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Abstract

This report introduces the fiber bundles. It includes the definitions of fiber bundles such

as vector bundles and principal bundles, with some interesting examples. Reduction of

the structure groups, and covering homotopy theorem and some specific computation using

obstruction classes, Cech cohomology, Stiefel-Whitney classes, and first Chern classes are

included.
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Chapter 1

Introduction to Fiber Bundles

A fiber bundle is a space that is locally a product space, but globally may have a different

topological structure. We can describe it as a continuous surjective map π : E → B that in

small neighborhood U behaves like the projection of U × F to U . Usually, we call the map

π the projection of the bundle. The space E, B, F are known as total space, base space,

and fiber space respectively.

In general, there are two kinds of fiber bundles. The trivial bundle is B × F , the map π is

the canonical projection from the product space to the first factor. In the non-trivial case,

bundles will have totally different topological structures globally, such as the Möbius strip

and the Klein bottle, as well as non-trivial covering spaces.

Definition 1. A fiber bundle is a structure (π,E,B, F ), where E, B, and F are topological

spaces and π : E → B is a continuous surjection satisfying a local triviality condition, which

is called the bundle projection. The space E is the total space, B is called the base space of

the bundle, and F is the fiber space.

The locally triviality condition is that for any point x ∈ B, there exists an open neighborhood
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Ux ⊂ B such that π−1(Ux) is homeomorphic to the product space Ux × F such that the

following diagram commutes:

π−1(Ux) Ux × F

Ux

//
φ

��

π

��

proj

(1.1)

where proj : Ux × F → Ux is the natural projection. The set of all {(Uj, φj)} is called a

local trivialization of the bundle.

Thus for any p in B, the preimage π−1(p) is homeomorphic to Fand is called the fiber over

p. Every fiber bundle π : E → B is an open map since the projection of products are open

maps. Therefore B carries the quotient topology determined by the map π.

Transition Functions

If let U = {Uα}α∈I be a open cover of the base space, then one can construct many different

local homeomorphisms by taking different open sets. Then, the nonempty interscetion of

two local homeomorphisms will give two different systems for the same point in the over-

lap. Transition functions give a invertible transformation of the fiber over the point in two

different systems.

Given a vector bundle E → B, and a pair of neighborhood Uα and Uβ over which the bundle

trivializes via two homeomorphisms,
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hα : Uα × F → π−1(Uα) (1.2)

hβ : Uβ × F → π−1(Uβ) (1.3)

the composite function ψαβ is defined to be

h−1
α ◦ hβ : Uαβ × F → Uαβ × F (1.4)

where Uαβ is Uα ∩ Uβ, which is well defined on the overlap by

h−1
α ◦ hβ(x, v) := ψαβ(x, v) = (x, ψαβ(x)(v)) (1.5)

where the map

ψαβ : Uαβ → Homeo(F) (1.6)

sends x to ψ(x) such that

ψαβ(x) : F → F (1.7)

is the automorphism of the fiber F with f → ψαβ(x)(f) for all f ∈ F .

Lemma 1. ψαβ ◦ ψβγ = ψαγ.

Proof. Note ψαβ is defined to be h−1
α ◦ hβ : Uαβ × F → Uαβ × F , therefore, ψαβ ◦ ψβγ =

h−1
α ◦ hβ ◦ h−1

β ◦ hγ = h−1
α ◦ hγ = ψαγ. Thus, by this fact, for all x ∈ Uα ∩ Uβ ∩ Uγ

and f ∈ F we have ψαβ ◦ ψβγ(x, f) = ψαγ(x, f) ⇒ ψαβ(x, ψβγ(x)(f)) = (x, ψαγ(x)(f)) ⇒

(x, ψαβ(x)(ψβγ(x)(f))) = (x, ψαγ(x)(f)) ⇒ (x, ψαβ ◦ ψβγ(x)(f)) = (x, ψαγ(x)(f)) ⇒ ψαβ ◦

ψβγ = ψαγ
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1.1 Trivial Bundles

Let E = B×F and let π : E → B be the projection onto the first factor. Then E is a fiber

bundle over B. The bundle E is not just a locally product but globally one. Thus, a trivial

bundle is homeomorphic to the Cartesian product.

Lemma 2. Any fiber bundle over a contractible CW-complex is trivial.

Proof. Let B be a contractible CW-complex. Since B is contractible, there is a point x ∈ B

and a homotopy between idB and the constant map f : B → {x}. Then, we can define

the pullback with id∗B(E) w f ∗(E). Therefore, E = Id∗B and f ∗ = B × Ex imply that

E w B × Ex, which is a trivial bundle.1

1.2 Vector Bundles

Definition 2. A vector bundle is a fiber bundle in which every fiber is a vector space. For

every point in the base space B, there is an open neighborhood U and a homeomorphism

h : U × Rk → π−1(U) such that for all x ∈ U,

1. (π ◦ φ)(x, v) = x for all vectors v in Rk

2. v → φ(x, v) is an isomorphism between the vector space Rk and π−1(x),

and the vector bundle over the fields are defined similarly.

1.3 Principal Bundles

A principal bundle P is a mathematical object which formalizes some essential features of

the Cartesian product X×G of a topological space with a structure group G equipped with:

1. An action of G on P , analogous to (x, g)h = (x, gh) for a product space
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2. A natural projection onto X, this is just the projection onto the first factor, (x, g)→ x

Definition 3. A principle G-bundle P , where G denotes any topological group, is a fiber

bundle π : P → X together with a continuous right action P ×G→ P such that G preserves

the fibers of P and acts freely and transitively on them i.e. let Px be a fiber over any point

x, then ∀ x0 and x1 ∈ Px, ∃ some g ∈ G such that x0g = x1

The definition implies that each fiber of the bundle is homeomorphic to the group G itself.

Unlike the product space, principal bundles P lack a preferred choice of identity section.

Likewise, there is no general projection onto G generalizing the projection onto the second

factor, X ×G→ G which exists for the Cartesian product.
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Chapter 2

Example: The Bundle of Frames

(π,SO3,S
2,SO2)

Every rotation maps an orthonormal basis of R3 to another orthonormal basis. Like any lin-

ear transformation of a finite-dimensional vector space, a rotation can always be represented

by a matrix. The orthonormality condition can be expressed as RTR = I, where R is any ro-

tation matrix in R3 and I is the 3×3 identity matrix. Matrices for which this property holds

are called orthogonal matrices. The group of the orthogonal matrices is called orthogonal

group, and SO3 := {A ∈ Mat3×3|ATA = I,det(A) = 1} is the subgroup of the orthogo-

nal group with determinant +1. It is called the special orthogonal group, and the det(A) = 1

Similiarly, SO2 is the orientation preserving orthogonal group in R2. In order to carry out

a rotation using the point (x, y) to be rotated is written as a vector, then multiplied by a

matrix from the rotating angle θ:

x′
y′

 =

cos θ − sin θ

sin θ cos θ


x
y

 (2.1)
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where (x′, y′) are the coordinates of the point after rotation, and the formulae for x′ and y′

can be seen to be

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ.

Note that unlike higher dimension, the group of vector rotations in R2 is commutative.

Before showing the bundle structure of (π,SO3,S
2,SO2), let us consider the map π̃ :

SO3/SO2 → S2 defined by π̃([A]) = A · e3 where A ∈ SO3 and e3 = [0, 0, 1]T . Here,

the equivalence class of [A] is defined via the equivalence

A ∼ A ·

B 0

0 1


where B ∈ SO2. We are trying to show that this map is a bijective continuous closed map,

therefore, a homeomorphism.

Proof. We first show that this map is well-defined. Let [A1] = [A2], so A1 = A2 ·

B 0

0 1

.

Then π̃[A1] = [A1] · e3 = [A2] ·

B 0

0 1

 · e3 = [A2] · e3 = π̃[A2].

Assume π̃[A1] = π̃[A2] so that A1 · e3 = A2 · e3, where A1, A2 ∈ SO3. Now AT2A1 · e3 =

AT2A2 · e3 = I3 · e3 = e3, thus, there exists one element B ∈ SO2 such that AT2A1 =

B 0

0 1

,

which implies that A1 = A2 ·

B 0

0 1

. Therefore, [A1] = [A2] implies that π̃ is injective.
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For each vector −→u =


x

y

z

 ∈ S2, there exists an A ∈ SO3/SO2 with

A =


xz√
1−z2

−y√
1−z2 x

yz√
1−z2

x√
1−z2 y

−
√

1− z2 0 z


such that

π̃([A]) = A · e3 =


xz√
1−z2

−y√
1−z2 x

yz√
1−z2

x√
1−z2 y

−
√

1− z2 0 z




0

0

1

 =


x

y

z


where the way to get A is applying the spherical system by composing the rotation of θ and

the rotation of φ. Since rotation of θ is on the xy-plane, then

R(θ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (2.2)

and the rotation of φ can be fixed on the xz-plane without lost generality, then

R(φ) =


cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)

 (2.3)

therefore, their composition is

8



R(θ) ◦R(φ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1




cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)

 (2.4)

=


cos(θ) cos(φ) − sin(θ) cos(θ) sin(φ)

sin(θ) cos(φ) cos(θ) sin(θ) sin(φ)

− sin(φ) 0 cos(φ)

 (2.5)

Thus, set

cos(θ) sin(φ) = x , sin(θ) sin(φ) = y , cos(φ) = z ,

we can solve each entry of the matrix which is exactly where we get A. Therefore, π̃ is

surjective.

By the construction of π̃, the map actually is the projection of the third column by mul-

tiplying A and the third base element. If we just consider the map π : SO3 → S2 defined

by

π(


a11 a12 a13

a21 a22 a23

a31 a32 a33

) =


a13

a23

a33


Note that SO3 ⊂ Mat3×3(R) is a subspace of R9, and R9 is homeomorphic to R6 × R3

which is the product topological space. Thus, π is just the projection from R9 to R3. Then,

applying the result that the projection from the product topology is continuous will lead

that π̃ is also continuous.
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SO3 is closed as it is the inverse image of a closed set S2, and bounded by computing its

norm, therefore, it is compact. It is clear that S2 is a Hausdorff Space. By the closed map

lemma, every continuous map from a compact space to a Hausdorff space is closed and

proper, we conclude that the continuous map π̃ is closed.

Hence, we just proved that π̃ is a homeomorphism by the fact that a bijective continuous

map is homeomorphism if and only if it is a closed map.

In fact, when H is a closed subgroup of a Lie group G, the projection G→ G/H will be a

principal H-bundle. The example of Q ∈ R shows that one must make some assumption on

H.

We will now show directly the SO3 → S2 is a principal SO2-bundle by replacing H to SO2

and G to SO3. Define a map π : SO3 → S2 by π(A) = A · e3. The similarly way as we did

for π̃ shows that π is a surjective projection.

Now we check the local triviality condition. By doing the stereographic projection, let

U− = S2 − [0, 0, 1]T , define a map φ : R2 → S2. Pick a point (x, y, 0) ∈ R2, then the line

equation

−→r (t) = t(x, y, 0) + (1− t)(0, 0,−1) = (tx, ty, t− 1).

Since this point is on the unit sphere S2, we get

t =
2

x2 + y2 + 1

by solving t2x2 + t2y2 + t2 − 2t+ 1 = 1. So the corresponding point on the sphere is
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(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
1− x2 − y2

x2 + y2 + 1
).

Thus, we can find the new basis for every element of R2 by the differentiation respect to x

and y. Denote the new basis by (e1, e2, e3),

e1 =
φ∗∂x
||φ∗∂x||

= (
2− 2x2 + 2y2

(x2 + y2 + 1)2
,

−4xy

(x2 + y2 + 1)2
,

−4x

(x2 + y2 + 1)2
)

e2 =
φ∗∂y
||φ∗∂y||

= (
−4xy

(x2 + y2 + 1)2
,

2x2 − 2y2 + 2

(x2 + y2 + 1)2
,

−4y

(x2 + y2 + 1)2
)

e3 = (
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
1− x2 − y2

x2 + y2 + 1
)

Now define h− : U− × SO2 → π−1(U−) by

h−((x, y),

cos θ − sin θ

sin θ cos θ

) = (cos θe1(x, y) + sin θe2(x, y),− sin θe1(x, y) + cos θe2(x, y), e3(x, y))

(2.6)

= (e1(x, y), e2(x, y), e3(x, y))


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ∈ SO3. (2.7)

Then, define g− : π−1(U−)→ U−×SO2 by g−(A) = (φ−1(A·e3), (e1(x, y), e2(x, y), e3(x, y)−1A)

as a well-defined continuous map. It is easy to check that h−1
− ◦ g− = idπ−1(U−) and

g−1
− ◦ h− = idU−×SO2 . Therefore, h− is a homeomorphism.
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Similarly, we can constrcut a map h+ : U+ × SO2 → π−1(U+) by

h+((x, y),

cos θ − sin θ

sin θ cos θ

) = (cos θf1(x, y) + sin θf2(x, y),− sin θf1(x, y) + cos θf2(x, y), f3(x, y))

(2.8)

= (f1(x, y), f2(x, y), f3(x, y))


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ∈ SO3 (2.9)

for U+ = S2 − [0, 0,−1]T , where the basis (f1, f2, f3) is

f1 =
φ∗∂x
||φ∗∂x||

= (
2− 2x2 + 2y2

(x2 + y2 + 1)2
,

−4xy

(x2 + y2 + 1)2
,

4x

(x2 + y2 + 1)2
)

f2 =
φ∗∂y
||φ∗∂y||

= (
−4xy

(x2 + y2 + 1)2
,

2x2 − 2y2 + 2

(x2 + y2 + 1)2
,

4y

(x2 + y2 + 1)2
)

f3 = (
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1
)

and define g+ : π−1(U+)→ U+×SO2 by g+(A) = (φ−1(A·e3), (f1(x, y), f2(x, y), f3(x, y)−1A)

as a well-defined continuous map. It is easy to check that h−1
+ ◦ g+ = idπ−1(U+) and

g−1
+ ◦ h+ = idU+×SO2 . Therefore, h+ is a homeomorphism.

Hence, combining the fact of the closed subgroup of the Lie group, we claim that this

structure is a princiapl SO2-bundle. It can also be verified that SO3 is not homeomorphic

to S2 × SO2 by computing fundamental groups. The fundamental group π1(SO2 × S2) is

equal to π1(SO2)×π1(S2), which is homeomorphic to Z×{1} ∼= Z. While the fundamental
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group π1(SO3) is homeomorphic to Z2, so (π,SO3,S
2,SO2) is not a trivial bundle.
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Chapter 3

Trivialization and Section

Definition 4. A section of a fiber bundle is a continuous right inverse of the projection π.

If π : E → B is a fiber bundle, then a section is a continuous map s : B → E such that

π(s(x)) = x for all x ∈ B

The most common question regarding any fiber bundle is whether or not it is trivial. There

is a nice lemma to answer it, but it is not true for the other fiber bundles.

Lemma 3. A principal bundle is trivial if and only if it admits a global section.

Proof. If a principal G-bundle P is trivial (where G denotes any topological group), then,

P = B × G, where G and B are fiber space and base space, is just the Cartesian product.

Define π : P → B as a fiber projection, and proj : B × G → B with proj(b, g) = b as a

Cartesian projection, and we will be able to find a section s : B → P such that s is just the

inclusion map i : B → B×G with i(b) = (b, 1). Thus, π(s(b)) = proj(i(b)) = proj((b, 1)) =

b∀b ∈ B, which implies that the inclusion map i is a global section.

Now if a principal G-bundle P admits a global section. A fiber bundle π : P → B with a

continuous right action ρ : P ×G→ P defined by ρ(p, g) = pg for all g ∈ G, which actually
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defines an equivalence class of any element p in P such that p ∼ pg. Now let B × G be a

Cartesian product and define a map φ : B×G→ P by φ(b, g) = ρ(s(b), g) = s(b)g, we want

to show that φ is an homeomorphism, thus, P is a trivial bundle.

Check injective: Let φ(b1, g1) = φ(b2, g2), so ρ(s(b1), g1) = ρ(s(b2), g2), which implies s(b1)g1

= s(b2)g2. Then, by the definition of section, we have b1 = π(s(b1)) and b2 = π(s(b2)),

where s(b1), s(b2) ∈ P . Since ρ defines the equivalence class such that p ∼ pg∀g ∈ G,

s(b1) ∼ s(b1)g1 and s(b2) ∼ s(b2)g2 for some g1, g2 ∈ G. Thus, b1 = π(s(b1)) = π([s(b1)g1]) =

π(s(b1)g1) and b2 = π(s(b2)) = π([s(b2)g2]) = π(s(b2)g2). So, b1 = b2 and g1 = g2 since

s(b1)g1 = s(b2)g2 = s(b2)g1. Hence, (b1, g1) = (b2, g2).

Check surjective: Given any p ∈ P , set π(p) = b for some b ∈ B by the projection map π :

P → B. By the map s : B → P , we know that s(b) ∈ P . Then, there exists some g ∈ G such

that p = s(b)g. Then, p = s(b)g = ρ(s(b), g) = φ(b, g) = φ(π(p), g) = ρ(s(π(p)), g) = s(p)g.

Note that [p] ∼ [s(π(p))] since π(p) = π(s(π(p))). Therefore, there exists b = π(p) ∈ B and

g ∈ G with p = s(b)g such that p = φ(b, g).

Check continuous: By the definition of the map φ : B × G → P defined by φ(b, g) =

ρ(s(b), g) = s(b)g. We know that φ depends on two continuous map ρ and s, thus, φ is a

continuous map by the fact that the composition of the continuous maps is still continuous.

Check open: Now we pick any open set W ∈ B × G to show that it maps to an open

set in P . Pick Ub, where Ub is the open neighborhood of the arbitrary points b in B.

Consider the local triviality hb : Ub × G → π−1(Ub) which is a homeomorphism, therefore,

h−1
b ◦φ : Ub×G→ Ub×G is defined by h−1

b ◦φ(x, g) = h−1
b (s(x)g) = (x,Pr((h−1

b (s(x)g)))) =

(x,Pr((h−1
b (s(x))))g), where Pr is just the natural projection from Ub ×G to G, therefore,

15



continuous. h−1
b ◦φ is continuous since the composition of two continuous map is continuous.

Let Ψ : Ub × G → Ub × G defined by Ψ(x, g) = (x,Pr((h−1
b (s(x))))−1g) and Θ : Ub × G →

Ub × G defined by Θ(x, g) = (x,Pr((h−1
b (s(x))))g), where Ψ and Θ are both continuous

by definition. Now, Ψ ◦ Θ = 1Θ and Θ ◦ Ψ = 1Ψ. Thus, Θ is a homeomorphism and

φ|Ub×G : Ub × G → π−1(Ub) is a homeomorphism as φ = hb ◦ Θ. Thus, φ|Ub×G is open and

φ(Ub ∩W ) is open. Therefore, φ(W ) = φ(∪(Ub ∩W )) = ∪(φ(Ub ∩W )) is open. Hence, φ is

open.
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Chapter 4

Reduction of the structure group

Definition 5. Given a principal G-bundle P with π : P → B and a monomorphism H → G,

where G is the structure group, then a reduction of the structure group to H is an principal

H-bundle Q such that Q×H G ∼= P .

If W is a right G-space and X is a left G-space, the balanced product W ×G X is the

quotient space W × X/ ∼, where (wg, x) ∼ (w, gx). Equivalently, we can simply convert

X to a right G-space, and take the orbit space of the diagonal action (w, x)g = (wg, g−1x);

thus W ×G X = (W ×X)/G. The following special cases should be noted:

1. If X = ∗ is a point, W ×G ∗ = W/G

2. If X = G with the left translation action, the right action of G on itself makes

W ×GG into a right G-space, and the action map W ×G→ W induces a G-equivalent

homeomorphism W ×G G ∼= W .

Let G and H be topological groups. A (G,H)-space is a space Y equipped with a left

G-action and right H-action, such that the two actions commute: (gy)h = g(yh).Note that

if Y is a (G,H)-space and X is a right G-space, X ×G Y has a right H-action defined by
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[x, y]h = [x, yh]; similarly Y ×H Z has a left G-action defined by g[y, z] = [gy, z]if Z is a left

H-space.2

Proposition 1. The balanced product is associative up to a natural isomorphism: Let X

be a right G-space, Y a (G,H)-space, and Z a left H-space. Then there is a natural

homeomorphism

(X ×G Y )×H Z ∼= X ×G (Y ×H Z).

Proof. By the definition, the balanced product X ×G Y is the quotient group X × Y/ ∼

where (xg, y) ∼ (x, gy). Thus, (X ×G Y ) ×H Z is the quotient group ((X ×G Y ) × Z)/ ∼

where ([x, y]h, z) ∼ ([x, y], hz) and [x, y] is the equivalence class defined as above. Therefore,

((xg, y)h, z) ∼ ((x, gy)h, z) ∼ ((x, gy), hz) ∼ (x, gy, hz). Similarly, the balanced product

Y ×H Z is the quotient group Y × Z/ ∼ where (yh, z) ∼ (y, hz). Thus, X ×G (Y ×H Z)

is the quotient group (X × (Y ×H Z))/ ∼ where (xg, [y, z]) ∼ (x, g[y, z]) and [y, z] is the

equivalence class. Therefore, (xg, (yh, z)) ∼ (x, g(yh, z)) ∼ (x, g(y, hz)) ∼ (x, (gy, hz)) ∼

(x, gy, hz).

Proposition 2. The bundle E = P ×G (G/H) associated with P with standard fiber G/H

can be identified with P/H. An element (p, gH) ∈ P ×G (G/H) maps into the element

pg ∈ P/H. Consequently, P (E,H) is a principal bundle over the base E = P/H with

structure group H. The projection P → E maps p ∈ P into pg ∈ E.

Proof. The proof is straightforward by the definition of the fiber bundle, except the local

triviality of the bundle P (E,H), which follows from local triviality of E(B,G/H,G, P ) and

G(G/H,H). Let U be an open set of B such that π−1
E (U) ∼= U ×G/H and let V be an open

set of G/H such that p−1(V ) ∼= V ×H, where p : G→ G/H is the projection. Let W be the

open set of π−1
E (U) which corresponds to U×V under the identification π−1

E (U) ∼= U×G/H.

If µ : P → E = P/H is the projection, then µ−1(W ) ∼= W ×H.3
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Theorem 1. The structure group of a principal G-bundle P can be reduced to H if and only

if E = P ×G (G/H)→ B admits a section, where H is the closed subgroup of the Lie group

G.

Proof. Suppose that the structure group of P can be reduced to a principal H-bundle Q

such that Q×HG ∼= P . Then, E = P×G(G/H) = Q×HG×G(G/H) = Q×HG×GG×H ∗ =

Q×HG×H∗ = Q×H (G/H) by the proposition of the balanced product, where ∗ corresponds

to any point in H. Since the identity coset in G/H is an H-fixed point, then we can define

a map s : ∗ → G/H. Applying the functor Q ×H (−) to the map s, there is a morphism,

B → Q×H (G/H) which is equivalent to B → P ×G (G/H), a section.2

Suppose that P ×G (G/H)→ B admits a section s : B → P ×G (G/H). By the proposition

above, E = P ×G (G/H) ∼= P/H. Define µ : P → P/H to be the projection, and let Q be

the set of points x ∈ P such that µ(x) = s(π(x)). In other words, Q is the inverse image

of s(B) by the projection µ. For every b ∈ B, there is x ∈ Q such that π(x) = b since

µ−1(s(b)) is non-empty. Given x and y in the same fiber of P , if x ∈ Q then y ∈ Q if and

only if x = yh for some h ∈ H. Thus, the restriction µ|Q : Q→ Q/H is induced by µ, so Q

is a closed sub-manifold of P .3 By the fact that G/H is a smooth manifold and G→ G/H

is a submersion since H is the closed subgroup of the Lie group G, thus Q is a principal

bundle imbedded in P with Q×H G ∼= P .4

The balanced product let one considers many fiber bundles from one principal bundle.

Consequently, given any fiber bundle E → B, one constructs a principal Homeo(F)-bundle

such that

Pψ =
∐
α

Uα × Homeo(F)/ ∼,

where the equivalence class is (x, f) = (x, ψαβ(x)(f)), and ψ is the transition function.

Example 1. As a concrete example, every even-dimension real vector space is the underlying

19



real space of a complex vector space: it admits a linear complex structure. A real vector

bundle admits an complex structure if and only if it is the underlying real bundle of a

complex vector bundle. This is a reduction along the inclusion GL(n,C)→ GL(2n,R).

Example 2. Let G = GL(n) and H = GL+(n). A reduction to GL+(n)-bundle is a fiber

orientation, and we can define a map GL(n)/GL+(n)→ Z2 by sending the equivalence class

[A] to the sign of det(A).

Example 3. Let G = GL(n) and H = O(n). Then G/H is homeomorphic to the group

of upper triangular matrices with positive diagonal entries, and so is contractible. This

implies that the associated bundle P ×GL(n) GL(n)/O(n) admits a section. Hence, any

GL(n)-bundle is induced from an O(n)-bundle.

Example 4. LetG = GL(n,R) andH = SL(n,R), whereH ⊂ G. ThenG/H = GL(n,R)/SL(n,R) ∼=

R×, therefore, a reduction to SL(n) cooresponds to an oriented fiber volume form.

These examples demonstrate the fact that the structure group of a real vector bundle of

rank n can always be reduced to O(n), which can be reduced to SO(n) if and only if the

vector bundle is orientable. And the vector bundle is orientable if its structure group may

be reduced to GL+(n).
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Chapter 5

Covering Homotopy Theorem

Definition 6. Given a map π : E → B, and any topological space X. Then, (X, π) has the

homotopy lifting property if:

1. For any homotopy f : X × I → B

2. For any f̃ : X → E lifting f0 = f |X×{0} such that f0 = π ◦ f̃ ,

there exists a homotopy f̃ : X × I → E lifting f such that f = π ◦ f̃ with f̃0 = f̃ |X×{0} as

the following diagram.

X E

X × I B

//f̃0

��

i0

??

f̃

��

π

//
f

(5.1)

Definition 7. A Hurewicz-fibration is a continuous map π : E → B satisfies he homotopy

lifting property with respect to any space,and a Serre-fibration is a continuous map which

has the homotopy lifting property with respect to any finite CW-complex.
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Example 5. The projection map B × F → B is a trivial fibration, and the fiber over every

point is homeomorphic to F . Indeed, given f and f̃0, define f̃ : X × I → B × F by

f̃(x, t) = (f(x, t),Pr(f̃0(x))).

Example 6. Any covering space E → B is fibration. And, in fact, for a covering space the

lifting f̃ is uniquely determined.

Example 7. Any fiber bundle E → B over paracompact base space B is a fibration, e.g. any

CW-complex.

Example 8. In general,any fiber bundle in which the base space is para-compact is a fibration.

A map π : E → B is a fiber bundle with fiber F if B has a cover U and h : U ×F → π−1(U)

is a homeomorphism for each U ∈ U . But, without the para-compact hypothesis on the

base, any fiber bundle is at least a Serre-fibration.

Theorem 2. Any fiber bundle π : E → B is a Serre-fibration.

Proof. Let π : E → B be a fiber bundle, and suppose given a lifting diagram

In E

In × I B

//
f

��

i0

��

π

//h

Let U be a covering for B on which we have the local trivialization. I can divide In into

sub-cubes C and I into subintervals J ,such that each C × J is in a single h−1(U). For each

C, I can build a lift on each C × J , starting with the J containing 0, so I have a lift along

the initial point of the interval. Moreover, the cube C borders other cubes, so I suppose

that some union D of faces of ∂C has a lift along D × I. For the fixed C and J , the fiber

bundle is the trivial fiber bundle U × F → U . A lift in the diagram
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C U × F

C × I U

//
f

��

i0

??

∃h̃

��

π

//h

must be given in the first coordinate by the map h, so it remains to describe the second

coordinate of the lift. By assumption, we already have a lift C ∪D D × J → U × F → F .

Since the space C ∪D D× J is a retract of C × J , so I can compose the lift with a choice of

a retraction C × J → C ∪D D × J .5

Corollary 1. If F → E → B is a fiber bundle and B is paracompact and contractible, then

E is trivial.

Proof. Let P → B be the associated principal bundle, we will show that it has a section.

Since the base B is contractible, it is homotopy equivalent to a single point ∗. Let h :

B × I → B be a contraction such that h(b, 0) = b0 and h(b, 1) = b. Now pushforward of

π−1(b0) to get the commutative square diagram, then there is a map h̃ : B × I → P such

that

B P

B × I B

//h̃0

��

i0

??

h̃

��

π

//h

So we define σ : B → P by σ(b) = h̃(b, 1). Since P has a section, P is trivial, then

P = B × Homeo(F). Thus, E = P ×Homeo(F) F = B × F .
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5.1 Hopf-fibration: (S1 → S3 → S2)

We can identify R4 with C2 and R3 with C× R by letting

1. (x1, x2, x3, x4)as(z0 = x1 + ix2, z1 = x3 + ix4)

2. (x1, x2, x3) as (z = x1 + ix2, x = x3).

Thus S3 is identified with the subset of all (z0, z1) ∈ C2 such that |z0|2 + |z1|2 = 1, and

S2 is identified with the subset of all (z, x) ∈ C × R such that |z|2 + x2 = 1. Then the

Hopf-fibration π is defined by

π(z0, z1) = (2z0z1, |z0|2 − |z1|2).

The first component is a complex number and the second one is real. Then, we need to

check that the image of π maps into S2, which can be verified by squaring two parts of the

image

(2z0z1)2 + (|z0|2 − |z1|2)2 = 4|z0|2|z1|2 + |z0|4 − 2|z0|2|z1|2 + |z1|4 (5.2)

= (|z0|2 + |z1|2)2 = 1 (5.3)

It is easy to see that this is a surjective map since S2 → S3 is an inclusion map. Then, if

two points on S3 map to the same point on the S2 such that π(z0, z1) = π(w0, w1), then

(w0, w1) must equal to (λz0, λz1) for some complex number λ with |λ|2 = 1. Since the set of

the complex numbers λ with |λ|2 = 1 forms the unit circle in the complex plane, it follows

that for each point x ∈ S2, the inverse image π−1(x) is isomorphic to S1. This structure

admits a local trivialization which implies that it is a fiber bundle, hence, a fibration since

the base space S2 is a paracompact CW-complex.
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Chapter 6

Obstruction Theory

Suppose we want to construct a section from a CW-complex X into a bundle E with fiber

F . We do this by induction: given a section σ : X(k) → E on the kth-skeleton X(k) and a

(k+1)-cell i : Dk+1 → X, we want to extend σ over the i. The obstruction to extend over a

(k+1)-cell is an element of πk(F ), the k-th homotopy group of the fiber.6

Define the pullback i∗(E) := {(p, q) ∈ Dk+1 × E|i(p) = π(q)}, where q := σ(i(p)) and the

fiber of i∗(E) over x ∈ X is the fiber of E over i(p) ∈ X. Therefore, it admits the bundle

structure

i∗(E)

Sk Dk+1

??

//
��

Thus, i∗(E) admits a trivialization φ such that

φ : i∗(E)→ Dk+1 × F
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then, there exists a continuous projection P2 maps to the fiber space F . Now we can define

the obstruction class Oσ(i) = [P2 ◦ φ(b, σ ◦ i)] ∈ πk(F ), where Oσ ∈ Ck+1
CW (X, πk(F )). These

obstructions fit together to give a cellular cochain O on X with coefficients in this πk. In

fact, this cochain is a cocycle, so it defines an obstruction class O(E) in Hk+1(X, πk(E)).

Then there exists a cross-section over the (k+1)-skeleton if and only if a certain well defined

obstruction class is zero. If the cochain is 0, then there exists a map µ : Dk+1 → F . Then

the section extending to (k+1)-skeleton σ̃ : Xk+1 → E is defined to be P2(φ−1(v, µ(v))),

where v ∈ Dk+1.

Example 9. (1st Stiefel-Whitney class)

Let E → X be a real vector bundle with structure group GL(n,R) as example 2 in section

2, where X is a CW-complex space. Then, E is orientable if and only if its structure

group can be reduced to the subgroup GL+(n,R). Therefore, we have the associated bundle

Z(E) = GL(n,E)×GL(n,R) (GL(n,R/GL+(n.R))) with fiber Z2 as the following diagram,

Z2 Z(E)

X X

//i

��

π

??

σ

//
Idx

(6.1)

where the orientation is a section σ.

So, we build σk inductively on the k-th skeleton X(k). Define σ0 : X(0) → E as a section

such that π ◦ σk = Id since X(0) ↪→ X is an inclusion map. Note that the fiber Z2 is a

group so that its 0th-homotopy group π0(Z2) = Z2. In this case, the obstruction cocycle is

the 1st Stiefel-Whitney class wσ1 (E) ∈ C1
CW (X,Z2). Hence, a section defined on 0-cells is
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extendable if and only if the 1st Stiefel-Whitney class wσ1 (E) ∈ H1(X,Z2) is 0.

(1). It is a cocycle since its coboundary is 0. Indeed, let i : D2 → X be 1-cells and

(δwσ01 (E))(i) = wσ01 (E)(∂i) = (σ0(1, e2)−σ0(1, e1))+(σ0(1, e3)−σ0(1, e2))+ ...+(σ0(1, e1)−

σ0(1, en)) = 0 where ei is the 0-cells of D2 and en need not be distinct.

Figure 6.1: cell decomposition

(2). The 1st Stiefel-Whitney class is independent of the choice of sections. Let’s pick two

distinct sections σ and τ . Then, define 4σ,τ ∈ C1
CW (X, π0(Z2)) by 4τ,σ(x) = σ(x)− τ(x) ∈

π0(Z2). Thus,
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(δ4τ,σ)(e) = 4τ,σ(∂e) (6.2)

= 4τ,σ(1, e)−4τ,σ(−1, e) (6.3)

= (σ(1, e)− τ(1, e))− (σ(−1, e)− τ(−1, e)) (6.4)

= wσ1 − wτ1 = 0 (6.5)

Figure 6.2: 1st Stiefel Class of total space E

Exercise 1. Compute wσ1 (E) and wτ1(E), where σ, τ : S(0) → E. Let us first consider the

function σ where the chosen two 0-cells are mapping into different sides of the total space

E, and we can define an orientation of S1 as the graph shows by separating S1 into two

arcs denoted D+ and D−. By drawing two different arcs of the projections from E to

S1, there is no continuous mapping from the boundary of D− to the bundle space since

the two points on E is arc-wise disconnected, so does D+. Therefore, I conclude that

wσ1 (E)(D−) = wσ1 (E)(D+) = 1, which implies that wσ1 (E)(S1) = 1 + 1 = 2 = 0 in Z2.

Let another function τ maps two 0-cells into the same side of the total space as the graph

shows. Then, wτ1(E)(D−) = wτ1(E)(D+) = 0, so wτ1(E)(S1) = 0. It actually shows that
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the obstruction class is independent with the choice of the functions. Therefore, the zero

obstruction class implies that we can extend the function from 0-cell to 1-cell.

Figure 6.3: 1st Stiefel Class of total space E ′

Exercise 2. Compute wσ1 (E ′) and wτ1(E ′) of the different bundles E ′, where σ and τ are the

same as part B. By separating the base space S1 into two parts D+ and D− as we did above.

Then, wσ1 (E ′)(D−) = 1 and wσ1 (E ′)(D+) = 0, which implies that wσ1 (E ′)(S1) = 1 + 0 = 1

in Z2. We know that the obstruction class is independent with the choice of the functions,

thus, wτ1(E ′)(D−) = 0 and wτ1(E ′)(D+) = 1 which can also be proved by the graph. So,

wτ1(E ′)(S1) = 1 + 0 = 1. Hence, we can not extend any function on 0-cells over 1-celsl on

the vector bundle E ′.

Example 10. (1st Chern class) Recall the definition of the complex vector bundle: a complex

vector bundle E of complex dimension n over B and projection map π : E → B, together

with the structure of a complex vector space in each fiber π−1(b) with local triviality such

that h : U × Cn → π−1(U) is a homeomorphism which maps each fiber π−1(b) complex

linearly onto b× Cn

Just as the structure group of a real vector bundle can be reduced to the orthogonal group
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O(n), the structure group of a rank n complex vector bundle can be reduced to the unitary

group U(n). Every complex vector bundle E of rank n has an underlying real vector bundle

ER of rank 2n, obtained by discarding the complex structure on each fiber.

Construct the composition GL(n,C) → C× → S1, where the map from the complex linear

group GL(n.C) to the multiplicative group of complex number C× is a determinant func-

tion, and the map from the total space to the base space S1 is an argument function. Then,

there exists a reduced bundle structure of the complex vector bundle P with the base space

X denoted as E := P ×GL(n,C) (GL(n,C)/Ker(arg ◦ det)), where GL(n,C)/Ker(arg ◦ det)

is homeomorphic to S1. Since π0(S1) = 0 and π1(S1) = Z, the obstruction class O(E)

is an element in C2
CW (X,Z). In this case, the 1st Chern class c1(E) is defined to be the

obstruction class O(E) , an element in 2nd cohomology group H2(X,Z).

Exercise 3. Consider the complex vector bundle π : E → S2 with fiber C, where the total

bundle E is the tangent space of S2. To compute the first Chern class c1(E)(S2).

Cut the 2-sphere into two halves with one labeled D2
+ and another one D2

− as the graph

shows, which are homeomorphic to D2, a one dimensional disk over C. By pointing out the

vectors on the equator on both halves, I take the projection of the vectors from the equator to

the boundary of the disk as graphs. Define ψ∗ : D1
+ → R3 by ψ∗(x, y) = (x, y,

√
1− x2 − y2).

Then, taking the patrial derivative to x,

∂xψ∗(x, y) = (1, 0,−x(1− x2 − y2)−
1
2 ), (6.6)

normalizing this vector, we get

∂xψ∗(x, y)

||∂xψ∗(x, y)||
=

((1− x2 − y2)
1
2 , 0,−x)

(1− y2)
1
2

(6.7)
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Now, plugging in some values for (x, y), we can tell that the orientation of the vectors on

D1
+ does not change, while the orientation of the vectors on D1

− changes twice by defining

the similar parametrization function. Therefore, the first Chern class is

c1(E)(S2) = c1(E)(D1
+) + c1(E)(D1

+) = 0 + 2 = 2,

which can be verified by our definition related to the Euler class of S2, c1(E)(S2) =

e(ER2)(S2) =
∑

(−1)k(] of the k-cell) = (−1)0(1) + (−1)1(0) + (−1)2(1) = 1 + 0 + 1 = 2

Figure 6.4: Cell decomposition of torus

Exercise 4.

Let us see another example denoted as C → T (T 2) → T 2, where the total space is the

tangent space of the 2-torus. By definition, T 2 = C/(Z⊕ iZ). Thus, we have the graph of
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the square representing the 2-torus, which is homeomorphic to the unit circle. Since A1 and

A2 are equivalent, then we can define a continuous function a : A1 → A2 by a(z) = z + i,

where z is a complex number. So this map preserves the sign of the vector, therefore, the

orientation of the vectors on A1 and A2 is the same. We can define another continuous

function b : B1 → B2 by b(z) = 1 + z, which also preserves the orientation of the vectors on

B1 and B2. Note that the four vertices are identified by gluing together, so the orientation

of the vectors on four sides preserves. Hence, the orientation of the vectors on the tangent

bundle preserves, which implies that the first Chern class c1(TT 2)(T 2) = 0.

It can also be verified by computing the Euler class of T 2, e(T 2) = (−1)0(1) + (−1)1(2) +

(−1)2(1) = 0

6.1 Stiefel-Whitney Classes

The Stiefel-Whitney classes are a set of topological invariants of a real vector bundle that

describe the obstructions to constructing independent sections. Let H i(B;Z2) denote the

i-th singular cohomology group of B with coefficients in Z2, here are four axioms which

characterize the Stiefel-Whitney cohomology.7

Axiom 1. For each vector bundle E there corresponds a sequence of cohomology classes

wi(E) ∈ H i(B(E);Z2), i = 0, 1, 2, ...,

called the Stiefel-Whitney classes of E. The class w0(E) is the unit element

1 ∈ H0(B(E);Z2),

and wi(E) = 0 ∀ i ≥ n if E is an n-dimensional bundle.
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Axiom 2. If f : Y → X is covered by a bundle map from E to E ′, then

wi(E) = f ∗wi(E
′),

where f ∗ is the pullback.

Axiom 3. If E and E ′ are vector bundles over the same base space, then

wn(E ⊕ E ′) =
n∑
i=0

wi(E) ∪ wn−i(E ′),

where ∪ denotes the cap product. For example, w1(E⊕E ′) = w1(E) +w1(E ′), and w2(E⊕

E ′) = w2(E) + w1(E)w1(E ′) + w2(E ′).

Axiom 4. For the line bundle E1
1 over the circle P 1(real projective plane), the Stiefel-Whitney

class w1(E1
1) is non-zero.

Proposition 3. If Ei is isomorphic to E ′ then wi(E) = wi(E
′).

Proposition 4. If E is a trivial vector bundle then wi(E) = 0 for i > 0.

Proposition 5. If E is trivial then wi(E ⊕ E ′) = wi(E
′)

6.2 Chern Class

The Chern classes are a set of topological invariants of a complex vector bundle that describe

the obstructions to constructing independent sections. Let H2i(B;Z) denote the 2i-th sin-

gular cohomology group of B with coefficients in Z, here are four axioms which characterize

the Chern cohomology.7

Axiom 5. For each complex vector bundle E there corresponds a sequence of cohomology

classes

ci(E) ∈ H2i(B(E);Z), i = 0, 1, 2, ...,
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called the Chern classes of E. The class c0(E) is the unit element

1 ∈ H0(B(E);Z),

and ci(E) = 0 ∀ i ≥ n if E is an n-dimensional bundle.

Axiom 6. If f : Y → X is covered by a bundle map from E to E ′, then

ci(E) = f ∗ci(E
′),

where f ∗ is the pullback.

Axiom 7. If E and E ′ are vector bundles over the same base space, then

cn(E ⊕ E ′) =
n∑
i=0

ci(E) ∪ cn−i(E ′),

where ∪ denotes the cap product. For example, c1(E⊕E ′) = c1(E)+c1(E ′), and c2(E⊕E ′) =

c2(E) + c1(E)c1(E ′) + c2(E ′).

Axiom 8. For the line bundle E1
1 over the circle CP 1(complex projective plane), the Chern

class c1(E1
1) is −1.

Proposition 6. If Ei is isomorphic to E ′ then ci(E) = ci(E
′).

Proposition 7. If E is a trivial vector bundle then ci(E) = 0 for i > 0.

Proposition 8. If E is trivial then ci(E ⊕ E ′) = ci(E
′)
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Chapter 7

Čech Cohomology

In general, to define homotopy groups, one must pick a base point. We did not need the

base point in our discussion of the first Stiefel-Whitney classes as one does not need a base

point to define an element of π0(Z2). Similarly, one does not need a base point to discuss

an element of π1(S1) = Z = H1(S1).

In order to work with different base points, one needs to use the cohomology group with

twisted coefficients. Then, Čech cohomology is a tool applies abelian sheaf cohomology by

using coverings and systems of coefficients on the covering and all non-empty finite inter-

sections. More generally, it applies to non-abelian cohomology, therefore, can be used to

compute classes of fiber bundles.

Čech cohomology is obtained using an open cover of a topological space and it arise using

purely combinatorial data. The idea being that if one has information about the open sets

that make up a space as well as how those sets are glued together one can deduce global

properties of the space from the local data.
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Let U = {Uα : α ∈ A} be an open cover of a connected manifold M . For α0, · · ·, αn ∈ A, we

denote

Uα0···αk = Uα0 ∩ · · · ∩ Uαk

or, equivalently, in multi-index notation, if a = {α0, · · ·, αk}

Ua =
⋂
αi∈a

Uαi

Let X be a topological space, and let U be an open cover of X. Define a simplicial complex

N (U), called the nerve of the covering as follows:

1.There is one vertex for each element of U 2.There is one edge for each pair U1, U2 ∈ U

such that U1 ∩ U2 6= ∅ 3.There is one k-simplex for each k+1-element subset {U0, · · ·, Uk}

of U for which U0 ∩ · · · ∩ Uk 6= ∅

The ideal of Čech cohomology is that, if we choose a nice cover U containing of sufficiently

small open sets, the resulting simplicial complex N (U) should be a good conmbinatorial

model for the space X. For such a cover, the Čech cohomology of X is defined to be the

simplicial cohomology of the nerve.

Now let X be a topological space, and Let F be the abelian group of coefficients. Let U be

an open cover of X. An q-simplex σ of N (U) is an ordered collection of q+1 sets chosen

from U such that the intersection of all these sets is non-empty. This intersection is called

the support of σ.

Now let σ = (Ui)i∈{0,...,q} be such a q-simplex. The j-th partial boundary of σ is defined to

be the (q-1)-simplex obtained by removing the j-th set from σ, that is
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∂jσ = (Ui)i∈{0,...ĵ,...,q}

the boundary of σ is defined as the alternating sum of the partial boundaries

∂σ =

q∑
j=0

(−1)j∂jσ

A q-cochain of U with coefficient in F is a map which associates to each q-simplex σ and

we denote the set of all q-cochains of U with coefficients in F by Cq(U ,F).

In fact, all one needs is a way to associate an abelian group to an open say F(U)(which

functions U → F) and a homeomorphism iUV : F(U) → F(V ) for the subset V ↪→ U such

that

1. iUU = id and iUV ◦ iVW = iUW .

2. Let U = ∪Uα, if iUUα · f = iUUα · g ∀ α, then f = g.

3. For any fα ∈ F(Uα) such that iUαUαβ · fα = i
Uβ
Uβα
· fβ. Then, f ∈ U such that fα = iUUα · f .

Such a structure is called a Sheaf.

The cochain groups can be made into a cochain complex (Ck(U ,F), δ) by defining the

coboundary operator δq : Cq(U ,F) → Cq+1(U ,F) by (δqω) =
∑q

j=0(−1)jres
|∂jσ|
|σ| ω(∂jσ),

where res
|∂jσ|
|σ| ω(∂jσ) is the restriction morphism on the intersection. It also satisfies the

composition that δq+1 ◦ δq = 0.

A q-cochain is called a q-cocycle if it is in the kernel of δ, hence Zq(U ,F) := ker(δq :

Cq(U ,F) → Cq+1(U ,F)) is the set of all q-cocycles. Thus a (q-1)-cochain f is a cocycle if
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for all q-simplices σ the cocycle condition
∑q

j=0(−1)jres
|∂jσ|
|σ| f(∂jσ) = 0 holds. In particular,

a 1-cochain f is a 1-cocycle if f(B ∩C)|U − f(A∩C)|U + f(A∩B)|U = 0 ∀ U = A∩B ∩C,

where {A,B,C} ∈ U .

A q-cochain is called a q-coboundary if it is in the image of δ and Bq(U ,F): = im(δq−1 :

Cq−1(U ,F) → Cq(U ,F)) is the set of all q-coboundaries. For instance, a 1-cochain f is a

1-coboundary if there exists a 0-cochain h such that f(U) = (δh)(U) = h(A)|U - h(B)|U ∀

U = A ∩B, where {A,B ∈ U}.

Then, the Čech cohomology of U with values in F is defined to be the cohomology of the

cochain complex (Ck(U ,F), δ). Thus the q-th Čech cohomology is given by

Ȟq(U ;F) = Hq((Cq(U ,F), δ)) = Zq(U ,F)/Bq(U ,F)

The Čech cohomology of X is defined by considering refinements of open covers. If V is a

refinement of U then there is a map in cohomology Ȟ∗(U ,F)→ Ȟ∗(V ,F). The open covers

of X form a directed set under refinement, so the above map leads to a direct system of

abelian groups. The Cech cohomology of X with values in F is defined as the direct limit

Ȟ∗(X,F) = lim→U Ȟ∗(U ,F).

Related to other cohomology

If X is homotopy equivalent to a CW-complex, then the Čech cohomology Ȟ∗(U ;F) is

naturally isomorphic to the singular cohomology H∗(U ;F). If X is a differential manifold,

then Ȟ∗(U ;F) is naturally isomorphic to the de Rham cohomology of X. For some less

well-behaved spaces that fails for the closed topologist’s sine curve, its Čech cohomology

Ȟ1(X;Z) = Z, whereas H1(X;Z) = 0.
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Example 11. Compute the Ȟ∗(S1;Z) if the open cover U = U1∪U2 = {(x, y)|x2 +y2 = 1, y <

1
2
}∪{(x, y)|x2+y2 = 1, y > −1

2
}. U1∩U2 = {(x, y)|x2+y2 = 1,−1

2
< y < 1

2
}, which is the dis-

connected two components. Note, for any continuous map f ∈ C0(U1 → Z), its image f(U1)

is connected since U1 is connected, but the only connected subspaces of Z are ∅ and singleton

points which implies that f(U1) = singleton point, therefore, isomorphic to Z since the U1

is not empty. Also, the disconnection of U1 ∩U2 will give C0(U12 → Z) two distinct compo-

nents. Then, C0(N (U)) = C0(U1 → Z)⊕C0(U2 → Z) ∼= Z⊕Z, and C1(N (U)) = C0(U12 →

Z) = C0(U+
12 → Z) ⊕ C0(U−12 → Z) ∼= Z ⊕ Z. Define δ−1 : C−1(N (U)) → C0(N (U)),

δ0 : C0(N (U)) → C1(N (U)), and δ1 : C1(N (U)) → C2(N (U)). The maps δq will all be

0 map since Cq(N (U)) = 0∀q ≥ 2. Note, for any continuous map f ∈ C0(N (U)) has two

distinct components with f = (f1, f2). Thus, δ0f = δ0(f1, f2) = f1|U12 − f2|U12 , so

Kerδ0 = {(f1, f2) ∈ C0(N (U))|δ0(f1, f2) = f1|U12−f2|U12 = 0} = {(f1, f2) ∈ C0(N (U))|f1|U12 =

f2|U12} = {(f1, f2) ∈ C0(N (U))|f1 = f2} ∼= (Z⊕Z)/Z ∼= Z since f1 and f2 are both entirely

constant map. And, Imδ−1 = 0 since C−1(N (U)) = 0. Thus, Ȟ0(S1;Z) = Kerδ0/Imδ−1 =

{f1, f2|f1 = f2} ∼= Z ⊕ Z/Z ∼= Z. Kerδ1 = {g = (g1, g2) ∈ C1(N (U))|δ1(g1, g2) = 0} = 0

since C2(N (U)) is 0. So, Kerδ1 = C1(N (U)) which generates by (g1, g2), thus, iso-

morphic to Z ⊕ Z, where g1 generates C0(U+
12 and g2 generates C0(U−12. And Im(δ0) =

{g ∈ C1(N (U))|g = δ0f = (f1, f2) = f1|U12 − f2|U12 = g1 + g2} ∼= Z. Thus, Ȟ1(S1;Z) =

Kerδ1/Imδ0 = {g1, g2}/(g1 + g2) ∼= Z⊕ Z/Z ∼= Z.

Therefore, Ȟq(S1;Z) =

 Z for q = 0, 1

0 for q ≥ 2
.

As the 1-dimensional sphere can be constructed using CW-complex, its Čech cohomology is

the same as its singular cohomology.
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