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Abstract

This report introduces the fiber bundles. It includes the definitions of fiber bundles such
as vector bundles and principal bundles, with some interesting examples. Reduction of
the structure groups, and covering homotopy theorem and some specific computation using
obstruction classes, Cech cohomology, Stiefel-Whitney classes, and first Chern classes are

included.
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Chapter 1

Introduction to Fiber Bundles

A fiber bundle is a space that is locally a product space, but globally may have a different
topological structure. We can describe it as a continuous surjective map 7 : £ — B that in
small neighborhood U behaves like the projection of U x F' to U. Usually, we call the map
7 the projection of the bundle. The space F, B, F' are known as total space, base space,

and fiber space respectively.

In general, there are two kinds of fiber bundles. The trivial bundle is B x F', the map 7 is
the canonical projection from the product space to the first factor. In the non-trivial case,
bundles will have totally different topological structures globally, such as the Mobius strip

and the Klein bottle, as well as non-trivial covering spaces.

Definition 1. A fiber bundle is a structure (7, E, B, F'), where E, B, and F are topological
spaces and 7 : E — B is a continuous surjection satisfying a local triviality condition, which

15 called the bundle projection. The space E s the total space, B is called the base space of

the bundle, and F' is the fiber space.

The locally triviality condition s that for any point x € B, there exists an open neighborhood



U, C B such that #=(U,) is homeomorphic to the product space U, x F such that the

following diagram commutes:

U, x F

proj
Us (1.1)

where proj : U, x F' — U, is the natural projection. The set of all {(U;, ¢;)} is called a

local trivialization of the bundle.

Thus for any p in B, the preimage m'(p) is homeomorphic to Fand is called the fiber over
p. Every fiber bundle m : E — B is an open map since the projection of products are open

maps. Therefore B carries the quotient topology determined by the map .

Transition Functions

If let U = {U,}aer be a open cover of the base space, then one can construct many different
local homeomorphisms by taking different open sets. Then, the nonempty interscetion of
two local homeomorphisms will give two different systems for the same point in the over-
lap. Transition functions give a invertible transformation of the fiber over the point in two

different systems.

Given a vector bundle £ — B, and a pair of neighborhood U, and Up over which the bundle

trivializes via two homeomorphisms,



ho : Uy X F — 7' (Us)
hg:Ug x F' — 7T71<Ug>
the composite function Eaﬁ is defined to be
h;IOhgiU&gXF—)UQBXF

where Uyp is U, M Ug, which is well defined on the overlap by

h' © ha(x,0) 1= Yop(,v) = (,Yas(x)(v))

where the map

Yop : Uap — Homeo(F)

sends x to ¥ (z) such that

Yop(z) 1 F = F

is the automorphism of the fiber F' with f — ¢,5(x)(f) for all f € F.

Lemma 1. 9,50 Y, = 1q,.

(1.2)

(1.3)

(1.5)

Proof. Note Eaﬂ is defined to be h ' o hg : Uys x F — U,p x F | therefore, Eaﬂ o@m =

« «

hot o hgo h;l oh, = hytoh, = an‘ Thus, by this fact, for all x € U, N Uz NU,

and f € I we have Eaﬁ © E,B’y(x7 f) - Ea'y(x7 f) = Eaﬁ(‘r?zﬁﬂ’y(x)(f)) - ((L’,Qﬁaw(l')(f)) =
(7, Yap () (Vpy (2)(f))) = (T,%0r(2)(f)) = (T,%0p 0 Va1 (T)(f)) = (%, %0y (2)(f)) = Pas ©

wﬁv = wow

O



1.1 Trivial Bundles

Let E = B x F and let 7 : E — B be the projection onto the first factor. Then E is a fiber
bundle over B. The bundle E is not just a locally product but globally one. Thus, a trivial

bundle is homeomorphic to the Cartesian product.
Lemma 2. Any fiber bundle over a contractible CW-complex is trivial.

Proof. Let B be a contractible CW-complex. Since B is contractible, there is a point x € B
and a homotopy between idp and the constant map f : B — {x}. Then, we can define
the pullback with idy(E) « f*(E). Therefore, E = Id}; and f* = B x E, imply that
E v« B x E,, which is a trivial bundle.! O

1.2 Vector Bundles

Definition 2. A vector bundle is a fiber bundle in which every fiber is a vector space. For
every point in the base space B, there is an open neighborhood U and a homeomorphism

h:U x RF — 771(U) such that for all z € U,
1. (mo¢)(z,v) =z for all vectors v in R
2. v — ¢(x,v) is an isomorphism between the vector space RF and 7= (z),

and the vector bundle over the fields are defined similarly.

1.3 Principal Bundles

A principal bundle P is a mathematical object which formalizes some essential features of

the Cartesian product X x GG of a topological space with a structure group G equipped with:

1. An action of G on P, analogous to (z,g)h = (z, gh) for a product space

4



2. A natural projection onto X, this is just the projection onto the first factor, (x,g) — z

Definition 3. A principle G-bundle P, where G denotes any topological group, is a fiber
bundle m : P — X together with a continuous right action P x G — P such that G preserves
the fibers of P and acts freely and transitively on them i.e. let P, be a fiber over any point

x, thenV xy and x; € P,, 3 some g € G such that xog = x

The definition implies that each fiber of the bundle is homeomorphic to the group G itself.
Unlike the product space, principal bundles P lack a preferred choice of identity section.
Likewise, there is no general projection onto GG generalizing the projection onto the second

factor, X x G — G which exists for the Cartesian product.



Chapter 2

Example: The Bundle of Frames
(7,803,580,

Every rotation maps an orthonormal basis of R? to another orthonormal basis. Like any lin-
ear transformation of a finite-dimensional vector space, a rotation can always be represented
by a matrix. The orthonormality condition can be expressed as R R = I, where R is any ro-
tation matrix in R? and I is the 3x3 identity matrix. Matrices for which this property holds
are called orthogonal matrices. The group of the orthogonal matrices is called orthogonal
group, and SOz := {A € Matz,3|ATA = I,det(A) = 1} is the subgroup of the orthogo-

nal group with determinant +1. It is called the special orthogonal group, and the det(A) = 1

Similiarly, SO, is the orientation preserving orthogonal group in R2. In order to carry out
a rotation using the point (x, y) to be rotated is written as a vector, then multiplied by a

matrix from the rotating angle 6:

T cos) —sinf| |z

Y sinf)  cos Y



where (2/, y') are the coordinates of the point after rotation, and the formulae for 2’ and 3/

can be seen to be

7' = xcosh —ysinb
y' = zsinf + y cos .

Note that unlike higher dimension, the group of vector rotations in R? is commutative.

Before showing the bundle structure of (m,SOj3,S?% SO,), let us consider the map 7 :
SO;/S0O, — S? defined by 7([A]) = A - e3 where A € SO3 and ez = [0,0,1]7. Here,

the equivalence class of [A] is defined via the equivalence

A~A-
0 1

where B € SO,. We are trying to show that this map is a bijective continuous closed map,

therefore, a homeomorphism.

B 0
Proof. We first show that this map is well-defined. Let [A;] = [As], so A} = Ay -

0 1

B 0
Then %[Al] = [Al] €3 = [AQ] . €3 = [AQ] €3 = %[AQ]
0 1

Assume 7[A;] = T[Ay] so that A; - e3 = Ay - e3, where A;, Ay € SO3. Now ATA; -e3 =

0
AT Ay -e3 = I3 - e3 = e, thus, there exists one element B € SO, such that AT A; = ,
0 1
B 0 -
which implies that A4; = A - . Therefore, [A;] = [As] implies that 7 is injective.
0 1



xT

For each vector o = y| € S?, there exists an A € SO3/SO, with

z
xz —y
V1-22 V1-22 X
= Yz X
A V1-22 V1-22 Yy
—V/1 — 22 0 z
such that
\/117222 \/;E/z2 X 0 X
RA)=A-es= | = = | o] =y

—/1 =22 0 2| |1 z

where the way to get A is applying the spherical system by composing the rotation of # and

the rotation of ¢. Since rotation of § is on the xy-plane, then

R(¢) = 0o 1 0 (2.3)
—sin(¢) 0 cos(¢)

therefore, their composition is



cos(f) —sin(d) 0 cos(¢p) 0 sin(¢)
R(0) o R(¢) = |sin(d) cos(d) 0 0 1 0 (2.4)
0 0 1| [—sin(¢) 0 cos(9)

cos(f) cos(¢p) —sin(f) cos(6)sin(¢)
= |sin(f) cos(¢) cos(f) sin(f)sin(¢) (2.5)
— sin(¢) 0 cos(¢)

Thus, set

cos(f) sin(¢) = =, sin(f)sin(¢) =y, cos(¢) = z,

we can solve each entry of the matrix which is exactly where we get A. Therefore, 7 is

surjective.

By the construction of 7, the map actually is the projection of the third column by mul-
tiplying A and the third base element. If we just consider the map 7 : SO3 — S? defined
by

ail aig ais ais
7( Q21 Q22 G23 )= Q93
ag1 asz g3 as3

Note that SO3 C Matsy3(R) is a subspace of R?, and R? is homeomorphic to R® x R3
which is the product topological space. Thus, 7 is just the projection from R? to R®. Then,
applying the result that the projection from the product topology is continuous will lead

that 7 is also continuous.



SOj; is closed as it is the inverse image of a closed set S?, and bounded by computing its
norm, therefore, it is compact. It is clear that S? is a Hausdorff Space. By the closed map
lemma, every continuous map from a compact space to a Hausdorff space is closed and

proper, we conclude that the continuous map 7 is closed.

]

Hence, we just proved that 7 is a homeomorphism by the fact that a bijective continuous

map is homeomorphism if and only if it is a closed map.

In fact, when H is a closed subgroup of a Lie group G, the projection G — G/H will be a
principal H-bundle. The example of Q € R shows that one must make some assumption on
H.

We will now show directly the SO3 — S? is a principal SOs-bundle by replacing H to SO,
and G to SO3. Define a map 7 : SOz — S? by m(A) = A - e3. The similarly way as we did

for ™ shows that 7 is a surjective projection.

Now we check the local triviality condition. By doing the stereographic projection, let
U_=82?-10,0,1]", define a map ¢ : R*> — S?. Pick a point (x,y,0) € R? then the line

equation

T(t) = t(z,y,0) + (1 —1)(0,0,—1) = (tz, ty,t —1).

Since this point is on the unit sphere S?, we get

2
:L-2_|_y2+1

by solving t?x? + t?y? +t*> — 2t + 1 = 1. So the corresponding point on the sphere is

10



( 2z 2y 1—x2—y2>
e A e R R AR

Thus, we can find the new basis for every element of R? by the differentiation respect to x

and y. Denote the new basis by (e, e, €3),

040y (2 — 222 + 292 —4xy —4x )
€ = Y )
1 P+ 2+ 12 (24 + 12 (22 + 2+ 1)2

A

}.0, ( —4zy 222 — 2% + 2 —4y )
6 = = N s
2T 00yl @22+ 12 (a2 + g2+ 1)2 (a2 + g2 + 1)?

( 2z 2y 1—x2—y2)
€Ca =
TR U242+ U 22+ 1

Now define h_ : U_ x SOy — 7~ 1(U_) by

cosf@ —sinf

h_((z,y), ) = (cosfei(x,y) + sinbes(z,y), —sinfei(x, y) + cosbes(x,y), es(z,y))
sinf  cos®

(2.6)
cosf) —sinf O
= (e1(x,y), e2(z,y), e3(x,y)) [sinf cosd 0| € SOs3. (2.7)

0 0 1

Then7 define g- - ﬂ-il(U—) — U= X802 by g—(‘A) = (¢71<A'63)) (61(1’, y)7 62(1'7 y)u 63(1‘7 y)ilA)

as a well-defined continuous map. It is easy to check that h™' o g = id 1 _y and

g— Loh = tdy_«s0,. Therefore, h_ is a homeomorphism.

11



Similarly, we can constrcut a map hy : U, x SOy — 7~ 1(U,) by

cosf —sinf
h_;,_((l’,y), ) = (C089f1<x7y) + siné’fg(x,y), —siné’fl(x,y) + COS@fQ([E,y),fg(I,y»
sinf  cos6

(2.8)

cosf) —sinf 0

= (fi(z,y), folx,y), f3(x,y)) |sinf cos® 0| €SOz (2.9)

0 0 1
for Uy = S% — 0,0, —1]7, where the basis (f1, f2, f3) is
£ = 0 (2 — 222 4 2? —4dzy 4x )
Co el @2 D (22 4y 1) (2 P 1)
by = .0y ( —4zxy 222 — 29% + 2 4y )
S0l @D @y 1) (@ P 1)
fo = ( 2x 2y x2+y2—1)

242+ 122 2+ 1 a2 oy 41
and define g, : 7' (Uy) — Uy xSO3 by g4 (A) = (67" (A-e3), (f1(2,9), fa(2,y), fa(z,y) ' A)
as a well-defined continuous map. It is easy to check that hjrl °©gy = idy1y,) and

gjrl o hy =idy, xso,. Therefore, hy is a homeomorphism.

Hence, combining the fact of the closed subgroup of the Lie group, we claim that this
structure is a princiapl SOs-bundle. It can also be verified that SOj3 is not homeomorphic
to S? x SO, by computing fundamental groups. The fundamental group (SO x S?) is

equal to m;(SOs) x m(S?), which is homeomorphic to Z x {1} = Z. While the fundamental

12



group m;(SO3) is homeomorphic to Zs, so (7, S03,S% S0O,) is not a trivial bundle.

13



Chapter 3

Trivialization and Section

Definition 4. A section of a fiber bundle is a continuous right inverse of the projection .
If m: E — B is a fiber bundle, then a section is a continuous map s : B — E such that

w(s(z)) =x for allz € B

The most common question regarding any fiber bundle is whether or not it is trivial. There

is a nice lemma to answer it, but it is not true for the other fiber bundles.
Lemma 3. A principal bundle is trivial if and only if it admits a global section.

Proof. If a principal G-bundle P is trivial (where G denotes any topological group), then,
P = B x GG, where GG and B are fiber space and base space, is just the Cartesian product.
Define 7 : P — B as a fiber projection, and proj : B x G — B with proj(b,g) = b as a
Cartesian projection, and we will be able to find a section s : B — P such that s is just the
inclusion map i : B — B x G with i(b) = (b, 1). Thus, 7(s(b)) = proj(i(b)) = proj((b,1)) =

b¥b € B, which implies that the inclusion map 7 is a global section.

Now if a principal G-bundle P admits a global section. A fiber bundle 7 : P — B with a

continuous right action p : P x G — P defined by p(p, g) = pg for all g € G, which actually

14



defines an equivalence class of any element p in P such that p ~ pg. Now let B x GG be a
Cartesian product and define a map ¢ : Bx G — P by ¢(b, g) = p(s(b), g) = s(b)g, we want

to show that ¢ is an homeomorphism, thus, P is a trivial bundle.

Check injective: Let ¢(b1, g1) = ¢(ba, g2), so p(s(b1), g1) = p(s(b2), g2), which implies s(b1)g1
= 5(b2)ge. Then, by the definition of section, we have by = 7(s(b1)) and by = w(s(bs)),
where s(by),s(b2) € P. Since p defines the equivalence class such that p ~ pg¥g € G,
s(by) ~ s(b1)g1 and s(bg) ~ s(by)ge for some g1, g2 € G. Thus, by = 7(s(b1)) = 7([s(b1)g1]) =
m(s(b1)g1) and by = 7w(s(be)) = 7([s(b2)ge]) = m(s(b2)g2). So, by = by and g; = g, since

5(b1)g1 = s(b2)g2 = s(b2)g1. Hence, (b1, g1) = (b2, g2).

Check surjective: Given any p € P, set w(p) = b for some b € B by the projection map 7 :
P — B. By themap s: B — P, we know that s(b) € P. Then, there exists some g € G such
that p = s(b)g. Then, p = s(b)g = p(s(b),g) = ¢(b, 9) = ¢(7(p), 9) = p(s(7(p)),g) = s(p)g-
Note that [p] ~ [s(7(p))] since 7(p) = w(s(7(p))). Therefore, there exists b = m(p) € B and

g € G with p = s(b)g such that p = ¢(b, g).

Check continuous: By the definition of the map ¢ : B x G — P defined by ¢(b,g) =
p(s(b),g) = s(b)g. We know that ¢ depends on two continuous map p and s, thus, ¢ is a

continuous map by the fact that the composition of the continuous maps is still continuous.

Check open: Now we pick any open set W € B x G to show that it maps to an open
set in P. Pick U,, where U, is the open neighborhood of the arbitrary points b in B.
Consider the local triviality hy, : Uy x G — 771(Uy) which is a homeomorphism, therefore,
hytod: Uy x G — U, x G is defined by h, 'od(z, g) = h, ' (s(2)g) = (z,Pr((h, ' (s(2)g)))) =

(z,Pr((h,'(s(x))))g), where Pr is just the natural projection from U, x G to G, therefore,

15



(Dnﬂnumw.h;lo¢iscmnhnmusﬁn&ﬂmecmﬂpoﬁﬁonofmmaanmhumusnmpiscmmhnwu&
Let U : U, x G — Uy, x G defined by ¥(z, g) = (z,Pr((h, ' (s(z))))'g) and © : U, x G —
U, x G defined by O(z,g) = (z,Pr((h;'(s(x))))g), where ¥ and © are both continuous
by definition. Now, W o © = 1g and © o ¥ = 1g. Thus, © is a homeomorphism and
dlu,xc 2 Up x G — 7 1(U,) is a homeomorphism as ¢ = h, 0 ©. Thus, ¢|y,«x¢ is open and
o(Uy N W) is open. Therefore, p(W) = ¢(U(U, NW)) = U(é¢(Upy N W)) is open. Hence, ¢ is

open.

16



Chapter 4

Reduction of the structure group

Definition 5. Given a principal G-bundle P with m : P — B and a monomorphism H — G,
where G is the structure group, then a reduction of the structure group to H is an principal

H-bundle Q) such that Q) xy G = P.

If W is a right G-space and X is a left G-space, the balanced product W xg X is the
quotient space W x X/ ~, where (wg,x) ~ (w,gz). Equivalently, we can simply convert
X to a right G-space, and take the orbit space of the diagonal action (w,x)g = (wg, g~ 'z);
thus W x¢ X = (W x X)/G. The following special cases should be noted:

1. If X = % is a point, W xg x = W/G

2. It X = G with the left translation action, the right action of G on itself makes
W x ¢ G into a right G-space, and the action map W x G — W induces a G-equivalent

homeomorphism W xo G = W.

Let G and H be topological groups. A (G, H)-space is a space Y equipped with a left
G-action and right H-action, such that the two actions commute: (gy)h = g(yh).Note that
if Y is a (G, H)-space and X is a right G-space, X X¢ Y has a right H-action defined by

17



[z, y|h = [z, yh]; similarly Y Xy Z has a left G-action defined by g[y, z] = [gy, z]if Z is a left

H-space.?

Proposition 1. The balanced product is associative up to a natural isomorphism: Let X
be a right G-space, Y a (G, H)-space, and Z a left H-space. Then there is a natural

homeomorphism

(X ng) XHZgXXG(Y XHZ)

Proof. By the definition, the balanced product X X Y is the quotient group X x Y/ ~
where (zg,y) ~ (x,g9y). Thus, (X X¢Y) xg Z is the quotient group ((X xgVY) x Z)/ ~
where ([x, ylh, z) ~ ([z,y], hz) and [z, y] is the equivalence class defined as above. Therefore,
((xg,y)h,z) ~ ((z,gy)h,z) ~ ((x,9y),hz) ~ (z,gy, hz). Similarly, the balanced product
Y Xy Z is the quotient group Y x Z/ ~ where (yh,z) ~ (y,hz). Thus, X x¢ (Y xg 2)
is the quotient group (X x (Y xy Z))/ ~ where (zg, [y, z]) ~ (z, gly, z]) and [y, z] is the
equivalence class. Therefore, (zg, (yh,z)) ~ (z,g(yh,2)) ~ (x,9(y, hz)) ~ (z,(gy, hz)) ~
(x, gy, hz). O

Proposition 2. The bundle E = P x¢ (G/H) associated with P with standard fiber G/H
can be identified with P/H. An element (p,gH) € P x¢ (G/H) maps into the element
pg € P/H. Consequently, P(FE, H) is a principal bundle over the base £ = P/H with

structure group H. The projection P — E maps p € P into pg € F.

Proof. The proof is straightforward by the definition of the fiber bundle, except the local
triviality of the bundle P(E, H), which follows from local triviality of F(B,G/H,G, P) and
G(G/H,H). Let U be an open set of B such that 73" (U) = U x G/H and let V be an open
set of G/H such that p~' (V) 2 V x H, where p : G — G/H is the projection. Let W be the
open set of 75! (U) which corresponds to U x V under the identification 7' (U) = U x G/H.

If 4 : P— E = P/H is the projection, then p~'(W) =W x H.? O

18



Theorem 1. The structure group of a principal G-bundle P can be reduced to H if and only
if E = P x¢(G/H) — B admits a section, where H is the closed subgroup of the Lie group
G.

Proof. Suppose that the structure group of P can be reduced to a principal H-bundle Q
such that @ xyG = P. Then, E = Pxg(G/H) = QxgGxg(G/H) = QxgGXcGxXg* =
QXxpGxyx = Qxy(G/H) by the proposition of the balanced product, where % corresponds
to any point in H. Since the identity coset in G/H is an H-fixed point, then we can define
amap s : *x — G/H. Applying the functor Q Xy (—) to the map s, there is a morphism,
B — Q xy (G/H) which is equivalent to B — P Xg (G/H), a section.?

Suppose that P X (G/H) — B admits a section s : B — P xg (G/H). By the proposition
above, F' = P x¢ (G/H) = P/H. Define i : P — P/H to be the projection, and let @) be
the set of points x € P such that p(z) = s(w(z)). In other words, @ is the inverse image
of s(B) by the projection u. For every b € B, there is z € @ such that w(z) = b since
p~1(s(b)) is non-empty. Given z and y in the same fiber of P, if z € Q then y € Q if and
only if z = yh for some h € H. Thus, the restriction u|g : Q@ — Q/H is induced by px, so @
is a closed sub-manifold of P.? By the fact that G/H is a smooth manifold and G — G/H
is a submersion since H is the closed subgroup of the Lie group G, thus @ is a principal

bundle imbedded in P with Q x5y G = P.* O

The balanced product let one considers many fiber bundles from one principal bundle.
Consequently, given any fiber bundle £ — B, one constructs a principal Homeo(F)-bundle

such that

PY = HUQ x Homeo(F)/ ~,

where the equivalence class is (z, f) = (x, ¥as(x)(f)), and 1 is the transition function.
Example 1. As a concrete example, every even-dimension real vector space is the underlying

19



real space of a complex vector space: it admits a linear complex structure. A real vector
bundle admits an complex structure if and only if it is the underlying real bundle of a

complex vector bundle. This is a reduction along the inclusion GL(n,C) — GL(2n,R).

Ezample 2. Let G = GL(n) and H = GL*(n). A reduction to GL,(n)-bundle is a fiber
orientation, and we can define a map GL(n)/GL"(n) — Zs by sending the equivalence class

[A] to the sign of det(A).

Ezxample 3. Let G = GL(n) and H = O(n). Then G/H is homeomorphic to the group
of upper triangular matrices with positive diagonal entries, and so is contractible. This

implies that the associated bundle P Xgr) GL(n)/O(n) admits a section. Hence, any
GL(n)-bundle is induced from an O(n)-bundle.

Ezxample 4. Let G = GL(n,R) and H = SL(n,R), where H C G. Then G/H = GL(n,R)/SL(n,R) =
R*, therefore, a reduction to SL(n) cooresponds to an oriented fiber volume form.

These examples demonstrate the fact that the structure group of a real vector bundle of
rank n can always be reduced to O(n), which can be reduced to SO(n) if and only if the
vector bundle is orientable. And the vector bundle is orientable if its structure group may

be reduced to GL*(n).
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Chapter 5

Covering Homotopy Theorem

Definition 6. Given a map 7 : E — B, and any topological space X. Then, (X, ) has the

homotopy lifting property if:
1. For any homotopy f: X xI — B
2. For any ]7: X — E lifting fo = f|xx{oy such that fo =m0 f,

there exists a homotopy fv: X x I — FE lifting f such that f = mo f with ﬁ) = ﬂXx{()} as

the following diagram.

X Jo E
’io ']7 ™
X x I / B (5.1)

Definition 7. A Hurewicz-fibration is a continuous map 7 : E — B satisfies he homotopy
lifting property with respect to any space,and a Serre-fibration is a continuous map which

has the homotopy lifting property with respect to any finite CW-complex.

21



Example 5. The projection map B x F' — B is a trivial fibration, and the fiber over every

point is homeomorphic to F. Indeed, given f and fo, define f: X xI —- B x F by

fla,t) = (f(x,t), Pr(fo(x))).
Example 6. Any covering space £ — B is fibration. And, in fact, for a covering space the

lifting fis uniquely determined.

Ezample 7. Any fiber bundle E — B over paracompact base space B is a fibration, e.g. any

CW-complex.

Ezxample 8. In general,any fiber bundle in which the base space is para-compact is a fibration.
A map 7 : E — B is a fiber bundle with fiber F'if B has a cover i/ and h : U x F — 7= *(U)
is a homeomorphism for each U € U. But, without the para-compact hypothesis on the

base, any fiber bundle is at least a Serre-fibration.
Theorem 2. Any fiber bundle 7 : E — B is a Serre-fibration.

Proof. Let m: E — B be a fiber bundle, and suppose given a lifting diagram

I / E
io ™
I" <1 B

Let U be a covering for B on which we have the local trivialization. I can divide I™ into
sub-cubes C and I into subintervals J,such that each C' x J is in a single h~!(U). For each
C, I can build a lift on each C' x J, starting with the J containing 0, so I have a lift along
the initial point of the interval. Moreover, the cube C borders other cubes, so I suppose
that some union D of faces of C has a lift along D x I. For the fixed C' and J, the fiber

bundle is the trivial fiber bundle U x F' — U. A lift in the diagram
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Cxl1

U

must be given in the first coordinate by the map h, so it remains to describe the second
coordinate of the lift. By assumption, we already have a lift C Up D x J - U x F' — F.
Since the space C'Up D x J is a retract of C' x J, so I can compose the lift with a choice of

a retraction C' x J — CUp D x J.? O

Corollary 1. If ' — E — B is a fiber bundle and B is paracompact and contractible, then

E is trivial.

Proof. Let P — B be the associated principal bundle, we will show that it has a section.
Since the base B is contractible, it is homotopy equivalent to a single point *. Let h :
B x I — B be a contraction such that h(b,0) = by and h(b,1) = b. Now pushforward of
7 1(by) to get the commutative square diagram, then there is a map h:BxI— P such

that

Bx1I

So we define 0 : B — P by o(b) = h(b,1). Since P has a section, P is trivial, then

P = B x Homeo(F). Thus, £ = P Xtomeo(r) F' = B X F'. O
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5.1 Hopf-fibration: (S' — 5% — S?)
We can identify R* with C? and R? with C x R by letting

1. (21,9, w3, x4)a8(z0 = T1 + ix9, 21 = T3 + iT4)
2. (z1,m9,x3) as (z = x1 + iz, x = T3).

Thus S? is identified with the subset of all (29,2;) € C? such that |z|*> + |21|> = 1, and
S? is identified with the subset of all (z,z) € C x R such that |z|* + 22 = 1. Then the

Hopf-fibration 7 is defined by

(20, 21) = (22071, \20’2 - |Zl‘2>-

The first component is a complex number and the second one is real. Then, we need to
check that the image of 7 maps into S?, which can be verified by squaring two parts of the

image

(22071)" + (J20]* — 21]*)* = Alz0*[21[* + |20]* = 2]20]* |21 * + |2a]* (5.2)

= (Jzol* + |2[*)* =1 (5-3)

It is easy to see that this is a surjective map since S? — S? is an inclusion map. Then, if
two points on S? map to the same point on the S? such that 7(zg, 21) = 7(wp, wy), then
(wp, wy) must equal to (Azp, Az1) for some complex number A with |A|> = 1. Since the set of
the complex numbers A\ with |[A|*> = 1 forms the unit circle in the complex plane, it follows
that for each point z € S?, the inverse image 7 !(x) is isomorphic to S*. This structure
admits a local trivialization which implies that it is a fiber bundle, hence, a fibration since

the base space S? is a paracompact CW-complex.
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Chapter 6

Obstruction Theory

Suppose we want to construct a section from a CW-complex X into a bundle £ with fiber
F. We do this by induction: given a section o : X*) — E on the kth-skeleton X*) and a
(k+1)-cell i : D*! — X we want to extend o over the i. The obstruction to extend over a

(k+1)-cell is an element of 7 (F'), the k-th homotopy group of the fiber.°

Define the pullback i*(E) := {(p,q) € D*"' x Eli(p) = 7(q)}, where q := o(i(p)) and the
fiber of i*(E) over x € X is the fiber of E over i(p) € X. Therefore, it admits the bundle

structure

i"(E)

Sk Dk—i—l

Thus, ¢*(F) admits a trivialization ¢ such that

¢:i*(E) = D" x F
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then, there exists a continuous projection Py maps to the fiber space F'. Now we can define
the obstruction class 07 (i) = [Py 0 ¢(b, 7 0i)] € m(F), where 07 € CELH(X, m(F)). These
obstructions fit together to give a cellular cochain O on X with coefficients in this 7. In
fact, this cochain is a cocycle, so it defines an obstruction class O(E) in H*™(X, mx(E)).
Then there exists a cross-section over the (k+1)-skeleton if and only if a certain well defined
obstruction class is zero. If the cochain is 0, then there exists a map p : D**' — F. Then
the section extending to (k+1)-skeleton o : X**1 — E is defined to be Py(¢~ (v, u(v))),

where v € DFFL

Example 9. (1st Stiefel-Whitney class)

Let £ — X be a real vector bundle with structure group GL(n,R) as example 2 in section
2, where X is a CW-complex space. Then, F is orientable if and only if its structure
group can be reduced to the subgroup GL*(n,R). Therefore, we have the associated bundle
Z(E) = GL(n, E) Xgrmpr) (GL(n,R/GL*(n.R))) with fiber Z, as the following diagram,

Lo

Z(E)

Id,
X

where the orientation is a section o.

So, we build o, inductively on the k-th skeleton X*). Define oy : X© — E as a section
such that 7o o, = Id since X < X is an inclusion map. Note that the fiber Z, is a
group so that its Oth-homotopy group my(Zs) = Zs. In this case, the obstruction cocycle is

the 1st Stiefel-Whitney class w{(FE) € Chy (X, Zs). Hence, a section defined on 0-cells is
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extendable if and only if the 1st Stiefel-Whitney class w{(F) € H' (X, Z,) is 0.

(1). Tt is a cocycle since its coboundary is 0. Indeed, let ¢ : D* — X be l-cells and
(0w?*(E))(2) = wi®(E)(9i) = (90(1, e2) = ao(L, e1)) + (90(1, e3) = 0(1, €2)) + ... + (00 (1, €1) =

oo(1,e,)) = 0 where ¢; is the 0-cells of D? and e,, need not be distinct.

€1(€n)

Figure 6.1: cell decomposition

(2). The 1st Stiefel-Whitney class is independent of the choice of sections. Let’s pick two
distinct sections o and 7. Then, define A%" € Clyy (X, m0(Z2)) by A7 (z) = o(x) — 7(z) €

7T0(Z2). Thus,
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(6A™)(e) = A™(e) (6.2)

=A"(1,e) — AT (—1,€) (6.3)
=(o(l,e) —7(1,e)) — (o(=1,e) — 7(—1,€)) (6.4)
=w] —w] = (6.5)

Figure 6.2: 1st Stiefel Class of total space E

Ezercise 1. Compute w{(E) and w](E), where 0,7 : S© — E. Let us first consider the
function ¢ where the chosen two 0-cells are mapping into different sides of the total space
E, and we can define an orientation of S! as the graph shows by separating S! into two
arcs denoted D, and D_. By drawing two different arcs of the projections from E to
S!, there is no continuous mapping from the boundary of D_ to the bundle space since
the two points on FE is arc-wise disconnected, so does D,. Therefore, I conclude that
w{(E)(D_) = w{(F)(Dy) = 1, which implies that w{(E)(S') = 1+1 =2 = 0 in Zs,.
Let another function 7 maps two 0-cells into the same side of the total space as the graph

shows. Then, wj(E)(D_) = w](E)(Dy) = 0, so w](E)(S') = 0. It actually shows that

[\)
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the obstruction class is independent with the choice of the functions. Therefore, the zero

obstruction class implies that we can extend the function from 0-cell to 1-cell.

@ur\ ™
|

bR

Figure 6.3: Ist Stiefel Class of total space E’

Ezercise 2. Compute w{(E’) and w](E") of the different bundles E’, where o and 7 are the
same as part B. By separating the base space S! into two parts D, and D_ as we did above.
Then, w{(E')(D_) = 1 and w{(E")(D,) = 0, which implies that w{(E’)(S*) =1+0=1
in Zo,. We know that the obstruction class is independent with the choice of the functions,
thus, wi(E')(D_) = 0 and w](E’)(Dy) = 1 which can also be proved by the graph. So,
wl(E')(S') =1+ 0 = 1. Hence, we can not extend any function on 0-cells over 1-celsl on

the vector bundle E'.

Ezample 10. (1st Chern class) Recall the definition of the complex vector bundle: a complex
vector bundle E of complex dimension n over B and projection map 7 : £ — B, together
with the structure of a complex vector space in each fiber 77!(b) with local triviality such
that h : U x C* — 7 !(U) is a homeomorphism which maps each fiber 771(b) complex

linearly onto b x C"

Just as the structure group of a real vector bundle can be reduced to the orthogonal group
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O(n), the structure group of a rank n complex vector bundle can be reduced to the unitary
group U(n). Every complex vector bundle E of rank n has an underlying real vector bundle

Ex of rank 2n, obtained by discarding the complex structure on each fiber.

Construct the composition GL(n,C) — C* — S!, where the map from the complex linear
group GL(n.C) to the multiplicative group of complex number C* is a determinant func-
tion, and the map from the total space to the base space S! is an argument function. Then,
there exists a reduced bundle structure of the complex vector bundle P with the base space
X denoted as E := P Xgrm,c) (GL(n,C)/Ker(arg o det)), where GL(n,C)/Ker(arg o det)
is homeomorphic to S*. Since m(S') = 0 and 7;(S') = Z, the obstruction class O(F)
is an element in CZy,(X,Z). In this case, the 1st Chern class ¢;(E) is defined to be the

obstruction class O(E) , an element in 2nd cohomology group H?(X, Z).

Ezercise 3. Consider the complex vector bundle 7 : F — S? with fiber C, where the total
bundle E is the tangent space of S%. To compute the first Chern class ¢;(E)(S?).

Cut the 2-sphere into two halves with one labeled D? and another one D? as the graph
shows, which are homeomorphic to D?, a one dimensional disk over C. By pointing out the
vectors on the equator on both halves, I take the projection of the vectors from the equator to
the boundary of the disk as graphs. Define ¢, : D} — R? by ¢, (2,y) = (z,y,/1 — 22 — y?).

Then, taking the patrial derivative to x,

D=

aﬂ/f*(%y) = (17 O? —ZB(l - 'TQ - yQ)_ )7 (66)

normalizing this vector, we get

@w¢*($,y) _ ((1 — % — y2)%707 —CL’)

[10:40 (, )| (1—y2)3
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Now, plugging in some values for (z,y), we can tell that the orientation of the vectors on
D! does not change, while the orientation of the vectors on D! changes twice by defining
the similar parametrization function. Therefore, the first Chern class is

(E)(S?) = e1(E)(DY) + r(E)(DL) =042 =2,

which can be verified by our definition related to the Euler class of S?, ¢;(F)(S?) =
e(Fr2)(S?) = 57 (=1)*(# of the k-cell) = (=1)°(1) + (=DY(0) + (=1)*(1) =1+0+1=2

N
——————> .

take the tangent space of
an open neighborhood
of an arbitrary point

Figure 6.4: Cell decomposition of torus

Exercise 4.
Let us see another example denoted as C — T(T?) — T2, where the total space is the

tangent space of the 2-torus. By definition, 7% = C/(Z @ iZ). Thus, we have the graph of
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the square representing the 2-torus, which is homeomorphic to the unit circle. Since A; and
A, are equivalent, then we can define a continuous function a : Ay — A by a(z) = z + 4,
where z is a complex number. So this map preserves the sign of the vector, therefore, the
orientation of the vectors on A; and A, is the same. We can define another continuous
function b : By — By by b(z) = 1+ z, which also preserves the orientation of the vectors on
By and B,. Note that the four vertices are identified by gluing together, so the orientation
of the vectors on four sides preserves. Hence, the orientation of the vectors on the tangent
bundle preserves, which implies that the first Chern class ¢, (TT?)(T?) = 0.

It can also be verified by computing the Euler class of T2, e(7?) = (—=1)°(1) + (=1)*(2) +
(~1)2(1) = 0

6.1 Stiefel-Whitney Classes

The Stiefel-Whitney classes are a set of topological invariants of a real vector bundle that
describe the obstructions to constructing independent sections. Let H'(B;Zy) denote the
i-th singular cohomology group of B with coefficients in Z,, here are four axioms which

characterize the Stiefel-Whitney cohomology.”

Axiom 1. For each vector bundle E there corresponds a sequence of cohomology classes

called the Stiefel-Whitney classes of E. The class wo(£) is the unit element

1 € H(B(E); Zy),

and w;(F) =0V i >nif E is an n-dimensional bundle.
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Axiom 2. If f:Y — X is covered by a bundle map from F to E’, then
wi(E) = frwi(E),

where f* is the pullback.

Axiom 3. If E and E’ are vector bundles over the same base space, then
i=0

where U denotes the cap product. For example, wi(E @ E') = wi(F) + w1 (E"), and wy(E &
E') = wo(E) + w1 (E)w (E') + wa(E").

Aziom 4. For the line bundle E} over the circle P!(real projective plane), the Stiefel-Whitney
class wy(FE]) is non-zero.

Proposition 3. If Ei is isomorphic to E’ then w;(E) = w;(E’).

Proposition 4. If E is a trivial vector bundle then w;(E) = 0 for ¢ > 0.

Proposition 5. If E is trivial then w;(E @ E') = w;(E")

6.2 Chern Class

The Chern classes are a set of topological invariants of a complex vector bundle that describe
the obstructions to constructing independent sections. Let H?(B;Z) denote the 2i-th sin-
gular cohomology group of B with coefficients in Z, here are four axioms which characterize

the Chern cohomology.”

Aziom 5. For each complex vector bundle E there corresponds a sequence of cohomology

classes

ci(E) € H*(B(E);Z),i =0,1,2, ...,
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called the Chern classes of E. The class ¢y(£) is the unit element
1 € H'(B(E); 2),

and ¢;(E) =0V i > n if F is an n-dimensional bundle.

Aziom 6. If f:Y — X is covered by a bundle map from F to E’, then

a(E) = frei(E),

where f* is the pullback.

Axiom 7. If E and E’ are vector bundles over the same base space, then
(E®E) = ch U cni(E"),

where U denotes the cap product. For example, ¢;(E®E’) = ¢1(E)+c¢(E'), and co( ESE') =

CQ(E) + Cl(E)Cl (E/) + CQ(E/).

Aziom 8. For the line bundle E} over the circle C'P!(complex projective plane), the Chern

class ¢ (E7) is —1.
Proposition 6. If Ei is isomorphic to E’ then ¢;(E) = ¢;(E").
Proposition 7. If E is a trivial vector bundle then ¢;(E) = 0 for ¢ > 0.

Proposition 8. If E is trivial then ¢;(E @ E') = ¢;(E")
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Chapter 7

Cech Cohomology

In general, to define homotopy groups, one must pick a base point. We did not need the
base point in our discussion of the first Stiefel-Whitney classes as one does not need a base
point to define an element of m(Zsy). Similarly, one does not need a base point to discuss

an element of 7,(S!) = Z = H;(S?).

In order to work with different base points, one needs to use the cohomology group with
twisted coefficients. Then, Cech cohomology is a tool applies abelian sheaf cohomology by
using coverings and systems of coefficients on the covering and all non-empty finite inter-
sections. More generally, it applies to non-abelian cohomology, therefore, can be used to

compute classes of fiber bundles.

Cech cohomology is obtained using an open cover of a topological space and it arise using
purely combinatorial data. The idea being that if one has information about the open sets
that make up a space as well as how those sets are glued together one can deduce global

properties of the space from the local data.
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Let 84 = {U, : @ € A} be an open cover of a connected manifold M. For ay,- -, a,, € A, we

denote

Usgooap = Ung N+ N Us,

or, equivalently, in multi-index notation, if a = {ag, - -, ax}

Us= () Ua,

a;€a

Let X be a topological space, and let U be an open cover of X. Define a simplicial complex
N(U), called the nerve of the covering as follows:

1.There is one vertex for each element of U 2.There is one edge for each pair Uy, Uy € U
such that Uy N Uy # @ 3.There is one k-simplex for each k+1-element subset {Uy, - - -, Ux }

of U for which Uy N ---NU, # @

The ideal of Cech cohomology is that, if we choose a nice cover I containing of sufficiently
small open sets, the resulting simplicial complex AN (U) should be a good conmbinatorial
model for the space X. For such a cover, the Cech cohomology of X is defined to be the

simplicial cohomology of the nerve.

Now let X be a topological space, and Let F be the abelian group of coefficients. Let U be
an open cover of X. An g-simplex o of N(I) is an ordered collection of q+1 sets chosen
from U such that the intersection of all these sets is non-empty. This intersection is called

the support of o.

-----

be the (g-1)-simplex obtained by removing the j-th set from o, that is
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9;0 = U)icto. 5.}
the boundary of ¢ is defined as the alternating sum of the partial boundaries
q

Jo = Z(—l)jaja

§=0
A g-cochain of U with coefficient in F is a map which associates to each g-simplex ¢ and

we denote the set of all g-cochains of U with coefficients in F by C%(U, F).

In fact, all one needs is a way to associate an abelian group to an open say F(U)(which
functions U — F) and a homeomorphism ¥} : F(U) — F(V) for the subset V — U such

that

1. 17 = id and ¥} o iy, = ¥},
2. Let U =UU,, ifif, - f=1ig -gV «,then f=g.

3. For any f, € F(U,) such that if - fo =iy - fs. Then, f € U such that f, =if] - f.

Such a structure is called a Sheaf.

The cochain groups can be made into a cochain complex (C*(U,F),5) by defining the

coboundary operator 6, : C4(U,F) — CTH U, F) by (dw) = ?:0(—1)jres:§10|w(8ja),
where res}ija‘w(aja) is the restriction morphism on the intersection. It also satisfies the

composition that d,41 06, = 0.

A g-cochain is called a g-cocycle if it is in the kernel of §, hence Z9(U,F) := ker(d, :

ClU,F) — CTY(U, F)) is the set of all q-cocycles. Thus a (qg-1)-cochain f is a cocycle if
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for all ¢-simplices o the cocycle condition Y77_j(—1)! res}ijl' oIy (0;0) = 0 holds. In particular,
a l-cochain f is a 1-cocycle if f(BNC)|y — f(ANC)|y+ f(ANB)|[y =0V U = AnBNC,
where {A, B,C'} € U.

A g-cochain is called a g-coboundary if it is in the image of § and BY(U,F): = im(d,—; :
CTYU,F) = CUU,F)) is the set of all g-coboundaries. For instance, a 1-cochain f is a
1-coboundary if there exists a 0-cochain h such that f(U) = (6h)(U) = h(A)|v - h(B)|v ¥
U= AN B, where {A, B € U}.

Then, the Cech cohomology of U with values in F is defined to be the cohomology of the

cochain complex (C*(U, F),d). Thus the g-th Cech cohomology is given by

HY(U; F) = HY((CUU, F),8)) = Z°(U, F)/BI U, F)

The Cech cohomology of X is defined by considering refinements of open covers. If V is a
refinement of I then there is a map in cohomology H*(U, F) — H*(V, F). The open covers
of X form a directed set under refinement, so the above map leads to a direct system of
abelian groups. The Cech cohomology of X with values in F is defined as the direct limit
H* (X, F) = lim_, H*(U, F).

Related to other cohomology

If X is homotopy equivalent to a CW-complex, then the Cech cohomology H*(U; F) is
naturally isomorphic to the singular cohomology H*(U; F). If X is a differential manifold,
then H*(U; F) is naturally isomorphic to the de Rham cohomology of X. For some less
well-behaved spaces that fails for the closed topologist’s sine curve, its Cech cohomology

H'(X;Z) = Z, whereas H'(X;Z) = 0.
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Ezample 11. Compute the H*(S'; Z) if the open cover U = U, UU, = {(z,y)|z?+y*> = 1,y <
SU{(z,y)|z*+y? = 1,y > —3}. UiNUs = {(z, y)|2*+y* = 1,—5 <y < 3}, which is the dis-
connected two components. Note, for any continuous map f € C°(U; — Z), its image f(U;)
is connected since U is connected, but the only connected subspaces of Z are @ and singleton
points which implies that f(U;) = singleton point, therefore, isomorphic to Z since the U;
is not empty. Also, the disconnection of Uy N U, will give C°(Uyy — Z) two distinct compo-
nents. Then, CO(N(U)) = C(U; — Z)®C%(Uy — Z) X Z&Z, and CH N (U)) = C°(Urg —
Z) = COU}; — Z) @ COUp, — Z) = Z & Z. Define o, : C-HN(U)) — CON(U)),
& : C°(N(U)) — CHN(U)), and 6; : CHN(U)) — C*(N(U)). The maps 4, will all be
0 map since CY(N(U)) = 0Vq > 2. Note, for any continuous map f € C°(N(U)) has two
distinct components with f = (f1, f2). Thus, dof = do(f1, f2) = filvy, — f2lus,, SO

Kerdy = {(f1, f2) € CON(U))|do(f1, f2) = filvi, = Folvn, = 0} = {(f1, fo) € CONO))I filon, =
Lolont = {(f1, f2) € CON(U))|fi = fo} X (Z®Z)]Z = Z since f; and f, are both entirely
constant map. And, Imd_; = 0 since C~'(NV(U)) = 0. Thus, H*(S'; Z) = Kerdy/Imd_; =
{fi.folfi = f2} RLSZ/Z = 7. Kerdy = {g = (g1,92) € C'(N(U))[01(g1,92) = 0} = 0
since C*(N(U)) is 0. So, Kerd; = CY'N(U)) which generates by (gi,g2), thus, iso-
morphic to Z & Z, where g; generates C°(U;, and go generates C°(Upy. And Im(d) =
{g € C*NWU))lg = dof = (f1, f2) = filty, = folve = 91 + g2} = Z. Thus, H'(S}Z) =
Kerd, /Tmdy = {g1,92} /(g1 + o) R Z D L7 = 7.

5 Z for ¢=0,1
Therefore, H1(S'; Z) = :

0 for ¢g>2

As the 1-dimensional sphere can be constructed using CW-complex, its Cech cohomology is

the same as its singular cohomology.
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