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ABSTRACT

This thesis has tow sections. Part 1 deals with the
literature survey and the development of new techniques to
handle search problems. Since the effectiveness of the search
procedure is characterized by its rate of convergencé, mﬁch
of research work has been and are still being done to reduce
fhe computatidnltime. An attempt was made to solve one-
dimensional search problems for convex functions by bisecting
the enveloping cone of the function and then rotating it till
the bisector becomes vertical, The generalization of this
new method for any unimodal function by coupling with Fibonacci
search was also discussed. This approach essentially cuts
down the total number of experiments required to reach at
optimum., A new method for multi-dimensional search problems
based on thé intersection of Quadratips passing through the
line-optimums in co-ordinate directions was developed and
exemplified along with the ¢omparison with other standard
methods to show its efficiency.

In the second section, 2 case study was made with a view
to show how operations research technique can be applied to
formulate and solve certaiﬂ wage incentive problems. Since
the baéic problem in an incentive scheme is to define the base
" level efficiency from which the incentive should start and
also the incentive rates, the problem was formulated with the

objective as to minimize the variance between the optimum base



level efficiency and the current different efficiencies 6f
various departments. A constraint was that the total incentiv
to be paid to the workers must not exceed the current over-
time expenses. This problem was solved by Generalized Reduced

Gradient method and separable programming.
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CHAPTER 1
LITERATURE SURVEY ON SEARCH TZCHNIQUES

1l.1 Introduction

Search for the optimum is the main objective of all
~decision problems, whether constrained or unconsitrained. 1In
fact, constrained problems can be converted into unconstrained
ones., The simplest form of search is that for a function
having only one variable., In general, two policies, viz,
gequential and simultaneous searches are normally used, Some
research work‘has also been done combining these two policies,
A1l these techniaues are available in different literatures.
Section 1,2 deals with the literature survey on one—-dimension-
al search, In addition, the gquadratic and cubic intervpolation
methods are also briefly discussed. The literature review
on multi-dimensional search is provided in section 1.3.
Although there exist ~ different types of searches
depending on the nature and the objective of the search, this

chapter does not cover all of them.

1.2 0One Dimenslonal Search

L

For a maximum of an unimodzal function, the second order
search in the sense that the informetion is given by pairs

of observation, was attempted by Kiefferl. He determined the



interval containing this maximum without postulating any
regularity conditions involving continuity, derivatives,
ete, This is essentially known as Fibonacei search method
which has theoretical connections with problems dating all
the.wqy back to Euclid,

A less powerful method known as Dichotomous Search2
reduces the interval of uncertainity by placing pairs of
experiments successively in the remaining interval., The ef-
fectiveness of this method grows exponentially with the
number of experiments., In a Fibonacci scheme each new ex-
periment serves to reduce the interval of uncertainity but
iJza.dichotémous.scheme it takes two new experiments to cut
down the interval of uncertainity. |

Another technique which is nearly as effective as the
Fibonacci does not require any knowledge in advance the
ﬁumber of experiments to be carried out. This is familiar as
Golden Section If[ethod2 vhich essentially déivides a segment
into two unequal parts so thét the ratio of the whole to the
larger is equal to the larger to the smaller. Buclid, him-
gelf, did this simply by a ruler and a compass.

. When the variable does not assume continuous valués
wvithin 2 given interval bf uﬁcertainly but instead is con-
fined to 2 finite number of discrete points, the Lattice
Search Technique:nsKiefferzcalls-them is used, In this case

the nunber of points are to be finite and arrangable in



some order that will moke the criterion of effectiveness
unimodal,

Oliver and Wilde3 pointed out that Kiefer's original
technique (Fibonaceci Search) is assymmetric in the sense
that the last two experiments are not located symmetrically
with respect to each other., The modified procedure developed
by Oliver et. al., is symmetric since it permits the last
experiment to be placed symmetrically with respect to the
most effective previous experiment.

Avriel anq ‘.'iilde4 developed a minimum search plan using
'Block Search Strategy' technique that can be used for any
number of experiments and for any number of blocks in the
sequence, For one experiment per block, it reduces %o the
Fibonacci étrategy. The 'Block Search Strategy' is optinal
in the sense that for a reguired final interval of uncertain-
ity and for any given number of simultaneous experiments
and blocks, it has the largest possible starting interval.

According to Berman5 his method which uses Fibonacci
numbers is optimal because 1) it does not postulate any
regularity conditions, 2) it is simpler, 3) it often re-
quires fewer number of evaluations, 4) it is self-correcting
i.e. an error in any parficular evaluation will not affect
the final result. He also exemplified some possible appli-
cation of his method,

When an arbitrary probability density function for the



distribution of maximum is glven, the problem of estimating
the optimal interval containing the location of the maximunm
of a unimodal function was investigated by Heymanns. The
gtatistical information gained by the search is used for
suqh estimation., He found that the strategies had %o be
different in accordance with the odd or even number of ex-
periments.

The minimax block search strategy presented by Avriel
and Wilde4 was further improved by them in a latter publica-
tion7 and it was shovn that this method is an excellent ap-
proximation of the previous one. This nearly optimal mini-
max golden block search method has the advantage that the
number of function evaluations need not be specifiecd in
advarnce,

When some bound on the rate of change of function of
éne variable is available, Shu,bert's8 method can be used to
locate the meximum of the function defined over a closed
interval.

Wilde and Beamer9 presented a minimax search strategy
for loczting the boundary voint of a region on a line joining
alfeasible point to an infeasible point., These stratégies,
as it were claimed, couid be useful subroutines for many
multi-dimensionai optimization algorithims,

Gottfriedlo showed that for a given interval of uncer-

tainity , the minimax separation between two points consider-



ing the distinguishibility of the function values; the
search should be terminated when the interval of uncertainity
ig less than (€2 )/{(2-P) where” is the golden ratio.

One of the new addifions in the development of search
procedures for one dimensional problems was made by Fox, et.
al.11 Their method finds three points bracketting the
minimum, fits 2 quadratic through them %to yield a fourth
point, then fits successive cubic through four points dis-
carding one at each time, until certain stop criteria are
mef. No gradient evaluations are required. This procedure
is claimed to tzke 1/2 to 3/4th less computer time than
others.

When all experiments must be run at the same‘time, i%
is necessary to use a simultaneous search plan, It ig less
effective than the seaquential plans but the experimenter,
at times, is forced to use a simultaneous plan, The inter-
vel is divided into (m+1) egual interval and the function
is evaluated at'?fpoints. The best value of function is
picked up, the interval bracketing this best velue is again
divided into m+i)divisions and the process is repeated till
1% meets the stopping criterion. For two éxperiments only,
simultaneous plan is juét as good as a sequentizl one,

Wild92 suggested that for even‘number of experiments,

search by uniform pairs which is, essentially comes under

*



simultaneous search plan is the best way as far as the de-
ployment of the expefiments are concerned.

If the objective function is continuwous and convex in
the interval of uncertainity, it is often possiﬁleifo obtain
a good estimaté of the optimum value (12) of the objective
function by using a quadratic approximation of the function
to locate the optimmﬁ point, But if in addition to the
above, the derivate of the function is available then cubic
interpolation provides a good estimate of the location of the

optimum point.

1.3 Multi Dimensional Search

The problem of locating the optimum on a multi-dimen-
sional response surface is more important than‘uni-dimensional
search since the problems encountered in the real world usu-
ally involve multi-dimensions.

With the object of finding the optimum in these types
of problems Cauchy13 first introduced the method of steepest
descent which, as a matter of fact, forms the basis for all
the searches currently in use. It was an intitutively at-
tractive idea of climbing the steepest path but because of the
inherent gifficulties ( slow convergence due to interaction
among the variables) associatéd with each new direction

being normal to the old direction, the method is not very
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efficient.

In the modified steepest descent methodl4 the step
size of the steepest descent is multiplied by 0.9 and the.
process is continued., After, say, four such repetitions of
this procedure, one step of full length is taken. In this
case, the successive directions will not be mutually ortho-
gonal,

The method of rotating the co-ordinates, as devised by
Rosenbroek15 is very effective at finding the optimum'of
a function. Instead of taking e fixed step in each direction,
Rosenbrock rotates the co-ordinate system so that one axis
points along the direction of ridge as estimated by the
previous trial, The other axes are arranged in directions
normal to the first.

For straight tyve of ridges Partan Method ®

would ap-
pear efficient. This technique which does not use gradients
can be extended to ellipsoidal functions of any number
of independent variables., TFor non ellipsoidal functions,
the Partan will work but if the function is not radially
similar on every possible cross section, it will not work,

A variant of this method was discovered independéntly
by ?owelll7. It is based on the theorem which is that be-
cause the funqtion f(g) is quadratid in the independent

variables, any line vhich passes through the optimum point%”,

intersects the members of the family of contours f£(x)=c



(constant) at equal engles. The corollary is that of the
normal at 't' to the contour f£(x)=£ (1) is parallel to the
normal at 't' to £(x)=f(t") , then the lines joining t to
j' pass through‘?'. This method gives second order conver-
gence,

18 i1

The method of sectioning or one at a time method
not always reach the maximum, even when the contours are con-
vex, Its practical value is extremely limited. It is good
for cireular contours only.

The pattern search technique of Hooke and Jeevesl9 has
had reasonable practical success, probably due to its ability
{0 follow 2 curved ridge when necessary., Mugele's

20 scheme also is a2ble to track the

"poor man's optimizer"
curved ridges., In these methods gradient evaluations are
not needed.

In case of defined gradient, Fletcher and Powell's
method21 vhich essentially is a simplified version of Davidon's
(1959) method, provides quadratic convergence and it is su-
perior to Powell's and Paritan method both in that it uses
the information determined by previous iterations and also
in that each iteration is quick and simple to carry out.
Purther more it yields the curvature of the function at the
optimum,.

Fletcher and Reeve522 conjugate gradient method is as

effective as that of Pleicher and Powell's method. In the
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latter method, storage space for H (Hessian) matrix is to be
provided while in Fletcher and Reeve's method, storage is
required for only three vectors and time for manipulating

H matrix is saved. So in problems, where '® ', the number of
variables is large, this method may be preferred to Fletcher
and Powell's method.

When derivatives are not available, Powell's me'bhod23 -
furnishes faster convergence in dealing with many variables.
The first iteration is same as that for changing one para-
meter a2t a2 time, This latter method is next modified %o
generate conjugﬁte directions by making each iteration define
e new direction ¥ and choosing the linearly independent
directions for next iterations.

Sequential simplex method is also useful to handle these
types of problems. It was introduced by Nelder and Mead24.
If has the same convergence rate as that of Powell's method.

For minimizing a sum of squares of non-linear functions
Powell's generzlized least square me'thod25 does not require
evaluation of derivatives. This method has the comparable
convergence with the classical procedure and the number of
tiﬁes the individual terms of the sum of squares have to be
calculated is approximately proportional to the number of
variables, |

In a review paper26 Fletcher discussed the efficiency of

the three different methods, viz, Davis, Swam and Campey
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method (DSC method), Powell's method and Smith's method using
some standard test functions as a basis for comparisons, All
these three methods do not regquire any calculation of deriva-
tives. DSC method is simple and effective for large numbers
of variables and when the minimum cammot Ee represented ade-
quately by a quadratic where as on the basis of function
evaluations the most efficient method is that of Powell,
However, for large number of variables it is less favorable
than DSC method. The Smith's method is generally inferior
to other methods and is acceptable only when 'm'is small (2,
3, 4). | K

BranneﬁQT showed that a return function wath a given
probebility distribution can be maxinized using an iterative
method which is somewhat analogous to Newbton's iterative
method.
| Box28 proved that as the number of variables increases,
Fletcher and Powell's method is most consistently successful
vhen the gradient is available. ZPowell's method and Fletcher
and Powell's method work substantially better with 5, 10,
20 dimension test functions than other methods though it
aésumes quadratic optimum characteristic. He has alsb
pointed out that simplex method perform better than Powell's
method in case of two-dimensions but lesser and lesser suc-

cessful as the dimension increases.
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Curtis and Powell29 discussed in detail on exchange
algarithims for calculating minimax approximation with a
view to provide a deep insight into the convergence of this
method, |

Powell's method has been criticized by Zangwill3o who in
his counter-example showed that Powell's method not only
does not converge to the minimum of a quadratic in a finite
numberof‘iteratiqns'but it will not converge in any number
of iterations., He made some modification of Powell's method
which can be useful strictly for convex function.

The variation matrix method developed by Davidon3l which
uses the inverse matrix of second derivative of any function
is the generalized form of variable metric method (Davidon,
1959). The zlgorithim is simpler and in quadratic cases,.
gradient evaluations are half the number made in variable
metric algorithim,

An algorithim for non-linear minimex approximation was
described by Osborne and Watson33 in 1969 . This 2lgorithim
was illustrated by the evaluation df several approximation
to the solution of Blasias equation.

34 to generate

An improved procedure presented by Palmer
orthogonal search vectors for use in Rosenbrock's(1960) and
Swann's (1964) ovtimization method was shown to make consider-

able savings in time and in storage recuirements. It also
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deals more satisfactorily with certain cases in which the
original method fails,

Pearson35 did an extensive numerical comparison among
Newton—Raphson Method, Fletcher and Reeves method and the
DFP method. His conclusion was that for well-bchaved function
Fletcher and Reeves method is simple and fast while for the
penalty function methods, the variable metric algorithims are
much better and operate more efficiently with reset. The
generalized Newbon-Raphson algorithim always required fewer
iterations and when it can be used, it proves 1o be the
quickest method.

Based on Davidon's method, Mielle et.a1.36 proposed a
new accelerated gradient for finding the minimum of a function.
He included one extra form < d% in the step length calcula-
tion that takes into account the change in position vector
from the iteration preceding that under consideration. He
showed that, as compared to Fletcher and Reeves method, his
method takes 25%to 40% less computation time and uses 50% to
60% less number of iterations,

The DFP method uses the approximate form of inverse of
the Hessian H matrix of objective function 'f ' using only
the gradient of '£°', Greenstadt37 showed that by sdlving
certain variational problems, formuias for successive correc-
tion to H matrix can be developed that closely resembles

Davidon's and satisfies DFP's condition,
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Using the Greenstadt's variational approach, Goldfarb38
developed a new rank - two variable metric method., Like DFP
method it preserves the positive definiteness of the H -
matrix.

BExtension of Davidon's method for minimization problem
in Hilbert space was demonstrated by Tokumaru, et.al?g by
solving optimal control problems,

Chazan and Miranker4o described an algorithim which is
suitable for execution on = parallel computer. A non-gradient
method similar to Powell's method was used and was shom
that the algorithim terminates at minimum for gquadratics
and converges for striectly convex fwice continuously dif-
ferentiable function.

The variable metric algorithim was further simplified by
, Fletcher4l and it was claimed to be superior to Fletcher and
Powell's method since it reguires less number of gradient
and function evaluations. In this method an approximation of
H matrix o G-+ matrix is kept and is updated in each iteration.

To account for the effiéiency of different techniques,
Huang and Levy4 tested two different guadratically converﬂent
algorlthlms (viz, DFP, Mecormiék, Pearson, generalized Fletcher
and Powell etc) through soveral numerical examples. All
algorithins behave identically in case of quadratic function

if high-precision arithmatic together with high accuracy in
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the one-dimension search is employed. They give same se-
gquence of points, same minimum point and require same number
of iterations. For the non-quadratic functions, the resulis
show that some of the algorithims behave identically and so
any of them can be considered as a representative of the
entire class,

A new method for minimizing a sum of squares of non-
linear functions was devised by Peckham43. It was claimed
to be more efficient than other methods in that fewer function
evaluations are regquired, _

In DFP method the objective function F (x) is assumed
strictly convex but Powell pointed out in his survey44 of
recent development of unconstrained minimization that some
better algorithins have noWw been developed. The most useful
work is that which explores algorithims that avoid subproblen
6f minimizing a function of one variable on every iteration
(e.g. large computation time, more number of function evalua-
tions, may not have function improvement and may go beyond
the constraints in case of constrained optimization). The
algorithims that provide the above features are due to in-
dependent work of Davidon31, Fiacco and McCormick45, Murtagh
and Sargent70, Wolfe7l, Bard72 and Powell73.

In 1970 Hoshino?® found that Davis, Swann and Campey
minimizaiion process may generate undesirable zig-zag searches,

He proposed a simple modified algorithim and tested it on
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some standard test functions. The number of linear searches
required were found less.,

A general convergence theorem for iterative methods for
unconstrained minimization problem was provided by Ortega
and Rheinboldt??. The key point is the concept of an es-

sentially gradient related sequence which includes the pre-
| viously studied gradient-related sequences zs well as se-
quences that arise from univariate relaxation methods,

Cohen48 discussed the rate of convergence of several
conjugate grad;ent algorithims to minimize non-linear, non-
quadratic real valued function and pointed out that in a
neighborhood of the minimum that the error, when starting
from a point of reinitialization decreases by order 2 after
‘n' steps.

Under the assumption of strict convexity, the wrojection
method of conjugate direction for solving unconstrained mini-
mization was presented by lMcCormick and Ritter49. It was
shown that it converges with (m -1) step superlinear rate.

Without making an initial estimate of the Go (the cur-
rent estimate of the inverse of H matrix), the matrix used in
variable metric algorithims, Hament, et.al?o presented 2
method that uses xizixiT matrix where Z; is a diagonal matrix

and X5 has maximal rank. The rank of X5 increases by one

at ecach iteration. This pseudo-Newton-Raphson algorithim as
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called by the zuthors, was shown to have finife convergence
for guadratic functions and asymptotic convergence for a
fairly gencral class of functions.

Unconstrained optimal control problem can be solved
using a gradient algorithim in terms of numerieal integration
formula, the precision of which is controlled adaptively by
a test that ensures convergence, This was shown by Klessig
and Polak’l., Their empirical resulte exhibits that their
algorithim is considerably faster than its precision counter-
part.

The rate of convergence ofizoutendijk'ss2 two proce-
dures wére studied and hence two modified methods were devel-
oped by Pinonneau and Polak53. It is shown that under con-
vexity assumption their method converge linearly while
Zoutendijk's procedure converge sublinearly.

The method of changing one variable‘at 2 time is not an
efficient method since the searches are made along the co-
ordinate directions in seoguence and the search path fends
to 2 closed loop. On this loop the gradient of the objective
fUncti?n is bounded away from zero., According o Powell54
-3 this Eféia alone is rather unimportant. %hat is important
is the success of the algorithims depend on the properties

that are not shared by the method that changes one variable

at a time.
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The conditions under which Huang's conjugate gradient
method generates descent directions were discussed by Spedi-
cat055. Bounds for the condition number of the inverse
Hemian matrix were estimated for the case of a.symmetric
matrix, _
Adachi56 also found the same thing, i.e., for quadratic
functions, search directioﬁs are same for all algorithims .
and they are independent of parameters., They generate unique
sequence of minimizing points for the given initial condi-
tions.if the objective function is quadratic,

7 In minimizing interior penalty function, most of the
computational time is spent on one-dimensional search, Lasdom
etqal?7 presented a method that performs this search on bar-
rier function which is significantly faster than current
techniques., This method exploits the special'structure of
varrier functions.

Algorithims for changing the step size efficiently was
proposed by Kroghsain' the year 1973. He compared the good
‘and bad features of approximately 10 different ways for
rchanging the step size. He also provided an efficient alf
gorithim for the difference formulations of a frequently
used halving and doubling process.

Sayama and Takamatsusg found that with the increase in

dimensions, the disadvantage of DFP method isrthe computer
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storage problem that increases with number of iterations.
In this paper this disadvantage was shown to overcome by
formulating the direction of one-dimensional search by means
of integral kernels to have a new computation scheme, This
may be used for large number of dimensions as well as to
obtain high precision for problems having ten number of
dimensions.

Bertsekas and Mitterso proposed a new algorithim, the
E - subgradient method, a large step, double iterative algori-
thim which converges ranidly under very generzal assumptioh
for optimization problems with non-differentiable cost-
functions. -They discussed the azpplication of this algérithim
in some non-linear problems and optimum control and showed
that E - subgradient method'contains as a special case of a
mini-max aigorithim.

Numerical experiments on Dual Matrix algorithims are
done by Huang and Chambliss61 for function minimization.
The four algorithims were characterised by the simultaneous
use of two matrices and by the property that the one-dimen-
sional search for the optimal step size is not needed for
coﬁvergence. For quadratic function with wm variables it
needs.at most (m+1 ) number of iterations. These algorithims
viere tested on foﬁr non-cuadratic test-functions and exhibited

satisfactory convergence properties and compare favorably



with the corresponding quadratically convergent algorithims
using one-dimensional search procedure to obtain optimal
step size. The reverse one out of 4 algorithims was found
best. It requires least number of iterations and least
sensitive to step size.

Larichev and Gorvit562

carried out similar kind compari-
son test among different search methods vix, steepesi descent,
accelerated Partan method, conjugete gradient and Davidon's
method using several test functions, Davidon's was the best
found in terms of minimum function value and number of itera-
tions.

The modified one-at-a-time optimization procedure intro-
duced by Findlay63 is baged on assuming that a partial optimal
value of one variable is a linear function of the other in-
dgpendent variables. The essence of this method is to observe
the effects of each variable combined with some interactions
of that varizble. The number of trials required was found
more than Rosenbrock method but less than gradient method
in his study.

Baranger and Te:nam64 in 1975 discussed at length
about non-convex optimization problems. The main resuld
is that for almost 2ll values of the parameter, the optimi-
zetion problem possesses ot least one solution.

The algorithim for unconstrained optimization that do

not use line searches was developed by Davidon65. This
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method uses the JJ' instead of using H matrix and only store
and update the Jacobian matrix J .,

Exact solution of one-dimensional éaarch for solving
problems using DIFP method is not always necessafy to cover
the practical situation where only approximate solutions

$0 the line searches can be found. Lenardss

discovered a
class of methods wvhich have m - step quadratic convergence
rate when restarted even if the line search is not exact,

An algorithim for unconstrained minimization of a func-
tion of m variables that does not require the evaluation of
partial derivétives was presented by Mifflin67. It is a
second order extension of the method of local variations
which makes the algorithim an approximate Newton method,

Its convergence is superlinear for a twice continuously dif-
ferentiable strongly convex function.

68 recentlf developed a method that was claimed o

Best
have cubic rate of convergence. The procedure involves ‘n’
step optimization using any appropriate optimization pro-
dedure which is followed by a specizl step and then another
' m' iterations of the underlying algorithim followed by a
second special step, This pattern is then repeated. The
special step is interpreted as an approximation o Newbon
stev. After a certain number of iteration this step size

procedure will always use = step size of one.

With the object of comparing the different techniques



i
of unconstrained optimization effectively Shanno and Phua69
took into account the overhead as well as function evalua- .

tions., This new method eliminates much of the machine de-

pendency of earlier criteria.
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CHAPTER II

A NEW SEARCH TECHNIQUE

2.1 Introduction

The problems involving optimization of only one dimen-
sion are rarely encountered in real world., On the other hangd,
almost all search oriented multi-dimensional optimization
problems, whether constrained or unconstrained need
one dimensional search for its solution. In fact a large
part of the computation time of solving multi-dimensional
problems is taken by the one-~dimensional search. So cutting
dovm the coﬁputation time of one-dimensional search has the
direct bearing on the reduction of computaﬁion time of multi-
dimensional problems since these types of problems use one-
dimensional search more than once.
| 0f the many techniques currently used for one dimensionzal
gearch, Fibonacei search is the most powerful technigue fol-
lowed by Golden section because they do not assume any regular-
ity conditions i.e. convexity, continuity, existence of de-
rivative of function etc., Fibonacci method converges faster
tﬁan any other method. It is apparent from Fig. 2.1 which
shows the relationship; 5etween the interval of uncertainity
and the number of-eXperiments, that for the first few experi-
ments, the rate of convergence is very fast but after that

(say, about 9 experiments), as the interval of uncertainity
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Figure 2,2 One Dimensional search for finding the maximum

by  this Method,
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becomes smaller and smaller, the rate of convergence becomes
asymptotic.

A new approach to solve one-dimensional problem is
discussed in section 2.2 and how this asymptotic convergence
rate can be overcome using the combination of the new method
and Pibonacci method, has been discussed in section 2.3,

The new method for solving multi-dimensional problems is
provided in section 2.4 with two examples and the comparison
of this method with the standard methods has been made and

presented in section 2.5.

2.2 HMethod of Bisecting the Envelope of One-Dimensional Function

In case of convex function, peak value can be obtained
by bisecting the envelope i.e. the tangent cone of the func-
tion and rotating the cone along the curve till the bisector
becomes vertical. The point of intersection of the bisector
and the zbscissa gives the optimum point since the tangent
at the point of intersection of the bisector with the curve
becomes horizontal. Even when the function is unknovm, this
method can be used to determine the optimum,

Method:

Lef y = f£(x) be the convex function as shown in Fig. 2e2
by the curve BGC in an interval be.

AB.and AC are the two tangents at B&C fBSpectively to

form the enveloping cone. Thus tan ¢, and tan ¢, are known



when the functions are knovm or they can be calculated nu-
merically by running two experiments one at b and the other

at b+ Ax and other two experiments one at ¢ and the other at

c+ A X.
Now, tan@= f£(b)-f(c) s, 9= tan’l [ £(b)-7(e) ]

Cc— ¢ - Db
Using £(b) , £(c) and slopes of AB and AC, theeqns. of AB and
AC can be determined and solving them co-ordinate of A can
be calculated.

Now dy= ¢,+0 and o= P, - O and since AP bisects

A, =B = 90 - (A +&;
LAy B=5=90 (+)

- The inclination of AP =Y = [ 180°- ( d+4;)]
The angle to be rotated =AY = [90° - 1]
When slope of AB is less than slope of AC i.e. when
Ao is greater than «,, the optimum lies in the obtuse
angle side of AP when /¥ is acute. On the.other hand if
& o is less than Xy i.e. when slope of‘ AB is greater than
slope of AC with the /¥ being acute, the optimum lies on the

acute angle side of the AP,

Case I LA, >4d1

This case is shown in Fig. 2.2. The cone ABC is rotated
along the curve maintaining AC always tangent to the curve
through an angle AY to make the bisector AD vertical. In

that case, A will be shifted to A'.



Figure 2.3 One Dimensional search for finding the minimum

by this Method.

Y



The amount of shift from point A is given by
AC COSPy - AC €OS (- AY)
ac [cosd, - cos (P~ AY)

S = Shift

= Ya-f ¢)
—ﬁ [ cos¢-cos (P -ay )

Since XA and YA’ the co-ordinates of A are known
" Xoptimum = X, - S
Yoptimum = f(Xoptirmum)
Case II
When 0(2 is less than «;, and /¥ is acute, the optimum
lies within the inner triangle. Using the same procedure
i.e. knowing the points B and C, the parameterstPl,q)z,d]J
o1 ﬁl’ B Co-ordinate of A and the angle AY are determined.
It is important to note here that, as in the previous
case, if the cone is rotated through AY, the optimum will
be obtzined within the triangle ACD which is not true.
In this case the optimun lies within the A ADF and the angle
of rotation required is AY¥/, (i.e. the rotation required
by the bisector Aﬁ of the angle DAF of A ADF till this new
bisector becomes vertical).
Shift = AB COS5(o - @) - AB [COS(-0- —4%)]
~ Xoptimum = X, - Shift
Examples:

Two problems were solved to illustrate the application
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of this methodology for both the cases., Example 1 is a
maximization problem and example 2 is a minimization problem,
The detail calculations etc. are provided in Appendix 1,

The results are summarized below.

Function Optimum Point Optimum Point Difference in
by the New ~ by Other Function
Method Method Evaluation

Max: |

Gads Lxys8y? X= 15939 x= 1.6 .0005

-16K+§¥46 y= 1.2005 y= 1.2

s x= 1.5645 x= 1.6 0.0047

X
Yze -5% v= -3,0422 y= =3.0469

It may be noted here that this method gives optimum in
one step while the other standard methods requires several

iterations to reach the optimum.

2,3 Generalization of thls HNethod

I+ has been shovm that for convex functions this method
works well but for non-conveik unimodzal functions having in-
flection points, this method can be effectively used in con-

bination vwith Fibonacci method.

Tt is truec that near the optimum, the function is convex.

OQutside this convex region bracketting the optimum, noise



Figure 2.3B Combination of Fibonaccl Search and this
-Method to reach optimum,

.Notes
1) AB is the original interval of uncertainity, Initial

reduction from AB to CD can be done by Fibonacci Search,

2) To reach at the optimum point,from CD, this Method
can be used,
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in terms of inflection points exists. So the problem can be
divided into two parts. In the first part noise can be elimi-
nated using Fibonacci search which provides fast rate of con-
vergence before it becomes asymptotic. In the second part,
the new method can<be used to caleulate the optimum,

In the above discussion the problem is how to ascertain
the domain of convex region that brackets the optimum, The
researcher from his'experience and the knowledge of the
experiment can assume a certain percentage (say 10% to 15%)
of the intervél of uncertainity for this purpose leaving
the rest of if 85%-90%) for Fibonacci Search (Ref. Fig. 2.3B).

Thus, by the proceés of coupling this method with Fi-
bonacei search, we can overcome the asymptotic disadvantage
of Fibonacci Search and cut dovm the total number of experi-

ments, This is essentizlly an economic advantage.



APPFEDIX 1
Examnle 1:
Maximization problum.
Max. 5£ihxy+8yz—lCX+By—l6=0
Differentiating  1Ox+lLy+4xy'+1l6yy'-16+8y'=0

or y' dy_ 8-5x

dx 2x 8y L
(g;z) _ 8-20 .-1=245°
dx/4,0 8 4
(.d_x - .5-—----.---_-:2:33.69q
dx/o,1” 8L 3
tan® = 0-1 _0.25=14.0356°
T
v &

%2 =33,69%14.036° i 3
= 47.726°
ody= 45%-14.036250.964°
o - -
ﬁl:ﬂa:go = ZF?U?EGEDOI9U&=50.655O

< ¥ = 180% (45° 50.655°k3,. 345°

o+ Angle to be rotated==5.655°

Co-ordinate of A. y -1 .....edn. of AC

(Fig 2.2] Sl solving:x, = 1.8
& y-1_ 2 .....eqn. of AB _—
X 5 Yp= Ea e

o Due to rotation along the curve maintaining the tangency the

lateral (L.H.sid@ shift

AC cosl5°-AC cosQ;50—5.6550)
AC [905450— cos 59-3&5]
AC x  -.0662357

YA

x -.0662357 = -0.20607
sin45
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x0= X01:>tim1m = XA" «20607 =1.593593

exact X,=1.6

A
Example 2
Minimization problen.
Min. y= e* -5x
at Xw-l y=e %5=5.36788
at x= 3 y=e’ -15=5.08554
dy.e -5

dx
.o fdy e_1—5 ==L4.65212=tan 77. 8180
dxJx=145.3 :
hi

& [dy _ e’ -5=15,08554 = tan 86.207°
d.X X=3,50030|

Ref. Fic.2.3A, Slove of BC= 5.0855..-5.36785=0.070585
>+l
=tan 4.0575°

d1=86.20'?+4.038=90.2450
df;dz
ctz:7'?.819,-::.03%73.780 .. The ortimum +ill
: be on the sare side
of the inclinntion
of th- centor line
AD of cona. '

A=B, 180°- (@ +d) =90°- 82.012=7.988
B 2

&, =190°- [ +8,)=130°- 90.245-7.9%8= 81.767°

" Slove of AD =& +.058 =85.805
tan 85.805° = 13.6337
Equation of AB ¢ y-5.03554 15.03554 X=3
Zquation of AC . y-5.36758 =4.6212 x 1

Solving X,=2.0746  and = -8.,9746

I



o= l} ] -

When AB is rotated and translated through % s, 'A' moves away from AF
and 'G' moves toward AF. |
. . Horizontal shift =AB Cos 86.207 - AB Cos (86.207° - 2.0975)

Nou AB =[3-2.0746° (5.0855 8.8746) = 13.985

Hence Horizontal shift required=15.985[.066152-.10262]
=0,51

v xopt-.-2.0746 -0.51 =1.5645

and Yopﬁg -3.0422
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CHAPTER III
LITERATURE SURVEY ON WAGE INCENTIVE PLANS

3.1 Introduction

Although there is no dearth of literature available on
wage incentive plans, I have not found any literature that
deals with the application'of operations research on the formu-
lation and solution of decision problems with regard to wage
incentive. The probable reason may be that the decisions like
the base level efficiency or the incentive rate etc. are, in
most of the cases, settled between the management and the union
éccross the table., In section 3.2 the standard techniques of
wage incentives are discussed briefly. Section 3.3 provides
the general literature survey on different types of incentive
plans, .

Since each plan has to be tailored to suit a parti-
cular condition of each organization and it should be such
as to satisgy other objectives of the organization like the
employment éondition, wage structure and gquality of the product.
There is a scope for application of standard optimization
techniques for the opfimum choice of the incentive plan,

3.2 Standard Technioues of Wase Incentive - Payment by
Results,

Usually, payment by results, are classified in four
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main groups in accordance with whether worker®s earnings
vary 1) in the same proportion as output

2) proportionally less than output

3) proportionally more than output

4) in proportions which differ at different levels of

output.

The most common system of payment is the straight piece-
work system that comes under the category l. It may be ap-
plied to individuals or to group of workers, the worker is
paid at a specified rate per unit of output. Direct labor
coat per ﬁnit of output remains constant when output increases
above standard but fhe total unit costs decrease because
fixed and semi-variable overhead unit costs decreasel; Var-
iations in workers earnings and direct labor costs are showm
in Fig. 3.1l.

When it is difficult to set the job standards accurate-
1y, the worker usually shares with his employer the gains or
losses that result due to change of output. All schemes
under category 2 have this characteristic, i.e., they all
possess less motivating rewardthan straight piece work
system., Under the Halsey System, the worker is guaraﬁteed a
minimum wage even when his output falls below standard.

But if the job is completed in less than standard time, the
worker is paid at his time rate for the actual time taken

and, in addition, receives a bonus payment ai his time rate
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for a specified percentage of time saved (usually varies
from 30% to 70%). The variations in worker's earning and
direct labor costs are shown in Fig, 3.2. In the Rowan System
bonus is similarly paid for any time saved. The bonus takes
the form of a percentage of the worker's time rate, This
percentage is equal to the proportion which the time saved
forms of standard time, The characteristics of the earnings
and direct labor cost curves for the "low task and standard
task under this system is showvn in Fig. 3.3. The Birth
variable sharing system is similar to the Halsey and Rowan
Systems but does not providé for a guaranteed time rate.

The worker's pay is ascertained by multiplying the standard
hour by the number of hours actually taken to do the job,
taking the square root of the product and multiplying by the

worker's hourly rate. The characteristics of the earnings

end direct labor cost curves for low task and for standard
task are shown in Fig. 3.4. Under the Bedaux system, each
minute of allowed time is called a point, thus making in all
480 points in an 8-hour day. A standard number of points

is specified for the completion of each. job. The worker
receives, in addition to his hourly or daily rate, a bonus
which is, under the original Bedaux system, equal to 75%

of the number of points earned in excess of 60 per hour
multiplied by one sixtieth of the worker's hourly rate.

Fig., 3.5 shows the variations in earnings and direct labor
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costs under this system,

In category 3, the high piece-rate system provides the
vorker's earnings in proportion to output as under straight
piece-work but the increment in earnings for each increase
in output is greater. The characteristics of this system
are shown in Figure 3.6.

A great many varieties of systems under category 4 have
been developed. The most important ones are a) the Taylor
Differential Piece-Rate System, b) the Merrick Differential
Piece-Rate System, ¢) the Gantt Task System, and d) the
Emerson Empiric or Efficiency System.

In 211 these systems earningé vary from minimum to maxi-
mum at different levels of output. EZarnings for part of the
range may vary proportionally less than output and for another
part proportionally more, or more usually in the same pro-

portion as output.

3.3 Review on Different Tyves of Plans

Increased labor productivity is the fundamental require-
ment for an incfeased material standard of living. Holt2
showed a simple mathematical model that there exisis a
definite relationship bétween overall efficiency and labor
productivity. Other input factors held constant, efficiency

rises with the increase in labor productivity. By this
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model, it is also possible to calculate the amount of in-
vestment to be made for the replacement of equipment when
the rise in labor productivity'is knovm,

The basis for the incentive scheme for the restricted
work (i.e. restricted by the process or the machine perfor-
mance ) should be quite different from that for the unrestrict-
ed work, Schiebs pointed out that variation in the performance
time is precluded by the natu?e of the operation., He suggested
five approaches that should be followed by the Industrial
Enginecr for the design of incentive schemes in such situations.

Seidel4 demonstrated a simple technique how nmuch the
increase in labor wage incentive can be paid in the next year
if the sales, labor force requirement and other cost data are
knowvn for the current year and next year; Using this method
decisions relating to the incentive rate or increase in labor
wages a replacement of equipment can be taken very easily
and effectively.

" Like Seheib, the disadvantages associated with the
straight standard hour system as a basis of incentive plan were
also shown by Haltys who develéped a new system that gives
us a mathematical equation to calculate the earning index,
taking into account a variable machine incentive allowance.

O'Connox_'6 stresses on the unique position of standard

time as the most important part of the incentive plan, He



explained the merits and demerits of straight piece work and
geared linear plans for incentive plan. When there exists
some doubt about the accuracy of the time standard, his recom-
mendation was to adopt his curvilinear type of incentive plan.
Usually labor productivity varies with respect to time

7 showed how these indices

in a particular organization. Nassi
with respect to time which are known as 'index of Laspeyres!
and 'index of Paasche' can be calculated. He has also shown
how to measure the performancerindex of lethod study and
standard department in terms of work éaved per unit of time,
Incentives also can be applied for quality improvement.
This was sﬁown by Mehra, et al,e by linking the scheme with
the acceptance sampling incentive plan, The wage, inclusive
of incentive would be computed using game theory approach.

0 presented

With this same objective, Nandi and Nair
a quality incentive plan for an operator which wes &esignéd
based on cost equations of the sampling plan and management
policy without increasing the total cost per lot.

Success of the incentive scheme depends on the consist-
ency of time data among some other factors., Grofflo pointed
oﬁt that the standard outoput rate obtained by time study
is not always optimal éince besf output rate for standard
is simply influenced by the incentive plan for which the data

is intended. He presented an incentive plan considering the
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efefet of selected output response patterns énd cost structures
on optimal standard level.

Expensive dovntime, at times poses a problem to the
management, particularly, in line paced operation. James11
showed how to alleviate this problem by iﬁtroducing incentive

in the system,
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CHAPTER IV

APPLICATION OF COPERATIONS RESEARCH TECHNIQUES TO
FORIULATE AND SOLVE AN INCENTIVE PROBLEM -- A CASE STUDY

4,1 Introduction

This chapter is primarily concerned with the application
of some optimization techniques to solve some decision problems
regarding wage incentive scheme, This is essentially a case
study. In this section the management's problem and policy
have been discussed., In section 4.2 and 4.3, the formulation
and solution of the problems are provided. In this case study,
a situation in a light engineering concern has been considered
wherein the management is currentiy scheduling overtime hours
to meet its ﬁroduction schedule, It wants to put a stop to
giving overtime and get the. same or more production without
overtime through the installation of an incentive plan that
will eventually imorove operator's efficiency, increase machine
utilization accompanied by less power consumption.

Management does not want the worker's weekly paycheck
.to be affected. By having the same outputlduring normal
working hours, it hogés to reduce the overhead expenses as-
sociated with having the firm work longer hours.

In this particular case, it is proposed that for twelve
departments and for two groups of workers in ecach depértment,
namely .skilled and unskilled owrker, group incentive plan

is suitable.
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4,2 Problem Formulation

The following nomenclatures were used for the formula-

~ tion of
Ny

I3
|

Crei

¥i j

ki

ki j

*k+1

%

It

the problem:

n

I

]

Total number of workers in Group K in the depariment
- B

Total number of operations done in department i.
Proposed base level efficiency in % from which
incentive should start.

Current efficicney in % of Group k in the department
i,

Total number of units produced by Group k for jth
operation in the department after the implimentation
of incentive scheme,

Input labor hours by kth group of workers in the

department i.

Standard time in hours per unit for jth operation
done in the department i by kth group of worker.
Incentive rate per point rise in efficiency per
hour (i.e. 8/%/hr,) for kth group of workers.

Average overtime in $ paid per hour to Group k.

is 2lso desired that x,, the proposcd base level



-50-

efficiency should be same for all groups of w&rker.
So the desired objective function is to :

Minimize > 2> Nki(xl - cki)2
k i

Constraints:
(1) Total incentive to be paid must not exceed the total

overtime payment, i.e.

3% U .. . '
) [ i kij “kij- ]
- X d for k = 1,2
Z: £ Mg 1 ka1 € % ’

Egsentially Ukijtkij/Hkigivesther@wrefficiencies of
two groups (k = 1 and 2). -If they are defined as
Cii and Cyy then (Cl" x1) and (C2i - xl) are the total
rise in efficiencies by two groups of workers for ith
department after the implementation of the scheme,

(2) Again to have good motivation, the incentive rate should
not be less than the 'per hour wage' evaluated on per
point ba51s at the optimum base level efflclency, i,e,

W,
k - .
Xpil 2% | where vy is the average wage rate

for kth group of workers.
This is quite clear from the relationship (line BC) showm
in Figure 4.1. |
The number of workmen for the two groups and for twelve
departments are shovm in Appendix 3. After time study, the

current performance index (P.I.) ;.e. Cikl and cik2 of the
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Fig. 4.1 Relationship between the earnings and performance

index under the proposed incentive schene,

Note: Guaranteed minimum wageisW even when the oufput falls
below the base level efficiency A. The slope of BC (i.e. the
incentive rate) is greater than the slope of 0B. This pro-
vides greater motivation. Comstraint 2 is essentially de-

rived from this condition.
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two groups for each department are evaluated and provided in

the same Appendix 3. It also has been found that the manage-

ment gets the same output if the two groups of workers work

at 105% and 100% P,I, during normal working hours, The wage

rate for skilled and unskilled groups of workers are assumed as

34 and $3 per hour respectively, From the past records in the

account section, the overtime earning per hour per worker

for the two groups are found to be $2 and $1.50 respectively.
So using those data the problem is rewritten as:

Z = 10(x1-78)2+ 20(x1-68)2_+ 18(x1—82)2 + 28(x1-85)2+ 5(x1-83)2

+

5(x,-69)% + 40(2,-95)% + 5(x=75)% + BO(x;-80)% + 10(x,-96)°
+ 20(xl—91)2+ 10(x1-65)2+ 3o(x1-71)2+ 20(x,~66)°+ 40(x1—76)2
+ 32(x,=75)%+ 10(x;-78)%4+ 10(x;-65)%+ 60(2,-89)%+ 10(x,-69)°

+ 60(x1-72)2+ 5(x1-90)2+ 10(x1-85)2+ 5(;.:1-52)2 . . . eqn.(4.1)

S.T. (105-xy)%,& 2 . » o ean. (4.2)

(100—::1)}:3 1.5 . . . eqn. (4.3)

A

X5 3 . . . o ean. (4.4)

X3 2 v . . o ean. (4.5)

RS T K

= C_ = Optimun base level efficiency in ot

Incentive rate per point rise per hour for
skilled group (3/%/hr.)

n-

X Tncentive rate per point rise per hour for
3 unskilled group.. %$/%/hr.)
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4,3 Generalized Reduced Gradient Formulation

To solve the above problem by the GRG method, the ob-
jective functions and the constraints may be represented by:
Maximize {o(%)

Subject to the constrainfs
f(¥) =0
a2 ¢ % £ b

Any inequality constraints can be converted into equality
constraints using the standard procedure of adding slack
variables and éhanging the sign, if necessary.

The basic underlying principle of this technique is to
change the constrained oPtimizationlproblem into an uncon-
"strained one, This is done by dividihg the solution vector
components into two groups, independent (X) and dependent
(7). The dependent variables denoted by the vector § are
solved in ferms of independent vector X, through the constrain
functions.

Therefore on this basis the constraints may be rewritten
as:

F(x) =T (% 7 =0
Solving ¥ = b () .

The objective function alsb:i; rewritten in terms of

% and ¥ and substituting the value of_§ in that one gets

£, =1.(5,5) = £,(%,®R)) =F(H)
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Hence the problem is to maximize

FCO
Subject to 3¢ xg¢b
Since F(X)= {4 &V)

.. The reduced gradient can be evaluated as:

OF = f + - 5%
ox  9x ay %

OF is determined indirectly from the constraints.
x

i =f@EP=0
- 3f ,f 3V .

L -——— ® == -

2K oy ax

or g: = ""[ ay] [ ]

." g-rz _g_g — %fi_ B{o[ J

The conditions that determine en optimum solution, X"

are as given below (for all j)

OF =0 if 2y < xj*<bj

+
o/
=

o
[N
Hy
"

*
[
o

o)
+
"
x
1
o
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SLOPE: V@ SLOPE=0

SLOPE :j-ve

—

o .y oF
Slope: -ve satisfies condition =
X ¥
J
_ _——— v 10 OF
Slope =0 satisfies condition S5%F =
JF

Slope:+ve satisfies condition ==

Fig, 4.2 Graphical representation of the

used in GRG technique.

0 if x.,¥ = a
Ll i

0 if ¢ w:*¥<D
1T 8y4<Xy7< Py

0 if x* =D

J J

optimum conditions
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These conditions are graphically represented in Fig. 4.2,

The underlying assumptions for this alogrithim are
that for a given iteration

1) There exists a set of dependent variables contained

within the boundary conditions

2) The Jacobian ﬁﬁl is non-singular.,

Y

Using the above information, the basic GRG algorithims
can be stated in five steps which are provided in the flow
chart (Appendix 4).

Theoretically, the stopping condition is when the pro-
jected reduced gradient Pi0 =0, i =3, eees N-U, vhere N is
the number of variables in the original objective function
and M is the number of constraints, N-M being the reduced
dimension.

In practice, the following three stopning criteria are

employed,

1) I8l =%y <&
i1
o
2) Fi < €, 1=1,2,7 """ (N-M)

3 |EGH-L& T <&
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TABLE 4,1

RESULTS OBTAINED BY GRG METHOD USING THREE
DIFFERENT STARTING POINTS

‘Run -Starting Solution Function Norm  AF{ ETA No. of
No. Values Value of Iterns.
Reduced
Gradient

1 - x1=85% '

Xp=+03 Job Abandoned - 8
x3= .03
5
3 x1=75% xl=79.27
xy= .04 xy= 04 04276X10 - 0.0 0.0 0.0 7

Note: 1) In Run # 2, the termination occured since same function
values are obtained in the last two iterations before i%
meets the other stopping criteria.

2) AFl= 3 |Pj(e; - x)| whenP; <O  Where P; is the
gradient of the

= 5 |Eydny - xi)l when P; > 0
- function with

ETA = Max. |P;(a; - x )| fon B <O respect to the

or Max: P. (b, - x.) fon Py >0  variable,
i‘vi i 1
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4.4 Solution of the Inecentive Problem by G.,R.G. Method

The incentive problem as formulated in section 4.2 was
solved by GRG method using the GREG program which was develop-
ed by Abadie and his associates of Electricite de France.

The program was run thricé using three different starting
values (Table 4.1)., The number of iterations required, the
optimum value of the variables and the value of the objective
function etc. are given in Table 4.1, Appendices 5-7 are the
computer printout for the three runs which provide the other
informations 1ike the stopping criteris ete,

The variable X3y i.é. éhe incentive rate for unskilled
group, assumes the same optimal value as the sfarting‘value
in both the feasible runs although the function wvalues are
same. Hence it may be concluded that the objective function

is very flat near the optimum.

4.5 Separable Programming

Separable pfogramming is a special case 6f non-linear
programming. When the objective function and the constraints
are constructed or can be constructed of separable functions,
this method can be used effectively. The basic prineciple is
to approximate the non-linear function to piecewise linear
functions and thereby changing the problem into a restricted

linear programming problem.
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Thus the incentive problem given byeans 4,1l to 4.5 can be

changed to seperable programming problem which may be defined

as:
m

¢x) = ¥ fi(xi)
=1

Subject to constraints:

m
E gki(xi) ..é bk
i=1l

~
1
l—l
N
-
o]

Xi?o i=1’2,0o’m

Partitioning each variable X4 into ny divisions and

approximating the functions fi(xi) and gki(xi) one can write

as: n
x; =x.° + E% INEE K
i =% i° Dy
31
n.
" 0 = P
£(%) = £5(x7) + T 5704
321
. Py .
gei (x3) = gy (x7) + 3 g D;°
=1

k=1,2,.-¢'p, andi=l’_2’-o‘um

xio = lower boundary of variable x;.&=hz: =W
1

xio may or may not be equal to zero

fi(xi) and. gki(xi) are the corresponding

values of the objective function and
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constraints at xi°

or may not be equal to zero.

+ These values may

Dij represents a variable created for the jth

partition of variable x;

Thus the original problem can be written as:

Optinize (max. or min.)

m n. m
> i3 0
C = z Z fi D:i. + fi(xi )
i:'—"l :j:l =41
i=l " j=1 Li=i
k= 1’ 2' « o ¢ D
n. ,
X + jon d o
Grid equations: 5 - 3 Axy DY = X5 =1, 2, . . 4 |
j=1
0 ¢ D;9¢1, i=1,2 +..m §=1,2 . .my
xi ‘>/ O, i = l’ 2, e o o 1

4.6 Solution of the Incentive Problem by Separable Ilethod

The incentive problem as formulated in section 4.2 and
defined by the eqns.4.l to 4.5 can be seperated as follows:
Phe objective function on expansion yields

Min =543 x2 - 86082 xy + 3454417 . . . eqm4.6
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The constraints are separated according to the principle
of separable programming by taking logarithims on both sides,
Thus the constrainis are:
log (105 - xi) +log x5 § log 2 . . . eqn,4.7
loz (100 - xi) + log Xy & log 1.5 . « .ecan.4.8
log Xp ‘?1og Xq 2 logd . . o ¢« o+ o eseqn,4.9

log x5 + log 33 ‘log 3 e 4 e o o o« eeqn,t.10
The starting value of the variables x4, X, and Xy are 75%; $.06,
md$04 respectively., The upperbounds are 90%, $.12 and $.09
and the number ofparfitionsxequiredfbr 1inea£isation are
20, 10 and 10 respectively.

The linearized form of the non-linear components of the
‘objective function and of constraints are furnished in Ap-
pendix 8,

Since f(xi ) and gki(xi) where Xx; is_the starting
value of the ith variable and f and g stand for objective

function and constraint respectively, are not zerc so the

right hand side of constraints and also the dij function

are to be adjusted.
Thus the original incentive problem is represented as:
Maximize:

0 .
F=¢2)= 2 At (!31)j - 543(X0) + 86082 x, - 3454417
=1
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S.TI [l .
icd i \0 J oo
z Ag D + ZAQIDZ ;glog2-8;("~u"2>
J=1 i1 i

20 S o 3 5, (%5 %5)
S ag,p + > AgDs < logld B2 07
3=t J-1

0 3 . . .
21}8; D:+ 22? AgaDij > Log 4 - 85 (%, %2)
3 3=
. : e xo)
°© 53 ¥ Agp) 3 2q (X0%3
Saglo +> o8aD 7 1
il =1
Grid equations:
20 J 3
3-1
|° . 3
X,- S A% D, =0.06
3=t
10 3
Ry - 2 &X; D, = 0.04
J-1 .
J
%, %, %3 30, O<D«]

= 75

i_: 1’2’3 &
iz 1,2,3 .- 20

The linear equations, the grid équa'bions are given in details
in Appendix 8, The problem then eventually was golved by
linear programming using MPS/360 programm , the results are

given at the end of Appendix 8.
The results are summarized in Table 4,2 and the value
of the objective function also was given in the same table

after manipulating the ‘constant ternms using ean., 4.6.
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TABLE 4,2

Results Obtained Using Separable Programming

Variable Lower Upver Starting Number of  HNumber Solution
bound bound  Value partitions of
itera-
tions
for lin-
_ear pro- Local Global
gramning
solution
X 75%  90% 75% 20 795 79.5
Xp .06 I .06 10 9 .06 078
33 . 04 . 09 » 04 10 .04 ,074
value of Obs. function = - [6466000 - 3454417 - 543(75)°]

= - [-42792] = .42792 X 105
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4.7 Conclusion

The GRG mehtod appears to be a very powerful tool for
handling optimization of non-linear objective function sub-
jeeted to non-linear constraints. As can be scen from the
results (Table 4.1) the convergence rate is guite fast. and
only a very small amount of computer time and computer memory
are needed to solve the problem.

Separable programming is also a powerful non-linear
programming technique since it will yield, as with any other
non-linear technigue, at least a local optimum solution, if
it exists. It's only pitfall is precision, but this is of
little consequence since most engineering problems'need only
a good approximation,

-'As contrast o the GRG technique, separable prograﬁming
requires more manipulation since a2 large number of new vafia—
bles have to be introduced and it can solve oniy certain non-
linear prdgramming problems.

As far as our given incentive problem is concerned,
separable programming and GRG yield nearly the (Table 4.3)
same objective function value and the base efficiency but the
incentive rates obtained by seperable programming are higher
than those by GRG method. Since higher motivation will be
generated by higher values of incentive rates, so results of
separable programming may be recommended with a insignificant

change in the value of objective function.



Table 4.3 Comparison of the results obtained

by G.R.G, method and Seperable Programming

——————————— T T — O - —————— T — N S S M S S S S S S S S S S ey e e ———

Method Starting No of Optimum Optimum
values iterations solns. fune. values

. g - B . G T — S e T -  ————— T —— o e S S —

By RaG, x1=75% x1=79;27%
x,=.04(P) 7 . xp=.05(%)  .14276x10°
Method
x3=.04@9 X3=.OHC@
Seperable xl=75% x1=79.5%
programming 5
x,=.06($) 9 x5=.078(#) .1279x10

x3=..ou($) x3=.074(%)

P —————————— T PR e 4l 1R ettt bk el e
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APPENDIX 2

CURRENT NMANPOWER AND PERFORMANCE INDEX OF TVO GROUPS
OF WORKERS FOR VARIOUS DEPARTIIENTS

SKILLED ~ UNSKILLED

Dept. No. of Efficiency No. of Efficiency
: men : (%) men (%)
quer Press 10 78 | 30 o 71
Auto
Sgrew Cutting 20 68 20 66
Drilling 18 - g2 40 76
M;lling 28 _ 85 ‘32 75
?}ating 5 83 10 78
Painting 8 69 10 65
Sub. Assem. 40 95 60 89
Spring‘Mfg. 5 75 10 69
Assembly 80 | 80 60 72
Salvage 10 96 5 90
Grinding 20 91 10 85
Heat 10 | 65 . < B 62
-Treatment

Total 281 ' 292
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COMPUTER FLOW CHART FOR G.R.G METHOD




START

(STEP 1) SELECT INITIAL
STARTING POINT, X"

NO

SELECT A

x FEASIBLE?

| FEASIBLE X°

(STEP 1.1) COMPUTE THE REDUCED GRADIENT

STOP

=) =0

' _'I »
EOT _ f_‘l _ 3f, of 3t
3y ax

‘E}_______a

(STEP 1.2) DETERMINE THE PROJECTED
REDUCED GRADIENT.

0 IF x0

0

{0 1Fx

g?, OTHERWISE

Vyop0

.

LWHBWMAWg?iO
UPPER BOUND AND g > 0

CHECK THE

<YES STOPPING CONDITION.

Computer flow
diagram for GRG algorithm



~78~

/

(STEP 1.3) COMPUTE THE DIRECTION OF MOVEMENT, Fn, FOR

x°

A SIMPLE EXAMPLE IS RO = p°

/
(STEP 2) COMPUTE THE DIRECTION OF MOVEMENT KO FOR
. . A
(STEP '2.1)]20 - [a?]_, [%T]EO
3y X
/

(STEP 2.2) USE A ONE-DIMENSIONAL

SEARCH TO MAX fo(i0 + o0, 70 + k%)

(STEP 3) CALCULATE x' = X0 + of?, 71 = 7 + ok?
PROJECT x' INTO P,

UPPER BOUND IF x3 + oh] > UPPER BOUND
V. X'y = { LOWER BOUND IF XJ + oh]

0 0 -
Xg + hj OTHERWISE

+ ohy < LOWER BOUND

2 (continuéd)



(STEP 4.1)
snaﬂfe

\

NO

(STEP 4)

DOES

;4

EXIST?

YES

fe(;dy‘ ) "fo( XsY

V

SOLVE F (X', 7') = 0

-y -

DEGENERATE

CHANGE THE

'BASIS TO

OBTAIN A
FEASIBLE
SOLUTION

(STEP 5)

SET X0 = X

1

(continued)
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COMPUTER PRINTOUT OF THE RESULTS OBTAINED

BY G.R.G. METHOD
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COMPUTER PRONTOUT OF THE RESULTS OBTAINED

BY G.R.G. METHOD
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COMPUTER PRINTOUT OF THE RESULTS OBTAINED

BY G.R.G. METHOD
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COMPUTER PRINTOUT OF THE RESULTS OBTAINED

BY SEPARABLE PROGRAMMING
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ABSTRACT

This thesis has tow sections. Part 1 deals with ther
literature survéy and the development of new techniques-to
handle search problems. Since the effectivencss of the search
procedure is characterized by its rate of convergence, much
of research work has_been and are still being done to reduce
fhe computationltime. An attempt was made to solve one-
dimensional search problems for convex functions by bisecting
the enveloping cone of the function and then rotating it till
the bisector becomes vertical. The generalization df this
new method for any unimodal function by couvling with Fibonacci
search was also discussed. This azpproach essentially cuts
dovm the total number of experiments recuired to reach at
optimum. A new method for multi-dimensional search problems
based on thé intersection of gquadratics passing through the
line-optimums in co-ordinate directions was developed and
exemplified along with the comparison with other standard
methods to show its efficiency.

In the sccond section, a case study was made with a view
to show how operations research technique can be anpplied to
formulate and solve certaiﬂ wage incentive problems, Since
the basic problem in an incentive scheme is to define the base
‘level efficiency from which the incentive should start and
also the incentive rotes, the problem woas formulated with the

objcctive as to minimize the variance between the optimum base



level efficiency and the current different efficiencics of
various departments. A constraint was that the total incentive
to be paid to the workers must not exceed the current over-
time expenses, ' This problem was solved by Generalized Reduced

Gradient method and separable programming.



