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Abstract 

 Serine proteases generally share a relatively high degree of sequence identity and play a 

major role in the diversity of biological processes. Here we focus on three-dimensional 

molecular architecture of serine proteases from Alernaria solani. The difference in flexibility of 

active binding pockets and electrostatic surface potential distribution of serine proteases in 

comparison with other fungal species is reported in this study. In this study we have purified a 

serine protease from the early blight pathogen, Alernaria solani. MALDI-TOF-MS/MS analysis 

revealed that protease produced by A. solani belongs to alkaline serine proteases. AsP is made up 

of 403 amino acid residues with molecular weight of 42.1kDa (Isoelectric point (pI)-6.51) and 

molecular formula C1859H2930N516O595S4. The follow-up research on the molecular structure 

prediction is used for assessing the quality of A. solani Protease (AsP). The AsP protein structure 

model was built based on its comparative homology with serine protease using the program, 

MODELER. AsP had 16 βsheets and 10 αhelices, with Ser350 (G347G357), Asp158 

(D158H169) and His193 (H193G203) in separate turn/coil structures. Biological metal binding 

region situated near the 6th-helix and His193 residue is responsible for metal binding site. In 

addition, the calcium ion is coordinated by the carboxyl groups of Lys84, Ile85, Lys86, Asp87, 

Phe88, Ala89, Ala90 (K84-A90) for first calcium (Ca2+) binding site and carbonyl oxygen atom of 

Lys244, Gly245, Arg246, Thr247, Lys248, Lys249, and Ala250 (K244–A250), for second Ca2+ binding 

site. Moreover, Ramachandran plot analysis of protein residues falling into most favored 

secondary structures were determined (83.3%). The predicted molecular 3D structural model was 

further verified using PROCHECK, ERRAT and VADAR servers to confirm the geometry and 

stereo-chemical parameters of the molecular structural design. The functional analysis of AsP 3D 
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molecular structure predictions familiar in the current study may provide a new perspective in 

the understanding and identification of antifungal protease inhibitor designing. 

Key words: Alternaria solani, Serine Protease, MODELER, PROCHECK, ERRAT, MALDI-

TOF-MS/MS, Ramachandran Plot, 3D Molecular Structural design. 

 

1. Introduction 

 Alternaria solani (Ellis and Martin) Sorauer, is an important plant pathogenic fungi 

causing early blight disease in tomato (Lycopersicon esculentum Mill.) 1, 2. A number of 

fungal mechanisms and molecules have been shown to contribute to fungal pathogenicity and/or 

virulence, including cell wall degrading proteins 3, inhibitory proteins 4, and enzymes 

involved in the toxin synthesis 5. Many phytopathogenic fungi release an array of cell wall–

degrading, hydrolytic enzymes to fragment the plant cell wall polymers, including proteases and 

glycanases (e.g. endo-polygalacturonases, cellulases, pectin lyase, xylanase, β-galactosidase, 

galacturonases, xylanases, and glucanases), thus facilitating the colonization of the host cells 6, 

7.  A. solani uses an infection strategy based on the secretion of numerous cell-wall degrading 

enzymes 8. Remarkable progress has been made over the past decade on the contribution of 

proteolytic enzymes in elucidating plant-pathogen interaction mechanism 9, 10, 11, 12. 

Proteases of various phytopathogenic fungi have been detected in infected host plant tissues, but 

their precise function has not been elucidated yet. 

 Extracellular proteolytic enzymes of the phytopathogenic fungi are represented to a large 

degree by serine peptidases. Many distinct families of serine proteases exist; they have been 
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grouped into six clans, of which the two largest are the chymotrypsin-like and subtilisin-like 

clans 13. Subtilisin-like serine proteases play an important role in the pathogenicity of 

pathogenic fungi. By using subtilisin-like serine proteases, pathogenic fungi disrupt the 

physiological integrity of the hosts during penetration and colonization [14, 15]. Previous studies 

have suggested that pathogenic fungi with different life styles utilize subtilisin-like serine 

proteases as their virulence factor [15, 16]. Serine proteases of subtilisin (S8) family produced by 

oil seed rape pathogen Pyrenopeziza brassicae have been proposed to play a role in host-

pathogen interactions 17. The strong induction of different serine protease inhibitors in a blast-

resistant rice mutant during blast infection suggests that these proteins play an important role in 

blast resistance 18. Collectively, these studies suggest the existence of a correlation between 

subtilisin-like protease and pathogenicity of the fungus.  

 In this study, we examined protease of phytopathogenic fungi A. solani, it was identified 

as subtilisin-like protease through MALDI-TOF-MS/MS fragmentation, designated as A. solani 

Protease (AsP). In addition, we undertook an analysis of AsP sequences with an available serine 

protease sequence to predict 3D molecular structural design of AsP by homology modeling. The 

functional analysis of AsP 3D molecular structural predictions may provide a new perspective in 

the understanding and identification of antifungal protease inhibitor designing.  

2. Materials and methods 

2.1. Identification of serine protease 

 An alkaline extracellular serine protease of Alternaria solani isolate 4632 ITCC was 

purified to homogeneity and subjected to MALDI-TOF-MS/MS analysis. Mono-isotopic peptide 

masses were assigned and used in the database search. The protein identification was 
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accomplished utilizing the MASCOT database search engine (Matrix Science, London, UK, 

http://www.matrixscience.com) scores >63 were considered to be significant (P<0.05) in the 

MASCOT search. Hence, the protein identified scores less than the significance level were 

repeated as unidentified. 

2.2. Target protein sequence and template selection  

The template protein sequence of AsP from A. solani was obtained from M. 

Chandrasekaran and M. Sathiyabama 11. It was ascertained that the three-dimensional (3D) 

structure of the protein was not available in Protein Data Bank (PDB) (http://www.rcsb.org/pdb). 

The NCBI-BLAST was used to identify the template for modeling the three dimensional 

structure of Thermus aquaticus (4DZT). The result of NCBI-BLAST against the PDB database 

was used for selection of a suitable template for 3D modeling of the target protein.  

2.3. Sequence alignment and Phylogenetic tree analysis 

AsP amino acid sequences were used for alignment with template protein using PSI-

BLAST (http://blast.ncbi.nlm.nih.gov/Blast). An in silico study, mainly comparative homology 

modeling, of the target sequence AsP can be helpful to investigate sequential-structural-

functional relationship. The 3D structure of AsP was predicted based on available homologous 

template structure in Protein structure Data Bank (PDB) resources. Template selection was 

performed using PDB advanced BLAST (http://www.rcsb.org). Retrieved template structure was 

used for comparative homology modeling of AsP. Also, polypeptide hydropathy/amphipathicity 

was evaluated using the Kyte–Doolittle algorithm as implemented in the GCG computer program 

(Genetics Computer Group, Wisconsin Package version 8.1, Wisconsin). The GCG program was 

run on a Macintosh computer with eXodus5.2 software (White Pine Software, Inc.). The 
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hydropathy/amphipathicity plot obtained from the GCG program was saved as text form and 

redrawn using Kaleida-Graph software. 

 Several programs exist for making phylogenetic trees that display the relationship 

between sequences to calculate all possible tree topologies to find the one that fits best with the 

sequence data. We used Clustal X to generate alignments of the sequences. Nucleotide/protein 

sequences were subsequently aligned manually in order to increase alignment (Table 1). A 

bootstrapped, unrooted Neighbor-Joining tree was generated (pairwise) using the same program. 

After getting the root distance format using the Clustal W, the code was submitted into the 

phylo-draw software version 8.2 in NJ plot.  

2.4. Homology modeling and structure refinement 

The 3D structure of AsP has been predicted using DS-MODELLER 

(http://salilab.org/modeller) and PHYRE2 (http://www.sbg.bio.ic.ac.uk/). From the homology 

modeling searching, two templates were selected: high-resolution X-ray crystallography 

structure of the T. aquaticus 4DZT 19, 20 and 3F70 21. Out of the two models, 4DZT was 

found to be the best model according to the scoring of PROCHECK, totally non-local energy of 

the protein (E/kT units) and overall model quality Z-score. Loop refinement and structural 

simulation were done using LOOPER and CHARM force field, respectively. Finally, predicated 

3D model was subjected to a series of tests for testing its internal consistency and reliability. The 

quality of the model was checked; VERIFIED 3D 22, PROFILE 3D 23, and ERRAT 24 and 

the stereo-chemical properties based on backbone conformation were evaluated by inspection of 

Psi/Phi/Chi/Omega angle using a Ramachandran plot of mol-Probity 

(http://molprobity.biochem.duke.edu/). Further, quantitative analysis was done using accessible 

surface area prediction using Volume Area Dihedral Angle Reporter (Suppl. Table S2, S3, S4) 
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by using VADAR (http://vadar.wishartlab.com/) online server 25. Successfully modeled, 

verified and the most reliable structure of AsP was deposited in PMDB Acc. No. PM0078786 

(http://mi.caspur.it/PMDB/). 

2.5. Active binding site and metal binding site detection 

After complete modeling, simulation and refinement of the structure of AsP prediction             

of the possible metal binding site was were performed using the Q-site Finder 

(http://bmbpcu36.leeds.ac.uk/qsitefinder/). LIGPLOT and FunFOLD is a program 

(http://www.reading.ac.uk/bioinf/IntFOLD/) used to plot schematic diagram of protein-ligand 

interactions for a given in a PDB file. In this study, this software was used to create a 3D 

diagram of calcium binding site and the coordinate residues. PyMOL software used to illustrate 

the binding site of the target protein. These binding sites were further compared to the active 

sites of the template. 

3. Results and Discussion 

3.1. Identification of serine protease 

 Subtilisin-like serine proteases play an important role in the pathogenicity of pathogenic 

fungi 17, 18. With the help of these enzymes, pathogenic fungi disrupt the physiological 

integrity of the hosts during penetration and colonization 14, 15, 16. The 42kDa protein was 

excised and in-gel tryptic digestion was carried out and gathered peptide mass finger-printing 

analysis (PMF). Pooled mono-isotopic masses of 42kDa analyzed using MASCOT software 

showed that the protein is of alkaline serine protease having the first score of 191. 

MALDI/TOF/MS data also confirmed AsP is homologous to the alkaline protease of A. 

fumigatus 26, 27. The PMF analysis of alkaline protease showed fragmentation of nearly 22 
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peptides 11 of them only one peptide 1485 m/z yielded good fragmentation (Suppl. Table S1). 

The precursor ion at 1485 m/z was selected by the first TOF and allowed to react with the 

floating cell with inert gas; the MS/MS reported spectrum was obtained after ionization by 

second TOF operated in the reflectron mode. Sequence coverage was 55% and identity was 

100% (Suppl. Fig. S1). Protein motif identification showed three hits in extracellular alkaline 

proteases. If a protein includes at least two of the three active site signatures, the probability of it 

being a serine protease from the subtilase family is 100%. Collectively, the data generated 

indicate that the purified 42 kDa protein of A. solani is a serine protease belonging to the 

subtilisin family.  

3.2. Homology modeling  

The success and applicability of homology modeling are steadily increasing due to 

growing number and availability of experimentally determined protein structures 28. The 

subtilisin family (S8 and S53) appears to play many roles in fungal biology. We isolated and 

identified serine protease from a phytopathogenic fungus, A. solani (AsP) and subjected to 

molecular structural analysis 11. The AsP enzyme has 403 amino acids in length with a 

molecular weight of ≈ 42.1 kDa. It is >45 % of Ala, Gly, Ser, rich amino acid with theoretical pI 

6.51. Out of 403 amino acid residues, serine was found to have the highest number of 39 residues 

(9.7%), followed by Glycine, and Threonine  residues (35, 8.4%) and the amino acids such as 

Val, Ile, Leu, Asp, Lys with >25 residues (7.5%). The molecular formula of AsP was found to be 

C1859H2930N516O595S4 with a total number of 5904 atoms. The instability index (28.37) was 

computed which classified the protein as stable 29.  
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The X-ray crystal structure of T. aquaticus (4DZT) were specifically selected on the basis 

of NCBI-BLAST results and was utilized as a template for structure modeling of AsP. The 

sequence of the target and the template are brought into an optimal alignment. Then, the 

structure of the target protein is constructed by exploiting the information from the template 

structure. The modeling steps are: backbone superposition of the atom, loop modeling and 

orientation of the side chains. The target backbone from N-terminus to C-terminus is built by 

averaging the backbone atom position of the template structures. The matched structures were 

superposed with respect to a selected set of AsP enzyme C-α atoms (54% superposition), with 

the structure the structure (4DZT) template having the best score of 3.5 (RMSD value were 

between 0.331 and 0.524 A° which helped to identify common segments corresponding to 

structurally conserved regions; Fig. 1A). The regions surrounding the putative catalytic residues 

or homology boxes (boxes 1-3 in Fig. 1C), along with some of the β-strands, particularly (box 2, 

3), which is involved in substrate interactions, show a high level of identity. The corresponding 

sequence of AsP modeled in this paper and secondary structure elements (α-helices and β-

strands) are represented schematically and labeled accordingly to predicated model 3D molecular 

structure (Fig. 1B).  

The 3D predicated model was analyzed using energy minimization, refinement and 

simulation program of PROCHECK. The PDB Sum server was employed for evaluation by 

comparing the geometry and stereo chemical parameters (r0,  and) quality of predicted models. 

A large number of literature related homology modeling were also found to use the PROCHECK 

for screening the best model 30, 31. Further Ramachandran plot used to evaluate the values of 

the dihedral angels agree with the values of allowed conformation for protein backbones (Fig. 

2A).  Ramachandran plot analysis showed 83.3% of amino acid residues within the most favored 
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and 15% residues in additional and generously allowed regions, whereas 4 residues were found 

in disallowed regions (Fig. 2A). The comparable Ramachandran plot characteristic and G-factor 

score confirmed the good quality of the present predicated model. Hydropathy plot is a 

quantitative analysis of the degree of hydrophobicity or hydrophilicity of amino acids in a 

protein (Fig. 2B). Those inter α-helical contacts are mainly from hydrophobic residues such as 

Val, Ile, Leu, Asp, Lys, Phe, and Ala. These hydrophobic interactions are the major force 

contributing to stabilization of the helix bundle structure. Hence, it is envisaged that a common 

mechanism may underlie in the folding and function of AsP and prefer hydrophobic amino acids 

but exhibits broad substrate specificity 29. Furthermore, Ji et al. 32 state that the hydropathic 

character of the sequence residue has a larger effect on the sequence’s choice for -helix or -

sheet, as compared to the intrinsic propensities of the amino acids for a particular secondary 

structure. 

However, further qualitative and quantitative analysis of the predicted AsP model by 

using VERIFY 3D details lie between 0.01-0.82 representing the best verified and reliable model 

of AsP. The Overall quality factor was calculated using ERRAT server (Suppl. Table S2, S3, S4) 

and the model structure were found to have a 95% quality factor. VADAR analysis revealed 

accessible surface area, excluded volume, backbone and side chain dihedral angles, secondary 

structure, hydrogen bonding partners, hydrogen bond energies, steric quality, solvation free 

energy as well as local and overall fold quality yielded good results. Using atomic radii from 

Sharke method, we observed 23% residues were involved in the formation of -helices, 30% in 

-sheets, 45% in coils and 20% residues formed turns. The observed mean hydrogen bond (H-

bond) distance and energy value were closely similar with expected value in H-bond statistics. 
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The obtained expected residues with H-bond were 75% and we observed 77% for the predicted 

model. Dihedral angle statistics also represented approximately similar score with that of the 

expected values (Suppl. Table S2, S3, and S4). It was found that the overall quality and quantity 

on the basis of secondary elements of the predicated AsP model was good and reliable. The 

generated AsP model was successfully deposited in PMDB (http://www.caspur.it/PMDB) 

bearing Model ID: PM0078786. The resulting structure of AsP shows a homo-dimmer with eight 

stranded beta sheets surrounded by seven α-helices and eight-stranded beta-sheets surrounded by 

three alpha-helices (Fig. 1B).   

Phylogenetic analysis of 25 serine protease using MEGA software with NJ method, as 

described in Materials and Methods. The results reveals that, ascomycete fungi species are 

phylogenetically (Fig. 3) more similar proteases also have a more similar distribution of major 

secondary structure elements were well matched but the some turns and loops, especially in 

human and plant located on the protein surface, showed large structural deviations 33, 34, 35. 

This is not surprising, because the secondary structure elements are better conserved and have 

fever amino acid insertions and deletions than the loop/turn regions. Comparison of the entire 

deduced peptide sequence with other serine protease revealed an identity of 80%, 70%, 67%, 

59%, 56%, 48% respectively to that of Aspergillus niger, Podospora anerina, Veriticillium albo-

atrum, Trichoderma hamatum, Magnaporthe grisea, Neurospora crassa and only 57% and 15%  

to of that of Bacillus cereus and Saccharomyces cerevisiae (Table 1).  Notably, Arabidosis 

protease shares a relatively high degree of sequence identity (67%), whereas human low 

percentage of identity (29%). By incorporating an evolutionarily diverse range of serine 

proteases, our analysis indicates that although the core structures deviated considerably during 

evolution, the relative positions of the catalytic triad Cα atoms maintained very close relative 
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distances and were potent stabilized by other highly conserved residues (Fig. 3). The phylogenic 

tree presented here agrees with a previous attempt to segregate proteases into functional groups 

based on phylogenetic analysis 34, 36. However, the subtle differences in amino acid 

components of the substrate-binding regions and other regions, such as loops and turns, can 

result in differences in the architecture of the substrate-binding pockets and other structural 

regions, leading to changes in their physicochemical properties, such as optimal reaction 

temperature, thermal stability, and electrostatic surface potential of these proteases. 

3.3. Active site for metal binding region 

 Active binding site identification of 3D predicated model AsP with PMDB ID: 

PM0078786 was done using Q-site finder. In AsP, the metal binding site is situated near the top 

of a (βα)6 barrel and is assembled by Histidine (His193) residues perched at the C-terminal of 

inner barrel strands (Fig. 4A). Based on predicated binding site and the work conducted by 

others, we suggested that AsP may have a metal cofactor for binding and/or activating the AsP 

enzyme. Protein alignments of AsP and 4DZT confirmed the catalytic site of His193 residues. 

These were found to be prominent active binding sites for metal and protein-cofactors 

interactions (Fig. 4B). S1-4 substrate-binding pockets are large and have been considered as the 

primary determinants for substrate specificity and affinity 35, 37. This leads to the speculation 

that alkaline proteases have higher substrate affinity and catalytic activity. These distinctive 

features, which have also been observed in Plasmodium falciparum protease; Neurospora crassa 

38 and, may be associated with increased stabilization and hyperthermophilic adaptation. 

Closely packed aromatic interactions have been proposed to increase the ΔG of unfolding, 

thereby increasing thermal stability 34, 37. 
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3.4. Catalytic domain and calcium binding region 

The superposed structure has a common core structure with large variation in the loop 

outside the core region. Protein motif identification confirmed sequence conservation of the 

catalytic triad residue at aspartic acid (AYVVDSGINVNH), serine (GTSMATPHIVG), and 

histidine (HGTHVAGTIGG), residues can be used as a signature/motif specific to proteases and 

each playing an essential role in the cleaving process of the peptide bond. i) the role of Aspartic 

acid  is believed to bring the His into the correct orientation by its carboxyl group hydrogen 

bonding with the His, thus facilitating the nucleophilic attack;  ii) the Serine uses its hydroxyl 

group (-OH) as the primary nucleophile, which is able to attack the carbonyl carbon (C=O) of the 

scissile peptide bond  of the sbustrate; iii) the Histidine plays a dual role as the proton donor and 

acceptor at different steps in the reaction, i.e., a pair of electrons on the His nitrogen has the 

ability to accept the hydrogen from the serine hydroxyl group, thus coordinating the attack of the 

peptide bond. Among the sequences analyzed, the highly conserved amino acid Gly163, and 

Gly203 had the occupancy percentage of 50% and 60%, respectively, which have been previously 

described 33. The surface electrostatic potentials around the catalytic site were very similar to 

template model (Fig. 4C, D), with large patches of electropositive and electro neutral regions 

around the catalytic site of this modeled protease suggests it favors a negatively charged 

substrate. The largely electro-neutral regions possibly relax the stringency of the substrate 

binding, allowing for a number of different protein substrates. Likewise, the largely 

electronegative catalytic site of the N. crassa protease suggests it favors a positively charged 

substrate 38. AsP had a higher proportion of polar residues (55%) and basic amino acid (15%), 

which indicates it, could favor a more hydrophilic environment.  Many proteases in the peptide 

S8 family contain one or more Ca2+-binding sites and binding of calcium cations enhances the 
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thermal stability of the proteases which in turn increase their resistance again proteolysis, either 

by itself or by other proteases 37. The binding site residue prediction from FunFOLD 1.0 

online server (http://www.reading.ac.uk/bioinf/IntFOLD/) was shown in Fig. 4E, with the 

binding site residues were K84-A90 (Lys84, Ile85, Lys86, Asp87, Phe88, Ala89, Ala90), K224-A250 

(Lys244, Gly245, Arg246, Thr247, Lys248, Lys249, and Ala250) situated in the helix-7 and helix-6 

region and the predicted ligand calcium molecules highlighted in blue. The FunFOLD 1.0 

methods accurately predicted all of the binding site residues (Fig. 1C and Fig. 4E), but also over 

predicted three reside (6, 7 residues). The binding site residue prediction had an MCC 

score = 0.9012 and BDT score = 0.7744, with the protein predicted to bind to a centroid ligand 

being calcium.  

Concluding remarks 

We presented the 3D molecular structural design of serine protease from Alternaria 

solani (AsP) by homology modeling method. AsP is made up of 403 amino acid residues with a 

molecular weight of 42.1kDa (pI 6.51) and its molecular formula was C1859H2930N516O595S4.  At 

the core, the modeled structure is a α/β hydrolase fold, which typically consists of 16-stranded β-

sheet flanked by ten α-helices inter-connected with loop region. Biological metal binding region 

is situated near the 6th-helix and His193 residue is responsible for metal binding site. The substrate 

specificity of the alkaline serine protease was controlled by the structural arrangement of the two 

mobile loop regions. Also, calcium binding regions usually have five coordinates with distorted 

tetrahedral geometry. The calcium ion in the first Ca2+ binding site (K84-A90)  is coordinated by 

the carboxyl groups of Lys84, Ile85, Lys86, Asp87, Phe88, Ala89, Ala90 and the calcium ion in the for 

second Ca2+ site (K244–A250) is coordinated by the carbonyl oxygen atom of Lys244, Gly245, 
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Arg246, Thr247, Lys248, Lys249, and Ala250. The AsP model had sixteen β-sheets and ten α-helices, 

with Ser350 (G347-G357), Asp158 (A158-H169) and His193 (H193-G203) in separate turn/coil 

structures. These results might further allow studying substrate specificity and other properties 

contributing as a potential benefit for functional analysis of this protease enzyme and provide a 

new perspective in the understanding and identification of antifungal protease inhibitor 

designing.  
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Figure Legends 

Fig. 1. (A) Super-position 3D-molecular structure of AsP protease from A. solani predicated 

using Thermus aquaticus (4DZT) as a template. Structure super-position of AsP (pink-ribbon 

model) with template (greenribbon model). The five regions (Nterminus, CTerminus, Lloop 

and Helix, βsheet) exhibiting relatively large local conformational differences in the ribbon 

model are labeled. (B) 3D-molecular architecture of AsP. The αhelix, βsheet and coil/loop are 

indicated pink, yellow and cyan color respectively. The catalytic triad aspartic acid 

(AYVVDSGINVNH), serine (GTSMATPHIVG), Histidine (HGTHVAGTIGG), residues in the 

serine protease and can be used as a signature specific to that category of proteases marked as a 

box. His193 residue involved in metal binding region marked as a star. (C) Structure based 

sequence alignment of serine protease (AsP). The residue numbering underneath the sequence 

alignment corresponds to ten amphipathic α-helical domains are indicated by dark black line and 

sixteen -strand marked as a blue arrow line (A). Residues forming the strong calcium binding 

site and those participating in the formation of the active binding sites (S1-S4) are highlighted in 

light blue and yellow color respectively. 

Fig. 2. (A) Ramachandran plot analysis by using RAMPAGE software. (B) Graph sowed AsP 

hydropahty and amphipathy. Red color denotes amphipathicity and blue color denotes 

hydropathicity. 

Fig. 3. Serine proteases (see the Table 1) were calculated using Neighbor-Joining (NJ) method 

and the phylogenetic tree was constructed using the MEGA  4.0 program .   

Fig. 4. (A) Possible ligand binding site identification of AsP. (B) Surface model. S1, S2, S3, and 

S4 highlighted in red color residue for binding site and His193 residue highlighted in green for 

metal binding site. Comparison of the electrostatic surface potentials of 4DZT (C), AsP (D). The 
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positive surface potential is colored blue and the negative surface potential is colored red. The 

approximate locations of the substrate-binding sites/pockets, S1–S3 are labeled on the surfaces. 

(E) Structure was highlighted in helix-7 and helix-6 regions for Calcium binding sites of Ca 1 

and Ca 2. The calcium ion is coordinated by the carboxyl groups of Lys84, Ile85, Lys86, Asp87, 

Phe88, Ala89, Ala90 (K84-A90) for Ca 1 binding site. The calcium ion is coordinated by the 

carbonyl oxygen atom of Lys244, Gly245, Arg246, Thr247, Lys248, Lys249, and Ala250 (K244–A250), 

for Ca 2 binding site (blue) also displayed to highlight in the ribbon model.   

 

Table Legends: 

Table 1   Sequence identity and list of serine protease family. 
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Fig.1 
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Fig.2 
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Fig.3 
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Fig.4 
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Table  1 
 
 
Species Name                           Accession No.             Amino acid length     MW             Seq. Homology 
                                                                                                                                                       Identity  

Saccharomyces cerevisiae        X71622           597              67.7kDa              15% 
Chaetomium thermophilum     ABK96987                          532              57.4kDa              40% 
Podospora anerina                   AF047689           531              57.0kDa              41% 
Fusarium oxyporum                 AB110909           397              40.8kDa              41% 
Aspergillus niger                      M96758                              533              56.9kDa              42% 
Lecanicillium lecanni               AF059582           400              41.6kDa              42% 
Schizosaccharmyces pombe      D14063           467              49.3kDa              43% 
Lecanicillium pasallioate         AY870806           382              39.6kDa              45% 
Arthroderma benhamiae           XP_003012235                 424               45.9kDa              48% 
Neurospora crassa                   MER028360                       299              45.5kDa              48% 
Tolypocladium inflafum           AF467982           425              44.1kDa              49% 
Paecilomyces libacinus            L29262                               367               37.5kDa              52% 
Thermus aquaticus                   4DZT                                 513               53.9kDa              54% 
Asperigillus clavatus                EAW07090                        252              27.5kDa               55% 
Gibberella fujikuroi                 AY902380           329               34.6kDa             56% 
Magnaportha grisea                 AB070268           536              57.1kDa              56% 
Bacillus cereus                         YP_086726                         391              41.8kDa              57% 
Hypocrea virens                       AY242844                          403               42.3kDa              59% 
Trichoderma hamatum             M87516                              403               42.3kDa             59% 
Verticillium albo-atrum            EEY20295                         556               61.5kDa              67% 
Asperigiulls versicolor             ADE74975                          403               42.1kDa             78% 
Alternaria solani (AsP)            PM0078786*                      403               41.6kDa                * 
Homo sapiens                           MER000401                       766               88.2kDa              29% 
Arabidopsis thaliana                MER045469                       228                24.4kDa             67%    
 
 
* Present study 
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