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INTRODUCTION

When estimating the common mean of two normal and independent distribu-
tions, NID(U;GZ)(i = 1,2) a well known procedure is to take independent
simple random samples from both distributions, find the sample means x and
y, and determine a weighted mean where the weights are dependent on the ratio

of variances with the restriction that they add to one; expressed parametri-

cally the estimator is

Tl

= Ax + By, A,B>0, A+B=1 (1.1)

where A and B are the weighting functions. The problem is to find A and
B to weight the estimators x and y to arrive at a combined estimator
having desired properties.

When the variance ratio is known, the uniformly minimum variance unbiased

estimator of u is the maximum likelihood (M.L.) estimator

~

wo = ¢(@)x + (1 - ¢(M)y , (1.2)

where ¢(p) = g% p/[l + ;%-p], p = oi/o?, and nj;, np, are the corresponding
sample sizes. In applied statistics, however, p 1is generally unknown and
other estimators for the common mean, i.e. estimators for the weighting
functions A and B, must be found.

Several studies have been made using the classical approach to find an
estimator when p 1is unknown, and are of two general classes which Zacks [9]

expressed parametrically as;

Class I
82 82 \
A 2 - 2 ~
u(p*) = I|—; p*lp+ [1 - I |—; p*||u (1.3)

s 8
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and
Class II
. ol ) a2 ) @ )
W(p*) =T |2 p*|u + Jy =% p*|x + Jp |2 o*|y , (1.4)
s s? s
1 1 1
where: _ _
_ (nj/np)x + y
uo= s (1.5)
1+ n1/n2
% (nlsg/nzsz) X+y
= ;/ > (1.6)
1l + nys</nss
: 2 % 1
s2 1, if 1/p* :_szls2 < p*
I —l; p* = { 2 1 ’ (1‘7)
sf 0, otherwise
(s2 ) 1, if s2/s2 > p%
Jl —-Z; p* = { 2 1 s (1.8)
2 0, otherwise
\ 1 J
and
(s2 ) 1, if s2/s? < 1/p*
Jp|—%; p* ={ 2 1 (1.9)
s? 0, otherwise
\ )

The si(i = 1,2) are the unbiased estimators for ci(i = 1,2). The values p*
~ "

in u(p*) and u(p*) are critical values of the F-test of significance,

according to which one decides to apply the estimators U, M, X or ;.

Graybill and Deal [3] have shown that u (eqn. 1.6) is uniformly better
than X or § in estimating the common mean if and only if both =n; and nj
are greater than 10. Therefore with this information one wonders whether
~ "

u(p*) and u(p*) are equally as good an estimator for the common mean when

~ L
samples are small. Both u(p*) and u(p*) have a distinct disadvantage when

based on small samples, since the values of their characteristic functions



I(e;+), J1(*53¢) and Jo(*;*) are dependent upon sample variances. This dis-
advantage can easily be observed; since E(si) = ci, then Var (s§)= 20%/(ni-l)
attains near-maximum values when n. is small. Therefore accuracy of the
sample variances become a problem and the choice of 1y, ;, X or y as estimators
is somewhat dubious. Another possible disadvantage occuring in estimators
a(p*) exists when p=1, and that is, all available information is not used
since either x or ; might be discarded, depending on the relative size of
the sample variances. Therefore it is said that ;(p*) when based on small
samples would be the best estimator under all circumstances, and this is verified
in a study by Zacks [9]. Zacks studied the efficiency functions of ;(p*) and
ﬁ(p*) when based on small samples of equal size and found that ;(p*) was a
superior estimator for the common mean. By studying the general behavior of
the efficiency functions and observing the explicit efficiency function for
;(p*), when n=3 and p* =1, 3.4, 9, 19 and =, Zacks recommended using
;(p*=9) as an estimator for the common mean, when p can assume any value
(p > 0). This recommendation was made because the efficiency function over
the range of p has desired properties. (For further discussion see Zacks [9])

When prior information concerning the value of variance ratio p is
available, Zacks [9] suggested that a Bayes approach might lead to a more
efficient estimator of the common mean. It also seems reasonable that this
estimator for the common mean will improve the use of the somewhat dubious
reliability of si(i = 1,2) when based on small samples.

This paper will exhibit an unbiased estimator of u, in which the weight
function w[si/sf) is a certain Bayes estimator of ¢(p), and is more efficient
than u(p*=9) over the interval 1 < p < 6. Explicit formulae for w(silsf)

are studied. The efficiency functions are plotted in Fig. 1. A table is
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Figure 1. Efficiency curves of the unbiased estimators u for samples

of equal size n = 3, 5, 7, and efficiency cure of u(p*=9)

for samples of equal size n=3.
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given (Table I) which determines the value of the weighting function when
n=3, 5, 7and p = 0(.2)10. Monte Carlo and numerical quadrature techniques
for calculating the efficiency function are discussed and digital programs are

given in Plates I and II.

DERIVATION OF A BAYES ESTIMATOR OF THE WEIGHT FUNCTION ¢(p)

The Bayes estimator for the common mean of two normal distributions when
the variance ratio is unknown is derived in this report by finding a Bayes
estimator for the weighting function ¢(p). Let ¢(z) be an estimator for
¢(p), where 2z, a random variate, is a function of the two independent
simple random samples from a density function g(z | p), where p 1is defined
as before. Also assume that p has a priori density function h(p), and an
associated loss function L(w(z); ¢(p)) > 0. Then it is said that the esti-
mator Y(z) that minimizes the loss function is a good estimator, and further,
an estimator Y(z) that minimizes the a priori risk, Ep[R(w(z), ¢(p))],
where R(w(z), ¢(p)) = E[L(w(z); ¢(p))], is a Bayes estimator (Wilks [8]).

It is easily shown that to minimize the a priori risk is equivalent to mini-
mizing the a posteriori risk, Ep[L(w(z); ¢(p))lz] (Mood and Graybill [5]).
By letting the loss function be the squared-error, (w(z) - ¢(p))2, the
Bayes estimator is found by setting the first derivative of the average a

posteriori risk, with respect to y(z), equal to zero, which gives

d {EP[L(w(zn ¢<p>)1}
d y(2)

= ( ,

or equivalently

d y(z)

dL(v(2); ¢<p>)l
J {‘ h(p I z) dp = 0.
0



After substitution of the squared-error loss and taking the derivative we

arrive at the Bayes estimator

V(z) = E [0(o) | z] = J ¢(p)nlp | 2) dp , (2.1)
0

where h(p I z) 1is the a posteriori density function. By Bayes theorem, the

a posteriori density function of p, given 2z is:

h(plz)=g(z lk%i)h(pl’ 0f_pi°°,0<2<°°-

k(z) is the marginal density of 2z, averaged with respect to the priori

density of p, i.e.

k(z) = f gz | p) n(p) dp .
0

To find the Bayes estimator (z), the a posteriori density function
must first be determined. Let =z = si/sf, a function of the two independent
random samples, then since sf and sf are independent, z "~ pF[y2,Y1];

where F[yz,Y;] 1is a central F-statistic with Yy =0y - 1 (i = 1,2) degrees

of freedom. The density function of F[y,y;] at the point F is given by:

Y2 Y2 _ 1
1 & p?
f(F)=“'—'($‘°1‘) —“—'—"11?{2 » 0 X F<e,
B(332) (1+ %F)

Making the transformation 2z = pF, the density function of =z = si/sf is

found to be:

1 - g geFl B
gz | p) = (%) (=) —‘p—‘_‘n%u ,
-
B(z 'B ) 1+ lLYz %]

0<Z<w, 0<p <o, (2.2)



Since p 1is a ratio of variances, the a priori density function is chosen to
be Y2
da -1
2
p

1+ %11 p) 2

0<p<ew . (2.3)

From equations (2.2) and (2.3) the a posteriori density function, h(p | z),

is:
X1, RO W | r T Y1+Y2
W2 32 = 2
Y2 z p p
hip | 2) = ,  (2.4)
Y1 Y2) ;. YL P Y1
B(ghg4 kz) 1+ -2+ 7he)
where
Y YL r .
w2 G2 e g
Y2 z 1 P
k(z) = . ;— dp (2.5)
Y1 Y2 IL lz
3(2 5 ) 4 1+ I2)a+ 20

Under the condition that p is known, the best estimator for the common

mean is the M.L. estimator (eqn. 1.2) where

(ny/n2)p

¢(p) =
1+ (n;/ny)p

By substitution of equations (2.4) and ¢(p) into equation (2.1), the

Bayes estimator of ¢(p) given =z = sz/s2 is:

T (a1/n)p
¥(z) = E [¢(p) | 2] = J h(p | z) dp
0 1 + (n1/ng)o)
0
+

Xl Sk #i Yity2
no(w)? (2 1 [ i
ny ‘y2 z 1 p(1 + (v2/v1)0) dp (2.6)
B(332) k(2) o 1+ (mi/n2)p 1+ ?zL =)



where k(z) is defined in equation (2.5).

Making the transformation u =(1 + %ﬁ- 74 to obtain bounded integration

limits, the estimator is

X2 41 Y2 ity yitye |
Bl'(xzﬂz 22 1 (1-u) £ oy 4 du
nz tyj
v(z) = J yi+ty2 * (2.7)
B ko § (o B X 2Gew) (1) 2 ew) 2
where
X2, X2 3 utye |, xatys
(%f?z 2 - (1-u) 2 g 2 du
k(z) = [ —_ " YTHYs (2.8)
2
B(F-33) (w+ (8 z0-w)

In investigating equations (2.7) and (2.8) for unequal sample sizes,
it was found that solutions required laborious calculations, therefore only
estimators of equal sample sizes were considered. Explicit formulae for the
Bayes estimator ¢(z) when the equal sample sizes are n = 3, 5 and 7, were

y 2
found by making the transformation t = u + (—ZJ (z(l-u)), and integrating by

Y1

direct procedures. The obtained Bayes estimators wn(z) are:

1-42—522+(42+222)1nez
v3(z) = (2.9)
2(22—1)1nez - 4(1-2z)2

zfgg-+9z+1622— é1_23+ l—-+(4+182+1222+z3)1n z)
3 12 4z g (2.10)

(1-z) (- i% -92+922+ l% z3—(z3+922+9z+1)1nez)

Vs (z) =

2(F2L +1252+ 230 22- 22 237100 Losy = ur (2)
vy (z) = 3 3 2 152°F 62 3105
(1-2) (- L1-2%)- 2E3(z-2%)- 2(a2-23)41, (2))



where

T,(z) = (6+75z+200z2+150z3+30z‘*+25)1nez
T,(z) = (1+25z+10022+100z3+252“+25)1nez . (2.12)

By using l'Hospitals rule one can show that the above Bayes estimators have
the expected property:
0, when z - 0
Lim wi(z) = %—, when z > 1 for i =3, 5, 7 .
1,

when z -+ «

These limiting values are the same as those of ¢(p) when n; = np. For
aiding the experimenter, tables for wi(z)(i = 3, 5, 7) are given (Table I)

which determine the value of the weighting function when p = .2(.2)10.

EFFICIENCY OF THE BAYES UNBIASED ESTIMATOR

The Bayes estimator of the common mean can be written as:

~

up = v(@x + (1 - y(2))y (3.1)

where ¢(z) 1is the Bayes estimator for ¢(p), a function of sample var-
iances, and applying the well known property that the sample mean and
variance are independent in normal distributions (Mood and Graybill [5]), it
can readily be shown that ;b is an unbiased estimator of the common mean

~

M. The variance of Hy is
Var [ub] = Ez[Var(ub l z)] + Varz[E(ub | z) ]

0?2 o?
=5 E V@] + 22 E (1 - v(=)?)

52
= {Ez[wz(Z)] + pE_[(1 - W(Z))Zl} (3.2)
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All formulae in the present section are restricted to cases of equal sample
size.

The efficiency of My when compared to the M.L. estimator Mo (eqn. 1.2)

as a function of p is:

. Var[ﬁol cf P
Eff{u, | o,n] = T = -
b Var[uO] n(l+p)Var[ub]
- p/(1 + p) (3.3)

2
E,[¥2(2)] + pE [ (1 - v(2)) ]

The efficiency functions of the Bayes estimators were calculated for samples

of equal size =n = 3, 5 and 7. The graphs appear in Fig. 1, where p = .2(.2)10.
In the previous study of Zacks [9] the efficiency function of ;(p*), when

n=3 and p*=9, was calculated similiarly with respect to the M.L. estimator
;O' This efficiency function is presented in Fig. 1. We see in Fig. 1 that
;b(n=3) has a higher efficiency than ;(p*=9) for all values of p in the

interval .2 < p < 6.

NUMERICAL TECHNIQUES

To find the function Effh:b | o, n1,np], the moments Ez[w(z)] and
Ez[wz(z)] should be determined. It is observed that neither moments can be
found by exact integration methods because y(z) is too complicated. To
overcome this difficulty, two approximating techniques were used; one, a Monte

Carlo procedure, which uses the mean estimate

k
ot {i—-z i(zj) (1 =1,2) (4.1)
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to approximate Ez[wi(z)] (i = 1,2); and two, a Romberg numerical quadrature
procedure which is a recursive calculation based on the trapezoidal rule, and
is an extension (but more than a reformulation) of the Newton Cotes formula.
(Bauer, et. al. [1])
The Monte Carlo procedure was adapted for use on the IBM 1410 Computer
and the FORTRAN program (Plate I) uses the following steps to generate inde-
pendent random z; variates:
(1) Generate independent psuedo-random uniformly distributed
(U(O,l)) variates, uss by a subroutine RECTAN. A
multiplicative congruential procedure developed by D. H.

Lehmer in 1951 is used, utilizing the relation,

u = 23u, (Modulus 108 + 1) (i=0,1, 2, ), (4.2)

i+l

where u, 1is the starting value (any 8 digit number

0
chosen from a random number table) and the ui(i =1, 2, ¢« ¢ )
are the resulting 8 digit psuedo-random numbers that

are split into two & digit numbers and used as two

U(0,1) wvariates. The 8 digit ui's were tested

by Taussky and Todd [7] and it was found that the method

is a suitable generator with recycle period 5882352.

1, 2, = + *) be

(2) Generate xz[yi] variates. Let ui(i
independent psuedo-random numbers from U(0,1) distribu-
tion, then the inverse transformation relation (Naylor,

et. al. [6]),

x, = -2 1n_(u,) i=1,2, ¢+ ¢ « (4.3)
i e i

yields x, ~ x?[2] independent psuedo-random variates.

i



Since the generating function of xz[yi] is a convolution
of the generating function of x2[2] (Feller [4]) when

Y is even,

v, /2

1
t = z X, v Xz[y,] (4.4)
i =1 i

where the Yi/z values of x are generated independently.

3

When A is odd we use the formula

Yi‘l

2
e, o= L ox + vl o, (4.5)
i §=1 J

where v 1is independent of xj and v ~ N(0,1), then it
is well known that v2 A xz[l]. To generate v, we gener-
ate two additional independent uj; and u, and use the

inverse transformation relation (Box and Muller [2])
vy = (=2 lneul)l/2 sin 27u,
vy = (-2 lneul)l/2 cos 2Tuy (4.6)
Either v} or v; is then used. Since in this report
yi(i = 1,2) are confined to even numbers, only relation
(4.4) 1is used in the computer program.

(3) Generate F[yy,y;] variates. This is done by using the

well known relation

t
Y1 Y2
F = — P & Flya,m1l , 4.7
Y1
where the x.,'s in t and ¢t are independently
1 Y1 Y2

generated for all 1.
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It is now just a matter of generating the F[ys,y;] variates for different
fixed p, nj, ny in order to obtain a pF[yp,y;] distribution, and subse-
quently to determine estimates for Ez[wi(z)] (1 = 1,2). It was found that
when ki = 200 (i = 1,2) in equation (4.1), the values of Eff[ﬁb] when
.2 <p <10, n} =ny =3, gave a reasonable estimate of a smooth curve.

(see Fig. 1)

The Romberg quadrature method was chosen in preference to other quadrature
methods because it is numerically stable ‘and allows for a recursive calculation
procedure for higher orders to be easily adapted to computer programming. The
FORTRAN program for the IBM 1410 was written by J. O. Mingle, Kansas State
University, Department of Nuclear Engineering, and is given in a modified form

in Plate II. By definitiom,
i i 8
E [y (2)] = J v (z) gz | p) dz (i=1,2) (4.8)
0
where g(z | p) is given by equation (2.2). The limits of integration can

not be handled easily by computer methods, therefore the transformation

us= (1+ z/p)"1 when vy; = Y2 was used, giving

1
E,vi ()] = J ot ey gl jelow), 4.9)
0

where the limits of integration can be easily handled.

The FORTRAN programs which are given are for n=3 and can be easily
adapted for other sizes. The two methods were used as a procedural check
and to determine which had a faster calculation time. It was found that the
Romberg procedure gave best results in the shortest time although the graphs
of the efficiency function of ;b(n-3) for the two methods were not

significantly different. (see Fig. 1)
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SUMMARY AND CONCLUSION

~

An unbiased estimator Hp for the common mean of two normal distribu-
tions was derived, in which a weight function ¥(z) is a certain Bayes
estimator for ¢(p). Attention was focused on the efficiency of this
estimator when samples from each distribution are very small. 1In particular,
explicit formulae of the Bayes estimator (z) were derived for samples of
equal size n = 3, 5, 7 and the efficiencies for the estimators of the
common mean determined by these y(z) were studied. In investigating the
Bayes estimator for ¢(p) for unequal sample size, it was discovered that
solutions required laborious calculations, therefore they were not considered.

It was found that the efficiency functions for ;b(n = 3, 5, 7) over the
interval .2 < p < 10, are uniformly greater than 0.54. Moreover, when the
efficiency of ;b was compared to ;(p*=9) for n=3, it was found that

~

is uniformly more efficient in the interval 1 < p < 6; in fact, Hy is

"
uniformly 6% more efficient than u(p*=9).
It is therefore concluded that this Bayes unbiased estimator for the

common mean of two normal distributions does offer an improvement over

existing procedures when samples are very small.
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TABLE I
VALUES OF WEIGHTING FUNCTION wn(z) (n=3,57) .2(.2)10

z = sj/sf vy (2) Vs (2) v, (2)
w2 . 346 .330 .324
A .410 .400 .396
.6 449 JAb4 441
.8 .478 475 474
1.0 .500 .500 .500
1.2 .518 .520 .517
1.4 .534 .537 .539
1.6 .547 .552 .554
1.8 .558 .565 .567
2.0 .569 .576 .579
2.2 .578 .586 .590
2:4 .586 .596 .599
2.6 594 .604 .608
2.8 .601 .0612 .616
3.0 .607 .619 .624
3.2 .613 .626 .631
3.4 .619 .632 .637
3.6 .624 .638 .643
3.8 .629 .643 . 649
4.0 .634 .648 .654
4,2 .638 .653 .659
4.4 .642 .658 .664
4.6 .646 .662 .668
4.8 .650 .666 .672
5.0 .653 .670 .676

18



TABLE I CONTINUED

= si/sf vq(2) Vs (2) v, (2)
5.2 .657 .674 .680
5.4 .660 .677 .684
5.6 .663 .681 .688
5.8 .666 .684 .691
6.0 .669 .687 .694
6.2 .672 .690 .697
6.4 .674 .693 .700
6.6 .677 .696 .703
6.8 .679 .698 .706
7.0 .682 .701 .709
7.2 . 684 .704 711
7.4 .686 .706 .714
7.6 .688 .708 .716
7.8 .690 .711 .718
8.0 .692 .713 .721
8.2 .694 .715 w123
8.4 .696 .717 .725
8.6 .698 .719 .727
8.8 .700 .721 .729
9.0 .702 .723 .731
9.2 .703 .725 .733
9.4 .705 .726 .735
9.6 .707 .728 .737
9.8 .708 .730 .738

10.0 .710 .732 .740

19
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Given two independent simple random samples from two normal distributions
N(u,oi) (i = 1,2), the problem is to estimate the common mean p, = « < y < o«
when the variance ratio p = ci/cf is unknown.

When p is known, the uniformly minimum variance unbiased estimator of
u  is the maximum likelihood estimator: ﬁo = ¢(p)x + (1 - ¢(p))§, where
¢(p) = (n1/n2)p/(l + (nl/nz)p) and (x, y, n], ny) are the sample means and
sizes respectively.

This report derives an unbiased estimator for the common mean when p is
unknown, in which the weight function w(si/sf) is a certain Bayes estimator
for ¢(p) where sg(i = 1,2) are unbiased estimators for oi(i =1,2).
Explicit formulae for the Bayes estimator w[silsf) are derived for samples
of equal size n = 3, 5, 7 and the efficiency functions of the unbiased
estimator of yu, determined by there w(silsf) are studied. For n=3, the
efficiency of the Bayes unbiased estimator is compared to the efficiency of
an unbiased estimator of classical form and is found to be superior.

It is concluded that the Bayes unbiased estimator for the common mean of
two normal distributions does offer an improvement over existing procedures

when samples are very small.



