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INTRODUCTION 

The great bulk of superphosphate fertilizer is manufactured 

today by acidulating phosphate rock with sulfuric acid. The pur- 

pose of acidulating phosphate rock is to convert the phosphate in 

the mineral, apatite, into forms which are available to plants. 

Both mono-calcium phosphate and di-calcium phosphate are consid- 

ered to be available. When phosphate rock is treated with suf- 

ficient sulfuric acid, mono-calcium phosphate is formed. How- 

ever, if less sulfuric acid is added, mono-calcium phosphate and 

undecomposed phosphate rock result. 

Were it possible to conduct the acidulation of phosphate 

rock in such a manner that di-calcium phosphate would be produced 

instead of mono-calcium phosphate, less sulfuric acid would be 

required. Beside this economy of acidulating agent, another ad. 

vantage would be the production of a neutral and highly desirable 

fertilizer. Forecasts of greatly increased needs for fertilizers 

coupled with depletion of sulfur reserves have resulted in an ac- 

tive interest in new processes that require less sulfuric acid. 

The main object of the present investigation was to find a 

method of acidulating phosphate rock which would produce primar- 

ily di-calcium phosphate and therefore use less acid. 

Phosphate rock consists of the mineral, apatite, CalOF2(PO4)6 

plus impurities, hence the sulfuric acid added not only acts upon 

the phosphate of lime but upon calcium fluoride tied up in the 

apatite molecule and directly or indirectly upon such impurities 

as organic matter, iron and aluminum compounds, and carbonates of 
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lime and magnesium, all of which consume a certain amount of acid. 

During acidulation, the apatite molecule is broken down, and 

for the purpose of this research a series of reactions between 

H2SO4, Ca3(PO4)2, and CaF2 may be considered to occur. Tri-cal- 

cium phosphate treated with sulfuric acid is converted into a 

mixture of calcium sulfate and hydrated mono-calcium phosphate. 

These two compounds are the chief constituents of ordinary super- 

phosphate. The reaction may be represented as follows: 

Ca3(P0)2 + 2H2SO4 + 1120---1-2CaSO4 + CaH4(PO4)2.120 

Superphosphate made with sulfuric acid of 70 per cent concen- 

tration appears to be a more or less self-drying product. The 

heat of reaction is sufficient to drive off most of the excess 

water; however, it Is generally believed that a considerable quan- 

tity of water remains combined as water of hydration. 

Both temperature and acid concentration have an important ef- 

fect on the form of calcium sulfate in superphosphate. tow tem- 

perature and dilute acid favor the formation of gypsum (CaSO4.2H20) 

but in the acid concentration range from 65 to 75 per cent H2SO4, 

where the heat of reaction is not dissipated by artificial cool- 

ing, the water of hydration is driven off, so that anhydrite 

(CaSO4) is the form of calcium sulfate in the final product. 

If less sulfuric acid is added to the phosphate rock than 

that required, instead of the formation of dicalcium phosphate, a 

mixture of mono-calcium phosphate and tri-calcium phosphate is 

obtained. The purpose of this research was to find a. method of 

producing di-calcium phosphate by a reaction such as the follow- 

ing: 
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0a(PO4)2 + H2SO4 + 2H20---4CaSO4 + 2CaH042H20 

This reaction is very difficult to attain. The final product 

nearly always consists of a mixture of water-soluble mono-calcium 

phosphate and residual or undecomposed phosphate rock. Yono-cal- 

cium phosphate has rather weak acidic properties and does not 

readily react with fluoraptite. Hence phosphate rock so treated 

always contains a high percentage of undecomposed phosphate rock 

even after it has stood for a long time. 

Calcium fluoride, which is present in phosphate rock, com- 

bined with tri-calcium phosphate in the apatite molecule, 

Ca10P2(1)04)6, reacts with sulfuric acid thus: 

CaF2 + H2504 CaSO4 + 2HF 

The hydrofluoric acid, TIF, reacts with the silica present in the 

rock thus: 

41T + SiF4 + 2H20 

The silicon tetrafluonide is decomposed by water to form silica 

and hydrofluosllicate, tbua: 

3.51?-14 + 21320---.-S102 + 2H2SIF6 

When sulfuric acid containing only 70 per cent H2504 is used 

to decompose phosphate rock, only about 25 per cent of the fluor- 

ine is evolved, the balance remaining in the superphosphate. 

The reaction between sulfuric acid and the iron contained in 

phosphate rock is not known, but the iron is probably distributed 

between the sulfate and the phosphate. The reaction may be repre- 

sented as follows: 

2FePO4 + 3H2SO4 + B20---.-Ye2(SO4):.4 + 2H3PO4 
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This reaction is more or less reversible and in the presence 

of water hydrated iron phosphate is formed thus: 

Fe2(304)3 + 2H3PO4 + 4H 0 2FePO42H20 + 3112504 

14ydrated iron phosphate may be converted into the anhydrous, and 

even less soluble, condition by reacting with anhydrous calcitm 

salrate, the latter compound being converted into gypsum as fol- 

lows: 

FePO4.21120 + CaSO4---,-CaSO4.2H20 + FelPO4 

The reactior between sulfuric acid and aluminum in phosphate 

rock is similar to that of Iron. 

Sulfuric acid acts upon calcium or magnesium carbonate to 

form magnesium sulfate or calcium sulfate, water and carbon diox- 

ide. 

112504 + MgCO3---,-M004 + CO 1120 

112504 + CaCO3---0-CaC04 + CO2 + H2O 

From the value of the free energy change for any reaction 

the chemical eqvilibrium constant and therefore the thermodynamic 

feasibility of the reaction can be computed. The reaction be- 

comes more promising as the value of the free energy change be- 

comes more negative. The reaction becomes less favorable if the 

free energy change is positive. When it is larger than 10 kilo- 

calories at 250 C., the reaction is vary unfavorable. Because of 

the lack of necessary tharmodynamIc data, the value of the free 

energy change for the acidulation of phosphate rock at any given 

temperature is impossible to compute. The value of the free en- 

ergy change under standard conditions of temperature and pressure 
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is a good measure of the thermodynamic feasibility, however, and 

will be computed in the following. 

The thermodynamic properties of tri-calcium phosphate, mono- 

calcium phosphate, di-calcium phosphate and other compounds are 

summarized in Table 1, which is taken from Latimer (7). 

Table 1. Thermodynamic data at standard state (250 C., one atm.) 

Compound Form 

uNSof 
; Hof 

F°f =Entropy 
:KqiiltiztFoleacal.4-mole: units 

Ca:7()04)2 Orystallirie -929.7 -972 57.6 

Ca(h2PO4)2 Crystalline -744.4 -672 45.7 
Precipitated 

Ca(2PO4)2H20 Crystalline -821.49 -777.52 49.7 

CaHr04 Crystalline -434.70 -403.14 28.0 
CaFP04.2120 Crystalline 575.72 -516.52 46.7 
H3 PO4 Aqua -708,2 -274.2 42.1 
12504 Aqua 216.90 -177.34 4.1 

CaSO4.2H2C Crystalline -4P7.06 -429.19 46.76 
CaSO4 Crystalline -742.42 -715.56 25.5 

Anhydrite 
1120 Liquid - 6F-5.32 - 56.69 16.92 

The free energy changes at standard conditions,AF0, for the 

reactions of most interest in the acidulation of phosphate rock 

are computed as follows: 

a. Ca3(PO4)2 + 2H2SO4 + H20---4-CaH4(PO4).H20 + 2CaSO4 

A F° = (-733.52) + 2(- 315.6) - (-932) - 2(- 177.34) 

(-56.69) = -21.37 Kcal. 

b. Ca3(PO4)2 + 2H2SO4 + 5H20--0-CaH4(PO4)2.H20 + 2CaSO4.2120 

A F° = (-733.52) + 2(-429.19) - ( -932) - 2(- 177.34) - 

5(- 56.69) = -21.77 Kcal. 
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c. Ca3(PO4)2 + 112504 + 41126 ---)-2CaHP040 + CaSO4 

AF° = 2(-516.52) + (-315.56) (-932) - (-177.34) 

4(.56.60) = -12.5 Kcal. 

d. a3(PO4)2 + 11730.4 + 6H2C---)-2CaHPO4.2E2 CaSO4,21120 

Po = 2(-516.52) + (-932) - (-177.34) - 

6(.56.69) = -12.7 Y El. 

e. CaH4(PO4).1120 + 1120---)-CaHPO4.2B2C + H3PO4 

44F° = (4.516452) + (-274.2) . (-733.52) - (-56.69) 

= -0.51 Kcal. 

ft CaH4(PO4) + 2H20---)-0aHPO4.2H20 + H3PO4 

4,F0 = (-516.52) + (.274.2) - (.672).. 2(-56.69) 

= -5.34 Kcal. 

g. CaH4(PO4)2--Cale04 + H7P0, 

F° = (-403.14) + (-274.2) - (-072) 

= -5.34 Kcal. 

h. Ca(H2PO4)24H20 + :4:!:12C---1.-CaEPO4 + H3PO4 + (x + 1) H20 

4, F0 = (-463.14) + (-274.2) -i- (-56.60) - (-773.52) 

= .6.51 

Since all of the standard free energy changes are negative, 

all of the reactions are thermodynamically possible. Actually, 

only reactions (a) and (b) have been attained in acidulating 

phosphate rock. The reaction (c) appears feasible but the final 

product of the reaction of sulfuric acid with phosphate rock 

nearly always consists of a mixture of mono-calcium phosphate and 

undecomposed phosphate rock. 

According to Elmore and Farr (3), mono-calcium phosphate 
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hydrolyzes according to the equations 

CaH4(PO4)2 + xH20 CaHPO4 + 1131)04 + (x + 1) H2O 

The extent to which mono-calcium phosphate is converted to di- 

calcium phosphate depends on the amount of water in the system. 

The optimum ratio of the reactants and the maximum conversion to 

di-calcium phosphate at four temperatures are given in Table 2 

from the work of the above authors. 

Table 2. Maximum conversion from mono-calcium phosphate mono.. 
hydrate to di-calcium phosphate, 

Temperature 

° C. 

Reactants, 
g.H20/100 g. 
Ca(112?C4)2'1-120 

cent of 
Ca(H2PO4)2T20 
converted to Ca 04 

25 98 57 
50.7 62 68 
75 42 74 
100 28 79 

It is obvious that increasing the temperature will increase 

the conversion from Ca(H2PO4)2.H 0 to CaHPO4. At temperatures 

above 108° C., which is its decomposition temperature, mono-cal- 

cium phosphate mono-hydrate cannot exist, and will be converted 

to mono-calcium phosphate anhydride. 

From the above it appears that it should be possible to heat 

mono-calcium phosphate to a certain range of temperature, where 

the mono-calcium phosphate would ce >mpose to di-calcium phos- 

phate and phosphoric acid according to the following reaction. 

CaR4 (PO4)2.H20---CaIP04 + H3PO4 + H2O 

The liberated phosphoric acid could be reused to acidulate unde- 
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composed phosphate rock according to the following reaction: 

Ca (PO4)2 + 4H3PO4 + 3H 0--4.-nall4(PO4)2.1120 

The final result of these two reactions is the complete conver- 

sion of a partially acidulated rock to di-calcium phosphate. 

Analytical procedures of the Association of Official Agri- 

cultural Chemists were used for all analyses. The methods are 

described in detail in the Appendix. 

LITERATURE REVIEW 

Newberry and Barret (9) treated phosphate rock with a mixture 

of sulfuric acid and hydrochloric acid sufficient to form mono- 

calcium phosphate. The calcium sulfate and insoluble residue 

from the acid solution was separated by filtration. The filtrate 

was evaporated to dryness and the dried product heated suffi- 

ciently high to drive off hydrochloric acid and convert the sol- 

uble salt into di-calcium phosphate. The hydrochloric acid was 

collected to be reused. The reactions in a simplified form are: 

Ca (PO4)2 + H2SO4 + + CaC12 + CaH4PO4 

CaCl2 + CaH4(PO4)2 + Heat--4.-2CaHPO4 + 2HC1 

Theoretically, this process appears to have considerable mer- 

it, since only one-half as much sulfuric acid is required as that 

employed in manufacturing water soluble phosphate. In actual 

practice, however, the method has certain objectionable features. 

Tinless the temperature at which hydrochloric acid is evolved is 

carefully controlled, highly insoluble calcium pyrophosphate is 
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formed, yet the dried mass must be sufficiently heated, otherwise 

a certain amount of calcium chloride will remain in the residue, 

rendering it hygroscopic and unfit for fertilizer use. 

Pike (10) proposed to accidulate calcium phosphate rock sus- 

pended in water with hydrochloric acid until the P205 is complete- 

ly converted into phosphoric acid. The acid solution is then 

treated with finely ground limestone to produce a solution of 

mono.calcium phosphate and calcium chloride. An amount of milk 

of lime is then added just sufficient to precipitate the ?205 as 

di-calcium phosphate which is separated from the solution by fil- 

tration. 

Fox and Clark (4) proposed a process somewhat similar to 

Newberry and Barret consisting of, first, producing calcium mono- 

chlorophosphate (CaC1H2PO4.1120), then decomposing this compound 

with steam et a temperature of 200 to 4000 0. according to the 

following equation: 

CaO1H2PO4.H20 + Steam---0-0aFP04 + nd + *BC) 

They claim that, under these conditions, no pyrophosphate is pro- 

duced. The hydrochloric acid can be completely recovered and 

used to decompose further quantities of phosphate rock. 

Zbornik (12) proposed a process for converting the bulk of 

the P205 of phosphate rock into di-calcium phosphate by treating 

it with approximately one-hslf of ttc phosphoric acid normally re- 

quired. The phosphoric acid and phosphate rock were mixed in an 

autoclave under a pressure of more than 25 pounds per square 

inch. 

Seyfried (11) proposed to pass waste HC1 gas through a column 
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of ungrouad phosphate rock over which water is sprayed. Phos- 

phoric acid, mono-calcium phosphate, and calcium chloride is con- 

tinually withdrawn from the base of the tower as fresh rock is 

fed into the top. The acid solution then is partially neutralized 

with lime in a separate chamber to produce di-calcium phosphate. 

Curtis (2) proposed to produce di-calcium phosphate from 

phosphoric acid. This process consists of adding coarsely ground 

lime to the acid until it is converted into a solution of mono- 

calcium phosphate, then mixing the solution with a slurry of very 

finely ground limestone to effect the conversion of mono-calcium 

phosphate into di-calcium phosphate. 

Hughes and Cameron (5) proposed a process for producing di- 

calcium phosphate through the medium of sulfur dioxide and sul- 

furous acid at 25 to 1000 C. at a pressure from 3 to 10 atmos- 

pheres. 

3ogue (1) proposed a three-step process for the manufacture 

of di-calcium phosphate from bone and sulfur dioxide. In the 

first step, a saturated solution of sulfur dioxide is added to 

the crushed bone in a closed container, maintaining the acidity 

sufficiently high to keep the mineral matter in solution as mono- 

calcium phosphate and calcium acid sulfite. In the second step, 

the decanted solution is treated with steam. This results in the 

precipitation. of a mixture of dl-calcium phosphate and normal 

calcium sulfite with the regeneration of part of the sulfur diox- 

ide. In the third step, the remaining sulfur dioxide is recov- 

ered by treating the mixed precipitate with sufficient hydrochlor- 

ic acid to convert the calcium sulfite into calcium chloride. 



11 

Elmore and Farr (3) have studied the equilibrium in the 

system calcium oxide, phosphorous pentoxide and water. The sol- 

ubilities of CaliPO4, Ca(U2PO4)2H20 and Ca(N2PO4)2 in 2-96 per 

cent H7PO4 at 400 C., 750 C. and 1000 C., and 27.5-98 per cent 

H7PO4 at 250 C. were determined. The density of the saturated 

solution were determined. Di-calcium phosphate is the stable 

solid in equilibrium with 2-27 per cent acid at 25° C. and in 

2-53 per cent acid at 100° C. Ca(H4PO4)21120 is in equilibrium 

with 18-86 per cent E3PO4 at 25° C. and with 48-76.6 per cent 

13PO4 at 100° C. Ca(H2PO4)2 is the saturating solid in 86-98 per 

cent or 100 per cent acid at 100° C. The temperature coefficient 

of solubility is negative for di-calcium phosphate and positive 

for the other salts. 

!emminger (8) states that, when phosphate rock is calcined 

at a high temperature, calcium carbonate is decomposed and the 

lime combines with free silica to form calcium silicate, In this 

way, the ratio of free lime to P205 may be decreased. Since the 

calcium silicate is not readily attacked by sulfuric acid, it 

will consume less sulfuric acid. The objection to the use of this 

material is that the partial sintering of the phosphate rock de- 

lays the action of the sulfuric acid during acidulation. 

Iragne et al. (6) studied the effect of adding certain min- 

eral salts on the precipitation of calcium phosphate. They claim 

that, in the production of phosphate fertilizers, the addition of 

mineral salts will permit the use of elevated pH (up to 9.5) 

without the formation of unavailable P205. magnesium and alumi- 

num salts were used. 



12 

MATEPIALS 

The phosphate rock used in this work was Florida land peb- 

ble containing 35.1 per cent phosphorus pentoxide (76.6 per cent 

bone phosphate of lime dry basis) and ground to 65.67 per cent 

through 100 mesh and 57.4 per cent through 200 mesh. The chemi- 

cal and screen analyses of the rock used in this study are given 

In Table 3. 

Table 3. Chemical and screen 
phosphate rock. 

analysis of Florida land pebble 

Composition Per cent 

Screen analysis 
: U. S. standard: 

mesh : Per cent 

P205 

Ca0 

35.10 

49.64 

ve207 0.86 +70 7.77 

A1203 1.22 -70 + 100 16.66 

F 4.12 -100 + 140 7.92 

CO2 1.48 -140 + 200 10.35 

H2° 0.95 -200 57.40 

The sulfuric acid u:3ed was analytical reagent grade obtained 

from the Yallinckrodt Chemical Works. The sulfuric acid was di- 

luted, with distilled water from 95 per cent (65° Be) to 71.17 per 

cent (560 3e) and allowed to cool to room. temperature before use. 

The metal salts were all analytical reagent grade also. 
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METHODS 

Estimate of the Acid Required 

The stoichinietric quantity of sulfuric acid needed to pro- 

duce di-calcium phosphate from the Florida land-pebble phosphate 

rock described in Table 3 is computed below: 

Basis: 100 grams phosphate rock weight per cent of P205 = 

grams P205 

Weight of H2SO4 used for CaHPO4: 

Cal0F2(PO4)6 + 4H2SO4 6CaHPO4 + 2HF 

35.1 x 4 x 98 
14x 3 = 32.2 gm. of H2SO4 

Weight of CaO not in apatite: 

49.64 - 55.1 x 10 x 56 49.64 - 46.2 = 3.44 gm. 
142 x3 

Weight of H2SO4 used for excess Ca0: 

CaC H2SO4 CaSC4 + H20 

3.44 x 98 = 6.03 grams of H2SO4. 

Weight of H2SO4 used for Fe203 and A1203 

2FePO4 + 3H2SO4 Fe2(SO4).1 + 2H3PO4 

2A1PO4 + 3H2SO4 Al2(SO4)3 + 2H3PO4 

x 98 x 0.86 x 150./ 
1.22 

x 101.96 
= 5.11 grams of 112304 

Total sulfuric acid required = 32.2 + 6.03 + 5.11 

= 43.34 grams of 100 per cent 
H SO4 
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Since there may be other materials present which would re- 

act with the sulfuric acid, this computation is only approximate. 

Therefore, a slight excess above the amount calculated was used. 

Forty-nine grams of acid were used for each 100 grams of rock. 

Two approaches to the problem were made. In the first, the 

effect of the addition of metal salts before acidulation was in- 

vestigated. Tile second was a process based on the work of nor- 

nik (12) in which phosphate rock was reacted with phosphoric acid 

in an autoclave at pressures greater than 25 pounds ner square 

inch. 

Addition of Mineral Salts 

According to Iragne et al. (6), the addition of mineral salts 

permitted the use of elevated pH values up to 9.5 without the 

formation of unavailable P205 during the precipitation of calcium 

phosphates from phosphoric acid solutions. It seemed reasonable, 

therefore, that the addition of mineral salts might permit the 

formation of di-calcium phosphate during the acidulation of phos- 

phate rock. 

In this work, 85 ml of 71.2 per cent sulfuric acid (99 gms. 

of 100 per cent acid) and 4 grams of the mineral salt were placed 

in a 400 ml. beaker, then 200 grams of phosphate rock were added. 

The mass was stirred with a laboratory mixer for three minutes. 

The sample was then transferred to a pint fruit jar and cured at 

room temperature for one week. The sample was then ground and 

analyzed for total P205, water soluble P205, citrate insoluble 
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P205, and moisture. The mineral salts used were Y2SC4, Al2(SCil.)7, 

Al2(SO4)3.181120, KC1, Mg304, Al2(SO4)3.(7114)2SO4241$20. The 

results are shown in Table 4. 

Autoclave Process 

Description of 2quipment. A small laboratory, a7itated cast 

steel autoclave of two liters capacity was used. It was six 

Inches in diameter and 12 inches in length, and was fitted with a 

cover which wes held in place by ten one-inch bolts. Plate I 

shows the construction* 

The diagram is a sectional one in which (a) represents a 

raised ring of steel on the underside of the cover. This fits in- 

to the groove in the top of the autoclave. The thermometer well 

.(d) was screwed through the cover of the autoclave. The auto- 

cleve was heated by natural gas burned inside a cylindrical sheet 

metal case. The autoclave rested on a ring which supported the 

edge of the flange (s). The bottom of the autoclave was above the 

gas ring. 

Plate I also shows the arrangement of the cover. The struc- 

ture to bear the agitator shaft is shown by (b) passed through 

the center of the cover. The agitator blade was of the anchor 

type. The cover also was provided with a pressure ;erre and a =as 

escape valve. The agitator was driven at 30 rpm by a V-belt drive 

from a 1/2 hp. electric motor. 



Table 4. Effect of mineral salts on the acidulation of phosphate rock. 

Mineral salt : Uank : A10( 
:Al2(8,04). 

) .1 

3: 
31-120 : YC1 MgSJ : KNO3 

:A 2 04 3 

:(NH4)2"4* 
:241120 

Total 
P205, 22.65 22.38 23.04 22.43 22.84 22.75 22.48 22.63 

'Neter soluble 
P205, % 16.90 17.03 17.30 16.61 16.78 16.72 16.31 15.56 

Citrate insoluble 
p205. % 4.85 4.47 4.68 4.56 4.88 4.92 5.09 3.88 

Citrate soluble 
P205t 0.90 0.88 1.06 1.26 1.18 1.11 1.08 3.19 

Yoisture 
6.52 7.10 4.95 7.55 7.08 6.93 6.32 7.28 

Conversionl 
78.5 80.2 79.7 79.6 78.6 77.5 78.9 82.7 

1 Per cent of the total P205 present in available forms, i. e., as water soluble 
and citrate soluble P205. 



EXPLANATION OF PLATE I 

Drawing of autoclave 



PLATE I 

COVER OF 
AUTOCLAVE 

THERMOMETFR WELL - 
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Production of Partially Acidulated Rock. Because of the 

difficulty of mixing the acid and the rock in the autoclave, the 

process was conducted in two steps. In the first step, the rock 

was reacted with the sulfuric acid in the autoclave, then removed, 

dried, and ground. In step two, this partially acidulated mass 

was further reacted in the autoclave under various conditions of 

temperature, pressure, particle size, and moisture content. 

The procedure used in step one to produce the partially acid- 

ulated mass is as follows: 

Four hundred grams of the Florida phosphate rock described 

in Table 3 and 170 cc of 71.2 per cent sulfuric acid were placed 

in the autoclave. The pressure was maintained at atmospheric, 

while the temperature rose to 90° C. As a result of the poor mix- 

ing attained in the autoclave, the reaction did not go to comple- 

tion so that the product contained much free acid and was sticky 

and difficult to handle. The product was, therefore, dried at 

80° C. for 24 hours before use. Each batch was then ground to 

pass a 40-mesh screen. Four batches of partially acidulated rock 

were made by this process. These four batches were combined and 

used for the experimental work in step two. The analysis of the 

combined batches is given in Table 5. 

In addition, one more batch of partially acidulated rock was 

produced and used for the investigation of the effect of particle 

size and of mixing time. This was not analyzed, but was assumed 

to be similar to the first lot in composition. 
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Table 5. Chemical analysis of partially acidulated rock. 

Moisture, % 

Total P205, 

Citrate insoluble P205, 

Water soluble P205, 

Citrate soluble P205, 

Cnversionl, 

1.65 

23.12 

5.26 

13.62 

4.04 

77.1 

1 The per cent of the total P205 present in available 
e., as water soluble or citrate soluble P205. 

Effect of Temperature. According to Elmore and Farr (3), 

heating mono-calcium phosphate mono-hydrate will increase the 

conversion of mono-calcium phosphate mono-hydrate to di-calcium 

phosphate. It appeared reasonable, therefore, to heat the partial- 

ly acidulated rock to various temperatures and to ascertain the 

amount of di-calcium phosphate and mono-calcium phosphate present 

at each temperature. Since the reaction forms phosphoric acid, 

the eventual conversion of all of the partially acidulated rock 

to di-calcium phosphate should result. 

The autoclave was preheated to the desired temperature range. 

Four hundred grams of the partially acidulated rock described in 

Table 5 were charged to the autoclave. The autoclave cover was 

put in place with the gas escape valve open. The motor operating 

the stirrer was started. The desired temperature was reached in 

about ten minutes, and this temperature was maintained for 30 min- 

utes by adjusting the gas flow. The autoclave was then opened 
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and allowed to cool to room temperature. The product was sampled 

for analysis. 

The analytical data are shown in Table 6 and Fig, 5. It is 

assumed here that water soluble P205 is mono-calcium phosphate, 

citrate soluble P205 is di-calcium phosphate, and citrate insol- 

uble P205 is tri-calcium phosphate. 

Effect of Moisture and Pressure on the Conversion of the Par- 

tially Acidulated Rock to Di- calcium Phosphate. For this series 

of experiments, four portions of the partially acidulated rock of 

1200 grams each were used. A different quantity of water was add- 

ed to each portion and mixed thoroughly. The moisture contents 

of the resulting samples were about 3 per cent, 7 per cent, 11 per 

cent, and 15 per cent. After preheating the autoclave, 300 grams 

of this partially acidulated rock were charged. The autoclave 

cover was bolted down, the agitator started, and heat applied. 

When the desired pressure was reached, the as was adjusted to 

maintain the pressure and its corresponding temperature for 30 

minutes. 

As the decomposition occurred, the partially acidulated rock 

became difficult to stir. At the same time, the pressure and tem- 

perature increased. The reason is that the decomposition of mono - 

calcium phosphate to di-calcium phosphate and phosphoric acid, 

and the reaction of the undecomposed phosphate rock with the lib- 

erated phosphoric acid, are exothermic reactions. When the pres- 

sure ceased to increase, the reaction was assumed to be complete. 

The autoclave was then cooled down to room temperature, and the 



Table 6. Effect of temperature on the conversion of phosphate rock to available 
forms of phosphate. 

Temperature 
ran e 60-70 00-110 : 150 -160 : 180-190 10-220 230-240 

Total 
P205. 23.34 23.28 23.85 23.91 24.37 24.82 

Citrate insoluble 
P205, % 5.06 5.12 4.37 4.69 12.38 14.04 

Water soluble 
P205, % 14.32 14.18 14.96 15.18 8.25 8.66 

Citrate soluble 
P205, 3.96 3.98 4.52 4.14 1.74 2.12 

Conversion', 
78.4 78 0 81.6 80.5 49.4 43.5 

Moisture, 
1.55 1.61 1.06 0.68 0.43 0.38 

The per cent of the total P205 present in available forms, i. e., as water 
soluble or citrate soluble P205. 
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pressure was released by opening the gas escape valve. The sam- 

ple was removed immediately and stored for analysis. The chemi- 

cal analyses of these runs is shown in Table 7. 

Effect of Mixing Time. Since the conversion of partially 

acidulated rock to di-calcium phosphate is similar to the reaction 

of mono-calcium phosphate with phosphate rock, thorough mixing in 

the autoclave is necessary to obtain complete reaction and maxi- 

mum yield of available P205. 

To investigate the effect of the time of mixing a series of 

runs were made at various reaction times. Three hundred grams of 

the partially acidulated rook, which was described in Table 5, 

were charged to the autoclave for each batch. The pressure was 

held at 30 psig for 10, 20, 30, and 40 minutes of mixing time. 

The other procedures were the same as before. The chemical anal- 

yses of the products are shown in Table S. 

Fffect of Particle Size. The effect of the particle size of 

the partially acidulated rock on the conversion to di-calcium 

phosphate was determined by separating the partially acidulated 

rock into four portions with 20, 40, 70, and 100 mesh screens. 

Four 200 gram samples of partially acidulated rock were prepared 

in each size. 7ach was placed separately in the autoclave under 

25-30 psig for 30 minutes. The other procedures and conditions 

were the same as before. After reacting for 30 minutes, the sam- 

ple was analyzed. The results are shown in Table 9. 
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Table 7. Effect of ture and sure on the conversion of phosphatekrock to available- forms of 7oL t2 ate. 

Pressure, 
lbs./sq. in. 

Temperature, 
o 0. 

5 

108 

10 

. 116 

15 

121 

20 

- 127 

25 - 30 

130135 

35 

148 

- 40 

- 152 

Moisture content 
of charge, % 

Total P2050 

Citrate insoluble 
P205, % 

Water soluble 
P205, % 

Citrate soluble 
'205, % 

Conversion', 

Moisture content 
of product, % 

3.83 

22.51 

5.01 

14.15 

3.35 

77.8 

2.54 

7.16 

21.80 

4.83 

13.67 

3.30 

77.7 

3.88 

12.31 

20.70 

4.60 

12.81 

3.29 

78.0 

8.66 

15.38 

19.80 

4.81 

12.40 

2.59 

75.8 

9.82 

4.52 

22.09 

4.94 

13.98 

3.17 

77.7 

3.62 

7.95 

21.64 

4.68 

13.50 

3.46 

78,2 

5.73 

11.92 

20.87 

4.73 

12.62 

3.52 

77.4 

0.75 

14.86 

19.94 

4.65 

12.31 

2.98 

76.8 

10.21 

3.15 

22.67 

1.86 

2.35 

18.46 

92.0 

1.06 

6.95 11.52 

21.95 20.90 

2.28 3.73 

8.05 10.52 

11.62 7.01 

89.8 83.8 

4.53 7.38 

15.08 

19.88 

4.26 

12.57' 

3.05 

78.6 

10.01 

1.34 

22.80 

1.02 

3.08 

17.80 

91.8 

1.31 

5.37 

21.93 

2.31 

7.65 

11.94 

89.4 

3.82 

8.92 

21.06 

3.62 

11.83 

5.61 

82.8 

6.72 

11.65 

21.05 

4.15 

13.86 

2.47 

79.8 

9.08 

1 The per cent of the total P205 present in available forms, i, e., as water soluble or citrate soluble P205. 



Table 8. Effect of mixing time on 
forms of phosphate. 

the conversion of phosphate rock to available 

xin time minutes 10 20 30 40 

Total 
P205, 

qater soluble 

22.36 22.87 22.91 23.01 

F2e5, 8.32 3.02 2.45 2.12 

Citrate insoluble 
9205, 4.06 2,04 1.99 2.02 

Citrate soluble 
P205, 9.98 17.78 18.47 18.87 

Moisture, 
VT 1.26 1.07 0.96 0.96 

Conversionl, 
/0 82.0 89.1 91.2 91.4 

1 The per cent of the total P205 present in available forms, 1. e., as water 
soluble or citrate soluble P205. 



Table 9. ffect of particle size on the conversion of phosphate rock to available 
forms of phosphate. 

Particle size 
(charge) -10 + 20 -20 + 40 -40 70 -.70 + 100 

Total 

P2P5' 22.8 22.35 22.72 22.81 

Water soluble 
P205. % 6.01 3.07 3.22 2.08 

Citrate insoluble 
P205, eA 4.08 2.86 2.31 1.73 

Citrate soluble 
P 2 0 50 % 13.71 16.42 17.19 19.00 

Moisture, % 2.86 2.31 1.23 0.86 

Conversion', 81.3 87.4 89.8 92.5 

Weight % of product 
retained on screen 
of given mesh 

8 0 2.3 8.2 5.3 
10 5.3 6.9 6.9 14.1 
20 94.49 8.1 12.8 11.3 
40 0.21 82.7 31.6 19.5 
70 41.5 34.8 

100 15.0 

1 The per cent of the total P205 Present in available forms, i. e. , as water 
soluble or citrate soluble P205. 
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Chemical Reaction of !Jon- calcium Phosphate Yono-hydrate 

and Tri-calcium 7hoarhatc. From the preceding experiments, it ap- 

peared that mono-calcim Thosphete mono-hydrate would react with 

tri-calcium phosphate under certain conditions of temperature and 

pressure to produce di-calcium phosphate. To further investigate 

this reaction, analytical reagent grade mono-calcium phosphate 

nono-hydrate and tri-calcium phosphate were reacted in the auto- 

clave as follows. One hundred sixty-eight grams tri-calcium 

phosphate and 132 grams mono-calcium phosphate mono-hydrate were 

char7ed to the autoclave. The autoclave was heated until a pres- 

sure of 30-35 sig was reached. The chemical composition of the 

product was total P205, 49.82 per cent; water soluble P205, 12.25 

per cent; citrate insoluble P205, 4.84 per cent; citrate soluble 

P2C%5, 32.8(' per cent; II20 1.56 per cent; and conversion 90.40 

per cent. 

DISCUSSION OF RESULTS 

Effect of Addition of Mineral Salts 

As can be seen from Table 4, all of the mineral salts which 

were used had no effect except Al2(SO4)3.( H4)SO4.24E120, which had 

a very slight effect. It may be that this compound was decomposed 

to liberate ammonia, thus increasing the pH: value. Under this 

condition, mono-calcium phosphate would change into di-calcium 

phosphate and ammonium phosphate. The effect is the same as am 

moniation of superphosphate. The final reaction involved is not 
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entirely clear because of the complex nature of the system. 

Effect of Autoclaving after Partial Acidulation 

Since, for a given quantity of partially acidulated rock, 

the amounts of 2C5 and CaO are fixed, the only remaining vari- 

ables are the temperature, the quantity of water present, the 

pressure, the mixing time, and the particle size. Each of these 

was investigated individually. 

The process developed converted 80 per cent of the phosphate 

rock to di-calcium phosphate. The total conversion to available 

forms was 02 per cent. The acid required to produce di-calcium 

phosphate by this process was only about 70 per cent of that re- 

quired for the production of superphosphate. 

At pressures below 25 psig, no reaction occurred. The prob- 

able reason for this is that the corresponding temperatures were 

not sufficiently high to decompose mono-calcium phosphate mono- 

hydrate into di-calcium phosphate. Wono- calcium phosphate mono- 

hydrate will decompose in the presence of water into di-calcium 

phosphate and phosphoric acid at temperatures higher than its de- 

hydrating temperature. 

At pressures above 25 psig, with an equilibrium temperature 

of 1300 C. or higher, the conversion of mono-calcium phosphate 

mono-hydrate to di-calcium phosphate and phosphoric acid was ac- 

complished. This is shown in Fig. 1 and Fig. 2 by. the increase 

In the quantity of citrate soluble P205, the decrease in citrate 

insoluble P205, and the decrease in water soluble P205, with a 
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corresponding increase in the conversion of P205 to available 

forms. 

As the moisturo ccntent of tLe partially acidulated rock 

charged to the autoclave was increased, the quantity of di-cal- 

cium phosphate produced decreased, as is shown in Pig. 3 and 

Fig. 4. This is in accordance with the data of Elmore and Farr 

(3) for equilibria in the system CaO.P205.H20, which shows that, 

at elevated temperatures, the production of mono-calcium phosphate 

is favored by increasing the moisture content. 

Temperature alone had little effect on the partially acidu- 

lated rock up to 190° C. Above here the water soluble P205, mono- 

calcium phosphate, decreased while the citrate insoluble P205 in- 

creased. It may be that, at the higher temperatures, mono-cal- 

cium phosphate lost some of its water of constitution and formed 

acid calcium pyrophosphate. The reaction is represented as fol- 

lows: 

CaH4( PO4 )2 + heat -J.- CaP72 P207 + Ho 

Finally, on heating to still higher temperatures calcium pyrophos- 

phate may have decomposed further, giving up a further quantity 

of water and going to calcium meta-phosphate. The reaction may 

be represented thus: 

CaH2P207+ heat Ca(P03)2 + H2O 

According to Elmore and Farr (3), elevated temperatures fa- 

vor the conversion of mono-calcium phosphate mono-hydrate to di- 

calcium phosphate. The data shown in Fig. 5, however, indicates 

that temperature did not produce such a reaction. The reason may 
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be that mono-calcium phosphate mono-hydrate was decomposed to 

mono-calcium phosphate. 

Mixing times of less than 10 minutes were not effective, 

ile the reaction appeared to be complete after 30 minutes. 

is is shown in Fig. 6. 

Particle size of the partially acidulated rock appeared to 

be an important variable. sizes larger than 20 mesh gave low con- 

version, and sizes finer than 70 mesh were required to obtain 

high conversions. These results were expected, because intimate 

contact between particles and high surface areas are required for 

solid-solid or solid-liquid reactions. The results are shown in 

Fig. 7. 

SUMMARY 

A process is described in which a partially acidulated phos- 

phate rock is treated in an autoclave under a gauge pressure 

greater than 25 pounds per square inch at 1300 - 2000 C. As the 

moisture content of the acidulated rock charged to the autoclave 

is increased, the decomposition of mono-calcium phosphate to di- 

calcium phosphate and phosphoric acid becomes less pronounced. 

In this work when the moisture content of the mass charged was 

above six per cent, no useful result was obtained. 

The amount of acid required to produce the di-calcium phos- 

phate is only about 70 per cent of that required for producing 

superphosphate based on the available P205 content of the product. 
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The conversion of P205 in the rock to available forms was 92 per 

cent. 
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Analytical Procedures 

All samples were cured at room temperature for one week. The 

samples were then ground to pass throu* a 70 mesh screen. The 

grinding was done as rapidly as possible to avoid loss or gain of 

moisture during the operation. The ground sample was mixed thor- 

oughly and stored in tightly stoppered battles. 

Analytical Methods: 

a. Moisture Determination. 

Two grams of the sample were placed on a 9 cm. watch glass 

and dried at 25 to $00 C. in a vacuum dryer over anhydrous cal- 

cium chloride under 22 inches of vacuum for IC hours. The sample 

was weighed again and the loss in weight divided by the weight of 

the original sample taken as the per cent of free water. 

b. Total Phosphoric Acid. 

Two grams of sample were placed in a 200 ml volumetric 

flask. Thirty ml of nitric acid and 5 ml of hydrochloric acid 

were added and boiled on the hot plate until the brown fumes dis- 

appeared. The mixture was then cooled to room temperature and 

diluted to the mark. 

Ten ml of the clear, supernatant solution were pipetted into 

a 300 ml Erlenmeyer flask. Ten ml of nitric acid were added, and 

ammonium hydroxide was added until the precipitate that formed 

dissolved only slowly on vigorous stirring. The solution was di- 

luted to 100 ml and cooled down to 25 to 30° C. If the sample 
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would not give a precipitate with NH40H it was made slightly alk- 

aline by adding a drop of methyl orange with NH4OH (1 + 7) and 

then slightly acid with HNO3 (1 + 3). 

A molybdate solution was prepared by dissolving 100 g of 

Mo in a solution of 144 ml of NH4011, and 271 ml of R20, cooling 

and pouring into a cool solution of 489 ml of 1iNO3 in 1148 ml of 

H20. To 100 ml of this stock solution 5 ml of HNO3 were added and 

the solution filtered just before using. 

The molybdate solution was added according to the following 

schedule: 

Range of % P205 M1 molybdate solution 

0 - 5 20 - 25 

5 - 20 30 - 35 

20 - 35 40 - 45 

The sample was placed in a shaking apparatus and shaken for 

30 minutes at room temperature. The solution was decanted at 

once through a cone vacuum filter and the precipitate was washed 

by decantation. The precipitate was transferred to the filter and 

washed under suction with carbon dioxide free distilled water un- 

til the filtrate was acid-free. The filtrate was tested by adding 

one drop of phenolphthalein to a 10 cc test tube which was placed 

so as to catch the filtrate. The pink color had to be retained. 

The precipitate and paper were transferred to the 300 ml Er- 

lenmeyer in which the precipitation was done. Standard _,Ta0H 

(0.324 N) was added to dissolve the precipitate, but not over 

3 ml excess was used. The solution was back titrated with 0.324 N 

standard !C1 using phenolphthalein as the indicator. 
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c. Water Soluble P205. 

One gram of sample was weighed and placed on an 11 cm fil- 

ter paper on a 9 cm Buchner funnel and washed with successive 

small portions of H20 under suction until the filtrate measured 

about 200 ml. The filtrate was transferred to a 250 ml volumet- 

ric flask, diluted to the mark, and mixed well. The determina- 

tion of per cent of P205 is exactly as for total P205. 

d, Citrate Insoluble P205. 

After the water soluble P205 was removed as before, the fil- 

ter and residue were transferred to a 200 ml volumetric flask con- 

taining 100 ml ammonium citrate solution which was heated previ- 

ously to 650 C. The flask was closed tightly with a smooth rub- 

ber stopper and shaken vigorously until the filter paper was re- 

duced to a pulp. It was then placed in a water bath regulated to 

maintain the temperature at exactly 65° C. The level of water in 

the bath was kept above that of the citrate solution in the vol- 

.umetric flask which was shaken every five minutes. At the expir- 

ation of exactly one hour from the time the filter and residue 

were introduced, the flask was removed from the bath and the con- 

tents were filtered immediately by suction as rapidly as possible 

through 9 cm Whatman No. 5 filter paper. The precipitate was 

washed with water at 650 C. until the volume was about 750 ml. 

Time was allowed for thorough draining before a new portion of 

water was added. The wet filter with its contents was transferred 

to the 200 ml volumetric flask and the per cent P205 determined 

exactly as for total P205. 
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The purpose of acidulating phosphate rock is to convert the 

phosphate in the mineral, apatite, into forms which are available 

to plants. Mono-calcium phosphate, which is water soluble, and 

di-calcium phosphate, which is soluble in neutral ammonium cit- 

rate solutions, are considered to be available. The main reac- 

tion forming mono-calcium phosphate may be represented as fol- 

lows: 

Ca10F2(1)04)6 + 7H2SO4 + 3H20--0.-70aSO4 + 3CaH4(PO4)2.H20 + 2HF 

The main reaction forming di-calcium phosphate may be represented 

thus: 

Cal0F2(PO4)6 + 4H2304 + 12H20-_,...4CaSO4 + 6CaHPO4.21120 + 2HP 

If the reaction forming di-calcium phosphate was attained, the 

amount of sulfuric acid reqUired would only be about one-half as 

great as that necessary for the reaction forming mono-calcium 

phosphate. The reaction forming di-calcium phosphate is very dif- 

ficult to attain, and the final product nearly always consists of 

a mixture of mono-calcium phosphate and undecomposed phosphate 

rock. 

Thermodynamic feasibility of the di-calcium phosphate reac- 

tion was studied. From free energy calculations, the reaction 

appeared possible. 

The main object of the present investigation was to find a 

way of producing di-calcium phosphate from phosphate rock and 

sulfuric acid. Two approaches were used. In the first, the ef- 

fect of various mineral salts of potassium, magnesium, and alumi- 

num on the acidulation of phosphate rock was studied. In the 

second, an autoclave process involving the use of moderate pres- 



sures was investigated. 

None of the mineral salts used in this study had an appreci- 

able effect on the reactions during the acidulation of phosphate 

rock except Al2(804)F.(N114)2804.#24112A which had a slight effect. 

In the second part of this work, phosphate rock was acidu- 

lated with a quantity of sulfuric acid slightly in excess of that 

required to form di-calcium phosphate but much less than that re. 

quired to form mono-calcium phosphate. This partially acidulated 

rock was then autoclaved under various conditions of temperature, 

pressure, moisture content, particle size, and for various lengths 

of time. The optimum conditions were found to include pressures 

above 25 psig; low moisture contents of three per cent or less; 

temperatures corresponding to this moisture content and pressure, 

130° to 140° 0.; particle size less than 70 mesh, and reaction 

time of 30 minutes. Under these conditions, the conversion of 

phosphate to available forms increased from 77 per cent in the 

partially acidulated rock before autoclaving to 92 per cent after 

autoclaving. Of the total phosphate in the autoclaved material, 

10 per cent was present as water soluble P205 (mono-calcium phos- 

phate), 82 per cent as citrate soluble (di-calcium phosphate), 

and 8 per cent as citrate insoluble P205. 


