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ABSTRACT

Graph theory is a widely researched topic. A graph contains a set of nodes and

a set of edges. The nodes often represent resources such as machines, employees, or

plant locations. Each edge represents the relationship between a pair of nodes such

as time, distance, or cost. Integer programs are frequently used to solve graphical

problems. Unfortunately, IPs are NP -hard unless P = NP , which implies that it

requires exponential effort to solve them. Much research has been focused on reducing

the amount of time required to solve IPs through the use of valid inequalities or cutting

planes. The theoretically strongest cutting planes are facet defining cutting planes.

This research focuses on the node packing problem or independent set problem, which

is a combinatorial optimization problem. The node packing problem involves coloring

the maximum number of nodes such that no two nodes are adjacent. Node packings

have been applied to airline traffic and radio frequencies.

This thesis introduces a new class of graphical structures called suns. Suns produce

previously undiscovered valid inequalities for the node packing polyhedron. Conditions

are provided for when these valid inequalities are proven to be facet defining. Sun valid

inequalities have the potential to more quickly solve node packing problems and could

even be extended to general integer programs through conflict graphs.
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Chapter 1

Introduction

An Integer Program (IP) is a mathematical optimization problem. IPs require integer

values for their decision variables and take the form ZIP = max{cTx : Ax ≤ b, x ∈ Z
n
+}.

Unfortunately, IPs are known as NP -hard [22] which means that it requires exponential

effort to solve them. For this reason, much research has been focused on reducing the

amount of time required to solve IPs.

This thesis focuses on the integer programming formulation of the node packing

problem, also known as the independent set problem. The node packing problem involves

coloring the maximum number of nodes in a graph such that no two nodes are adjacent.

This thesis introduces suns as a new graphic substructure that can generate useful

cutting planes and may help to decrease the solution time required to find optimal node

packings.
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1.1 Integer Programs and the Node Packing Prob-

lem

Graph theory is a large portion of integer programming research. Research in this area

has been applied to a number of unique instances such as truck routing [2, 23, 30, 32],

facilities layouts [19], sports scheduling [14, 33], and even predicting protein flexibility

[21].

Graphs are helpful visual representations of sometimes complicated relationships

between variables. A graph G = (V, E) is a set of vertices V , also referred to as nodes,

and edges E such that e = {u, v} where u, v ∈ V . The edges can also have weights;

weights are values designating the cost or benefit of following a particular vertex and

edge. The edges E are the relationships between parts of vertices such a time, distance,

or cost and the vertices V are the entities such as machines, employees, or plant locations.

In order to optimize such a problem, it is often desirable to maximize the number of

entities or resources that are used. This can be accomplished by what is known as node

packing. For a graph G = (V, E), a node packing contains a set of vertices V ′ ⊆ V such

that there is no edge {u, v} ∈ E for any u, v ∈ V ′.

In an integer program, each vertex i ∈ V is assigned to an IP variable xi. If xi = 1,

then xi is in the node packing. If xi = 0, it is not in the node packing. A weighted

node packing is formulated as an IP: Maximize
∑n

i=1 ωixi subject to xi + xj ≤ 1 for all

{i, j} ∈ E, xi ∈ {0, 1} for all i ∈ V .
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Solving IPs is NP-Hard [22]. This means that they require exponential effort to solve

and can either take a long time to solve or could require a greater amount of computer

memory than is actually available. There are many methods/algorithms used to solve

IPs.

Branch and Bound is the most commonly used method to solve IPs. This algorithm

is initialized by solving the linear relaxation PLR where the variables are not required

to be integers. This initial solution is called the ”root” of the branching tree. From the

root, a series of child nodes, or child branches, are produced based upon the variable that

is being branched on. For example, if x1 = 4.6, the two child branches will be x1 ≤ 4

and x1 ≥ 5. This procedure continues until all child branched are fathomed. Fathoming

occurs when the problem is infeasible, the linear relaxation solves to an integer value,

or the objective value for the node is worse than the best known integer solution. In

using branch and bound, exponentially many branches can be created before finding a

solution. This is why a great deal of research has been focused on shortening IP solving

time.

The most common method to decrease IP solve times is to implement cutting planes.

Cutting planes are valid inequalities that eliminate non-integer space in the linear relax-

ation while leaving original integer solutions intact. These inequalities are often created

by strengthening existing constraints in the original problem. Facet defining inequalities

are theoretically the strongest form of cutting planes. Polyhedral Theory is the study

of integer programs and their facets.
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Lifting is one method used to strengthen cutting planes. Lifting can be accomplished

by altering one or more coefficients of a known valid inequality. A valid cut that is

stronger than the original inequality can be created by doing so. New lifting techniques

are often being researched [3, 7, 8, 18, 28] and can be applied to myriad situations in

graph theory.

Graph Theory involves studying graphs as visual representations of systems. Graphs

consist of a set of vertices (also known as nodes) connected by edges. The edges are

the relationships and the vertices are the entities. The edges can also have weights

which are values designating the cost or benefit of following a particular edge between

two vertices. For example, vertices could represent various locations while the edges

represent the cost of flying between two cities and no edge represents a lack of flights

between two particular cities.

Graph theory research includes various graph optimization problems. Graph Theory

problems include the shortest route [5, 27], node colorings [12], and minimum cost flow

problems [16]. Graph theory has been applied to a number of real-world applications

including facilities layout planning [19], data clustering [34], and transportation [1, 2, 31].

Another interesting application of graph theory is in habitat dispersion. As Barahona

describes in his paper [10], node packing can be used during forest planning to generate

a cutting pattern to avoid destroying wildlife habitats. Because graph theory problems

are discrete, they are often modeled as IPs.

This thesis focuses on the Node Packing problem, or the Independent Set problem,
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within Graph Theory. The goal of this problem is to select the maximum number of

nodes such that no two selected nodes are adjacent. This problem is NP -hard [22].

Node packing can be applied to a number of situations. One example is discussed

in a paper by Kuyumcu discusses the application of graph theory, more specifically the

node packing problem, to revenue management in the airline industry [25]. The overall

objective of this problem is to balance supply and demand in order to maximize revenue

and profit. Factors that are considered in this problem include: competitiveness in the

market, demand forecasts, fare classes and aircraft capacities. The polyhedral graph

approach uses cutting planes and split graphs to reduce computer memory required to

solve the IP. The author claims that this approach could be further applied to truck-

ing, cruise lines, health care, etc. Other applications of node packing includes airline

schedules [1], cellular frequencies [20], and habitat dispersion [10].

In certain instances, entities (vertices) and relationships (edges) fall such that certain

graphical structures are subgraphs in the problem. Some such structures are cliques,

wheels, and odd holes. These structures can generate valid or facet defining inequalities

to make the IP easier to solve. This thesis introduces a new set of structures and their

valid inequalities.

1.1.1 Motivation

The focus of this thesis is to explore a previously undiscovered class of graph structures

which generate a set of valid inequalities. There has been a great deal of research
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at Kansas State University in the Industrial and Manufacturing Systems Engineering

(IMSE) department on the node packing polytope and simultaneous lifting [11, 13, 15,

24, 29].

In 2009, Conley [13] expanded on research done on the node packing polytope. He

interlaced two well-known graph structures: the clique and the odd hole. He called

this new structure a cliqued hole. Conley concluded his research with a question as to

whether another such structure could generate multiple valid inequalities by itself. This

type of structure would be a version of synchronized simultaneous lifting as outlined in

Boltons thesis [11]. The aim of this thesis is to discover such structures and to determine

if they are facet-defining.

1.1.2 Contribution

During the research to find structures with implications to synchronized simultaneous

lifting, a new class of structures called suns was discovered. Suns create valid inequalities

of the node packing polyhedron. Certain classes of sun structures generate previously

undiscovered classes of facet defining inequalities. Proofs are supplied to validate each

of these claims and examples aid the reader identifying suns and their applications.

The research also suggests that some of the inequalities produced by the structures are

stronger than more commonly used inequalities.

Since suns generate new inequalities, they can be applied to help reduce the solution

time required to solve node packing problems. Furthermore, suns are easily identifiable
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and a polynomial time algorithm is generated to identify instances where these cutting

planes can be applied.

1.1.3 Outline

Chapter 2 gives the background information necessary to understand this thesis. First,

basic Integer Programming and Node Packing is discussed. Polyhedral theory and cut-

ting planes are explained. Finally, examples of several types of lifting are given.

Chapter 3 introduces the new class of structures: suns. Alternate classes of this

structure and their valid inequalities are covered. Certain classes of suns are shown

to produce certain facet defining inequalities. Proofs of validity and facet definition are

provided. There is a polynomial time algorithm to identify a sun, and there are examples

to demonstrate this algorithm.

Chapter 4 gives a conclusion of the major results and contributions to the field.

In addition, areas for future research are provided along with suggested methods to

approach these problems.
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Chapter 2

Integer Programming Preliminaries

As stated earlier, an integer program (IP) is a maximization problem whose decision

variables must be integer values and both the objective value and constraints are linear.

An integer program takes the form: ZIP = max{cTx : Ax ≤ b, x ∈ Z
n
+} where A ∈

R
mxn, b ∈ R

m. Define P as the set of feasible integer points of an IP, where P = {x ∈

Z
n
+ : Ax ≤ b} and let N = {1, ..., n} be the indices of the variables.

IPs are typically solved by iteratively solving many linear programs. After this step,

define the linear relaxation of an IP as ZLR = max{cTx : Ax ≤ b, x ∈ R
n
+}. Define the

feasible region of a linear relaxation to be PLR = {x ∈ R
n
+ : Ax ≤ b}.

The branch and bound algorithm is one of the most commonly used methods to

determine an optimal or feasible solution to an integer program. It is a search tree

whose branches add constraints to the parents of the linear relaxation. To initialize this

algorithm, create a search tree whose nodes are linear relaxation problems. The root
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node is the solution to the original IP relaxation. When this solution contains non-

integers, branching is performed. Two branches are created from each node. The nodes

stemming from these branches are called child nodes and the original node is called the

parent node. One branch adds xi ≤ bxic and the other branch is where xi ≥ bxic + 1.

This process continues until all branches have been fathomed. Fathoming occurs when

the problem is infeasible, the linear relaxation solves to an integer value, or the objective

value for the node is worse than the best known integer solution.

Unfortunately, the branch and bound algorithm can require exponential effort. This

is not surprising given the classification of integer programming problems. This is why

many researchers have focused their research on decreasing the time it takes to solve an

integer program.

2.1 Graphs and the Node Packing Problem

A large portion of integer programming research involves graph theory. Graphs are

helpful visual representations of sometimes complicated relationships between entities.

A graph G = (V, E) is a set of vertices V , also referred to as nodes, and edges E such

that e = {u, v} where u, v ∈ V . The edges can also have weights; weights are values

designating the cost or benefit of following a particular edge between two vertices. The

edges E are the relationships and the vertices V are the entities.

Graph theory research includes various graph optimization problems such as: the

shortest route [5, 27], node colorings [12], and minimum cost flow problems [16]. Graph
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theory has been applied to a number of real-world applications including facilities layout

planning [19], data clustering [34], and transportation [1, 2, 31] and protein flexibility

predictors [21]. As Jacob describes, in predicting protein flexibility the bond network

is translated to a graph defined by covalent and hydrogen bonds. An algorithm is then

used to count the degrees of freedom, or edges extending from each node, to determine

the rigidity of the bonds. The number of excess edges past a certain limit quantifies

the flexibility index of that bond. Jacobs claims that this graph theory method is one

million times faster than molecular dynamics simulations.

Figure 2.1: Sample Graph

For example, Figure 2.1 depicts a graph with nine nodes, nodes 1, ..., 9 are the vertices

in set V and each of the edges {1, 2}, {1, 5}, ..., {8, 9} are the edges in set E. Many

problems are solved by using graphs.

For a graph G = (V, E), a node packing contains a set of vertices V ′ ⊆ V such that
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there is no edge {u, v} ∈ E for any u, v ∈ V ′. In the nine-node example in Figure 2.2,

a maximum of four nodes can be taken in the node packing such that no two chosen

nodes are adjacent. This is called a node packing.

Figure 2.2: Sample Node Packing

The Node Packing problem is often solved as an IP. To model this problem, each

vertex i ∈ V is assigned to a binary variable xi. If xi = 1, then xi is in the node packing,

and if xi = 0, it is not in the node packing. Then a weighted node packing is formulated

as an IP: Maximize
∑n

i=1 ωixi subject to xi + xj ≤ 1 for all {i, j} ∈ E xi ∈ {0, 1} for all

i ∈ V where ωi is the weight of node i for all i ∈ V .

Node packing has been used to optimize a number of situations. Some examples

of this include revenue management in the airline industry [25], train scheduling [35],

and university course timetabling [6]. The last example is a case-study where a branch

and bound algorithm yields the optimal solution of a timetabling problem of university
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courses. The problem is formulated as a set packing problem. Clique and lifted odd hole

inequalities are used to improve the initial formulation. The combinatorial properties are

then used to introduce new cutting planes. These cutting planes can yield the optimal

solution for university timetabling instances with up to 69 courses, 59 teachers, and 15

rooms.

2.2 Polyhedral Theory and Cutting Planes

Polyhedral theory is an important area in mathematical programming research. It per-

tains to many of the definitions described in Section 2.1. This section further defines

topics relevant to the studies of feasible space for both linear programs and integer

programs.

The idea of convexity is critical to linear and integer programs. A set S ⊆ R
n is

convex if and only if for all x, y ∈ S, λ(x)+ (1−λ)(y) ∈ S for all λ ∈ [0, 1]. This means

that a space is convex is and only if a line segment can be drawn from any point in the

space to any other point in the space without touching any point outside of the space.

The feasible space of a linear relaxation PLR is trivially convex. The integer points

within a linear relaxation are the feasible points for an integer program. The set of

integer points PLR inside the linear relaxation are not convex. This is because the

fractional points between the integer points are not part of the set P IP . The minimum

convex region containing a set of points P IP is called the convex hull and is denoted as

P ch. The convex hull P ch is the intersection of all convex sets that contain P IP .
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A half space is defined by
∑n

i=1 αixi ≤ β. A half space is convex. A finite intersection

of half spaces is called a polyhedron. A bounded polyhedron is a polytope. In integer

programming research, both P ch and PLR are critical polyhedrons. The integer corner

points of the linear relaxation are critical points of the IP. The goal of polyhedral theory

in relation to IP is to alter PLR to become P ch.

A cutting plane
∑n

i=1 αixi ≤ β is an inequality used to further constrain a linear

relaxation. A cutting plane is considered a valid inequality if and only if
∑n

i=1 αixi ≤ β

for all x ∈ P . Thus, every point in P must satisfy the inequality, ensuring that the

cutting plane does not eliminate a valid point.

A face F created by the cutting plane on PLR is the points in P ch which meet the

inequality at equality, F = {x ∈ P ch) : αT x = β}. The inequality is said to be facet

defining if and only if the dimension of its face is one less than the dimension of the

polyhedron.

The points x1, ..., xn are affinely independent if
∑n

i=1 λixi = 0
∑n

i=1 λi = 0 and are

uniquely solved by λi = 0. The affinely independent points on the face can be used

to create one less linearly independent vector. Thus the dimension of a face F of the

polyhedron is equal to the maximum number of linearly independent vectors or the

maximum number of affinely independent points minus 1. To describe these concept

consider the following example.
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Figure 2.3: Cutting Planes

In this example, the objective function is maximize x1+2x2 subject to 3x1+2x2 ≤ 15

and x1 + 3x2 ≤ 11 and x1, x2 ∈ R. The optimal solution to the linear relaxation is

(x1, x2) = (23
7
, 18

7
). The cutting plane x1 + x2 ≤ 5 eliminates this solution and results in

a new linear relaxation solution (2, 3).

To prove that this cut is facet defining, the dimension of the P ch must first be

bounded below; dim(P ch) ≤ 2 because it has two variables x1 and x2. Next it is bounded

above; dim(P ch) ≥ 2 since the points (0, 0), (0, 1) and (1, 0) are affinely independent and

feasible. Thus dim(P ch) = 2. It is trivial to see that the face x1 + x2 ≤ 5 is valid since

no points in P are eliminated. Since dim(P ch) = 2 the dim(F ) is bounded below by the

dimension of P ch less one, dim(F ) ≤ 1. The points (2, 3) and (3, 2) meet the inequality

14



x1 + x2 ≤ 5 at equality and are affinely independent. Thus dim(F ) = 1 and it defines a

facet.

This thesis focuses on the node packing problem, so let the set of feasible solutions

for the integer programming node packing formulation be PNP . The goal of this thesis

is to more tightly describe (P ch
NP ).

2.2.1 Cutting planes and the Node Packing Problem

Figure 2.4: Graphical Structures

There are a series of structures that have been discovered within graphs that can generate

valid, and at times, facet defining inequalities of P ch
NP . Some such classic subgraphs are

the clique, odd hole, and wheel.

A clique occurs when all vertices V within a subgraph are adjacent to every other
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vertex in the subgraph. A clique is denoted kp, with p being the number of nodes in

the clique. A k4 clique can be seen in the example graph at vertices 11,12,13, and 14.

Because each vertex is adjacent to every other vertex in the subgraph, only one vertex

can be taken in a node packing. This creates what is known as a clique cut,
∑

i∈kp
xi ≤ 1.

In the example, the inequality x11 + x12 + x13 + x14 ≤ 1 is valid. Furthermore, since the

clique is maximal [26, 32], this is a facet defining inequality.

An odd hole is denoted Hp and has an odd number of vertices in its subgraph. An

odd hole is also called a chordless cycle. Each vertex is adjacent to only two other

vertices and it is a connected graph. An odd hole can be identified in the example

graph with vertices 21, 22, 23, 24, and 25. In an odd hole, at most one less than half of

the vertices can be selected. This equates to the hole cut
∑

i∈Hp xi ≤ b|Hp|/2c. More

specifically, for the example subgraph, the cut x21 + x22 + x23 + x24 + x25 ≤ 2 is valid.

Hole cuts can be facet defining but are frequently not.

A wheel wp has a central node and a number of spokes branching from the center to

outer nodes. A wp can be identified in the example graph with vertices 15, 16, 17, 18,

29, and 20. The center node is denoted x0 and the wheel had p outer nodes. The wheel

cut inequality is bp−1
2
cx0 +

∑
xi ≤ b

p−1
2
c.

These cuts can eliminate non-integer space in the P ch
NP . For example, the k4 clique

vertices can have coefficients equal to 2 such that (x11+x12+x13+x14) = (0.5, 0.5, 0.5, 0.5)

thus the
∑

i∈k4
xi = 2 > 1.

A popular area of research is the modification of one or more of these structures, such
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as Conley’s structures [13], the cliqued hole and the odd bipartite hole. A cliqued hole

is denoted CHm,P . It can be seen in the subgraph containing vertices 1,..,10. It contains

an inner an outer hole. Each pair of inner vertices is ”cliqued” with a pair of vertices in

the outer hole. This structure creates the valid inequality
∑

i∈CHm,P
xi ≤ bm/2c.

2.2.2 Lifting

Lifting is used to strengthen existing valid inequalities by introducing new variables.

This technique was first introduced by Gomory [17]. There are many other methods of

lifting such as exact sequential lifting, Balas’ method [7], and simultaneous sequential

lifting [4, 8, 9, 18, 28].

Restricted spaces are critical to lifting. Let D ⊂ N and K ⊂ Z|D| define the restricted

space of the convex hull of the integer program on D and K as P ch
D,K = conv{x ∈ P :

xj = kj for all j ∈ D}. Thus, each variable associated with D is assigned to a specific

integer value k.

Lifting takes a valid inequality
∑

i∈D αixi +
∑

i∈N\D αixi ≤ β for P ch
D,K and seeks to

create a valid inequality of
∑

i∈D α′
ixi +

∑
i∈N\D αixi ≤ β ′ of P ch. There are four broad

classes of lifting that are based upon the size of D, values selected for α′ and β ′, the

values of K and the number of new inequalities generated determine the particular class

of lifting.

In up lifting, the elements in K are equal to zero in the restricted space and the

right-hand side of the lifted inequality remains the same. In down lifting, the elements
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in K are set to their upper bounds and the value of the right-hand side often decreases.

Middle lifting combines the two methods of up and down lifting.

In sequential lifting, one variable is lifted at a time so that |D| = 1 [8, 28]. Because

one variable is lifted at a time, the inequality changes before lifting each remaining

variable; this can have an effect on the coefficients of the later lifted variables. In

simultaneous lifting, all variables in set D are lifted at once and |D| ≥ 2.

Exact lifting produces the strongest possible inequality. That is, any increase in

α′ or decrease in β ′ makes the lifted inequality become invalid. Thus, an exact lifted

inequality supports P ch. This is ideal except that exact lifting can be very difficult to

obtain the exact coefficients, which can require solving an optimization problem. Several

approximate lifting heuristics [3, 8, 18] have been developed to create valid inequalities

without the hurdle of exact lifting. These techniques are faster and can yield inequalities

strong enough to be useful.

Synchronized simultaneous lifting was introduced by Bolton in 2009 [11] to find a

new class of lifted inequalities. The first step of the synchronized simultaneous lifting

algorithm (SSLA) is to create a set a table with two mutually exclusive sets or columns

C and E. The values in C are the number of variables that can be picked up in the

original set and values in E are the number of additional variables that can be picked

up simultaneously. These points can then be graphed to find values of α1 and α2 for

the extreme points. Let α1 be the coefficient of the variables in the cover and α2 be

the coefficient of the variables outside the cover. The new facet defining inequality is of
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the form α1
∑

i∈C xi + α2
∑

i∈E xi ≤ β with β being the right-hand side of the original

inequality.

The inequalities generated by synchronized simultaneous lifting can be used to more

quickly solve integer programs. This thesis focuses on identifying induced subgraph

structures that, if found within a graph, generates valid inequalities that follow SSL’s

technology. The hope is that these graph structures would help decrease the solving

time of a node packing problem.
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Chapter 3

Suns and the Node Packing

Polyhedron

This chapter introduces a new graphical structure: The Sun. There are two classes of

suns: Symmetric and Nonsymmetric. This structure generates valid inequalities for the

node packing polyhedron and it can, at times, be facet defining.

A graph is a sun with parameters p, q, and r and is denoted S(p, q, r) when the

following conditions are met. The sun consists of two sets of nodes that create an inner

hole with p vertices and one in an outer hole with qp vertices. The vertices in the outer

hole are grouped into p clusters each of size q. The nodes in the inner hole are only

adjacent to r clusters of q nodes in the outer hole with these clusters being consecutively

ordered. Figures 3.1 and 3.2 demonstrate a S(5, 1, 2) and a S(7, 3, 3).

Formally, a graph G = (V, E) is a sun with parameters p, q and r if and only if
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|V | = p(1+q) and V can be partitioned into VI and VO such that VI = {v1, v2, ..., vp} = p,

VO = {vp+1, vp+2, ..., vp+pq}, the induced subgraphs of both VI and VO are holes and the

only edges between VI and VO take the form {vi, v(i−1)∗q+j−1 mod p)+p+1} for all j =

1, 2, ..., q ∗ r and i = 1, ..., p.

Figure 3.1: S(5,1,2) symmetric sun
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Figure 3.2: S(7,3,3) nonsymmetric sun

This chapter introduces sun cutting planes for the node packing polyhedron. In doing

this, suns are divided into two classes, symmetric in section 3.1 and nonsymmetric in

section 3.2. These sections provide valid inequalities and conditions for facet defining

inequalities.

3.1 Symmetric Suns

A symmetric sun has the same number of nodes in its inner and outer holes, forcing

q = 1. Because these suns are comparatively small to nonsymmetric suns with large q,

they have some interesting properties. This section has three subclasses of suns: r = 1,

r = 2, and r ≥ 3. All symmetric suns produce valid inequalities.
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3.1.1 Symmetric Suns with r = 1

Symmetric suns with r = 1 can be represented as S(p, 1, 1). Each vertex in the inner or

outer hole is connected to only the vertices in its hole and to one vertex in the opposing

hole. Figure 3.3 depicts a S(5, 1, 1). This type of sun produces a valid inequality that is

stronger than the hole inequalities. However, this valid inequality is not facet defining

for this type of sun.

Figure 3.3: S(5,1,1)

Theorem 3.1.1 Given a graph G = (V, E) such that Sp,1,1 is an induced subgraph of G

with p ≥ 5 and odd, then
∑

i∈VI

1
p−1

xi +
∑

i∈V0

1
p−1

xi ≤ 1 is a valid inequality of P ch
NP .

Proof :

Clearly, no more that p−1
2

nodes can be selected from either hole in any node packing

due to p being odd. Thus,
∑

i∈VI
xi +

∑
i∈V0

xi ≤ p− 1 must be satisfied by every node
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packing and the result follows.

2

Even though this inequality is valid, it is not a facet defining inequality. Unfortu-

nately, the inequality has dimension one less than the dimension needed to prove facet

defining. While this inequality may be useful, including both hole constraints would be

far more useful as each of these inequalities are facet defining over P ch
NP Sp,1,1

3.1.2 Symmetric Suns with r = 2

This subclass of suns is denoted S(p, 1, 2) and Figure 3.4 shows a S(5, 1, 2) sun. The

symmetric suns with r = 2 create five interesting valid inequalities. Because of the

symmetry of these suns, two of the five inequalities are found to be facet defining. Two

inequalities are known not to be and one is suspected of being facet defining.

Figure 3.4: S(5,1,2)
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If a symmetric sun has a sufficiently large p, it produces a set of five valid inequalities.

Surprisingly the existence of the fifth inequality is dependant based on p mod 3. Formally,

Theorem 3.1.2 Given a graph G = (V, E) such that Sp,q,r is an induced subgraph of G

with p ≥ 5 and odd, q = 1 and r = 2. Then the following inequalities are valid for P ch
NP

i)
∑

i∈VI
xi ≤ b

p

2
c,

ii)
∑

i∈VI
2 ∗ xi +

∑
i∈V0

xi ≤ p,

iii)
∑

i∈VI
xi +

∑
i∈V0

2 ∗ xi ≤ p,

iv)
∑

i∈VO
xi ≤ b

p

2
c.

Furthermore if p mod 3 = 1 or 2, then

v)
∑

i∈VI
xi +

∑
i∈V0

xi ≤
2p−2

3
and

vi)
∑

i∈VI
xi +

∑
i∈V0

xi ≤
2p−1

3

are valid for P ch
NP , respectively.

Proof : Since the holes are symmetric, one only needs to consider the inequalities i), ii),

v) and vi). Clearly, VI is an odd hole on p nodes. Since an odd hole generates a valid

inequality of the form i), i) is a valid inequality.

Assume ii) is not a valid inequality of P ch
NP . Thus there exists an x′ ∈ PNP such that

∑
i∈VI

2 ∗ x′
i +

∑
i∈V0

x′
i > p. At most p−1

2
x′

i can be selected from VI due to the odd hole

structure. In such a situation at most one x′
i can be selected from the outer hole, which

satisfies this inequality. Due to the edges of a sun between the inner and outer hole, any
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removal of a vertex from the inner hole enables at most 2 vertices to be added to the

outer hole. Thus, inequalities ii) and iii) are valid.

Now assume p mod 3 = 1 and let x′ ∈ PNP . It is evident that if node v1 and vk

are in the node packing and no nodes are in the node packing between these two then

the maximum number of nodes in any node packing between vp+1 and vp+k occurs when

vp+3, vp+5, ..., either vp+k−2 or vp+k−1 is in the node packing depending upon the value of

k. The total number of nodes in the node packing is maximized when k = 4. Extending

this pattern of skipping two nodes on the inner hole and also on the outer hole results

in a total of 1
3
(p− 1) + 1

3
(p− 1) = 2

3
(p− 1) maximum nodes in the node packing for this

sun structure. Thus,
∑

i∈VI
xi +

∑
i∈V0

xi ≤
2
3
(p− 1) is a valid inequality.

The case where p mod 3 = 2 follows similarly. Again the maximum number of nodes

occur when the node packing contains v1 and v4 and no nodes are in the node packing

between these two. In this situation. Extending this pattern of skipping two nodes on

the inner hole and also on the outer hole results in a total of 1
3
(p +1) nodes in the inner

hole, which leaves at most 1
3
(p− 2) nodes in the outer hole. Observe that the additional

node in the inner hole is always capable of being obtained since p mod 3 = 2. Thus,

there are at most 1
3
(p + 1) + 1

3
(p − 2) = 2p−1

3
nodes the node packing and the result

follows.

2

These symmetric suns have some surprising properties. First the hole inequalities

are facet defining, but the next inequalities are not facet defining. It is believed that
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the fifth and sixth inequalities are facet defining but a proof alludes me to this point.

Fortunately, a lower boundis available on the faces for these inequalities as the following

theorem shows.

Theorem 3.1.3 Given a graph G = (V, E) such that Sp,q,r is an induced subgraph of G

with p ≥ 5 and odd, q = 1 and r = 2. Then the following statements are true and are

shown as they relate to P ch
NP :

i)
∑

i∈VI
xi ≤ b

p

2
c defines a face of at least 2p− 1,

ii)
∑

i∈VI
2 ∗ xi +

∑
i∈V0

xi ≤ p defines a face with dimension of at least p− 1,

iii)
∑

i∈VI
xi +

∑
i∈V0

2 ∗ xi ≤ p defines a face with dimension of at least p− 1,

iv)
∑

i∈VO
xi ≤ b

p

2
c defines a face with dimension of at least 2p− 1.

Furthermore if p mod 3 = 1 or 2, then

v)
∑

i∈VI
xi +

∑
i∈V0

xi ≤
2p−2

3
defines a face with dimension of at least p, and

vi)
∑

i∈VI
xi +

∑
i∈V0

xi ≤
2p−1

3
defines a face with dimension of at least p.

Proof : Since the point 0 is always feasible and never meets a sun inequality at equality,

none of the faces of these inequalities is P ch
NP . Therefore, it suffices to find the requisite

number of feasible affinely independent points that satisfy each inequality at equality.

Consider the two hole inequalities i) and iv) of each set
∑

i∈VI
xi ≤ b

p

2
c. Then

consider the following 2p points. The x values are
∑b p

2
c−1

i=0 ξ((2∗(i)−1+j) mod p)+1 for all

j = 1, ..., p and
∑b p

2
c−1

i=0 ξ((2∗(i)−1+j) mod p)+1 + ξp+q−j+1 for all j = 1, ..., p. These points

are clearly feasible, affinely independent and also meet
∑

i∈VI
xi ≤ b

p

2
c at equality. Thus,
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this inequality is facet defining for P ch
NP . When q = 1 the inner hole and outer hole are

symmeteric. Thus, a similar set of points shows that the other hole is facet defining also.

For ii) consider the following points. ξj +
∑b p

2
c−1

i=0 ξ((2∗(i)+1+j) mod p)+p+1 for all j =

1, ..., p. Clearly, no nodes are adjacent and these points meet ii)
∑

i∈VI
2∗xi+

∑
i∈V0

xi ≤ p

at equality. Furthermore, when considered as a matrix, the upper right is the identity

matrix and so these are p affinely independent points. Thus, its face is of dimension at

least p− 1 in P ch
NP . Due to symmetry, inequality iii) follows similarly.

Assume p mod 3 = 1, then the inequality
∑

i∈VI
xi +

∑
i∈V0

xi ≤
2
3
(p− 1) is valid by

Theorem 3.1.3 for P ch
NP . Consider the following two sets of points. Set one contains the

points
∑ p−4

3
i=0 ξ((3∗(i)−1+j) mod p)+1 +

∑ p−4
3

i=0 ξ((3∗(i)+j+1) mod p)+p+1 for each j = 1, ..., p. The

second set contains the points
∑p−7

3
i=0 ξ((3∗(i)−1+j) mod p)+1 +

∑ p−7
3

i=0 ξ((3∗(i)+j+1) mod p)+p+1 +

∑1
i=0 ξ((p−3+2∗(i)+j−1) mod p)+p+1 for each j = 1, ..., p.

The first set of points contain p−1
3

xi = 1 in the inner hole and p−1
3

xi = 1 in the

outer hole. Thus, there are 2p−2
3

points in the sun with xi = 1 and so these points meet

the inequality at equality. The second set of points have p−4
3

xi = 1 in the inner hole and

p−4
3

+ 2 xi = 1 in the outer hole. Thus, there are 2p−8+6
3

points in the sun with xi = 1

and so these points meet the inequality at equality. Thus these are 2p points that meet

the sun inequality at equality.

It is simple to argue that these sets of points are in PNP . Translating the x values

into a set of vertices yields that no two nodes on either of the holes are adjacent to each

other. Furthermore, due to the gap of size three between vertices in the node packing in
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the inner hole, there can exist exactly one vertex on the outer hole. Thus, there are no

edges between vertices in the inner and outer hole. Consequently each of these points is

in PNP .

To show that these points are p + 1 affinely independent, perform the following

column operations. Replace the second set of points by subtracting the jth point in

set one from the jth point in set two for j = 1, ..., p. Thus, the jth column in the

second set becomes the points
∑ p−4

3
i=0 ξ((3∗(i)−1+j) mod p)+1 +

∑ p−4
3

i=0 ξ((3∗(i)+j+1) mod p)+p+1 −

(
∑ p−7

3
i=0 ξ((3∗(i)−1+j) mod p)+1+

∑ p−7
3

i=0 ξ((3∗(i)+j+1) mod p)+p+1+
∑1

i=0 ξ((p−3+2∗(i)+j−1) mod p)+p+1)

for each j = 1, ..., p.

Observe that the upper right quadrant is now a permuted identity matrix and thus

there are at least p + 1 affinely independent points. The additional point comes from

not having all zeros in the remainder of the matrix. Therefore, this face has dimension

of at least p and this portion of the result holds.

Assume p mod 3 = 2, then the inequality
∑

i∈VI
xi +

∑
i∈V0

xi ≤
2p−1

3
is valid by

Theorem 3.1.3 for P ch
NP . Consider the following two sets of points. Set one contains the

points
∑ p−2

3
i=0 ξ((3∗(i)−1+j) mod p)+1 +

∑ p−5
3

i=0 ξ((3∗(i)+j+1) mod p)+p+1 for each j = 1, ..., p. The

second set contains the points
∑ p−5

3
i=0 ξ((3∗(i)−1+j) mod p)+1 +

∑p−2
3

i=0 ξ((3∗(i)+j+8) mod p)+p+1 for

each j = 1, ..., p.

The first set of points contain p+1
3

xi = 1 in the inner hole and p−2
3

xi = 1 in the

outer hole. Thus, there are 2p−1
3

points in the sun with xi = 1 and so these points meet

the inequality at equality. The second set of points follow similarly and also meet the

29



sun inequality at equality.

It is simple to argue that these sets of points are in PNP . Translating the x values

into a set of vertices yields that no two nodes on either of the holes are adjacent to each

other. Furthermore, due to the gap of size three between vertices in the node packing in

the inner hole, there can exist exactly one vertex on the outer hole. Thus, there are no

edges between vertices in the inner and outer hole. Consequently each of these points is

in PNP .

To show that these points are p+1 affinely independent, perform the following column

operations. Replace the second set of points by subtracting the jth point in set one from

the jth point in set two for j = 1, ..., p. Thus, the jth column in the second set becomes the

points ξ((3∗( p−2
3

)−1+j) mod p)+1+
∑ p−2

3
i=0 ξ((3∗(i)+j+8) mod p)+p+1 −

∑ p−5
3

i=0 ξ((3∗(i)+j+1)mod p)+p+1

for each j = 1, ..., p.

Next replace row p+j by row p+j+
∑ p−2

3
i=0 row j+1+ip+1−

∑p−5
3

i=0 row j+1+ip+1 for

j = 1, ..., p. This creates an upper right matrix of 0s and a lower right permuted identity

matrix. Thus, these are at least p + 1 affinely independent points and its dimension is

at least p and the result holds.

2.

For example, reconsider the graph in Figure 3.4. Clearly this has a Sp,q,r with p = 5

and odd for q = 1 and r = 2. Then the valid inequalities are

i)
∑

i∈VI
xi ≤ 2,
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ii)
∑

i∈VI
2 ∗ xi +

∑
i∈V0

xi ≤ 5,

iii)
∑

i∈VI
xi +

∑
i∈V0

2 ∗ xi ≤ 5,

iv)
∑

i∈VO
xi ≤ 2,

v)
∑

i∈VI
xi +

∑
i∈V0

xi ≤ 3.

It is the belief of the author that both v) and vi) are facet defining. Numerous

examples were applied and all had facet defining properties. However, the proof is still

unanswered. The basis for a proof is implemented below and it appears to terminate in

a p by p matrix that is most likely linearly independent, but the matrix is not structured

enough for a proof.

The points used in Theorem 3.1.3 are depicted in the Matrix 3.1. The jth column

is subtracted from the “(p + j)th” column which results in the Matrix 3.2. Next rows

are combined to create a lower right matrix of 0s. This leaves the matrix in the lower

left of Matrix 3.3. It appears as though that matrix is affinely independent, but no such

proof has yet been obtained and is left as future research. In this particular instance,

an inverse exists to this lower left matrix and thus this is a facet defining point.

1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0
0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1
1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0
0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1
1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1
0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1
0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0
1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0
0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1
0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0

(Matrix 3.1)
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1 0 1 0 0 1 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 −1 0 0 0 0 0 0
1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 −1 0 0 0
1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 −1
1 0 0 1 0 0 1 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 1 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 0 1 −1 1 0 −1 1 0 −1 1
0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 −1 1 0 −1 1 0 −1
1 0 0 0 0 1 0 0 1 0 0 −1 1 0 0 1 −1 1 0 −1 1 0
0 1 0 0 0 0 1 0 0 1 0 0 −1 1 0 0 1 −1 1 0 −1 1
0 0 1 0 0 0 0 1 0 0 1 1 0 −1 1 0 0 1 −1 1 0 −1
1 0 0 1 0 0 0 0 1 0 0 −1 1 0 −1 1 0 0 1 −1 1 0
0 1 0 0 1 0 0 0 0 1 0 0 −1 1 0 −1 1 0 0 1 −1 1
0 0 1 0 0 1 0 0 0 0 1 1 0 −1 1 0 −1 1 0 0 1 −1
1 0 0 1 0 0 1 0 0 0 0 −1 1 0 −1 1 0 −1 1 0 0 1
0 1 0 0 1 0 0 1 0 0 0 1 −1 1 0 −1 1 0 −1 1 0 0
0 0 1 0 0 1 0 0 1 0 0 0 1 −1 1 0 −1 1 0 −1 1 0

(Matrix 3.2)

1 0 1 0 0 1 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 −1 0 0 0 0 0 0
1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 −1 0 0 0
1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 −1
1 0 0 1 0 0 1 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 1 0 −1 0 0 0 0 0 0 0 0 0
1 −3 4 0 −1 3 −1 1 2 −2 3 0 0 0 0 0 0 0 0 0 0 0
3 1 −3 4 0 −1 3 −1 1 2 −2 0 0 0 0 0 0 0 0 0 0 0
−2 3 1 −3 4 0 −1 3 −1 1 2 0 0 0 0 0 0 0 0 0 0 0
2 −2 3 1 −3 4 0 −1 3 −1 1 0 0 0 0 0 0 0 0 0 0 0
1 2 −2 3 1 −3 4 0 −1 3 −1 0 0 0 0 0 0 0 0 0 0 0
−1 1 2 −2 3 1 −3 4 0 −1 3 0 0 0 0 0 0 0 0 0 0 0
3 −1 1 2 −2 3 1 −3 4 0 −1 0 0 0 0 0 0 0 0 0 0 0
−1 3 −1 1 2 −2 3 1 −3 4 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 3 −1 1 2 −2 3 1 −3 4 0 0 0 0 0 0 0 0 0 0 0
4 0 −1 3 −1 1 2 −2 3 1 −3 0 0 0 0 0 0 0 0 0 0 0
−3 4 0 −1 3 −1 1 2 −2 3 1 0 0 0 0 0 0 0 0 0 0 0

(Matrix 3.3)

3.1.3 Symmetric Suns with r ≥ 3

This subclass of suns is denoted S(p, 1, r) such that r ≥ 3. As r increases in symmetric

suns, less inequalities are generated. In fact, when r ≥ 3, there is only a single inequality

as the obvious hole inequalities are dominated by the sun inequality. Figure 2.7 shows

a S(7, 1, 4) sun.

The following theorem describes the valid inequalities generated by this class of suns.

Theorem 3.1.4 Given a graph G = (V, E) such that S(p, 1, r) is an induced subgraph

of G with p ≥ 5 and odd and r ≥ 3, then
∑

i∈VI
xi +

∑
i∈V0

xi ≤ b
p

2
c is a valid inequality
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Figure 3.5: S(7,1,4)

of P ch
NP S(p,1,r).

Proof: Let x′ be any point in P ch
NP S(p,1,r) and V ′ be the corresponding node packing.

Clearly V ′ can have at most bp

2
c vertices in VI and in such a situation there are no

vertices in VO. Similarly, V ′ can have at most bp

2
c vertices in VO and in such a situation

there are no vertices in VI . Therefore, this inequality can only be invalid if there is at

least one xi set to one in both of the holes. Define tI =
∑

i∈VI
x′

i and tO =
∑

i∈VO
x′

i.

Observe that if t ≥ dp−r

2
e + 1, then x′ has represents no vertices from VO in V ′. Thus,

it suffices to consider t for t = 1, ..., dp−r

2
e.

If t = 1, then at most TO ≤ d
p−r

2
e. Since r ≥ 3, 1 + dp−r

2
e ≤ dp−r+2

2
e ≤ bp−1

2
c.

Increasing tI by one at least eliminates the ability to add two nodes in VO. Thus,

increasing t by one decreases tO by at least one and the result follows.

2
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With validity established, the focus turns toward determining the strength of the sun

inequality in this case. It is not too surprising that this sun inequality is facet defining

as the following result shows.

Theorem 3.1.5 Given a graph G = (V, E) such that S(p, 1, r) is an induced subgraph

of G with p ≥ 5 and odd, and r ≥ 3, then
∑

i∈VI
xi +

∑
i∈V0

xi ≤
p−1
2

is a facet defining

inequality over P ch
NP S(p,1,r). Furthermore, if every v ∈ V \ S(p, 1, r) is incident to at

most two vertices in either the inner or outer hole, then this inequality is facet defining

for PNP .

Proof : By Theorem 3.1.5, this sun inequality is valid. Furthermore, 0 never meets this

inequality at equality, and thus this inequality has dimension less than or equal to 2p−1

on P ch
NP S(p,1,r). It is therefore sufficient to find 2p affinely independent points that meet

this inequality at equality.

Consider the points
∑ p−1

2
i=1 ξ((2i+j−3) mod p)+1 for each j = 1, ..., p. Additionally, include

the points
∑ p−1

2
i=1 ξ((2i+j−3) mod p)+p+1 for each j = 1, ..., p. Each of these points is clearly

feasible and meet this sun inequality at equality. Thus, it suffices to show that they are

affinely independent.

Including these points into a matrix results in a block diagonal matrix. The first

block is a cyclically permuted matrix of ones that corresponds to the inner hole. The

second block is a cyclically permuted matrix of ones that corresponds to the outer hole.

Each of these diagonals is linearly independent as long as p is odd. Thus these points are

affinely independent. Consequently these are 2p affinely independent points that meet
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the inequality at equality and so
∑

i∈VI
xi +

∑
i∈V0

xi ≤
p−1
2

is a facet defining inequality

over P ch
NP S(p,1,r).

Now assume that every v ∈ V \ S(p, 1, r) is incident to at most two vertices in

either the inner or outer hole. For each v ∈ V \ S(p, 1, r), there exists some j ∈

{1, ..., p} and some k ∈ {1, ..., p} such that ξv +
∑ p−1

2
i=1 ξ((2i+j−3) mod p)+1 ∈ PNP or ξv +

∑ p−1
2

i=1 ξ((2i+k−3) mod p)+p+1ξ((2i+k−3) mod qp)+1 ∈ PNP . Including either of these points to

the previous matrix results in an additional affinely independent point that meets the

inequality at equality and the result follows.

2

Reexamining the graph from Figure 3.5 provides a concrete example of this particular

scenario of suns. Since this graph is a S(7, 1, 4), the valid inequality is
∑14

i=1 xi ≤ 3. This

inequality is facet defining follow Theorem 3.1.5 and the 14 affinely independent points

that demonstrate this are in Matrix 3.4.

1 0 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1

(Matrix 3.4)
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3.2 Nonsymmetric Suns

Suns can also be created where q does not equal 1 but is still odd. This means that there

are more nodes in the outer hole than there are in the inner hole and thus they are not

symmetric. The results here can easily be extended to even q; however, such situations

provide an even outer hole and cyclically permuting this hole only results in two affinely

independent points. Consequently, these inequalities would have a low dimensional face.

As a result, q is restricted to odd for this section.

This section follows the outline of the Symmetric Suns section. First the case where

r = 1 is explored and then larger values of r = 2 and r ≥ 3 are considered. Unlike the

case with symmetric suns, for nonsymmetric suns, r = 1 is facet defining while r ≥ 3 is

not.

3.2.1 Nonsymmetric Suns with r = 1

Nonsymmetric suns with r = 1 are denoted S(p, q, 1). Unlike the case using symmetric

suns, nonsymmetric suns such that r = 1 provide an inequality that is both valid and

facet defining. Proofs of both of these properties are shown here. Figure 3.6 is a S(5, 3, 1)

is an example of this subclass of suns.
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Figure 3.6: S(5,3,1)

Theorem 3.2.1 Given a graph G = (V, E) such that S(p, q, 1) is an induced subgraph

of G with p ≥ 5 and odd and q ≥ 3 and odd, then
∑

i∈VI
xi +

∑
i∈V0

xi ≤
qp−1

2
is a valid

inequality of P ch
NP .

Proof : Clearly, there can be no more than qp−1
2

nodes selected from the outer hole.

Since q ≥ 3, no nodes can be selected from the inner hole in this situation. Assume

∑
i∈VI

x′
i = t for any x′ ∈ PNP . Since none of these nodes are adjacent, qp−1

2
− t nodes

can be selected form the outer hole. Thus, the result follows.

2

Unlike the symmetric case, this inequality happens to be facet defining as Theorem

3.2.2 shows. This is because the additional nodes in the outer hole’s cluster allows some
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nodes adjacent to non-selected nodes in the inner hole to be selected as opposed to the

symmetric suns where these nodes in the outer hole could not be selected due to the

outer hole adjacency.

Theorem 3.2.2 Given a graph G = (V, E) such that S(p, q, 1) is an induced subgraph

of G with p ≥ 5 and odd and q ≥ 3 and odd, then
∑

i∈VI
xi +

∑
i∈V0

xi ≤
qp−1

2
is a facet

defining inequality P ch
NP S(p,q,1). Furthermore, if every v ∈ V \ S(p, q, 1) is incident to

at most two vertices in the outer hole or the vertex is adjacent to a single cluster and

not adjacent to its corresponding vertex in the inner hole, then this inequality is facet

defining for P ch
NP .

Proof : Given a S(p, q, 1), the inequality
∑

i∈VI
xi+

∑
i∈V0

xi ≤
qp−1

2
is valid for P ch

NP S(p,q,1)

by Theorem 3.2.2. Clearly 0 does not meet this inequality at equality and so it suffices

to find p + pq affinely independent points in PNP that meet this inequality at equality.

Consider the points ξj +
∑ qp−3

2
i=1 ξ((2i+qj−2) mod qp)+p+1 for each j = 1, ..., p and

∑ qp−1
2

i=1

ξ((2i+j−3) mod qp)+p+1 for each j = 1, ..., qp. Each of these points are also feasible and meet

this inequality at equality. Thus, it suffices to show that they are affinely independent.

Observe that the first p rows are the identity rows. Thus, one can easily change the

first p columns to identity columns without changing the lower right values. Since the

lower right qp rows and columns is a cyclically permuted set of ones based upon an odd

hole, these points are clearly affinely independent and the result follows.

Now assume that every v ∈ V \ S(p, q, r) is incident to at most two vertices in

the outer hole or the vertex is adjacent to a single cluster and not adjacent to its
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corresponding vertex in the inner hole. For each v ∈ V \ S(p, q, r), there exists some

j ∈ {1, ..., p} and some k ∈ {1, ..., qp} such that ξv +
∑ qp−1

2
i=1 ξ((2i+k−3) mod p)p+1 ∈ PNP or

ξv +ξj +
∑ qp−3

2
i=1 ξ((jq+i) mod qp)+p+1 ∈ PNP . Including either of these points to the previous

matrix results in an additional affinely independent point that meets the inequality at

equality and the result follows.

2

Figure 3.6 is a sun inequality of the form S(5, 3, 1). By Theorem 3.2.1 the inequality

∑
i∈VI

xi +
∑

i∈VO
xi ≤ 7. By Theorem 3.2.2 this inequality is facet defining. The 20

affinely independent points that meet this inequality at equality are displayed in Matrix

3.5.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1
0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1
0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0
1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0
1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

(Matrix 3.5)

3.2.2 Nonsymmetric Suns with r = 2

Similar to the symmetric suns with r = 2, nonsymmetric suns such that r = 2 also

provide five valid inequalities. In fact the five inequalities presented in Theorem 3.2.3 are

applicable to S(p, 1, 2) symmetric suns. In the subsection for symmetric suns such that

r = 2, these inequalities have been specified because two of five of the valid inequalities
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were proven facet defining while the corresponding nonsymmetric suns only produce

valid inequalities that may not be facet defining as it is difficult to define the appropriate

number of affinely independent points due to the additional vertices in the outer hole.

Figure 3.7: S(5,3,2)

Figure 3.7 is a S(5, 3, 2) sun. There are p = 5 nodes in the inner hole, 5 clusters

of q = 3 in the outer hole, and r = 2 connections between the inner nodes and outer

clusters.

With more nodes, it becomes more difficult to define the necessary number of affinely

independent points to prove facet definition. In fact, none of the examples attempted

during this research induced facet defining inequalities. Determining this is a topic for

additional research. However, a number of valid inequalities are applicable where q is

large.
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Theorem 3.2.3 Given a graph G = (V, E) such that S(p, q, 2) is an induced subgraph

of G with p ≥ 5 and odd, q ≥ 3 and odd. Then the following inequalities are valid for

P ch
NP

i)
∑

i∈VI
xi ≤ b

p

2
c,

ii)
∑

i∈VI
(2 ∗ q − 1) ∗ xi +

∑
i∈V0

2 ∗ xi ≤ q ∗ p,

iii)
∑

i∈VI
(q + 1) ∗ xi +

∑
i∈V0

xi ≤
q∗p+p

2
,

iv)
∑

i∈VO
xi ≤ b

p∗q

2
c.

Furthermore if p mod 3 = 1 or 2, then

v)
∑

i∈VI
q ∗ xi +

∑
i∈VO

xi ≤
3∗q+1

2
p−2

3
or

vi)
∑

i∈VI
q ∗ xi +

∑
i∈VO

xi ≤
3∗q+1

2
p−1

3

are valid for P ch
NP S(p,q,2), respectively.

Proof : Clearly, inequalities i) and iv) are hole inequalities and are valid for P ch
NP S(p,q,2).

Now let x′ be any point in P ch
NP S(p,q,2) and V ′ be the corresponding node packing. Define

tI =
∑

i∈VI
x′

i and tO =
∑

i∈VO
x′

i. if ti ≥ d
p−2
2
e + 1, then x′ has represents no vertices

from VO in V ′. Thus, it suffices to consider tI = 1, ..., dp−r

2
e.

Consider ii) and assume tI = 1, then tO ≤ q p−3
2

+ q+1
2

. Checking this point on ii)

results in 1 ∗ (2 ∗ q − 1) + q p−3
2

+ q+1
2

= qp+5q−4
2

≤ qp as long as p ≥ 5. If tI increases

by 1, then at least q nodes must be removed from the outer hole in any node packing;

equivalently, tO decreases by q. Inputting this change into ii) results in an increase of

2q − 1 and a decrease of 2q. Thus, any increase in tI , decreases the left hand value of
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the inequality and this inequality is valid.

Examine iii) and assume tI = 1, then tO ≤ q p−3
2

+ q+1
2

. Checking this point on iii)

results in (q + 1) ∗ ti + tO ≤ q + 1 + q p−3
2

+ q+1
2

= qp+3
2
≤ q∗p+p

2
since p ≥ 5. Again

any increase in tI decreases tO by at least q. The impact of such a change on iii) is a

decrease of q + 1 and an increase of q. Again this decreases the left hand side of iii) and

this inequality is valid.

Assume p mod 3 = 1 and tI = 1. Again, tO ≤ q p−3
2

+ q+1
2

. Checking this point on v)

results in (q) ∗ ti + tO ≤ q + q p−3
2

+ q+1
2

= qp+1
2
≤ q∗p+p

2
since p ≥ 5. Again any increase

in tI decreases tO by at least q. The impact of such a change on v) is a decrease of q

and an increase of at most q. Thus this inequality is valid.

Finally, assume p mod 3 = 2 and tI = 1. Again, tO ≤ q p−3
2

+ q+1
2

. Checking this point

on vi) results in (q) ∗ ti + tO ≤ q + q p−3
2

+ q+1
2

= qp+1
2
≤ q∗p+p

2
= pq+1

2
≤ pq+1

2
− 1+ 1

2
pq =

3∗q+1
2

p−1

3
or the right hand side. Again any increase in tI decreases tO by at least q. The

impact of such a change on vi) is a decrease of q and an increase of at most q. Thus this

inequality is valid.

2

Now reconsider Figure 3.7 of the S(5, 3, 2) sun. By Theorem 3.2.3, these are its valid

inequalities:

i)
∑

i∈VI
xi ≤ 2,

ii)
∑

i∈VI
5 ∗ xi +

∑
i∈V0

2 ∗ xi ≤ 15,
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iii)
∑

i∈VI
4 ∗ xi +

∑
i∈V0

xi ≤ 10,

iv)
∑

i∈VO
xi ≤ 7,

v)
∑

i∈VI
3 ∗ xi +

∑
i∈VO

xi ≤ 8.

3.2.3 Nonsymmetric Suns with r ≥ 3

Nonsymmetric suns such that r ≥ 3 produce three valid inequalities. The middle in-

equality is facet defining, and because q is large, proof of facet definition requires pq + p

many affinely independent points. Figure 3.8 depicts a S(7, 3, 3) sun as an example of

this subclass of suns.

Figure 3.8: S(7,3,3)
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Theorem 3.2.4 Given a graph G = (V, E) such that S(p, q, r) is an induced subgraph

of G with p ≥ 5 and odd, q ≥ 3 and odd and r ≥ 3, then the following inequalities are

valid.

i)
∑

i∈VI
xi ≤ b

p

2
c,

ii)
∑

i∈VI

1
p−1
2

xi +
∑

i∈VO

1
q∗p−1

2

xi ≤ 1,

iii)
∑

i∈VO
xi ≤ b

p∗q

2
c.

Proof : Clearly, inequalities i) and iii) are valid since they are hole inequalities. Further-

more, inequality ii) can only be invalid if there is at least one xi set to one in both of the

holes or the inequality becomes a hole inequality. Let x′ ∈ PNP and define tI =
∑

i∈VI
x′

i.

Observe that if tI ≥ d
p−r

2
e+1, then x′ has no vertices from VO in its corresponding node

packing. Thus, it suffices to consider tI for tI = 1, ..., dp−r

2
e.

If t = 1, then at most there can be qp−1
2
− r q−1

2
− b r

2
c. Each time t escalates by

one, it eliminates at least two clusters from consideration in the node packing. In

eliminating these two clusters, the value of
∑

i∈VO
x′

i decreases by at least q. Inputing

this change into ii), results in 1
p−1
2

t+ 1
q∗p−1

2

( qp−1
2
−r q−1

2
−b r

2
c−q(t−1)). Simplifying leads

to 1
p−1
2

t + 1 − 1
q∗p−1

2

(r q−1
2

+ b r
2
c + q(t− 1)). This is less than or equal to one whenever

1
p−1
2

t ≤ 1
q∗p−1

2

(r q−1
2

+ b r
2
c + q(t− 1)). Simplifying yields q∗p−1

p−1
t ≤ r q−1

2
+ b r

2
c + q(t− 1).

Observe that q−1
2

+ b r
2
c + q(t− 1) ≤ r q−1

2
+ r

2
+ q(t − 1) = rq−r+r+2qt−2q

2
= q r+2t−2

2
=

qr

2
+ qt− q. Thus, it is sufficient to consider the case when q∗p−1

p−1
t ≤ qr

2
+ qt− q. Cross

multiplying leads to 2t(p∗ q−1) ≤ qr ∗ (p−1)+2qt(p−1)−2q(p−1). Simplifying leads

to 2t(q − 1) ≤ qr(p− 1) − 2q(p− 1), which implies 2t(q − 1) ≤ (qr − 2q)(p− 1). Since
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2t(q − 1) ≤ 2tq, it implies that 2t ≤ (r − 2)(p − 1). Since t is at most dp−r

2
e 2dp−r

2
e ≤

p−r+1. Forcing p−r+1−(r−2)(p−1) ≤ 0 simplifies to p−r+1−(pr−2p−r+2) ≤ 0.

This can be reduced to 3p− pr ≤ 0 whenever r ≥ 3. Thus, the result follows.

2

Unlike the symmetric case where the two hole inequalities were facet defining, in this

case neither of the hole inequalities are facet defining. However, the sun inequality ii) is

facet defining as the following theorem shows.

Theorem 3.2.5 Given a graph G = (V, E) such that S(p, q, r) is an induced subgraph

of G with p ≥ 5 and odd, q ≥ 3 and odd and r ≥ 3, then
∑

i∈VI

1
p−1
2

xi +
∑

i∈VO

1
q∗p−1

2

xi ≤ 1

is a facet defining inequality over P ch
NP S(p,q,r). Furthermore, if every v ∈ V \ S(p, q, r) is

incident to at most two vertices in either the inner or outer hole, then this inequality is

facet defining for P ch
NP .

Proof: By Theorem 3.2.5, the sun inequality is valid. Furthermore, 0 never meets this

inequality at equality, and thus this inequality has dimension less than p(q + 1) on

P ch
NP S(p,q,r). It is therefore sufficient to find p(q + 1) affinely independent points that

meet this inequality at equality.

Consider the points
∑ p−1

2
i=1 ξ((2i+j−3) mod p)+1 for each j = 1, ..., p. Additionally, include

the points
∑ qp−1

2
i=1 ξ((2i+j−3) mod qp)+p+1 for each j = 1, ..., qp. Each of these points is clearly

feasible and meet the sun inequality at equality. Thus, it suffices to show that they are

affinely independent.
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Including these points into a matrix results in a block diagonal matrix. The first

block is a cyclically permuted matrix of ones that corresponds to the inner hole. The

second block is a cyclically permuted matrix of ones that corresponds to the outer hole.

Each of these diagonals is linearly independent as long as p and q are odd. Thus these

points are affinely independent. Consequently these are p + qp affinely independent

points that meet the inequality at equality and so
∑

i∈VI

1
p−1
2

xi +
∑

i∈VO

1
q∗p−1

2

xi ≤ 1 is a

facet defining inequality over P ch
NP S(p,q,r).

Now assume that every v ∈ V \ S(p, q, r) is incident to at most two vertices in

either the inner or outer hole. For each v ∈ V \ S(p, q, r), there exists some j ∈

{1, ..., p} and some k ∈ {1, ..., qp} such that ξv +
∑ p−1

2
i=1 ξ((2i+j−3) mod p)+1 ∈ PNP or

ξv +
∑ qp−1

2
i=1 ξ((2i+k−3) mod qp)+p+1 ∈ PNP . Including either of these points to the previ-

ous matrix results in an additional affinely independent point that meets the inequality

at equality and the result follows.

2

Reconsider Figure 3.8 which shows a S(7, 3, 3). The inequality
∑

i∈VI

1
3
∗xi+

∑
i∈VO

1
10
∗

xi ≤ 1, has 28 affinely independent points. Matrix 3.6 shows these points.

Observe that
∑

i∈VI

1
3
∗ xi +

∑
i∈VO

1
10
∗ xi ≤ 1 is precisely the inequality that is

generated by Conley [13]. However for Conley to generate this inequality, the structure

would have needed a complete graph between both holes. In this case it would have

required nearly twice as many edges as in the sun inequality. Thus, the sun inequalities

strengthen his result and are previously undiscovered inequalities. As an asside, similar
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comments could have been made regarding the other cases with r ≥ 2.

1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

(Matrix 3.6)

3.3 Identifying Sun Structures in Arbitrary Graphs

In identifying sun structures for cutting planes, observe that if a sun is a subgraph of a

graph on p(q + 1) nodes, then the cutting planes are valid. These inequalities may no

longer be facet defining with the additional edges, but the cutting planes are still valid.

Thus, they may help solve a node packing instance.

An exponential algorithm was developed that could exactly identify a sun structure

from a hole. However, the applicability of such an algorithm is essentially useless. Instead

a polynomial time algorithm is generated that can identify super graphs with suns as a

subgraph. Thus, the cutting planes contained in sections 3.1 and 3.2 can be identified

and applied in polynomial time.

Given an odd hole, the algorithm determines if there exists a graph with a S(p, q, r)
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as a subgraph. Without loss of generality, assume there is an odd hole Hp = {v1, ..., vp}

where there is an edge between vi and vi mod p+1. for i = 1, ..., p.

The algorithm begins by identifying potential candidates to be in a S(p, 1, r). If a

node vj ∈ V \ V (Hp) is in an S(p, 1, r), then by necessity the edges to V (HP ) must be

exactly of the form {vi, vj}, {vi mod p+1, vj}, {vi+1 mod p+1, vj},..., {vi+r−2 mod p+1,vj
} for

some i ∈ {1, ..., p}. If this is the case, the vj is a candidate to be in this sun that would

correspond to node vi. This list of candidate nodes is stored in listvi,r.

With this list of candidate adjacent nodes, for each possible r, a multilayer graph

is created. The vertices in layer i correspond to vertex vi ∈ Hp and are the vertices in

listvi,r. The induced subgraph of these vertices is then considered and a modified breadth

first search is utilized to identify whether or not a path in this multilayer graph exists.

Observe that chords are allowed and is why the algorithm is identifying supergraphs and

not just suns.

The modified breadth first search seeks a path from a vertex in the first layer back

to itself of length p. If such a path exists, then there is a cycle, but there may be

chords. Due to the structure of the breadth first search, the algorithm can identify all

suns of form S(p, 1, r). Clearly, it does not necessarily report these as there may be

exponentially many such suns. More on this is discussed after the example along with a

modification of moving from q = 1 to larger q.
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Super Symmetric Sun Identification Algorithm (SSSIA)

Initialization:

Identify an odd hole Hp = (v1, ..., vp) in G

Main Step:

For r = 1 to p

For every vertex vj ∈ V \ V (Hp) add vi to listvj,r if and only if the edges in G.

between vj and V (Hp) include {vi, vj}, {vi mod p+1, vj}, {vi+1 mod p+1, vj},...,

{v(i+r−2) mod p+1,vj
}.

Create a multilayer graph GM = (V, E) = (V1 ∪ V2 ∪ ...∪ Vp ∪ Vp+1, E
′) where

Vk = listvj,r and Vp+1 = V1. The edges between Vi and Vi+1 {u, v} such that

u ∈ Vi, v ∈ Vi+1 and {u, v} ∈ E(G) for i = 1 to p.

For layer = 2 to p + 1

For each node vj ∈ V set predlistvj ,layer ← ∅.

For each layer = 1 to p

For each vl ∈ Vlayer .

if vl is adjacent to vk ∈ Vlayer+1 , then predvk ,layer ← predvk ,layer ∪ {vl}.

For each vl∈Vp+1

Follow the predecessors until the vertex vl is reached in V1. In following
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predecessors, it is important not to revisit a node visited, besides vl which

is repeated exactly once. Thus, once a node is used a predecessor, it is

marked and only unmarked nodes are considered in each successive

predecessor. Report the nodes on this path and the original hole as being a

sun.

It is straightforward to show that SSSIA creates a supergraph that contains a S(p, 1, r).

First, the inner odd hole is generated or could be provided as input. The vertices on

the outer hole are only considered if they have at least the r requisite adjacencies to the

inner hole. Thus, the edges between the two holes are guaranteed to be in the reported

graph. Finally, the multilayer graph is used to find the outer hole among these candidate

nodes. Due to the multilayer graph and the marking of vertices in traversing this graph,

enables the algorithm to find a cycle with p nodes. Consequently, the algorithm does

identify a supergraph of a S(p, 1, r).

The runtime of this algorithm is straightforward. The initialization can be performed

using breadth first search, O(n + m) where |V | = n and |E| = m. The mainstep is

repeated p times and the first step is done in O(np). Creating the multilayer graph

requires O(p(n + m)). Assigning the predecessors to the empty set. The last steps are

just a modified version of breadth first search and require O(pn + pm) effort. Thus, the

algorithm requires O(p2n) effort and since p ≤ n, this algorithm requires O(n3) effort.
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The following example depicts some of this algorithm.

Figure 3.9: Algorithm Example

In Figure 3.9, the initial hole can be seen in nodes 1, 2, 3, 4, and/5. The remaining

nodes in the figure are candidates for the outer hole of the sun. In this particular instance,

the loop when r = 2 is examined. Thus, any sun generated would be a S(5, 1, 2).

Next the lists for each layers are created as follows. The vertices in List(1,2) are

precisely those vertices that are adjacent to both vertex 1 and 2 since r = 2. Thus,

List(1,2) = {7, 11, 12}. The final values of these lists are as follows.
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List(1,2) = {7, 11, 12}

List(2,2) = {8, 13, 14, 15}

List(3,2) = {9, 16}

List(4,2) = {10, 17}

List(5,2) = {6}

Next the multilayer graph is created as shown in Figure 3.10.

Figure 3.10: Layers

The predecessors are found in this multilayer graph. For instance, the predecessor of

node 16 is {8, 13}. Starting with node 7 in layer 6, predecessors are followed in an effort

to obtain a path to 7 in layer 1. Any such path generates a sun. In this example, there

are six paths and thus, six suns with r = 2. The outer holes for each different sun are:

7− 8− 9− 10− 6

7− 8− 9− 17− 6

7− 8− 16− 10− 6

7− 8− 16− 17− 6

7− 13− 16− 10− 6
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7− 13− 16− 17− 6

Since these suns have p = 2, q = 1, and r = 2, one can apply the S(5, 1, 2) sun

inequalities. Take the first discovered sun for instance 7− 8− 9− 10− 6 and the valid

inequalities are as follows.

i) x1 + x2 + x3 + x4 + x5 ≤ 2,

ii) 2 ∗ (x1 + x2 + x3 + x4 + x5) + x6 + x7 + x8 + x9 + x10 ≤ 5,

iii) x1 + x2 + x3 + x4 + x5 + 2 ∗ (x6 + x7 + x8 + x9 + x10) ≤ 5,

iv) x6 + x7 + x8 + x9 + x10 ≤ 2,

v) x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 ≤ 3.

To identify suns with q ≥ 3, groups of nodes must be considered at each layer. Thus

if a layer had l nodes, then l choose q sets could be examine at each layer. Furthermore,

these nodes must have at least a path connecting them. In performing the path searching

algorithm between the layers, only one (the end of the path) is adjacent to the starting

set of q in the next layer. Obviously, the algorithm could trivially be extended to include

these sets of q candidates at each layer. For arbitrary q, this is an exponential algorithm,

but for fixed q it is a polynomial time algorithm.

The only change is in the creation of the multilayer graph. It begins with List. If

q = 3, then List(2,2) = {8, 13, 14, 15} describes this process. First twenty four chains

(4*3*2) are examined. For instance, one possiblility would be for the hole to have

(8,13,14) in that order in the multigraph. Another would be (8,13,15), etc. These
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new ”super” nodes only are added to the multilayer graph if there exists a path from

the starting node to the ending node. The connections between layers now are in the

multilayer graph if the end of layer i’s chain has an edge to the beginning of layer

i + 1’s chain for i = 1 to p. Once the multilayer graph is changed, the remainder of the

algorithm is identical.
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Chapter 4

Conclusions and Future Research

This research presented a new series of structures called Suns S(p, q, r). There are two

classes of suns. The first is symmetric suns which have an equal number of nodes in

the inner and outer holes. The second is nonsymmetric suns which have more nodes in

the outer hole than the inner hole. Within the two classes of suns, there are also three

subclasses: r = 1, r = 2, and r ≥ 3, where r represents the number of connections

between nodes in the inner and outer holes.

All classes of suns produce different valid inequalities known as sun inequalities.

Symmetric suns with r = 2 and r ≥ 3 and nonsymmetric suns with r = 1 and r ≥ 3

have been proven to have facet defining inequalities. These inequalities are theoretically

stronger than the existing hole inequalities that could be applied to the the odd hole

subgraphs within each sun. Thus, in integer programs whose graphs contain sun sub-

graphs, these valid and facet defining inequalities can be used to more quickly solve the
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problem.

Additionally, a polynomial time algorithm has been provided to aid in identifying

whether or not a sun exists in the IP. This algorithm can be used for various classes and

sizes of suns. Hence the generation of sun inequalities can be completed in polynomial

time.

4.1 Future Research

The work done for this thesis provides several areas for future research. In particular,

for symmetric suns such that r = 2, research suggests that the middle sun inequality

is likely facet defining. The matrix of the suspected affinely independent points has

an inverse. However, the proof that this valid inequality is in fact facet defining still

remains.

During the research for this thesis, in both symmetric and nonsymmetric cases, five

valid inequalities were created for suns with r = 2. Out of these five inequalities, the

two hole inequalities have been proven and the middle sun inequality is suspected to be

facet defining for symmetric suns. The remaining two inequalities each share end points

with a hole inequality and the middle sun inequality. However, we were unable to prove

that these inequalities are facet defining. The question that remains in this instance is:

what facets exist between the three facet defining inequalities?

To this point, every sun structure that has been studied is comprised of two holes:
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an inner and outer hole. It would be possible to create a multilayer sun with n holes.

These multilayer suns could also be either symmetrical or nonsymmetrical and would

have a similar set of valid inequalities to the two-hole suns. Although the number of

nodes would be exponential, some of these inequalities could still be facet defining due

to the cyclical nature of the node packings. These suns may be harder to identify in

real-world examples since they are large and require a great deal of intricacy.

Figure 4.1: Multilayer Sun

Finally, additional graphical structures can be created to generate different valid

inequalities. These could be intersections of odd holes or they could be intersections of

other structures such as cliques or wheels. Using varying numbers of edges between the

intersected structures may generate new, stronger inequalities. This line of reasoning was

a primary motivation for this this research and it is believe that many more previously
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undiscovered facet defining inequalities remain for P ch
NP .
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