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Abstract 

In animal health research, it is quite common for a clinical trial to be designed to 

demonstrate the efficacy of a new drug where a binary response variable is measured on an 

individual experimental animal (i.e., the observational unit). However, the investigational 

treatments are applied to groups of animals instead of an individual animal. This means the 

experimental unit is the group of animals and the response variable could be modeled with the 

binomial distribution. Also, the responses of animals within the same experimental unit may then 

be statistically dependent on each other. The usual logit model for a binary response assumes that 

all observations are independent. In this report, a logit model with a random error term representing 

the group of animals is considered.  This is model belongs to a class of models referred to as 

generalized linear mixed models and is commonly fit using the SAS System procedure PROC 

GLIMMIX.  Furthermore, practitioners often adjust the denominator degrees of freedom of the 

test statistic produced by PROC GLIMMIX using one of several different methods.  In this report, 

a simulation study was performed over a variety of different parameter settings to compare the 

effects on the type I error rate and power of two methods for adjusting the denominator degrees of 

freedom, namely “DDFM = KENWARDROGER” and “DDFM = NONE”.  Despite its reputation 

for fine performance in linear mixed models with normally distributed errors, the “DDFM = 

KENWARDROGER” option tended to perform poorly more often than the “DDFM = NONE” 

option in logistic regression model with one random effect.   
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Chapter 1 - Introduction 

1.1 Background and Problem 

In animal health experiments, it is fairly common that the treatments are applied to groups 

of animals. This means the experimental unit is defined as the entire group instead of an individual 

animal. However, the response variable is often measured on the each animal separately so that 

the observational unit is an individual animal rather than the group of animals. Under such 

circumstances, the observational units within the same group may be correlated with each other.  

For example, consider a study conducted on young, largemouth bass. A total number of 

1,600 fingerlings from the reference population were randomly assigned to the eight test tanks. 

We assume that approximately equal numbers of fish (about 200) were allocated to each tank. The 

external and internal environment for the reference tanks were kept approximately the same. The 

investigational treatment was Chloramine-T which was administered as a bath to four randomly 

selected tanks out of the total of eight. The other four tanks received no chemical treatment.  

Therefore, there are two treatment groups, test and control, where the test group received 

Chloramine-T and the control group did not. The test treatment is intended to prevent an early 

death of the treated fish, so the number of dead fish out of the total fish allotted to the tank was 

observed for each tank. (FDA, 2014). 

The design structure of the experiment described above is a typically called a completely 

randomized design (CRD) where the tank is the experimental unit and the individual fish is the 

observational unit. There are four replicates in each of the two treatment groups. The test tanks 

were assumed to be independent of each other but the fish within same tank were not completely 

independent from one another since they were fed with the same food and received the same dose 
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of medicine while experiencing the same conditions of the given tank. The response variable of 

this experiment is the cumulative mortality rate of the fingerlings in a given tank, but it is calculated 

by first determining the health status of each fish. Each fish is assigned a number equal to 1 or 0 

where 1 means the fish died before the end of the study and 0 means the fish was still alive at the 

end of the study. Under this circumstance, the response for each fish is considered as a binary 

variable with outcomes “dead” and “alive”. The response variable of the whole tank, computed by 

summing the status values over all fish in the tank, follows a binomial distribution with the 

parameters n (number of fish in the tank) and probability of death equal to p within a given tank.  

The traditional methodology for the analysis of a binary response is to fit a logistic 

regression model ignoring the effect of the individual tanks. The treatment was defined as the fixed 

effect and the tank was defined as a random effect. For this situation, the logistic regression must 

be modified to account for the additional uncertainty due to tank-to-tank variability.  We will still 

use a logistic regression model but we will assume that tanks are random effects. This takes us 

from a generalized linear regression model to a generalized linear mixed model. 

1.2 Generalized Linear Mixed Model 

In this section, we will address the major algorithms of generalized linear mixed models. I 

will start with a brief review of linear regression models and linear mixed model. In general, the 

linear mixed models are extensions of linear regression models. In both these two types of models, 

the relationship between the response variables and predictor variables is that the response 

variables are normally distributed with the mean. The way to determine the models is through a 

linear function by the predictor variables (Pinherio, 2004). The distinction between these two 

models is that linear mixed models have both fixed and random effects. However, in some common 

cases, the response variables could come from any distribution besides normal distributions, a 
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binary response for instance. As in the case stated in this report, the response variable is a count, 

it is not normally distributed but is still included in the exponential distribution family. Therefore, 

the linear mixed model is not applicable to this case. We need consider more applicable model to 

this situation where the generalized linear mixed models come into the place. Generalized linear 

mixed models are also extensions of generalized linear models (Fikret Isik, 2011). It enables a way 

to fit the model where the response variables are not necessarily normally 

distributed. Alternatively, one could consider the generalized linear mixed model (GLMM) is an 

extension of the linear mixed model (Fikret Isik, 2011). “Generalized” stands for the response 

variables that are non-normal distributions and “mixed” refers to the model contains random 

effects in addition to the fixed effects (Wang, 2004). “Rather than modeling the responses directly 

through the linear function, it allows predictor variables to be related to the mean response via a 

link function (e.g., the logistic function) and by allowing one to also model the variance component 

of each random effect” (SAS 9.2User's Guide).   

In the fish experiment, let i  be the probability that a fish within the ith treatment group 

dies during the study period. If the individual fish was the experimental unit in a completely 

randomized design that includes treatments as the fixed effect, the response variable for each 

treatment group (i.e. the total number of dead fish) would follow a binomial distribution and we 

get the traditional logit model in the following form: 

log( /1 )i i i      , 

where   is the overall mean, and i is the 
thi  treatment effects, both of   and i  are fixed 

effects. If iy  is the number of dead fish in the ith treatment group, then iy  is a binomial random 

variable with probability of success i  which is a function of   and i  through the inverse of 

the logit link. 
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In many experiments, the observations exhibit a certain form of dependency. In this study, 

fish within a tank are all more (or less) likely to die than fish in another tank even within the same 

treatment group.  We need to adjust the model above to contain the random effects on the 

probability of death due to the tank the fish are allotted. This leads to a generalized linear mixed 

model (GLMM) with the binomial response and one random effect. The treatment is as the fixed 

effect and the tank is the random effect. 

In the model, the response variable for the kth fish in the 
thj  tank within the thi  treatment 

group is ijky  with ijky = 1 or 0 (1 if the fish died or 0 if it still lived) where i 1 or 2 (with 1 = 

“test” and 2 = “control”), 1, ... , 4j  , and 1, ... , ijk n  where ijn  is equal to the number of fish in 

the tank (i.e., approximately 200).  Now ~ ( , )ij ijk ij ij

k

y y binomial n  where ij  is the true 

probability of success for 
thj  tank within the thi  treatment group. 

Considering that the observational units within the tank are correlated with each other, we 

add the random effect of the tank within a treatment, ij , to the previous model which then 

becomes: 

log( /1 )ij ij i ij        . 

Both   and i  are defined as before, but now
2

tank~ ( , )ij N o  are independent errors associated 

with the tanks and represent a slight increase (or decrease) in the probability of death for all fish 

in the same tank. 

Based on this generalized linear mixed model, log( /1 )i i i       represents the logit 

of the marginal probability of death in the  thi  treatment group averaging over all possible tanks. 
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We will now examine how the choice of DDFM methods for approximating the degrees of freedom 

affects the type I error rates and power of the hypothesis test. 

1.3 The brief introduction of DDFM Options for GLMM 

In the last a few decades, generalized linear mixed model has been broadly used in fitting 

model from agronomy, animal science, clinical trials, economics and etc. The generalized linear 

mixed model is particularly useful in the analysis of animal experiments (Kackar,1984), it provides 

better flexibility and practicability over many regression models and assumes a very 

straightforward structure of dependence among response and predictors. 

In SAS software, generalized linear mixed model data analysis is achieved by using the 

PROC GLIMMIX procedure. The way to control the denominator degrees of freedom for the 

model is by the “DDFM = Methods” options in the PROC GLMMIX procedure. The “DDFM = 

Methods” option allows you to specify the method of computation for the denominator degrees of 

freedom. There are several options you can select. “The computed degrees of freedom are also 

used in determining the degrees of freedom which can be used in hypothesis tests and confidence 

intervals from the other SAS statement.” (See the SAS/STAT User’s Guide, Mix Modeling,SAS 

Institute Inc., for more details).  

Based on the model of the designed experiment of Chapter 1, there are two DDFM options 

that will be compared in terms of how the different methods affect the type I error rates and power 

for generalized linear mix model. The present report considers the “DDFM = NONE” method and 

“DDFM = KENWARDROGER” method. 

 1.3.1 Brief discussion of the DDFM = NONE Method  

“DDFM = NONE”, just as it implies, indicates that none denominator degrees of freedom 

were applied when the clause execute. For example, when we execute the F test, PROC GLIMMIX 
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procedure assumes that infinite degrees of freedom of the denominators are used while p-values 

are being calculated. So F test is convert to the Chi-square test, in this case, the p-value in this case 

is equal to
2

,Pr{ } Pr{ }l obs l obsp F F lF    . See the SAS/STAT User’s Guide, Mix Modeling 

(SAS Institute Inc.) for more details.   

 1.3.2 Brief discussion of the DDFM = KENWARDROGER Method 

The “DDFM = KENWARDROGER” option applied the Kenward-Roger method to 

compute denominator degrees of freedom. The method was derived by Keyword and Roger 

(1997). Since the method has been implemented in the model procedure of the SAS system, it has 

become well known and widely used by many statisticians and researchers. Generally speaking, 

this method adjusts the denominator degrees of freedom and was derived from the linear mixed 

model with a continuous normal response.  It was not derived for use in a generalized linear mixed 

model. 

1.4 Research Objective of This Report 

Many researchers use the “DDFM = KENWARDROGER” option when executing the 

PROC GLIMMIX procedure, this may cause some inaccurate results. This method was initially 

proposed by Kenward and Roger (1997) and it performs well when the parameterizations of the 

covariance matrix are linear. However, this approach does not perform as well when covariance 

structures are nonlinear. When we use the “DDFM = KENWARDROGER” option to calculate the 

degrees of freedom in PROC GLIMMIX procedure, computational formula of the underlying 

Taylor series expansion has a missing part, which is the critical reason of the problem when using 

it to accommodate the estimators of the covariance structure (Kenward and Roger, 2009). This 

report provides insight through a simulative example of an animal experiment data that were fit to 

a generalized linear mixed model with a logit link where the response variable follows a binomial 

javascript:void(0);
javascript:void(0);
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distribution. The discussion and comparison of this study is focused on how the “DDFM = 

KENWARDROGER” option affects the type I error rates and power of the hypothesis test under 

multiple parameter settings here.  Because the Kenward-Roger adjustment was not created for the 

generalized linear mixed model, we hypothesized that it would make it more difficult to reject the 

null hypothesis of no difference and decrease the power of the test as well as depress the type I 

error rate to an unacceptably conservative level.  
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Chapter 2 - Simulated Data Example of the CRD Experiment 

 2.1 Profile of the Example Data 

In the fish experiment, we assumed the response variable for a given tank follows a 

binomial distribution, i.e. ~ ( , )ij ij ijy binomial n  , where ijn  represents the number of fish in each 

test tank.  For simplicity, we assumed the number of fish in each tank was the same, i.e. 
ijn n . 

The number of dead fish collected from each test tank was simulated using the binomial 

distribution. Because the mortality rate of fish will be analyzed by a generalized linear mixed 

model with a binomial response variable and a logit link function, the probability a fish dies in the 

jth tank within the ith treatment groups was set to: 

 
 
 1

exp

exp

i ij

i ij

ij

  

  


 


  
, 

where    /1exp expi ii         is the marginal mortality rate in the ith treatment group 

and the random effects denoted by ij  are independent and identically distributed as 2

tank(0, )N 

random variables. The model for this experiment is then the generalized linear mixed model 

given by log( /1 )ij ij i ij         where i = 1 or 2, j = 1, … , 4 and k = 1, … , n. 

 2.2 Value of the Variance Component for the Random Effect   

For a given simulated dataset, we propose to test for an effect due to treatment using the 

following hypotheses: 

0 1 2

1 2

:

:a

H

H

 

 




 

using the F-test based on the type III sums of squares provided by SAS Proc GLIMMIX.  

Care must be taken when specifying the variance component of the tank-to-tank variability since 
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the linear model is fitted on the logit scale. For example, consider two binary populations with 

probabilities of success 1  and 2 , respectively. These two populations are often compared by 

using an odds ratio. An odds ratio of 1.5 indicates a modest difference between 1 and 2 . The log 

odds ratio, (i.e. on the same scale as the logit model) is then approximately 0.4, that is 

1 2

2 1

(1 )
log 0.4.

(1 )

 

 





 

Considering that almost an entire normal distribution is within three standard deviations, a 

standard deviation larger than 0.4/3  0.13 would virtually wash out this difference and make it, 

on a practical level unimportant as the tank-to-tank variability would be the true driving force 

behind the mortality rates.  Therefore, we have selected the two possible values for tank to study 

as 0.1 and 0.05 so that the variance of the tank effects is either 
2

tank 0.01  or 
2

tank 0.0025  . 

 2.3 Other Parameter Settings of the Simulation Study 

The simulation study was conducted to compare between the “DDFM = NONE” and 

“DDFM = KENWARDROGER” methods impact on the type I error rates and the power of the 

hypothesis test.  

 2.3.1 Simulation Study on Type I Error Rates of Hypothesis Test 

When we do hypothesis testing, we actually want to test if the difference is existing 

between two reference populations (treatment groups and control groups). The type I error is 

defined as when incorrectly rejecting a null hypothesis when it is actually true. In other words, 

the type I error is often referred to as a “false positive”, it is when rejecting 0H  in the favor of 

alternative hypothesis H . If we reject 0H  when the p-value is less than or equal to α, the 

significance level, then α is the nominal type I error rate.  When 0H  above is true, 1 2    .  
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Here we consider only one value for the common probability of death, 0.5  .  We fix the number 

of tanks within the two treatment groups to be 4 tanks each and then allocate the same number of 

fish to each tank (i.e. n) and simulate data under values of 𝑛 = 50, 80, 100, 120, 140, 160, 180 and 

200.  This results in 16 different scenarios of parameter settings (2 possible tank variances  8 

different possible tank sizes) – see Table 2.1 for an enumeration of all settings.  Ten thousand 

datasets were simulated under each of the 16 scenarios with p-values calculated using the two 

different DDFM methods.  The type I error rate was estimated as the proportion of p-values less 

than or equal to α 0.05 out of 10,000. 

 

Table 2.1 Parameter settings of the sample data for comparing the type I error rates of the 

hypothesis 

n tank  1 2   

50 0.1/0.05 0.5 

80 0.1/0.05 0.5 

100 0.1/0.05 0.5 

120 0.1/0.05 0.5 

140 0.1/0.05 0.5 

160 0.1/0.05 0.5 

180 0.1/0.05 0.5 

200 0.1/0.05 0.5 

 

2.3.2 Simulation Study on Power of the Hypothesis Test 

In practice, researchers are mostly interested in whether or not there is difference between 

the treatments.  Power is the probability that the null hypothesis will be rejected when it is actually 

false (Cohen 1988). Thus, power quantifies the chance to make a correct decision in rejecting the 

null hypothesis under a particular setting of the parameters that is true under H . Here we 
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assumed that 1= 0.5  and 2 = 0.6  so that the log odds ratio is approximately -0.4 (the test 

treatment decreases the log odds of death).  We consider the same values of variance component 

for tank to be tank 0.10   and tank 0.05   as well as the same numbers of fish allocated to each 

tank (𝑛= 50, 80, 100, 120, 140, 160, 180 and 200). Then we conduct the PROC GLIMMIX 

procedure to build the generalized linear mixed model and then use “DDFM = 

KENWARDROGER” method and “DDFM = NONE” method in the model clause. We analyze 

them and see how many times the PROC GLIMMIX procedure would reject 0H  for these two 

“DDFM = Methods” options at significant level  0.05  , in order to calculate and estimate of 

the power of the two DDFM methods when testing the two-sided alternative hypothesis vs. a null 

of no difference.  All combinations of the parameter setting are summarized in Table 2.2 below. 

Table 2.2 Parameter settings of the sample data for comparing the power of the hypothesis 

n tank  1  2  

50 0.1/0.05 0.5 0.6 

80 0.1/0.05 0.5 0.6 

100 0.1/0.05 0.5 0.6 

120 0.1/0.05 0.5 0.6 

140 0.1/0.05 0.5 0.6 

160 0.1/0.05 0.5 0.6 

180 0.1/0.05 0.5 0.6 

200 0.1/0.05 0.5 0.6 
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Chapter 3 - Simulation Study 

 3.1 Simulation Procedure 

For each selected configuration of parameters:  

(1) Generate a CRD dataset with binomial responses for each tank with the treatment as 

the fixed effect and the tanks as random effects with normal distributions for a given setting the 

parameters.  

(2) Use PROC GLIMMIX procedure, with logit link function to fit the generalized linear 

mixed models and using “DDFM = KENWARDROGER” or “DDFM = NONE” methods for 

computing the denominator degrees of freedom for hypothesis test and observe a p-value. 

 (3) Repeat step (1) and (2) for N = 10,000 times.  

(4) Compute the type I error rates or the power for the hypothesis test at significant level 

, then report the estimated Type I error rates or the estimated power of the hypothesis test 

under each parameter setting. 

(5)  perform steps (1) to (4) for each of the 16 parameter settings.  

(6) Display and summarize the results in the table. 

The complete SAS code is provided in Appendix B. 

 3.2 Simulation Result 

 3.2.1 Simulation Result for Type I Error Rates of Hypothesis Test 

Table 3.1 displays a complete list of simulation result of the Type I error rates. Sample size 

n (representing the number of fish in each tank) for the control groups and treatment groups were 

assumed to be the same. We assume that the marginal probability of success for treatment groups 

and control groups are identical to 0.5. The comparison is based on the two different values of 

0.05 
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variance component, and . From this table, we can see for both two 

methods, the type I error rates are increasing as the sample size are getting larger. The type I error 

rates of “DDFM = KENWARDROGER” method is much smaller than the type I error rates of 

“DDFM = NONE” method in each scenario. The type I error rates for “DDFM = NONE” method 

are approximate 0.05, this is very close to the significant level  The type I error rates for 

“DDFM = KENWARDROGER” slightly increase as sample sizes increase but is still far below 

the nominal significance level of . Each scenario shows similar performance, “DDFM = 

NONE” method more liberally rejects in favor of   than it should at a significance level of

. Therefore, we can conclude that the “DDFM = KENWARDROGER” method for the 

type I error rates of hypothesis test is too conservative in the generalized linear mix model. 

 3.2.2 Simulation Result for Power of Hypothesis Test 

The simulation results for power are shown in the table 3.2. Sample size n (represent the 

number of fish in each tank) for the control groups and treatment groups were assumed to be the 

same. We consider the different cases for sample size from 50 to 200, and we assume that the 

marginal probability of success for treatment groups is equal 0.5 and the marginal probability of 

success for control groups is equal 0.6, respectively. The comparison is based on the two different 

values  and . From table 3.2, we can see that, as expected, bigger sample 

size increases the power of hypothesis for both two methods. However, the “DDFM = 

KENWARDROGER” method shrinks the power of hypothesis. Even for the small value of 

variance component and large sample size, “DDFM = KENWARDROGER” method does not 

perform as well as the “DDFM = NONE” method. Under ideal circumstances, the power of the 

test above 80% is generally accepted as good. However, the biggest power of “DDFM = 

KENWARDROGER” method among the 16 scenarios is still below 0.5.  

tank 0.1  tank 0.05 

0.05. 

0.05 

0H
aH

0.05 

tank 0.1  tank 0.05 
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Table 3.1 Comparison of the type I error rates for different parameter settings on DDFM = 

KENWARDROGER (KR) and DDFM = NONE options 

n 
1 2 tank0.5 ; 0.1      1 2 tank0.5 ; 0.05      

50 KR 0.0029 KR 0.0024 

NONE 0.0465 NONE 0.0398 

80 KR 0.0059 KR 0.0039 

NONE 0.0546 NONE 0.0435 

100 KR 0.0085 KR 0.0067 

NONE 0.0579 NONE 0.0463 

120 KR 0.0076 KR 0.0055 

NONE 0.0579 NONE 0.0434 

140 KR 0.0076 KR 0.0040 

NONE 0.0608 NONE 0.0452 

160 KR 0.0077 KR 0.0027 

NONE 0.0580 NONE 0.0421 

180 KR 0.0080 KR 0.0027 

NONE 0.0609 NONE 0.0439 

200 KR 0.0088 KR 0.0025 

NONE 0.0620 NONE 0.0446 

 

 

Table 3.2 Comparison of the power for different parameter settings on DDFM = 

KENWARDROGER (KR) and DDFM = NONE options 

n 
1 2 tank0.5; 0.6 ; 0.1      1 2 tank0.5; 0.6 ; 0.05      

50 KR 0.0891 KR 0.0820 

NONE 0.4287 NONE 0.4480 

80 KR 0.1705 KR 0.1542 

NONE 0.6946 NONE 0.6425 

100 KR 0.2324 KR 0.2046 

NONE 0.7058 NONE 0.7363 

120 KR 0.2873 KR 0.2520 

NONE 0.7486 NONE 0.8067 

140 KR 0.3428 KR 0.2958 

NONE 0.7971 NONE 0.8615 

160 KR 0.3721 KR 0.3345 

NONE 0.8271 NONE 0.9010 

180 KR 0.4300 KR 0.3690 

NONE 0.8635 NONE 0.9257 

200 KR 0.4695 KR 0.3981 

NONE 0.8827 NONE 0.9471 
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Chapter 4 - Discussion of Simulation Study 

To get a better understanding the range of the type I error rates and power of hypothesis 

for the two methods, trend line and dot plots were constructed to show graph of type I error rates 

and power for each simulation setting. 

 4.1 The Discussion and Comparison of the Type I Error Rate for the 

DDFM = KENWARDROGER and DDFM = NONE 

We perform simulation studies on different parameter settings of the type I error rates for 

the generalized linear mixed model with one random effect. The figure 4.1-4.2 displays the 

comparison of the type I error rates for the two methods. We could visually compare the trend of 

type I error rates over different sample sizes. The red line is representing the type I error rates of 

“DDFM = NONE” methods and the blue line is representing the type I error rates for “DDFM = 

KENWARDROGER” methods. 

Figure 4.1 displays the estimated type I error rates when the variance component 

tank 0.1  . We could see that the type I error rates for the “DDFM = NONE” seems to be 

acceptable under all simulation settings. They are approximately close to 0.05, if not slightly too 

liberal. Under ideal circumstances it would be preferred to have a type I error rate around to the 

value of significant level 0.05  , indicated by the reference line. The type I error rates for 

“DDFM = KENWARDROGER” are quite away from the reference line, closer to the interval of 

0 to 0.01. 

Figure 4.2 displays the estimated type I error rates when the variance component 

tank 0.05  . We could see the type I error rates for the “DDFM = NONE” are below the reference 

line, but still within the tolerance bound. It becomes clearly apparent that the type I error rates for 
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“DDFM = KENWARDROGER” are more conservative (smaller) than expected. Each simulation 

parameters setting combination was replicated 10,000 times and the convergence rate for 

simulation studies on type I error rates are between 99.52% to 99.98%. 

 

 

 

Figure 4.1 The trend line of type I error rates for the two DDFM methods when the 

variance component equal 0.1, n = 50, 80, 100, 120, 140, 160, 180, 200. 
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Figure 4.2 The trend line of type I error rates for the two DDFM methods when the 

variance component equal 0.05, n = 50, 80, 100, 120, 140, 160, 180, 200. 

 

 

 4.2 The Discussion and Comparison of the Power for the DDFM = 

KENWARDROGER and DDFM = NONE 

This section we will further properly shows the comparison of the power of these two 

methods. We performed simulation studies on different parameters settings for the power of the 

generalized linear mixed model with one random effect. 

Figure 4.3 displays the estimated power of the two “DDFM = Methods” options using eight 

different sample sizes and the variance component tank 0.1  . As expected, the power increases 

with larger sample sizes for both “DDFM = Method” options. It is clear that the “DDFM = NONE” 

method performs better, since it has bigger power under all simulation settings. Especially, when 

the sample size reach to 140 and above, the power for the “DDFM = NONE” method achieve 
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above 80%. However, the power for the “DDFM = KENWARDROGER” still below 50%, even 

the sample size is achieved to 200. In addition, each simulation parameters setting combination 

was replicated 10,000 times and the convergence rates for simulation studies on power are between 

99.74% to 99.96%.  

 

Figure 4.3 The trend line of power for the two DDFM methods when the variance 

component equal 0.1, n = 50, 80, 100, 120, 140, 160, 180, 200. 

 

We can draw the similar conclusions from Figure 4.3. This graphic shows the estimated 

power of the two “DDFM = Methods” options when the value of variance component tank 0.05 

. It is clear that the “DDFM = KENWARDROGER” option performs worse than the “DDFM = 

NONE” option, since it has super small power under all simulation settings.  
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Figure 4.4 The trend line of power for the two DDFM methods when the variance 

component equal 0.05, n = 50, 80, 100, 120, 140, 160, 180, 200. 
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Chapter 5 - Conclusion 

In this report, we investigated two “DDFM = Method” options in the SAS PROC 

GLIMMIX procedure with respect to type I error rates and power of a two-sided hypothesis test 

under a generalized linear mixed model containing one random effect. The simulation study was 

conducted by various sample sizes (𝑛 = 50, 80, 100, 120, 140, 160, 180 and 200), and with two 

different values of the variance component ( tank 0.1   and ) tank 0.05  , as well as the marginal 

probability of success 1= 0.5  and 2 = 0.6  for the treatment groups and control groups, 

respectively. The conclusions drawn from the simulation results are as follows. 

First, for the generalized linear mixed model with binomial response variable and 

containing one random effect, the type I error rates of “DDFM = KENWARDROGER” method 

are much smaller than the type I error rates of “DDFM = NONE” method. It suggests that the 

“DDFM = KENWARDROGER” method deflates the type I error rates and causes the type I error 

rate to be more conservative than expected, especially for smaller sample sizes with smaller 

variance component. 

Secondly, the power of hypothesis test based on two “DDFM = Method” options increases 

with larger sample sizes. As expected, the power of “DDFM = NONE” method seems to perform 

better than the “DDFM = KENWARDROGER” method, since it had greater power under all 

simulation settings. We conclude from this that the “DDFM = KENWARDROGER” method 

shrinks the power of hypothesis test in the generalized linear mixed model under the settings 

studied. 

Lastly, many researchers believe the “DDFM = KENWARDROGER” is suitable for the 

most mixed models. However, it does not perform well on the generalized linear mixed model 

studied here and should not be used for these types of models. 
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Appendix A – Simulation SAS Code for Type I error Rate 

Below is SAS code used to generate simulated data for type I error rate of hypothesis testing. 

/*********influence on Type I error rate*****************/ 

/*  

Notes: The different parameter setting combination for the different scenarios.  

sigma parameter option 0.05 or 0.1 

sample size options 50, 80, 100,120,140,160,180,200. 

There should be 16 different scenarios in total. 

*/ 

%let sd=0.05; /*sigma */ 

%let pi=0.5; /*parameter*/ 

%let n=200;   

/*sample size */ 

/*********generate the binomial data set*****************/ 

Data fish; 

call streaminit (65896); 

Do sim =1 to 10000; 

 Do trt = 1 to 2;  

  Do tank =1 to 4; Rho=rand("normal",0,&sd); 

   n=&n; 

      Tau =log(&pi/(1-&pi)); 

   Mu=0; 

   p=exp (Mu + Tau + Rho)/(1+exp( Mu + Tau +Rho)); 

   y=rand ("binomial", p, n); 

   output; 

  End; 

 End; 

End; 

Run; 

data  fish1; 

 set fish; 

run; 
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/*********Generalized linear mix model*****************/ 

/*************DDFM=KENWARDROGER*************************/ 

*ods select Tests3 LSMeans CovParms;  

ods exclude all; 

proc glimmix data=fish1; 

    by sim;                       

 class tank trt; 

 model y/n=trt/link=logit dist=binomial ddfm=KR COVB; 

 random tank(trt); 

 covtest/clm; 

 lsmeans trt/ilink; 

ods output Tests3=T3 LSMeans=LSM CovParms=Cova; 

run; 

 

/**********create a table contain p-value$LSmeans$variance component**********/ 

proc contents data=T3;run; 

proc contents data=LSM;run; 

proc contents data=Cova;run; 

proc sort data=T3(keep=sim ProbF DenDF); by sim;run; 

proc sort data=LSM(keep=sim trt Mu StdErrMu);by sim; run; 

proc sort data=Cova(keep=sim CovParm Estimate); by sim; run;  

 

proc transpose data=LSM out = LSM1    /*Long-to-Wide table*/ 

 prefix=Mu; 

 var Mu; 

 by sim; 

run; 

proc transpose data=LSM out = LSM2    /*Long-to-Wide table*/ 

 prefix=StdErrMu; 

 var StdErrMu; 
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 by sim; 

run; 

data LSM3; 

 merge LSM1 LSM2 ; 

 by sim; 

 drop _NAME_ _LABEL_; 

run; 

 

data summary; 

 merge T3 LSM3 Cova; 

 by sim; 

run; 

/**********calculate the type1 error rate**********/ 

ods select all; 

data summary2;                           /*for each simulation p value to decide reject or do not reject */ 

 set summary ; 

    reject=0;                            /* This creates a variable called reject in the newdataset if p 

value<0.05,with all values 1 */ 

 if ProbF<0.05 then reject=1; 

  label ProbF="P-value" 

        Mu1="Trt1" 

           Mu2="Trt2" 

           StdErrMu1="SEtrt1" 

           StdErrMu2="SEtrt2" 

           CovParm="Covariance" 

           Estimate="CovEst"; 

run; 

proc print data=summary2(obs=10) label; title'Summary of Simulation 

DDFM=KENWARDROGE'; run; 

 

proc means data= summary2 sum; 
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 var reject; 

 output out=type1 sum=totalreject; run; 

data type1; 

 set type1; 

    alphat=totalreject/_FREQ_; 

    label _FREQ_="simnumber"; 

    run; 

    proc print data=type1 label;title'Type1 Error For DDFM=KENWARDROGER';run; 

proc means data= summary2; 

 var Mu1 Mu2 StdErrMu1 StdErrMu2 Estimate; 

output out=MeanEst; title'Summary of Simulation Estimate For 

DDFM=KENWARDROGER';Run; 

/**********export txt file for Cov.estimate**********/ 

proc export data=summary2 

outfile='C:\Users\Yu Wang\Desktop\fish.txt' DBMS=tab replace; 

run; 

 

 

 

 

/*********generalized linear mix model*****************/ 

/*************DDFM=NONE*************************/ 

*ods select Tests3 LSMeans CovParms;  

ods exclude all; 

proc glimmix data=fish1; 

    by sim;                       

 class tank trt; 

 model y/n=trt/link=logit dist=binomial ddfm=NONE COVB; 

 random tank(trt); 

 covtest/clm; 

 lsmeans trt/ilink; 



27 

ods output Tests3=T3 LSMeans=LSM CovParms=Cova; 

run; 

/**********create a table contain p-value$LSmeans$variance component**********/ 

proc contents data=T3;run; 

proc contents data=LSM;run; 

proc contents data=Cova;run; 

proc sort data=T3(keep=sim ProbF DenDF); by sim;run; 

proc sort data=LSM(keep=sim trt Mu StdErrMu);by sim; run; 

proc sort data=Cova(keep=sim CovParm Estimate); by sim; run;  

 

proc transpose data=LSM out = LSM1    /*Long-to-Wide table*/ 

 prefix=Mu; 

 var Mu; 

 by sim; 

run; 

proc transpose data=LSM out = LSM2    /*Long-to-Wide table*/ 

 prefix=StdErrMu; 

 var StdErrMu; 

 by sim; 

run; 

data LSM3; 

 merge LSM1 LSM2 ; 

 by sim; 

 drop _NAME_ _LABEL_; 

run; 

data summary; 

 merge T3 LSM3 Cova; 

 by sim; 

run; 

/**********calculate the type1 error**********/ 

ods select all; 
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data summary2;                           /*for each simulation p value to decide reject or do not reject */ 

 set summary ; 

    reject=0;                            /* This creates a variable called reject in the newdataset if p 

value<0.05,with all values 1 */ 

 if ProbF<0.05 then reject=1; 

  label ProbF="P-value" 

        Mu1="Trt1" 

           Mu2="Trt2" 

           StdErrMu1="SEtrt1" 

           StdErrMu2="SEtrt2" 

           CovParm="Covariance" 

           Estimate="CovEst"; 

run; 

proc print data=summary2(obs=10)label;title'Summary of Simulation For DDFM=NONE';run; 

 

proc means data= summary2 sum; 

 var reject; 

 output out=type1 sum=totalreject;run; 

data type1; 

 set type1; 

    alphat=totalreject/_FREQ_; 

    label _FREQ_="simnumber"; 

    run; 

    proc print data=type1 label;title'Type1 Error For DDFM=NONE';run; 

proc means data= summary2; 

 var Mu1 Mu2 StdErrMu1 StdErrMu2 Estimate; 

output out=MeanEst;title'Summary of Simulation Estimate For DDFM=NONE';Run; 

/**********export txt file for Cov.estimate**********/ 

proc export data=summary2 

outfile='C:\Users\Yu Wang\Desktop\fish.txt' DBMS=tab replace; 

run;  
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Appendix B – Simulation SAS Code for Power 

Below is SAS code used to generate simulated data for power of hypothesis testing. 

/*********influence on power*****************/ 

/*  

Notes: The different parameter setting combination for the different scenarios.  

sigma parameter option 0.05 or 0.1 

sample size options 50, 80, 100,120,140,160,180,200. 

There should be 16 different scenarios in total. 

*/ 

/*********generate the binomial data set*****************/ 

%let sd=0.05; /*sigma option 0.1 or 0.05*/ 

%let n=180;  /*sample size option 50,80,100,120,140,160,180,200*/ 

Data fish; 

 Call streaminit(52256); 

  Do sim =1 to 10000; 

   Do trt = 1 to 2;  

    Do tank =1 to 4; Rho=rand("normal",0,&sd); 

     If trt =1 then pi =0.5; /*treatment group pi=0.5*/ 

     else pi=0.6;    /*control group pi=0.6*/ 

    n=&n; 

    Tau =log(pi/(1-pi)); 

     Mu=0; 

     p=exp( Mu + Tau + Rho)/(1+exp( Mu + Tau +Rho)); 

     y=rand("binomial",p,n); 

     output; 

    End; 

   End; 

  End; 

Run; 

data  fish1; 

 set fish; 

run; 



30 

/*********generalized linear mix model*****************/ 

/*************DDFM=KENWARDROGER*************************/ 

*ods select Tests3 LSMeans CovParms;  

ods exclude all; 

proc glimmix data=fish1; 

 by sim;                       

 class tank trt; 

 model y/n=trt/link=logit dist=binomial ddfm=KR COVB; 

 random tank(trt); 

 covtest/clm; 

 lsmeans trt/ilink; 

 ods output Tests3=T3 LSMeans=LSM CovParms=Cova; 

run; 

 

/**********create a table contain p-value$LSmeans$variance component**********/ 

proc contents data=T3;run; 

proc contents data=LSM;run; 

proc contents data=Cova;run; 

proc sort data=T3(keep=sim ProbF DenDF); by sim;run; 

proc sort data=LSM(keep=sim trt Mu StdErrMu);by sim; run; 

proc sort data=Cova(keep=sim CovParm Estimate); by sim; run;  

 

proc transpose data=LSM out = LSM1    /*Long-to-Wide table*/ 

 prefix=Mu; 

 var Mu; 

 by sim; 

run; 

 

proc transpose data=LSM out = LSM2    /*Long-to-Wide table*/ 

 prefix=StdErrMu; 

 var StdErrMu; 
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 by sim; 

run; 

 

data LSM3; 

 merge LSM1 LSM2 ; 

 by sim; 

 drop _NAME_ _LABEL_; 

run; 

 

data summary; 

 merge T3 LSM3 Cova; 

 by sim; 

run; 

/**********calculate the Power**********/ 

ods select all; 

data summary2;                           /*for each simulation p value to decide reject or do not reject */ 

 set summary ; 

    reject=0;                            /* This creates a variable called reject in the newdataset if p 

value<0.05,with all values 1 */ 

 if ProbF<0.05 then reject=1; 

  label ProbF="P-value" 

        Mu1="Trt1" 

           Mu2="Trt2" 

           StdErrMu1="SEtrt1" 

           StdErrMu2="SEtrt2" 

           CovParm="Covariance" 

           Estimate="CovEst"; 

run; 

proc print data=summary2(obs=20)label; 

title'Summary of Simulation DDFM=KENWARDROGE';run; 
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proc means data= summary2 sum; 

 var reject; 

 output out=power sum=totalreject;run; 

 

data power; 

 set power; 

    Power=totalreject/_FREQ_; 

    label _FREQ_="Simnumber"; 

    run; 

 

proc print data=power label;title'Power For DDFM=KENWARDROGER';run; 

proc means data= summary2; 

 var Mu1 Mu2 StdErrMu1 StdErrMu2 Estimate; 

output out=MeanEst; 

title'Summary of Simulation Estimate For DDFM=KENWARDROGER';Run; 

/**********export txt file for Cov.estimate**********/ 

*proc export data=summary2 

*outfile='C:\Users\Yu Wang\Desktop\fish.txt' DBMS=tab replace; 

*run; 

 

/*********genernalized linear mix model*****************/ 

/*************DDFM=NONE*************************/ 

*ods select Tests3 LSMeans CovParms;  

ods exclude all; 

proc glimmix data=fish1; 

    by sim;                       

 class tank trt; 

 model y/n=trt/link=logit dist=binomial ddfm=NONE COVB; 

 random tank(trt); 

 covtest/clm; 

 lsmeans trt/ilink; 
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ods output Tests3=T3 LSMeans=LSM CovParms=Cova; 

run; 

 

/**********create a table contain p-value$LSmeans$variance component**********/ 

proc contents data=T3;run; 

proc contents data=LSM;run; 

proc contents data=Cova;run; 

proc sort data=T3(keep=sim ProbF DenDF); by sim;run; 

proc sort data=LSM(keep=sim trt Mu StdErrMu);by sim; run; 

proc sort data=Cova(keep=sim CovParm Estimate); by sim; run;  

 

proc transpose data=LSM out = LSM1    /*Long-to-Wide table*/ 

 prefix=Mu; 

 var Mu; 

 by sim; 

run; 

 

proc transpose data=LSM out = LSM2    /*Long-to-Wide table*/ 

 prefix=StdErrMu; 

 var StdErrMu; 

 by sim; 

run; 

 

data LSM3; 

 merge LSM1 LSM2 ; 

 by sim; 

 drop _NAME_ _LABEL_; 

run; 

 

data summary; 

 merge T3 LSM3 Cova; 
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 by sim; 

run; 

/**********calculate the Power**********/ 

ods select all; 

data summary2;                           /*for each simulation p value to decide reject or do not reject */ 

 set summary ; 

    reject=0;                            /* This creates a variable called reject in the newdataset if p 

value<0.05,with all values 1 */ 

 if ProbF<0.05 then reject=1; 

  label ProbF="P-value" 

        Mu1="Trt1" 

           Mu2="Trt2" 

           StdErrMu1="SEtrt1" 

           StdErrMu2="SEtrt2" 

           CovParm="Covariance" 

           Estimate="CovEst"; 

run; 

proc print data=summary2(obs=20)label; 

title'Summary of Simulation For DDFM=NONE';run; 

proc means data= summary2 sum; 

 var reject; 

 output out=power sum=totalreject;run; 

data power; 

 set power; 

    Power=totalreject/_FREQ_; 

    label _FREQ_="Simnumber"; 

    run; 

    proc print data=power label;title'Power For DDFM=NONE';run; 

proc means data= summary2; 

 var Mu1 Mu2 StdErrMu1 StdErrMu2 Estimate; 

output out=MeanEst; 
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title'Summary of Simulation Estimate For DDFM=NONE';Run; 

/**********export txt file for Cov.estimate**********/ 

*proc export data=summary2 

*outfile='C:\Users\Yu Wang\Desktop\fish.txt' DBMS=tab replace; 

*run; 
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Appendix C – R Code for Figure 4.1-4.2 

Below is R code used to draw the trend line plot of Type I error rate. 

#Plot for type I error 

# read txt data in to R 

Typeerror0.1<-read.table("C:/Users/Yu Wang/Desktop/Type I 

error/typeerror0.1.txt",header=T,na.strings = "NA") 

Typeerror0.05<-read.table("C:/Users/Yu Wang/Desktop/Type I 

error/typeerror0.05.txt",header=T,na.strings = "NA") 

# Create Line Chart for power sigma=0.1 

# Calculate range from 0 to max value of cars and trucks 

g_range <- range(0, Typeerror0.1$rateKR, Typeerror0.1$ratenone) 

plot( Typeerror0.1$ratenone,type='o',ylim=c(0,0.1),col='red',axes=F,lwd=2.5,main="Comparison 

of Type I Error Rate, sigma= 0.1",  

     xlab="Sample size", ylab="Type I error rate") 

# Make Y axis using labels 

axis(1, at=1:8,lab=c("50","80","100","120","140","160","180","200")) 

lines(Typeerror0.1$ratekr,type='o',col='blue',lwd=2.5) 

# add reference line 

abline(h = 0.05, col="black", lwd=1, lty=2) 

legend("topright", c("NONE","KR"), lwd=c(2.5,2.5),pch=1,col=c("red","blue"),cex=1) 

# Make Y axis using labels 

lab=c(0,0.01,0.02,0.30,0.04,0.05,0.06,0.07,0.08,0.09,0.1) 

axis(2, at=lab, lab=c(0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1)) 

# Create box around plot 

box() 

 

 

 

 

# Create Line Chart for power sigma=0.05 
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# Calculate range from 0 to max value of cars and trucks 

g_range <- range(0, Typeerror0.05$rateKR, Typeerror0.05$ratenone) 

plot( 

Typeerror0.05$ratenone,type='o',ylim=c(0,0.1),col='red',axes=F,lwd=2.5,main="Comparison of 

Type I Error Rate, sigma= 0.05",  

      xlab="Sample size", ylab="Type I error rate") 

# Make Y axis using labels 

axis(1, at=1:8,lab=c("50","80","100","120","140","160","180","200")) 

 

lines(Typeerror0.05$ratekr,type='o',col='blue',lwd=2.5) 

legend("topright", c("NONE","KR"), lwd=c(2.5,2.5),pch=1,col=c("red","blue"),cex=1) 

abline(h = 0.05, col="black", lwd=1, lty=2) 

 

# Make Y axis using labels 

lab=c(0,0.01,0.02,0.30,0.04,0.05,0.06,0.07,0.08,0.09,0.1) 

axis(2, at=lab, lab=c(0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1)) 

# Create box around plot 

box() 
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R Code for Figure 4.3-4.4 

Below is R code used to draw the trend line plot of Power. 

#Plot for power 

# read txt data in to R 

power0.1<-read.table("C:/Users/Yu Wang/Desktop/power/power0.1.txt",header=T,na.strings = 

"NA") 

power0.05<-read.table("C:/Users/Yu Wang/Desktop/power/power0.05.txt",header=T,na.strings 

= "NA") 

# Create Line Chart for power sigma=0.1 

# Calculate range from 0 to max value of cars and trucks 

g_range <- range(0, power0.1$KR, power0.1$NONE) 

plot(power0.1$NONE,type='o',ylim=c(0:1),col='red',axes=F,lwd=2.5,main="Comparison of 

Power, sigma= 0.1",  

     xlab="Sample size", ylab="Power of Hypothesis") 

# Make Y axis using labels 

axis(1, at=1:8,lab=c("50","80","100","120","140","160","180","200")) 

lines(power0.1$KR,type='o',col='blue',lwd=2.5) 

legend("bottomright", c("NONE","KR"), lwd=c(2.5,2.5),pch=1,col=c("red","blue"),cex=1) 

 

# Make Y axis using labels 

lab=c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1) 

axis(2, at=lab, lab=c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1)) 

# Create box around plot 

box() 

# Create Line Chart for power sigma=0.05 

g_range <- range(0, power0.05$KR, power0.05$NONE) 

plot(power0.05$NONE,type='o',ylim=c(0:1),col='red',axes=F,lwd=2.5,main="Comparison of 

Power, sigma= 0.05",  

     xlab="Sample size", ylab="Power of Hypothesis") 

# Make Y axis using labels 

axis(1, at=1:8,lab=c("50","80","100","120","140","160","180","200")) 
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lines(power0.05$KR,type='o',col='blue',lwd=2.5) 

legend("bottomright", c("NONE","KR"), lwd=c(2.5,2.5),pch=1,col=c("red","blue"),cex=1) 

# Make Y axis using labels 

lab=c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1) 

axis(2, at=lab, lab=c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1)) 

# Create box around plot 

box() 
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