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Abstract 

The main goal of public health emergency preparedness efforts is to mitigate the impact 

of events on the health of the population. However, decision-makers must also remain 

conscientious of the costs associated with these efforts. Planning is further complicated by 

uncertainty about the location and volume of demand that will need to be met in an emergency, 

the speed with which demand must be met, and the potential scarcity of needed items once an 

emergency occurs. To address these challenges, public health emergency planners often keep 

inventory stockpiles that are distributed when an event happens. Managing these stockpiles is a 

difficult task, and inefficient stockpile location and equipment distribution strategies can be 

costly both in terms of cost and public health impact.  

This research is motivated by challenges faced by state public health departments in 

creating stockpile location and equipment distribution strategies. The primary emphasis is on 

facemasks and respirators used by health workers during an influenza pandemic, but the 

approach is generalizable to other scenarios. The model proposed here uses a two-stage approach 

to generate a holistic solution to the problem. The first stage uses a pull distribution strategy to 

make stockpile location decisions. Additionally, it determines how counties should be assigned 

to stockpiles to minimize both storage and distribution costs. The second stage adopts a push 

distribution strategy to determine optimal delivery routes based on the county assignments made 

in stage one. This stage offers guidance for public health planners who have made location-

allocation decisions but who then face a different distribution scenario than what was anticipated 

in the original planning phase. Recourse methods for managing demand uncertainty are also 

proposed.  

A case study of the state of Kansas is conducted using the methods introduced in the 

thesis. The computational results yield several significant insights into the tradeoffs and costs of 

various facility location-allocation and vehicle routing decisions: 

 

 For the tested range of storage and distribution cost parameters, multiple stockpile 

locations are preferred over a single location.   

 In a pull distribution system, storage costs play a greater role in location-allocation 

decisions than distribution costs. 



 

 

  In the push distribution system, finding an optimal vehicle routing plan is 

computationally intensive for stockpiles with a large number of assigned counties. 

 Efficient heuristics perform well to design recourse routing plans when realized demand 

is greater than expected. 

 In the event that planners wish to specify routes well in advance, the results of this 

research suggest adopting a robust routing plan based on higher-than-expected demand 

levels. 

  

This thesis makes three important contributions. The first is an optimization approach 

that considers multiple distribution strategies. This is especially relevant when stockpiling for an 

influenza pandemic where stockpiles need to be located significantly before the material is 

needed, during which time the distribution strategy may change. Second, the case study 

demonstrates that the proposed methods are applicable to a large-scale problem arising in 

practice. Finally, this research illustrates for decision-makers the tradeoffs between different 

stockpile management strategies and between optimal and heuristic methods. 
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Chapter 1 - Introduction 

During an influenza pandemic, the virus spreads quickly and without warning through a 

large population. A large-scale emergency such as this can lead to a surge in the demand for 

protective equipment. However, since these events are rare, it is difficult for public health 

planners to develop efficient preparedness strategies. The work in this thesis is motivated by the 

need to locate, allocate, and distribute stockpiles of protective equipment when demand is 

unknown. Although this research focuses specifically on facemasks and N95 respirators used in 

an influenza pandemic, the approach is generalizable to other scenarios. 

  1.1 Research Motivation 

This research is motivated by a partnership with the Kansas Department of Health and 

Environment (KDHE) and considers stockpile location-allocation and vehicle routing decisions 

made at Kansas’ state level. Currently, equipment stockpiles are maintained locally by hospitals, 

public health departments, and other health care organizations. There is limited visibility at the 

state level of the total quantity and location of protective equipment. KDHE aims to establish 

state-level stockpiles, also known as medical materiel caches, to improve pandemic 

preparedness.  

KDHE seeks to understand the advantages and disadvantages of maintaining a single 

centralized materiel cache versus multiple cache locations throughout the state. These decisions 

are impacted by the cost of storing and distributing the stockpiled equipment. Different 

distribution strategies are also considered. In conversations with Zac Graves, Medical 

Countermeasures Program Manager at KDHE, he mentioned that if a central materiel cache were 

used, KDHE would distribute supplies to every county in the state. This “push” distribution 

strategy may also be adopted in an urgent situation to get initial equipment inventory into local 

communities. On the other hand, if a stockpile were opened in each of the seven Kansas health 

regions, each county could potentially travel to the stockpile to pick up materials. This is termed 

a “pull” distribution strategy. This research considers the implications of opening a combination 

of any of the seven stockpiles and seeks to quantify the costs and tradeoffs between scenarios 

where realized demand is greater than expected.  
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Influenza pandemics can pose a number of challenges for public health responders due to 

demand uncertainty. As a result, there is a need for tools to help planners make more informed 

and justifiable decisions. Operations research methods are particularly suited to help guide these 

decisions. While many models in the literature address related problems, to the author’s 

knowledge, this optimization approach is unique in that it uses multiple distribution strategies to 

address problems that may arise when stockpiles need to be located significantly before the 

material is needed, during which time the distribution strategy may change. Additionally, this 

model uses optimization uncertainty with recourse to quantify tradeoffs between optimal and 

heuristic distribution strategies.  

 1.2 Research Goals 

The aim of this thesis is to study the effect of demand uncertainty on facility location-

allocation and vehicle routing decisions. More informed decisions in these applications could 

save innumerable lives by stockpiling the greatest amount of resources at the lowest possible 

cost, thus increasing availability of protective equipment. The first goal of this work is to 

determine the number of stockpiles to open and to which counties they should be assigned to 

minimize total storage and distribution costs. The second goal of the research, which depends 

directly on the results of the stockpile location-allocation decisions made in the first stage, is to 

provide recommendations about the routes that vehicles should take to minimize cumulative 

distance traveled while accounting for demand uncertainty.  

 1.3 Contributions 

This thesis makes three important contributions to operations research applications in 

emergency preparedness. The first is an optimization approach that uses a two-stage, holistic 

approach to the problem to consider multiple distribution strategies. This is especially relevant 

when stockpiling for an influenza pandemic where stockpiles need to be located significantly 

before the material is needed, in which time the distribution strategy may change. The first stage 

determines where stockpiles should be located based on the assumption that a pull distribution 

strategy will be employed. The second stage then looks at county assignments and solves the 

vehicle routing problem assuming a push distribution strategy. Optimization with recourse is 

used to display how vehicle routes can be modified to account for realized demand that is greater 
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than expected. This knowledge will allow public health officials to implement routes that will 

perform well, regardless of realized demand.  

Second, the case study demonstrates that the proposed methods are applicable to a large-

scale problem arising in practice. Working closely with KDHE, the research is implemented in 

the state of Kansas to quantify the effects of various facility location-allocation and vehicle 

routing decisions. By accounting for scenarios with uncertain demand and incorporating 

optimization with recourse, this study shows how the model can be used to mitigate the cost of 

corrective actions that may be needed when realized demand is greater than expected.  

Finally, this research illustrates for decision-makers the tradeoffs between different 

stockpile management strategies and between optimal and heuristic decision-making methods. 

This is advantageous for public health officials because it provides a method for determining 

vehicle routes quickly, or when someone is not readily available to modify the input parameters 

used in the optimization model. 

 1.4 Outline 

This thesis begins with a brief overview of the problem being addressed by this research 

and the current challenges faced by public health decision-makers. Additionally, Chapter 1 

summarizes the goals of this research and how the results provide relevant contributions to 

emergency preparedness. Chapter 2 reviews the literature relevant to past influenza pandemics 

and their effects on public health planning. It then explores deterministic, stochastic, and robust 

models of facility location and vehicle routing problems. Finally, the review looks at a few ways 

these operations research techniques can be applied in the public health sector. Chapter 3 

outlines the general methods used to solve the models introduced in this research. These include 

a two-stage optimization model, as well as optimization under uncertainty with recourse. Chapter 

4 discusses the specific assumptions and parameters used in a computational study with KDHE. 

This chapter also assesses the results of this study and provides a recommendation by which 

public health planners can make informed decisions. Finally, Chapter 5 summarizes the findings 

of this paper and generalizes recommendations based on trends in the findings. To conclude, the 

chapter indicates relevant areas of future work.  
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Chapter 2 - Literature Review  

This chapter introduces literature relevant to this research. The first section discusses the 

background of pandemics on both a national and international level, and how these events 

influence public policy and emergency preparedness decisions. The next section looks 

specifically at facility location and vehicle routing methods, and how these types of problems are 

modified to account for different types of uncertainty. These two problem classes are most 

directly related to this research and are further developed in Chapters 3 and 4. The third section 

introduces various applications of facility location and vehicle routing models in public health 

scenarios. Finally, the last section outlines the differentiating elements of this thesis and their 

contributions to operations research applications in emergency preparedness.  

 2.1 Pandemic and Emergency Preparedness 

This research focuses on infectious disease and pandemics because they are the easiest 

for which to stockpile materials. Unlike a natural disaster, they do not necessarily depend on the 

number of people affected by the event, but rather by the number of emergency responders that 

may be needed. Emergency preparedness planning is especially relevant for an influenza 

pandemic because its onset is rapid and unpredictable. Demand often overwhelms the supply of 

commercially-available products during the course of the outbreak. In these situations, it is 

important that responders have access to an adequate supply of protective equipment such as 

facemasks and N95 respirators. Another benefit to stockpiling these materials is that they are 

universal and not dependent on the strain of the influenza virus.   

An important differentiation must be made between the levels of severity with which an 

infectious disease can affect a population. More specifically, severity refers to how widespread 

the disease is. From an emergency preparedness perspective, this influences the number of 

people who may require protection. In general, an influenza virus can present itself as an 

outbreak, an epidemic, or a pandemic [50].  

Outbreaks occur when a disease infects a greater number of people than expected. This 

typically confines itself to a community or a region, although it can appear in several countries. 

The unique element, though, is that outbreaks can last for years, appearing in different places of 

the world at different times, and manifesting in new communities or in communities where the 
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disease has been absent for a long period of time. Epidemics are different in that they spread 

much more rapidly than outbreaks, although the terms are often used interchangeably. When an 

outbreak or an epidemic appears in several countries at the same time, it may develop into a 

pandemic. Pandemic refers to a disease outbreak that covers a much wider geographical area, 

generally caused by a virus strain that humans have no or very little immunity against. A key 

characteristic of this new strain is that it is easily transmissible between humans or from animal 

to human [36].  

The influenza virus exists in two forms, known as Influenza A and Influenza B. Influenza 

B viruses circulate only among humans, while Influenza A viruses also are found in animals such 

as chicken and pigs. When an Influenza A virus develops a subtype that can infect humans – 

which occurred with the avian flu virus in 1997 and 1999 – it is likely to then develop to the 

point where it can spread from human to human. When this happens, there is typically no 

vaccine available, resulting in a pandemic that rapidly spreads to numerous other countries [48].  

While seasonal influenza outbreaks are common, influenza pandemics are more rare, 

although more likely to occur as people become highly internationally mobile. According to 

[37], there have only been four influenza pandemics since 1900. In 1918, the Spanish flu affected 

20 – 40% of the population worldwide. This pandemic was unique in that there were high 

mortality rates among healthy adults. When it ended in 1919, an estimated 50 million people 

died from the virus, nearly 700,000 of which were from the United States. However, unlike other 

pandemics, many victims did not die from the flu itself, but often from pneumonia and other 

complications caused by bacteria. Because the virus was not quickly identified, there was little 

that could be done to prepare for its onset [37].   

In 1957, an influenza virus was identified in Asia to which most people under the age of 

65 had little immunity. Predicting a pandemic, health officials monitored outbreaks and produced 

a limited supply of vaccine. During the pandemic, a panel of experts from the World Health 

Organization (WHO) found that spread in some countries followed public gatherings, such as 

conferences and festivals, and broke out first in camps, army units, and schools. They advised 

that people avoid crowding in public places in the hope that this would reduce the severity of the 

pandemic [39].  

However, when the virus came to the United States in the summer of 1957, it was not 

immediately detected. Children were returning to school and had the opportunity to spread the 
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influenza virus before it was discovered. The disease spread rapidly in classrooms and peaked 

among school children and young adults, who then brought it home to their families. By 

December, officials believed the virus was gone. However, another wave appeared in the early 

months of 1958. In the end, approximately two million people died during this pandemic, about 

70,000 of which were from the United States [37].  

A “second wave” is not uncommon during a pandemic, and must be accounted for when 

stockpiling emergency equipment that will be needed. Not only does it influence the number of 

people who will require treatment, but it also lengthens the timespan for which equipment must 

be stockpiled. This concept is not incorporated in the research because, as was the case in the 

1957-58 pandemic, the second wave usually occurs months after the first, allowing sufficient 

time to replenish the stockpile. Chapter 3 will discuss how the length of the pandemic is 

incorporated in the model and how it can be easily manipulated to account for a longer time 

frame, which may be necessary if considering the effects of a second wave. 

In 1968, a new subtype of the influenza virus emerged in Hong Kong. It was the mildest 

flu pandemic to date, with a death toll in the United States of around 34,000. There are a number 

of potential reasons why this particular pandemic affected fewer people. In some ways, it was 

similar to the 1957 pandemic flu virus, so many Americans may have developed an immunity to 

the strain. Additionally, it did not reach the United States until December when students were 

away from school; thus, they did not have the chance to spread the virus to one another. Finally, 

there was improved medical care and vaccine availability for infected patients [37].  

The most recent influenza pandemic occurred in 2009. The virus was nicknamed “swine 

flu” because of its resemblance to a strain found in pigs. The Centers for Disease Control and 

Prevention (CDC) estimates that 43 – 89 million people had the H1N1 virus, but estimates only 

10,000 – 20,000 deaths [37]. There are many reasons this pandemic resulted in fewer infections 

and deaths compared to earlier pandemics, the primary reason being that the virus caused less 

severe illness despite being easily transmissible [24]. Additionally, organizations like WHO and 

the CDC increased their level of preparedness, as well as the urgency with which they were able 

to create a vaccine for the virus strain [37]. 

According to MacKellar [34], “Policies to respond to pandemic influenza fall into three 

time frames-measures that can be taken before the emergence of a new virus, measures that can 

be undertaken in the immediate aftermath of its emergence, and measures that can be taken once 
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the pandemic has been established.” The third time frame would include research done to 

develop and administer a new vaccine to those infected. The research in this thesis, though, is 

primarily concerned with the first time frame; specifically, the steps that can be taken to ensure 

health care employees have adequate access to emergency equipment during an influenza 

pandemic [38].  In 2005, the U.S. Department of Health and Human Services (HHS) created the 

National Pandemic Preparedness and Response Task Group. This organization, which works 

with the CDC and other international agencies, works to prepare for potential pandemics. In 

addition to vaccine development and production, they invest heavily in research related to the 

distribution of vaccines and emergency equipment. Other strategic decisions include stockpiling 

of antiviral medications, risk and communications, and international partnership opportunities 

[21]. 

Planning for a crisis such as an influenza pandemic raises ethical concerns that must be 

addressed by public health officials. In situations where health needs greatly exceed available 

human and material resources, difficult decisions must be made regarding where and to whom 

materials are made available. Although scientific evidence and applications can help make these 

decisions, they often fail to consider the overall effect on people; they cannot determine, for 

example, whether a decision is just. Despite the fact that ethics have little to no contribution to 

the understanding of an influenza virus, they do contribute to debates such as who is most 

willing to be inconvenienced by a situation, and  how  should the burdens of negative outcomes 

be distributed across the population. It is important for decision makers to balance the ethical 

component with the urgency of logistical and scientific needs. Failing to do so could result in 

loss of the public’s trust. Using an ethical framework to guide decision-making can help mitigate 

some of the unavoidable backlash from an influenza pandemic [47]. 

The concept of ethical decision making in emergency preparedness is relevant to this 

research because the decisions made can affect the lives of thousands of people. For example, it 

is not uncommon to intentionally stockpile in counties with a higher population density, despite 

the fact that it may greatly increase cost. The expectation here is that more supplies will be 

readily available for a greater number of people. However, in addition to potentially increasing 

cost, using this population-weighted approach may move resources further away from less 

populated counties.  
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There are a wide range of decisions that must be made in emergency preparedness 

settings, such as where to stockpile resources and how to distribute those resources to the 

affected population. Operations research provides a method by which researchers can incorporate 

parameters to make the best, most informed decisions.   

 2.2 Facility Location and Vehicle Routing Methods 

There are many ways in which operations research can be used to influence decisions and 

policies made during an influenza pandemic. This research is most concerned with facility 

location and vehicle routing applications of operations research. One aspect of these types of 

problems is demand uncertainty. For this reason, nearly all of the models in the literature 

incorporate stochastic or robust optimization. This section will introduce various methods used 

to solve general problems of these types, and it will also discuss how the models can be modified 

to account for risk and uncertainty.   

Decision models can be divided into three categories: deterministic, stochastic, and 

robust. In situations where it is reasonable to assume that parameters are known at the time that 

models are solved, deterministic methods are appropriate. However, because this assumption is 

not reasonable when preparing for an influenza pandemic, models that explicitly account for 

uncertainty are needed. According to Rosenhead et al. [42], in some situations, parameters are 

uncertain but their values follow a probability distribution that is known to the decision maker. 

This information is used to develop stochastic optimization models where the objective is 

generally to optimize some expected value. In other situations, these probability distributions are 

not known, and robust optimization models are used to optimize the worst-case performance of a 

system. In both models, the purpose is to find a solution that will perform well regardless of the 

random parameter’s realized value [46].  

In general, facility location problems are NP-hard. The main purpose is to determine 

where to open p facilities from n possible locations, and p is either specified in advance or 

determined by the optimization model. In a deterministic situation where input values are known, 

the model also decides which demands are assigned to each open location. A simple example of 

this is the Weber problem, in which a single facility is placed to minimize the demand-weighted 

sum of distances from a given set of sites [9]. The p-median problem, introduced by Hakimi 

[25], expanded the Weber problem to consider the locations of p unique facilities, still with the 
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objective of minimizing some measure of transportation cost such as distance. The Hakimi 

property states that there is an optimal solution where facilities are located on the nodes of the 

network rather than along the edges. Because parameters are known, the problem is still 

deterministic [46].  

The Hakimi property was further developed by Louveaux [33], who presented the 

capacitated p-median problem with uncertain demands and costs. In this type of stochastic 

facility location problem, the most common objective is to optimize the mean expected outcome. 

The goal of this model is to choose facility locations and decide which customers they will serve. 

Since demands are random and facilities are capacitated, a facility may not be able to satisfy the 

demands of all the counties assigned to it, so a penalty for unmet demand is introduced.  

Another section of literature discusses models that use a probabilistic approach to make 

facility location decisions. The goal of these models is to maximize the probability that the 

outcome is good, or constraining the probability that it is bad. The exact definitions of “good” 

and “bad” are solution-specific. Frank [19] was first to introduce “max-probability” centers, 

which are “points that maximize the probability that the maximum weighted distance from the 

point is within a given limit.” This research is furthered by Berman et al. [4], who consider the 

effect of uniformly distributed demand instead of normally distributed. Carbone [6] introduced 

chance-constrained programming as it applies to the facility location problem. These models 

utilize constraints to limit the degree to which an objective value may be undesirable to the 

decision maker.  

Hodgson [26] performed sensitivity analysis on both deterministic and stochastic 

solutions. Using simulation to estimate regret, the research found that optimal p-median solutions 

are relatively insensitive to errors in travel distances. Interestingly, he also found that solutions 

are especially insensitive to errors in demand. Cooper [10] performs sensitivity analysis on the 

problem itself. Expanding on the Weber problem, he considers how the solution is affected when 

the locations of demand points are not known with certainty, but rather lie within “uncertainty 

circles.” Drezner [16] generalizes the Weber problem on a sphere with random customer 

locations. His research concludes that as the number of demand points approaches infinity, the 

difference between minimum and maximum costs approaches zero.  

When probability distributions are unknown, it is necessary to develop robust 

optimization models to decide facility locations. In these models, uncertain parameters are 
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captured using a scenario approach, where deterministic values represent potential realizations of 

these parameters. The two most common measures of robustness are cost and regret, the latter of 

which refers to the difference between the cost of a particular solution in a given scenario and the 

optimal cost that could be achieved in that scenario with perfect foresight. Some models seek to 

optimize the minimax cost or regret, meaning they find the solution that minimizes the maximum 

cost or regret across all scenarios. This type of optimization finds the best worse-case scenario. 

Labbé et al. [32] consider the facility location problem on a network with uncertain node 

weights; these weights are only estimated. Given an optimal solution for the deterministic 

problem, the model seeks to find the maximum regret where weights differ from their estimates 

by no more than a predetermined tolerance gap. Carrizosa [7] elaborates on this research by 

redefining the robustness measure used by Labbé et al. Instead, the model seeks to find the 

minimum value of the tolerance gap required to violate a cost limit. The more the tolerance is 

able to change without exceeding the limit, the more robust the solution.  

Gupta and Rosenhead [23] introduce the robustness measures when decisions are made 

over time. Schilling [43] expands upon this by using a scenario-based approach. A set-covering 

model is used to maximize the number of facilities in common among all scenarios while 

satisfying all demands. In the first model, a fixed number of facilities are opened in each 

scenario, while future models do not make this specification. This identifies a tradeoff between 

the total number of facilities opened and the number of facilities in common. However, Daskin et 

al. [12] showed that Schilling’s methods produce the worst possible results when transportation 

costs are taken into consideration. Finally, Kouvelis et al. [30] developed the concept of p-

robustness, although the term was coined by Snyder and Daskin [45]. This method introduces a 

constraint on the regret in any scenario to p.  

The second portion of this research is concerned with the vehicle routing problem, which 

is also NP-hard. The deterministic version of this problem consists of a set of customers, each 

with a known location and known demand, which are to be supplied by a set of vehicles with 

known capacity. The objective is typically to minimize some cost, often distribution cost. All 

vehicle routing models share a series of constraints necessary to find a feasible solution:  

 demands of all customers must be met, 

 vehicles cannot exceed capacity, 

 the route must not contain subtours. 
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The vehicle routing problem was first considered by Dantzig and Ramser [13]. They 

introduced a heuristic that used linear programming (LP) models to solve for a single-depot 

problem. A key assumption of their model is that a customer’s demand is met whenever it is 

serviced. This implies that it is only necessary (and optimal) to stop at each customer exactly one 

time. Garvin [20] relaxes this assumption by using a more complicated mixed integer LP, and 

Balinski and Quandt [3] introduce a binary integer LP formulation. Golden et al. [22] modified 

these applications to incorporate multiple depots. In this type of model, it is important to clarify 

whether the vehicle must end its tour at the same depot at which it started.  

 2.3 Facility Location and Vehicle Routing Applications in 

Emergency Preparedness 

There are two types of uncertainty that manifest themselves in this research: time 

uncertainty and demand uncertainty. Time is twofold in that it refers to both when the next 

pandemic will occur and for how long it will affect a population. Demand refers to the number of 

people that will be affected by the disease. Once again, from the perspective of emergency 

preparedness, this can have multiple interpretations. If stockpiling antiviral medications, for 

example, demand is the predicted number of infected people that will require the medication. In 

other situations, it may be more appropriate to stockpile emergency equipment for public health 

responders, as is the case with this research. In the latter strategy, demand is generally less 

random. This section will look at how these two types of uncertainty have been considered 

specifically in the public health setting, and how researchers have used this information to make 

facility location and vehicle routing decisions.  

As mentioned earlier, influenza pandemics are rare. There have only been four since 

1900, although there have been many more threats and perceived pandemics in that time [37]. 

When a pandemic does occur, most recently with the H1N1 virus in 2009-10, the situation is 

further complicated because planners cannot base their decisions solely on experience from 

earlier pandemics. For the most part, they can only incorporate this information into a 

mathematical model that can then be used to project possible scenarios and influence control 

strategies. However, even this approach is reactive in nature and does not help guide decisions 

that must be made before a pandemic is perceived [18].  
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To determine how resources can best be allocated for a pandemic influenza, some 

research considers the effect of stockpile location and 

Alternatively, some researchers use an economic approach. Drake, Chalabi, and Coker 

[14] note that all probabilistic models to date assume that pandemics occur according to a 

Poisson stochastic process, sometimes expressed as a constant annual probability of a pandemic. 

However, timing is the second largest source of pandemic parameter uncertainty after mortality 

rate [44].  

Drake et al. evaluate uncertainty using a case study of influenza antiviral stockpiling in 

Cambodia. They compare this to having no stockpile, and evaluate based on cost and disability 

adjusted life years (DALYs). Essentially, they use a present value cost analysis to assess the 

benefits of a given stockpiling strategy. Whereas the stockpile investment occurs right now, 

health gains are realized in the future and must be discounted back to present value. They found 

that the time-to-pandemic parameter has elasticity slightly greater than two. This means that as 

the time-to-pandemic value changes, it has a greater than proportional impact on the incremental 

cost-effectiveness ratio (ICER) [15].  

One difficulty in using an economic model is that countries have unique characteristics 

that need to be taken into consideration. For example, a stockpiling strategy in one country may 

not work in another due to accessibility of the stockpile, which may result in a misallocation of 

limited resources. It is important to keep in mind the landscape in which the health scenario may 

take place [8].  

Carrasco et al. [8] use an epidemic-economic model to study how mortality and cost are 

affected by stockpile sizes for Brazil, China, Guatemala, India, Indonesia, New Zealand, 

Singapore, the United Kingdom, the United States, and Zimbabwe. Not surprisingly, they 

noticed that antiviral stockpiling reduced mortality considerably, and had greater cost-avoidance 

potential in countries with more resources, such as the United States. However, they also 

estimated that, based on antiviral pricing at the time, stockpiling is not cost-effective for two-

thirds of the world’s population [8]. When the scope of the problem is narrowed to encompass a 

more uniform population such as a single state, these particular economic factors have less 

influence on stockpiling decisions. It is then easier to directly see the effects of these decisions 

on cost.  
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Many facility location and vehicle routing applications in health care use a similar cost 

minimization approach. Daskin [53] was one of the first to consider how reliability of the 

location model influenced facility location decisions. He uses a maximum covering integer 

programming (IP) model to incorporate a facility’s ability or inability to serve a demand based 

on the probability that it is busy. Drezner [55] also considers reliability, but he introduces the fact 

that if a customer cannot be served by a given facility, it will have to be served by an alternative 

facility.  

Connecting both facility location and inventory, Balcik and Beamon [54] develops a 

maximal covering model that determines the number and location of the centers, as well as the 

amount of inventory that should be held at each. They use a set of scenarios and the probability 

of each scenario happening to incorporate uncertainty into the model. Huang et al. [52] use a 

stochastic optimization model to estimate the inventory levels of ventilators throughout Texas. 

The model quantifies risk as either the expected number of patients not receiving required 

material, or the probability that at least one patient in the state will not receive material Campbell 

and Jones [5] were the first to consider inventory levels in a facility location model without using 

scenarios. They choose to do this because scenarios are generally based on significant historical 

data, which may not always be available in disaster response scenarios. Instead, they introduce a 

risk parameter that is the probability that any inventory stored at a facility will be destroyed or 

inaccessible. This approach relies on historical natural disaster data, which is more accessible 

and accurate.  

Finally, Rawles and Turnquist [40] look at emergency preparedness with service quality 

constraints. They developed a model to minimize expected costs while incorporating penalties 

for unmet demand. Using stochastic optimization, the two-stage model seeks to minimize the 

total expected cost while constraining the quality of the response to the uncertain parameters. To 

expand, they want to ensure that the distance stockpiled supplies have to be moved as a result of 

a given scenario is within a specified limit. Similarly, the research done by Murali et al. [35] 

considers how facilities must be located in response to a bio-terror attack when there is possible 

damage to the transportation network. In some scenarios, it may be impossible to predict whether 

a customer is willing and able to travel to an assigned facility. These papers help demonstrate 

how transportation costs can be influenced by facility location decisions.  
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Following Hurricanes Katrina, Wilma, and Rita, which caused over $100 billion in 

damage, it became a priority for public health officials to look at the entire emergency 

preparedness network as a whole [41]. In addition to the research outlined above where facility 

locations were decided with the assumption that the transportation network would be altered 

following a natural disaster, researchers such as Rawls and Turnquist [41] took a more holistic 

approach. They developed a model that combined facility location, demand uncertainty, post-

disaster distribution of supplies, survival of stockpiled materials, and the condition of the 

transportation network. This research is advantageous in that it most accurately represents the 

unanticipated behavior and outcomes of a hurricane or other natural disaster.  

The research done by Ӧzdamar et al. [51] is specifically concerned with vehicle routing 

problems in natural disasters. The model addresses transportation problems that must be solved 

at given time intervals during aid delivery. This is because the model considers ongoing aid 

where plans are regularly periodically updated to include new requests and modifications to the 

transportation network. In the context of this particular emergency preparedness plan, a customer 

in one period may become a depot in another due to a surplus of supplies. This is important 

because it implies that vehicles do not have to return to the node in which they started or even to 

depots at all. As a result, there are no closed-loop tours. Additionally, this model relaxes the 

constraint that a customer’s demand must be satisfied by only one vehicle and instead allows for 

split delivery.  

Finally, Créupt et al. [11] represent an emergency problem as a dynamic vehicle routing 

problem with time windows (DVRPTW). The setting of this problem, although still in the health 

care field, is unique. In this scenario, patients request doctors when needed, and an algorithm 

determines which doctor is assigned to the patient based on criteria such as distance, reaction 

time, and ability to respond to the patient’s need. This application of the vehicle routing problem 

introduces unique opportunities for further research in similar settings. For example, rather than 

a stationary customer, an algorithm could assign vehicles to counties based on the spread of the 

pandemic throughout the state.  

The model introduced in this research is different than those discussed in this chapter 

because it incorporates both facility location-allocation decisions as well as vehicle routing 

decisions. It incorporates a pull distribution strategy in the former and a push distribution 

strategy in the latter. This approach is especially justified when stockpiling for an influenza 
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pandemic because stockpiles need to be located significantly before the emergency equipment is 

needed, during which time the distribution strategy may change. Furthermore, this research 

applies multiple methods of optimization under uncertainty with recourse to display costs and 

tradeoffs with various solutions. This is of particular relevance to public health planners because 

they may not have the technical capabilities to re-optimize routes with computer software, so the 

model allows them to make decisions based on the recourse values of a heuristic.   
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Chapter 3 - Methods 

 During a pandemic, it is important for public officials to respond in a way that protects 

the most people within a reasonable amount of time. Advance preparation is key in achieving 

this goal. This chapter introduces the pandemic preparedness setting that motivates this research, 

as well as the considerations and assumptions that must be made in order to make the best 

decisions. Additionally, this chapter introduces the two-stage optimization approach used to 

solve the problem, and concludes with an analysis of the optimization uncertainty with recourse 

methods used to capture the demand uncertainty present in public health systems.  

 3.1 Problem Definition  

It is widely accepted practice for health care facilities to carry a stockpile of equipment 

that may be needed in an emergency. Depending on the situation, this equipment may never be 

used even though it may have cost thousands or millions of dollars to develop the emergency 

preparedness plan, purchase necessary materials, and distribute the materials accordingly.  

In an influenza pandemic, the disease is typically spread through the airborne 

transmission of particles or large droplets. This can be avoided by the simple use of OSHA-

approved facemasks and respirators. The scope of this research is the management of facemask 

and respirator stockpiles for pandemic preparedness. To most efficiently respond to the situation, 

stockpiles may be maintained by individual facilities, groups of facilities, or state health officials. 

It is the responsibility of these organizations to provide emergency equipment to employees who 

will be most exposed to the infection in their daily work. Typically, these include public health 

department employees, hospital personnel, and EMS attendants. Based on their level of 

exposure, though, these employees do not use the same type of equipment, nor do they consume 

these materials at the same rate. Decision-support models are needed to account for these system 

characteristics in preparedness planning. 

Decisions made in this type of emergency preparedness planning typically include where 

stockpiles should be opened, how customers should be assigned to those stockpiles, and how 

much material should be held in inventory. Unlike the models outlined in Chapter 2, this 

research expands beyond the stockpile location-allocation problem and incorporates a vehicle 

routing problem to generate a cost-effective distribution strategy. Decisions in this stage of the 
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model include which counties each vehicle will serve, and in what order the vehicles will deliver 

equipment. The methods by which these decisions are made are outlined in the following 

sections.  

 3.2 Modeling Approach 

This section introduces the two-stage optimization approach used to model and solve this 

problem. The first stage determines which stockpiles should be open and which counties 

assigned to minimize both storage and distribution costs. This model uses a pull distribution 

strategy in which vehicles make round trips between the stockpile location and a single county. 

According to KDHE, this is likely to occur in events where counties pick up their supplies from 

the stockpile.  

The second stage builds on the first stage decisions. However, it adopts a push 

distribution strategy, in which delivery vehicles are routed from the stockpile and visit multiple 

counties before returning to the stockpile location. This vehicle routing model minimizes the 

cumulative distance that vehicles must travel to satisfy the demand of every county. Thus, the 

second stage offers guidance for public health planners who have made location-allocation 

decisions for pandemic preparedness but who then face a different distribution scenario than 

what was anticipated in the original planning phase. 

The second stage is dependent upon the first in that vehicles can only deliver to the given 

county assignments made in the first stage. Although the two stages are interdependent, they are 

modeled separately in this research for two reasons. First, in practice, it is likely that location-

allocation decisions will be made well in advance of routing decisions, and some routing 

parameters or constraints may not be available at that time. Second, the two-stage approach is 

more computationally tractable for large problems. 

Finally, the models are extended to assess the impact of demand uncertainty on the 

routing decisions made in the second stage. Using optimization under uncertainty with recourse, 

county demands are multiplied by a factor α to assess what will happen if the realized demand is 

greater than the estimated demand. Recourse is calculated based on the resulting increase in 

cumulative travel distance. A robust rather than stochastic approach is used because there is no 

historical data to justify an underlying probability distribution to the scenarios used in this 

model.  
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 3.3 Stockpile Location-Allocation Model 

This section describes the first stage of the two-stage approach: the stockpile location-

allocation model. The result of this model determines which of the predetermined stockpiles are 

to be opened, as well as which counties are to be serviced by the given stockpile to minimize 

total storage and distribution costs. The model notation, parameters, and mathematical 

formulation are provided below.  

 3.3.1 Notation and Parameters 

Most of the parameters in the first stage of the model are used to calculate equipment 

demand in each county. Also included is the distance matrix that quantifies how far counties are 

from each of the stockpile locations.  

 

C    = set of county locations 

S  = set of stockpile locations  

H  = set of types of health equipment 

D  = set of types of health department 

Pd = percentage of employees in department d ∈ D that will require health equipment 

Fs = storage cost per square foot at stockpile facility s ∈ S 

m = distribution cost per mile 

t  = duration of pandemic (in days) 

w  = total number of cubic feet in a trailer  

Qh = quantity of equipment h ∈ H in one box 

Bh = number of boxes of equipment h that can be stacked in a 1’ x 1’ x 8’ space 

Ecd = number of employees from county c ∈ C in department d 

Nhd = number of equipment type h required by employee in department d 

Lcs = distance in miles from county c to stockpile s 

𝜆𝑠 = county in which stockpile s is located 

 3.3.2 Decision Variables 

The decisions made in the first stage of the model include which stockpiles are to be open 

and to which counties they will deliver.  
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Zs = 1 if stockpile s is open;  

    0 if otherwise 

Acs = 1 if county c is assigned to stockpile s; 

    0 if otherwise 

 3.3.3 Mathematical Formulation 

The complete formulation of the stockpile location-allocation model is as follows:  

 

Minimize 

∑ ∑ ∑ ∑  
(𝐸𝑐𝑑𝑃𝑑  𝑁𝑑ℎ 𝑡)

 (𝑄ℎ  𝐵ℎ)

|𝐻|

ℎ=1

|𝑆|

𝑠=1

|𝐷|

𝑑=1

|𝐶|

𝑐=1

  𝐹𝑠  𝐴𝑐𝑠  + 

 

∑ ∑ ∑ ∑  ⌈
(𝐸𝑐𝑑𝑃𝑑  𝑁𝑑ℎ 𝑡)

 (𝑄ℎ  𝐵ℎ)
 / ( 

𝑤

8
 )⌉

|𝐻|

ℎ=1

|𝑆|

𝑠=1

|𝐷|

𝑑=1

|𝐶|

𝑐=1

 2 𝑚 𝐿𝑐𝑠 𝐴𝑐𝑠 

 

( 3.1 ) 

 

 

subject to ∑ 𝐴𝑐𝑠 =

|𝑆|

𝑠=1

 1             ∀ 𝑐 ∈  𝐶 

 

( 3.2 ) 

 

 𝐴𝑐𝑠  ≤  𝑍𝑠              ∀ 𝑐 ∈  𝐶, 𝑠 ∈  𝑆  

 

( 3.3 ) 

 

 𝑍𝑠  ≤  ∑ 𝐴𝑐𝑠

|𝐶|

𝑐=1

             ∀ 𝑠 ∈  𝑆 

 

( 3.4 ) 

 

 

 𝐴𝜆𝑠𝑠 =  𝑍𝑠            ∀ 𝑠 ∈  𝑆 
( 3.5 ) 

 

 

 𝐴𝑐𝑠, 𝑍𝑠  ∈ {0, 1}           ∀ 𝑠 ∈  𝑆, 𝑐 ∈  𝐶 
  ( 3.6 ) 

 

The components are described in more detail below.  
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OBJECTIVE: The main objective of the first stage of the model is to minimize the total 

cost accrued by storing emergency equipment at given stockpiles and then distributing the 

respirators to assigned counties throughout the state. One key assumption, made in conjunction 

with KDHE collaborators, is that there are no fixed costs associated with opening and 

maintaining a stockpile. This is because some of the stockpile locations are existing hospitals, 

thus it is not necessary for KDHE to open an entirely new building. For this reason, the objective 

function only takes storage and distribution costs into consideration when deciding stockpile 

locations and county assignments.  

The first summation calculates the total storage cost of a given solution. Because storage 

cost is influenced by the stockpile’s cost per square foot, it is necessary to first determine how 

many square feet of storage each county needs to occupy at the stockpile facility. This is 

represented by the fraction shared by both cost summations. In this term, the numerator 

corresponds to the total demand of a county for a pandemic that lasts t days. Demand is directly 

related to the number of employees in the county, Ecd, and the percentage of employees in each 

department that require emergency response equipment, Pd. The denominator corresponds to the 

number of pieces of equipment that can fit in 1’ x 1’ x 8’ space. This number is found by 

calculating the maximum number of boxes that can fit in one cubic foot and then multiplying it 

by eight.  

The second summation in Equation (3.1) considers the way in which vehicles will deliver 

the respirators to the counties. In this model, a multiplier of two is used, assuming that one truck 

will make exactly one round trip to each county. By doing so, it accounts for the worst case 

scenario, or upper bound, of total distance traveled. Although this assumption does not solve for 

optimal stockpile assignments, it is adequate in that it is feasible for all scenarios.  

 In order to calculate these distribution costs, it is necessary to calculate the number of 

trips that are required for one vehicle to satisfy the demand of a given county. This cost 

calculation can be seen in the second summation of Equation (3.1), where the model uses an 

arbitrarily chosen cost per mile, m, to see how counties are assigned to stockpiles when this 

variable increases or decreases. As is anticipated, cost per mile is directly correlated with the 

total distribution cost; thus it is also directly correlated with the number of open stockpiles.  
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The second summation calculates the total space requirement of the allotted equipment. 

However, in Equation (3.1), the number of trips that a vehicle must take is calculated by dividing 

the space requirement (in cubic feet) by w / 8. This is because the space requirement calculation 

already takes into consideration the fact that stacks are eight feet high, so the truck can only fit, 

at most, w / 8 stacks of equipment.  

As mentioned earlier in this section, the objective function must account for both the 

storage and distribution costs. Therefore, it is calculated by simply summing the two cost 

equations. There are certain tradeoffs between the two independent variables (storage cost per 

square foot and distribution cost per mile) in this stage of the model. For example, it is intuitive 

that as storage cost per square foot increases, it is more desirable to store a county’s equipment at 

a stockpile that is further away, thus resulting in fewer open stockpiles. Conversely, as 

distribution cost increases, it is more desirable to open more stockpiles so vehicles do not have to 

travel as far to make deliveries. These tradeoffs are further discussed in Chapter 4.  

 

CONSTRAINTS: The constraints in the first stage of the model govern the feasible 

assignment of counties to stockpiles.   

 Constraint (3.2) states that every county must be assigned to exactly one stockpile, 

regardless of whether or not it is available. Constraint (3.3) specifies that the stockpile must be 

open in order for counties to be assigned to it. Together, these two constraints ensure that 

counties can only be assigned to exactly one open stockpile. Constraint (3.4) ensures that if a 

stockpile is open, it serves at least one county. Without the clarification of this constraint, it 

would be possible for the stockpile to be labeled as “open” even though it does not serve any 

counties. 

 Finally, Constraint (3.5) states that if a stockpile s is open, it must deliver to the county in 

which it is located, 𝜆𝑠. This constraint is necessary because it is possible that, if storage costs are 

high and transportation costs are relatively low, it may be more desirable for one stockpile to be 

open and serve nearby counties, although receive its equipment from another stockpile. This type 

of assignment is undesirable from KDHE’s perspective.  
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 3.4 Vehicle Routing Model 

Once the first-stage model determines which counties are assigned to which stockpile, the 

second stage consisted of a vehicle routing optimization model. The purpose of this model is to 

determine the route that a given number of vehicles must travel in order to minimize the 

cumulative distance traveled by those vehicles.  

This approach demonstrates a push distribution strategy, where the delivery is not 

necessarily based on observed need, but rather as a means of ensuring local availability in 

anticipation of a sudden large demand. In a pull strategy, customers would order equipment as 

the pandemic began to infect more people. However, it is more appropriate for two reasons to 

assume the former in this situation.  First, pandemics are generally unpredictable, random, and 

fast-spreading. Demand cannot necessarily be determined based on historical data or a 

forecasting model, as is generally the case with manufactured products. Instead, public health 

officials tend to take the more conservative approach of prepositioning stockpiles throughout the 

state. Secondly, a push system allows for more efficient system-wide planning on behalf of 

KDHE.  

The following sections outline the notation and constraints used to develop the model and 

describe cutting-plane techniques that improve computational efficiency.  

 3.4.1 Notation and Parameters 

The parameters of a vehicle routing problem include the demand of each county, the 

vehicle capacity, and the county-to-county distance matrix. Notations for these parameters are 

outlined below.  

 

C    = set of county locations 

S  = set of stockpile locations  

V  = set of vehicles  

u = vehicle capacity 

Ri = demand of county i ∈ C 

Gij = distance from county i to county j 
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The vehicle routing model is solved for each stockpile location and its assigned counties. 

Demand Ri of county i is assumed to be 25% of its total demand, or the supplies required for 30 

days. The routing plan is designed to push out supply quickly, with the same routes to then be 

repeated later in the pandemic response. 

3.4.2 Decision Variables 

The major decision made in this stage of the model is the route taken by each vehicle. 

This is captured by the binary decision variable, Xijv, which indicates whether vehicle v traverses 

the road between county i and county j. Additionally, the binary variable, Yiv, indicates that 

county i is served by vehicle v.  

 

Xijv = 1 if vehicle v ∈ V traverses edge (i , j); 

    0 if otherwise 

Yiv = 1 if county i is serviced by vehicle v; 

     0 if otherwise 

 3.4.3 Mathematical Formulation  

The complete formulation of the vehicle routing model can be seen below. It is important 

to note that this model will only solve for a single stockpile location and its assigned counties. 

 

Minimize ∑ ∑ ∑ 𝑋𝑖𝑗𝑣

|𝑉|

𝑣=1

 𝐺𝑖𝑗  

|𝐶|

𝑗=1

|𝐶|

𝑖=1

 

 

( 3.7 ) 

 

 

subject to ∑ 𝑋𝑖𝑖𝑣  =  0             ∀ 𝑖 ∈  𝐶

|𝑉|

𝑣=1

 

 

( 3.8 ) 

 

 ∑ 𝑌𝑖𝑣

|V|

𝑣=1

 =  1              ∀ 𝑖 ∈ 𝐶: 𝑖 ≠  𝑆 

 

( 3.9 ) 
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 ∑(𝑅𝑖 𝑌𝑖𝑣)  ≤  𝑢              ∀ 𝑣 ∈  𝑉

|𝐶|

𝑖=1

 

 

( 3.10 ) 

 

 ∑ 𝑌𝑖𝑣

|V|

𝑣=1

 =  |𝑉| 

 

( 3.11 ) 

 

 ∑ 𝑋𝑗𝑖𝑣 =  𝑌𝑖𝑣             ∀ 𝑖 ∈  𝐶, 𝑣 ∈  𝑉

|𝐶|

𝑗=1

 

 

( 3.12 ) 

 

 ∑ 𝑋𝑖𝑗𝑣  = ∑ 𝑋𝑗𝑙𝑣

|𝐶|

𝑗=1

             ∀ 𝑖 ∈  𝐶, 𝑙 ∈  𝐶, 𝑣 ∈  𝑉

|𝐶|

𝑗=1

 

 

( 3.13 ) 

 

 𝑋𝑖,𝑖+1 +  𝑋𝑖+1,𝑖+2 +  … +  𝑋𝑛−1,𝑛  ≤ (𝑛 − 1) 

 

( 3.14 ) 

 

 𝑋𝑖𝑗𝑣, 𝑌𝑖𝑣  ∈ {0, 1}          ∀ 𝑖 ∈  𝐶, 𝑗 ∈  𝐶, 𝑣 ∈  𝑉 

 

( 3.15 ) 

 

 

OBJECTIVE: In the second stage, the objective is to determine what routes the vehicles 

should take in order to minimize the cumulative distance traveled while still satisfying the 

demand of each county. The objective function simply sums the total distance traveled by every 

vehicle  

 

CONSTRAINTS: This section will focus on the traditional constraints used to find a feasible 

solution to a vehicle routing problem. It is important to note that this model will only solve for a 

single stockpile location and its assigned counties.  

Constraint (3.8) simply states that a vehicle cannot traverse edge (i, i). This constraint 

seems relatively intuitive and redundant, especially considering the fact that the distance matrix 

is designed so that the distance from county i to county i is zero. By traversing this edge, the 
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objective function is not affected, but no additional demand is satisfied either. However, when 

the model was first run, this issue arose, so Constraint (3.8) was introduced.  

Constraint (3.9) states that each county in the set C must be visited exactly one time by 

one unique vehicle, with the exception of the stockpile county. By doing so, it is implied that the 

county’s demand must be satisfied in full by that single delivery. In effect, this eliminates the 

possibility of dividing the demand amongst multiple vehicles. When considered in addition to 

truck capacity, it is easy to see how partitioning the demand may ultimately decrease the total 

miles traveled by the vehicles; however, from an implementation standpoint, it would not be 

desirable for multiple vehicles to visit the same county. In the worst case scenario, it is feasible 

and potentially optimal for one county to be visited by every vehicle. Although unlikely, the 

health care environment must be kept in consideration.  

 Constraint (3.10) ensures that a vehicle is not assigned to more counties than it can satisfy 

with a given capacity u.  

Constraint (3.11) specifies that the stockpile – county i – must be served by exactly |V| 

vehicles. This means that every vehicle originates at the county in which the stockpile is located.  

 The final two constraints are trivial in nature, but critical to any vehicle routing problem. 

Constraint (3.12) simply states that if a county i is assigned to a vehicle v, then that vehicle’s 

route must include exactly one edge from some other county j into county i. Conversely, a 

county cannot be on a vehicle’s route if it was not assigned to that vehicle. Finally, constraint 

(3.13) maintains the continuity of the route. In reality, if a vehicle travels from county i to county 

j, the next sequence in the route must be from county j to some other county l. 

 Constraint (3.14) is the general formulations of the subtour elimination constraints. These 

are discussed in detail in the next section.  

 3.4.4 Subtour Elimination Constraints 

Subtours in the vehicle routing problem include any route that does not begin and end at 

the county in which the stockpile is located. Such solutions are not allowed. This section 

illustrates the concept of subtours and describes the computational approach to finding solutions 

without them.  

 A complete model formulation includes all subtour elimination constraints. In the 

implementation, these constraints are added one at a time because there are exponentially many. 
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Consider Figure 1 below, where the route is discontinuous. If subtour elimination constraints are 

not included, this tour is feasible because all of the constraints are satisfied: the truck goes to 

county z twice, all counties are visited, and it is assumed that vehicle capacity is not exceeded.  

 

Figure 1. Subtour in which the route is discontinuous 

 

 It is clear that this particular route is not possible because it shows that one vehicle must 

travel route z – 1 – 2 – z as well as 3 – 4 – 3. However, the vehicle does not stop at every county 

while also satisfying the constraint that it must begin and end at the stockpile z. To ensure the 

optimal solution does not include these subtours, subtour elimination constraints are incorporated 

into the model. These constraints require that every county assigned to a vehicle must be 

included in the route, and that the route, in its entirety, must begin and end at the stockpile 

location. This is implemented using a script that identifies subtours.  

 The script first looks at the given optimal solution. If it notices that a vehicle has a 

subtour as defined above, it writes a constraint to eliminate that unique subtour from the feasible 

region. Finally, it resolves to find a new optimal solution, and the process is repeated until there 

are no subtours in any vehicle’s route. In the example introduced in Figure 1, the subtour 

elimination constraint takes the form of a cover cut:  

 XZ1 + X12 + XZ2  ≤  2 

 

( 3.16 ) 

 

This cut states that only two of the three arcs that comprise the subtour can exist in the 

final solution. However, as mentioned above, this cut only eliminates a single subtour. Further 

iterations may introduce more subtours, as shown in Figure 2. The constraint in Equation (3.16) 

is still satisfied, yet the solution is still not feasible.  
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Figure 2. Another solution containing a subtour 

 

For a vehicle that must travel to C counties, subtours may range from size 2 to size |C| – 2 

counties. In general, the summation of edges in a subtour consisting of n nodes (where n < |C|) 

must be less than or equal to n – 1, as shown in Equation (3.14).  

It is easy to see why run time is so strongly correlated with the number of counties being 

serviced by a stockpile. In the example with five nodes, every solution containing subtours has 

one subtour of size three and one subtour of size two. Therefore, the model may need to 

complete ten iterations (five choose two) to eliminate all possible subtours. As |C| increases, so 

too does the number of iterations. The optimal solution to the above example would be the route 

shown in Figure 3.   

 

 

Figure 3. The optimal route with no subtours 

 

 3.4.5 Symmetry Constraints 

Even with the iterative addition of subtour elimination constraints, the vehicle routing 

problem is still computationally challenging. To improve the computational efficiency of the 

model, it was necessary to introduce symmetry cuts. In a vehicle routing problem, it is possible 
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that a vehicle in one iteration may have the exact same route as another vehicle in a different 

iteration. This is redundant and ultimately increases the solving time and number of cuts that 

must be implemented to solve the model to optimality. Symmetry cuts are a quick and easy way 

to avoid the unnecessary run time.  

For example, consider a county whose demand is equal to the vehicle capacity, m. 

Without these constraints, the model is still feasible regardless of which vehicle delivers from the 

stockpile to the given county. Similarly, if the model has found an optimal route, it does not 

matter which vehicle travels this route, but by nature of the model, it will explore this same route 

for every vehicle in an attempt to find a better solution. However, optimality will not change. 

Thus, the following symmetry constraints are introduced to eliminate this redundancy.   

 𝑌𝑣,𝑣 +  𝑌𝑣,𝑣−1 + … +  𝑋𝑣,1 = 1 

 

( 3.17 ) 

 

 3.5 Optimization under Uncertainty with Recourse 

The final section of this chapter introduces an optimization approach to support stockpile 

distribution routing under demand uncertainty. After stockpile locations are determined in the 

first stage of the model, the push distribution approach used in the second stage is much more 

susceptible to discrepancies in demand because optimal routes are constrained by vehicle 

capacity. When realized demand is greater than the estimated demand used to create the vehicle 

routes, it is likely that the vehicle will no longer be able to deliver to every county on the route 

without exceeding capacity. In this case, there are several possible recourse actions, including: 

(a) solve a new vehicle routing problem using the model from Section 3.4 and the new demand 

parameters; (b) use the previously-determined routes, but re-solve part of the routing problem to 

account for the increased demand; or (c) use the previously-determined routes and a heuristic 

update rule to account for the increased demand. Each of these options may result in increased 

distances and may require additional vehicles.   

This thesis proposes a scenario-based approach to evaluate the tradeoffs between the 

three recourse strategies described above. There is little historical data to justify exactly how 

much emergency equipment a county will need during an influenza pandemic. Instead, scenarios 

are used to predict county demand at varying stages of pandemic severity.  These scenarios are 
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determined with the introduction of a severity factor, α, which is multiplied by county demand. 

For example, if it is estimated in stage one that a county has a demand of 1,000 respirators, a 

severity factor of two (α = 2) would result in a realized demand of 2,000 respirators.  

This parameter is incorporated into Equation (3.10), which constrains the amount of 

equipment in a vehicle to a given capacity. The resulting constraint is shown in Equation (3.18). 

Here, parameter Ri represents the equipment demand in county i, and Yiv is the binary decision 

variable used to determine if county i is served by vehicle v.  

 

 ∑(𝑅𝑖 𝛼 𝑌𝑖𝑣)  ≤  𝑢              ∀ 𝑣 ∈  𝑉

|𝐶|

𝑖=1

 

 

( 3.18 ) 

 

 

 The following step-by-step process is used to determine the three recourse strategies. 

Strategy 1 (step 1) gives the optimal solution for the vehicle routing problem with the new 

parameter values. Heuristic recourse solutions are calculated in two different ways (strategies 2 

and 3) to help decision-makers visualize how the routes may be affected if realized demand is 

greater than estimated demand. These methods are differentiated below in steps 5 and 6.  

 

1. Using computer software, find the optimal vehicle routing plan, denoted here as 𝑇𝛼
∗, for 

all desired values of α. The cumulative distance traveled on each of these routes is 

denoted as F(𝑇𝛼
∗).  

2. For all values of α ≠ 1, begin scheduling vehicles using the optimal routes of α = 1 until 

vehicle capacity is exceeded.  

3. When capacity is exceeded, put the vehicle’s remaining counties in a set, M.  

4. Re-optimize set M using computer software to determine additional vehicles needed to 

satisfy demand. This new vehicle routing plan is denoted as 𝑇𝛼
𝐶 . 

5. Re-optimize set M using a simple sweep heuristic [56] to determine additional vehicles 

needed to satisfy demand. This new vehicle routing plan is denoted as 𝑇𝛼
𝐻. 

6. Calculate two recourse values using 𝐹(𝑇𝛼
𝐶) −  𝐹(𝑇𝛼

∗) and 𝐹(𝑇𝛼
𝐻) −  𝐹(𝑇𝛼

∗) for all values 

of α.  
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By considering recourse with this scenario-based approach, decision-makers can 

determine vehicle routes based on tradeoffs between the number of vehicles required to 

implement a plan in a given scenario, the cumulative miles traveled in routing plan, and the 

number of recourse miles resulting when realized demand is greater than estimated demand. 

While re-optimizing the remaining set of counties, M, using computer software is obviously 

better to decrease distance traveled, it is only useful if someone is readily available who can 

effectively manipulate the data in the software. Otherwise, public health officials may implement 

a sweep heuristic because it is less technical, but still performs well compared to the optimal 

solution.  

Chapter 4 introduces a computational study performed with KDHE, where optimization 

under uncertainty with recourse is used to evaluate and decide which routing strategy should be 

implemented in an influenza pandemic. This approach is used to identify tradeoffs between 

recourse strategies. The metrics considered include robustness, or how well a solution performs 

under a variety of severity factor levels, and computational requirements.  
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Chapter 4 - Computational Study 

 The models described in Chapter 3 were implemented using data from the state of 

Kansas. This chapter outlines the process for gathering the necessary information and estimated 

model parameters. Then it discusses trends identified by modifying certain parameters of the 

model. Finally, it introduces optimization with recourse to address the issue of demand 

uncertainty and its effect on the model’s outcome.    

 4.1 Motivating Scenario 

In early 2013, the Medical Countermeasure Program of KDHE wanted to reevaluate the 

way in which they stockpile and distribute emergency respirators throughout the state of Kansas. 

The question that sparked this research was whether there should be a stockpile in every health 

region or a central materiel cache containing enough respirators to satisfy the demand of every 

county in the state. There are pros and cons to both decisions, but this prompted additional 

opportunities that KDHE was not originally considering.  

KDHE currently divides the state into seven health regions to allow for more efficient 

decision making, dissemination of information, and patient care. Each of these regions has a 

candidate stockpile location, represented by a black triangle in Figure 4. In general, the counties 

in which the stockpiles are located cannot be changed due to preexisting agreements. For this 

reason, the model does not look at where the stockpiles should be located, but rather which 

stockpiles should be opened based on these given locations.  
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Figure 4. The seven health regions of Kansas and their stockpile locations [29] 

 

 Something important to note at this point is that this model generates proposals of various 

opportunities and their respective outcomes. Regardless of the costs and benefits, counties retain 

the right to choose whether or not to participate in the stockpile and distribution strategy. The 

results presented here are obtained assuming all 105 counties will choose to participate. If a 

county opts to receive medical equipment in another way, the results, especially in the vehicle 

routing problem, may change. 

 4.2 Type of Demand 

KDHE posits that there are three primary service providers during an influenza 

pandemic, and each of these providers is likely exposed to the virus at varying levels. This 

information greatly influences the equipment demand at each county.  

The scope of service providers considered in this research is emergency medical services 

(EMS) attendants, hospital personnel such as doctors and nurses, and public health employees. 

EMS attendants and hospital personnel have a high exposure risk because they are often in direct 
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contact with known or suspected pandemic patients. These employees, by OSHA standards, are 

required to wear approved N95 respirators while caring for these patients. In its most basic form, 

an N95 respirator is a filtering facepiece that reduces the user’s exposure to small inhalable 

particles. It is meant to form a tight seal to the face, and it generally requires a “fit test” to 

determine what size will provide adequate protection to the user [15]. Despite its inconvenience, 

it is important to note that this opportunity cost was not taken into consideration in the final 

model.  

On the other hand, public health employees have only a medium exposure risk because 

their jobs require close contact exposures to known or suspected sources, such as the general 

public and outpatients, although they may not necessarily come into direct contact with affected 

patients. OSHA standards only require employees at this level to wear FDA-cleared facemasks 

rather than N95 respirators. Facemasks are less protective than respirators, and generally only 

protect against exposure to splashes of large droplets rather than inhalable particles. However, 

they are more convenient in that they are cheaper and do not require a fit test.  

An important element that was discussed when drafting the model was the type of 

disposal cost that would need to be taken into consideration. Both facemasks and N95 respirators 

are designed to be disposed once worn in the presence of an infectious person. Upon doing so, 

the equipment is considered potentially contaminated and contact should be avoided. However, 

our research did not reveal that there were any special procedures or additional equipment 

needed in the disposal process. This information is necessary because it allows the model to 

assume that respirators and facemasks can be disposed on-site rather than having to be removed 

by KDHE. There are opportunities for employers to provide reusable respirators that can be 

cleaned and repaired when necessary, but they are significantly more costly; thus we assume that 

these products will not be part of the stockpile. 

 4.3 Demand Estimation 

For a deterministic model, one of the most critical components is accurate data. However, 

in the public health environment, it is nearly impossible to forecast demand with certainty, 

especially during a pandemic. In this research, parameters were derived based on data provided 

by partners and on surveys administered to Kansas hospitals and local health departments. 
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Additional sensitivity analysis on population and demand is performed in the implementation of 

optimization with recourse.  

 4.3.1 EMS Data Set 

The Kansas Board of Emergency Medical Services (BEMS) provided a data set 

containing the exact number of EMS attendants in each county. For the most part, every region 

contained about 600 attendants, with the exceptions being those three regions that contained 

Sedgwick, Shawnee, and Johnson counties. Respectively, those regions contained about 3100, 

2400, and 2000 attendants, reflecting the higher population densities of the state’s largest cities.   

 4.3.2 Hospital Survey 

Hospital personnel, such as physicians, nurses, and respiratory specialists, are primary 

responders in a pandemic. They have a high exposure to infected patients, so it is imperative they 

have an adequate supply of respirators.  

Working with the Preparedness Project Director at the Kansas Hospital Education and 

Research Foundation, a brief survey was administered to 128 hospitals throughout the state of 

Kansas. The survey, which can be found in Appendix A, seeks to gain a better understanding of 

the number of pandemic response personnel at hospitals, the daily respirator usage by hospital 

personnel during a pandemic, and the frequency with which wearers change respirators. Of the 

128 hospitals that received the survey, 36 (28%) responded from 32 of the 105 counties in 

Kansas. These counties represent both rural and urban communities where populations vary 

greatly, which helps justify the conclusions drawn from survey responses.  

Based on the information received, it was concluded that there is approximately one 

hospital employee per thousand people in the county in which the hospital is located. While daily 

usage and the frequency with which wearers change respirators varied, an OSHA-drafted 

document was later received that allows the model to generalize this parameter. The relevant 

information from this document is introduced in Section 4.3.4.  

 4.3.3 KALHD Survey 

The Kansas Association of Local Health Departments (KALHD) is a nonprofit 

organization that seeks to improve the health and protection of Kansas residents by strengthening 

local health departments. Its members are from 99 of the 100 health departments in Kansas [28]. 
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The support of KALHD is important to this research because its members, many of whom are 

the directors or administrators of local health departments, are valuable constituents of KDHE. 

Implementation of any project, especially one that changes the way in which they operate and 

function as a health department, requires their buy-in. For this reason, it was beneficial to 

maintain a level of transparency and clear communication with KALHD throughout this 

research.  

Working with contacts at the state level, a short survey was distributed to KALHD 

members to help determine how many public health employees were in each county. This 

survey, which can be found in Appendix A, was used to estimate the number of public health 

employees in each county. In total, responses were received from 14 of the 99 public health 

departments (14%). However, these counties represented 38.2% of the total population of 

Kansas, implying that many of the responses were from more densely populated counties. Those 

counties that did respond were from six of the seven Kansas regions (all except for the southeast) 

and comprised both urban and rural communities where population varies greatly. Furthermore, 

the responses were relatively consistent. Similar to hospital personnel, it was concluded that 

there is approximately one public health employee per thousand people in the county.  

 4.3.4 Census Information 

The Population Division of the United States Census Bureau performs a national census 

every 10 years. This data, which was most recently collected in 2010, performs regression 

analysis to predict population numbers of future years. In this research, we use the predicted 

population estimations for 2012. Once this information is collected, it is broken down by county; 

this information was used to ultimately predict respirator and facemask demand in the model.  

These demand numbers are used to predict how many service providers will require 

equipment in an influenza pandemic. The proposed OSHA guidance [15] indicates that, based on 

their level of exposure to infectious patients, employees will be affected according to the 

predictions in Table 1 below.  
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Table 1. Equipment requirement for each service provider [15] 

Occupational 

Setting 

Proportion of 

At-risk Employees 

N95 Respirators per 

Employee per Shift 

Facemasks per 

Employee per Shift 

EMS 

Attendants 
100% 8 0 

Hospital 

Personnel 
33% 4 0 

Public Health 

Employees 
90% 0 2 

 

In order to determine exactly how many employees served in each occupational setting, 

survey were distributed to the appropriate health department, as outlined in the previous sections. 

The results of these surveys were combined with the information gathered in the census to derive 

the number of employees each county had in the various occupational settings. Finally, this data 

was used to calculate demand information by incorporating the length of the pandemic and the 

number of facepieces used per day, as outlined in Table 1.   

Additionally, using the information gathered from the most recent census, the Census 

Bureau found the population-weighted centroid of each county in the state of Kansas. Although 

there may not necessarily be a health facility at this exact location, these coordinates are valid in 

that they provide an optimistic location where emergency equipment is truly available to the 

greatest number of citizens. These longitude and latitude coordinates were used in the Google 

Distance Matrix API to create the county-to-county distance matrix used in the model. A critical 

element of this service is that it calculates the shortest driving distance, which is significantly 

more valuable and more realistic than straight-line distances between county population 

centroids.  

 4.4 Implementation 

This section outlines the steps taken and state-specific assumptions made to implement 

the deterministic model.  Implementation assumptions were made based on conversations with 

contacts at KDHE.  
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 4.4.1 Stockpile Location-Allocation 

The purpose of this stage of the model is to decide which of the seven candidate stockpile 

locations should be open and which counties should be assigned to each open stockpile to 

minimize cost. Assumptions about stockpile operations are made based on traditional location-

allocation applications and conversations with partners at KDHE. First, it is necessary to clarify 

that any combination of the seven stockpiles may be open; however, if a stockpile is open, it 

must provide supplies to the county in which it is located. Second, because most of the stockpile 

locations are existing hospitals, it is not necessary to account for a fixed cost of opening a 

stockpile. Third, each county is assigned to exactly one stockpile location. For stockpile 

operations, equipment will be stored in 8’ vertical space, and capacity is assumed to be unlimited 

at each location.   

Finally, this model assumes a pull distribution strategy in which each county will send 

someone to its designated stockpile to pick up the supplies. This implies that at least two trips 

must be made between each county and the stockpile. If the county demand exceeds vehicle 

capacity, more trips will have to be made to and from the stockpile until demand is met. In this 

study, we assume supplies will be delivered using a 6’ x 12’ cargo trailer with a total capacity of 

396 ft3.  

Because the candidate stockpiles are located in counties throughout the state, it is 

assumed that each has a unique storage cost per square foot. The Saline County Economic 

Development Office provided an estimate of hospital storage costs in Saline County, and the 

others are estimated relative to this based on their locations in Kansas. For example, counties in 

western Kansas are generally rural and less populated, while counties to the east are urban and 

more densely populated. These estimates, found in Table 2, greatly influenced stockpile location-

allocation decisions. 
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Table 2. Storage cost per square foot for each candidate stockpile location 

Stockpile County Storage Cost per Square Ft. 

Crawford $90 

Ellis $95 

Finney $85 

Johnson $120 

Saline $100 

Sedgwick $110 

Shawnee $105 

 

The decisions in this stage of the model are also influenced by distribution cost per mile. 

This model examines multiple values to demonstrate the tradeoff between this cost parameter 

and the number of open stockpiles. This model was used to determine the mileage cost 

breakpoints, or the costs at which it is more cost-effective to open another stockpile. The results 

are discussed further in Section 4.5.  

 4.4.2 Vehicle Routing 

The vehicle routing model of Section 3.4 is used to find optimal routes for distributing a 

fraction of the demand of each county using a push delivery strategy. On average, an influenza 

pandemic will last about 120 days [15], so to preserve storage space and cost, it may not be 

necessary to supply the county’s entire demand in a single delivery. Instead, it may be 

advantageous for KDHE to implement a schedule that specifies what percentage, p, of 

emergency equipment is supplied in a one delivery. Then, based on the rate at which counties use 

the equipment, KDHE can determine when the succeeding deliveries occur so that all counties 

have at least enough equipment to meet the needs of health care employees. In this model, we 

assume that each delivery will provide enough equipment to satisfy 25%, or 30 days’ worth, of 

the counties’ demands. This number is generally small enough that facilities will not be 

overwhelmed with the inventory, yet large enough to maintain adequate care of the population 

while awaiting another delivery from the stockpile facility.  

This stage of the model utilizes a push distribution strategy where each of a given number 

of vehicles must deliver to all of the counties on its route without exceeding vehicle capacity. 
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The goal of this model is to minimize the cumulative distance traveled by the vehicles. To 

provide a more implementable distribution plan for KDHE, the model operates using the facility 

location-allocation solution from stage one that resulted in five stockpile locations. In cases 

where a county’s demand exceeds vehicle capacity, the model is not solvable because the 

capacity constraint is violated. To account for this, it is assumed that vehicles will deliver 

equipment to the county at capacity until its remaining demand is less than vehicle capacity. The 

remaining demand is then used to solve the vehicle routing problem.  

For stockpiles to which there is a large number of assigned counties, finding an optimal 

vehicle routing plan is computationally intensive. In these situations, a heuristic is introduced to 

determine the optimal routes. This heuristic solves the traveling salesperson problem (TSP) to 

find the optimal route that an uncapacitated vehicle can deliver to each facility. Then vehicles are 

assigned to counties in the order of the TSP solution until capacity is exceeded. It is important to 

note that this heuristic still maintains the constraint that counties may only be served by exactly 

one vehicle and split deliveries are not feasible. Therefore, if the next county on the TSP route 

cannot be served by a vehicle without exceeding capacity, the vehicle returns to the stockpile 

county.  

 4.4.3 Optimization under Uncertainty with Recourse 

For influenza pandemic planning, it is important to explore the impact on stockpile 

planning decisions under a range of demands.  This research uses scenarios based on severity 

factor values of 1.5, 2, 2.5, and 3. These values were chosen to examine the impact of a wide 

range of possible demands but to limit the number of individual cases that were considered. An 

inherent assumption in the choice of scenarios is that a county’s realized demand would never be 

more than three times that of its estimated demand.  

This research compares three types of recourse, as described in Section 3.5, and analyzes 

the tradeoffs associated with each of them. The results of these recourse models are outlined in 

the following section.  



 

40 

 

 4.5 Results 

The results of this two-stage model can be used to influence stockpile location-allocation 

and vehicle routing decisions made by public health officials, but they can also be used as a 

decision support tool to guide conversations regarding public policy in the state of Kansas.  

Table 3 displays the results of the stockpile location-allocation model and the associated 

costs. The first column represents the mileage cost breakpoints, and the second column shows 

the stockpiles that should be open to minimize total cost at the respective cost per mile. The third 

column represents the total storage and distribution costs incurred from the given scenario, and 

the last column shows what percentage of the total cost is due to storage.  

 

Table 3. Quantitative results of the stockpile location-allocation model 

 

 

 Many conclusions can be drawn from these results, and the information can also be used 

to influence decisions made by KDHE. For the tested range of storage and distribution cost 

parameters, and given that transportation reimbursement in Kansas is $.56 per mile [17], multiple 

stockpile locations are preferred over a single location. It is also clear that storage cost accounts 

for a much greater percentage of total cost than do distribution cost; and, as a result, stockpiles 

are opened in order of increasing storage cost per square foot.  

 From the perspective of public safety, it is generally desired by KDHE to have more 

stockpiles open to decrease the time needed to deliver respirators in the case of an influenza 

pandemic. For this reason, stage two of the model was performed with the assumption that five 

stockpiles are open. These the five stockpiles and their assigned counties can be seen in Figure 5 

below.  
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Figure 5. Stockpile location-allocation decisions made in stage one  

(1: Finney, 2: Crawford, 3: Ellis, 4: Saline, 5: Shawnee) 

 

Using Saline County (stockpile 4) as an example, Figure 6 below shows the optimal 

distribution routes that two vehicles should take to minimize cumulative distance traveled. For 

the sake of simplicity, the figure displays straight-line distances, but the distances actually used 

in the model are those of county-to-county road networks.  

 

 

Figure 6. Optimal vehicle routing plan for a stockpile in Saline County 
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Optimization with recourse was incorporated into these results to demonstrate how 

demand uncertainty influenced vehicle routes. Figure 7 shows the results of the second type of 

recourse, where computer software is used to re-optimize distribution routes to those counties 

whose demand will no longer fit on the vehicles using the optimal routes when α = 1. The results 

from the third recourse strategy are shown in Figure 8. This method uses a simple sweep 

heuristic to re-optimize routes rather than computer software.  

It can be observed that some routes have identical solutions. In the Saline County 

example below, the re-optimized routing plan found using computer software at α = 2 is identical 

to both re-optimized solutions at α = 2.5. These results are merely a coincidence and cannot 

necessarily infer any type of relationship between the two severity factors, but they do indicate a 

degree of robustness in the routing decisions and show decision-makers how one route can be 

implemented to feasibly satisfy two different levels of realized demand.  

 

Figure 7. Vehicle routes when counties are re-optimized using computer software 
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Figure 8. Vehicle routes when counties are re-optimized using a simple sweep heuristic 

 

Table 4 outlines the quantitative results of these solutions. There are many tradeoffs that 

must be considered when decision-makers analyze these results. In addition to the mileage 

increase associated with new solutions, it may be of significant importance to also consider the 

number of vehicles required to fulfill the routing plan. For example, if the cost to obtain a vehicle 

is sufficiently high, it may be more desirable to employ a routing solution that uses fewer 

vehicles, and vice versa.  
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Table 4. Quantitative results of optimization with recourse for a stockpile in Saline County 

Severity 

Factor, 

α 

Optimal 
Recourse w/  

Computer Software 

Recourse w/  

Sweep Heuristic 

# vehicles Distance # vehicles Distance # vehicles Distance 

1 2 510.3 -- -- -- -- 

1.5 3 580 4 616.8 4 717.4 

2 4 672.3 5 740.7 5 810.9 

2.5 5 737.9 5 740.7 5 740.7 

3 6 888 6 888 6 893 

 

From these results, the following observations can be made:  

 The maximum number of additional vehicles required in comparison to complete re-

optimization at each value of α is one, regardless of whether the routes are re-optimized 

with computer software or a simple sweep heuristic.  

 The additional distance required by recourse with computer software re-optimization, in 

comparison to the optimal solution, is generally small (at most, 10.2% at α = 2).  

 The additional distance required by recourse with a sweep heuristic can be significant, in 

comparison both to complete re-optimization and recourse with computer software re-

optimization.  

 The greatest additional distance required by recourse, in comparison to the optimal 

solution, is 23.7% using the sweep heuristic at α = 1.5.  

 4.6 Recommendations 

This section analyzes the results of the model and outlines a potential solution. However, 

based on the results in Section 4.5, it is not trivial which vehicle routing plan should be adopted. 

Rather than serving as a decision-making tool, this computational study is intended to guide 

discussions that planners at KDHE can use to devise and implement the best emergency 

preparedness plan.  

Assuming the stockpile location-allocation solution at Saline County found in stage one 

of the model, it is recommended that decision-makers choose routes based on the optimal 

solution when α = 2. This was chosen for two main reasons. First, the optimal routing plan 
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requires four vehicles, which is midway between the fewest and greatest number of vehicles to 

distribute supplies in any scenario. Second, both recourse re-optimization plans require the use of 

a fifth vehicle. However, if the severity factor is ever greater than two, the route will require at 

least five vehicles. Therefore, it is more beneficial to plan for the route that requires four vehicles 

in hopes that the severity factor is two or less.  

Planners at KDHE must also look at the negative implications of such a plan, though. If 

this solution is chosen but demand is realized to have a severity factor of three, the worst case 

scenario using recourse with a sweep heuristic has a distance of 893 miles. This is a difference of 

220.7 miles and two vehicles.   

These recommendations are relevant only to the example used in this computational 

study, in which the stockpile at Saline County is assigned to 11 nearby counties. The results are 

summarized and used to draw more general recommendations in Chapter 5.  
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Chapter 5 - Conclusions and Future Work 

Since 1900, only four influenza pandemics have occurred, but they have resulted in the 

deaths of nearly 50 million people worldwide. As an airborne virus, influenza is easily prevented 

if individuals have access to the proper protective equipment, such as facemasks and N95 

respirators. This thesis quantifies the costs associated with stockpiling, allocating, and 

distributing emergency respirators. It demonstrates how operations research techniques can be 

used to support the development of emergency preparedness strategies and policies in the public 

health sector. However, in situations regarding public health and safety, it is important for 

decision-makers to consider not only the costs associated with these decisions, but also their 

effects on the population being served. 

Many applications of operations research in emergency preparedness efforts fail to 

consider both stockpile and distribution strategies or to account for parameter uncertainty. This 

research introduces a two-stage optimization approach that quantifies tradeoffs in stockpile 

storage and distribution costs and accounts for different distribution strategies. Additionally, the 

second stage of this model uses optimization under uncertainty with recourse to account for 

situations in which realized county demand is much greater than was estimated.  

Working with KDHE, a computational study was conducted using the methods 

introduced in the thesis. The results yield several informative insights into the tradeoffs and costs 

of various facility location-allocation and vehicle routing problems. The following 

recommendations are supported by the results of the computational study:  

1. Under current operational assumptions, it is beneficial to open multiple stockpiles rather 

than a single, centralized materiel cache.  

2. Storage costs play an important role in location-allocation decisions, and thus should be 

carefully estimated. 

3.  In the push distribution system, finding an optimal vehicle routing plan is 

computationally intensive for stockpiles with a large number of assigned counties. Thus, 

decision-makers should consider using a modified TSP heuristic to find an efficient 

vehicle routing plan.  

4. The combination of using a pull distribution strategy to make stockpile location-

allocation decisions and a push distribution strategy to make vehicle routing decisions 
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offers flexibility and computational advantages while still examining stockpile 

management holistically, and thus should be considered an important planning tool.  

5. If it is desirable to specify routes well in advance, planners should adopt a robust routing 

plan based on higher-than-expected demand levels. 

6. These results should be used to inform discussions about stockpile location, allocation, 

and distribution strategies, but do not necessarily reflect the optimal solutions for every 

population. 

 

This thesis makes important advances in the modeling and analysis of public health 

preparedness stockpile planning.  Furthermore, it opens the door for future work in several 

related areas.  

First, future research could 7explore the potential benefits of integrating location, 

allocation, and routing decisions in a single model. By doing so, the model could make more 

informed stockpile location-allocation decisions based on the resulting optimal vehicle routing 

plan. It is likely that new heuristics will be needed to solve an integrated problem efficiently so 

that the model is useful in practice. Second, further research can be done to examine the impact 

of non-uniform, stochastic consumption rates on optimal location, allocation, and routing 

decisions. This model assumes emergency equipment is consumed at a uniform rate and does not 

consider implications of the spread of the virus throughout the population over time. Third, there 

are opportunities to include logistical parameters in the model based on realistic applications. For 

example, the model could incorporate economies of scale to see how facility location-allocation 

decisions change if storage is discounted based on the amount of equipment held in inventory at 

a given stockpile. Finally, it would be worthwhile to incorporate a stochastic element into this 

model. Based on the characteristics of influenza pandemics, it is reasonable to conclude that they 

appear and spread more rapidly in densely populated areas. Probability distributions could be 

introduced to represent the likelihood that a pandemic will affect a given county, which 

preparedness planners could use in stochastic optimization models to make more strategic 

facility location decisions.   
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Appendix A - Public Health Surveys 

Survey Distributed to Kansas Hospitals 

Question 1. With which hospital are you affiliated?  

 

Question 2. In which county of Kansas is your facility located?  

 

Question 3. On a given day during an influenza pandemic response, how many personnel 

(nurses, support, volunteers, etc.) would require an N95 respirator?  

 

Question 4. How many N95 respirators, on average, does each person use per day?  

 

Question 5. Do wearers change masks every time they change patients? If no, please 

explain further.  

 

Question 6. Please provide any additional information you think would be valuable in 

estimating the number of N95 respirators needed.   

 

Survey Distributed to KALHD Members 

Question 1. On a given day during a pandemic response, how many personnel (nurses, 

support, etc.) would require an N95 respirator?  

 

Question 2. Approximately how long do responders wear respirators, or how many, on 

average, does each person use per day?  

 

Question 3. Do wearers change masks every time they change patients?  

 


