DESIGN AND IMPLEMENTATION OF A MICROCOMPUTER, CONTROLLER FOR STABILIZING AN INVERTED PENDULUM MOUNTED ON A CART

by

PARAG BRIJENDRA BHARGAVA
B.E., Bombay University, India, 1980

A THESIS

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1983

Approved by:

Major Professor

A11203 652857

2668

TABLE OF CONTENT

·T	'	
19	<i>통</i> 공 5	PAGE
c.2	LIST OF TABLES AND FIGURES	iii
	CHAPTER I - INTRODUCTION	1
	CHAPTER II - MATHEMATICAL MODELING	4
	CHAPTER III - Z - TRANSFORM ANALYSIS	27
	CHAPTER IV - STABILITY ANALYSIS IN Z - DOMAIN	35
	CHAPTER V - SIMULATION OF THE SYSTEM	45
	CHAPTER VI - SOFTWARE DEVELOPMENT	54
	CHAPTER VII - EXPERIMENTAL PROCEDURE	78
	CHAPTER VIII - PRESENTATION OF EXPERIMENTAL RESULTS	82
	CHAPTER IX - CONCLUSIONS AND RECOMMENDATIONS	89
	REFERENCES	91
	APPENDIX A	93
	APPENDIX B	96
	APPENDIX C	99
	APPENDIX D	103
	APPENDIX E	106
	ACKNOWLEDGMENT	130
	TPATFALLENGE CONTRACTOR CONTRACTO	

LIST OF TABLES

	TABL		PAGE
	2.1	Experimental Reading of the Amplitude Ratio of the D.C. Motor Versus Field Voltage	13
	2.2	Experimental Data to find the Gain of the Tachometer.	16
	2.3	Experimental Frequency Response of the System	22
		LIST OF FIGURES	
E	FIGURI	3	
	2.1	Photograph of the Cart Pendulum System	5
	2.2	Schematic Representation of the D.C. Motor, Drive and Cart	6
	2.3	Block Diagram Representation of the D.C. Motor, Drive and Cart	10
	2.4	Reduced Block Diagram of the D.C. Motor, Drive and Cart	11
	2.5	A Cart and Inverted Pendulum	11
	2.6	Plot of the Amplitude Ratio of the D.C. Motor vs Field Voltage	14
	2.7	Plot of the Speed of the Armature vs Output Voltage from the Tachometer	17
	2.8	Experimental Setup for the Frequency Response Measurement of the System	19
	2.9	Bode Plot of the Closed Loop System with Experimental Data and the Approximate Fit	23
	2.10	Block Diagram Representation of the System	25
	4.1	Block Diagram of the System	37
	4.2	Root Locus of the Inner Loop of the System in the Z -	. 39

I	FIGURI	3	PAGE
	4.3	Root Locus of the Inner Loop of the System in the Z - Plane with a Compensation Transfer Function	41
	4.4	Root Locus of the Entire system in the Z -Plane	43
	5.1	The Plot of the Angular Displacement of the Pendulum vs Time for a Potentiometer Gain of 0.6, 1.1 and 1.9	49
	5.2	The Plot of Control Signal vs Time for a Potentiometer Gain of 0.6, 1.1 and 1.9	50
	5.3	The Plot of Speed of the D.C. Motor vs Time for a Potentiometer Gain of 0.6, 1.1 and 1.9	52
	5.4	The Plot of Displacement of the Cart vs Time for a Potentiometer Gain of 0.6, 1.1 and 1.9	53
	6.1	The MAIN PROGRAM	56
	6.2	The INITIALIZATION PROGRAM	56
	6.3	The COMPUTATION PROGRAM	58
ÿ.	6.4	The UPDATING PARAMETER PROGRAM	61
	6.5	Subroutine MULT	63
	6.6	Subroutine STAD	65
	6.7	Subroutine COMPLEMENT	65
	6.8	Subroutine EXPONENT	67
	6.9	Subroutine TRANS	68
	6.10	Subroutine SHIFT	69
	6.11	Subroutine STOP	69
	6.12	Subroutine DISPLAY	71
	6.13	Subroutine STORE	71
	6.14	Subroutine INITI	73
	6.15	Subroutine CHECK, DEC, INC	74
	6.13	Subroutine PENDIS	76
	8.1	The Angualar Displacement of the Pendulum vs Time (1 mm/sec.5 mm/sec and 25 mm/sec)	83

FIGUR	ES		PAGE
8.2		Speed of the D.C. Motor vs Time mm/sec, 5 mm/sec and 25 mm/sec)	85
8.3	The	Control Signal vs Time (5 mm/sec and 25 mm/sec)	86
8.4		Displacement of the Cart vs Time mm/sec and 25 mm/sec)	87

CHAPTER I

INTRODUCTION

In this advanced technological age there are many useful systems which have a natural instability; for example missiles, helicopters, aircrafts, torpedos, etc. . To stabilize these systems, for useful and safe operation, control systems are designed and built to suit their individual requirements.

In recent years, especially since the advent of the micro-computer, great advances have been made in the field of discrete control systems. These systems differ from conventional, continuous systems in that some of the signals are in the form of either discrete values or numerical codes.

With the development of sophisticated, fast, inexpensive computers and interfacing hardware, an impetus is given to the study and development of discrete control systems. The extensive arithmetical and logical capabilities of microcomputers make them suitable for executing complex and extensive control algorithms. Hence digital computers have gained significant importance as control elements in control systems.

The object of this thesis is to develop and implement a discrete control system for a naturally unstable system. An inverted pendulum mounted on a cart was chosen for this study. Controlling this system is similar to the problem of controlling the attitude of a rocket during the initial stages of the launch.

A d.c. motor was used to drive the cart. Power was tran-

smitted from the d.c. motor to the wheels of the cart by a belt and pulley drive system. The movement of the cart is limited to the X - direction and the displacement of the pendulum is restricted in the vertical plane along the X - direction.

This thesis is divided into eight major parts.

To know the dynamics of the system to be controlled the mathematical model of the system is developed in Chapter II. The paramaters of the model were obtained by frequency response analysis.

The discrete data model was obtained by applying the Z-transform. The Z-transform analysis for the system is given in Chapter III.

The physical system has one mode of instability and one mode of neutral stability. The system is stabilized by a compensation technique. The compensation analysis is presented in Chapter IV.

The procedure and the results of a simulation of the system are given in Chapter V.

The system was controlled by a microcomputer. The program was written in assembly language. Emphasis was placed on making the program as efficient as possible due to the time constraint for the execution of the computation. The main program and its' subroutines are explained in Chapter VI. The programs are listed in Appendix E.

The experimental arrangement and procedure are given in Chapter VII.

The results of the experiment are given in Chapter VIII.

The conclusions and recommendations are presented in Chapter
IX.

CHAPTER II

MATHEMATICAL MODELING

2.1 Introduction

The details of the system can be visualised from photographic Figure 2.1.

A d.c. motor is used to drive the cart which has seperate excitations for the armature and the field. The armature voltage was varied to control the speed of the cart while a constant voltage was applied to the field. Power from the d.c. motor was transmitted to the wheels of the cart by belt drives with a gear ratio of 19.7:1. The position of the pendulum was measured by a potentiometer which was mounted on the pivot of the pendulum. The speed of the cart was measured by a tachometer which was coupled to the shaft of the d.c. motor.

In this chapter a mathematical model of the system is developed. To obtain a mathematical model it is necessary to analyze the relationship between the system variables. Since the system is dynamic, the descriptive equations are differential equations. Necessary assumptions were made to linearize the system, in order to simplify the analysis. The parameters of the system were determined by frequency response analysis.

2.2 Mathematical Model of the D.C. Motor, Drive and Cart.

A schematic representation of the d.c. motor and the drive system is shown in Figure 2.2. An armature controlled d.c. motor

Figure 2.1 Photograph of the Cart Pendulum System

Figure 2.2. Schematic Representation of the D.C. Motor, Drive and Cart

is used to drive the cart. The transfer function of the d.c motor is developed. Second order effects, such as hystersis, inductance of the armature and the voltage drop across the brushes are neglected. The spring constant, Kb, of the belt drive is considered while the damping coefficient of the belt is neglected because it is very small.

The input voltage, Va, is applied across the armature terminals. The back voltage, Vb, is proportional to the speed of the armature.

$$Vb(s) = Ks*Wa(s), \qquad (2.1)$$

where Ks is the motor speed constant (volts/radian/sec), and
Wa is the speed of the armature (radians/sec).

The armature current , Ia, is related to the input voltage applied to the armature by

$$Ia(s) = [Va(s) - Vb(s)]/Ra, \qquad (2.2)$$

where Ra is the resistance of the armature.

The torque, Tm, produced by the motor is proportional to the current through the armature. The motor torque is given by the relation,

$$Tm(s) = Km*Ia(s), (2.3)$$

where Km is the motor torque constant (Newton-m/ampere).

The motor torque is equal to the torque delivered to the load. Applying D'Alembert's principle to the armature shaft

rotation yields the equation,

$$Ja*Wa + fa*Wa + Kb*(Da - Kw*Dc) = Tm, \qquad (2.4)$$

where Ja = moment of inertia of the armature (Kgm-m²),

fa = coefficient of friction (Newton-m-sec),

Kb = spring constant for the belt (Newton-m),

Da = displacement of the armature (radian),

Dc = displacement of the cart (m),

Wc = speed of the cart (meters/sec), and

Kw = transmission ratio (radians/m).

The Laplace transform of Equation 2.4 yields,

$$(Ja*s^2 + fa*s + Kb)*Wa = Tm*s + Kb*Kw*Wc.$$
 (2.5)

Similarly, applying D'Alembert's principle to the displacement of the cart yields,

$$Mc*Wc + fc*Wc + Kb*Kw^2*(Dc - Da/Kw) = 0.$$
 (2.6)

where Mc = mass of the cart (Kgm) and

fc = coefficient of friction (Newton/m/sec).

The Laplace transform of Equation 2.6 yields,

$$(Mc*s^2 + fc*s + Kb*Kw^2)*Wc = Kw*Kb*Wa$$
. (2.7)

Rearranging the terms in Equation 2.7 yields the transfer function relating the speed of the cart and the armature rotation as,

Figure 2.3 is a block diagram representation of the elements of the d.c. motor, drive and the cart. Applying block diagram reduction techniques the reduced block diagram is shown in Figure 2.4. The transfer function relating the motor speed to the armature voltage is,

$$Wa(s) Km*(Mc*s2 + fc*s + Kb*Kw2)$$

$$Va(s) Ra*(D3*s3 + D2*s2 + D1*s + D0)$$
(2.9)

where D3 = Ja*Mc,

D2 = Mc*fa + Ja*fc + Mc*Km*Ks/Ra,

 $Dl = Ja*Kb*Kw^2 + fa*fc + Mc*Kb + fc*Km*Ks/Ra, and$

D0 = Kb*fc + Kb*fa*Kw² + Kb*Km*Ks*Kw²/Ra

The coefficients of the transfer function are determined by frequency response analysis, since it is a very difficult to measure the individual parameters accurately.

2.3 Mathematical Model for the Inverted Pendulum

The inverted pendulum mounted on the cart is illustrated in Figure 2.5. The differential equation describing the motion of the pendulum is obtained by summing the moments about the pivot point. In order to make the equation linear, the assumption made is that the angle of rotation, P, of the pendulum is small. The sum of the moments about the pivot point is,

$$m*1_1*Wc + m*1_2*P - m*1_1*g*P=0$$
 (2.10)

where m = mass of the pendulum,

l₁ = length of the center of mass of the pendulum from the pivot point ,

 l_2 = radius of gyration of the pendulum from the pivot

Figure 2.3. Block Diagram Representation of the D.C. Motor, Drive and Cart

Figure 2.4. Reduced Block Diagram of the D.C. Motor, Drive and Cart

Figure 2.5. A Cart and Inverted Pendulum

point, and

g = acceleration due to gravity = 9.81 m/sec².

A uniform pendulum of length , L= 0.59 m, was chosen for the system. Hence,

$$1_1 = L/2 \text{ and}$$

$$1_2 = L/\sqrt{3}.$$

Substituting the values of l_1 and l_2 in Equation 2.10 yields,

$$\dot{W}c + 2*L*\dot{P}/3 - g*P = 0$$
 (2.11)

or

$$Wc + 0.40*P - 9.81*P = 0$$
 (2.12)

The Laplace transform of Equation 2.12 is

$$\frac{P(s)}{----} = \frac{-2.5*s}{s^2 - 25}$$
Wc(s) $s^2 - 25$ (2.13)

Equation 2.13 is the transfer function relating the dynamics of the pendulum to the speed of the cart.

The d.c. motor used to drive the cart has seperate excitations for the armature and the field. The armature voltage is used for control of the speed of the cart and a constant voltage is applied to the field. Since the dynamic characteristics of the motor are affected by the value of the field voltage it is important to establish the value of the field voltage before carrying out the frequency response analysis to determine the coefficients of the transfer functions. An experiment to explore the effects of the value of the field voltage is described in the next section.

2.4 Dynamic Response of the Speed of the Motor due to Change of Voltage Across the Field Winding

In this experiment the cart is driven by applying a sinusoidal voltage to the armature of the d.c. motor. The field voltage is increased in increments of 1 volt for each succesive observation. The voltage to the armature is a sinusoid with an amplitude of 5 volts peak to peak and a frequency of 1.2 radians/sec. The output from the tachometer is recorded on a strip chart recorder. The values of the tachometer signal amplitude and the frequency response amplitude ratio are given in Table 2.1 and plotted in Figure 2.6.

Observation Number	Field Voltage	Amplitude of Tachometer Signal in Volts	Amplitude Ratio
1)	6	2.61	0.52
2)	7	3.53	0.71
3)	8	4.75	0.95
4)	9	5.32	1.06
5)	10	5.70	1.14
6)	11	6.27	1.25
7)	12	6.67	1.33
8)	13	6.89	1.38
9)	14	7.03	1.41
10)	15	7.03	1.41
11)	16	7.03	1.41

Table 2.1 Experimental Reading of the Amplitude Ratio of the D.C. Motor Versus Field Voltage.

Figure 2.6. Amplitude Ratio versus Field Voltage

From Figure 2.6 it is observed that the amplitude ratio increases as the field voltage is increased. After a certain value, the amplitude ratio does not continue to increase even if the field voltage is increased. This is due to saturation of the field windings.

For all future operation of the system the field voltage is maintained at 14 volts which is the value at which saturation first occurs. Small changes in field voltage setting will have little effect on the performance of the system.

2.5 Tachometer Gain

A d.c. motor is used to drive the wheels of the cart through a belt drive arrangement with a gear ratio of 19.7:1. The speed of the d.c. motor is obtained by a tachometer which is directly coupled to the d.c. motor. Hence, to determine the gain of the tachometer it is important to find a relationship between the speed of the cart and the voltage output from the tachometer.

In this experiment, the cart is supported such that the wheels do not touch the ground. A constant 14 volts is applied across the field of the d.c. motor. To vary the speed the voltage across the armature of the d.c. motor is varied. Various readings for the speed of the d.c. motor are obtained by a stroboscope. The voltage outputs from the tachometer are recorded on the strip chart recorder. The values of the speed of the d.c. motor and the voltage output from the tachometer are given in Table 2.2.

Observation Number	R.P.M. of Armature	Speed of Armature in rad/sec	Voltage Output from the Tachometer
1.	64	6.7	0.475
2.	130	13.6	1.105
3.	235	24.6	1.56
4.	420	44.0	3.20
5.	540	56.6	4.25
6.	990	103.7	7.0
7.	1300	136.1	9.77
8.	1460	152.9	10.87
9.	1530	160.2	11.37
10.	2180	228.3	16.00

Table 2.2 Experimental Data to find the Gain of the Tachometer.

A plot of the speed of the artmature v/s output voltage from the tachometer is shown in Figure 2.7. It is observed that the graph is almost linear, so it can be concluded from the graph that the gain, Kt, of the tachometer is 0.072 volts/rad/sec.

The transmission ratio, Kw, of the cart is calculated by Equation 2.14,

$$Kw = \frac{gr}{---} = \frac{19.7}{----=} 190.34 \text{ radians/m.}$$
 (2.14)

where rw = radius of the wheels of the cart = 0.1035 m, and
 gr = gearing ratio between the armature of the motor and
 the wheels of the cart = 19.7:1.

All physical systems have nonlinearities. It is a well established practice that providing a feedback around a system

Plot of Speed of the Armature versus Output Voltage from the Tachometer Figure 2.7.

reduces the nonlinear effects. Therefore, the tachometer output was amplified in an operational amplifier with a gain of 2.3 and was fed back, summed with the control signal, and amplified by a gain of 20 to provide the input signal to the power amplifier as shown in Figure 2.8. The signal U is the control input and signal Vb is the output signal from the summing amplifier which drives the the power amplifier to produce a corresponding voltage across the armature of the d.c. motor. After applying feedback around the system, an experiment was conducted to determine the coefficients of the transfer function of the system.

2.6 Experimental Determination of the Transfer Function of the System Consisting of the D.C. Motor, Cart, Drive and Tachometer.

The first step in the analysis and design of a control system is to develope a mathematical model of the system. In Equation 2.9 the transfer function relating the motor speed to the armature voltage is given. Applying feedback around the system as shown in Figure 2.8, yields a transfer function relating the tachometer voltage to the control voltage of the form

$$Vt(s) = Kc*(Mc*s^{2} + fc*s + Kb*Kw^{2})$$

$$U(s) = C3*s^{3} + C2*s^{2} + C1*s + C0$$
(2.15)

where Kc = 46*Ka*Kt*Km/Ra,

Ka = Power Amplifier gain = 1 ,

C3 = Ja*Mc,

C2 = fa*Mc + fc*Ja + Mc*Km*Ks/Ra + Kc*Mc,

Cl = Kb*Mc + fa*fc + Ja*Kb*Kw² + fc*Km*Ks/Ra + Kc*fc, and

Figure 2.8 Experimental Setup for the Frequency Response Measurement of the System.

C0 = fc*Kb + Kb*fa*Kw² + Km*KsKw²/Ra + Kc*Kb*Kw².

Observe that the form of this transfer function is the same as before, eg. the feed back simply changes the values of the coefficients and reduces the effects of nonlinearities. In order to proceed with the analysis of the control system it is necessary to obtain numerical values for the coefficients of the transfer function. One way to do this is to make tests and measurements to determine the values of the individual parameters and compute the values of the coefficients. Several of the parameters are rather difficult to measure. Another approach is to make a set of measurements of the system and determine coefficient values which cause the transfer function model to fit the measured response. The frequency response method follows this approach.

The procedure involved to obtain a frequency response of the system is to excite the system with a sinusoidal input with measured amplitude. The output amplitude is measured and the amplitude ratio of the output to the input is computed. The measurement is repeated at different frequencies. A plot of the amplitude ratio versus frequency is called a Bode plot. The coefficients of the transfer function are determined by fitting the model to the Bode plot. An asymptotic log-magnitude curve consisting of several segments is built. With some judgement and experience it is usually possible to find a close fit to the experimental data.

Figure 2.8 shows the experimental arrangement for the fre-

quency response measurement . The input voltage from the function generator to the summing operational amplifier is a sinusoid with an amplitude of 3.10 volts peak to peak, which is maintained at all frequencies. A constant 14 volts is applied to the field winding of the d.c. motor. The input signal, U, from the function generator and the output signal, Vt, from the tachometer are recorded on the strip chart recorder. Table 2.3 lists the frequencies and the corresponding output amplitudes and amplitude ratios for which data were collected.

A Bode diagram of the experimental data is plotted on Figure 2.9. The frequency response of the transfer function chosen to approximate the experimental data is shown on Figure 2.9. The transfer function of the system can be approximated by,

The pole at -500 is almost 50 times as far from the imaginary axis as the two complex poles and will have a negligible effect on the performance of the system. It will be ignored in the subsequent analysis.

2.8 Block Diagram Representation of the System

In the previous sections of this chapter mathematical models have been developed for each element of the system. Experiments have been described by which the coefficients of these models have been determined. In this section the form of the control will be developed in preparation for the establishment of specific compensators in subsequent chapters.

No.	Frequency radians/sec	Output voltage peak to peak	Amplitude Ratio=A.R	20*Log(A.R)
1.	6.28	2.75	0.887	-1.04
2.	12.18	2.75	0.887	-1.04
3.	19.10	2.75	0.887	-1.04
4.	22.56	2.75	0.887	-1.04
5.	25.94	2.70	0.871	-1.20
6.	32.04	2.50	0.806	-1.87
7.	34.44	2.40	0.774	-2.23
8.	38.58	2.17	0.700	-3.10
9.	41.37	1.90	0.613	-4.25
10.	43.60	1.75	0.565	-4.96
11.	78.82	1.50	0.484	-6.30
12.	49.52	1.85	0.596	-4.50
13.	52.34	2.00	0.645	-3.81
14.	54.66	2.02	0.652	-3.72
15.	61.20	2.125	0.685	-3.29
16.	67.10	2.26	0.729	-2.75
17.	72.75	2.4	0.774	-2.23
18.	84.88	2.6	0.838	-1.54
19.	100.98	2.71	0.874	-1.17
20.	141.38	2.83	0.913	-0.79
21.	251.32	2.80	0.903	-0.89

Table 2.3 Experimental Frequency Response of the System.

* EXPERIMENTAL DATA

---- APPROXIMATE FIT

Figure 2.9. Bode Plot of the Closed Loop System with Experimental Data and the Approximate Fit

Figure 2.10 shows a block diagram of the system. The blocks within the dashed line represent compensators implemented in the The rest of the blocks represent the physical microcomputer. elements of the inverted pendulum The value which system. results from the digital computation is placed in a latch, which drives a digital-to-analog converter. Each time the computations are performed a new value is placed in the latch. U represents the analog signal which is output by the digital-to-analog con-The zero-order-hold (ZOH) represents the action of the latch and the digital-to-analog converter. The signals represented by Vt and Vp are the signals out of the tachometer and potentiometer respectively. These two digital signals are sampled by the computer and provide the signals upon which the digital computations are performed. The two digital values, Vt* and Vp are produced by the analog-to-digital converters and correspondent to the signals Vt and Vp.

The transfer function, Gl(s) relating the voltage output from the tachometer, Vt, to the input voltage, U, to the summing operational amplifier was given in Equation 2.16,

The block following Gl(s), with a transfer function 1/Kt relates the speed of the armature of the cart with the output voltage from the tachometer. Kt is the tachometer gain equal to 0.072 volts/rad/sec.

Next, the values of the parameters in Equation 2.8 relating

Figure 2.10. Block Diagram Representation of the System.

Wc to Wa can be established using Equations 2.17 and 2.14. Therefore the next transfer function in the block diagram is,

$$G2(s) = \frac{Wc(s)}{----} = \frac{12.0}{s^2 + 11.5*s + 2285}$$
 (2.18)

The transfer function, G3(s), relating the position of the pendulum, P, to the speed of the cart, Wc, is given by Equation 2.13,

G3(s) =
$$\frac{P(s)}{----} = \frac{-2.5*s}{s^2 - 25}$$
 (2.19)

The position of the pendulum is measured by a potentiometer which is mounted on the pivot of the pendulum. The gain of the potentiometer is represented by Kp in the block diagram. The value of Kp is adjustable.

The control strategy requires that the velocity of the cart be known. Since there is no direct measurement of the velocity of the cart it is necessary to compute it from the measured value of the speed of the motor. The digital model H3(z), developed in Chapter III, provides a computed estimate of the velocity of the cart. H1(z) and H2(z) are compensation transfer functions which are developed in Chapter IV to stabilize the pendulum-cart system.

CHAPTER III

Z-TRANSFORM ANALYSIS

3.1 Introduction

The role of the z-transform to sampled data systems is similar to that of the Laplace transform to continuous data systems. The z-transform technique provides a mean of finding the output of a system at the k-th sample time, t=kT, in terms of the input at the k-th sample time, t=kT, and the input, and the output at previous sample times,t=(k-i)T. This technique is applied to the problem of finding the voltage input to the d.c. motor in terms of the position of the pendulum and velocity of the cart. The z-transform technique is demonstrated below.

A time function x(t), shifted in time by an amount nT is x(t-nT). The Laplace transform is,

$$L(x(t-nT)) = \int_{0}^{\infty} x(t-nT) *e^{-st} dt.$$
 (3.1)

Substituting , h = t - nT, yields

$$L(x(t-nT)) = \int_{-\pi T}^{\infty} x(h) *e^{-s(h+nT)} dh.$$
 (3.2)

Since x(h) = 0 for $h \le 0$, Equation 3.1 may be written as

$$L(x(t - nT)) = e^{-snT} * \int_{x(h)}^{\infty} x(h) * e^{-sh} dh.$$

= $X(s) * e^{-snT}$ (3.3)

The z-transform is obtained from the Laplace transform by substituting $z=e^{ST}$. Thus Equation 3.3 gives the z-transform of x(t-nT) as

$$Z(x(t-nT)) = X(z)*z^{-n}$$
 (3.4)

Taking the inverse z-transform yields $x(t-nT)=z^{-1}(X(z)*z^{-n})$ from Equation 3.4. This is known as the shifting theorem of z-transforms. The z-transfer function of a system, which represents the z-transform of the output over the z-transform of the input is a ratio of the polynomials in z^{-1} thus,

$$\frac{X(z)}{Y(z)} = \frac{a_0 + a_1 * z^{-1} + a_2 * z^{-2} + \dots + a_m * z^{-m}}{1 + b_1 * z^{-1} + b_2 * z^{-2} + \dots + b_n * z^{-n}}$$
(3.5)

where X(z) and Y(z) are the transforms of the output and input respectively. Cross multiplying yields

$$(1 + b_1 *z^{-1} + b_2 *z^{-2} + \dots + b_n *z^{-n}) *X(z)$$

$$= (a_0 + a_1 *z^{-1} + a_2 *z^{-2} + \dots + a_m *z^{-m}) *Y(z)$$
(3.6)

Taking the inverse z-transform and using the shifting theorem yields,

$$x(t) + b_1*x(t-T) + b_2*x(t-2T) + \dots + b_n*x(t-nT)$$

= $a_0*y(t) + a_1*y(t-T) + a_2*y(t-2T) + \dots + a_m*y(t-mT)$ (3.7)

The output function, x(t), at time t can be written in terms of the output and input at previous times t-iT as,

$$x(t) = a_0 * y(t) + a_1 * y(t-T) + \dots + a_m * y(t-mT)$$

$$-(b_1 * x(t-T) + b_2 * x(t-2T) + \dots + b_n * x(t-nT))$$
(3.8)

For t=kT Equation 3.8 may be written as,

$$x(k) = a_0^* y(k) + a_1^* y(k-1) + \dots + a_m^* y(k-m)$$

$$- (b_1^* x(k-1) + b_2^* x(k-2) + \dots + b_n^* x(k-n))$$
(3.9)

where the sampling period T is understood.

3.2 Z-Transforms of the System

The z-transform of the system is found from a table of Laplace to z-transforms. The technique, used for transformation, is to first find the partial fraction expansion of a Laplace transfer function and then to obtain the z-transforms from the table.

The s-transfer functions whose z-transforms are required, are $Vt(s)/U^*(s)$, $Vp(s)/U^*(s)$ and $Wc(s)/Vt^*(s)$, as shown in Figure 2.10. The Laplace transfer functions of the system have been derived in the previous chapter where,

Vt = output signal from the tachometer,

Vt * = sampled value of Vt,

Wc = velocity of the cart,

U = output voltage to the summing power amplifier,

U* = sampled signal of U, the control signal, and

Vp = output signal from the potentiometer.

3.2.1 Z-Transfer Function of Vt(s)/U*(s)

The transfer function of $Vt(s)/U^*(s)$ is equal to ZOH*Gl(s), as shown in Figure 2.10. Therefore,

$$\frac{Vt(s)}{U^*(s)} = \frac{(1 - e^{-sT})}{s} = \frac{0.92*(s^2 + 11.5*s + 2285)}{(s^2 + 21.4*s + 2362)}$$
(3.10)

Taking the partial fraction expansion of Equation 3.10 gives,

$$\frac{Vt(s)}{----} = 0.92*(1 - e^{-sT})* \begin{bmatrix} A & B*s + C \\ --- + ------- \\ s & s^2 + 21.4*s + 2362 \end{bmatrix}$$
(3.11)

where A, B and C are the coefficients of the expansion. These constant are, A = 0.9674, B = 0.0326 and C = -9.2024.

Hence,

$$\frac{\text{Vt(s)}}{-\frac{1}{2}---=0.92*(1-e^{-sT})*} = \frac{0.9674}{s} + \frac{0.0326*s - 9.2024}{-\frac{1}{2}------} \\
\frac{0.9674}{s^2 + 21.4*s + 2362}$$
(3.12)

The z-transform of Equation 3.12 is,

$$\frac{Vt(z)}{U(z)} = 0.92*(1-z^{-1})* \begin{bmatrix}
0.9674*z & 0.0326*(z^{2} - z*\cos(bT)*e^{-aT}) \\
z - 1 & z^{2} - 2*z*\cos(bT)*e^{-aT} + e^{-2aT}
\end{bmatrix}$$

$$\frac{0.2015*z*\sin(bT)*e^{-aT}}{(z^{2} - 2*z*\cos(bT)*e^{-aT} + e^{-2aT})}$$
(3.13)

where, a = 10.7 and b = 47.41.

Simplifying Equation 3.13 yields,

where,

N11 =
$$1.9674*\cos(bT)*e^{-aT} + 0.2017*\sin(bT)*e^{-aT} + 0.0326$$
,

N10 = $0.9674*e^{-2aT} + (0.0326*\cos(bT)+0.2017*\sin(bT))*e^{-aT}$,

D11 = $2*\cos(bT)*e^{-aT}$, and

D10 = e^{-2aT} .

3.2.2 Z-Transfer Function of Wc(s)/U*(s)

The transfer function of $Wc(s)/U^*(s)$ is equal to ZOH*Gl(s)*(1/Kt)*G2(s) as shown in Figure 3.1.

Therefore,

The partial fraction expansion of Equation 3.15 is,

$$\frac{\text{Wc}(s)}{-\frac{1}{2}} = \frac{153.3}{----*}(1 - e^{-sT}) * \begin{bmatrix} A & B*s + C \\ -\frac{1}{2} & + \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ s & s^2 + 21.4*s + 2362 \end{bmatrix}$$
(3.16)

where, A = 1, B = -1 and C = -21.4.

Therefore,

$$\frac{\text{Wc (s)}}{\frac{1}{\text{U}^*(\text{s})}} = 0.0649 * (1 - e^{-\text{ST}}) * \left[\frac{1}{\text{s}} - \frac{\text{s} + 21.4}{\text{s}^2 + 21.4 * \text{s} + 2362} \right]$$
(3.17)

The z-transform of the partial fraction expansion is obtained from the table as,

$$\frac{\text{Wc}(z)}{----=0.0649*(1-z^{-1})*} \begin{bmatrix} z & z*(z-(\cos(bT)-0.2256*\sin(bT))*e^{-aT} \\ --- & z^2 - 2*z*\cos(bT)*e^{-at} + e^{-2aT} \end{bmatrix}$$

$$(3.18)$$

where, a = 10.7 and b = 47.41.

Simplifying Equation 3.18 as,

$$Wc(z) = 0.0649*(N21*z - N20)$$

$$U(z) = (z^2 - D11*z + D10)$$
(3.19)

where

$$N21 = 1 - (\cos(bT) + 0.2256*\sin(bT))*e^{-aT}$$
, and $N20 = e^{-2aT} - (\cos(bT) - 0.2256*\sin(bT))*e^{-aT}$.

3.2.3 Z-Transfer Function of Vp(s)/U*(s)

The transfer function of $Vp(s)/U^*(s)$ is equal to ZOH*Gl(s)*(1/Kt)*G2(s)*G3(s)*Kp. Therefore,

The partial fraction expansion of Equation 3.20 is,

$$\frac{\text{Vp(s)}}{\text{U}^*(s)} = -383.5 \times \text{Kp*} (1 - e^{-sT}) \times \begin{bmatrix} A & B & C*s + D \\ ---- & +---- & + -2 & -2 & -2 \\ s - 5 & s + 5 & s^2 + 21.4 \times s + 2362 \end{bmatrix} (3.21)$$

where the coefficients of expansion are, $A = 4.0098*10^{-5}$, $B = -4.3859*10^{-5}$, $C = 3.7607*10^{-6}$ and $D = -3.3937*10^{-4}$.

The z-transform of Equation 3.21 is,

$$\frac{Vp(z)}{---=383.5*Kp*(1-z^{-1})} \left[\frac{A1*z}{z-e^{5}T} + \frac{A2*z}{z-e^{-5}T} + \frac{A3*(z^{2}-z*\cos(bT)*e^{-aT})}{z^{2}-2*z*\cos(bT)*e^{-aT}+e^{-2aT}} \right] \\
- \frac{A4*z*\sin(bT)*e^{-aT}}{z^{2}-2*z*\cos(bT)*e^{-aT}+e^{-2aT}} *10^{-5}$$
(3.22)

where, Al =
$$4.0098$$
, A2 = -4.3859 , A3 = 0.3761 , A4 = 0.8006 , a = 10.7 and b = 47.41 .

Simplifying Equations 3.22 as,

$$Vp(z) = +383.56*Kp*10^{-5}*(z-1)*(N32*z^{2} - N31*z + N30)$$

$$U(z) = (z-e^{-5T})*(z-e^{5T})*(z^{2} - D11*z + D10)$$
(3.23)

where,

$$\text{N32=(A1+A3)*e}^{-5T} + (\text{A2+A3})*e^{5T} + 2*(\text{A1+A2})*\cos(\text{bT})*e^{-\text{aT}}$$

$$+ (\text{A3*cos(bT)} + \text{A4*sin(bT)})*e^{-\text{aT}},$$

$$\text{N31=(A1 + A2)*e}^{-2\text{aT}} + \text{A3}$$

$$+ (e^{-5T} + e^{5T})*(\text{A3*cos(bT)} + \text{A4*sin(bT)})*e^{-\text{aT}}$$

$$+ 2*(\text{A1*e}^{-5T} + \text{A2*e}^{-5T})*\cos(\text{bT})*e^{-\text{aT}}, \text{ and }$$

$$\text{N30=(A1*e}^{-5T} + \text{A2*e}^{5T})*e^{-2\text{aT}} + (\text{A3*cos(bT)} + \text{A4*sin(bT)})*e^{-\text{aT}},$$

3.3 Transfer Function for the Block H3(z)

The symbol Wc represents the velocity of the cart, and Wc represents an estimate of the velocity of the cart that is generated by the microcomputer from the measurement of the tachometer voltage. In order to obtain the estimated velocity, the digital model H3(z) is developed. This digital model describes the relationship between the digital signal from the output of the tachometer, Vt and the speed of the cart.

This relationship is obtained by dividing Equation 3.19 by Equation 3.14, thus,

The next chapter contains the stability analysis of the system in the z-domain. The compensating transfer functions H1(z) and H2(z) are developed to stabilize the system.

CHAPTER IV

STABILITY ANALYSIS IN Z-DOMAIN

4.1 Introduction

A linear continuous feedback control system is stable if all the poles of the closed loop transfer function lie in the left half of the s-plane. The z-plane is related to the s-plane by the transformation

$$z = e^{ST}$$

or

$$z = e^{(r+jw)T}. (4.1)$$

This relationship may also be written as

$$|z| = e^{rT}. (4.2)$$

For the left - half s-plane, r < 0, the relative magnitude of z varies between 0 and 1. Therefore, the imaginary axis of the s-plane corresponds to the unit circle in the z-plane and the inside of the unit circle corresponds to the left half of the s-plane. Thus a sample data system is stable if all the poles of the closed loop transfer function lie within the unit circle (6).

A sampling period of T=0.01 secs is selected for the system. The frequency of sampling is 12 times the natural frequency of the drive system, and hence the reconstruction of the sampled signal is quite accurate.

The naturally unstable pendulum-cart system is stabilized by a feedback compensation technique. The stability analysis is given in the rest of this chapter.

4.2 Stability Analysis

The stability of a closed loop control system is directly related to the location of the roots of the characteristic equation in the z plane. Therefore, it is necessary to determine the roots of the characteristic equation for a check on stability. The root locus method was introduced by Evans in 1948 and has been developed and utilized extensively in control engineering. The root locus technique is a graphical method for drawing the locus of the roots in the s and z planes as a parameter is varied. If the root locations are not satisfactory the necessary parameter adjustment to stabilize the system can be readily deduced from the root locus.

The block diagram of the system is shown in Figure 4.1. The transfer functions Vt(z)/U(z), Vp(z)/U(z) and Wc(z)/Vt(z) are derived in Chapter III. Substituting T=0.01 secs. into the above transfer functions yields,

$$D1(z) = \frac{Vt(z)}{U(z)} = \frac{0.92*(z^2 - 1.688*z + 0.89)}{(z^2 - 1.599*z + 0.807)},$$
(4.3)

and

Figure 4.1 Block Diagram of the System.

4.2.1 Stability Analysis of the Inner Loop.

The transfer function of the inner loop of the system shown in Figure 4.1 is,

Therefore, the charactersitic equation of the inner loop is,

$$1 + D1(z)*H2(z)*H3(z) = 0$$
 (4.7)

The compensating transfer function, H2, is unknown, and hence needs to be chosen to have a stabilizing effect on the inner loop of the system.

Substituting D1(z) from Equation 4.3 and H3(z) from Equation 4.5 into Equation 4.7, yields,

$$\begin{array}{l} H(2) *0.0077*(z + 0.931) *0.92(z^2 -1.688*z +0.89) \\ 1 + -\frac{1}{2} -1.688*z + 0.89) *(z^2 -1.599*z + 0.807) \end{array}$$

or

$$1 + \frac{H2(z)*0.0071*(z + 0.931)}{(z^2 - 1.599*z + 0.807)} = 0.$$
 (4.9)

If H2(z) is a gain compensation, then Equation 4.9 has a zero at Z1 = -0.931 and a pair of complex conjugate poles at P1 = 0.7995 + 0.409j and P2 = 0.7995 - 0.409j.

Therefore, the characteristic equation is,

$$z^2 - 1.599*z + 0.807 + H2*0.0071*(z + 0.931) = 0$$
. (4.10)

In order to determine a suitable gain, H2, the roots of the characteristic Equation 4.10 are plotted for $0 < H2 < \infty$. Figure 4.2 shows the location of the poles and the zero, as well as the

Figure 4.2 Root Locus of the Inner Loop of the System with a Gain Compensation

locus of the roots of the inner loop of the system for increasing gain, H2. The roots have a tendency to move out of the unit circle as the gain H2 is increased. This causes a destabilizing effect on the inner loop of the system. Therefore the approach at this point is to choose a transfer function, H2, such that the roots do not have a tendency to move out of the unit circle. Hence H2 is chosen as,

$$H2(z) = \frac{C2(z)}{WC(z)} = \frac{K1*(z - 0.85)^2}{(z + 0.931)*(z - 1)}$$
(4.11)

where Kl is a variable gain which is determined by root locus analysis.

Chosing H2(z) above is also due to the following reasons:

- a) A pole (z + 0.931) of the transfer function H2(z) cancels the zero of H3(z). This reduces the computation time in the real time controller and simplifies the analysis.
- b) The pole (z-1) in H2(z) provides digital integration of the velocity, Wc^* , of the cart, eg., a signal proportional to the displacement of the cart.
- c) Second order zeros need to be placed such that the roots of the characteristic equation of the inner loop remain inside the unit circle. Hence the zeros $(z 0.85)^2$ are chosen in the transfer function H2(z).

Substituting H2(z) in Equation 4.10 yields the characteristic equation of the inner loop as

$$(z^2 - 1.599*z + 0.807)*(z - 1) + Ki*(z - 0.85)^2 = 0$$
 (4.12)
where Ki = K1*0.0071.

Figure 4.3 Root Locus of the Inner Loop of the System in the $Z ext{-Plane}$ with a Compensation Transfer Function

Figure 4.3 shows the locus of the roots of the characteristic equation of the inner loop of the system as the gain, Ki, is increased. The values of the roots of the characteristic equations for increasing gain, Ki, are given in Appendix A. From Figure 4.3 it can be deduced that the inner loop of the system has a tendency to stabilize, as the gain Ki is increased. A gain of Ki = 0.69 is selected for further analysis of the system. Therefore the value of Kl as deduced from Equation 4.13 is 97.18.

4.2.2 Stability Analysis Of The Entire System

The characteristic equation of the entire system shown in Figure 4.1 can be deduced as,

$$1 + D1(z)*H2(z)*H3(z) + D2(z)*H1(z)=0$$
 (4.14)

The compensating transfer function, H1(z), is selected as

$$H1(z) = \frac{C1(z)}{----} = \frac{K2*(z - 0.85)}{(z - 1.1)},$$

$$(4.15)$$

where K2 is the variable gain which is determined by root locus analysis.

Substituting D1(z), H3(z), H2(z), D2(z) and H1(z) from Equations 4.3, 4.5, 4.11, 4.4 and 4.15 respectively into Equation 4.14 yields,

Figure 4.4 Root Locus of the Entire System in the Z-Plane

where
$$Km = -3.835*10^{-5}*Kp*K2$$
 (4.17)

Simplifying Equation 4.16, the characteristic equation of the entire system is,

$$z^{6}$$
 -5.0506* z^{5} + 10.5483* z^{4} - 11.7148* z^{3} + 7.3588* z^{2} - 2.5133* z + 0.3716 + Km*(1.562* z^{5} +1.4097* z^{4} - 11.8069* z^{3} +10.5019* z^{2} -1.194* z -1.192) . (4.18)

A plot of the root locus of the characteristic equation of (entire system is shown in Figure 4.4. as the gain Km is varied. The values of the roots are given in Appendix B. From Figure 4.4 is observed, that the poles of the characteristic equation of (system lie within the unit circle in the z plane for 0.005 < Km 0.020. Hence the pendulum cart system is stable for values of within this range.

Therefore from Equation 4.17, K2*Kp, can be deduced to 1 within -521.5 < K2*Kp < -130, for the system to be stable. With assumed value of K2 equal to -256, the range of Kp is between 0. and 2.04 in order for the system to be stable. The next chapt discusses the simulation analysis, where the effect of varying t gain of the potentiometer, Kp, is studied.

CHAPTER V

SIMULATION OF THE SYSTEM

5.1 Introduction

If a model is available for a component or a system, a computer can be utilized to investigate the behaviour of the system. A computer model of the system in a mathematical form suitable for demonstrating the system's behavior may be utilized to investigate designs of a planned system without actually building the system itself. A computer simulation uses a model and the actual condition of the system being modeled and actual input commands to which the system will be subjected (6).

The simulation program was written on a Hewlett-Packard 9845B series desk top computer in Basic Language and is listed in Appendix C. This program was later modified and implemented in Assembly Language on a 2-80 microcomputer for the real time control.

The system equations are represented by recurrence equations by taking the inverse transformation as described in Section 3.1.

5.2 Recurrence Equations

The transfer functions of the system were presented in Chapter III and the compensating transfer functions to stabilize the system have been developed in Chapter IV. Figure 4.1 shows the block diagram of the system. The transfer functions are,

$$D1(z) = -\frac{Vt(z)}{U(z)} = \frac{0.92*(z^2 - 1.688*z + 0.89)}{(z^2 - 1.599*z + 0.807)}$$
(5.1)

where Dl(z) describes the relationship between the output signal of the tachometer and the control signal, U.

where D2(z) describes the relationship between the output signal from the potentiometer and the control signal, U.

$$H1(z) = ---- = ------ Vp(z) (z - 1.1)$$
 (5.3)

where $\mathrm{HI}(z)$ is the digital compensator which generates the values Cl , by sampling the signal, Vp , of the potentiometer.

$$H2(z)*H(3) = \frac{C2(z)}{Vt(z)} = \frac{0.75*(z^2 - 1.7*z + 0.7225)}{(z^3 - 2.688*z^2 + 2.578*z - 0.89)},$$
 (5.4)

where H2(z)*H(3) is the digital compensator which generates the values C2, by sampling the signal, Vt, from the tachometer.

In a recurrence form the above equations can be written as,

$$Vt(k) = 1.599*Vt(k-1) - 0.807*Vt(k-2) + 0.92*(U(k) - 1.688*U(k-1) + 0.89*U(k-2))$$
(5.5)

$$Vp(k) = 3.601*Vp(k-1) - 5.009*Vp(k-2) + 3.216*Vp(k-3)$$

$$-0.8075*Vp(k-4) - 3.835*Kp*10^{-5}*(1.562*U(k-1))$$

$$+4.30*U(k-2) - 4.487*U(k-3) - 1.403*U(k-4)).$$
 (5.6)

$$Cl(k) = 1.1*Cl(k-1) - 256*Vp(k) +217.6*Vp(k-1).$$
 (5.7)

$$C2(k) = 2.688*C2(k-1) - 2.578*C2(k-2) + 0.89*C2(k-3) + 0.75*(Vt(k-1) - 1.7*Vt(k-2) + 0.7225*Vt(k-3)) . (5.8)$$

The recurrence Equations 5.5 through 5.8 are used in the computer simulation.

5.3 Simulation

It is assumed that there is no delay between the time the data is sensed and the time the control signal is computed. The control signal, U, is computed based on the signals available from the potentiometer, Vp, and the tachometer, Vt. Figure 4.1 shows the digital models of the components of the system. The control signal, U, at instant k is the input to the block Dl(z). Dl(z) produces a signal representing the output from the tachometer, Vt, and the next block, with a transfer function D2(z)/Dl(z) produces, Vp, both at time k. Vt and Vp are processed by the digital compensators Hl(z) and H2(z)*H3(z) respectively. The corresponding computed digital values Cl and C2 are sent to the summer which produces a new control signal, U, at time k. This process is repeated to describe the behavior of the system.

The simulation program took into consideration the saturation of the control signal, U, equal to 10 volts. The discretization of the D/A and the A/D converters were also accounted for. The pendulum was given an initial angular displacement of 10° from the upright position. Results of the simulation were obtained for various gains of the potentiometer, Kp.

From the simulation of the system, it was observed that the

system was stable for a gain of the potentiometer, Kp, between 0.55 and 1.875 and unstable for all other gains. However, at the end of Chapter IV, it was concluded that the values of Kp, should lie within 0.51 and 2.04 for stability. This reduced range of Kp is due to the discretization of the sampled data and the saturation effect of the control signal which have been taken into account in the computer simulation of the system.

The simulation results of the position of the pendulum, the output control voltage, speed of the d.c. motor and displacement of the cart vs. time were plotted as shown in Figures 5.1, 5.2, 5.3 and 5.4 for a variable gain, Kp, equal to 0.55, 1.0 and 1.875.

From Figure 5.1 it is observed that the overshoot of the position of the pendulum for a gain Kp equal to 0.55 is large compared to a gain of Kp equal to 1. For a gain of Kp equal to 1.875, the position of the pendulum is observed to fluctuate more compared to gains of Kp equal to 0.55 and 1.0. For Kp equal to 1.0, and with an initial angular displacement of the pendulum equal to 10°, the pendulum is brought to within 1° of the upright position within 0.75 sec, and is limited to this range for all greater time.

Figure 5.2 shows the simulation results for the output control voltage vs. time, for a variable gain, Kp. From the graphs it can be deduced that for gains of potentiometer, Kp, equal to 0.55 and 1.0 less control voltage is required to stabilize the system. However for gains of Kp greater than 1.875 the saturation of the control signal makes the system unstable.

Figure 5.1. Plot of the Angular Position of the Pendulum vs Time for potentiometer Gain Equal to 0.55, 1 and 1.875

Figure 5.2. The Plot of Control Voltage vs Time for a Potentiometer Gain of 0.55, 1 and 1.875

Referring to Figure 5.3, the plots of the speed of the d.c. motor shows a very small change for increasing Kp from 0.55 to 1.0, but for a value of Kp equal to 1.875 the response is oscillatory, which is consistent with the inference from Figures 5.1 and 5.2.

Figure 5.4 shows the results of the displacement of the cart vs. time. It is observed that changes in gain, Kp, do not have significant effects on this parameter.

From the above analysis of the plots, it was decided to set the values of the gain Kp equal to 1.0 for the experiment.

The next chapter deals with the development of the assembly language real time control program.

Figure 5.3. The Plot OF Speed of D.C. Motor (volts) vs Time for a Potentiometer Gain of 8.55, 1 and 1.875

Time (secs)

Figure 5.4. The Plot of Displacement of the Cart (meters) vs Time for a Potentiometer Gain of 0.55, 1 and 1.875

CHAPTER VI

SOFTWARE

6.1 Introduction

The computer used in this research was a Z-80 from Digital Group. The real time control of the system was done by this computer. The control program was written in assembly language. The Assembler occupies addresses from 0 to 2FFF in hexadecimal. The programmer source and object code could be placed at any address above the assembler. Additional facilities were available to store and retrive the programs from a floppy disk or an audio cassette. Listing of the program was possible on a printer.

The software developed for this research was one of the major tasks. The programming was done in assembly language. Since memory was limited, the software was divided into many parts and stored on the disk. The object code of each part was assembled and stored separately. These object code parts were later linked in the correct order. The memory used by the object code was 2.2 K. The object code was placed from address 3000 Hex to 38D3 Hex.

A floating point binary representation with a 15 bit mantissa and an 8 bit exponent was used for numerical calculations. This provided a resolution of 1 part in 32,764. By using this type of representation the accuracy of computation was maintained.

The control program consists of a main program and

subroutines. Memory addresses 3E00H to 3E7FH were used for storing the coefficients, variables, and parameters of the program. A memory map that shows the memory used in the first page of 3E is given in Appendix D. The starting addresses of the main program and the subroutines are also shown in Appendix D.

6.2 Main Program

A flow chart of the main program is given in Figure 6.1 and the assembly language program is listed in Appendix E. The memory used for the object code of the main program is 0.94 K. bytes.

The function of the main program is to read the digital signals of the speed of the d.c. motor and the position of the pendulum from the A/D converter, perform specific computations, and send a digital control signal to the D/A converter. The main program is divided into three parts:

- 1) The Initialization,
- 2) The Computations, and
- 3) The Updating of the Parameters.

6.2.1 Initialization

The flow chart of this program is shown in Figure 6-2. The first step of this program is to initialize the output voltage from the D/A converter to zero, so that the cart remains stationary. The next operation resets memory block 3E00H - 3E7FH to zero. Then the subroutine INITI and PENDIS are executed. By executing the INITI subroutine, the zero reference of the pendulum position and the bias are determined. The zero

Figure 6-1 THE MAIN PROGRAM

Figure 6-2 THE INITIALIZATION PROGRAM

reference is the output voltage from the potentiometer corresponding to the vertical position of the pendulum. The subroutine PENDIS helps in fixing the limits of the angular displacement of the pendulum. Details of these two subroutine are given in Section 6-3.

The next operation stores all the coefficients and the variables required for the software program into appropriate memory locations.

The initialization program is executed once at the beginning of each experiment. The execution time of this program is not critical because it is not a part of the sampling period.

6.2.2 Computation

The computation program is the most important part of the main program. This program samples the velocity of the cart and the position of the pendulum from the A/D converter and performs computations of the equations shown below for generating a control signal U(4).

$$C1(4) = 1.1*C1(3) - 256*Vp(4) + 217.6*Vp(3)$$
 (6.1)

$$C2(4) = 2.69*C2(3) - 2.58*C2(2) +0.89*C2(1) + 0.75*Vt(4)$$
$$-1.275*Vt(3) + 0.542*Vt(2)$$
(6.2)

$$U(4) = C1(4) - C2(4). (6.3)$$

The coefficients in the above equations are obtained based on the computer simulation, as derived in the previous chapter. The values of the coefficients, which are in decimal, are

Figure 6-3 THE COMPUTATION PROGRAM

converted to hexadecimal and stored in the memory location shown in Appendix D.

The equations are represented in hexadecimal as,

$$C1(4) = 8D*2^{-7}*C1(3) + D9*Vp(3) - 2^8*Vp(4)$$
 (6.4)

$$C2(4) = AC*2^{-2}*C2(3) - A5*2^{-2}*C2(2) +39*2^{-2}*C2(1) -$$

$$-A3*2^{-3}*Vt(3) +8B*2^{-4}*Vt(2) *2^{-4} + 3*2^{-2}*Vt(4).$$
 (6.5)

$$U(4) = C1(4) - C2(4)$$
 (6.6)

The flow chart of the computation program is shown in Figure 6-3. The first step of this program resets the timer to count 10 ms. The next step performs the computation of,

$$X = AC*2^{-2}*C2(3) - A5*2^{-2}*C2(2) +39*2^{-2}*C2(1) - A3*2^{-3}*Vt(3) + 8B*2^{-4}*Vt(2).$$
(6.7)

In the next operation, the A/D is initialized to read Vt(4) and the 'BUSY' signal of the A/D converter is checked to verify if the signal Vt(4) has settled down. If signal Vt(4) has settled, then it is read by the A/D converter. The A/D converter is initialized to read the signal of the position of the pendulum, Vp(4). The value of Vt(4) is converted to 2's complement form and adjusted by subtracting or adding the bias. Then, Vt(4) is stored in memory and computations are performed to yield,

$$C2(4) = 2^{-4} \times X + 3 \times 2^{-2} \times Vt(4). \tag{6.8}$$

In the next operation Subroutine DISPLAY is executed to display the the position of the pendulum, speed of the d.c. motor, and the output control signal on the CRT. Then Subroutine STORE is executed to store the data Vt(4), Vp(4), U(4), Cl(4), and C2(4).

In the next operation the computation performed is,

$$Y = 8D*2^{-7}*C1(3) + D9*Vp(3).$$
 (6.9)

The A/D is initialized to read Vp(4). Then the 'BUSY' signal is checked until the value of Vp(4) is ready to be read. The next operation reads Vp(4) from the A/D converter. The A/D is now initialized to read the speed of d.c. motor, Vt(4). The value of Vp(4) is converted to 2's complement form and adjusted by subtracting or adding the bias. Then Vp(4) is stored in memory and computations are performed to yield,

$$C1(4) = Y - 256*Vp(4).$$
 (6.10)

The control signal U(4) is obtained by solving the equation,

$$U(4) = Cl(4) - C2(4)$$
 (6.11)

The control signal calculated in Equation 6.11 is in 2's complement form with a 24 bit mantissa. This value is modified and sent to the D/A converter.

6.2.3 Updating Parameters

The parameters have to be updated before executing the computation program in the next sampled period. By executing

Figure 6-4 THE UPDATING PARAMETER PROGRAM

Subroutine SHIFT explained in Section 6.3.6, the values shift one step down; that is the data of Vt(3) shifts to Vt(2) and the computed values C2(3) and C2(2) to C2(2) and C2(1) respectively. The value of C1(4) and C2(4) are in 2's complemnent form with 24 bit mantissa. These values are converted into the 15 bit mantissa, a sign byte and an exponent byte by executing Subroutine TRANS which is explained in Section 6.3.5. The converted value of C1(4) is stored in memory locations C1(3) and C2(4) is stored in memory locations C1(3).

The next step in the program is to check if the 10 ms sampling time is over. If the sampling time is over, then the operation will return back to the computation program.

6.3 Subroutines

The main program is supported by eleven subroutines. They are, a fifteen by eight bit multiplication routine; a 24 bit signed addition routine; a routine for performing the 2's complement operation; a routine to shift data; a routine for converting a value from a fixed point representation to floating point; a routine to update values; a routine to halt the execution of the program; a routine to display data on the CRT; a routine to store the data in specific memory blocks; a routine to find the zero reference of the pendulum when it is in the upright position and a routine to adjust the range of the angular movement of the pendulum about the vertical axis.

6.3.1 Subroutine MULT

This subroutine performs the multiplication of a 15 bit by an

Figure 6.5 SUBROUTINE MULT

8 bit unsigned binary number. Figure 6.5 shows the flow chart of this subroutine. Basically, the multiplication routine is a series of tests and shifts of the multiplier and multiplicand.

To use this subroutine, the 15 bit multiplicand is loaded into the DE register pair and the 8 bit multiplier is indirectly addressed by the IX register A, B, C, D, E, H and L registers are utilized by this subroutine. The maximum time for performing a multiplication is 0.298 ms. The final result is placed in the CHL registers.

6.3.2 Subroutine STAD

This subroutine converts an unsigned 23 bit binary value stored in the CHL registers into a signed value. The sign bit of the 23 bit unsigned data is loaded in the least significant bit of the A register. Then this subroutine adds the two 24 four bit signed values which are loaded in the CHL and C'H'L' registers. The result of the adding operation is placed in the C'H'L' registers. A, C, D, E, H, L, C', D', E', H' and L' registers are utilized by this subroutine. A flow chart of this subroutine is given in Figure 6.6.

6.3.3 Subroutine COMPLEMENT

Figure 6.7 shows the flow chart of this subroutine. This subroutine converts a twenty-three bit binary number loaded in the CHL registers to 2's complement form. The result of this operation is placed in the CHL registers. A, C, H and L registers are utilized by this routine.

Figure 6.6 SUBROUTINE STAD

ENTER

L --> A

COMPLEMENT A

A+1 --> A

A ---> L

H --> A

COMPLEMENT A

A+CARRY ---> A

A ---> H

C ---> A

COMPLEMENT A

A+CARRY ---> A

A+CARRY ---> A

COMPLEMENT A

A+CARRY ---> A

Figure 6.7 SUBROUTINE COMPLEMENT

6.3.4 Subroutine EXPONENT

The subroutine Exponent divides a twenty-three bit binary number stored in CHL registers by four. It then shifts the remaining value in the CHL registers to the left a number of bits depending on the value placed in the B register before this subroutine is executed. The final result is placed in the CHL registers. Figure 6.8 shows the flow chart of this subroutine.

6.3.5 Subroutine TRANS

This subroutine converts a signed three bytes value loaded in the CHL registers into a fifteen bit unsigned mantissa stored in the HL registers, a sign byte, and an exponent byte. The sign byte is placed in the memory location pointed to by the IY register and the exponent byte is placed in the memory location pointed to by IX register. Before calling this subroutine, the value is loaded in the CHL registers and the IX and IY are loaded. A, C, D, H and L registers are utilized by this subroutine. A flow chart of this subroutine is shown in Figure 6.9.

6.3.6 Subroutine SHIFT

Figure 6.10 shows the flow chart for this subroutine. The updating of the values in the program is done by this subroutine.

This subroutine shifts the magnitude and sign of Vt(3) to memory location for Vt(2); the magnitude, sign and exponent byte of C2(2) to C2(1) and C2(3) to C2(2). A, H and L registers are utilized by this subroutine.

Figure 6.8 SUBROUTINE EXPONENT

Figure 6.9 SUBROUTINE TRANS

Figure 6.11 SUBROUTINE STOP

Figure 6.18 SUBROUTINE SHIFT

6.3.7 Subroutine STOP

This subroutine is used to halt the execution of the main program. The flow chart of this subroutine is shown by Figure 6.11.

If key 'S' is depressed from the keyboard when the main program is being executed, the entire execution of the program is terminated. At the same instant the control voltage output from the D/A converter, which is used to drive the d.c. motor, is initialized to 0. The past values of the position of the pendulum, velocity of cart and the control voltage remain displayed on the screen. If the key 'A' is also depressed, the system is reset and then the contents of the register are displayed on the CRT.

6.3.8 Subroutine DISPLAY

This subroutine displays the pendulum position, speed of the motor and the control voltage output from the D/A converter on the CRT. This was useful in debugging the software and to verify the correct functioning of the hardware. Signed binary values that represent the pendulum position, speed of the motor and the control voltage are converted to a hexadecimal ASCII codes and then displayed on the CRT with positive or negative signs. Figure 6.12 shows the flow chart of this subroutine.

6.3.9 Subroutine STORE

The store routine is written to store the data of Vp, Vt,

Figure 6.12 SUBROUTINE DISPLRY

Cl, C2 and U in certain memory blocks. This routine is used for error diagnostics and data acquisition.

The signal from the tachometer, Vt, is stored from memory locations 3E80H to 4000H and the signal from the potentiometer, Vp, is stored from memory locations 2E80H to 3000H. Each of these data is stored in three bytes. The first two bytes contain the magnitude and the third byte contains the sign. For the sign byte, 0lH indicates negative values while 00H indicates positive values.

Computed values C1(4) are stored from 3980H to 3B00H, C2(4) from 3B00H to 3C80H and U(4) from 3C80H to 3E80H. Each of these values is stored in three bytes and are signed numbers.

The subroutine also stops the execution of the program after a certain number of sampling events have passed. The desired number of sampling events are stored in memory locations 3E44H and 3E43H. A, D, H, and L registers are utilized by this subroutine. The flow chart of this subroutine is shown in Figure 6.13. When the subroutine is entered a pointer is decremented. The pointer gives the address off set for storing these values.

6.3.10 Subroutine INITI

This subroutine is executed before the main program is executed. This subroutine has further access to three more subroutines CHECH, INC, and DEC. Figures 6.14 and 6.15 show the flow chart for the subroutines.

This subroutine initializes the reading of the position of the pendulum to 0 when the pendulum is almost vertical by a bias

Figure 4.14 SUBROUTINE INITI

SUBROUTINE CHECK

Figure 6.15

from the D/A converter which is the input to the A/D converter. The A/D converter is set to be in differential mode with one input from the potentiometer and the other from the D/A converter.

The values of the current readings of the position of the pendulum and the reading of the velocity of the cart are The program periodically executes displayed on the CRT. subroutine CHECK which checks if key 'I', 'D' or 'S' is depressed. If the key 'I' is pressed then the output voltage from the D/A is increased for biasing the reading of the pendulum position by If the key 'D' is pressed then the output subroutine INC. voltage from the D/A is decreased for biasing the reading of the pendlum position by subroutine DEC. Since the value of the position of the pendulum is displayed, the biasing can be adjusted continuously. Since it is extremely difficult to get an exact 0 reading from the A/D converters when the cart is stationary, the zero error readings of the pendulum position and velocity of the motor are stored. These error readings are used as correction factors for correcting the readings of the pendulum position and the velocity of the armature when the main program is executed.

Key 'S' is depressed to return back to the main program.

6.3.11 Subroutine PENDIS

This subroutine is executed immediately after execution of subroutine INITI.

Figure 6.16 SUBROUTINE PENDIS

This subroutine displays the position of the pendulum on the CRT and hence helps in fixing the limits of the angular displacement of the pendulum about its mean position. The limits of the pendulum are fixed by adjusting the two screws at the bottom of the pendulum. After the desired adjustment is achieved, key 'R' is pressed to return back to the main program. Figure 6.16 shows the flow chart for this subroutine.

Chpatery VII

EXPERIMENTAL PROCEDURE

7.1 Introduction

In this chapter the equipment used for experimentation will be explained first. The following section will contain a description of the testing procedure.

7.2 Equipment Arrangement

The inverted pendulum is mounted in two ball bearings on top of a light weight four wheeled cart. To measure the angular position of the pendulum, a micro torque potentiometer is attached to the pendulum shaft which provides a voltage, Vp, proportional to the angular position of the pendulum. A 10 volt power supply is used to energize the potentiometer.

The cart is driven by a d.c. servo motor, mounted on the bottom of the cart, through a speed reducing belt drive. The field of the motor is energized by a 14 volt d.c. power supply. The armature of the motor is controlled by the output of a d.c. power amplifier which is supplied by a ± 35 volt d.c. power supply. A permanant magnet d.c. tachometer is attached to the motor shaft which provides a voltage, Vt, proportional to the speed of the motor. Electrical signals are passed to and from the cart by a flexible cord.

The Real time control of the system is accomplished by a Digital Group, Z-80 microcomputer. The analog signals Vp and Vt are sampled and digitized by a 12 bit A/D converter. The digital

control signal is delivered to the system by a 10 bit D/A converter. An 8253 programmable timer was used to time the 10 ms sampling period. Two operational amplifiers were used to provide feedback around the power amplifier and the d.c. motor. Figure 2.7 shows the arrangement of these amplifiers. Strip chart recorders were used for data collection.

7.3 Experimental Procedure

Two Z-80 microcomputers were used for this research. One was used as the real time controller described in the previous section. The other was used for program development. The program development computer operates under the DISKMON Operating System with two floppy disks for file storage. Both microcomputers are equipped with audio cassette recorder interfaces. By connecting the audio cassette output from one computer to the audio cassette input of the other, files can be transferred directly between the two microcomputers.

The assembler program is loaded into both the microcomputers from the disk and the cassette drive. The object code of the real-time control program is then loaded from the disk and is placed in memory locations starting from 3200H in the development computer. By executing the instruction 'SAVES' on the development microcomputer and the instructions 'lOADS' on the real-time control microcomputer, the object code program is transfered through the audio cassette interface to the real-time control microcomputer. At this point, the program is in the real time controller and is ready to be executed. Before executing the

program the inverted pendulum is made vertical to find a zero reference voltage. This is accomplished by attaching a plumb line to the top of the inverted pendulum and adjusting the two screws at the bottom of the pendulum until the pendulum becomes vertical as checked by the plumb line. After removing the plumb line the real time control program is executed. By pressing keys 'I' and 'D' on the keyboard the digital value of the position of the pendulum , displayed on the CRT, is adjusted as close as possible to 800 H, which corresponds to a zero reading of the pendulum position. After biasing the potentiometer output the key 'S' The position of the pendulum is displayed on the is pressed. CRT. The angular displacement of the pendulum in either direction from the upright position is fixed by adjusting the two screws which are at the bottom of the inverted pendulum. computation of the control signal to stabilize the system is started by depressing key 'R'.

It is not possible to adjust the pendulum to a perfectly upright position. Hence there is a bias present in the reading of the pendulum. This bias is defined as the reading of the position of the pendulum when it is in the perfectly upright position or the actual position of the pendulum when the reading is zero. It is evident from the model of the pendulum and cart, Equation 2.12, that the pendulum can be maintained at a nonvertical position by maintaining a constant acceleration of the cart. The larger the angle, the larger the required acceleration. Since it is not possible to completely eliminate the bias in the

pendulum position measurement there is a tendency for the cart to move in the direction of the bias. If a slight, upward curvature is built into each end of the surface on which the cart runs the effect of the bias is eliminated and the cart will find an equilibrium position about which it will operate.

Chapter VIII

PRESENTATION OF EXPERIMENTAL RESULTS

8.1 Introduction

Data obtained from the testing described in the previous chapter is discussed in this chapter. Data of the position of the pendulum, speed of the armature of the d.c. motor which drives the cart, distance of travel of the cart and the control signal from the D/A converter which control the speed of the d.c. motor are obtained on strip chart recorders at different chart speeds.

8.2.1 Results of Position of Pendulum versus Time

The pendulum was given an initial angular displacement of about 10° from the upright position. The computation for the control signal to stabilize the pendulum was started by depressing key 'R' on the keyboard. The signal from the potentiometer which gives the angular displacement of the pendulum was recorded on the strip chart recorder for different speeds of 1 mm/sec, 5 mm/sec and 25 mm/sec. The sensitivity of the strip chart recorder was held constant at 50 mv/division. Figures 8.1.1, 8.1.2 and 8.1.3 show the results of the pendulum position versus time for the different chart speeds. The results indicate that at all times the position of pendulum is within 2.5° from the upright position of the pendulum.

Figure 8.1.1 Position of Pendulum (degree) vs Time (minute), 1mm/sec chart speed.

Figure 8.1.2 Position of Pendulum (degree) vs Time (second), 5 mm/sec chart speed.

Figure 8.1.3 Position of Pendulum (degree) vs Time (second), 25 mm/sec chart speed.

8.2.2 Results of Speed of the D.C. Motor versus Time

The signal from the tachometer which is coupled to the shaft of the d.c. motor was recorded on the strip chart recorder for different chart speeds of 1 mm/sec, 5 mm/sec and 25 mm/sec. The sensitivity of the strip chart recorder was maintained at 200 mv/division. Figures 8.2.1, 8.2.2 and 8.2.3 show the speed of the d.c. motor versus time for different chart speeds. The maximum speed of the cart is 1.0 m/sec. It was observed that the output signal from the tachometer is periodic in nature with an almost constant amplitude.

8.2.3 Results of Distance Moved by Cart versus Time

The signal from the tachometer was integerated by an operational amplifier and was recorded on a strip chart recorder. The results thus obtained from the strip chart gave the distance moved by the cart from the starting position. The readings were recorded for chart speeds of 5 mm/sec and 25 mm/sec. The sensitivity of the strip chart was maintained at 500 mv/division. Figures 8.3.1 and 8.3.2 show the results of the distance moved by the cart versus time. For all times, the cart was observed to move back and forth through a distance of about 1 meter on either side of the mean position.

8.2.4 Result of Control Signal versus Time

The control signal from the D/A converter was recorded on the strip chart recorder for chart speeds of 5 mm/sec and 25 mm/sec. The sensitivity of the strip chart was maintained at 500

Figure 8.2.1 Speed of the D.C. Motor (200 mv/div) vs Time (mi 1 mm/sec chart speed.

Figure 8.2.2 Speed of the D.C. Motor (200 mv/div)vs Time (sec 5 mm/sec chart speed.

Figure 8.2.3 Speed of the D.C. Motor (200 mv/div) vs Time (see 25 mm/sec chart speed.

mv/division. The output control voltage from the D/A converter was limited to 10 volts. Figures 8.4.1 and 8.4.2 show the results of the control signal versus time. It may be observed that the output voltage from the D/A converter is large when the pendulum is initially at about 10° angular displacement from the mean position Subsequently, when the cart moves and when the pendulum displacement becomes smaller, the output voltage also becomes corresponding smaller.

CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

9.1 Introduction

This chapter provides a conclusion of this research and recommendations for further study.

9.2 Conclusions

From the experiment it is observed that the digital compensation is successful in stabilizing the naturally unstable cart pendulum system. A comparison of Figures 5.1 and 5.2 (for a gain Kp= 1.0) with Figures 8.1 and 8.4 show that the response of the pendulum and the control voltage matches with the result of the computer simulation during an initial period of about 1.5 seconds. Subsequently, the effects of the bias, the non-linearities and the discretization of the sampled data makes the actual response deviate from the predicted response. It is believed that in the absence of these three effects, the actual response could match with the computer simulation for a much longer period.

9.3 Recommendations

There are several recommendations which can be made to improve upon the research conducted for this thesis, and to expand upon the system for further research.

A major time of this research was spent in writing and debugging the assembly language software control program. Hence it would be advantageous to work on a more advanced microproces-

sor (16 bits) or a microcomputer having a Fortran or Basic compiler.

If a higher stiffness belt is used, then the transfer function relating the speed of the cart to the speed of the d.c. motor can be modeled by a gain alone. This would simplify the stability analysis considerably.

Resolution of the accurate output control signal will provide smoother control. Hence, it is recommended that a 12 bit D/A converter be used instead of the 10 bit D/A converter used in the present research.

Two problems which were frequently encountered with the physical system were the drive belts and the potentiometer. Due to misalignment or fatigue, the life of the belts were short and hence needed replacement periodically. It would be worthwhile to modify the driving mechanism. The microtorque potentiometer, which was used to measure the position of the pendulum, failed. Therefore, a different method of measuring the angular displacement of the pendulum should be considered.

Since the mathematical model of the system is developed and adequate software is available, the technique of adaptive optimal control may be applied to the system

REFERENCES

- 1) Ogata, K., Modern Control Engineering, Prentice-Hall, Englewood Cliffs, N.J., 1970.
- 2) Rodany Kaks, <u>Programming the Z-80</u>, Second Edition, Sybex Inc., California, 1980
- 3) Tou, Julius T., <u>Digital and Sampled Data Control Systems</u>, McGraw Hill, New York, 1959.
- 4) Kuo, B.C., Discrete-Data Control Systems, Prentice-Hall, Englewood Cliffs, N.J., 1970.
- 5) Bryant, <u>David</u>, <u>DISKMON Operating System Version 1.0</u>, 1st Edition, The Digital Group, Denver, 1978.
- 6) Dorf, R. C., <u>Modern Control Systems</u>, Third Edition, Addison-Wesley, Reading, Massachussetts, 1980.
- 7) Givone, D.D., and Roesser, R. P., Microprocessor/Microcomputer, An Introduction, McGraw-Hill, New York, 1980.

APPENDIX A VALUES OF THE ROOTS OF THE INNER LOOP OF THE SYSTEM

VALUES OF THE ROOTS OF THE INNER

LOOP OF THE SYSTEM

		ROOTS: K = .4	
RANGE OF K: Kmin=	0	REAL	IMAGINARY
7.995000E-01	-4.102435E-01	6.142159E-01	-3,961843E-01
1.000000E+00 7.995000E-01	1.091060E-11 4.102435E-01	9.705682E-01	-3.656455E-11
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	71.1024002 01	6.142159E-01	3.961843E-01
ROOTS: K = .05		ROOTS: K = .45	2
REAL	IMAGINARY	REAL	IMAGINARY
7.770426E-01	-4.141527E-01	5.904515E-01	-3.868312E-01
9.949149E-01	1.010151E-11	9.680970E-01	-1.739887E-11
7.770426E-01	4.141527E-01	5.904515E-01	3.868312E-01
ROOTS: K = .1		ROOTS: K = .5	
REAL	IMAGINARY	REAL	IMAGINARY
7.543124E-01	-4.164231E-01	5.666052E-01	-3.755206E-01
9.903752E-01	7.109594E-12	9.657895E-01	-8.005918E-13
7.543124E-01	4.164231E-01	5.666052E-01	3.755206E-01
ROOTS: K = .15		ROOTS: K = .55	
REAL	IMAGINARY	REAL	IMAGINARY
7.313561E-01	-4.170888E-01	5.426861E-01	-3.620732E-01
9.862879E-01	-4.453062E-11	9.636279E-01	6.720318E-12
7.313561E-01	4.170888E-01	5.426861E-01	3.620732E-01
ROOTS: K = .2	*	ROOTS: K = .6	
REAL	IMAGINARY	REAL	IMAGINARY
7 0000065-01	-4 1616445-01	5.187016E-01	-2 4624425 01
7.082096E-01 9.825807E-01	-4.161644E-01 -1.688629E-11	9.615968E-01	-3.462442E-01 1.495548E-11
7.082096E-01	4.161644E-01	5.187016E-01	3.462442E-01
ROOTS: K = .25		ROOTS: K = .65	
REAL	IMAGINARY	REAL	IMAGINARY
		4 04/50/5 0/	
6.849016E-01 9.791967E-01	-4.136458E-01 8.161054E-12	4.946584E-01 9.596833E-01	-3.276925E-01 -4.559176E-12
6.849016E-01	4.136458E-01	4.946584E-01	3.276925E-01
Worldward Control Section 2007	AND ALL CONTROL OF THE CONTROL OF TH	BOOTO, K	
ROOTS: K = .3 REAL	IMAGINARY	ROOTS: K = .7 REAL	IMAGINARY
KEILE	1		Imainai
6.614549E-01	-4.095096E-01	4.705620E-01	-3.059269E-01
9.760902E-01 6.614549E-01	1.457845E-11 4.095096E-01	9.578760E-01 4.705620E-01	-8.691951E-13 3.059269E-01
0.0143475-01	4.0700782 01	411000205-01	3.0372676-01
ROOTS: K = .35	TMOSTUSSU	ROOTS: K = .75	
REAL	IMAGINARY	REAL	IMAGINARY
6.378879E-01	-4.037117E-01	4.464174E-01	-2.802033E-01
9.732241E-01	2.445292E-13	9.561651E-01	9.913813E-12
6.378879E-01	4.037117E-01	4.464174E-01	2.802033E-01

ROOTS: K = .8 REAL	IMAGINARY	ROOTS: K = 1.2 REAL	IMAGINARY
9.545422E-01	4.000000E-12	9.439771E-01	-5.000000E-26
4.222289E-01	-2.493033E-01	-1.112992E-01	-2.000000E-26
4.222289E-01	2.493033E-01	5.663221E-01	7.000000E-26
ROOTS: K = .85 REAL	IMAGINARY	ROOTS: K = 1.25 REAL	IMAGINARY
9.529996E-01	-6.000000E-12	9.428903E-01	-1.521805E-16
3.980002E-01	-2.109687E-01	-1.746331E-01	-7.295946E-17
3.980002E-01	2.109687E-01	5.807427E-01	2.251400E-16
ROOTS: K = .9 REAL	IMAGINARY	ROOTS: K = 1.3 REAL	IMAGINARY
9.515308E-01	0.000000E+00	9.418442E-01	-1.101857E-16
3.737346E-01	-1.599452E-01	-2.358798E-01	-4.636628E-17
3.737346E-01	1.599452E-01	5.930356E-01	1.565520E-16
ROOTS: K = .95 REAL	IMAGINARY	ROOTS: K = 1.35 REAL	IMAGINARY
9.501298E-01	-8.000000E-13	9.408361E-01	2.599400E-22
3.494351E-01	-7.333270E-02	-2.955545E-01	-2.600000E-22
3.494351E-01	7.333270E-02	-6.037184E-01	6.000000E-26
ROOTS: K = 1 REAL	IMAGINARY	ROOTS: K = 1.4 REAL	IMAGINARY
9.487914E-01	-1.252500E-15	9.398638E-01	1.600000E-18
1.981982E-01	3.832000E-16	-3.540026E-01	-1.600000E-18
4.520104E-01	8.693000E-16	6.131388E-01	5.000000E-25
ROOTS: K = 1.05 REAL	IMAGINARY	ROOTS: K = 1.45 REAL	IMAGINARY
9.475109E-01	-7.594890E-16	9.389251E-01	9.171478E-16
1.036031E-01	7.603000E-16	-4.114676E-01	2.817872E-16
4.978860E-01	-8.110000E-19	6.215424E-01	-1.198935E-15
ROOTS: K = 1.1 REAL	IMAGINARY	ROOTS: K = 1.5 REAL	IMAGINARY
9.462842E-01	1.148200E-15	9.380182E-01	0.000000E+00
2.555930E-02	-1.148200E-15	-4.681280E-01	0.000000E+00
5.271565E-01	3.000000E-23	6.291098E-01	0.000000E+00
ROOTS: K = 1.15 REAL	IMAGINARY	ROOTS: K = 1.55 REAL	IMAGINARY
9.451074E-01	-3.894200E-15	9.371410E-01	6.698719E-14
-4.505467E-02	3.894200E-15	-5.241186E-01	-9.191919E-14
5.489473E-01	1.800000E-22	6.359775E-01	2.493200E-14

APPENDIX B VALUES OF THE ROOTS OF THE ENTIRE SYSTEM

VALUES OF THE ROOTS OF THE ENTIRE

SYSTEM

9			
RANGE OF K: Kmin=	Ø	ROOTS: K = .007	
		REAL	IMAGINARY
1.079552E+00	1.310619E-02	1000	211114211111111
4.946450E-01	-3.276478E-01	E EE/3805 01	
1.079552E+00	-1.310622E-02	5.556750E-01	-2.687644E-01
9.511167E-01	-3.167512E-02	9.897143E-01	1.548502E-01
		9.897143E-01	-1.548502E-01
9.511167E-01	3.167516E-02	9.744555E-01	
4.946450E-01	3.276478E-01		-2.485252E-02
		9.744555E-01	2.485252E-02
R00TS: K = .001		5.556750E-01	2.687644E-01
and the second s	- and the - in the angle of the state of the		
REAL	IMAGINARY	ROOTS: K = .008	
			0440 S 972 S 202 S 575 S.
5.0206815-01	-3.212212E-01	REAL	IMAGINARY
1.068103E+00			
	5.054474E-02	5.666763E-01	-2.560968E-01
1.0681035+00	-5.054476E-02	9.768734E-01	
9.543613E-01	-3.314937E-02		1.708854E-01
9.543613E-01	3.314939E-02	9.768734E-01	-1.708854E-01
5.020681E-01		9.755139E-01	-2.236289E-02
2.050001E-01	3.212212E-01	9.755139E-01	2.236288E-02
		5.666763E-01	
ROOTS: $K = .002$		2.0001035-01	2.560968E-01
REAL	IMAGINARY	993	
	21111G2INIKI	R00TS: $K = .009$	
E 00044EE	_	REAL	IMAGINARY
5.098415E-01	-3.143125E-01	112112	THIGHNE
1.055700E+00	7.126864E-02		mayon into regional attache describe and the
1.055700E+00	-7.126862E-02	5.784281E-01	-2.413833E-01
9.582096E-01		9.636118E-01	1.872381E-01
	-3.410478E-02	9.636118E-01	-1.872381E-01
9.582096E-01	3.410476E-02	9.762424E-01	
5.098415E-01	3.143125E-01		-2.011619E-02
		9.762424E-01	2.011620E-02
ROOTS: K = .003		5.784281E-01	2.413833E-01
REAL	IMAGINARY	ROOTS: K = .01	
		NOVOLUNE IS BOOKS	
5.180066E-01	-3.068421E-01	REAL	IMAGINARY
1.042401E+00			
	8.876453E-02	5.908897E-01	-2.238971E-01
1.042401E+00	-8.876457E-02	9.498486E-01	
9.625626E-01	-3.412500E-02		2.044954E-01
9.625628E-01	3.412504E-02	9.498486E-01	-2.044953E-01
5.180066E-01		9.767627E-01	-1.807215E-02
2.1900005-01	3.068421E-01	9.767628E-01	1.807215E-02
~		5.908897E-01	
ROOTS: K = .004		J. 900097 E-01	2.238971E-01
REAL	IMAGINARY		
	THIGHTIAK	ROOTS: $K = .011$	
E 000110= 61		REAL	IMAGINARY
5.266118E-01	-2.987086E-01		THIGHT
1.028680E+00	1.055223E-01		
1.028680E+00	-1.055223E-01	9.357967E-01	-2.234157E-01
9.668970E-01		6.037763E-01	-2.025793E-01
	-3.282528E-02	9.357967E-01	2.234157E-01
9.668971E-01	3.282530E-02	9.771469E-01	
5.266118E-01	2.987086E-01		-1.618428E-02
		9.771469E-01	1.618427E-02
ROOTS: K = .005		6.037763E-01	2.025793E-01
	and thinks the morph areas of the Proposition in the St. (1997)		
REAL	IMAGINARY	ROOTS: K = .012	,
	3. P	A STATE	
		REAL	- IMAGINARY
5.453778E-01	-2.798786E-01		
1.002387E+00	1.387069E-01	9.222478E-01	-2.447989E-01
1.002387E+00	그녀가 그리는 화장에 가는 가게 하면 하면 다양 시작하는 그는 가게 있었다.	6.162523E-01	
	-1.387069E-01	9.222478E-01	-1.760290E-01
9.728614E-01	-2.758488E-02		2.447990E-01
9.728615E-01	2.758488E-02	9.774385E-01	-1.440874E-02
5.453778E-01	2.798786E-01	9.774385E-01	1.440874E-02
0.4001102 01	2.170.002.01	6.162523E-01	1.760290E-01
			1.1002702-01

ROOTS: K = .013 REAL	IMAGINARY	ROOTS: K = .019 REAL	I ma ginary
9.107764E-01 6.267158E-01 9.107764E-01 9.776652E-01 9.776651E-01 6.267158E-01	-2.688608E-01 -1.427613E-01 2.688608E-01 -1.270519E-02 1.270519E-02 1.427613E-01	9.004628E-01 9.004628E-01 4.774001E-01 9.822457E-01 9.744726E-01 7.858957E-01	-4.014802E-01 4.014802E-01 4.911956E-15 -5.018711E-13 5.292850E-13 -3.231030E-14
ROOTS: K = .014 REAL	IMAGINARY	ROOTS: K = .02 REAL	IMAGINARY
9.029487E-01 6.335825E-01 9.029487E-01 9.778449E-01 9.778448E-01 6.335825E-01	-2.943885E-01 -1.006692E-01 2.943885E-01 -1.103109E-02 1.103110E-02 1.006692E-01	9.022944E-01 9.022944E-01 4.611410E-01 9.842804E-01 9.725573E-01 7.968099E-01	-4.182112E-01 4.182112E-01 2.139395E-15 -3.399471E-13 3.746179E-13 -3.450530E-14
ROOTS: K = .015 REAL	IMAGINARY	ROOTS: K = .021 REAL	IMAGINARY
8.988857E-01 6.367193E-01 8.988857E-01 9.779898E-01 9.779898E-01 6.367193E-01	-3.193909E-01 -3.243024E-02 3.193909E-01 -9.335428E-03 9.335429E-03 3.243024E-02	9.042351E-01 9.042351E-01 4.470187E-01 9.856676E-01 9.712728E-01 8.053854E-01	-4.338763E-01 4.338763E-01 6.344000E-16 -2.996953E-13 3.315348E-13 -2.875770E-14
ROOTS: K = .016 REAL	IMAGINARY	ROOTS: K = .022 REAL	IMAGINARY
8.975191E-01 8.975191E-01 5.554908E-01 9.781085E-01 9.781085E-01 7.188814E-01	-3.426622E-01 3.426622E-01 4.594307E-12 -7.541159E-03 7.541159E-03 -2.508800E-17	9.062091E-01 9.062091E-01 4.344820E-01 9.867416E-01 9.702880E-01 8.123227E-01	-4.486374E-01 4.486374E-01 -3.93900E-15 -1.425239E-13 1.640585E-13 -2.142660E-14
ROOTS: K = .017 REAL	IMAGINARY	ROOTS: K = .023 REAL	IMAGINARY
8.977534E-01 8.977534E-01 5.210561E-01 9.782068E-01 9.782068E-01 7.510882E-01	-3.639645E-01 3.639645E-01 -6.811305E-12 -5.485795E-03 5.485795E-03 2.564400E-15	9.081717E-01 9.081717E-01 4.231772E-01 9.876197E-01 9.694876E-01 8.180620E-01	-4.626228E-01 4.626228E-01 -6.845635E-15 -1.064870E-14 2.921156E-14 -4.242680E-15
B00701 K = 010			
ROOTS: K = .018 REAL	IMAGINARY	ROOTS: K = .024 REAL	IMAGINARY

APPENDIX C

THE SIMULATION PROGRAM

```
20 ! *
50 ! *
                   THE SIMULATION PROGRAM
60! *
90
     IMAGE 8(DDD.DDD.2X)
100
     T=.010
                       ! Sampling Interval.
110
     Saturation=S=10
                       ! Maximum and minimum output voltage from the
                        power supply to the cart.
                      ! Resolution of the Output Control Signal 'U'
120
     Outresolution=.010
                      ! Resolution of the Signal, Vt, from Tachometer.
130
     Velresolution=.030
140
     Posresolution=.020
                      ! Resolution of the Signal, Vp, from Potentiomete
150
     Bias=. 030
                       ! Bias for the reading of the pendulum position
160
     K2 = 256
                       ! This gain is used in the microcomputer.
170
     INTEGER Pi, Vi, Ci5
180
     Vp(1)=Vp(2)=Vp(3)=Vp(4)=Vpi(3)=Vpi(4)=.3
190
     Kp = 1.45
                      ! Gain of the potentiometer.
200
     G1d=1.1
                       ! Coefficients of Transfer Funtion H1(Z)
210
     Gin=.85
220
     K1=.75
230
     H2d=.85
240
     M=Z=C0(3)=C0(4)=C0(5)=C1(3)=C1(4)=C2(3)=C2(4)=U(1)=U(2)=0
250 ! U(3)=U(4)=U(5)=Vt(3)=Vt(4)=Vt(5)=Us(1)=Us(2)=Us(3)=Us(4)=
     =Vi(2)=Vi(3)=Vi(4)=0
260
     PLOTTER IS 13, "GRAPHICS"
270
     GRAPHICS
280 ! PLOTTER IS 7,5, "9872A"
     PRINTER IS 7.5
290
300 ! PRINT "V$5"
     LOCATE 0,123,0,100
310
320
     CSIZE 3.1,.45
330
     SCALE -.5,5,-.32,.32
340
     AXES 1,.1,0,0
350
     FRAME
360 PRINTER IS 16
370
     FOR I=1 TO 5
     MOVE I-.12, -. 04
380
390
     LABEL I
400
     NEXT I
     FOR I=-.3 TO .3 STEP .1
410
     MOVE -. 3, I
420
430
     LABEL I
440
     NEXT I
460 ! Statement 510 to 750 are developed in Chapter 3. The coefficient
470 ! of the transfer function are calculated in this part of the program
480 ! The nomenclature used for calculating the coefficients are similar
490 ! to that used in chapter 3.
510
     A=10.692
520
     B=47.409293
530 N11=1.96733491*EXP(-A*T)*COS(B*T)+.2017093*EXP(-A*T)*SIN(B*T)+.032650
540 N10=.9673491*EXP(-2*A*T)+EXP(-A*T)*(.0326509*CDS(B*T)+.2017093*SIN(B*
550
     D11=2*EXP(-A*T)*COS(B*T)
560
     D10=EXP(-2*A*T)
570
     A1=4.009816
580
     A2=-4.385888
```

```
590
      A3=.376
600
      A4=.7998549
610 ! N2=(A1+A3)*EXP(-5*T)+(A2+A3)*EXP(5*T)+(A1+A2)*2*EXP(-A*T)*COS(B*T)+
      +EXP(-A*T)*(A3*COS(B*T)+A4*SIN(B*T))
620 ! N1=2*(EXP(-5*T)*A1+EXP(5*T)*A2)*EXP(-A*T)*COS(B*T)+(A1+A2)*
    *EXP(-2*A*T)+A3+(EXP(5*T)+EXP(-5*T))*(A3*C0S(B*T)+A4*SIN(B*T))*EXP(-A
630 ! N0=(EXP(-5*T)*A1+EXP(5*T)*A2)*EXP(-2*A*T)+EXP(-A*T)*(A3*COS(B*T)+
      +A4*SIN(B*T))
640
      D33=EXP(-5*T)+EXP(5*T)+2*EXP(-A*T)*COS(B*T)
650
      D32=1+(EXP(5*T)+EXP(-5*T))*2*EXP(-A*T)*COS(B*T)+EXP(-2*A*T)
660
      D31=EXP(-2*A*T)*(EXP(-5*T)+EXP(5*T))+2*EXP(-A*T)*COS(B*T)
670
      D30=EXP(-2*A*T)
680
      N33=N2
690
     N32=N2+N1
700
     N31=N1+N0
710
     N30=N0
720
      N21=1+EXP(-A*T)*(COS(B*T)-.2255254*SIN(B*T))-2*EXP(-A*T)*COS(B*T)
730
      N20=EXP(-2*A*T)-EXP(-A*T)*(COS(B*T)-.2255254*SIN(B*T))
740
      D21=D11
750
     D20=D10
760 ! Statement 790 to 930 prints the transfer function of the system and
770 ! the various constant of the transfer functions.
      PRINT "Vt(z)/U(z)=.92(Z^2-N11*Z+N10)/(Z^2-D11*Z+D10)"
      PRINT "N11=", N11, "N10=", N10, "D11=", D11, "D10=", D10
790
      PRINT "Wc(z)/Vt(z)=.0655009*(N21*Z+N20)/(Z^2-D21*Z+D20)"
800
     PRINT "N21=", N21, "N20=", N20, "D21=", D21, "D20=", D20
810
820 ! PRINT "Vp(z)/U(z)=383.85*Kp*10^(-5)*(N33*Z^3-N32*Z^2+N31*Z-N30)/
      /(Z^4-D33*Z^3+D32*Z^2-D31*Z+D30)"
830 ! PRINT "N33=",-N33,"N32=",-N32,"N31=",-N31,"N30=",-N30,"D33=",D33,
      "D32=",D32,"D31=",D31,"D30=",D30
     MOVE 1.7,.3
840
850
     ! Statement 1040 TO 1220 prints the various practical limitation
860
     ! and the compensating transfer function used on the plot.
870
     LABEL "SAMPLING TIME
                             ="; T
     LABEL "Saturation volts ="; Saturation
880
890
                            =";Outresolution
     LABEL "Outresolution
     LABEL "Velresolution
900
                             =": Yelresolution
     LABEL "Posresolution
910
                             =":Posresolution
     LABEL "Bias in Pot volts="; Bias
920
930
     MOVE 1,-.12
940
     LABEL " G1(z)=C1(z)/Vpi(z))=K2*(Z-Gin)/(Z-Gid)"
     LABEL " H2(Z)=C2(z)/Vti(z)=K1*(Z^2-2*H2d*Z+H2d^2)/(Z^2-C*Z+C1)"
950
     LABEL ""
960
     LABEL "K2="; K2, "Kp="; Kp
970
     LABEL "Gin="; Gin
980
     LABEL "G1d=" G1d
990
1000 LABEL ""
1010 LABEL "K1=";K1
1020 LABEL "H2d="; H2d
1040 ! The equations used from lines 1070 to 1220 are developed in
1050 ! Chapter 5.
1070 FOR X=0 TO 300000
1080 FOR Y=0 TO 10
1090
1100
     C1(4)=G1d*C1(3)-K2*(Vpi(4)-G1n*Vpi(3))
```

```
1110 ! C2(4)=2.69*C2(3)-2.58*C2(2)+.89*C2(1)+K1*(Vti(4)-H2d*2*Vti(3)+
        H2d^2*Vti(2))
 1120 U(4)=C1(4)-C2(4)
 1130 Us(4)=U(4)
 1140 ! Statements 1160 and 1170 simulates the saturation of the output
 1150 ! voltage from the D/A converter.
 1160 IF Us(4)>S THEN Us(4)=S
 1170 IF Us(4)<-S THEN Us(4)=-S
 1180 ! Statement 1220 to 1230 simulates the resolution of the D/A Convert
 1190
      Ui=Us(4)/Outresolution
 1200 Us(4)=Ui*Outresolution
 1210
      Vt(5)=D11*Vt(4)-D10*Vt(3)+.92*(Us(4)-N11*Us(3)+N10*Us(2))
 1220
       P(5)=B33*P(4)-B32*P(3)+B31*P(2)-B30*P(1)-383.5*Kp*10^(-5)*
       *(N33*Cs5(4)-N32*Cs5(3)+N31*Cs5(2)-N30*Cs5(1))
· 1230 ! Statements 1270 to 1310 simulates the resolution of the A/D
 1240 ! converters for the reading of the velocity of the cart and
 1250 ! pendulum position. The bias in the reading of the pendulum
 1260 ! position is also included.
 1270
      Vpi=Vp(5)/Posresolution
 1280
      Vpi(5)=Vpi*Posresolution
 1290 Vpi(5)=Vpi(5)+Bias
 1300 Vti=Vt(5)/Velresolution
 1310 Vti(5)=Vti*Velresolution
 1320 ! Statements 1340 to 1550 shifts the values of the various varaibles
 1330 ! from K+1 instant to K instant.
 1340 Vpi(3)=Vpi(4)
 1350 Vpi(4)=Vpi(5)
 1360 Vti(2)=Vti(3)
 1370
      Vti(3)=Vti(4)
 1380 Vti(4)=Vti(5)
 1390 C1(3)=C1(4)
      Vp(1)=Vp(2)
 1400
 1410
      Vp(2)=Vp(3)
 1420
      Vp(3)=Vp(4)
 1430 Vp(4)=Vp(5)
 1440 Vt(2)=Vt(3)
 1450 Vt(3)=Vt(4)
 1460
      Vt(4)=Vt(5)
      C2(1)=C2(2)
 1470
 1480
      C2(2)=C2(3)
 1490 C2(3)=C2(4)
 1500 U(1)=U(2)
 1510 U(2)=U(3)
 1520 U(3)=U(4)
 1530 Us(1)=Us(2)
 1540 Us(2)=Us(3)
 1550 Us(3)=Us(4)
 1570 PLOT M, Vp(5)
 1580 NEXT Y
 1590 PRINT USING 90; M, Vp(5), Vt(5), D, C1(4), C2(4), U(4), Us(4)
 1600 NEXT X
 1610 END
```

APPENDIX D

MEMORY MAP

عدا	Map. and Channel To read Vt(4)				INIT. FOR Subroutin 'DISPLRY'			Stores 'A'- Reg. when input from Key
Ε								e for Armature
ď			de of)					Bias value for Speed of Armature
ງ		Stored number of Sampling-Intervals Passed	Magnitude of Vt(2)					60
B	Hep. and Channel To read Vp(4).	stored Sampling— Passed	de of)					Bias value for Pendulum Positi
Я		Sign of Exponent Exponent Exponent Stored of Samplin Vt(2) C1(3) C2(3) C2(2) C2(1) Passed	Magnitude of Vt(3)			Storage on for 4)		
6		Exponent of C2(2)	de of			Starting Storage Location for U(4)	380	
8	alue he Position	Exponent of (2(3)	Magnitude of C2(1)			ng Storage tibn for C2(4)		(4) in
7	Initial Value To Bias the Pendulum Posi	Exponent of C1(3)	de of)			Starting Storage Location for C2(4)		24 bit value of C1(4) in 2's complement
9	Coeff. of Vt.(2)	Sign of Vt(2)	Magnitude of C2(2)			ng Storage tibn for C1(4)		24 bit value of 2's complement
5	Coeff. of Vt(3)	Sign of Yt(3)	de of)			Starting Storage Location for C1(4)		(4) in
4	Coeff. of C2(1)	Sign of C2(1)	Magnitude of C2(3)		Sampling to be	ng Storage itibn for Vp(4)		24 bit value of C2(4) in 2's complement
3	Coeff. of C2(2)	Sign of C2(2)	de of)		Number of Samp Intervals to b Executed	Starting Storage Location for Vp(4)		24 bit value o 2's complemen
2	Coeff. of C2(3)	Sign of (2(3)	Magnitude of Vp(3)				24 Bits ment	C1(4) 's comp.
-	Coeff. of Vp(3)	Sign of Vp(3)	ide of			hit. & store Starting Storage Motors Location for the of C2,C1, b, th and U	Value of U(4) in 24 Bits and in 4's complement	Incomplete value of CI(4) in 24 bits and in 2's comp.
0	Coeff. of C1(3)	Sign of C1(3)	Magnitude of CI(3)		Display & Store Alternate Values	Init. & store Riddress Loca- tion of C2,C1, Mp, Mt and U	Value of	Incomplete in 24 bits
	3E00	3£18	3E20	3E30	3E40	3550	3E68	3E70

Memory Map of Page 3E

LIST OF PROGRAMS AND SUBROUTINE

Address

2000 2215	W. T
3000 - 33AD	MAIN PROGRAM
3400 - 341B	MULT
341F - 342D	STAD
3431 - 3440	COMPLEMENT
3444 - 345E	EXPONENT
3462 - 34A4	TRANS
34A8 - 34DE	SHIFT
34DF - 34F7	STOP
3530 - 363D	DISPLAY
3640 - 36E6	STORE
3700 - 37CB	INITI
37CC - 37E4	CHECK
37E5 - 37EF	DEC
37F0 - 37FA	INC
3814 - 384A	SCREEN
3850 - 38D3	PENDIS

APPENDIX E

MICROCOMPUTER PROGRAM LISTING

```
GOGG *
                        MAIN PROGRAM
0010
0030 * THIS IS THE MAIN PROGRAM TO STABILIZE AN INVERTED PEN-
0040 * DULUM MOUNTED ON A CART BY DIGITAL CONTROL.
0070
0080 MULT
           EQU
               3400H
0090 STAD
           EQU
                341CH
0100 COMP
           EQU
                342EH
0110 EXP
           EQU
                34414
0120 LAST
           EOU
                3700H
0130 PENDIS EQU
                3850H
                           # OPCODE STORED FROM 3001H
0149
            ST
                3001H
0150
           LI
                8, 75H
                           # OUTPUT CONTROL VOLTAGE=0 VOLTS
0160
           LD
                ( 0FFF 2H ), A
0170
           LI
                (OFFF1H), A
           LD
                           # MEMORY LOACATION 3E00H TO 3E80H
0180
               A. 0
0190
           LD
               B. 89H
                           # IS INITIALISED TO 0
           LI
                HL, 3E00H
0200
0210 LOOP
            LD
                (HL) B
0220
           INC HL
0230
           DJMZ LOOP
                           # CHANNEL 1 AND AMPLIFICATION 4
0240
           LI
                A. 12H
0250
                (BEOBH), A
                          # TO READ POSITION OF PENDULUM
            LI
0260
            LD
                           # CHANNEL @ AND AMPLIFICATION 1
                A. 0
            LD
                           # TO READ VELOCITY OF CART
0270
                (BEOFH ) A
            CALL INITI
                           # INITIALIZE PENDULUM POSITION
0280
                           # TO DISPLAY PENDULUM POSITION
0290
            CALL PENDIS
0300
            LI
               A, OFFH
                           # INITIALISE COUNTER
0310
            OUT
                10H
0320
            CALL 000346
                           # CLEAR SCREEN
            LD
                A. SDH
                           # STORE COEFF OF C1(3)
0330
0340
            LD
                (BEOOH ) A
                           # STORE COEFF OF P(3)
0350
            LD
                A. ODSH
            LI
                (3E01H) A
0360
            LD
                A. ØACH
                           # STORE COEFF OF C2(3)
0370
0380
            LD
                ( 3E02H ), A
               A, 0A5H
                           # STORE COEFF OF C2(2)
            LD
0390
            LD
                ( 3E03H ), A
0400
                           # STORE COEFF OF C2(1)
0410
            LI
                A. 39H
0420
            LD
                ( 3E04H ), A
0430
            LI
                A. 36H
                           # STORES COEFF OF U(3)
            LD
                ( 3E05H ), A
0440
                           # STORES COEFF OF U(2)
9459
            LD
                A 17H
            LI
                ( 3E06H ), A
0460
0470
            LD
                A. 01H
                           # INITIALISE FOR SUBROUTINE STORE
0480
            LD
                (3E50H)
                           # AND DISPLAY
0490
            LD
                 (3E40H), A
            LB
                           # SAMPLING EVENTS TO TAKE PLACE
0500
                 HL, ØFFFH
            LD
0510
                 ( 3E43H ), HL
0520
            LI
                 A. 03H
                           # INITILISATION FOR SUB DISPLA
            LD
0530
                ( 3E4FH ), A
0540
            LD
                 A. 30H
                           # TIMER COUNTER IS INITI IN MODE @
```

```
... CONT OF MAIN PROGRAM
 0560 ¥
 0570
 0580
            OUT 17H
0590
            LI
                 8.0
             DUT
 0600
                14H
            LD
 0610
                 8.0
                 144
             OUT
 0628
. 0630 MAIN
             LD
                 BC. 0007H
             LI
 0640
                DE, 3E30H
 0650
             LD
                 HL 3E00H
 0660
             LDIR
 0670
             LD
                 A. 0
                             # C'H'L' REGISTER IS INITIALISED
             LB
 9689
                C. A
                             # TO 0
             LD
                 H, A
 0690
 9799
             LD
                 L. A
             EXX
 0710
             LD
                 DE. (3E24H) # LOADS MULTIPLICAND OF C2(3)
 0720
 9739
             LD
                 IX, 3E32H # LOADS ADDRESS OF MULTIPLIER
             CALL MULT
                            # MULTIPLY C2(3) AND COEFF OF C2(3)
 0740
             LD A. (3E18H) # LOADS EXPONENT OF C2(3)
 0750
 9769
             LD
                  B. A
 0770 ·
             INC B
             CALL EMP
 0780
             LD A. (3E12H) # LOADS SIGN OF C2(3)
 0790
 0899
             CALL STAD
                 DE.(3E26H) # LOADS MULTIPLICAND OF C2(2)
 0210
             LD
 0820
             INC IX
             CALL MULT
                            # MULTIPLY C2(2) AND COEFF OF C2(2)
 0830
             LD A. (3E19H) # LOADS EXPONENT OF C2(2)
 0840
 0850
             LD B.A
             INC B
 9869
 0870
             CALL EXP
             LD A. (3E13H) # LOAD SIGN OF C2(2)
 9889
             INC A
 0890
             CALL STAD
 0900
             LD DE, (3E28H) # LOAD MULTIPLICAND OF C2(1)
 0910
             INC IX # ADDRESS OF MULTIPLIER
 0920
             CALL MULT
                           # MULTIPLY C2(1) AND COEFF OF C2(1)
 0930
 0940
             LD A. (3E1AH) # LOAD EXPONENT OF C2(1)
 0950
             LD
                B. 8
             INC B
 0960
 0970
             CALL EXP
 0980
             LB
                A, (3E14H) # LOAD SIGN OF C2(1)
             CALL STAD
 0990
             LD DE. (3E2AH) # LOADS MULTIPLICAND OF V(3)
 1000
                             # ADDRESS OF V(3)
 1010
             INC
                 IX
 1020
             CALL MULT
 1030
             LD
                 A. (3E15H) # LOADS SIGN OF V(2)
                 8
 1040
             INC
 1050
             CALL STAD
 1060
             LD DE,(3E2CH) # LOADS MULTIPLICAND OF VT2)
                 IX
 1070
             INC
                             # ADDRESS OF MULTIPLIER IN IX REG
 1080
             CALL MULT
 1090
             LD
                  A. (3E16H) # LOADS SIGN OF V(2)
```

```
... CONTO OF MAIN PROGRAM
1100 *
1110
1120
1130 STAD
           EQU 3410H
1140 SHIFT EQU 3485H
                         # OPCODE STORED FROM 3100H
1150
          ST
                3100H
          CALL STAD
1160
1170
          EXX
               P. 05H
           LD
                         # LOAD COUNTER BY 5
1180
           LD A.C
                         # CHECK IF SIGN +VE OR -VE
1190
1200
           AND SOH
          JR NZ, LOOPG # IF -VE THEN JUMP TP LOOPG
1210
1220 LOOPI SRL C
                         # DIVIDE CHL REGISTER BY 32
          RR H
1230
1240
           RR
1250
           DJNZ LOOPI
1260
           JR LOOPJ
1270 LOOPG NOP
1280 LOOPK SRL C
                       # DIVIDE CHL REGISTER BY 32
           RR H
1290
1300
           RR
               L
1310
           DJMZ LOOPK
           LD A.C
                         # OR ØFCH BECAUSE CHL REGISTER IS
1320
1330
           OR ØFCH
                        # -VE AND IS IN 2' COMPLEMENT
          LD C/A
1340
1350 LOOPJ LD (3E73H), HL
1360
           LD
               S. C
1370
           LD
               ( 3E75H ), A
           CALL SHIFT
1380
1390 LOOPE IN A, 10H
                         # WAIT IF 10 MILLI SECS (SAMPLING
1400
           AND A
                         # TIME OVER)
          JR Z,LOOPE
1410
               A. 30H
1420
          LD
                         # INITIALISE TIMER COUNTER IN MODE 0
           OUT 17H
1430
1440
          LD
               A. 50H
                         # LOADS MOST SIGNIFICANT BYTE OF
1450
          OUT 14H
                        # TIMER COUNTER AND THEN THE LEAST
                         # SIGNIFICANT BYTE TO MAKE SAMPLING
1460
          LD A. 60H
1470
          OUT 14H
                         # TIME 10 MILLI SECS.
1480
          LD A.(3E0FH) # INITIALISE A/D TO READ VELOCITY
1490
           LD
               ( ØFFF3H ) A
1500 LOPF
          LD A. (OFFFIH) # THIS AND THE NEXT LOOP CHECKS
          AND SOH
                        # WHETHER THE AZD CONVERSION IS
1510
                Z, LOPF # OUER
1520
           JR
1530 LOOPF
          LI
                AL (OFFF1H)
           AND 80H
1540
                NZ, LOOPF
1550
           JR
1560
                A, (OFFF2H) # CHECK SIGN
           LD
          AND ØSH
1570
1580
          JR
                Z, LAMP # IF SIGN -VE THEN JUMP TO LAMP
1590
          LD
               A, (OFFFOH) # V(4) IS MULTIPLIED BY =1.
          LD L.A # CONVERTS SHIFTED BINARY INTO
1600
           LD
1610
                A. (OFFF2H) # 2' COMPLEMENT FORMAT.
```

```
... CONTD OF MAIN PROGRAM.
1629 *
1630
            AND 97H
1640
1650
            LD
                 H, A
1660
            LD
                 A. ( 3E03H )
            LD
                 (OFFF3H), A
1670
            LD
1680
                  DEJ (GE7DH)
1690
            SBC
                HL. DE
                             # SUBTRACT BIAS
            LD
1700
                 A, H
1710
            AND SOH
1720
            JR
                  Z. Bi
            ADD HL DE
1730
1740
            LI
                  A. E
1750
            SUB L
            LD
                  L. A
1760
1770
            JR
                  B2
                  (3E2AH), HL # STORE MAGNITUDE OF U(4) IN U(3)
1780 B1
            LD
            LD
                  A, 0 # STORE +VE SIGN FOR U(3)
1790
1800
            LD
                  ( 3E15H ), A
1810
            LD
                  DE. ( 3E73H )
1820
                  A. (3E75H)
            LD
            ADD HL. DE
1830
1849
            ADC 0
1850
                  ( 3E73H ), HL
            LD
            LD
                  ( 3E75H ), A
1869
1870
             JR
                  LOOPP
                  A, (OFFFOH) # IV V(4) IS -VE IT IS CONVERTED IN
1880 LAMP
             LD
             CPL
                          # IN 2'COMPLEMENT
1890
1900
             LD
                  L. A
                  A. ( OFFF2H )
1910
             LD
1920
             CPL
1930
             AND
                  97H
1940
             LD
                  H. A
             LD
                  A. ( 3E0PH )
1950
1960
             LD
                  (OFFF3H) A
1970
             LD
                  DE.(BE7DH) # BIAS IS ADDED TO U(4)
             ADD HL DE
1980
                  (3E2AH), HL # STORE THE MAGNITUDE OF V(4) IN
1990 B2
             LD
             LI
                  A, 01H # U(3). STORE -UE SIGN FOR U(4)
2000
2010
             LD
                  (3E15H), A # IN V(3)
2020
             LD
                  A. L
2030
             CPL
             LD
2040
                  L. A
                  B. H
2050
             LD
             CPL
2060
2070
             LD
                  H A
             LD
                  DE. ( 3E73H )
2080
                  A. (3E75H)
2090
             LD
2100
             ADD HL, DE
2110
             ADC
                  ØFFH
                  (3E73H), HL # STORE C2(4)
2120
             LD
             LD
2130
                  (3E75H), A
2140 LOOPP NOP
```

```
2150 *
             .... CONTD OF MAIN PROGRAM.
2160
2179
2180 MULT
           EQU 3400H
2190 COMP
           EQU 342EH
2200 STAD
           EQU
                341CH
2210 DISPLA EQU 3530H
2220 STORE EQU
                3640H
2230 STOP
           EQU 34DFH
2240
           ST
                31E0H
2250
           LD
                DE. (3E20H) # LOAD MULTIPLICAND OF C1(3)
2260
           LD
                IX, 3E30H
                            # LOAD ADDRESS OF C1(3) IN IX REG
2278
           CALL MULT
                            #MULTIPLY C1(3) AND COEFF OF C1(3)
2280
           LD
                B. 0F7H
2290
           LD
               AJ ( 3E17H )
           ADD B
2300
2310
           CPL
2320
           LD B. A
                           # LOAD COUNTER WITH EXPONENT
2330 LOOP0 SRL C
                           # DIVIDE THE RESULT OF C1(3)
               H
2340
           RR
                            # BY THE REMAINDER.
2350
           RR
           DJNZ LOOP@
2360
           1 TI
2370
                A.(3E10H)
                           # TEST WHETHER C1(3) IS +VE OR -VE
           RRA
2380
                            # IF -VE THEN TAKE 2' COMPLEMENT
               NC. LOOPE
                            # IF NOT -VE THEN JUMP TO LOOPB
2390
           JR
           CALL COMP
2400
2410 LOOPE EXX
                            # RESULT IS STORED IN C'H'L' REG
2420
           LD DEJ(3E22H) # LOADS MULTIPLICAND OF P(3)
           INC IX
2430
                            # ADDRESS OF P(3) IN IX REGISTER
           CALL MULT
                           # MULTUPLY P(3) AND COEFF OF P(3)
2440
2450
           LD B. 03H
                           # DIVIDE THE RESULT OF P(3) WHICH
2460 LOOPM SRL C
                            # IS STORED IN CHL REGISTER BY 8
                H
2470
           RR
2480
           PP
                L
           DJNZ LOOPM
2490
2500
           LD A.(3E11H)
2510
           CALL STAD
2520
           . EXX
2530 LOOPN
           LD
                (3E70H), HL
2540
            LD
               8. C
                             # MEMORY LOCATION 3E72H, 3E71H AND
2550
           LD (3E72H), A
                             # 3E70H
               HL.(3E41H) # INITILISATION FOR SUB DISPLAY
2560
           LD
               A. GAGH
2570
           LD
                             # INITIALISE COUNTER FOR DELAY
2580
           LD
                A. (3E40H)
                             # THIS PART OF THE PROGRAM STORES
            INC A
                             # AND DISPLAYS ALTERNATE VALUES OF
2590
2600
            AND
               01H
                             # DATA ON SCREEN AND IN MEMORY
2619
            LI
                (3E40H), A
2620
            JR
                 Z. SKIP
2630
            CALL DISPLA
            CALL STORE
2640
2650
            LD HLJ(3E1BH)
2660
            INC HL
2670
            LD (3E1BH), HL
```

```
2689 *
               .... CONTD OF MAIN PROGRAM.
2690
2700
            LD B. 75H
                              # DELAY TIME SO THAT THE A/D HAS
            CALL STOP
2710 SKIP
                              # ENOUGH TIME FOR SETTLING TO
2720
            DJMZ SKIP
                              # READ CHANNEL FOR PENDULUM POSI-
2730
            LD
                 A. ( 3E@BH )
                              # TION. INITIALIZE A/D TO READ
2740
            LD
                 (OFFF3H), A
                              # PENDULUM POSITION.
2750 LOOPQ
            LD
                 A. (OFFF1H)
                             # TEST THE MSB TO CHECK IF A/D
2760
            AND
                 SOH
                              # CONVERSION IS OVER.
2770
            JR
                  Z. LOOPQ
2780 LOPO
            LD
                  A. (0FFF1H) #
2790
            AND
                 86H
2800
            JR
                  NZ LOPG
            MOP
2819
            NOF
2820
2830
            NOP
2840
            NOP
2850
            MOP
2860
            MOP
                  3270H
2870
            ST
            EQU
2880 TRANS
                  345FH
            EQU
                  BOETH
2890 MAIN
2900
            LD
                  A. (OFFF2H)
                              # TEST IF VALUE OF P(4) IS +VE OR
2910
            AND
                  08H
                               # -UE
2920
            JR
                  Z. LOOPR
                               # IF P(3) -VE THEN JUMP TO LOOPE
2930
            LD
                  A. (OFFFOH)
                              # LOADS THE LEAST SIGNIFICANT BYTE
2940
            LD
                              # OF P(3) IN L REG. LOAD THE MOST
                  L. A
2950
            LD
                  A. (0FFF2H)
                              # SIGNIFICANT NIBBLE IN H REGISTER
2969
            ANTI
                  974
                               # RESET THE UPPER NIBBLE
2970
            LD
                  H. A
2980
            LD
                  A. (3E0FH)
                               # INITIALISE THE AZD TO READ
            LD
                              # VELOCITY OF CART
2990
                  (OFFF3H), A
3000
            LD
                  DE. (3E79H)
                              # LOAD BIAS FOR PENDULUM POSITION
             SBC
                               # SUBTRACT BIAS FROM VALUE OF P(3)
                  HL DE
3010
3020
            LI
                  A, H
                               # CHECK IF MAGNITUDE OF BIAS IS
3030
             AND
                  SOH
                               # GREATER THAN THE VALUE OF P(3)
             JR
                  Z, B3
                              # IF BIAS LESS THAN P(3) THEN B3
3040
                               # IF BIAS > THAN P(4) THEN
3050
            ADD
                  HL, DE
            LD
                  A. E
                               # SUBTRACT P(3) FROM BIAS AND S
3060
3070
             SUB
                               # STORE -VE SIGN FOR P(4)
3080
             LD
                  L. A
             JP
3090
                  B4
            LD
                               # STORE MAGNITUDE OF P(4)
3100 B3
                  ( 3E22H ), HL
            LD
                               # STORE +VE (00H) FOR SIGN OF P(4)
3110
                  A. 0
3120
            LD
                  (3E11H), A
3130
             SLA
                               # MULTIPLY P(4) BY 8
            RL
3140
                  H
3150
             SLA
                  L
             RL
                  H
3160
3170
             SLA
                  L
             RL
                  H
3180
3190
             LD
                  A. L
3200
             CPL
3210
            LD
                  L, A
```

```
.... CONTD OF MAIN PROGRAM.
2560
           LD DE.(3E70H)
3220
           LD A.H
3230
           CPL
3249
           LD
              Н, Я
3250
           LD
              C. ØFFH
3260
         LI
              DE.( 3E70H )
3270
           LD
                RJ (3E72H)
           ADD HL DE
3280
3290
           ADC C
           LD
               C. A
3300
           LD
               (3E70H), HL # STORE THE VALUE OF C1(3) IN
3310
3320
           LD (3E72H),A # MEMORY LOCATION 3E72H, 3E71H AND
          LD (3E76H), HL # 3E70H ALSO STORE IT IN 3E78H,
3330
           LD (3E78H) A # 3E77H AND 3E76H
3340
3350
           JR LOOPS
3360 LOOPR LD A. (0FFF0H) # LOADS P(4) MOST SIGNIFICANT BYTE
3370
           CPL
                           # SINCE AZD IS IN SHIFTED BINARY
3380
           LD
              LA
                           # AND VALUE IS -VE COMPLEMENT V
         LD
              AJ (@FFF2H) # THE VALUE TO GET CORRECT MAGNIT-
3390
           CPL
                           # TUDE. DO THE SAME FOR UPPER
3400
           AND 97H
                           # NIBBLE. RESET THE UPPER BYTE
3410
3420
           LD H.A
3430
           LD A. (3E0FH) # INITIALISE A/D TO READ VELOCITY
           LD (0FFF3H), A # OF CART
3440
          LD
3450
              DE.(3E7BH) # LOAD BIAS OF PENDULUM POSITION
3460
          ADD HLDE # SINCE P(4) IS -VE ADD BIAS T
3470 B4
          LD (3E22H), HL # STORE MAGNITUDE OF P(4) IN P(3)
3480
           LD
              A. 01H # SINCE SINE -VE STORE (01H) FOR
3490
          LD (3E11H), A # SIGN OF P(4)
3500
           SLA L
                           # MULTIPLY P(4) BY 8
           RL
                H
3510
3520
           SLA L
                H
3530
           RL
           SLA L
3540
3550
           RL
               H
3560
           LD
              DE.(3E70H) # LOADS INCOMPLETE C3(4)
           LI
3570
               AJ ( 3E72H )
           ADD HL DE
3580
           ADC 0
3590
                           # TO GET VALUE OF C3(4)
3600
           LD
              (3E70H), HL # STORE C1(4) IN 3E72H, 3E71H AND
           LD (3E72H), A # 3E70H, ALSO STORE C1(4) IN 3E78H
3610
           LD (3E76H), HL # 3E77H AND 3E76H.
3620
3630
           LD (3E78H), A
3640
           LD
                C. A
3650 LOOPS
          HOP
           LB
3660
                DE_{a}(3E73H) # UA = C1(4) - C1(4). LOAD C2(4)
3670
           LD
                           # GET VALUE OF C2(4)
                A, E
           CPL
3680
                           # TAKE COMPLEMENT AND ADD TO C1(4)
3690
           LD
                E. A
                           # C1(4) IS PRESENT IN CHL REGISTER
3700
           LD A.D.
3710
           CPL
                D. A
3720
           LD
```

```
.... CONTD OF MAIN PROGRAM
3725 *
3726 *
3730
           LD
               A. (3E75H)
           CPL
3740
3750
           ADD
                HL. DE
3760
           ADC
                C
                             # UA(4) IS IN AHL REGISTER
3770
           LD
                (3E62H), A
                             # VA(4) IS STORED IN 3E62H, 3E61H
           LD
                (3E60H), HL # AND 3E60H
3780
3790
            LD
                            # VA(4) IS IN 2'S COMPLEMENT.
                 C. A
3800
            AND SOH
                             # CHECK IF VA(4) IS +VE OR -VE.
            JR
                 NZ LOOPU
                            # IF VA(4) IS -VE THEN JUMP TLOOPU
3810
3820
            LD
                 A, C
                             # VA(4) IS PRESENT IN 24 BITS OF
3830
            AND OFFH
                            # CHL REGISTER, IF VA(4) HAS A
                 NZ, SAT
                            # MAGNITUDE > THEN 11 BITS (2048)
3840
            JR
3850
                             # IN BINARY THEN THE OUTPUT TO DVA
            LD
                 A. H
3860
            AND ØFSH
                            # IS SATURATED TO +VE 10 VOLTS.
                            # CHECK FOR 1'S IN TOP 13 BITS OF
3870
            JR
                 NZ, SAT
3889
            LD
                 A. L
                            # CHL REGISTER.
           CPL
3890
                            # 000H=10 VOLTS AND 3FFH=-10 VOLTS
3900
           AND ØCH
                            # FOR D/A TO CART, CONVERT UA(4)
                            # ACCORDINGLY, DIVIDE VA(4) BY 16
3910
            LD
                 B. 04H
3920 PEG
            SLA L
3930
            RL
            DJNZ BEG
3949
3959
            LI
                 LA
                 A.H
            LD
3960
3970
           CPL
            AND 7FH
3980
3990
           JR FINAL
           LD L.0
                             # THIS GIVES THE MAXIMUM OUTPUT
4000 SAT
           LD A.O
                             # VOLTAGE TO D/A.( LOADS A.H 00H)
4010
4020
            JR FINAL
4030 LOOPU LD
                 AJC .
                            # IF MAGNITUDE OF VA(4) IS
4049
            CPL
                             # GREATER THEN 2048 IN BINARY OR
                             # MORE THAN 11 BITS THEN THE OUT-
4050
            AND 7FH
4060
            JR
                 NZ SATI
                             # PUT VOLTAGE TO D/A TO MOTOR IS
4070
            LD
                 A, H
                             # SATURATED TO -10 VOLTS.
4080
            CPL
                             # SINCE VA(4) IS -VE AND 2'S COMP
4090
            AND OFSH
                            # CHECK IF ANY 0'S IN MOST
4100
            JR
                 NZ, SAT1
                            # SIGNIFICANT BITS. IF TRUE THEN
            LD
                            # JUMP TO SAT1.
4110
                 A. L
4120
            CPL
                            # 000H=10 VOLTS AND 3FFH=-10 VOLTS
4130
            AND ØCH
                            # HENCE CONVERT ACCORDINGLY.
            LD
                           # DIVIDE VA(4) BY 16
                 B. 04H
4140
4150 NEG
            SLA L
4160
            RL
                 H
4170
            DJNZ NEG
4180
            LD
                 L. B
4190
            LD
                 A. H
4200
            CPL
4219
            OR
                 SOH
4220
            JR
                 FINAL
4221
            MOP
```

```
.... CONTD OF MAIN PROGRAM.
4222 *
4223 *
4230 SAT1
           LIF
               L. OCH
                            # OUTPUT TO BYA IS=-10 VOLTS HENCE
4249
           LD
                A. OFFH
                            # STORE ALL I'S IN A AND C REGI
4250 FINAL
           LD
                (OFFF1H), R
                            # THE MSB 8 BITS OF THE DVA IS
4260
                            # ADDRESSED BY OFFF1H AND THE 2
           LD
                H. B
                            # LSB BITS ARE THE THIRD AND THE
4270
           LD
                A. ( 3E@DH )
4280
           OR
                            # FOURTH BITS, AND IT IS ADDRESSED
           LD
                (@FFF2H), A # BY @FFF2H
4290
4300
           SRL
4310
           SRL
                1
                (3E41H), HL # STORE OUTPUT TO D/A
4320
           LD
4330
           LI
                A. (3E75H)
                            # LOAD C2(3) IN AHL REGISTER
                HL (3E73H)
4340
           LI
           LD
                IXJ 3E18H
                            # ADDRESS FOR EXPONENT OF C2(3)
4350
           LD
                IY, 3E12H
                            # ADDRESS FOR SIGN OF C2(3)
4360
           CALL TRANS
4370
                            # STORE MAGNITUDE OF C2(3)
4380
           LD
                (3E24H), HL
                            # LOAD THE VALUE OF C1(3) IN
4390
           LD
                AJ (3E72H)
4400
           LD
                HLJ ( 3E70H )
                            # AHL REGISTER
4410
           LD
                IX, 3E17H
                            # ADDRESS FOR EXPONENT OF C1(3)
                IY, 3E10H
                            # ADDRESS FOR SIGN OF C1(3).
4420
           LD
4430
           CALL TRAMS
4440
           LT
                (3E20H), HL # STORE MAGNITUDE OF C1(3).
4450
           IP
                MAIN
4560
```

```
4580 *
                  SUBROUTINE MULT.
4590
4610 * THIS SUBROUTINE PERFORMS A 16 BY 8 BIT MULTIPLICATION.
4620 * THE 16 BIT MULTIPLICANT IS PLACED IN DE REGISTER AND
4630 * THE 8 BIT MULTIPLIER IS INDIRECTLY ADDRESED BY IX RESG.
4640 * BEFORE THIS SUBROUTINE IS CALLED. THE FINAL RESULT
. 4650 * OF MULTIPLICATION IS PLACED IN CHL REGISTER.
4660
4680
46'90
         ST
              3400H
4700 STOP EQU 34BFH
         CALL STOP
4710
4720
          LD B,08H
                      # COUNTER IS INITILISED.
4730
         LD
             A, 0
                      # INITILISE A, H, L AND C REGI TO 0.
4740
         LD H. A
4750
         LD
             L. A
4760
         LD
             C. A
4770 LOOP1 SRL (IX+0)
                      # SHIFT RIGHT MULTIPLIER INDIRECTLY
         JR NC.SKIP
                     # ADDRESSED BY IM REG.
4780
         ADD HL DE
4790
      ADC C
4800
4810 SKIP SLA E
                     # THE MULTIPLICAND IS ROTATED LEFT
          RL D
4820
                     # THROUGH CARRY, THE CARRY IS SHIFTED
4830
          RL
             C
                     # LEFT IN THE 'E' REGISTER.
          DJNZ LOOP1
4840
          LD CA
4850
4860
          RET
4880
4830
4900 *
                  SUBROUTINE STAD.
4910
4930 * THE SIGN BIT OF A 23 BIT VALUE IS PLACED IN 'A' REG.
4940 * AND THE MAGNITUDE IS PLACED IN CHL REGISTER. IF THE
4950 * SIGN IS -UE THEN A 2' COMPLEMENT IS TAKEN BY SUBROUTINE
4960 * COMP. IT THEN ADDS CHL REG TO C'H'L' REG. THE RESULT
4970 * IS PLACED IN C'H'L' REGISTER.
4980
4990 **********************
5000
5010
         RRA
                       # CHECK SIGN.
5020
         JR NC, LOOPC
                       # IF SIGN +VE THEN JUMP TO LOOPC.
5030
         CALL 342EH
                       & REG. IF THE SIGN BIT IS -VE A
5040 LOOPC LD A.C
                       & 2' COMP IS TAKEN OF THE CHL REGS
         PUSH HL
5050
                       # SAUE HL ON STACK.
5060
         EXX
         POP DE
5070
                       # GET VALUE FROM STACK IN DE.
5080
         ADD HL DE
5090
         ADC C
5100
         LB
              C. A
5110
          EXX
                       # EXCHANGE B. C. D. E. H. AND L REGI
5120
         RET
                       # WITH B', C', B', E', H' AND L' REG.
```

```
5140 *
                 SUBROUTINE COMP
5150
5170 * THIS SUBROUTINE TAKES THE 2'COMPLEMENT OF CHL REGISTER
5180 * AND STORES IT BACK IN CHL REGISTER.
5190
5210
5220
         LD
           A.L
5230
         CPL
5248
         ADD 01H
5250
         LD
            L.A
5260
         LD
            A. H
5270
         CFL
5280
         ADC
            2
5290
         LI
            H. A
5300
         LD
            S. C
5310
         CPL
5320
         ADC
            0
5330
         LD
            C. A
         RET
5340
5350
5370
5380
5390
5400 *
                   SUBROUTINE EXP
5410
5430 * THIS SUBROUTINE DIVIDES THE CHL REGISTER BY 8. IT THEN
5440 * MULTIPLIES THE CHL REGISTER BY 2 EXPONENT(VALUE).
                                         THIS
5450 * ( VALUE ) IS PLACED IN CHL REGISTER. THE FINAL RESULT IS
5460 * STORED IN CHL REGISTER.
5470
5480 *********************
5490
5500
         SRL C
                 # CHL REGISTER IS DIVIDED BY 8.
5510
         RR
            H
5520
         RR
            L
5530
         SRL
            C
5540
         RR
            H
5550
         RR
            L
5560
         SRL
            C
5570
         RR
            H
5580
         RR
5590 LOP
         SLA L
5600
         RL
            H
5610
            C
         RL
5620
         DJNZ LOP
5630
         RET
5640
```

```
5660 *
                    . SUBROUTINE TRANS
5670
5690 ★ CONVERTS 23 AND Ç4 FROM 24 BITS AND 2 COMPLEMENT WHICH
5700 * IS PLACED IN AHL REGISTER INTO 15 BIT MAGNITUDE,
5710 * SIGN BYTE AND EXPONENT BYTE.
5720 * THE SIGN BYTE IS INDIRECTLY ADDRESSED BY IY REGISTER AND
5730 * THE EXPONENT BYTE IS INDIRECTLY ADDRESSED BY IX REGISTER
5740 * THE 15 BIT MAGNITUDE IS STORED IN HL REGISTER.
5750
5770
5780
           LD
               D. A
                        # LOAD MOST SIGNIFICANT BYTE.
5790
           SLA D
                        # CHECK SIGN
5800
               NC, LOOPX # IF +VE SIGN THEN JUMP TO LOOPX
           JR
5810
           LD
               A. 01H
                        # SIGN -VE AND HENCE STORE 01H
5820
           LD
               (IY+0) A # INDIRECTLY ADDRESED BY IY REGISTER
5830
           LD
               A.D
           RRCA
5840
5850
          LD
               C. A
                        # TAKE 2' COMPLEMENT OF AHL REGISTER
5860
           LD
               A.L
                        # TO GET MAGNITUDE.
5870
           CPL
5880
           ADD
               01H
5890
           LD
               L, A
5900
           LD
               A. H
5910
           CPL
5920
          ADC
              0
5930
           LD
               H. A
           LI
5940
               A.C
5950
           CPL
5960
           ADC
               0
5970
           AND 7FH
5980
           JR
               LOO
5990 LOOPX
          LD
               D. A
6000
           LI
              8.0
                        # SIGN +VE AND HENCE STORE 00H
6010
           LD (IY+0).A # INDIRECTLY ADDRESED BY IY REG.
6020
           LD
              A. D
6030 LOO
          LD
              C. A
6040
           LI
               D. A
6050
           LD
               A. 09H
          LD
6060
               B, 08H
         SLA. C
6070 LOOPY
6080
           JR
               C. LOM
6090
          DEC A
          DJNZ LOOPY
6100
6110 LOM
          LB
               B. A
                         # STORE EXPONENT VALUE INDIRECTLY
6120
          LD
               (IX+0).A
                         # ADDRESED BY IX REGISTER.
6130 LOOPZ
          SRL D
                         # IF MAGNITUDE GREATER THAN 15 BITS
6140
          RR
              H
                         # THEN SAVES THE FIRT 15 BITS IN HL
6150
          RR
                         # REGISTER.
6160
          DJNZ LOOPZ
6170 LO
          RET
6130
6190 *********************
```

```
6200 *
                   CUPPOUTINE CHIET
6210
6270 * THIS SUPROUTINE SHIFTS THE MAGNITUDE AND SIGN OF U(3)
6240 * TO MEMORY LOCATION OF U(2). MAGNITUDE, SIGH AND EXPO
8250 * OF C2(2) TO MEMORY LOCATION OF C2(1). MAGNITUDE / SIGN
6260 * AND EXPONENT OF C2(3) TO MEMORY LOCATION OF C2(2)
6288
          LB
              HL. ( 3E28H )
                          # MAGNITUDE OF V(3) TO V(2)
6299
          LT
              CREACH FIRE
6300
          LD
              HL. (3E26H)
                          # MAGMITUDE OF C4(2) TO C4(1)
          LD
6319
             ( BEDON ) HI
             HL (3524H)
6329
          LT
                          # MAGNITUDE OF C2(3) TO C2(2)
          LT
              ( BEOCH ) HE
6330
6349
          t Ti
              A, ( 7E 15H )
                          # SIGN OF U(3) TO U(2)
          ONL GIR
6350
          LD
              FREIGH LA
6360
          LD
                          # 919N 0F 02(2) TO 02(1)
6379
              A. (3E13H)
6386
          AND GILL
          LB
              (BE14H) 9
6399
          1 7
              A ( ZE12H)
                           # SIGN OF 02(3) TO 02(2)
6400
6410
          SMD 01H
6420
          LT
              (3E13H), 8
                           # EMPONENT OF C2(2) TO C2(1)
          LT
6439
              9. ( 3E19H )
          LT
6440
             ( ZE10H ) 0
9459
          I TI
              9. ( TE19H )
                           # EXPONENT OF C2(3) TO C2(2)
6460
          LT
              ( 3E19H ), A
6470
          PET
6490
6500
6510 *
                     SUPPOUTINE STOP
9520
€⊇∑⑥ 未未未未未未未未未未未未未未未未未未未未未未未未未未未。
6540 * IF THE LETTER 'S' IS PRESSED FROM THE KEYBOARD THEM
6550 * THE EXECUTION OF THE PROGRAM IS STOPED. AT THE SAME
6560 * INSTANT THE OUTPUT COLTAGE TO THE CART IS MADE 0. THE
6570 * PAST VALUES OF THE POSITION OF PENDLUM, VOLTAGE OUT TO
8580 * THE CART AND THE VELOCITY OF THE CART ARE DISPLAYED ON
6590 * SCREEN. IF KEY 'A' IS PRESSED THEM THE CONTROLS ARE
6600 * PASSED TO RESTART.
LT
6620
              9. (BE75H)
                          # REGISTER A IS SAVED
                          # INPUT FROM KEY BOARD.
6636
          7 1.1
              9. B
6649
          CP
              1.91
                          # CHECK IF KEY 'S' IS DEPRESSED.
6659
          TP
              Z. END
                          # IF YES THEN JUMP TO END.
          LT
              A. (3E7FH)
6669
                          # LORDS REGISTER A WITH ORIGINAL
          PET
6670
                          # UALUE.
6680 END
          141
              Ø. 8
          CP
              · 🖭
                          # CHECK IF KEY '8' IS DEPRESSED
6630
6700
          LD
              A. 75H
                          # OUTPUT TO BYR TO CART =0 HOLTS
              ( GEFF 1H ), A
6719
          LD
                          # IF KEY 'A' IS DEPRESSED TIMEN
6729
          TP
              MZ END
6730
          RST 48D
                          # RST.
```

```
6759 *
                          CHEBURLINE DICETOR
STER
6780 * THIS SUPPOUTINE DISPLAYS ON SCREEN THE CONTROL VOLTAGE
6790 * OUTPUT (U) PENDULUM POSITION (P), SPEED OF THE A
6800 * APMATURE OF THE D.C. MOTOR IN HEYIDECIMAL
6810 * HALVES ARE DISPLAYED WITH SIGHS.
6829
6849
6850
                7570H
           ST
6860 STOP
           FOU
                TATICH
           CALL STOP
6879
                a gricu
                           # ASCIL CODE FOR 'U'
6889
           t Tr
           CALL 000372
6866
CARR
           1 71
                A GOTIL
                           # ASCII CODE FOR '='
6910
           CALL 000772
           t Tr
                9 4
6920
                           # TEST SIGN OF CONTROL VOLTAGE
           ANT
                OQU
6930
                NZ. POST
                           # IS -UE SIGH THEM JUMP TO POST
           TP
6940
6950
           LT
                0, 4
           CPL
6966
6970
                ファリ
           GHIT
6988
           LT
                4. 9
           LT
                9. 1
6990
           COL
7000
7010
           t Te
                L. 8
           t_Tt
                A GODL
                           # ASCII CODE FOR '+'
7020
7939
           TO
                HET
7040 POST
           LT
                A GATH
                           # ASCII CODE FOR '-'
           CALL GGGTTO
7050 HET
                           # DISPLAY OUTPUT CONTROL COLTAGES
                0 4
7069
           1 Tr
                754
                           # IN HEXA DECIMAL OF THE VALUE
7070
           AND
7029
           1 Te
                4.0
                           # PRECENT IN ML PEGISTER.
           t Tr
                9.0
7090
            SLA
7100
            01 0
7119
7129
            01.4
            PLA
7130
            00
                GEGH
7140
7150
            CO
                GPGH
           CALL P. HEY
7160
            CALL 000372
7179
            1 T
                 A. L
7180
7199
            AND
                GEH
7200
            SDT
                4
                 P. 8
            LT
7219
7229
            SPL
7230
            CPL
                ū
                9
7240
            SPL
            SPL
7250
7269
                 arau
            OP.
7279
                 arau
```

```
7289
             CALL P. HEY
7290
             CALL 000372
7300
             LT
                  9 3
             HIL
                 OFH
7310
                  GEGH
7320
             OR
7330
             CP
                  GROW
             CALL P. HEY
7349
7350
             CALL 000772
7369
             CALL 000770
7379
             COLL STOP
7389
             LTI
                  HL. (3522H)
                               # LORDS MACHITUDE OF POSITION
7399
             TI
                  A. GROW
                              # OF PENDULUM. ASCII CODE FOR 'P'
7400
             CALL 000373
7410
                  A GOTIL
                              # GSCII CODE FOR '-'
             1 Tt
7429
             CALL 000772
7430
             LT
                  A. ( 7E 11H )
7440
             CHIT
                 GIL
                               # TEST SIGN BIT
7450
             JP.
                  NZ, POST1
                               # IF -UE THEM DISPLAY '-' ON SCREEN
7460
             LT
                  A GARL
                               # ASCII CODE FOR '+'
7470
             TP
                  HET1
7480 POST1
             1 Ti
                  a ganu
                              # RECII COME FOR '-'
7490 NET1
             CALL 989772
7500
             LI
                  A. H.
                               # DISPLAY MACHITUDE FOR POSITION OF
                               # PENDLUM IN HEM OF THE VALUE &
7519
             PHI
                 974
7520
             98
                  BEGH
                               # STORED IN HL REGISTER.
7530
             CALL 000772
7540
                  A. L
             LD
7550
             SPL
                  <u>-</u>
7560
             CPI
                  7579
             SPL
                  9
                  9
7589
             SPL
7590
                  GROH
             OP
7600
             Co
                  appu
             CALL P. HEY
7619
7629
             CALL 000372
7639
             TI
                  2.
7649
             UND GET
7650
             OR
                   GEGL
                   apou
             CP
7669
7670
             CALL P. HEY
             CALL GGGT72
7689
7698
             CALL 000370
7700
             CALL STOP
7710
             t Ti
                 A. OBTH
                               # ASCII CODE FOR 'S'
7720
             CALL 000372
7730
             1 Ti
                  9 APTIL
                               # ASCII CODE FOR '='
7749
             CALL 000772
             I TE
                               # LOADS SIGN OF BELOCITY
7750
                  G. ( 3515H )
             PHID
7760
                  O tu
                               # TEST SIGN
                               # IF -VE SIGN THEM DISPLAY '-'
7779
             18
                  NZ. POST2
7780
             IT
                  G, GAPH
                               # ASCII CODE FOR '+'
7799
             70
                  NET2
```

```
A. GATH
                            # ASCII CODE FOR '-'
7800 POST2
           LT
            CALL 000373
7810 MET2
7829
           LD
                 HL (3E29H)
7839
            LI
                 9. 4
                            # DISPLAY THE MAGNITUDE FOR VE
                974
                            # VELOCITY OF CART IN HEX OF THE
            AND
7840
7859
            OP
                 BEGH
                            # VALUE PRESENT IN HL REGISTER.
            CALL 000772
7869
            LD
7879
                 A. L
7889
            SPL
                 a
                 9
7890
            SPI
7900
            CPI
                 a
                 9
7919
            SRL
                 GEGH
7929
            OR:
7930
            CP
                 GPOH
7940
            CALL P. HEY
7950
            COLL 000777
7960
            t Tt
                 8. L
            GNT
7979
                GEL
7989
            OP.
                 GEGU
7999
            CP
                 GOOL
2000
            CALL P. HEY
8019
            CALL 000772
8020
            CALL 000370
                 A. ( TEAFH )
8030
            IT
8649
            DEC
                 9
2<u>0</u>=0
            LT
                 ( 3E4FH ) 9
                 NZ. SKIP
8866
            TR
8979
            CRLL 000770
8089
            LD
                 A. GTH
            LT
                 ( BE4FH ), G
3099
8199
            CALL STOP
8110 CKIP
            PET
8120 HEX "
            ATT
8170
            RET
8140
8150
```

```
SUPPOUTINE STORE
9170 *
9198
8200 * STORE VALUES OF THE SPEED OF THE ARMATURE FROM BESOM
8210 * TO 4000H AND THE PENDULUM POSITION FROM 2E80H TO 3000H
8220 * EACH MALUE IS STORED IN 3 BYTES.
                                         THE FIRST TWO BYTES
8230 * CONTAINS THE MAGNITUDE AND THE THIRD CONTAINS THE SIGN.
8240 * 01H INDICATES -VE SIGN WHILE 00H INDICATE +VE SIGN.
8250 * C1 IS STORED FROM 7980H TC 3800H, C2 FROM 3800H TC 3C80H
8260 * UA FROM 3080H TO 3500H.
                                C1, C2, VA ARE STORED IN 3
8270 * BYTES IN 2' COMPLEMENT FORMAT.
                                      AFTER THE ENTIRE MEMORY
8280 * SPACE FOR THE VALUES ARE FULL. THE COUNTER IS INITIAL-
8290 * IZED TO STORE THE VALUES FROM THE BEGINNING ADDRESS
8291 * THIS SUBROUTINE ALSO STOPS THE EXECUTION OF THE MAIN
8300 * PROGRAM AFTER A FIMED MUMBER OF CYCLES.
8310
8330
8340 STOP
            EGIL
                 34DEH
8350 END
            EGH
                TAFCH
            ST
8360
                 3649H
8370 STORE
            1 Te
                 A ( TESOH )
                              # CHECK IF ENTIRE MEMORY IS
8386
            BEC
                              # FILLET UP.
8399
            LT
                 ( BESON ) A
8400
            IP
                 NZ. INITE
8419
            LD
                 P. 20H
8429
            T
                 ( BESON ) 9
8430
            1 71
                 HL. ZERRY
                             # INITIALIZE ADDRESS FOR U(E)
8440
            LT
                 ( PESTALL HI
8450
            LT
                 HL. SERGH
                             # IMITIALIZE ADDRESS FOR P(3)
8468
            LI
                 ( BEEZH : UL
8479
            LTI
                 HL 3980H
                             # INITIALIZE ADDRESS FOR C1
8480
            LT
                 ( BEESH ), HL
8490
            LT
                 HL BROOK
                             # IMITIALIZE ADDRESS FOR CO
8500
            T
                 ( BE57H ), HL
8510
            LT
                 HL, 3090H
                             # INITIALIZE ADDRESS FOR UA
8520
            LT
                 ( BESON ) UI
8530 INITI
            1 71
                 9. (3E15U)
                             # LORDS SIGN OF U(3)
8540
            LT
                 DE. ( 7E204 )
                             # LOAD MAGNITUDE OF U(3).
8550
            LD
                             # LOADS ADDRESS OF U(3).
                 HL. ( BE514 )
8560
            LT
                 (HL)E
                             # STORE MAGNITUDE AND SIGN OF U(3)
8579
            INC
                H
8580
            1 TI
                 (HL) D
8590
            INC
                 HL
8666
            T
                 (HL) B
8610
            INC
8639
            1 TI
                             # STORE UPDATED ADDRESS PACK.
                 (3E51H) HL
8630
            CALL STOP
8640
            LT
                 A. (3E11H)
                              # LORDS SIGN OF P(3).
3650
            LT
                 DE. ( 7E22H )
                              # LOADS MAGNITUDE OF R(3)
8669
            LT
                 HL. ( BEETH )
                              # LORDS ADDRESS OF P(F)
8679
            LD
                 (HL)E
                              # STORE MAGNITUDE AND SIGN OF PUB
8680
            INC
                41
8698
            T
                 (HL)D
```

```
3700
            THE
                 41
8718
            LD
                 CHL 3. A
8720
            INC
                             # STORE UPDATED ADDRESS BACK
8730
            LB (3E53H) HL
            LD
                 A. (BE78H)
                             # LOAD MOST SIGNIFICANT BYTE OF C1
8740
8750
            1 Ti
                 DE. (BE78H) # LOAD THE LAST TWO BYTES OF C1
                             # STORE MAGNITUDE OF C1
8760
            LD
                 (HL)E
            LT
                 (HL) E
8779
                44
8789
            THE
                 (HL) D
8790
            LT
8889
            INC
                 H
                 (HL) B
8810
            LD
8829
            INC
                 41_
                              # STORE UPDATED ADDRESS OF C1
8830
                 ( BESSHIR HL
            1 TF
8840
            CALL STOP
8850
                 A. ( TE754 )
            LTI
                              # LOAD MS BYTE OF C2
            LD
                 DE. ( 3E73H )
                              # LOAD THE LAST TWO BYTES OF CO
8869
8870
            LI
                 HL (BETEH)
                              # LOAD ADDRESS OF CÓ
8889
            LTI
                               # STORE VALUE OF C2
                 (HL) E
8890
            THE
                 HL
                 CHLID
8900
            1 1
8910
            THE
                 HI
8929
            LT
                 (HL) 8
8930
            THE
                 H
8940
            LT
                 ( ZES7H ) HL
                               # STORE UPDATED ADDRESS OF VA
2950
            IT
                 A, (BES2H)
                               # LOAD M.S. BYTE OF VA
            LT
                               # LOAD LAST TWO BYTES OF U1
8966
                 DE. ( BEGGH )
                              # LOAD ADDRESS OF MA
8979
            LTI
                 (HL ) E
8988
            LTI
                 CHLIE
                              # STORE VALUE OF VA IN MEMORY
2990
            THE
                 H
                 CHL 3 D
9000
            LD
9010
            INC
                 HL
9020
            Tt
                 CHLSA
9030
            INC
                 ш
9949
            LT
                 ( BEECH ) HL
9959
            CALL STOP
9966
            t_Ti
                 HL ( 3E43H )
                               # LOAD COUNTER - NO OF SAMPLES
9070
            1 TI
                 ( BEASH ) HL
                               # STORE BACK COUNTER.
            LD
9088
                 ( 3E43H ), HL
9090
            1 Te
                 9. H
            AND GEFU
                                # CHECK IF COUNTER=0
9100
9119
            JP.
                 Z. EMD1
9120
            DET
                                # IF COUNTER=@ THEM STOP THE
            1 Tr
9170 END1
                 9 1
                                # HALT THE EXECUTION OF PROGRAM
                 GEFH
9140
            CHE
9150
            JP -
                 Z. ENDO
9160
            PET
9170 END2
            TO
                 ENIT
3180
```

```
9200 *
                        SUBROUTINE LAST
9210
9230 * THIS SUBROUTINE IS USED TO BIAS THE PENDLUM POSITION
9240 * READIND AND STORE THE CORRECTION FACTOR FOR THE VELOCITY
9250 * READING FOR THE CART IN STATIONARY CONDITION.
9260 * BIASING IS DONE BY DEPRESSING THE KEY 'I' AND 'D' WHICH
9270 * INCREASES AND DECREASES THE BIASING VOLTAGE FROM THE
9280 * D/A.
             TO RETURN TO THE MAIN PROGRAM KEY 'E' SHOULD BE
9290 * DEPRESSED.
9300 * THIS SUBROUTINE HAS ACCESS TO SIX MORE SUBROUTINE WHICH
9310 * ARE 1) DEL1, 2) INC, 3) DEC, 4) END, 5) DELAY AND
9320 * 6) SCREEN.
9330
9350
9360
                3700H
            ST
9370
            LB
                HL 01CDH
                             # LOADS INITIAL VALUE FOR BIAS
9380
            LD
                ( 3E07H ), HL
9390
            LD
                HL 0
            LD
                ( 3E7BH ), HL
9400
            LD
                ( SE7DH ), HL
9410
                             # CONVERT THE LAST 10 BITS IN
· 9420 LOOP
            LD
                HLJ(3E07H)
9430
            LD
                B. L
                             # HL REG IN 8 BITS IN H REG AND
9440
            SLA A
                             # LAST 2 BITS OF L REGISTER.
9450
            RL
                H
9460
            SLA L
9470
            RL
                H
9480
            SLA
9490
            RL
                H
9500
            SLA
                L
9510
            RL
                H
9520
            SLA
9530
            RL
9540
            SLA L
9550
                H
            RL
9560
            LD
                B. H
9570
            LD
                (OFFFOH), A # OUTPUT D/A
9580
            LD
                A.B
3590
            LD
                (OFFF2H), A
9600
            LD
                A. ODOH
                             # ASCII CODE FOR 'P'
9610
            CALL 000372
9620
                AJ ØC2H
            LD
                             # ASCII CODE FOR 'B'
9630
            CALL 000372
9640
                A. ØBDH
            LD
                             # ASCII CODE FOR "="
9650
            CALL 000372
9660
                             # INITIALISE A/D TO READ PENDLUM
            LD
                A. ( 3E0BH )
9670
            LD
                ( 0FFF3H ), A
9680 LOOP1
           LD
                B (OFFF1H)
                             # CHECK WHETHER AND CONVERSION IS
9690
            AND SOH
3700
            JR
                Z. L00P1
9710 LOOP2 LD
                A. (OFFFIH)
```

```
9720
           AND
                30H
9730
           JR
                NZ, LOOP2
9740
           LD
                A.(OFFF2H)
                             # READ MOST SIGNIFICANT NIBBLE.
9750
           AND OFH
9760
           LD
                H. A
                A. ( OFFFOH )
9770
           LD
9780
           LD
                LA
           CALL SCREEN
9790
                            # INITIALISE A/D TO READ TVELOCITY
9888
           LD
               A,(3E0FH)
           LD
9810
                ( @FFF3H ), A
           CALL DEL1
9820
9830
           LD DE. 07FFH
                           # SUBTRACT BIAS AND ADD PREVIOUS
           LÍ
3840
                A.(3E7BH) # BIAS, TO IT. THEN DIVIDE BY 2.
9850
            ADD 0
            SBC
               HL, DE
3860
9870
            ADD L
3880
            SRL A
                ( 3E7BH ). A
9890
            LD
                            # STORE BIAS.
9900
           CALL DEL1
                            # ASCII CODE FOR 'V'
9910
           LD
               A. 0D6H
9920
           CALL 000372
9930
                            # ASCII CODE FOR 'B'
           LD
               A. ØC2H
9940
           CALL 000372
9950
           LD
                A. ØBDH
                            # ASCII CODE FOR '='
9960
           CALL 000372
9970
           LD
                A.(3E0FH)
                            # INITIALISE A/D TO READ VELOCITY
9980
           LD
                (OFFF3H), A
9990
           CALL DEL1
9999
           CALL DEL1
0010
           LD
                A. (OFFF2H) # READ MOST SIGNIFICANT NIBBLE.
0020
           AND OFH
0030
           LD
               H. A
0040
           LD
                A. (OFFFOH) # LOAD LEAST SIGNIFICANT BYTE
0050
           LD
                L. A
0060
           CALL SCREEN
0070
           LD DE 07FFH
                           # SUBTRACT BIAS FOR VELOCITY, ADD
0080
           LD A.(3E7DH) # PREVIOUS BIAS, DIVIDE BY 2
0030
           ADD 0
0100
           SEC HL DE
0110
           ADD L
0120
           SRL A
0130
           LD (3E7DH), A # STORE BIAS OF WELOCITY.
0140
           LD A.(3E0PH) # INITIALISE A/D TO READ POSITION
           LD (OFFF3H), A # OF PENDLUM.
0150
           CALL DEL1
0160
0170
           CALL DELI
0180
           CALL DELI
0130
           CALL DELI
0200
           JP LOOP
```

```
SUBROUTINE DEL1
 0210 *
 0220
 0230 * THIS SUBROUTINE CHECKS IF ANY INPUT FROM THE KEY BOARD
 0240 * IS MADE TO EITHER INCREASE OR DECREASE THE BIAS VOLTAGE
 0250 * FOR THE READING OF THE POSITION OF THE PENDLUM OR TO
 0260 * RETURN BACK TO THE MAIN PROGRAM.
                              # LOAD VALUE IN COUNTER.
 0270 DEL1
                 B, 3FH
             LD
· 0280 JM
             IN
                  0. A
 0290
             CP
                  . D.
                               # CHECK IF KEY 'D' IS DEPRESSED.
 0300
             CALL Z. DEC
 0310
             IN
                 Ø, 8
                               # CHECK IF KEY 'I' IS DEPRESSED
 0320
             CP
                 . I.
 0330
             CALL Z. INC
 0340
             IN
                 0. A
                               # CHECK IF KEY 'E' IS DEPRESSED.
 0350
             CP
                  ' E'
 0360
             JR
                  Z, END
 0370
             DJNZ JM
                              # DECREMENT COUNTER. IN NZ JP DEL1
 0380
             RET
 0390
 0400
 0410 *
                         SUBROUTINE DEC
 0420
 0430 * DECREMENTS THE OUTPUT VOLTAGE FROM THE D/A WHICH IS USED
 0440 * TO BIAS THE POSITION OF THE PENDLUM
             LD
 0450 DEC
                HL (3E07H)
 0460
             INC HL
 0470
             LD
                  ( 3E07H ), HL
 0420
             CALL DELAY
 0430
             RET
 0500
 0510
 0520 *
                      SUBROUTINE INC
 0530
 0540 * INCREASES THE VOLTAGE OUTPUT FROM THE D/A TO BIAS THE
 0550 * READING OF THE PENDLUM POSITION.
 0560 INC
             LD
                  HL (3E07H)
 0570
             DEC HL
 0530
             LD
                 ( 3E07H ), HL
           CALL DELAY
 0530
 9699
             RET
 0610
 0620
 8638 *
                          SUBROUTINE END
 0640
 0650 * SAVE THE LAST TWO BITS OF THE BIAS OUTPUT FOR THE
0660 * BIAS OUTPUT VOLTAGE TO THE PENDLUM READING AND RETURNS
0670 * BACK TO THE MAIN PROGRAM.
 0630 END
             LD
                 A. (3E07H)
6636
             AND 03H
0700
             JP
                  3021H
0710 DELAY
             LD
                  C. 4FH
0720 LAB
             BEC
0730
             JR
                  NZ, LAB
0740
             RET
```

```
0770 *
                     SUBROUTINE SCREEN
 0730
 0790 * DISPLAYS ON SCREEN IN HEX THE VALUE WHICH IS PLACED
 0800 * IN THE LAST 12 BITS OF THE HL REGISTER.
 0810 SCREEN LD
               A. H
 0820
           ANI
               7FH
 0830
                BBBH
           US.
 8840
           CP
                ØBAH
 0850
           CALL P. HEX
 0860
           CALL 000372
 0870
           LD
              A.L
           SRL A
 0880
 0830
           SRL A
 0900
           SRL A
 0910
           SRL A
              GEGH
 0920
           OR
 0930
           CP
               ØBAH
           CALL P. HEX
 0940
           CALL 000372
 0950
 0960
           LD
               A. L
           AND OFH
 0970
 0980
           OR
               BEAH
 0990
           CP
                BRAH
 1000
           CALL PUHEN
 1010
           CALL 000372
           CALL 000370
 1020
 1030
           CALL 000370
 1040
           RET
 1050 HEX
           ADD 07H
 1060
           RET
 1080
 1090
 1100
 1110 *
                   SUBROUTINE PENDIS.
 1120
 1140 * THIS SUBROUTINE DISPLAYS THE POSITION OF THE PENDLUM.
 1150 * ON THE SCREEN. HENCE THE PENDLUM POSITION CAN BE
 1160 * INITIALISED AT TIME T=0. IF KEY "R" IS DEPRESSED
 1170 * THEN THE EXECUTION OF THE MAIN PROGRAM IS BEGUN.
 1180
 1200
 1210 SCREEN EQU 3814H
 1220
           ST
               3850H
 1230
           LD
               A, ( 3E0BH )
                          # SELECT CHANNEL A& AMPLIFICATION
 1240
           LD
               ( OFFF3H ), A # TO READ POSITION OF PENDLUM.
 1250
           LD
               A. 05H
 1260 DEL1
           LD
               B. ØFFH
                          # DELAY.
1270 DEL
           NOP
 1280
           DJNZ DEL
1290
           DEC A
1300
           JR NZ. DELI
```

```
# ASCII COBE FOR FOR 'P' .
  1310 AGAIN LD A, 0D0H
  1320 CALL 000372
 1330
           LD A. ØBDH
                         # ASCII CODE FOR '='.
           CALL 000372
  1340
  1350
          LD A.(3E0BH)
 1360
          LD (@FFF3H).A
1370 POST LD A. (OFFF1H) # TEST THE MSB TO CHECK IF THE
          AND SØH
 1380
                          # A/D CONVERSION IS OVER.
 1390
           JR Z POST
 1400 POST1 LD A, (0FFF1H)
 1410 AND 80H
 1420
           JR NZ, POST1
 1430
           LD A, (0FFF2H) # LOADS MOST SIGNIFICANT NIBBLE.
           AND 08H
 1440
           JR ZJSKIP
 1450
 1460
          LD A.O
                          # SAUE THE SIGN IN MEMORY 3E11H.
 1470
          LD (3E11H), A
               A, OABH
  1480
           LD
                          # ASCII COBE FOR '+'.
 1490
           CALL 000372
 1500
          LD A. (OFFF2H)
          AND 07H
 1510
 1520
           LD H.A
          LD A, (0FFF2H) # LOAD LEAST SIGNIFICANT BYTE.
 1530
 1540
          LD LA
 1550
           LD DEJ(GE7BH)
           SBC HL DE
 1560
 1570
           LD B.H
           AND SOH
 1580
 1590
           JR ZJSKIP2
 1600
          LD HL 0
 1610
          JR SKIP2
 1620 SKIP LD A,01H
                          # SAVE THE SIGN.
 1630
           LD (3E11H),A
 1640
           LI
              A, ØADH
                          # ASCII CODE FOR '-'.
 1650
          CALL 000372
           LD A, (OFFF2H) # LOADS MOST SIGNIFICANT NIBBLE.
 1660
          CPL
 1670
          AND 07H
 1680
 1690
          LD H.A
 1700
           LD A. (OFFFOH) # LOADS LEAST SIGNIFICANT BYTE.
          CPL
 1710
 1720
          LD LA
          LD DEJ(3E7BH)
 1730
 1740
          ADD HL DE
 1750 SKIP2 LD (3E22H), HL
 1760
           CALL SCREEN
 1770
           IN Ø.A
CP 'R'
                          # LOADS THE INPUT FROM KEY-BOARD
 1780
           CP
                          # CHECK TO SEE WHETHER'R'WAS
 1790
           JR Z, END
                         # DEPRESSED. IF TRUE THEN JUMPS
 1800
           JR AGAIN
                         # BACK TO THE MAIN PROGRAM.
1810 END
          RET
```

ACKNOWLEDGEMENT

The author wishes to extend his sincere appreciation and gratitude to Dr. J. Garth Thompson for his continuous guidance and advise throughout the graduate program. The author would also like to thank Dr. Ralph Turnquist and Dr. R. R. Gallagher for serving on the advisory committee.

The author also expresses his thanks to Dr. Paul L. Miller, Professor and Head of Mechanical Engineering Department, for extending financial support during the graduate studies.

The author is also thankful to Mr. B. Shirley and Mr. D. Marvin for their help in aiding this research.

Finally, the author wishes to extend his sincere appreciation to Mr. Gopal Ananth for proof reading this thesis.

DESIGN AND IMPLEMENTATION OF A MICROCOMPUTER, CONTROLLER FOR STABILIZING AN INVERTED PENDULUM MOUNTED ON A CART.

by

PARAG BRIJENDRA BHARGAVA
B.E., Bombay University, India, 1980

AN ABSTRACT OF A THESIS

Submitted in partial fulfillment of the requirement for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1983

ABSTRACT

In recent years, especially since the advent of the micro-computer, great advances have been made in the field of discrete control systems. A real-time, discrete controller was developed and implemented to stabilize a naturally unstable system. An inverted pendulum mounted on a motor driven cart was used.

A mathematical model of the system was developed and the parameters of the model were obtained by frequency response analysis. The discrete model was obtained by applying the Z-transforms. The naturally unstable system was stabilized by using compensators developed by the Z-plane analysis technique. Simulation results were obtained for various values of the system gain.

A Z-80 microcomputer, was used as the real-time controller for the experimental investigation. The results of the experimental investigation compare favorably with the result predicted by the analysis and the simulation. Recommendations for further study are provided.