This is the author's final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

Stability of solutions to abstract evolution equations with delay

A. G. Ramm

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:

Ramm, A. G. (2012) Stability of solutions to abstract evolution equations with delay. Retrieved from http://krex.ksu.edu

Published Version Information

Citation: Ramm, A. G. (2012) Stability of solutions to abstract evolution equations with delay. Journal of Mathematical Analysis and Applications, 396(2), 523-527

Copyright: © 2012 Elsevier Inc.

Digital Object Identifier (DOI) doi:10.1016/j.jmaa.2012.06.033

Publisher's Link:

http://www.sciencedirect.com/science/article/pii/S0022247X12005343

This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at http://krex.ksu.edu

Stability of solutions to abstract evolution equations with delay

A.G. Ramm

Department of Mathematics Kansas State University, Manhattan, KS 66506-2602, USA ramm@math.ksu.edu

Abstract

An equation $\dot{u}=A(t)u+B(t)F(t,u(t-\tau)), \ u(t)=v(t), -\tau \leq t \leq 0$ is considered, where A(t) and B(t) are linear operators in a Hilbert space $H,\ \dot{u}=\frac{du}{dt},\ F:H\to H$ is a non-linear operator, and $\tau>0$ is a constant. Under some assumptions on A(t),B(t) and F(t,u) sufficient conditions are given for the solution u(t) to exist globally, i.e, for all $t\geq 0$, to be globally bounded, and to tend to zero at a specified rate as $t\to\infty$.

MSC: 34G20, 34K20, 37L05, 47J35

Keywords: abstract evolution problems; delay; stability; differential inequality.

1 Introduction

Consider an abstract evolution problem

$$\dot{u} = A(t)u + B(t)F(t, u(t-\tau)),\tag{1}$$

$$u(t) = v(t), \quad -\tau \le t \le 0 \tag{2}$$

where $u(t) \in H$, H is a Hilbert space, A(t) and B(t) are linear operators in H, F(t, u) is a nonlinear operator in H, and $\tau > 0$ is a constant.

Let us assume that A(t) is a closed densely defined operator, D(A(t)) = D(A), D(A) is the domain of A(t), independent of t, and

$$Re(A(t)u, u) \le -\gamma(t)(u, u), \tag{3}$$

$$||B(t)|| \le b(t),\tag{4}$$

$$||F(t,u)|| \le \alpha(t,g), \qquad g := ||u(t)||.$$
 (5)

We assume that problem (1)-(2) has a unique local solution. Sufficient conditions for this can be found in the literature, see, e.g., [1].

We assume that the function $\alpha(t,g) \geq 0$ satisfies a local Lipschitz condition with respect to g, is continuous with respect to t on $[-\tau, \infty)$ and is non-decreasing with respect to g, and that functions b(t) and $\gamma(t)$ are continuous on $[-\tau, \infty)$.

Our aim is to give sufficient conditions for global existence, that is, existence for all $t \geq 0$, global boundedness, and stability of the solution to problem (1)-(2).

There is a large literature on functional differential equations, see [1]-[4], and references therein. The method that we propose is new. A version of our method was used in a study of the Dynamical Systems Method (DSM) for solving operator equations, see [5]-[8]. This method is generalized in [6] to the case of abstract differential equations without delay and with persistently acting perturbations, see also a recent paper [9].

Our approach is as follows: multiply equation (1) by u(t) in H and take the real part to get

$$\operatorname{Re}(\dot{u}, u) = \operatorname{Re}(A(t)u(t), u(t)) + \operatorname{Re}(B(t)F(t, u(t-\tau)), u), \quad t \ge 0.$$
 (6)

Let g(t) := ||u(t)||. Then equation (6) yields an inequality

$$g\dot{g} \le -\gamma(t)g^2 + b(t)\alpha(t, g(t-\tau))g, \quad t \ge 0.$$
 (7)

Since $g(t) \geq 0$, inequality (7) implies

$$\dot{g}(t) \le l(g) := -\gamma(t)g(t) + b(t)\alpha(t, g(t-\tau)), \quad t \ge 0, \tag{8}$$

and $g(t) := ||v(t)||, \ -\tau \le t \le 0$. Indeed, at the points at which g(t) > 0, inequality (7) is equivalent to (8) and $\dot{g}(t) = \text{Re}(\dot{u}, \frac{u(t)}{||u(t)||})$.

If g(t) = 0 on an open interval, $t \in (a, b)$, then $\dot{g}(t) = 0$, $t \in (a, b)$, and inequality (8) holds since $b(t) \ge 0$ and $\alpha(t, g) \ge 0$.

If g(s) = 0 but in any neighborhood $(s - \delta, s) \cup (s, s + \delta)$, $g(t) \neq 0$ provided that $\delta > 0$ is sufficiently small, then by $\dot{g}(s)$ we understand the derivative from the right:

$$\dot{g}(s) = \lim_{h \to +0} g(s+h)h^{-1} = ||\dot{u}(s)||. \tag{9}$$

Inequality (8) then follows from (7) by continuity as $t \to s + 0$.

The following lemma is key for our results.

Lemma 1. If there exists a function $\mu(t) > 0$, defined for all $t \ge -\tau$, such that

$$b(t)\alpha(t, \frac{1}{\mu(t-\tau)})\mu(t) \le \gamma(t) - \frac{\dot{\mu}(t)}{\mu(t)}, \quad t \ge 0, \tag{10}$$

and

$$\mu(t)g(t) \le 1, \quad t \in [-\tau, 0],$$
 (11)

then any solution $g(t) \ge 0$ to inequality (8) exists for all $t \ge 0$ and satisfies the following inequality:

$$0 \le g(t) \le \frac{1}{\mu(t)}, \qquad \forall t \ge 0. \tag{12}$$

Remark 1. If one proves inequality (12) for any $t \geq 0$ for which g is defined, then, since $\mu(t)$ is defined on all of $\mathbb{R}_+ = [0, \infty)$, inequality (12) implies that $g(t) \geq 0$ is defined on all of \mathbb{R}_+ . Moreover, if $\lim_{t\to\infty} \mu(t) = +\infty$, then $\lim_{t\to\infty} g(t) = 0$.

In section 2, we show how to choose $\mu(t)$ and to use Lemma 1 in order to obtain estimates for the solution to problem (1)-(2).

Proof of Lemma 1. Let us use inequality (8)

$$\dot{g}(t) \le l(g). \tag{13}$$

Then inequalities (10) and (11) can be written as

$$l(\frac{1}{\mu(t)}) \le \frac{d\mu^{-1}(t)}{dt}, \quad t \ge 0; \qquad \mu^{-1}(t) \ge g(t) \quad t \in [-\tau, 0].$$
 (14)

Let w_n solve the problem

$$\dot{w}_n = l(w_n) - \frac{1}{n}, \quad t \ge 0; \quad w_n(t) = g(t), t \in [-\tau, 0],$$

$$n = 1, 2, 3, \dots$$
(15)

Let us prove that

$$w_n(t) \le \mu^{-1}(t), \qquad \forall t \ge 0. \tag{16}$$

If (16) is proved, then one takes into account that $\lim_{n\to\infty} w_n = w$, where

$$\dot{w} = l(w), \quad t \ge 0; \quad w(t) = g(t), \qquad t \in [-\tau, 0],$$
 (17)

and concludes, passing to the limit $n \to \infty$, that

$$w(t) \le \mu^{-1}(t), \qquad \forall t \ge 0. \tag{18}$$

An argument similar to the one that will lead to inequality (16) will also yield the inequality $g(t) \leq w(t)$, $t \geq 0$. This inequality and (18) imply the desired conclusion (12).

Therefore, to complete the proof of (12), it is sufficient to prove (16). In order to prove (16), note that if $w_n(0) < \mu^{-1}(0)$, then there exists an interval $(0, t_1), t_1 > 0$, such that $w_n(t) < \mu^{-1}(t)$ when $t \in [0, t_1)$. If $w_n(0) = \mu^{-1}(0)$, then

$$\dot{w}_n(0) = l(w_n)|_{t=0} - \frac{1}{n} < l(w_n)|_{t=0} = l(g)|_{t=0} \le \frac{d\mu^{-1}(t)}{dt}|_{t=0},$$

where we have used the assumption about non-decreasing of a(t, g) with respect to g and the inequality $\mu^{-1}(-\tau) \geq g(-\tau)$, that follows from assumption (11). Consequently, one has

$$w_n(0) = \mu^{-1}(0), \quad \dot{w}_n(0) < \frac{d\mu^{-1}(t)}{dt}|_{t=0}.$$

Therefore, in this case there exists a number $t_2 > 0$ such that on the interval $(0, t_2)$ one has

$$w_n(t) < \mu^{-1}(t), \qquad 0 < t < t_2.$$
 (19)

Let $t_3 := \min(t_1, t_2)$. Let us prove that $t_3 = \infty$. Assume the contrary. Then there exists a (minimal) s > 0, $s = \sup t_3$, such that

$$w_n(t) < \mu^{-1}(t), \quad t < s; \qquad w_n(s) = \mu^{-1}(s).$$
 (20)

At the point s the following inequalities hold:

$$\dot{w}_n(s) = l(w_n(s)) - \frac{1}{n} < l(w_n(s)) \le l(\mu^{-1}(s)) \le \frac{d\mu^{-1}(t)}{dt}|_{t=s}, \tag{21}$$

where the non-decreasing of a(t,g) with respect to g was used, and the inequality $w_n(s-\tau) < \mu^{-1}(s-\tau)$, which is a consequence of inequality (20), was taken into account. Thus,

$$\dot{w}_n(s) < \frac{d\mu^{-1}(t)}{dt}|_{t=s}.$$

By continuity, one has

$$\dot{w}_n(t) < \frac{d\mu^{-1}(t)}{dt}, \qquad s - \delta \le t \le s, \tag{22}$$

for a sufficiently small $\delta > 0$.

Integrate (22) on the interval $[s - \delta, s]$ and get

$$w_n(s) - w_n(s - \delta) < \mu^{-1}(s) - \mu^{-1}(s - \delta).$$
(23)

Since $w_n(s) = \mu^{-1}(s)$, inequality (23) implies

$$\mu^{-1}(s-\delta) < w_n(s-\delta). \tag{24}$$

This inequality contradicts inequality (20). This contradiction proves that the assumption $t_3 < \infty$ is false, so $t_3 = \infty$. Consequently,

$$w_n(t) < \mu^{-1}(t), \quad \forall t > 0.$$
 (25)

Passing to the limit $n \to \infty$ in (25), one gets (18).

A similar argument proves that

$$g(t) \le w(t), \qquad \forall t \ge 0.$$
 (26)

Combining inequalities (18) and (26), one obtains (12).

Lemma 1 is proved.

2 Estimates of solutions to evolution problem

Let us apply Lemma 1 to the solution of problem (1) - (2). In order to choose $\mu(t)$, let us assume that

$$\gamma(t) = \gamma = const > 0, \qquad b(t) \le \frac{\gamma}{2}, \qquad \alpha(t, g) \le c_0 g^p, \qquad (27)$$

where $c_0 > 0$ and p > 1 are constants, and $b(t) \ge 0$, $\alpha(t,g) \ge 0$ and $\alpha(t,g)$ is non-decreasing with respect to g.

Let us choose

$$\mu(t) = \lambda e^{\nu t},$$

where λ and ν are positive constants. Then $\frac{\dot{\mu}}{\mu} = \nu$. Choose $\nu = 0.5\gamma$. Inequality (10) holds if

$$c_0 \lambda^{1-p} e^{0.5\gamma(p-1)\tau} \le 1.$$
 (28)

Define $\Gamma := \max_{t \in [-\tau,0]} |g(t)|$. Then inequality (11) holds if

$$\Gamma \le \lambda^{-1}.\tag{29}$$

Choose $\lambda = \Gamma^{-1}$. Then inequality (29) holds. Inequality (28) holds if

$$c_0 \Gamma^{p-1} e^{0.5(p-1)\gamma\tau} \le 1.$$
 (30)

Inequality (30) holds if c_0 is sufficiently small, or if Γ is sufficiently small. The last conclusion is based on the assumption p > 1.

We have proved the following theorem.

Theorem 1. Assume that (3) holds with $\gamma(t) = \gamma = const > 0$, (4) holds with $b(t) \leq \frac{\gamma}{2}$, (27) and (30) hold. Then the solution to problem (1)-(2) exists for all $t \geq 0$ and satisfies the following inequality

$$||u(t)|| \le \Gamma^{p-1} e^{-0.5\gamma t}, \qquad \forall t \ge 0. \tag{31}$$

Estimate (31) of Theorem 1 implies exponential stability of the solution to problem (1)-(2). One could assume that γ depends on t. This will be done in the next example.

Consider now the case when $\gamma = \gamma(t)$ tends to zero as $t \to \infty$.

Assume that

$$\gamma(t) = \frac{c_1}{(1+t)^{m_1}}, \quad b(t) \le \frac{c_2}{(1+t)^{m_2}}, \quad \alpha(t,g) \le \frac{c_3}{(1+t)^{m_3}}g^p,$$
(32)

where $c_j, m_j > 0$, j = 1, 2, 3, and p > 1 are constants, and $\alpha(t, g)$ is non-decreasing with respect to g.

Choose $\mu(t)$ of the form

$$\mu(t) = \lambda (1 + t + \tau)^{\nu}, \qquad \lambda, \nu > 0, \tag{33}$$

where λ and ν are positive constants. Then

$$\frac{\dot{\mu}(t)}{\mu(t)} = \frac{\nu}{1+t+\tau} \le \frac{\nu}{1+\tau}, \qquad t \ge 0.$$

Denote, as above, $\Gamma := \max_{t \in [-\tau,0]} |g(t)|$. Then inequalities (10) and (11) hold if

$$\frac{c_2 c_3 \Gamma^{p-1}}{(1+t)^{m_2+m_3+(p-1)\nu}} \le \frac{c_1}{(1+t)^{m_1}} - \frac{\nu}{1+t}, \qquad t \ge 0, \tag{34}$$

$$\lambda \Gamma \le 1. \tag{35}$$

Inequality (35) holds if $\lambda = \Gamma^{-1}$.

Assume that

$$m_2 + m_3 + (p-1)\nu \ge 1, \qquad m_1 \le 1.$$
 (36)

Then inequality (34) holds for all $t \geq 0$ provided that

$$c_2 c_3 \Gamma^{p-1} \le c_1 - \nu. \tag{37}$$

Inequality (37) holds if $\nu < c_1$ and c_2c_3 is sufficiently small. If these conditions are satisfied then, by Lemma 1, one gets

$$||u(t)|| \le \frac{\Gamma}{(1+t+\tau)^{\nu}}, \qquad \forall t \ge 0.$$
(38)

We have proved the following theorem

Theorem 2. Assume that (32) and (36) hold, $\lambda = \frac{1}{\Gamma}$, $\nu < c_1$, and c_2c_3 is sufficiently small that (37) holds. Then the solution to problem (1)-(2) exists for all $t \geq 0$, and estimate (38) holds.

Our method, based on lemma 1, is very flexible and applicable to many other problems, see, for example, [6]-[8]. If the delay is absent in the abstract differential equation (1), then the assumption that $\alpha(t,g)$ is non-decreasing with respect to g can be dropped, see [6].

Acknowledgement. The author thanks Professor T. Faria for a discussion. This paper was written when the author visited in the summer of 2011 the Max Planck Institute (MPI) for Mathematics in the Sciences, Leipzig. The author thanks MPI for hospitality.

References

- [1] O.Aribo, M. Hbid, E. Ait Dads (Editors) *Delay equations and applications*, NATO Science Series, vol. 206, 2006.
- [2] T. Faria, Global attractivity in scalar delayed differential equations with applications to population models. *J. Math. Anal. Appl.* 289 (2004), no. 1, 35-54.
- [3] J.Hale, S. Verduyn Lunel, *Introduction to functional differential equations*, Springer Verlag, Berlin, 1993.
- [4] V. Kolmanovskii, A. D. Myshkis, Introduction to the theory and applications of functiona-differential equations, Kluwer, Dordrecht, 1999.
- [5] A. G. Ramm, Asymptotic stability of solutions to abstract differential equations, Journ. of Abstract Diff. Equations, (JADEA), 1, N1, (2010), 27-34.
- [6] A. G. Ramm, Stability of solutions to some evolution problems, *Chaotic Modeling and Simulation (CMSIM)*, 1, (2011), 17-27.
- [7] A. G. Ramm, Dynamical systems method for solving operator equations, Elsevier, Amsterdam, 2007.
- [8] A. G. Ramm, N.S Hoang, Dynamical Systems Method and Applications. Theoretical Developments and Numerical Examples, Wiley, Hoboken, 2012.
- [9] A. G. Ramm, A stability result for abstract evolution problems, *Math. Meth. in the Appl. Sci.* DOI:10.1002/mma.2603