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INTRODUCTION:

In "The History of Combinatorial Group Theory: A Case Study in the History

of Ideas", Chandler and Magnus; [5, p. 5], say: "The definition of a group G
by a presentation, that is, by a system of generators and defining relations, is a

particular aspect of the abstract definition of a group" . Hence, in studying the

Genesis of the Concept of Group Presentation as seen in the papers of Cayley,

Kronecker and Dyck, we are focusing on one particular aspect of the genesis of

the abstract group concept.

Chapter I deals with Cayley's 1854 paper entitled On the Theory of Groups, as

depending on the Symbolic Equation = 1. Here we find Cayley's definition of

a group which we recognize as a monoid using modem terminology. The concept
of a group multiplication table is discussed, which we recognize as a basic first

step to present a group.

Chapter II deals with Cayley's 1878 paper The Theory of Groups. Here, Cay-
ley recognizes the generality of the group concept by identifying "substitutions"
as representative of a more general variety of "functional symbols" which he al-

ready has identified as a group. He also shows some examples of groups found
in other areas of mathematics. We also find "Cayley's Dictum" where Cayley
attempts to put in a nutshell, what he considers to be the essence of a group,
that is "the laws of combination of its symbols". As we shall see this notion
described in the Dictum is not well defined.

Cayley attempts to classify all distinct groups of a given order n. He makes a
mistake for the case n = 6 due to the ambiguity found in his Dictum. He reahzes
that this problem is identical to that of constructing all permutation groups of
order n. He states and proves his famous theorem that every finite group can be
represented as a group of permutations. Here we find another way to present a
group and hence another step in the genesis of this concept.

Chapter III deals with Kronecker's 1870 paper entitled Auseinandersetzung
einiger Eigenschaften der Klassenanzahl idealer complezer zahlen. Here he in-
troduces the notion of an abstract finite abelian group. He states and proves the
"existence part" of the Fundamental Theorem of Finite Abelian Groups. Every
finite abehan group has a presentation of the form described in this theorem. He
anticipates Cayley, since this theorem defines abelian groups in terms of simple
and specific "laws of combinations of its symbols"

.

Chapter IV gives some general backgroimd needed to unravel the ideas found
in Dyck's 1882 paper, entitled Gruppentheoretische Studien. Chapter IV is di-
vided into four sections. Section I deals basically with the effects that the map-
ping {z)T = u; + =^ has on a circle C of radius r and center w. We also explore
the effects that this mapping has on a circle V orthogonal to C. Section II out-
lines a geometric construction of a group ^ whose elements are forms by even
numbers of compositions of mappings of the form described in Section I. Section
III^ establishes the group properties of JT and its relation with the group M of
Mobius Transformations. Section IV establishes the fact that ^ is a free group.
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In particulaj Chapter IV fills in the details left out by Dyck in his paper.

Chapter V deals directly with Dyck's 1882 paper. Here in a vague way we find

the idea that any group G can be presented as a homomorphic image of a free

group. Let
fi'i

, . .
. , ffn G G and let ^ be the free group on n generators 5i , . .

. , 5„ G

^. Then G is a homomorphic image of via a homomorphism </> defined by

{Si)(i> = 1 = 1, . .
.

, n. Let K be the kernel of this homomorphism. Then,

by the First Isomorphism Theorem ^ = G, and 5,, . . . 5,„ G iiT <^ gr,, . . . gi^ =
Ig- Thus K can be regarded as a list of "relations" concerning the generators

9\-, - • • i9n- Thus we have a presentation of G in terms of gi,...,gn. This we
recognize as a final step toward the Genesis of the concept of group presentation.
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Chapter I: Cayley's 1854 paper

In the year 1854, Arthiir Cayley published a paper in two parts, entitled On
the Theory of Groups, as depending on the Symbolic Equation 9^ — 1; see [3]. In

the first part of the paper Cayley:

1. introduces a general symbol 6 such that 9{x,y,...) = (x',y',...) for some
system of quantities x,y, . . . and x',y', . . . what makes 6 "general" is that

x', y', . . . can be:

(a) arbitrary functions oi x,y,. .

.

(b) a permutation of x,y,.. .. In this case 6 is called a "substitution".

2. shows that substitutions can be iterated and composed, that these opera-

tions are associative and that there is an element that acts as the identity.

(Here we axe using modem terminology.)

3. defines the concept of a group table.

4. show some examples of groups.

In the second part of the paper, Cayley introduces the concept of a "symmetric
holder" which is equivalent to that of a coset in modem terminology. Here we will

be concerned with the first part of his paper; that which has the most relevance
to this project.

Having introduced the general symbol 6 in the manner described above, Cayley
adds that if the operand is a single quantity x, then the symbol 6 is an "ordinary
function symbol" 6(x) = x'.

The symbol 1 "will naturally denote the operation which leaves the operand
unaltered"

,
and 6^ denotes the "compound operation" . He notes that the sym-

bols 6 are not in general commutative, but are associative. Next he defines his
notion of a group:

"A set of symbols l,a,yS, . . . all of them different, and such that the product
of any two of them (no matter in what order), or the product of any one of them
into itself belongs to the set, is said to be a group."

Cayley's group is a non-empty set with a binary operation defined on it in
which the associative law holds and in which there exists a two-sided identity
element. Using modem terminology, we can say that Cayley's "group" is a
monoid. The concept of the inverse is absent in these papers.

Cayley also introduces the notion of a group table. He notices that multiplying
the entire group by each of its symbols has the effect of reproducing the group.
The set of multiplications can be recorded in a square array: the multiplication
table. He says:
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"It follows that if the entire group is multiplied by anyone of the symbols,

either as fiirther or as nearer factor, the effect is simply to reproduce the group;

or what is the same thing, that if the symbols of the group are multiplied together

so as to form a table, thus:

NEARER FACTORS

FURTHER FACTORS
1 11 a

I

/3
I

•••

J 1 a_l

that as well each line as each colvmin of the square will contain all the symbols

1,",^,...."

As we shall see in our examination of a latter paper, Cayley uses this group-
table concept in proving his famous theorem, which says that every finite group
can be represented as a group of permutations. Cayley recognized the presence

of his concept of "group" in other areas of the mathematics of his day. His paper
contains specific examples from the theories of permutations, elliptic fimctions,

quadratic forms, the theory of matrices and the theory of quaternions. Here he
illustrates the generality of his group concept.
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Chapter II: Cayley's 1878 paper

According to Wussing [10, p. 232], Cayley's return to group theory in 1878 was
due to the rapidly growing recognition of the importance of the group concept.

In The Theory of Groups published in 1878; see [4], Cayley:

1 . gives a more abstract definition of a group in terms of "function symbols"

.

2. attempts to classify all finite groups of a given order n.

3. states and proves his famous theorem asserting that every finite group can

be represented as a group of permutations.

4. discusses some graphical representations of groups.

Cayley starts by considering "functional symbols" a,^,. . . "each operating

upon one and the same number of letters, and producing as its result the same
number of fimctions of these letters". Here, he is working with mappings of

a finite set onto itself. These operations can be iterated and composed, are

associative and include an identity.

Looking back for a moment into the 1854 paper we find that Cayley defines a
substitution 6 there via 6{x, y, . . .) = (x', y', .

.

.) where x', y', . . . represent a per-

mutation of X, y, . . .. Now in his 1878 paper he identifies substitutions as another
variety of these "fimctional symbols" that he is working with. He explains:

"The functional symbols may be substitutions ..."

Altogether, Cayley has a set of functional symbols that can be iterated and
composed, are associative and include an identity. He knows that substitutions
are among these functional symbols and he is also acquainted with a few "groups
of substitutions" from his 1854 paper. Putting these ideas together, he makes
the following definition:

"A set of symbols a, /3,7, . . ., such that the product of each of them (in

each order, a/3 or /3a), is a symbol of the set is a group."

This makes a conceptual generahzation of the notion of "permutation group"

.

We have seen in both the 1854 and 1878 papers, that the axioms of closure,

associativity and identity are imphcit in Cayley's definition of a group. The
concept of the inverse of an element is again absent, so that he is still dealing
with monoids.

We next find the following statement that we call
"
Cayley's Dictum" for future

reference:

"A group is defined by means of the laws of combination of its symbols."
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By this statement he meant that a group can be defined without making reference

to the specific concrete nature of its elements, and that the essential structure of

a group depends solely on the way in which the binary operation is prescribed

on pairs of elements. Further on he adds:

"For the statement of these [laws] we may either:

(1) by the introduction of powers and products, diminish els much as may be
the number of independent fimctional symbols, or else:

(2) using distinct letters for the several terms of the group employ a square

diagram "

Cayley gives an example to illustrate what he has in mind for (1) and (2)
above. In this example he introduces what he calls a "first mode" and "second
mode" of a group. He explains:

"Thus in the first mode, a group is

1, /?, a, a/?, a/?2(a2 = 1, /J^ = 1, = ^'a);

we observe that these conditions imply also a^^ = /3a.

Or, in the second mode, calling the same group

(1,q;,/9,7, 8, e),

the laws of combinations are given by the square diagram

1 a 7 8 e

1 1 a /? 7 8 e

a a 1 7 e 8

e 8 a 1 7
7 7 8 e 1 a
6 8 7 1 e ^ a
e € a 8 7 1

for the symbols (1, a, /3, 7, 8, e) are in fact = (1, a, /?, a/3, /3^, a/3^):'

As we shall see, this notion of "first mode" is not well-defined by the author
and leads him into error. The error appears in his attempt to classify all distinct
groups of a given order n. For the case n = 2, Cayley correctly identifies the
group: l,a (a^ = 1) as the only group of order two. (Today we would add that
only up to isomorphism, is this true).

Next, for the case n = 4, he correctly identifies the groups 1, a, (a^ = 1)
and 1, a, /?, a/3 {a^ = l,/3^ = 1, a/3 = /3a) as the only groups of order four. Here
we recognize Z4 and Z2 ® Z2 as we know them today.
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Finally, when n = 6, Cayley incorrectly presents three different groups of

order six. These are:

l,a,a^a^a^a^ ("^ = 1)

and

1, ^, /3^ a, a/3, a/3' {a' = 1, /3^ = l,a/3 = /3'a, a/3' = /3a).

Here we recognize Zq, Z2X Z3 and D3 (the dihedral group of order 6) respectively.

The problem is that he is presenting

l,a,a^a^a^a^ ("^ = 1)

and

l,/3J\a,a/3,a^' {a' = Ij' = 1)

as different groups when in fact they should be accounted as one eind the same
group: Zg = Z2 X Z3, by his own criterion. The question is, why does he make
this error?

To answer this question, notice that "both" groups are expressed in first mode.
We now compare both modes to realize that the author does not provide a

criterion to determine whether these modes represent the same group or are

modes corresponding to different groups. We conclude that the statement:

"A group is defined by means of the laws of combination of its symbols"
is open to ambiguity.

Cayley realized that the problem of constructing all groups of a given order

n is identical to the problem of constructing all permutation groups of order n.

He says:

"But although the theory as above stated is a general one, including as a
particular case the theory of substitutions, yet the general problem of finding all

the groups of a given order n, is really identical with the apparently less general
problem of finding all the groups of the same order n, which can be formed with
the substitution upon n letters."

This is the content of Cayley's theorem as we know it today that asserts that
every finite group can be represented as a group of permutations. To prove this

theorem Cayley taices the group

1, a, a^, a/3' (a' = l,/3^ = l,a^ = /3'a)

in its "second mode" (1, a, ^,7,^, e), with its laws of combinations given by the
square diagram, and shows that this group

"May be regarded as substitutions performed upon the six letters 1, a, /?, 7, ^, e . .

.

which changes la^jSe into alj/3e6, and so on [for the "nearer factors"] /3, 7, <5, e."
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The fact that this method of group table can be used to represent any finite

group as a group of permutations is implicit, but it is not actually mentioned by

Cayley in his paper. His proof is not rigorous in the modem sense.
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Chapter III: Kronecker's 1870 paper

In 1870, Leopold Kronecker published a paper entitled Auseinandersetzung

einiger Eigenschaften der Klassenanzahl idealer complezer zahlen or "Explana-

tion of some properties of the class-number of ideal complex nimibers"; see [8]. In

this paper, Kronecker introduces the notion of an abstract finite abelian group.

He considers a finite munber of elements 9', 9", . . . such that from any two of

them, a third element f{9', 9") is defined according to a fixed rule. He assumes
the associative and commutative laws: f {9', f{9",9"')) = f {f{9',9"),9"') and

f{9', 9") = f{9", 9'). Later on he uses the simpler notation 9' 9" instead of

f{9',9").

Next, Kronecker sets out to prove the following results in finite group theory:

Theorem (i) If 9 is any "element" of the set under discussion, then 9'^ = 1

for some positive integer k. If k is the smallest such positive integer then 9 is

said to "belong to k". If 9 belongs to k and 9"" = 1 then k divides m.

Theorem (ii) If an element 9 belongs to k, then every divisor of k has an
element belonging to it.

Theorem (iii) If 9 and 9' belong to k and k' respectively, and k and k' are

relatively prime, then 99' belongs to kk'.

Theorem (iv) There exists a "fundamental system" of elements 9i, 92, 9z,...,9,
such that the expression 9^'9^'9^'9^ (a,- = 1, 2, 3, ... ,

e.) represents each el-

ement of the given set of elements exactly once. The numbers Cj, 62, eg, . .
. ,

e,„

to which respectively, ^1, ^2, ^3, • • ,
belong, are such that each is divisible by

its successor; the product 616363 . . . Cm is equal to the totality of elements of the
set. (This is the "existence part" of the Fundamental Theorem of Finite Abelian
Groups.)

We now proceed to translate each of the above theorems into current-day
mathematical language. We also feel the necessity of proving them, because
Kronecker's proofs are extremely hard to read. Kronecker has a tendency to
imply that he has somewhere proved a theorem, without being at all specific
about it.

Theorem (i) If \9\ = k and 9"" = 1 then k\m.
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Proof: Write m = qk + r where < r < A;. Then ^"^ = 1 becomes
0qk+r ^ 2 ^j^-^j^ imphes that {e'')''e^ = 1. But, 6'' = 1 and so our previous

equation becomes 9^ = 1. By hypothesis we know that k is the smallest integer

such that ^'^ = 1. Now, r is smaller than k, so = 1 is impossible unless r = 0.

Thus m = qk + 0, so that k\m.

Theorem (ii) Let \9\ = k. Let d be a divisor of k. Then there exists 6' e G
such that \6'\ = d.

Proof: Let 6' = O''!'^. Suppose that < c < d. Then {dj = d^'^l'^ = 1, but

y < A; contradicting |^| = k.

Theorem (iii) If \e\ = k and \e'\ = k' with {k,k') = 1, then \ee'\ = kk'.

Proof: Given G abelian, we have that

{69')''''' = 9'''''

{9'f'''
= {e''f\9"''f = 1.

Hence, \9e'\ divides kk' by Theorem (i). Next, if {99')"^ = 1, i.e. 9"'(9')"' = 1,

then 6^ = {9')-"^ and 1 = (9"'Y = (^')-'"^ Since \e'\ = k' we have A;'| - mk by
Theorem (i). Since {k,k') = 1 we have k'\m. Similarly k\m. Now, k'\m and k\m
imply kk'\m. Finally, let m = \99'\. Then \e9'\\kk' and kk'\m, so \e9'\ = kk' as

desired.

The fourth result above is what is known today as The Fundamental Theorem
of Finite AbeHan Groups. We will restate and prove this theorem following
Kjonecker's reasoning, but using some modern terminology. First we state and
prove three lemmas needed to estabhsh Theorem (iv).

Lemma (1) Let \6\o denote the order of an arbitrary element 9 in G. There
exists 9-^eG such that \9i\g = £cm{\9\ :9eG}.
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Proof: Let icm{\e\ : 6 E G} = m = pi' pi' . Then there exists ^, € G
such that Pi' divides |^,|, 1 < i < 5. Put di = (^,)"'P.~'' where n.- = |^,|. Then

^f'' = 1. Assume < c < pi' . Then {Oif = (5.)"''^r'' = 1, but < n.cp,"'' <
contradicting |^| = n,-. Thus |^.| = p^' . Put 6 = O^-'-e,. Then |^| = m by
Theorem (iii) above.

Lemma (2) Lei G he a finite abelian group, N a subgroup of G and 6 E G.

Then the order of ON as an element of S divides the order of 6.

Remark: This result is true for G non-abehan taking N normal in G.

Proof: Let iV be a subgroup of G. Let \eN\ = m. Then ^" = 1g, so

^"7V = N = Iq/n- By Theorem (i) appHed to ^ we have that m\n.

We now introduce the following notation:

Let {6) denote the group generated by an arbitrary element 6 in G.
Let ^ be the group of cosets of {6) in G.

Let |^ii(^i)|G/<ei) denote the order of the coset ^ii(^i) in

Let exp(G) = ecm{\e\G : ^ € G}.

Lemma (3) Let G be a finite abelian group, and let 6i e G such that \6i\g =
exp(G). Then every coset ^ii(^i) of {6i) in G contains a representative 62 such
that |^2|G = |^n(^i)|G/(fl,>-

Proof: Let G be a finite abehan group. Let 61 e G such that ej = exp(G) =
Let 6ri{e^) E ^ and put = |^n(^i)|G/{<?,)- Then 611 € (^1) so 9l\ = d',

for some integer k. Put m = ^. Then m e Q, but we will eventually see that

me N. Then mci = ^e^ = k^. Now, e^lti by Lemma (2), so mej is an integer

12



and eX""' = e'l
''1^^ = = 1. As e'l

^''^^ = l, we have k > 62. Write = + r

with < r < 62- So, 1 = ''''' = er'9[ = ei As r < 62, we conclude

that 7- = 0. That is, ei\k and m is an integer. Next define by ^2^™ = ^11

and observe that then ^2(^1) = ^11(^1). Also, we have Q\ = = (^2^r)'' =
e\^e:^^^ = ei^el so l = e^'. Therefore 1^2! = 62 = 1^11(^1)1 a so that $2 is the

(61 >

desired representative of ^11(^1).

Theorem (iv) Let G be a finite abelian group. Then there exist $1,. . . ,6^ G
G and positive integers Ci, . .

.
, such that:

(1) ma = ei.

(2) e,„|e„_i| • • • Id.

(3) Every element of G can be written in a unique way in the form 9^^ ^2^ . .

.

with < a, < e,, 1 < ? < m.

Proof: (Following Kronecker)

Let 62 = exp(^). By Lemma (1), there exist ^11(^1} G ^ such that

1^11(^1)1 = 62. By Lenmia (3), there exist 62 € ^11(^1) with l^al = 62 in G.

Next, put 63 = exp {jg^)- Then there exists ^111(^1,^2) of order 63 in jg^-
We can identify (^1, ^2) with a cyclic subgroup of^ by observing that (^1, 62) =
^2(^1) U ^l(^i) U • • • U ei'ie^). That is (in modern terminology)

is a cycHc subgroup of order 62 in ^ where 62 = exp (^).
By Lemma (1), there exists 6 ^^/^ of order 63 = exp ((%/^) •

Conclude from Lemma (3) that
""'ff^'''^^

,
regarded as a coset of^ in ^ con-

tains an element ^in(^i) of order 63 in Apply Lemma (3) again to G to

conclude that ^111(^1) contains an element 63 of order 63 in G.
Proceed in this way imtil one produces ^1, ^2, • • , which generate G, with

1^,1 = e.- = exp
((677:5-7)) • Then e„|e„j_i| • • • |ei by Lemma (2). Every element of

G can be written in at least one way in the form 9^' ^2^ ...6^,0 < a,- < e, since

{^i,---,^m} generates G. Suppose e^^'e^'.-.e^ = 0^' O^.' Ot"' , < h < e.-.

Then e (^1, . . .,0m-i), so e^|fc„ - a„ by Theorem (i) and then =
since |6„ - < e„. Argue by repetition and obtain b^-i = Om-i, • .

. , 61 = Oi.
This proves the theorem.
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Returning now to our discussion; Kronecker's theorem implies that two abelian

groups Gi and G2 having the same factors e, must be isomorphic. Notice that

if Cayley had known this, perhaps he wotild have been more successful in his

.
attempt to classify all non-isomorphic groups of order 6. Namely, the error

about Zq being nonisomorphic to Z2 ® Zz would have been eliminated from his

1878 paper.

f Kronecker's theorem predicts that there will be at most two isomorphism
. classes of abelian groups of order 12, namely those corresponding to the two sets

of factors {2,6} and {12}. Why can't {2,6} and {12} be factors for isomorphic

groups? Kronecker does not address this issue.

The factors e,- are called "invariants". The uniqueness of these factors was
later proved by Frobenius and Stickelberger in their 1879 paper entitled Ueher
Gruppen von vertauschbaren Elementen; see [10, p. 234].

In his 1878 paper, Cayley tells us that "A group is defined by means of the

law of combination of its symbols" . Thus, we see that Kronecker had anticipated

this fact (for finite abehan groups) in 1870, since his theorem defines abehan
groups in terms of simple and specific "laws of combinations of its symbols"

.

Kronecker tells us that every finite abelian group has a presentation of the form
described in his theorem. In fact, Kronecker gives us the most efficient possible

set of generators and relations for a finite abelian group. By "most efiicient" we
mean that the number of generators is as small as possible and the number of

relations is as small as possible. Here G = (^1, . .
. , ^m|[^t-, ^j] = Op = 1) where

[0i,6j] = 9~^6~^9i6j. As we will see, it was Dyck's achievement to successfully

formalize the notion that every group admits such a description in terms of

generators and relations.

Thus, while Cayley was able to observe that the multiplication table of a
group G "presents" G in terms of laws of combination of symbols, Kronecker
improves this (in the case of abehan groups) by showing that it suffices to consider
combinations of generators, and Dyck shows that this same principle extends to
arbitrary groups.

i
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CHAPTER IV: Prelude to Dyck's Gruppentheoretische Stu-

dien

Section I: Some properties of the mapping (z)T = w +
2

2 — uJ

Let C be a circle in the complex plane C with radius r > and center w.

Denote the interior and exterior of C by Int(C) and Ext(C) respectively. Let
* - - * *

C= C U {ooj be the extended complex plane. Define a mapping T :C*->^C by
r2 _ _

{z)T = w + ——
zz where z and it; denote the complex conjugates of z and w.

Proposition 1:

(a) T takes w to oo and oo to w.

(b) T is invertible and T"^ = T.

(c) C is pointwise invariant under T.

(d) T takes Int {C) to Ext (C) and Ext (C) to Int (C).

(e) For z ^ {to, oo}, {z)T lies on the ray joining w, z and oo. Also

\{z)T -w\\z-w\=r''.

Proof:

(a) {w)T = w-\- ——— = oo and (oo)r = w -\ = w.w — w oo — w

(b) Let / denote the identity mapping {z)I = z. Let denote the composition

{{z)T)T. Then (z)r^ = ^+7;^^ = "^+ f-^ - = ^H^-w) =

z. Hence = I, i.e. T = T"^ and therefore T is invertible.

(c) Let z eC. Then \z-w\=r. Now

/ ,

r"^ z-w r^(z-w) r^(z-w)
{z)T = w + -— = w + y = w + ^ = z.

z — w z — w \z — wr r^

15



(d) Let z e Int (C). Then \z-w\< r. Now

(2 — ly)

t'^\z —w\

|(2)r — it;| = \w + ——— ~ w\ =
z — w {z — w){z- w)

r2
> — = r.

\z — w]"^ \z — w\ r

Hence {z)T 6 Ext (C). Similarly, let z E Ext (C). Then |z - u;| > r so that

\{z)T -w\<r. Therefore {z)T G Int (C).

(e) (2)r = li) + -

—

— = w + -(z - w). Put a = -. Notice
z — wz — w \z — w\'' \z —

that a > 0. Then {z)T = w+a(z—w), i.e. (z)T lies on the ray {w+a{z—w) :

< a < 00} from w through 2. Also

2 2

(2)r = «; + -!—-<^(z)r-u; = 3^<t^|(2)T-u;|
z — w z — w

= TZ
— ^ \(z)T - w\\z - w\ = .

\z — w\

Remark 1: The image of a line through the center w under T is the same
Hne. This line is not pointwise invariant under T because, except for those points

on C we have {z)T ^ z with w, z and {z)T collinear.

Remark 2: For any points 2, 2' GC with 2' = {z)T we have that \z' - w\ ^

-. The mapping T is usually called a "circular inversion" from the fact
|2 — W\

that as 2 becomes a variable point, the distances |2-iw| and [2' — iy| are inversely

proportional.

Proposition 2: The image under T of a line £ not passing through w is a
circle passing through w.

Proof: Let P be a point on (. such that the ray wP emanating from w
and passing through P is perpendiciilar to i. Let Q be another point on (.. Let
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P', Q' eC such that P' = (P)T and Q' = {Q)T. Then by Proposition 1(e)

\P' - w\\P - w\ = and \Q' - w\\Q - w\ = so that \P' - w\\P - w\ =
\P - w\ \P' - w\

\Q' — w\\Q — w\. Hence 7— r = -—
r. This last result implies that AwPQ

\Q - w\ \Q'-w\
is similar to AwQ'P' since they share the same angle. Thus AwQ'P' is also a

right triangle with right angle at the Q' vertex.

Now let Q become a variable point on PQ. Then Q' becomes a variable vertex

of the right angle in AwQ'P' and thus traces a circle. Since (oo)T = w then this

circle passes through w and has diameter P'w.

Proposition 3: The image under T of a circle D not passing through w is

a circle not passing through w.

Proof:

Figiire 1

Refer to the figure above. Let Wi be the center of D. Let the line from w
through wi intersect D in Q and P. Then QP is the diameter of D. Let P',
Q' e C such that P' = (P)r and Q' = {Q)T. Consider a third point Rin D
and a point R' e C such that R' = {R)T. Now by Proposition 1(e) the points
w^P'-,Q',Q,u)i and P are coUinear and the points w,R' and R are coUinear.
Consider the hne segments wR'R, P'R\ R'Q', QR and RP. Now by Proposition
1(e) we have

\w - P\\w - P'\ = \w - Q\\w ~ Q'\ = \w - R\\w - R'\ (= r^).
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Hence — =
i

— and thus AwRP is similar to AwP'R', with LwRP =
\w — R\ \w — P'\

IwP'R'. Also 1^^^—§1 = 1"^ " and thus AwQR is similar to AwQ'R' with
\w - R\ \w - Q'\

IwRQ = wQ'R'. Subtracting angles we get LwRP - LwRQ - wP'R' - LwQ'R'.
Let R be a variable point following the contoiir of D. Now the line segments

QR and RQ have variable length. Notice that LQRP maintains a constant
TT '—

*

measure of — because PQ is the diameter of D.

Now notice that LQRP - LwRP - LwRQ is a right triangle. Hence LwP'R'-
LwQ'R' is a right triangle. Next, since the sum of the angles of AP'R'Q' equals

TT we have
LP'R'Q' = TT - (LR'P'Q' + LwQ'R')

= TT - (tt - LwP'R') - wQ'R'
= LwP'R' - wQ'R'

TT

^ 2'

Let D' be the image of D imder T. Since T is a continuous function in C, it

is clear that D' is symmetric with respect to the line wQP. In particular, since

D' passes through P' and Q' in wQP then D' is symmetric with respect to the

line segment P'Q'. As R varies along D, the variable vertex R' in right angle

LP'R'Q' traces a circle D' with diameter P'Q'. Therefore the image under T of

a circle D not passing through w is a circle not passing through w.

Proposition 4: The Tneasure of the angle between two intersecting STnooth

curves is an invariant under T, but its direction is reversed.

PRELIMINARY REMARK: ^
Let r be a smooth curve with image V under T. Let wziz'.^ be a ray emanating

from w and intersecting F and F at the points zi and z'.^ respectively. The angle
between a curve and a ray is defined to be the angle between the tangent hne
to the curve (at some point in it) and the ray. Let

<f>
and </>' be the angles that

r and r' make respectively relative to wziz'-y. We will show that
<i>
= 4>' but

their directions are reversed relative to zziz'^. That is, if we measure
(f)

counter-

clockwise relative to zz-^z'^ then
(f)'

must be measvired clockwise relative to this

ray.

Let A be another smooth curve passing through z^ with its image under T, A'
passing through z'^. Let xj) and V'' be the angles that A and A' make respectively

relative to wziz'y. Then by the above result we will have tp — xj^' with their
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directions reversed.

The angle between two ciirves is defined to be the angle between their tangents

at their point of intersection. We will show that the angles <^ — 0 a^id —
V''

between F and A and T' and A' respectively are the same with their directions

reversed.

Proof (of Proposition 4):
2'Zl

ZZi,

I.
•u)

Figure 2

Refer to the figure. Let F, F' and wziz[ be defined as in the remark. Let wzz'
be another ray emanating from w and intersecting F and F' at the points z and

z' respectively. Let zzl and z'z[ be lines secant to F and F' respectively. Let zz[

and z'z'i subtend angles 6 and 6' respectively relative to wziz[. Let M and M'
be the tangent fines to F and F' respectively at the points zi and z{. Here M
and M' subtend angles ^ and (/)' respectively relative to wziz[.
Now since z,z' and w are coUinear and zi,z[ and w are colfinear we have

r_.2^ rru.,^ _ \z[-w\
\zi-w\\z{-w\ (= r2). Thus Since Awzzi\z — w\\z — w\ = „ _ _

\zi - w\ \z' - wl
shares an angle with Awz[z' we conclude that these triangles are similar. Here
Iwziz = lwz'z[, i.e. 9 - 6'.

NextJet z become a variable point, following the path F toward zi. Then
secant zz-^ approaches the tangent M. Simultaneously, z' becomes a variable

point, following the path F' toward z[. Then secant z'z[ approaches the tangent
M'. Angle 0' approaches cf)' as angle 8 approaches

(f>.
At the fimit positions where

z and Zi coincide and z' and z[ coincide we have angle 6 = angle
(f)
= angle ^' =

angle 0'.

As stated in Remark 2, for any point t; in F and v' = {v)T in F' colfinear with
w, the distances \v - w\ and \v' - w\ are inversely proportional. For this reason,
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although the measure of the angles
(f)
and

<f>'
axe the same, their directions are

reversed.

Now consider a new smooth curve A intersecting T at zi with image A' under

T intersecting F' at z[. Let ip and tj^' be the angles between A and wziz[ and A'

and the same ray respectively. Then by the above ip =
(f>'

with their directions

reversed.

Finally let the angles between F and A and F' and A' he
<f)
— ip and (j)' - tp'

respectively. Then 4> — tp = <j)' - xp', but their directions axe reversed. This
concludes the proof of Proposition 4.

Proposition 5: A circle D is orthogonal to C if and only if for any two
points z and z' on D collinear with w we have (z)T = z'.

Proof: Let P be one of the points of intersection of C and D. Construct
the line segments wzz', wP, Pz' and Pz. Now compare the triangles AwzP and
AwPz'. Notice that these are similar triangles with congruent angles /.Pwz =
Iz'wP, LzPw = LPz'w, LPzw = Lz'Pw and congruent sides \P - z\ = \z' - P|,

\z - P\ = \P - w\ and |P - it;| = \z' - w\. We now consider the ratio

\z — w\ _\P — w\

\P-w\ ~
\z' -w\'

Since \P-w\ = r then l^r - u;||z' - u;| = r^. Hence z' = (z)T by Proposition 1(e).

Conversely, if any two points z and z' on D coUineax with w axe such that
z' = {z)T then D is orthogonal to D. The proof consists in reversing the above
steps.

Proposition 6: Let D be a circle orthogonal to C. Then D is setwise
invariant under T.

Proof: Let D' denote the image of D under T. Then D' is a circle (by
Proposition 3) orthogonal to C (by Proposition 4). We now show that D' = D.
For any ray emanating from w and joining two points z and z' on D we have
z' = {z)T e D'. Hence D C D'. Conversely since D' is a circle orthogonal to C
then for u ^ D' there exists u' G D' coUinear with u and w such that u = {u')T
by Proposition 5. But u' = (v)T for some v e D. Hence u = {u')T = (iv)T)T =
v^D. Hence £>' C £> and thus D' = D. Therefore D is setwise invariant under
T.
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Section II. First step in a geometric construction of a
FREE GROUP.

PRELIMINARY REMARK:
The purpose of the following construction is to present a geometrical model of a

free group following the approaches of Dyck [7] and Bumside [2]. Let C= CU{oo}
be the extended complex plane. Then the free group under consideration is a
subgroup of the group of Mobius Transformations

= {^"^^^ = -.ad-bd^l, a, 6, c, d, z ecj ; see [6].

One starts with a domain denoted by [I] in C bounded by arcs of circles
Ci, . .

.
,C„ mutually tangent, and orthogonal to the unit circle C. The "circle"

is taken to be as the imaginary axis. Each of these circles have radii and centers
denoted by r, and respectively, where 1 < j < n - 1. These radii and centers
will be computed in the discussion.

The polygon [I] (shaded for latter convenience) will be inverted through the
boundaries of the above circles via the mappings Tj :C-^C defined by {z)T, =

+ z-w,' 1 ^ ^ " - 1 and the mapping r„ :C»-^C defined by (z)T„ = -z.

These so called "inversion through the boundary of a circle C/' will produce a set

of unshaded polygons surrounding [I]. Mappings of the form Sj :C-*C definedm terms of our previous mappings Tj and specified as follows: {z)Si = {z)Tr,T^,
(2)52 = {z)TiT2,..., {z)Sn = {z)Tn-iTn will produce a set of shaded polygons
surrounding [I], and called a "first level of tesselation"

.

An even and odd number of compositions of mappings Tj will produce more
shaded and unshaded polygons respectively. The pattern of shaded and unshaded
polygons so produced covers the interior of C without overlapping, producing a
so called "tesselation" of C.

&' 6

The free group that we are refering to is denoted by and is the group
generated by the mappings 5^, 5^, . .

. , 5„ above. The group will be studied in
more detail m the next section. The "free" nature of is also captured by our
model but the details of this will be left for Section IV of this chapter.

CONSTRUCTION:
The following steps offer an outline of the construction:

(1) Divide the complex plane C into four quadrants in the usual way with a
real and imaginary axis meeting orthogonally at the origin. Consider a unit
circle centered at the origin and denoted by C.

(2) If n = 2; + 1 let the points A,, l<j <n subtend counter-clockwise angles
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relative to the positive real axis:

TT (i + l)7r (i + 2)7r (j + k)n

where /: = 1,2, ...,2j and j depends on n. If n = 2j let these angles be

instead:

^-^^ + . _ (2j+3)7r ^ _ (2i + [2fc + l])7r

<An - 2 , - 2(2^- _ 1) '

"^"-2 -
2(2j - 1) '

• •
•

' -
2(2i

-
1)

where A; = 0, 1, 2, ... , 2{j — 1) and j depends on n. Denote the points Aj by
"vertices"

.

(3) Consider a family of circles Cj, 1 < j < n such that:

(a) The "circle" C„ is identified as the imaginary axis.

(b) Cj is orthogonal to C.

(c) C n C,_i = A,}, 2 < i < n with C n C„ = {Ai, A„}.

(d) Cj_i is tangent to Cj at Aj for 2 < j < n with C„ tangent to Cj at Ai.

(4) Consider the arcs formed by the portions of the circles C„_i,C„_2, . . . ,Ci

found inside C and bounded by the vertices A„ and A„_i A„_i and A„_2, . .
. ,
A2

and Ai respectively. Denote these arcs by A„_i A„, A„_i A„_2, . .
. , A2A1. De-

note the "arc" formed by the portion of the "circle" Cn inside C and boimded
by An and Ai by AiA„.

(5) Let the region bounded by the arcs A„_iA„, An_2A„_i, . .
. ,
A2A1 and AiAn

be denoted by [I].

(6) Denote the centers of the circles C„_i,C„_2, . .
. ,

C, by u;„_i, u;„_2, . .
. ,

lyj.

Denote the radii of these circles by r„_i, r„_2, . .
. , n. Here r^-i = r„_2 =

•• • = ri.

(7) Let n = 2j + 1. The centers Wn-i,Wn--2, . . . ,Wi subtain counter-clockwise
angles relative to the positive real axis

_ (2i + l)7r (2j + 3)7r [2; + {2k - l)]7r

where k = 1, 2, . .
. , 2j and j depends on n. Let denote the distance

TT
between w^-i and the origin. Let x/^n-i = ^ be the cotmter-clockwise angle

subtended by Wn-i relative to the imaginary axis. Then

w.n-1 = dn_i {cOs{dn-l) + i Sm{9n-l)]

COS
7—r- < COS —

-f- 1 sm — —
(^)W 4, J [ 4; ^
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Since

we have

Next

cos

COS

Wn-1 =

(§)

(ij)

+ i.

cos

r„_i = \wn-i - A„| = |ti;„_i - (0, 01 =
cos

(2j+

4j' J

cos(-)

Since r„_i = r„_2 = ••• = ri, the formula for the radii of the circles

Cn_i,Cn_2, • • • ,Ci when n is odd is given by:

^odd
=

cos

cos
n = 2i + 1.

(8) Let n = 2j. Here the centers subtain covmter-clockwise angles relative to
the positive real axis

ft - ft - 0"

+

^> a (i

+

'"-^ - 2^^:' ^"-^ - TT^-' •

•
•

'

= ^T^T
where k = 0, l,...,2(j - 1) and j depends on n. Similar calculations as

those in (7) with V'n-i = ^^fzT) give :

If
cos

(2(2!-!))

COS
J-K

cos
But y ^\ = 1 SO that Wn-i =

cos
(2(2!-!))

2i-i

(#t)

+ I sm
JTT

COS

r„_i = \wn-i - AJ

(2(2!-!))

2j-l,

+ 2. Now

cos

Since r„_i = r„_2 = • • • = rj the formulas for the radii of the circles

C„_i,C„_2, .. ,Ci is given by

^even =
cos

cos
(2{2j-l))

n = 2j.

(9) A rough picture [Figure 3] showing some of the features described in items
(1) to (8) is as follows:
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Figure 3: The region [I] is shaded.
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(10) Define "inversion through the boundary of a circle Cj" to be the mapping
• «

Tj :C—>C defined by (z)Tj = Wi-\--—-^^ where 1 < j < n— 1. Let "inversion
Z —Wj

through the boundary of the "circle" C„" be the mapping r„ :C— defined

by Tn{z) = —z. Define the mappings Si :C—+0, 1 < z < n as follows:

{z)S, = (z)T„ri=((z)T„)Ti

(2)52 = {z)T,T2 = {{z)Tr)T2

(2)5„ = (2)r„.ar„ = ((2)r„_i)r„.

Denote the images of [I] via Si, Sj, . .
. , 5„ by [5i], [Sj], . .

. , [5„].

(11) If we now shade the regions [Sj], . .
. , [5n], a pattern of shaded and

unshaded polygons is produced. The unshaded regions correspond to the

applications of the mappings Tj to the region [I]. We could denote these

unshaded regions by [Ti], [T2], . .
. ,

[T^] but prefer not to do it. Observe that

the composition of an even nimiber of mappings T, appHed to [I] produces
shaded regions. Similarly the composition of an odd number of mappings
Tj apphed to [I] produces unshaded regions. The pattern of shaded and
unshaded polygons so produced covers the interior of the circle C without
overlapping thus producing a so-called "tesselation" of C.

In general if cr is a product T.j . . .Ti^ with k even, we denote the image of

[/] under cr by [a]. The regions [a] will often be referred to as "tiles".

(12) The images of the vertices Ai, >l2, . .
. , A„ under the mappings Sj, 1 <

j < n (including composition of these mappings) are labeled again by
i4i, A2, . .

. , i4„ accordingly instead of {Ai)Sj.

(13) The following figures are diagrams for the case n = 3. In Figure 4 we refer to

the set of polygons [S^'], [S2], [S^% [Si], [S^'] and [S3] depicted as a "first

level of tesselation". In Figure 5 we illustrate a "second level of tesselation".

The exterior of C is omitted for simplicity. Some additional properties of
for the case n = 3 can be found in the Appendix.
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Figure 5
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Section III. Group structure of the sets (ri,T2, . . . ,T„),

(5i,52,...,5n) and their relation to the group of mobius
Transformations .

Having defined the mappings T, and Sj, I < j < n in the previous section, we
now form the following group with function composition as binary operation:

^ = Group generated by the mappings 5i, Sa, . .
. , 5n

= {Si,S2, 1 5„).

We also form the set r„.F = T„(5i, ^2, . .
. , 5n). Define

Let

M. = Group of Mobius Transformations; see [6]

= I {z)S = — : a,b,c,d, z E C \J {oo} and ad — bc= ll

.

cz + a
J

Let M = Set of conjugates of Mobius Transformations. (By definition, a conju-

gate of Mobius Transformation is a mapping T :C— of the form

/ az + b
, ,

* * *

Define M= M U Let C= C U {oo}. We will see that is a group (a

subgroup of the group S . of permutations in C*.) Fix the mapping TG AT given

by {z) T= -z. Define the set f At = |f 5 : 5 G A^|.

In this section we develop some of the elementary properties of ^, and M-
We will estabhsh next, the following theorems:

1 *
• • •

Theorem 1: M is a group and M is a group of index 2 in M, i-e.
\ M'

M\ = 2.

Theorem 2: ^ is a group and J- is a group of index 2 in J- , i.e.
\

J- \
= 2.

Theorems: J^^j^OM.

Theorem 1 will be proved by showing the following lemmas:
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Lemma 1: M =f M.

Lemma 2: M ^ M.

Theorem 2 will be proved by showing the following lemmas:

Lemma 3: ^ = { All words of even length in Ti,T2, . . . ,1^} and TQM.

Lemma 4: r„J^ = { All words of odd length m Ti, Tj, . .
. ,
T„} and T^JF CtJ\J[ .

Once we establish the above, then we will be able to say that

= Group generated by Ti ,
Tj, . .

. ,
T„

= (Ti,r2,...,T„)

Finally, the proof of Theorem 3 will follow using Set Theory.

«

Lemma 1: M =T M.

Proof: Let {z)S = G M. Then 3 {z)S' = -^1±1 ^ M such that
_ C0 + d -cz + d

W5 =^ = Z^piyTi = <-^'^ = ((^) ^) ^ = ^ S A^. Hence

^ cf A^. On the other hand, let T S ET M. Then (z) f 5 = [{z) T^S ={~z
—az + b — »= — : € M. Hence T M C M.
—cz + d

"~

Lemma 2: M ^ M.
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Proof: Any Mobius Transformation is analytic everywhere in C (except at

its pole z = — ). On the other hand, the function (z) T= —z is not analytic at

any point in C-

Theorem 1: \M--M\ = 2.

Proof: By direct computation, M is closed under composition and the

taking of inverses. Hence, >t is a group (subgroup of the group 5. of permuta-
c

tions in C.) Clearly, is a subgroup of M- We also have M =T M CM with

M M. Therefore
\ M'- M\ = 2.

Lemma 3: ^ = Set of all words of even length in Ti,T2, . . . ,Tn and TQM.

Proof: First we show that { words of even length in Tj, Tj, . .
. ,
T„} C ^.

Let It; be an arbitrary non-trivial word in Ti, . .
. , r„. Let i denote the length

of w with respect to Ti, T2, . .
. , r„. We have two cases to consider; namely (. = 2

and £ > 2.

Let £ = 2 and consider w = TiTj EF where 1 < i < n, and 1 < j < n. If ? = j
then w = {Tif = / and so ui G ^. If ? < j then

w = 7;(7;+ir,+i)(r.+2i;+2)---(T,-:r,_or,-

= (r.r,+o(r.+i7;+2)---(T,_:r,)

= Si^iSi^2 • Sj E T.

If i > j then

w = i;(7;_i7;_i)(7;_27;-_2)---(r,+iT,+i)T,-

= (r.T._o(r._aTi_2)---(r,+ori
= 5", 5,_i • • • 5j^i 6 .

This concludes the proof of our first case.

Now let ^ > 2 and consider w = T,Ji,T„Ti, Ti,,_^Ti,, with h, i^, . .
. , i2k-ui2k €
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{1,2, . . . ,n}. Then we can associate the first fc-pairs of w as follows:

w = {Ti^Ti^){Ti,Ti^) {Ti^,_,Ti^^).

Prom the previous case, we know that each pair above belongs to J^. Hence the

product of the A;-pairs is also in ^. Therefore w ^ T . This concludes the proof

of our second case.

We now show that ^ C { words of even length in Ti, T2, . .
. ,
T„}. Since each

Si is a word of even length in Tj, . .
. ,
T„ then it is clear that the product of n

of these words is also a word of even length.

Finally we want to show that T ^ M. We are dealing with mappings (^)Tj =
r2

it>j + -— 1 < i < n — 1, {z)Tn = —z. Our mappings 5,- defined in terms
Z — Wj

of these Tj's in section II can always be put in the form {z\S =
^
and can

cz -\- d
be identified as Mobius Transformations. Pick x E ^. Then x — word of even

length in Ti, T2, . .
. ,
T„ i.e. x is formed by composing fimctions of the form {z)Tj

an even number of times. Hence x is of the form (z)S = °^
^, 6 M. Therefore

C2 + a
T ^ M.. This concludes the proof of Lemma 3.

Lemma 4: T^J" = Sti of all words of odd length in Ti,T2,...,Tn and

Proof: We first show that { words of odd length in Ti, . .
. ,
r„} C TnT.

Let I/; be an arbitrary, non-trivial word in Ti,r2,...,T„ and let I denote the
length of w with respect to Ti, Tj, . .

. , r„. We have two cases to consider; namely
^=land^>l.

Let ^ = 1 and consider w = T,- ej^ with 1 < i < n. Now notice that:

Tx = (T„T„)(r„_ir„_o---(r2T2)ri
= T„(r„T„_i)...(r2ri)

T2 = (T„r„)(T„_aT„_i)...(r3r3)r2

= r„(T„r„_a)---(r3T2)

= r„5-^...52-^

r„_i = (T„r„)r„_i = r„(r„r„_,) = T„5-i

r„ = Tj.

In this way we have managed to recognize each element T- in as some element
in TnT.
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Now let £ > 1 and consider w = T.jTj-jTj^ . . . T.^^rvj^^j where z'l, i2, . .
. , i2ki ^2A:+i €

{1, 2, . .
. ,
n}. Now associate the first k pairs leaving the term. T2k+i disassociated.

By Lemma 3 we know that the product of the k pairs belong to JF. Also by the

previous case above, we know that r,2^^j = r„5~^ • • • 32^+^ belongs to TnT.
Therefore w € TnT. This concludes the proof of our second case.

We now show that T„^ cf M. Pick x = r„F with Y e J^. Now Y £ M
by Lemma 3 and f= r„ = -z. Hence x ST M. Therefore T„^ cf M. This

concludes the proof of Lemma 4.

Theorem 2:
\ F: F\ = 2.

« *

Proof: :F is a group generated by Ti,T2, . . . ,r„. ^ is a subgroup of ^
because it is generated by words in Ti,T2,...,Tn of even length. We also have

Tr,T in } with ^ ^ r„^ by Lemmas 3 and 4. Therefore
|
^: ^| = 2.

Theorem 3: ^ =jc- nA^.

Proof: We have defined J-= ^ U r„^. Now i" nA4 = (JT U T^T) HM =
(J^nM) U(r„^n A^). Nex^since ^ C ^ we have D M = J^. Similarly,

since TnJ^ C M and M Cl M = <?i> we have that T„jr D X =
<;i!). Therefore

Remark : T ^ M..

Proof: T = U {5i, S2} U Sj, Sa) U • • is a countable union of
countable sets and therefore itself a covintable set. On the other hand, M is

imcountable since we can form the subset {{z)S\{z)S = r + z,r e K} which is

imcountable. Therefore T ^ M.
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Figure 6: M
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Section IV. More properties of the group T , with n = 3.

Remark : We continue the notation of the preceding sections, specializing

to the case where n = 3. Thus, we are in the situation indicated by figures 4 and
5, on pages 26 and 27.

* *

Definition: Let P be a circle in C. Then C -V consists of two connected

components, namely ExtD and IntP. Let X be a subset of C and let ^ ^

•

We say that carries X across V'xiX hes in one connected component oiQ, —V
and ^ Yi lies in the other.

Lemma 1: LetY^^ and let V be a circle in C- Then C -V has precisely

two connected components and X2 and C -(P) Y has precisely two connected
components Fj = {Xi)Y o-nd Y2 = {X2)Y-

Proof: Notice that C -T> has precisely two connected components, namely
= Int(P) and = Ext(D). Let Fi = {Xi)Y and = {X2)Y denote the

images of A'l and X2 respectively under the mapping Y- Let A,B e X2 and let 7
be a path joining these points in X2. Assume (5) ^ G Fj and (A) E € Fj. Since

E is a continuous mapping, there exists a path (7) Y joining the points (A) Y and
(B) Y in (7) E- Notice that (7) E passes through a point Q G {V) Y- Now since

E is a bijection, there exists a point P e V, P e such that Q = (P) E- But,

7 n 2? = 0. This contradicts our assumption that (B)Y € Fi and (A) E ^ F2.

Hence either (A) E, (B) E £ Fj or (A) Y, (B) Y e F2. Therefore C -(V) Y has
precisely two connected components Fi = {Xi)Y and F2 = (X2)E-

Lemma 2: Lei Y^J". Then {YY^SiY, i € {1,2,3} carries [Y] across a
circle on the boundary of [Y]-

Proof: First, apply E"' to [E] to carry [E] to [I]. Second, apply 5„
I e {1,2,3} to [/] to carry [I] across a circle d, i G {1,2,3} on the boundary
of [I]. Notice that [/] and [I]Si = [5.] He in different connected components of

C -Ci. Third, apply E to [I] and [J] 5,-. Using Lemma 2 with d in the role of V,
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we conclude that [/] E = [E] and = [E](E"^ -^. E) lie in two different

connected components of C — (C,)E- That is, (E)~^'S't E carries [E] across the

circle (C.) E on the bovindary of [E]-

Theorem 1: Let J2 ^ ^> ^ one of the three circles on the boundary of

[E] o-nd let , . .
. ,

S,„) be a reduced word in {Si, S21 S3}. Then E~^ - . . 5i„ E
carries [E] across V if and only if E~^ Si„ E does.

Proof: (By induction on n.) Refer to the picture on page 36.

The theorem is trivially true if n = 1, so assume the theorem is true for all

fc, l<fc<n — 1. We must show that this assumption implies the statement of

the theorem for k = n. First consider the case where E = Now, 5i„ carries

[/] across a circle V on the boundary of [/] to the tile [5i„]. Let g = Si^ . . .Si^.

Notice that

9 =(5.„5-;)5,...5.„

Put E' = 5.„ and g' = S,, . . . 5.„_,. Thus g = 5,„(E')-'y'E'. Now [5.J = [E']
has three boimding circles. We next show that (E')~^fl'' E' carries [E'] across one
of these circles.

By Lemma 2 (E')~^'5'i„-i E' carries [E'] across one of these circles, say V. By
our inductive hypothesis {Z,')~'^Si, . . . Si„_, E' carries [E'] across V provided that

(E')~^'S'i„_i E' does. Hence by induction we conclude that (E')~^5'' E' carries [E']
across V.
We next observe that two of the choices for V entail carrying [E'] into Int(I?')

with the remaining choice carrying [E'] into Ext(I?'). In detail, if "carrying [£']

across P'" means that [E'] is carried into Int(r>'), i.e. (E')"^^'E' carries [E'] into
Int(I>') C Int(D) then we are done since g = E'(E')"^f ' E' subsequently carries

[I] into Int(I?). If "carrying [E'] across P'" means instead that [E'] is carried
into Ext(X>') then g carries [/] into Ext(D'). Moreover, this uniquely determines
V.
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Next notice that 5^ ^Si„_^Si^ carries [5,„] to the tile [5,- _^Si ]. Let g =
5.„_,5,„(5i„_,5.J-\5,". . . 5,„_J5,„_,5i„. Put E" = 5.„_,5,„ andg" = 5,. . .

.

Thus g = Si„_,Si„{Z")-'9"E"- Now [5.„_,5iJ = [E"] has three bounding cir-

cles. By Lemma 2, {Y^")~^Si„ ^ E" carries [E"] across one of these circles, say

V".

As in the preceding case, we use oiu- inductive hypothesis to add that (E")~^fi'" Tl'

carries [E"] across V". Two of these choices for V" entail carrying [E"] into

Int(I>") C Int(r>) and g = E" ((E")"^^" E") subsequently carries [/] into Int(D).

On the other hand, if "carrying [E"] across V" means that [E"] is carried into

Ext{T>") then a glance at the picture should convince the reader that [E"] is

thereby carried into [/].

The case E ^ is similar. Conjugation transfers the situation discussed in

the previous case, to some other region of our geometric model, and once there

we follow a similar argument.

Corollary 1: Let E £ ^- Then there is a imique sequence of tiles [/] = [Xq],

[Xi], [Xn] = [E] where Xj e J^, (0 < j < n) and such that for aU j, (0 <
i < n - 1) we have [Xj+i] = [Xj]X-^Si^_^Xj = [Si„_^Xj] for some reduced word
(5.1,..., 5.„) in {81,82,53}.

Proof: Consider the sequence of tiles

[Xn] = [S,,...S,„_,S,„].

Put Xo = I and Xk = Sj„_^_^,^ . . . Sj„, {k = 1, . .
. ,

n). Then the above sequence of
tiles can be described in an iterative way as follows:

[^0] = [/]

[X,^,] = [Xk]Xj;'S,„_,Xk = = 0, . .
.

, n - 1).

Hence, the existence of the sequence as in the statement of the corollary is es-

tablished.

To show that this sequence is unique, let [/] = [X^,], . . . ,[X'J = [E] be an-
other such sequence, with associated reduced word (5-^ , . .

. ,
5'^) for E- Sup-

pose that there exists k < n such that [Xk+i] # [X'k\^]. Let k be the first

such index. Then X^ = X', and [X^K' S,„_,Xk ^ [XkK'S'j^_^Xk since

37



= Xk^iX^^ and S'j^_^ = This means that X^^5,„_^Xfc car-

ries [Xk] across a circle V on the boundary of [Xk] while X^^ Sj^_i^Xk carries

[Xk] across a different circle V on the boundary of [Xk]- Theorem 1 then says

that X^^(5ij . . . 5i„ ^)Xk carries [Xk] across V while Xk^{S'j^ .Sj i^)Xk carries

[Xk] across V. Then [Xk]Xi;'Si, . . . Si„_,Xk ^ [Xk]Xk'S'^^ . . . S'jJ~Xk implying

that [Si, . . . Si„_,Xk] ^ . . . S'j^_^Xk], that is [E] # [E] which is false. Thus

[Xfc+i] = [-Xfc+i] and we conclude that Xk = X'k for aH k, k < n.

We now show that n = m. Now,

m = [K] = [x'^]{x'j-\s',^...si_jx'^

This contradicts Theorem 1 'd m ^ n. Therefore the tmiqueness of the se-

quence is established.

Corollary 2: Let E € Then there exists a imique reduced word in

^2, 53} such that E = -S",! • . . 5,„.

Proof: Let (5,j , . .
. , 5i„) be a reduced word in {81,82, 83} such that E =

Si,...8i„. Suppose (5jj,...,5j-^) is a reduced word in {81,82,83} such that

i: = Sj,...8i^. Put Yk = 8'^^_^^^...8'j^, {k = l,...,m) and Fq = /. Then

[n+x] = [Yk]Y,-^8i_^Yk = [8l_Jk].

By Corollary 1, m = n and X. = Y for all i. Thus 5i„_, = Xk+iXk^ = i^fc+i^^^^ =
8'^_k. Therefore (5^. . . . 5.J = (5^-^ . . . 8'jJ.

Lemma 4: Xe< S = (5.,, . .
. , 5.„) 6e a word in 81, 82, 83 (reduced or other-

wise). Let E = 8i,... 5,„. Then (E)<A = Xi, . . . Xi^.

Proof: (By induction on n).

Assume that S is not reduced. Then S = (8i,,..., 8i,_, , 5.-, , 5.,^, , • • • , 5.-

J

where 5i^_j 5,^5^^^^ = /jr. Consider the shorter word obtained by deleting
in S, that is So = (Si,, . .

. , 8,,_^, 8,^^^, . .
. , 8,J. Observe that

J2 = 8,,... 5„_2 5„^, . .
. 5,„. By induction on n {J2)(f> = • • Xi^_^Xi^_^^ . . . A',„.

But also

38



Next, the lemma is clecirly true if <5 is reduced.

We will now show that ^ is a free group on {5i,52} in the modern sense.

Definition: Let F be a group and let A' be a subset of F. We say that F is free

on A' if, whenever 6 : A" G is a mapping of X into a group G. there exists a

imique homomorphism $ : F i—> G such that =
(f).

Theorem 2: Let G be a group and let A'i,A''2 € G. Then there exists a

unique homomorphism (p : T G such that (Si)<f> = A",-, i = 1.2. (Thai is T is

a "free group on two generators".)

Proof: Let e and let (5,,, . .
. , 5,„) be the unique reduced word

such that E = 5„ ...5.„. Define {Z)4> = A'.-, ...A'.„ where A3 = A'f^Yf^
We now show that o is a homomorphism. Let (S,-, , . .

. , 5,„) and (5_„ 5^^)
be words in the generators Si, $2,53 for J2 and E', respectively. Now YiH' =
(5,j,...,5,„,5„,...,5j„) and this word might be reduced or othenvise. Next

(E E')o = A-., . .
.
X,^X,, . . . A',„ by Lemma 4 and (E)<?{E')4> = -V„ . . . A-.„ A^,, ... A

by definition of o. Hence p is a homomorphism.
Now to show that 6 is unique, let V' : ^ G be another homomorphism

such that {S,)xP = A'„ I = 1,2. Since (/^)^ = {SiS2S3)rP = Iq then (53)1^ =
{S2'Sr')4> = X^'Xr' = X^. Then also (5., ...5.J^^ = A'., ...A'.^, that is

Remark : With some extra effort one can get the same result for n number
of generators.

Definition: A presentation is a description of a group in terms of elements that
generate the group and relations satisfied by these generators.
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Relation with Cayley's Dictum:
Let G be a group generated by elements Xi, . .

.

,

Xn- Let ^ be a free group on
n generators ^i, . .

. , 5„. Define Xi . . . Xn+i = Iq and Si . . . 5„+i = Ijr. We know
that G is a homomorphic image of ^ via = X,-, i = 1, . .

.
, n. Let K be the

kernel of this homomorphism. Then K can be regarded as a list of "relations"

concerning the generators Xi, . .
. , X„. Namely

•^ti Si„ e 4^ X,j . .

.

Xi^ = Iq.

Since ^ = G by the First Isomorphism Theorem we therefore have a "presenta-

tion" of G in terms of "rules of combinations of symbols" Xi, . . . ,X„ in Cayley's

sense.
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CHAPTER V: Dyck's 1882 Paper

In the years of 1882 and 1883, Walter Dyck published a paper in two parts

entitled Gruppentheoretische Studien (1882); see [7], and Gruppentheoretische

Studien 7/(1883). According to Chandler and Magnus [5, p. 7] "Dyck's papers

[1882 and 1883] contain . . . the foundation of the theory of group presentations."

They add

"But, the most noteworthy effect of Dyck's paper of 1882 is probably that

from then on, the definition of a group through a presentation becomes a common
feature in the literature."

Dyck's 1882 paper is divided into eight sections of which only three are relevant

to this project, namely sections 1, 2 and 4.

In the first section, Dyck defines among other things the concept of a most
general group G with m generating operations. This concept corresponds to that

of a free group on m generators Ai, . .
. , A^. (using modem terminology). As we

shall see, his definition is not rigorous enough by today's standards and is open
to ambiguity.

In the second section, Dyck attempts to construct a geometric model of the

most general group. We have updated this construction in Chapter IV, sections

II and IV and this concludes our consideration of this section.

The fourth section deals with the relationship between the most general group
G with generators Ai, A2, . .

.
, and an arbitrary group G with generators

Ai,A2,...,Am- Here, in a vague way, Dyck arrives at the foimdations of the

theory of group presentations.

We now consider sections 1 and 4 in detail.

The first section of Dyck's 1882 paper is entitled "Definition einer Gruppe G
als Ausgangspunkt der Betrachtung" , that is "Definition of a Group G as the
Starting Point of the Investigation." We now quote a translation of this definition

found in [5, p. 5-6]:

"Let Ai, A2, ^3, . .
. , Am be m operations of any kind which can be apphed to

an object J (identity) which, subsequently, will always be denoted by 2. Then
these Ai may always be considered as the generating operations of a group which
will be obtained by applying all operations on our object J in iteration and
combinations.

The most general group with m generating operations will be obtained if we
assiune that the A, do not have any periods and, in addition, are not connected
mutually by any relation. We shall also consider the opposite operations of the A,-

which we shall denote by Af^ Then we obtain the infinitely many substitutions
which belong to our group G if we apply to the thus resulting substitutions
the same operations, and so on. Since we had assumed no relation between
the generating operations, the substitutions thus produced are all distinct from
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each other and each of them can be obtained only by one completely determined

process from the generating substitutions. This is expressed by the formula

-^1 -^2 • • • -^1 -^2 • • • •

Here is to be understood that the exponents are not zero and that the identity

is the only element that is not written in this fashion. The term "relation" is never

defined precisely. Presumably what is meant by a "relation" is any combination
of substitutions resulting in the identity element.

Dyck claims certain properties for this most general group. He claims that ev-

ery nonidentity element can be written in a unique way in the form Aj ' . . . Aj^ A
It is difficult for the reader to justify this claim. One would like to say that the

claim is an obvious consequence of G having no relations. The trouble is that

there are relations as soon as the inverses are introduced.

The uniqueness question for representation of elements of G will be a source

of trouble throughout the paper. There are various hints given that Dyck himself

was not satisfied by his treatment of this question. The first indication of this

dissatisfaction appears when he introduces the following artifice for avoiding the

use of negative exponents. Here he introduces an additional generator A„ (with

n = m + 1) and postulates that

A1A2A3 . . . AmAn = 1. (i)

Multiplying (i) from the left by Af^ gives:

A2A3...A„ = (ii)

Multiplying (ii) from the right by Ai gives:

A2A3...A„Ai = 1. (iii)

Multiplying (iii) from the left by Aj ^ gives:

A3A4 . .
. A„Ai = Aj ^ (iv)

Multiplying (iv) from the right by A2 gives:

A3A4. ..A„AiA2 = 1.

In general, for Aj, A2, . .
. ,
A„, A„ with A1A2A3 . . . A^A„ = 1 we have

= Ar+iAr+2 A„AiA2 . . . A^-l

where r = 1,2, ...,n. This artifice does not solve the problem of uniqueness
of expressions for elements. For example, suppose that we take two generators
Ai, A2 and then we introduce a third generator A3, so that A1A2A3 = 1. Then we
have many expressions for Aj, namely Aj = (AiA2A3)Ai = Ai(AiA2A3) = • •

•,

etcetera. Nevertheless, this method of removing negative exponents will play an
important role in Dyck's geometric "construction" of the most general group.
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In order to avoid the redundancy of expressions like Aj = (^1^2^3)^41 =
^41(^41^2^3) = • • • we need some kind of notation of "reduced words". A modern
treatment that seems closest to Dyck's original is given in [1]. We now proceed

to sketch this treatment.

For any subgroup G and a non-empty subset X of (?, a certain subgroup of

G (denoted by gp{X)) is defined as follows:

^K^) = {x^ • • x^" |x.- € X, 6i = ±1}.

To avoid the situation where two different products of the form Xj* • • • x^" give

rise to the same element of G, the concept of a reduced product is introduced.

A product Xi' • • • x^", where e,- = ±1 and XitX is said to be a reduced X-product
if X,- = x,-^.i implies that e,- / — e,+i.

Next, a lemma is stated and proved in [1, p. 245-246] showing that gp{X) is

the set of all products of the form w = • • • x^", x,- G X, e, = ±1, such that w
is either equal to 1 or a reduced product in X; that is:

Lemma : gp{X) = {w\w — 1 or w = a reduced product in X}.

The uniqueness of reduced words is built into their definition of a "group freely

generated by a set" as follows:

Definition: A group G is said to be freely generated by the set X C G ifX ^ (f>

and

(i) gp{X) = G

(ii) two different reduced X-products define two different nonunit elements of

G.

The above definition is in tiim used to prove the following lemma:

Lemma : A group F is freely generated by a set X ^ 4), if and only if:

(a) gp{X) = F and

(h) no reduced X -product is equal to the identity element.

This concludes our consideration of the first section of the paper and now we
move on to the fourth section.
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The fourth section of Dyck's paper deals with the relationship between the

most general group G, with generators Aj, A2, . .
. , Am and an arbitrary group G,

with generators Ai, A2, . .
. ,
A^. This relationship is given by a theorem that we

now quote in translation:

"The group G and G can be seen to be isomorphic to each other."

This theorem can be stated more precisely using modem terminology as fol-

lows:

Given Ai, . .
. , Am G G, there exists a imique homomorphism 4> : G ^ G such

that Ai<t> = Ai for alH G N. Dyck's "proof of the theorem is understated, to say

the least. For example, the mapping needed to establish the desired isomorphism
between G and G can be inferred to be S{Ai) 1—> where S{Ai) is an arbitrary

combination of the elements A,- and their inverses. Dyck correctly asserts that

this mapping is weU-defined. However, his explanation of this fact is confusing

and once again points to Dyck's discomfort with the assertion, made in the first

part of his paper, that every element of G has a tmique reduced expression.

All what Dyck does, by way of proving well-definedness, is to say that if one
expression 5(A,) is mapped to two distinct elements 5(A,), S'{Ai) of G, then
in fact S(Ai) = 5'(A,) which "contradicts our general assumption about the

operations A,-." The meaning of this is unclear. If Dyck truly beHeved his earlier

remark about the most general group G, he would have no difficulties in proving

well-definedness. Namely, he could define a mapping G 1-^ G by considering the

effect of this mapping only on reduced expressions.

Another related source of ambiguity is whether the given mapping is a ho-

momorphism. Dyck says nothing about this, other than to assert it. It is not
difficult to_show that we have a homomorphism if one knows that the given map-
ping G ^ Ghas the effect 5(A,) i-> 5(A,) for any expression 5(A,), and not just

for the reduced expressions. It seems that Dyck wished to define G —+ G in this

way, but this leads to the confusion discussed above.

A modern treatment of what Dyck is attempting to do at this stage is given
in [1, p. 250]. Here we find the following theorem:

Theorem : Let F be freely generated by a set X, let H be any group, and
let 6 be a majoping ofX into H. Then there exists a homomorphism 6 of F into

H such thai 6 agrees with 9 on X. 9 is called an extension of 9.

In proving the above theorem, Baimislag and Chadler first recall that part
of the definition of a group freely generated by ii, . . . ,a:„ given in [1, p. 248];
namely:
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"Any nonunit element of F is uniquely expressible as a reduced X-product

/ = Xj' . . . x^", where Xi € X, e, = ±1 and Xj = x,+i implies e, ^ — Cj^.!."

Next, they define a mapping 6 : F ^ H hy f9 = (xi^)"' • • • (x„^)'" with

1f9 = 1h- Here ^ is such that 9\h = ^. To conclude their proof, they show that

^ is a homomorphism, adding that

"To do this, we shall show that if / = Xj^ • • • x^" where x,- G X and e, = ±1,

then f9 = (xi^)'i • • • (xn^)'" whether or not • • • x^" is a reduced product."

This is done by induction on n.

Thus, the treatment in [1] avoids the difficiilties encountered in Dyck's paper,

essentially by defining them away. The real difficulties will appear later in estab-

Hshing the existance of free groups. The discussion concerning the relationship

between the most general group and an arbitrary group G now continues. Dyck
makes the following two assertions which we label by A and B:

Assertion A: Given an element 5(A,) of G then either

(1) only one element of G maps to or

(2) infinitely many elements of G map to 5(A,).

Assertion B: If (1) above holds, then G and G are for all practical purposes .

identical. Suppose that (1) does not always hold. Then (1) does not hold in the

particular case that 5(A,) = 1^.

No proofs for these assertions are given by Dyck. We now supply a proof of

Assertion A:

Suppose g e G and suppose g,h E G with g ^ h and with h ^ g. Then
(/igr-i) = = 1. Thus 1 and hg~^ are two distinct elements of G which map
to 1. Then one can produce infinitely many elements of G that map to I{ (e.g.

the powers of hg~'^). Then also infinitely many elements of G map to for any
element K of G, since K, Khg~^, K{hg-^y, .

.

., all map to IC.

Instead of proving assertions A and B directly, Dyck retreats and consider
the preimage of 1. If i--> 1^ then also h-'^gh t-> 1^ for any h £ G and any
combination (word) in the various elements h~'^gh, h £ G maps to 1^. This
shows that if some non-identity elements of G maps to 1^, then infinitely many
elements of G map to 1^. Moreover, Dyck indicates that the set of elements of
G which map to 1^ forms

"a group H, and as one can see from its definition this group H is permutable
or commutable with each operation 5, or to use the notation of Herr Lie, the
group H is said to be a distingmshed subgroup."
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In other words, the kernel of our homomorphism is a normal subgroup of G.
There is some further discussion of the structure of H, which is somewhat

tangential to the main argimient. Then, Dyck begins to consider the pre-image
in G of an arbitrary element of G. He goes as far as to say that if ^ G G then
all elements of the coset gH will be mapped to G. However, Dyck never clearly

states that gH is equal to the preimage of "g in G.

Dyck now comes to the main point of his whole paper. He states (using modern
terminology) that G = H C where G is a complete set of coset representatives of

H in G. He also states that C is in one-to-one correspondence with G. There is

more: In avery vague way he states (straining at the limitations of his language)
that f = G.

To finish our consideration of Dyck's 1882 paper we now establish a connection
between:

(1) Dyck's most general group and the results in section 4 of his paper.

(2) Cayley's Dictum encountered in Chapter II.

(3) The concept of group presentation.

Let G be a group generated by A[,...,A'^. Let G be a free group on n gen-

erators Ai,...,An. Define A[ . . . A'^^^ = % and Ai . . . A„+i = Iq. We now know
that G is a homomorphic image of G via (j){Ai) = i = l,...,n. Let H be the

kernel of this homomorphism. Then H can be regarded as a list of "relations"

concerning the generators A\,...,A'^. Namely, Ai, . . . Ai^ e H A'i^ . . . A'i^ =
Iq. Since ^ = G by the First Isomorphism Theorem, we therefore have a "pre-

sentation" of G in terms of "rules of combinations of symbols" A'j , . .
.

, in

Cayley's sense.
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APPENDIX

Proposition 1

Aj-vertex as k

The sequence of tiles Sj
, j G {1,2,3} converges to the

oo.

Proof: Let ; = 1. Put {z)Si = ^^^^I]'^^ in matrix form, i.e. 5i =

1

1 + i

. Compute 5i =

-1 - {2k - l)i

2k -I

l + 2i -2
-2 l-2i

2k -1
l + {2k- l)i

9^ -

52*= =

-1 - 3i 3

3 -1 + 3?

1 + 2ki -2k
-2k 1 - 3ki

{1 < k < oo). Now put S^'' ^ in Mobius form and observe that (z)S^''~''- =
r -I /«T , \ -T , /o7 , N f -1 .-1 _ . 1

2k-l[-1 - {2k - l)i]z + {2k - 1) _
{2k - l)z + [-1 + {2k -

~

-iz + 1

z + i

— t z + 1

+ i

as k

so that {z)Sl''-'^

oo.A; 1-^ oo. Similarly, {z)Sl^

Next consider the follwoing family of circles

z + 5-)
1

2

1

4

1

6

-iz + 1

z + i

as

,2Jt l_

2k'

Notice that these circles converge to the point Ai = -i as i-^ oo since V}^ :

\z + i\ = 1)2'= = as A; oo. Also observe that Ai belongs to each of
these circles and that {-i)Sf'' = A^ for each k,l <k <oo. Moreover we have:

{i)S^ = ^-yeVlnc

{i)S', = ^-^^zevtnc

{^)s! = =^-^^^evtnc
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(0^1 = Ak - {2k - l){2k + 1)

(2A: - l)(2jk + 1) + 2

Now consider the following family of circles

:

Vl :

VI:

ePfnCwith (OS'f ^ —i as k h-^ oo.

1

3

1

5

1

7

Z +
2k + 1

+ i

2k + 1

Observe that these circles also converge to Ai and that Ai belongs to each one
of them with {—i)Si'''^^ = Ai for each k, 1 < k < 00. Moreover:

{-i)S, = ^-^ievlnc

00.(-1)^1 = ^'\t + (fc +
|).^'^' ^ n Cwith (-1)5^ ^ -z as k

Finally, observe that each tile [S^] is bounded above and below by the circles

Vl'' and respectively. Hence, the sequence of tiles [S^] converge to the

-vertex.

The remaining cases j = 2 and i = 3 involve similar considerations and we
omit their proof.

Remark : Clearly, the sequence of tiles [5^"''], j G {1, 2, 3} also converges to
the Aj-vertex as —»• 00.
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ABSTRACT

The idea behind the concept of a "group presentation" is to form a group by giving a set

of "generators" for the group, and certain equations (called "relations") that the generators

should satisfy. It is desirable that the group is as free as possible of relations and generators

subject to these relations.

As suggested by its title The Genesis of the Concept of Group Presentations as seen in

papers of Cayley, Kronecker and Dyck; the purpose of this thesis is to investigate the genesis

of the concept of group presentation. This genesis took place in some of the works of the

alluded mathematicians between the years of 1854 and 1882, in England and Germany.

The thesis is divided into five chapters. The content of each of these chapters is summa-

rized in our Introduction, on page 2.

In studying the genesis of the concept of group presentation, we are focusing on one

particular aspect of the genesis of the abstract group concept.


