is 

water surface slope (m/m). In open channel hydraulics, hydraulic radius is approximate to flow 

depth (Montgomery and Dietrich, 1994). Therefore, discharge per unit contour length can be 

expressed as   

   
 

 
         (5.3) 

where n is Manning’s resistance coefficient (second/m
1/3

), h is flow depth (m), and S is water 

surface slope (m/m). The critical shear stress of gully formation is determined by soil properties. 

A basal shear stress (depth–slope product) greater than the critical shear stress is required for 

sediment transport. Therefore, 

        (  )   (5.4) 

where τcr is critical shear stress of soil (N/m
2
),    is density of water (kg/m

3
), and g is 

acceleration due to gravity (m/s
2
). Rearranging Eq. 5.3 to solve for hcr, and substituting in Eq. 5.2 

gives critical discharge (   ): 

     
   

   

(   )        
 (5.5) 
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Critical drainage area per unit contour length (acr) necessary for overland flow erosion by 

turbulent flow is obtained by equating Eq. 5.5 and Eq. 5.1 

     
             

   

(   )(   )        
 (5.6) 

The right side of the Eq. 5.6 was multiplied by 3,600,000 so that units were balanced. Eq. 5.6 has 

a well-established physical meaning to it. However, most of the processes are simplifications of 

complex hydraulic processes. In Eq. 5.6, the upstream unit drainage area is inversely 

proportional to local slope, surface roughness and precipitation excess, and is a function of 

critical shear stress. An EG is simulated to be present at a given location when its specific 

drainage area is greater than or equal to acr (Eq. 5.6). In this study, Eq. 5.6 was developed in a 

GIS environment utilizing the model builder platform, and was coupled with methodology to 

derive length (as discussed in Section 4.2.3) to predict length of EGs.  

 5.3 Study Area 

Goose Creek watershed is a 13,306 ha (32,880 ac) subwatershed within Cheney Lake 

watershed that drains into North Fork River (Figure 5.1).  

 

Figure 5.1 Goose Creek watershed. Black lines are digitized ephemeral gullies.  
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The watershed is located within Reno and Kingman counties of Kansas. Primary landuse 

in the watershed is cropland (64%), followed by rangeland (29%), and 1% others (water, urban). 

Fine loamy textured soils highly susceptible to EG erosion are predominant in this subwatershed 

(KDHE, 2000; Parajuli et al., 2009). Winter wheat is a major crop in the watershed while grain 

sorghum, corn and soybeans are warm-season crops. Most of the fields in the watershed are 

conventionally tilled, and typical planting dates for wheat was in the last week of September 

(Lisa French, Cheney Lake Watershed Inc., 2010, personal communication). Erosion from EGs 

is a major concern in the watershed (Daggupati et al., 2010; Douglas-Mankin et al., 2011). The 

preliminary monitoring results in the watershed as part of a USDA Conservation Effects 

Assessment Project (CEAP) showed that EGs contribute roughly 2.46 Mg/ha (1.1 t/ac) (Douglas-

Mankin et al., 2011) while average EG contribution for Kansas was 2.92 Mg/ha (1.3 t/ac) as 

compared to 8.06 Mg/ha (3.6 t/ac) from sheet and rill erosion (USDA-NRCS, 1997).  

 5.4 Study Setting 

Several aerial images from the recent past (images taken in different years ranging from 

1995 to 2011) in continental U.S. have been made available to the public through Google Earth 

(Google Earth Version 6.1, Mountain View, CA) as well as through National Agriculture 

Imagery Program (NAIP) and Digital Ortho Quarter Quadrangles (DOQQ). Most of the images 

were taken during the crop growing season when a crop was fully established, and hence locating 

the EGs on them was difficult. However, on the 2003 DOQQ aerial image, EGs were located in 

the study area (Goose Creek watershed) because it was acquired in the study area on 22 March 

(verified using Google earth timeline) when the crop (wheat) was not fully established.  

Daily and hourly records of precipitation showed that the EGs on the 22 March 2003 

aerial image likely resulted from precipitation events on October 2 (3 mm (0.11 in)), 3 (85 mm 

(3.31 in)) and 4 (13 mm (0.50 in)) of 2002 (Figure 5.2).  
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Figure 5.2 Time line of precipitation, landuse/landcover and management practices in 

Goose Creek watershed 

 
WH- Wheat harvested; WP- Wheat planted; T-m – Tillage (disc primary); T-d – Tillage (disc); T-f – Tillage (field cultivator)

 

 

A majority of the cropland in the watershed was wheat, and the wheat fields were tilled in 

mid-September and were planted in late September. Several precipitation events prior to planting 

would have resulted in increased soil moisture, and the precipitation of 85 mm (3.31 in) on 

October 3 likely resulted in the formation of EGs. Since the crop was planted, the farmers could 

not till the fields to “remove” the EGs. Further precipitation events would have resulted in 

increasing the dimensions of EGs based the antecedent soil moisture, soil and crop cover 

conditions. Therefore, in this study, EGs resultant from the precipitation on October 3 was 

modeled and analyzed using the OFT model.  

 5.5 Methods 

 5.5.1 Digitizing EGs 

EGs on the 2003 aerial image within agricultural fields in Goose Creek watershed were 

carefully digitized manually. Extreme care was taken such that each EG was digitized along the 

trajectory of the EG located on the aerial image. Starting and ending of an EG was difficult to 
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determine, therefore, color changes on an aerial image and expert judgments of author was used 

to digitize accurately with a 5% error. For example, the color of an EG located on an aerial 

image was white in a field colored green/brown/grey. Digitizing of EG was started when the 

color changed from green to white and proceeded along the trajectory of EG until the color 

changed from white to other color. Google Earth as well as hill shade images (enhances the relief 

of the surface) was used to verify/cross check the location during digitizing process. Finally, the 

digitized EGs were used as observed or reference data to evaluate model performance. This 

study was considered as a first attempt to model EGs lengths that were resultant based on an 

actual precipitation event. 

 5.5.2 OFT model 

The OFT model was built in a GIS environment using model builder platform based on 

Eq. 5.6 to predict length of EGs in Goose Creek watershed (Figure 5.3). The geospatial model 

requires data on topography, soils, landuse and management, and weather to derive local slope, 

drainage pattern, manning’s resistance coefficient (n), and precipitation excess (runoff) as OFT 

model (Eq. 5.6) inputs.  

Topographic parameters such as upslope drainage area per unit contour length (a) and 

slope (S) were calculated using a digital elevation model (DEM). Local slope in percent (%) was 

computed using deterministic eight direction (D8) algorithm (O’Callagham and Mark, 1984), 

and the percent slope was divided by 100 to get local slope in m/m. The flow direction and flow 

accumulation grids were also computed using D8 method. The drainage area in m
2 

was 

calculated by multiplying the accumulation in cells by the square of the cell size.  

The OFT model uses a term that characterizes the drainage area per unit contour length, 

a. Tarboton (2003) describes this term in the following way:  

“Hydrologic processes are fundamentally different on hillslopes and in channels. In 

channels flow is concentrated. The drainage area, A, (e.g. in m
2
) contributing to each 

point in a channel may be quantified. On hillslopes flow is dispersed. The "area" draining 

to a point is zero because the width of a flow path to a point disappears. On hillslopes 

flow and drainage area need to be characterized per unit width (e.g. m
3
/s/m = m

2
/s for 

flow). The specific catchment area, a, is defined as the upslope drainage area per unit 

contour width, b (a = A/b) (Moore et al., 1991) and has units of length (e.g. m
2
/m = m).”  
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Figure 5.3 Geospatial model for predicting location and length of EGs using OFT model 
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Pack et al. (2001) and Classens et al. (2005) stated that in a grid-based approach, grid resolution 

(m) can be taken as the effective contour length.  Desmet et al. (1999), however, used the grid 

resolution times (2)
0.5

 (= 1.414) to estimate effective contour length. In this study specific 

catchment area, or upstream drainage area per unit contour length (m
2
/m), was calculated by 

dividing the drainage area by resolution of the DEM. 

The soil data from SSURGO database (USDA-NRCS, 2005) was processed using a 

SSURGO processing tool (Sheshukov et al., 2012) and was used as shapefile into the model. The 

processed soil has more than 20 soil related parameters (e.g., hydrologic group, texture, sand, silt 

and clay content). In this study, clay percent of topsoil was used to calculate the soil critical 

shear stress (τcr) using the following equation (Smerdon and Beasley, 1961):  

             
          (5.7) 

where Pc is percent clay content (%). Equation 5.7 is used in many watershed models and is also 

currently used in EGEM and REGEM to calculate τcr (Gordon et al., 2007).  

Landuse was used to clip out non-agricultural areas within the GIS, as this study was 

focused on modeling EGs in agricultural fields. Landcover was represented in the model by 

adjusting τcr. Knapan et al. (2007) and Souchere et al. (2003) reported that landcover and τcr are 

related to each other, and an increase in land cover increases τcr, and vice versa. Gordon et al. 

(2007) reported that no till can be represented in REGEM model by doubling τcr values. In this 

study, the crop was planted a week prior to the formation of the EGs, therefore τcr was multiplied 

by 1.0 (i.e., unadjusted), assuming crop cover was insignificant at this point. Other inputs used 

were overland flow resistance coefficient n (0.03), acceleration due to gravity (9.8 m
2
/sec), and 

density of water (1000 kg/m
3
).  

Another important input parameter needed by the model was precipitation excess 

(runoff). This parameter is highly variable over space and time and is difficult to obtain. Prosser 

and Abernethy (1996) used 22 mm/hr (0.85 in/hr) as precipitation excess in a model similar to 

OFT model, which was used to locate gullies in rangeland. They observed a peak hourly 

precipitation of 42 mm/hr (1.63 in/hr) responsible for gully formations in rangeland, and have 

used 20 mm/hr (0.78 in/hr) as steady state infiltration rate for that soil in the study area (verified 

using soil texture and precipitation simulator studies). Very few studies have made attempts to 

derive individual-storm-based precipitation excess for EG-prediction purposes.   
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Precipitation excess on 3 October 2002 was of interest in this study, as it was deduced to 

be the storm responsible for forming the EGs observed in the 22 March 2003 aerial image of the 

study area and being modeled in this study. Precipitation excess on a particular day depends on 

many factors, such as landuse/landcover/management, soil, topography, antecedent soil moisture 

content, and also varies spatially. Therefore, an attempt was made in this study to derive 

precipitation excess (discussed below) from SWAT watershed model and from simple ArcGIS-

based ArcCN-Runoff (ACR) tool. In both cases the spatially varied precipitation excess was 

developed for the whole watershed and was given as input to the OFT model.  

 5.5.2.1 Precipitation excess using SWAT watershed model 

This study used the SWAT model, version 2009 (ArcSWAT 93.7b), a widely used, 

watershed-scale, process-based model (Gassman et al., 2007; Douglas-Mankin et al., 2010) 

developed by the USDA Agricultural Research Service (ARS) (Arnold et al., 1998; Neitsch et 

al., 2005). The SWAT model divides the watershed into a number of subwatersheds based on 

topography. Each subwatershed was further divided into hydrologic response units (HRUs), 

which are the smallest landscape component of SWAT used for computing hydrologic processes. 

Flow, sediment, nutrients, and other constituent yields are simulated at the HRU level, summed 

to the subwatershed level, and then routed through the channels, ponds, reservoirs and wetlands 

to the watershed outlet.  

SWAT calculates surface runoff for each HRU based on USDA NRCS Curve Number 

(CN) method (USDA-SCS, 1972). SWAT modifies a user-input CN2, which is a function of 

hydrologic soil group, landuse and land management, on a daily basis using root-zone soil 

moisture. SWAT assumes CN1 at wilting point, CN3 at field capacity, and a CN of 100 at 

saturation point (Arnold et al., 2000). 

Watershed conditions were defined by several inputs to the SWAT model. Topographic 

dataset was prepared from the U.S. Geological Survey (USGS) 10 m  10 m Digital Elevation 

Model (USGS, 1999). The soil dataset was developed from the Soil Survey Geographic 

(SSURGO) database (USDA-NRCS, 2005) with a processing utility (Sheshukov et al., 2012) 

that converted the SSURGO dataset into an ArcSWAT compatible format. Landuse/landcover 

(LULC) data were derived manually using the CLU (Common Landuse Unit) field boundary 

shapefile. Each field landcover in the LULC data was manually edited based on field survey data 
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available for the Goose Creek watershed. Farming operations such as planting, harvesting, and 

manure application were derived by consulting extension specialists working in that watershed.  

Daily precipitation data for the watershed was obtained using Next Generation Radar 

(NEXRAD) Process 3 (P3) data. NEXRAD contains hourly rainfall data in the form of grid cells 

with a grid spatial resolution of approximately 4 km x 4 km. Daily precipitation data for each 

grid cell was obtained by summing hourly P3 data for the same 24-hour data collection period of 

precipitation gauge stations in the watershed. A previous study by Gali (2010) in Cheney Lake 

watershed developed P3 data in SWAT format (Gali et al., 2012). Precipitation data were created 

for each SWAT subwatershed (subwatersheds delineated by Gali (2010) for Cheney Lake 

watershed) using an area-weighted-average of NEXRAD grid cells that represented each 

subwatershed. In this study, a total of 7 precipitation gauge stations which covered Goose Creek 

watershed (Figure 5.1), with a daily precipitation data from 1 January 1994 to 31 December 

2006, were extracted and used as weather input into SWAT model.  

Once the inputs of topography, soil, landuse, land management, and weather were 

satisfied, the model delineated the watershed into 29 subwatersheds and 1520 HRUs. The HRUs 

in SWAT do not have spatial reference, but this limitation was overcome by redefining the 

topographic, soil, and landuse thresholds to 0%, 0%, 0% (Gitau et al., 2006; Busteed et al., 2009; 

Daggupati et al., 2011). Farming operations were simulated by modifying SWAT management 

files for each HRU that represent individual farm fields within the watershed.  

Flow was calibrated to daily measured streamflow recorded at the outlet of the watershed 

from 1 January 1997 to 31 July 2000. An automated baseflow filter program (Arnold and Allen, 

1999) was used to determine the baseflow recession constant. During calibration, the model 

parameters were either increased or decreased from their respective baseline values (Table 5.1) 

based on the hydrographs (Figure 5.4) and model statistics. Watershed outlet stream discharge 

from the SWAT model was evaluated statistically using coefficient of determination (R
2
), Nash-

Sutcliffe model efficiency (NSE) (Nash and Sutcliffe, 1970), and percent bias (PBIAS) (Moriasi 

et al. 2007).   

The model agreement with the observed flow data was satisfactory to very good for daily 

values (NSE: 0.47; R
2
: 0.53; PBIAS: 26.6%), and agreement for monthly values was good to 

very good (NSE: 0.65; R
2
: 0.58; PBIAS: 26.9%). Daily comparison of observed and modeled 

stream flow (Figure 5.4) showed that the model captured peaks during the summer months with 
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greater accuracy. Since we are interested in EG formation, which generally result from higher 

flow rate events, further detailed calibration was not done in this study. The calibrated model 

was run again on daily basis from 2001 to 2005. The model output of surface runoff was 

extracted for October 2 (day 275), 3 (276), 4 (277) for each HRU within the watershed.  

 

Figure 5.4 Daily simulated and observed stream flow at the outlet of the watershed 

 

Hourly precipitation using a local weather station (Pretty Prairie weather station located 

19 km east of watershed) revealed that precipitation on October 2 lasted for one hour, on October 

3 precipitation lasted 18 hours (started at 6:00 AM and ended at 12:00 PM), and on October 4 

precipitation lasted 3 hours. The precipitation on October 3 was assumed to have resulted in the 

formation of EGs because the precipitation on that day was 85 mm, which was greater than the 

precipitation depths reported in literature that resulted in the formation of EGs (discussed 

earlier). It was also seen from Figure 5.6 that stream flow at the outlet of watershed was 0.24 

m
3
/s on October 2, while on October 3 flow was 17.7 m

3
/s. This suggests that the precipitation 

on October 3 resulted in surface runoff on the same day and would have led to the formation of 

EGs. The OFT model needs steady-state precipitation excess (runoff) in mm/hr; therefore, total 

surface runoff (mm) for each HRU was divided by the total time the precipitation lasted on 

October 3. Typical watershed contribution area for an EG is small, and therefore the time of 

concentration (Tc) will be low. Tc calculated using TR -55 for the EG shown in Figure 5.9 was 21 

minutes for the precipitation amount of 85 mm. According to rational method hydrograph 

(discussed as in Wanielista et al., 1996, Figure 6.16), when precipitation (of a constant rate) 

continues past the time of concentration then a constant runoff rate is produced for the remaining 
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duration of rainfall. From Figure 5.5, it can be seen that for the rainfall on October 2, which 

lasted for 18 hours, the runoff was assumed to take about 20 minutes to reach constant rate (or 

steady state) and continued at this rate until the duration of the rainfall. There was a constant 

runoff rate for around 17.6 hours. Therefore, dividing the surface runoff with duration of 

precipitation to get steady state precipitation excess in mm/hr was considered to be justifiable for 

this study. Therefore the surface runoff (mm) for each HRU was divided by 18 hours (duration 

of the storm event) to get precipitation excess in mm/hr. 

 

Figure 5.5 Runoff, precipitation, time of concentration for a typical ephemeral gully 

watershed. 

 

The modeled HRU output along with precipitation excess was joined to fullHRU 

shapefile (generated during SWAT model input processing), and was area-weighted to each field 

within the watershed, so that precipitation excess was represented spatially. The spatially varied 

precipitation excess was converted to a raster format and was used in the OFT model.  
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Figure 5.6 Precipitation and stream flow before during and after EG formations  

 

 5.5.2.2 Precipitation excess using ACR tool 

Deriving spatially varied precipitation excess using SWAT model is very tedious and 

time consuming and involves many inputs and a skilled technician. Hence a modified ArcGIS-

based ArcCN-Runoff (ACR) tool (Zhan and Huang, 2004) was also tested for generating 

spatially varied precipitation excess in Goose Creek watershed. Soil and landuse are the only 

inputs needed by the ACR tool. SSURGO soil and manually prepared field landuse were 

modified to suit the tool requirements and were used as inputs. Once the inputs were satisfied, 

the tool intersected landuse and soil layers to extract landcover and soil group attributes, and a 

new layer was prepared. The landcover was edited to represent the actual landcover conditions 

on October 3 using index table in the CN database (Figure 5.7) (e.g., cropland land represented 

as fallow poor condition because the crop was just planted in the watershed and the soil had little 

crop residue). The CN database was built based on similar CN databases that are being used by 

SWAT, AnnAGNPS and BASINs watershed models. The CN2 for each parcel/polygon in the 
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layer was calculated using the soil group and landcover attributes provided. A spatially varied 

CN layer was generated, and was used to calculate spatially varied surface runoff using USDA 

NRCS CN method (USDA-SCS, 1972) for daily precipitation amount on October 3. Unlike in 

the SWAT model, the CN in the ACR tool cannot be changed daily (i.e., CN2 was used). The 

surface runoff was then divided by 18 hours, as discussed above, was area-weighted to each field 

to obtain spatially varied precipitation excess (mm/hr), and was used as input to the OFT model.  

 

Figure 5.7 ArcGIS based ArcCN-Runoff (ACR) tool 

 

 5.5.3 SA model 

The SA model as described in the earlier chapter (Section 4.1 and 4.2.1) was modified to 

calculate EG lengths automatically once the inputs were satisfied. The automated geospatial 

model is presented in Figure 5.8. In this study a threshold of 50 was used because threshold 50 

performed better in identifying location and lengths compared to other thresholds in a small 
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study area (S2: 1,927 ha (4,761 ac)) within the Goose Creek watershed (13,306 ha (32,880 ac)) 

(Chapter 4).  

 5.5.4 Assessment of Models 

Three scenarios were developed using the OFT and SA models to predict lengths of EGs. 

Two scenarios were developed using the OFT model by changing spatially varied precipitation 

excess calculated using the SWAT model (Scenario 1) and ACR tool (Scenario 2). Scenario 3 

was developed directly using the SA model. Each scenario’s performance in predicting EG 

occurrence (presence or absence within a given area) and EG length (total accumulated length 

within a given area) was evaluated, as described in Chapter 4. Visual interpretation was used to 

evaluate length predictions along the trajectory of digitized or observed EG (Section 4.2.5.1). 

Occurrence statistical analysis using error matrix approach (Section 4.2.5.2) was carried out to 

evaluate the occurrence (presence or absence) of EG in a given location. One-ha catchments 

were used to construct error matrix table, and false positive, false negative and Kappa (κ) 

statistics were used for analysis. The performance of each scenario in correctly predicting lengths 

was evaluated using length statistical analysis techniques (Section 4.2.5.3). Length of observed 

and predicted EGs were compared by extracting EGs in catchments where both observed and 

predicted EGs were present, and NSE, R
2
 and PBIAS were used for comparison.   

 5.6 Results and Discussions 

 5.6.1 Visual interpretation  

Figure 5.9 shows the output maps of lengths for scenarios 1, 2 and 3 in an agricultural 

field where an EG has formed as a result of the 3 October 2002 precipitation event, and was seen 

on aerial image taken on 22 March 2003. Scenario 2 (OFT model with precipitation excess from 

ACR tool) over-predicted lengths compared to scenario 1 (OFT model with precipitation excess 

from SWAT model) and scenario 3 (SA model).  
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Figure 5.8 Geospatial model for predicting location and length of EGs using SA model 
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Figure 5.9 Observed EG length digitized from an aerial image, and predicted EG lengths 

for scenarios 1, 2 and 3 in an agricultural field. 

 

 

Scenarios 1 and 2 were generated using the OFT model with all inputs constant except 

for the precipitation excess, which resulted in different length predictions of EGs. The 

agricultural field shown in Figure 5.9 was used as an example field to demonstrate the 

differences among precipitation excess using SWAT model and ACR tool. The agricultural field 

was planted in wheat, soil was fine loam (9.5% clay, 27% silt, 63.5% sand) with hydrologic soil 

group B, precipitation on October 3 was 85 mm (3.3 in), area-weighted surface runoff generated 

on that day using SWAT model was 29.3 mm (1.15 in), and the resultant precipitation excess 

was 1.62 mm/hr (0.06 in/hr). The area-weighted surface runoff generated by ACR tool was 47.5 

mm (1.85 in), and the resultant precipitation excess was 2.63 mm/hr (0.10 in/hr). The surface 

runoff and precipitation excess using ACR tool (scenario 2) was approximately 1.5 times greater 

than those using the SWAT model (scenario 1). The SWAT model was run on daily basis, and 

varied antecedent moisture conditions on daily basis to calculate daily CN and thereby the daily 

surface runoff. In the case of the ACR tool, even though it used actual land cover (discussed 

earlier) and the same soil data as in the SWAT model, use of a constant CN2 resulted in greater 
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surface runoff. This shows the advantage of using process-based watershed models in predicting 

surface runoff for a given day compared to other simple means of estimating surface runoff using 

different methods. The OFT model, which uses Eq. 5.6 to generate length, is sensitive to 

precipitation excess. Increase in precipitation excess results in an inverse-proportional decrease 

of critical drainage area needed for an EG to form, resulting in increased EG length predictions. 

Therefore, greater precipitation excess using ACR tool resulted in larger lengths compared to 

lengths generated using SWAT model precipitation excess.  

Visual interpretation revealed that scenario 1, developed using the OFT model, slightly 

over-predicted lengths compared observed lengths. The reasons are explained below. 

Soil critical shear stress (τcr) is an important parameter in predicting the length of EGs. 

Knapan and Poesen (2010) reported that EG initiation and lengths are controlled by τcr. Findings 

of Knapan and Poesen (2010) are confirmed in this study using Eq. 5.6, where τcr and critical 

drainage area are directly proportional, and an increase in τcr results in an increase of critical 

drainage area needed for EG formation, resulting in reduced lengths of EG. Poesen et al. (1992) 

and Knapan et al. (2007) reported that soil shear strength values at saturation appeared to be a 

good indicator of τcr. Knapan and Poesen (2010) measured soil shear strength in locations where 

EGs were formed during winter in silt loam soils using Torvane (4.8 cm diameter, with the shear 

plane at 0.6 cm depth) after precipitation events and derived τcr using 

                (5.8) 

where    is soil shear strength. The values of τcr ranged from 5 to 15 N/m
2 

in their study area. 

The τcr values in our watershed ranged from 0.31 to 0.71 N/m
2
 and were derived using Eq. 5.7. 

The τcr values were smaller compared to literature because Eq. 5.7 calculates τcr from clay 

content of generalized SSURGO soils. At this time the values of τcr used in this study are 

uncertain, and therefore we assume that this would have contributed to the slight over predictions 

of lengths.  

Interestingly, visual interpretations reveal that scenario 3 (SA model) predictions closely 

matched the observed lengths (Figure 5.9) even though scenario 3 was a simple topographic 

approach. Visual interpretation is not sufficient for analyzing results; therefore, occurrence and 

length statistics were developed to statistically analyze results and are discussed below.  
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 5.6.2 Occurrence and length analysis 

Error matrix tables were developed using 1-ha catchments, and statistics of false positive 

rate, false negative rate and κ were used to analyze the performance of each scenario (Table 5.1). 

Scenario 2 had greater false positive rate (53%), lower false negative rate (12%), and lower κ 

(0.17) compared to scenario 1 (false positive = 34%, false negative = 18%, and κ = 0.29). Better 

false positive and false negative rates were seen for scenario 1compared to scenario 2, resulting 

in better overall performance of scenario 1 compared to scenario 2. The reason for scenario 2 

performing poorly is due to the use of greater precipitation excess values from the ACR method, 

as discussed earlier, resulting in greater number of EGs predictions in catchments where 

observed EGs were not present and hence higher false positive rates and lower κ.  

 

Table 5.1 False positive rate, false negative rate, Kappa (κ) for each scenario  

Statistics 
Scenarios 

1 2 3 

False positive rate 34% 53% 26% 

False negative rate 18% 12% 30% 

Kappa (κ) 29% 17% 30% 

 

Scenario 1 had greater false positive rate (34%), lower false negative rate (18%), and 

similar κ (0.29) compared to scenario 3 (false positive = 26%, false negative = 30%, and κ = 

0.30). Better false positive and false negative rates were seen for scenario 3 compared to scenario 

1, resulting in slightly better overall performance of scenario 3 compared to scenario 1.  

The reason for better performance of SA model (scenario 1) was because the SA model 

used a threshold 50 based on calibration in a small study area (S2) that was within the Goose 

Creek watershed (Figure 5.10). The results of each threshold and their effects on model 

performance in S2 was discussed in Section 4.3.4. Comparison of occurrence statistics from the 

S2 area used in calibration (Figure 4.17) to those found by applying the same threshold (T = 50) 

in the Goose Creek watershed showed in an increase in false positive rate from 16% to 26%, 

increase in false negative rate from 26% to 30% and reduction in κ from 0.52 to 0.30. This shows 

that calibrating a topographic index model and selecting a best threshold in one small area and 

applying it to a larger area within the same geographical region results in decreased model 

performance.  Also, from Chapter 4, it was also found that using a best threshold from one area 
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in another geographical region resulted in sub-optimal model performance. Therefore, using 

topographic model has its limitation.    

 

Figure 5.10 Study areas (S1 and S2). S2 is a part of Goose Creek watershed. Threshold for 

S1 was 30 and Threshold for S2 was 50.  

 

 

On the other hand, the OFT model was un-calibrated (unlike the SA model). Major 

factors that result in the formation of EGs, such as precipitation, soil, topography and 

landuse/land management practices, were incorporated in the OFT model, which utilizes a 

physical based equation developed by Montgomery and Dietrich (1994). Extreme care was taken 

to input detailed field-level data into the model. The τcr values derived using Eq. 5.6 were 

uncertain because only a simple empirical relationship (Eq. 5.6) using SSURGO clay-content 

data were used. The occurrence statistics of false positive = 34%, false negative = 18%, and κ = 

0.29 were considered to represent reasonably good model performance, particularly since the 

model was uncalibrated, even though this performance was slightly lower than using the 
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calibrated SA model. Further investigation is needed to reduce uncertainties associated with 

definition of τcr to more adequately evaluate the OFT model predictive capabilities.  

Terracing is the dominant best management practice implemented in the watershed. 

Around 36% of the agricultural fields in Goose Creek watershed were terraced. Both OFT model 

and SA model predicts gullies along terrace channels. It was interesting to see that OFT model 

also predicted EGs along terrace channels because of greater influence of upstream drainage area 

and slope. At this time, a model predicting the EGs along terrace channels was considered to be 

an error by the model, because the EGs along terrace channels were not visible during digitizing 

EGs on 2003 aerial image, and further field investigation would be needed to verify their 

existence along terrace channels.    

EGs lengths (predicted and observed) present in catchments were extracted and compared 

using R
2
, NSE and PBIAS for each scenario (Table 5.2). The performance was worse for 

scenario 2 (NSE: -0.39, PBIAS: -94.5%) and better for scenario 3 (NSE: 0.67, PBIAS: -18.4%) 

compared to scenario 1 (NSE: 0.55, PBIAS: -40.7%). The NSE and PBIAS for scenario 2 was 

very poor compared to scenario 1 and scenario 3. The reason for poor statistics by scenario 2 was 

because of over prediction of EG lengths, due to poor runoff estimation. Slightly better statistics 

of scenario 3 compared to scenario 1 was also discussed earlier.  

The statistics of NSE: 0.55 and PBIAS: -40.7% for OFT model were considered to 

demonstrate good model performance in predicting EG length. PBIAS of -40.7% show that the 

model over-estimated EG length, i.e., the simulated lengths were larger than the observed length. 

This was mainly due to uncertainty with the τcr. Also, the length statistics of NSE and PBIAS 

demonstrated poorer model performance for Goose Creek watershed (NSE: 0.67, PBIAS: -

18.4%) compared to S2 (NSE: 0.85, PBIAS: -4.0%), which again shows the limitation of 

applying a threshold calibrated in one region to a larger region. The results of the occurrence and 

length statistical analysis were similar to visual interpretation results. However occurrence and 

length statistics helped better analyze the model performances.  
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Table 5.2 Coefficient of determination (R2
), Nash-Sutcliffe model efficiency (NSE) and percent 

bias (PBIAS) for three scenarios to evaluate model performances 

Statistics 
Scenarios 

1 2 3 

R
2
 0.50 0.46 0.39 

NSE 0.55 -0.39 0.67 

PBIAS (%) -40.7 -94.5 -18.4 

 

5.7 Conclusions 

The OFT model, which utilizes topography, precipitation, soil and landuse/landcover, 

was developed in a GIS environment to predict location and length of EGs. The precipitation 

excess, an input parameter in the OFT model, was derived using processed based SWAT model 

and ACR tool. OFT model and SA model performances were compared and evaluated.  

Visual interpretation, occurrence and length statistics reveal that OFT model with 

precipitation excess derived using SWAT model (scenario 1) performed better compared to 

precipitation excess derived using ACR tool (scenario 2). Fixed CN in ACR tool resulted in 

higher precipitation excess and thereby larger EG length predictions. OFT model with 

precipitation excess derived using SWAT model slightly over-predicted the EG lengths 

compared to observed EG lengths, probably because of uncertainties in estimating τcr. Therefore, 

an accurate determination of τcr is needed to derive length of EGs. Future research to derive τcr 

using readily available or readily obtainable data is needed.  

The occurrence and length statistics showed that performance of calibrated SA model and 

uncalibrated OFT-SWAT model was similar. The SA model requires calibration of threshold for 

the site being tested, whereas the OFT model did not need calibration, as it considered site 

specific topography, precipitation, soils and landuse/landcover. Hence usage of the physical 

based OFT-SWAT model was demonstrated to provide similar performance to the best-

performing, calibrated topographic index model (SA model) for the study area without requiring 

extensive field-based EG length data and model calibration, and thus provides a preferred 

method to predict EG lengths.  
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Chapter 6 - Conclusions and Recommendations 

 6.1 Conclusions 

The overall goal of this study was to address the concern that excess sediment continues 

to enter water bodies (e.g., lakes, streams, reservoirs) from agricultural fields despite the 

widespread implementation of conservation practices on for the past few decades. Researchers 

must identify the main causes (sources) of sediment and prevent or mitigate future sediment 

contributions so that the current as well as the future generations will benefit. Therefore, this 

research focused on developing various methods and tools that help in identifying and 

quantifying sources of sediment.  

An ArcGIS toolbar was developed to aggregate SWAT HRU output by field and prepare 

maps of high-priority fields by sediment, total nitrogen, and total phosphorus yields. The 

developed toolbar was applied in Black Kettle Creek watershed which was the focus of an 

innovative project to target conservation practice funding and pay directly for modeled sediment 

reduction. The SWAT model was calibrated for flow and sediment to assure and field-level 

sediment yields were validated with the historic local data, and was used to identify agricultural 

fields with greatest sediment yields in the watershed. Various BMPs (single and combined) were 

simulated for each field, and effectiveness of a particular BMP was different for each field based 

on its unique combinations of slope, soil and existing landuse. The variability of sediment 

reduction results among fields demonstrated the important influence of site-specific conditions in 

estimating soil-loss reductions possible with given BMPs. The mean BMP effectiveness for top 

250 fields ranged from 52% to 96% for single BMPs and 85% to 94% for selected combinations 

of BMPs. Permanent grass produced the greatest average single-BMP effectiveness (96%) 

followed by Terraces (with contour farming) (78%) and No-till (72%). No-till + Terrace (with 

contour farming) had the greatest combined-BMP effectiveness (94%).  

Payments to implement each BMP for a given field within the watershed were calculated 

from field-scale sediment-reduction estimates. An in-field signup sheet was developed to 

facilitate farmer signup for BMP implementation for each field. Results from this study helped in 

targeting conservation practices in highest sediment producing fields using modeling approach 

that allowed flexibility for both adaptor (farmers) and funders (project staff) based on payments 
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scaled directly by project outcome (in this case, dollars per ton of sediment reduction) while 

assuring the project objective (i.e., sediment reduction) was met. It is to be noted that the fields 

with ephemeral gullies were not identified and added separately to the SWAT-generated 

targeting map because SWAT does not explicitly simulate ephemeral gully (EG) erosion. 

Research findings also showed that the fields with high sediment-yield density in this 

study appeared to be most sensitive to differences in land use data source (field reconnaissance, 

NASS, or NLCD) followed closely by land management practices (terraces, contour farming and 

no-till). Differences in DEM (10 m or 30 m) and soil (SSURGO or STATSGO) data source also 

were very important, though to a lesser extent than other inputs in the watershed tested. Results 

of this study clearly demonstrated that extreme care should be used in selecting the source of 

spatial model input data when using SWAT for field-level targeting. 

EGs are considered to be a major source of sediment and have gained attention recently. 

Spatially locating and deriving length of EGs using several topographic index models (SA, CTI, 

SAP, and WTI) and a physical based model (OFT model) were explored in this study. 

Automated geospatial models within GIS environment were developed to locate and derive 

length of EGs. Results show that the SA model predictions were better compared to other 

topographic models tested. The SA and CTI model predictions had similar pattern in terms of 

locating EG trajectory, however, the CTI model had greater discontinuity along the trajectory. 

The method developed to derive length in this study was sensitive to discontinuity and hence the 

performance of CTI model was poor.  

The EG predictions using topographic index models were not accurate without 

calibrating a range of thresholds to select best threshold for each individual site tested. Applying 

a calibrated threshold from one site to another site within similar geographical conditions results 

in slightly poor predictions. However, using a threshold in another geographical location is not 

recommended (T = 30 for S1 and T = 50 for S2). Hence limitations of topographic index models 

in well established.  

In order to overcome the limitation of topographic index models, an OFT model (physical 

based model) which utilizes topography, precipitation, soil and landuse/landcover was developed 

and tested. The precipitation excess an input parameter in the OFT model was derived using 

SWAT model and ACR tool. The main advantage of OFT model over topographic index models 

is that no calibration was required by the OFT model because it accounts for site specific 
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conditions. The OFT model with precipitation excess derived using SWAT model performed 

better compared to ACR tool. OFT model resulted in slight over predictions compared to 

observed data because of uncertainties involved with τcr. The τcr was derived using clay content 

of generalized SSURGO data added uncertainty that appear to have contributed to this 

overestimation. This study result demonstrates the advantage of using physical-based models 

over simple empirical based models to predict EGs.  

Results from this study show that finer resolution DEMs (e.g., 2 m) are needed to locate 

EGs. Coarser resolution DEMs (10 m or greater) cannot locate EGs but may be useful for 

locating larger classical gullies in agricultural fields or gullies in rangeland. When considering 

EGs only within agricultural fields, field landuse is recommended over NASS landuse as NASS 

landuse results in either over or under predictions.  

 6.2 Recommendations 

1. Field reconnaissance landuse showed good results compared to NASS landuse in both 

Field targeting and ephemeral gully (EG) studies. Manually preparing field 

reconnaissance landuse for bigger watersheds is tedious. On the other hand, the NASS 

landuse can be readily downloadable for many states in US. Therefore, refining methods 

to improve NASS landuse to better suit the need of the study needs to be explored. 

2. In this study, baseline sediment yield and various BMP sediment yield reductions were 

simulated for each field within the watershed and results show that the effectiveness of a 

particular BMP was different for each field. It would be interesting to compare the 

spatially varied BMP reduction with a generalized BMP reduction for given practice. If 

the comparison is close, then we can use the baseline sediment yield for each field and a 

generalized BMP reduction for a given BMP and calculate payments instead of 

simulating site specific BMPs in a watershed model.  

3. A big research need to derive length has led to developing a methodology to derive 

length using topographic index models. The methodology as it is developed converts the 

pixels that represent EGs into polylines and uses a snapping distance of 5 m to snap lines 

within a given area (catchments were used in this study). The method is very sensitive to 

discontinuity among the pixels. Also, this method does not consider any processing that 

occur during the EG formation. This is the first time such a methodology was developed 
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to derive length and it needs further exploration and refinements to suit different research 

needs. 

4. In this study, catchments of 1-ha were used as a mask so that the polylines that represent 

EGs within that catchment were dissolved to get unique id and thereby length can be 

derived. The method as it is developed captures single EGs however, in the case of 

branched EGs, each segment of the branched EG in a different catchment was considered 

a separate EG. Increasing the size of catchment captures the entire branched EG. 

Increasing the size of the catchment and their impacts on EG predictions needs to be 

explored.  

5. The physical based model used in this study performed better close to topographic index 

model without the need for calibration. Therefore usage of physical based model is 

encouraging. The soil critical shear stress (τcr) was calculated using percent clay of 

generalized SSURGO soils based Eq. 5.6. Further methods or equations needs to be 

explored to generate τcr so that overall model performances can be improved.  

6. Testing the OFT model in another watershed in different geographic and climatic region 

to evaluate the model predictions of EG lengths needs to be explored.  

7. The SWAT model used to calculated precipitation excess in the OFT model. NEXRAD 

data was used as rainfall input and a detailed calibration based on stream gauge data was 

done in this study. Not all watersheds have NEXRAD data and stream gauge data. 

Therefore, OFT model performance with precipitation excess derived from un-calibrated 

SWAT model and weather data from rain gauge needs to be compared. 

8. In this study, the OFT model was developed and tested in only one watershed. It needs to 

be evaluated in another watershed of different geological and climatological region.   
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Appendix A - Field-specific sign-up sheet developed using SWAT 

output 
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Appendix B - Error matrix table and statistics 

Error Matrix 
Actual 

Totals 
present absent 

Predicted 
present a b a+b 

absent c d c+d 

Totals a+c b+d N 
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