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Abstract 

Consumers demand for high quality, natural and fresh tasting food, free from 

preservatives and additives, with a clean label and an extended shelf life has increased. High 

pressure processing (HPP), also known as high hydrostatic pressure, is a non-thermal food 

preservation technique that has the potential to meet these demands. It is an opportunity to 

preserve food, by applying intensive pressure in the range of 300-900 MPa, without adversely 

affecting organoleptic, textural and nutritional qualities as thermal processing like pasteurization 

and sterilization may do.  

In a typical high pressure batch cycle, the food prepackaged in a high-barrier flexible 

pouch or a plastic container is loaded into a perforated basket that goes into the pressure vessel; 

the pressure is then increased to the processing target pressure (come-up time); the product is 

held at the desired pressure for 3 to 10 minutes (pressure holding time); after which the pressure 

is released in usually few seconds (decompression time) and the product can be unloaded at this 

point. The pressure is applied uniformly in all directions simultaneously and this is known as 

isostatic pressure. Pressurization is usually accompanied by a moderate and uniform temperature 

increase called adiabatic heating. However, the food product usually rapidly returns to its initial 

temperature at decompression. 

With the recent shift in consumer lifestyle toward healthy living and healthier food, the 

consumption of raw fruits and vegetables has increased in popularity. However, as per the 

Centers of Disease Control and Prevention, fruits and vegetables have recently been associated 

with multiple foodborne disease outbreaks; the effect of high pressure processing on microbial 

safety, quality and sensory characteristics of fruits and vegetables has therefore been widely 

investigated as an alternative to traditional food processing and preservation methods. HPP 

inactivates microorganisms and quality-deteriorating enzymes and has limited effects on 

covalent bonds resulting in minimal modifications of food-quality attributes such as color, flavor 

and nutritional values. However, depending on the fruit or vegetable, high pressure could induce 

chemical or biochemical reactions that can affect their quality attributes. 
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Chapter 1 - Introduction 

Consumers demand for high quality, natural and fresh tasting food, free from 

preservatives and additives, with a clean label and an extended shelf life has increased. High 

pressure processing (HPP), also known as high hydrostatic pressure, is a non-thermal food 

preservation technique that has the potential to meet these demands. It is an opportunity to 

preserve food, by applying intensive pressure in the range of 300-900 MPa, without adversely 

affecting organoleptic, textural and nutritional qualities as thermal processing like pasteurization 

and sterilization may do.  

 

High pressure processing was discovered in 1899 and has been used since in chemical, 

ceramic, carbon allotropy, steel/alloy, composite materials, crystal, diamond and plastic 

processing industries. Its use in the food processing area dates back over a century to the 

research of Hite in 1899 for the preservation of milk and later on fruits and vegetables. It was not 

until early 1990s, that the first commercial high pressure processed food were available with the 

launch of jellies and jams by the Japanese industry in Tokyo Meidi-ya (Mertens, 1995, Thakur, 

1998). In the U.S., the first successful commercial high pressure processed product application 

was a guacamole dip manufactured by Fresherized Foods in Texas. Currently, other high 

pressure processed products are on the international markets such as fruit juices, jams, jellies, 

rice cakes, and raw squid in Japan; fruit juices in France, Italy, United Kingdom and Portugal; 

and ready-to-eat meats, salsa, guacamole and in-shells oysters in the USA; apple sauce in Canada 

(Hugas et al., 2002). 

 

A high pressure system consists of a pressure vessel, a pressure-transmitting fluid, a 

material handling system, hydraulic compressors and a heating/cooling unit. Food products can 

be high pressure processed in a batch system or a semi-continuous process. Liquid foods such as 

juices are processed in a semi-continuous system without any packaging requirements. Solid 

food or bulk products are processed in a batch system; in this method, the products are packaged 

and sealed before processing (Hogan et al., 2005; Mertens et al., 1993). In a typical batch cycle, 

the food is loaded into a perforated basket that goes into the pressure vessel; the pressure is then 
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increased to the processing target pressure (come-up time); the product is held at the desired 

pressure for 3 to 10 minutes (pressure holding time); after which the pressure is released in 

usually few seconds (decompression time) and the product can be unloaded at this point 

(Balasubramaniam et al., 2004, 2008). 

 

During high pressure processing, the pressure is applied uniformly in all directions 

simultaneously and this is known as isostatic pressure; this is the reason why food is not crushed 

during treatment. This is a major advantage compared to thermal methods where the product 

temperature is gradually increased (Balasubramaniam et al., 2008). 

 

High pressure processing is usually accompanied by a moderate temperature increase 

called adiabatic heating which depends on the composition of the food product being processed. 

The temperature of the water in the food increases by 3ºC per 100 MPa, whereas the temperature 

of the fats and oils increases about 8-9ºC per 100 MPa (Balasubramaniam et al., 2004, 2008; 

Hogan et al., 2005). 

  

The effect of high pressure processing on microorganisms has been widely investigated. 

Microorganisms vary in their response to high pressure and indeed there can be vast high 

pressure sensitivity among bacterial species and even strains (Alpas et al., 1999; Benito et al., 

1999). Compared to vegetative cells, endospores tend to be extremely high pressure processing 

resistant, requiring a combination of high pressure treatment at pressure exceeding 1000 MPa 

and heat treatment with a temperature of more than 80°C (Abee & Wouters, 1999; Rastogi et al., 

2007; Smelt, 1998). Yeasts and molds are relatively sensitive to high pressure processing. Most 

vegetative yeast and molds are inactivated within a few minutes by 300-400 MPa at room 

temperature. However, yeast and mold ascospores may require treatment at higher pressures. 

Viruses show a wide range of sensitivity in response to high pressure. 

 

The most common packaging materials used for high pressure processed food are 

polypropylene (PP), polyester tubes, polyethylene (PE) pouches, and nylon cast polypropylene 

pouches.  Plastic packaging materials are the best suited for high pressure processing use because 

of their reversible response to compression, their flexibility and resiliency. 

 2



Packaging materials for high pressure processing must be flexible to withstand a 15% increase in 

volume followed by a return to original size, without losing physical integrity, sealing or barrier 

properties. The headspace must be minimized as much as possible (Lambert, 2000) in order to 

control the deformation of packaging materials and ensure efficient use of the package and space 

in the pressure vessel. 

 

With the recent shift in consumer lifestyle toward healthy living and healthier food, the 

consumption of raw fruits and vegetables has increased in popularity. However, fruits and 

vegetables have recently been associated with foodborne disease outbreaks as per the centers of 

disease control and prevention such as cantaloupe Salmonella outbreaks in 2011 and 2008, 

alfalfa sprouts Salmonella outbreaks in 2010 and 2009, shredded romaine lettuce E-coli 0145 

outbreak in 2010, raw produce Salmonella outbreak in 2008, tomatoes Salmonella outbreak in 

2006 and fresh spinach Escherichia coli O157:H7 in 2006. The effect of high pressure 

processing on microbial safety, quality and sensory characteristics of fruits and vegetables has 

therefore been widely investigated as an alternative to traditional food processing and 

preservation methods. 
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Chapter 2 - High Pressure Processing Technology 

Basic High Pressure Principles 
 Two main principles control the behavior of food under high pressure:  

 

Le Chatelier's Principle 

According to Le Chatelier principle, phenomena resulting in a decrease in volume, like 

phase transition, chemical reaction, or change in molecular configuration, are enhanced by 

pressure. On the contrary, phenomena resulting in an increased volume are slowed down by 

pressure (Balasubramaniam et al., 2008). 

 

Isostatic Principle 

Pressure is instantaneously and uniformly transmitted throughout the sample, 

independently of size and shape of the food, which is a major advantage compared to thermal 

processing (Smelt, 1998). A uniform pressure will be applied uniformly in all directions of the 

sample, thus the pressure will not damage the product which will return to its original shape 

when the pressure has been released. This is known as isostatic pressure (Balasubramaniam et 

al., 2008). 

 

Figure 2.1: Isostatic Pressure 
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Critical High Pressure Processing Factors 

 

High Pressure Processing Equipment 

 

Although the principles of high pressure processing of food have been known since the 

late 1800s (Hite, 1899), it is not until relatively recently that the developments in engineering 

equipment design have permitted the use of high pressure processing at the industrial level. 

 

The primary components of a high pressure processing system include: 

- A pressure vessel of cylindrical design 

- Two end closures for sealing the vessel 

- A device for restraining the end closures (yoke, threads, pin) 

- A low pressure pump 

- An intensifier which uses liquid from the low pressure pump to generate high 

pressure process fluid for system compression 

- A system for controlling and monitoring the pressure and temperature 

- A product-handling system, usually perforated baskets, for transferring product to and 

from the pressure vessel (batch system)  

 

High pressure vessels may operate in a vertical, horizontal, or tilting mode. The pressure 

vessel can be built with two or more concentric cylinders. The cylinders should be made of 

stainless steel to avoid corrosion. 

 

Current industrial HPP treatment of food is done using a batch or semi-continuous 

process; solid food can only be treated in a batch mode and need to be prepackaged, whereas 

liquid food can be treated in a batch (packaged food) or semi-continuous process (unpackaged 

food) (Hogan et al., 2005). 
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Figure 2.2: Avure Horizontal High Pressure System QFP 350L-600 

 

 

 

 

 
 

Figure 2.3: Avure Horizontal High Pressure System 
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Figure 2.4: Avure Vertical High Pressure Processing System QFP 215L-600 

 

 

High Pressure Processing Batch Equipment 

 

In a typical high pressure batch process, the solid or liquid food, packaged in a high-

barrier flexible pouch or a plastic container is loaded into the high pressure vessel; the vessel is 

then sealed and the pressure-transmitting fluid (usually water) is pumped into it, displacing any 

air. The pressure relief valve is then closed, and the vessel is pressurized by the use of a high-

pressure pump, which injects additional pressure-transmitting fluid until the process pressure is 

reached. The product is held for the desired time (usually around 5 minutes) at the target 

pressure. The pressure is applied uniformly in all directions simultaneously. The pressure is 

transmitted through the package into the food itself. When the process time is completed, the 

pressure relief valve is opened and the vessel is decompressed by releasing the pressure-

transmitting fluid. The processed product is then unloaded and stored/distributed in the 

conventional manner (Balasubramaniam et al., 2008, FDA, 2000). 
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High Pressure Processing Semi-continuous Equipment 

 

The semi-continuous systems are used to treat unpackaged liquids. These semi-

continuous high pressure equipments use two or more pressure vessels, each containing a free-

floating piston that allows each vessel to be divided into two chambers. The liquid food is 

pumped into the first chamber; the fill valve is then closed and the pressure-transmitting fluid is 

pumped into the second chamber of the vessel on the opposite side of the floating piston. 

Pressure applied to the fluid will result in compression of the liquid food in the other chamber. 

After an appropriate process hold time, the product discharge valve is opened and a low-pressure 

pump injects pressure-transmitting fluid into the second chamber, which pushes on the piston 

and expels the contents of the product chamber through the discharge valve. The treated liquid is 

discharged from the pressure vessel to a sterile hold tank through a sterile discharge port. The 

treated liquid food can then be filled aseptically into pre-sterilized containers (Balasubramaniam 

et al., 2008, Farkas and Hoover, 2000, US Food and Drug Administration, 2000). 

 

 

 
Figure 2.5: Batch (A) and Semi-continuous (B) High Pressure Food Processors 

(Balasubramanium, 2003). 
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High Pressure Processing Time (Balasubramaniam et al., 2004, 2008)  

Come-up time 

 The come-up time is the time required for the pressure of the treated sample to increase 

from the atmospheric pressure Ps (0.1MPa) to the processing pressure P1 (Figure 2.6). This time 

depends on the:  

- sample rate of compression 

- transmitting fluid rate of compression 

- power of the high pressure pump 

- target process pressure 

Most high pressure equipments use one to three minutes pressure-come-up time to reach the 

process pressure. 

 

Pressure holding time 

The pressure holding time is the time between the end of the come-up time and the 

beginning of decompression. High pressure holding time is usually around three to ten minutes. 

For an economically effective commercial high pressure process, the industry should target 

reduced pressure holding times to maximize productivity. Other options that may help reduce the 

processing time could be pulsed pressure processing (multiple compression-decompression 

cycles), combination of high pressure with temperature treatment or other processing 

technologies, or increasing the processing pressure.  

 
Decompression time 

The decompression time is the time required to bring the sample from process pressure 
back to atmospheric pressure (0.1 MPa). Most high pressure equipments need just few seconds to 
depressurize. 
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Figure 2.6: Pressure-Time-Temperature Curves for a Batch HPP Treatment 

(Balasubramaniam et al., 2004). 

 

 

High Pressure Product and Process Temperatures 

 

Initial Temperature 

 

The initial temperatures of the product, pressure-transmitting fluid and the process vessel 

have major influence on the microbial inactivation and thus need to be documented. An increase 

or decrease in the initial food temperature above or below room temperature enhances the 

microbial inactivation rate (Kalchayanand et al., 1998). Products are usually chilled for food 

pasteurization applications; however, for sterilization of low-acid foods, products are often 

preheated. It is important to allow sufficient equilibrium time of the product, pressure 

transmitting fluid and vessel to ± 0.5% of the target initial temperature before high pressure 

processing (Balasubramaniam et al., 2004). 
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Adiabatic Heating (Balasubramaniam et al., 2004, 2008; Hogan et al., 2005) 

 

Pressurization is usually accompanied by a moderate and uniform temperature increase 

called adiabatic heating. The heat of compression of food materials depends on the final 

pressure, the initial temperature and the food composition. Food materials have specific heat of 

compression values; during compression, the water temperature increases about 3ºC/100 MPa at 

room temperature, and the fats and oils temperature increases about 8-9ºC/100 MPa. The 

temperature of the food that contains a significant amount of water will then increase by 

approximately 3ºC per 100 MPa; whereas the temperature rise of the food that contains a 

significant amount of fat like oil, butter or cream will be around 8-9ºC per 100 MPa. 

 

In an insulated system, the food product rapidly returns to its initial temperature at 

decompression. However, heat can be lost to or gained from the walls of the pressure vessel 

during decompression and holding time. It is thus important to control and monitor the 

temperature of the walls of the pressure vessel and hold it to the desired temperature in order to 

truly achieve isothermal conditions. In general, at decompression, the product returns to a 

temperature (Tf) slightly lower than its initial temperature (Ts) due to heat exchange with the 

surroundings (Figure 2.6).  

 

 

pH, Water Activity (Aw) and Food Composition 

 

Many food components provide microorganisms a protection effect against the high 

pressure treatment. Processing time and pressure will then depend on the composition of the food 

and its environment. 

 

Pressurization of food causes an increase in ionization which leads to a decrease in pH 

(Hoover et al., 1989; Heremans, 1995; Patterson et al., 2005). Heremans (1995) reported a 

decrease of 0.2 units in apple juice pH for an increase of pressure by 100 MPa.  

The reduced pH works in synergy with pressure in eliminating microorganisms and 

inhibits the recovery or outgrowth of sub-lethally injured cells. Hoover et al. (1989) noted that 
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high pressure pasteurization reduces the pH range for microorganism’s growth by inhibiting the 

membrane ATPase, vital enzyme in the acid-base physiology of cells. Patterson et al. (2005) and 

Alpas et al. (2000) indicated that pH shifts, due to high pressure, depend on the chemical nature 

of the surrounding environment. A low pH buffer enhances pathogens sensitivity to high 

pressure. pH shifts are reversible after the treatment pressure is released. 

 

A low water activity inhibits pressure inactivation of microorganisms and protects cells 

against high pressure pasteurization. Microorganism cells injured by HPP are more sensitive to 

water activity (Smelt, 1998).  

 

Carbohydrates, proteins, lipids, and other food components can provide microorganisms 

a protective effect (Simpson and Gilmour, 1997; Patterson et al., 1999 and Cheftel, 1995). This 

may be due to the fact that high pressure pasteurization only affects non-covalent bonds like 

ionic, hydrophobic and hydrogen bonds and does not denature primary protein structures. 

 

Simpson and Gilmour (1997) indicated that phosphate-buffer-saline (PBS) modified with bovine 

serum albumin (protein), glucose (carbohydrate), and olive oil (lipid) protected Listeria 

monocytogenes against pressure inactivation when compared to phosphate-buffer-saline (PBS) 

alone. 

 

Cheftel (1995) reported that salt and sucrose protected pathogens from high pressure 

pasteurization inactivation effect. 

 

Patterson et al. (1999) reported that ionic solutes such as NaCl and CaCl2 granted a better 

protection of Bacillus coagulans compared to nonionic solutes such as sucrose and glycerol. 

 

Hauben et al. (1998) indicated that Ca2+ provided a dose-dependent baroprotection to 

Escherichia coli. 
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Pressure-transmitting Fluids 

 

Pressure-transmitting fluids transmit pressure uniformly and instantaneously to the 

sample. The most common transmitting fluids are water, food-grade glycol–water solutions, 

silicone oil, sodium benzoate solutions, ethanol solutions, and castor oil (Balasubramaniam et al., 

2004; Hogan et al., 2005). 

 

 

Air pockets-containing products 

 

Air pockets-containing products such as strawberries and lettuce can be damaged by high 

pressure processing due to the collapse of air voids under pressure and the infiltration of liquid 

from the surrounding structure into the collapsed air pockets. The air displacement due to high 

pressure can cause irreversible physical shrinkage and shape distortion of the air pockets-

containing food (Balasubramaniam et al., 2004; Hogan et al., 2005). 

 

 

High Pressure Process Packaging 

 

High pressure processing of food is done either on bulk or prepackaged products so it is 

crucial to investigate the effect of high pressure processing on packaging materials in order to 

select the correct packaging.  

 

Packaging materials for high pressure processing must be flexible to withstand a 15% 

increase in volume followed by a return to original size, without losing physical integrity, sealing 

or barrier properties. Metal cans, glass bottles and paperboard-based packages cannot be used in 

high pressure processing because of their irreversible response to high pressure treatment, and 

their tendency to deform or fracture (Lambert, 2000; Caner et al., 2004).  

 

Temperature and adiabatic heating during high pressure processing may also affects 

packaging materials and need to be considered when selecting the correct packaging. 

 13



The headspace must be minimized as much as possible (Lambert, 2000) in order to 

control the deformation of packaging materials and ensure efficient use of the package and space 

in the pressure vessel. 

 

The most common packaging materials used for high pressure processed food are 

polypropylene (PP), polyester tubes, polyethylene (PE) pouches, and nylon cast polypropylene 

pouches.  Plastic packaging materials are the best suited for high pressure processing because of 

their reversible response to compression, their flexibility and resiliency. 

However, plastic-based packaging materials may have a multilayer structure including metal foil, 

such as aluminum, a thin paper layer or an inorganic coating, such as aluminum trioxide (Al2O3) 

and silicon dioxide (SiO2). 

A metal layer will negatively affect the barrier properties of the packaging material, whereas 

inorganic coatings will positively affect its mechanical and barrier properties (Caner et al., 2004).  

 

For an efficient high pressure treatment, it is crucial for the quality and safety of the food, 

that the process does not affect the integrity of the food package, its mechanical properties, 

delamination and sealing integrity, and its barrier properties (permeation (oxygen, water, carbon 

dioxide), sorption (aroma loss) and migration (additives, odors)).  

 

 

Barrier Properties 

 

Permeation 

 

Masuda et al. (1992) studied the water vapor permeability (at 40°C and 90% RH) and 

oxygen vapor permeability (at 23°C and 90% RH) of different plastic films (PP/EVOH/PP, 

OPP/PVOH/PE, KOP/CPP, PET/Al/CPP) after high pressure treatment at 400 MPa and 600 MPa 

for 10 minutes and did not report significant changes in water and oxygen permeability 

properties. 
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Ochiai et al. (1992) investigated the effect of high pressure (400 MPa, 10 minutes) on the barrier 

properties (oxygen and water permeability) and total migration of laminated plastic packages 

filled with water and sealed. The food simulant used was (4% acetic acid, 20% ethyl alcohol,    

n-heptane). The authors reported no significant changes in barrier properties and total migration 

of all high pressure treated packaging materials. 

 

Nachamansion (1995) showed that high pressure treatment at 400 MPa at 25°C for 30 minutes 

did not affect the barrier properties and structural characteristics of polymer based packaging 

material. 

 

Pastorelli (1997) examined the effect of high pressure processing (400 MPa, 60°C, 30 minutes) 

on the barrier properties (oxygen and water permeability) of LLDPE/EVA/EVOH/EVA/LLDPE 

and PET/AL/PP multilayer packaging materials. The oxygen permeability of 

LLDPE/EVA/EVOH/EVA/LLDPE increased by 0.11 cc/m2/day, while water permeability 

increased by 0.1 g/ m2/day compared to untreated control samples. The oxygen permeability of 

PET/AL/PP increased by 0.27 cc/m2/day, while water permeability increased by 0.01 g/ m2/day 

compared to untreated control samples. The authors concluded that the increases in barrier 

properties of both films were within acceptable limits and high pressure processing did not cause 

significant changes in barrier properties of studied packaging materials. 

 

Lambert et al. (2000) studied the effect of HPP (200, 350 and 500 MPa, 30 minutes, ambient 

temperature) on the permeability and package integrity of multilayer plastic structures (PA/PE, 

PET/PVDC/PE, PA/PP/PE, PA/MDPE, PA/LLDPE) in contact with different simulants (water, 

3% acetic acid, 15% ethyl alcohol and olive oil). Simulants are substances that exhibit behavior 

similar to that of the packaged food with respect to solutes (aqueous, acidic, alcoholic or fatty). 

The authors reported no significant changes in the water and oxygen vapor permeability (Oxygen 

permeability increase:  PA/LLDPE (12%), PET/PVDC/PE (12%), PA/PP/PE (12%), PA/MDPE 

(25%), PA/PE (16%); water permeability were higher but within acceptable limits). The authors 

showed that a 12% change in oxygen and water vapor barrier properties of packaging materials 

after high pressure treatment is an allowable deviation. 
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Lambert et al. (2000) also studied the effect of HPP (800 MPa, 2 minutes, 25°C) on PE coated 

with SiOx and PP and reported no significant oxygen barrier property change. HPP treatment of 

400 MPa for 30 minutes at 60°C on LLDPE/EVA/EVOH/EVA/LLDPE and PET/Al/PP did not 

show a significant water-vapor barrier property change. 

 

Caner et al. (2000, 2004) investigated the effect of high pressure (600 and 800 MPa for 5, 10, 

and 20 minutes at 45°C) on pouches made from PET/SiOx/LDPE, PET/Al2O3/LDPE,         

ET/PVDC/Nylon/HDPE/PE, PE/Nylon/EVOH/PE, PE/Nylon/PE, Metallized- 

PET/EVA/LLDPE, PP/nylon/PP and PET/PVDC/EVA. The pouched were filled with distilled 

water, heat-sealed and then treated with high pressure. The authors reported no significant 

changes in the permeability of oxygen, carbon dioxide, and water vapor of PET/SiOx/LDPE, 

PET/Al2O3/LDPE, ET/PVDC/Nylon/HDPE/PE, PE/Nylon/EVOH/PE, PE/Nylon/PE, 

PP/nylon/PP and PET/PVDC/EVA; whereas a significant increase (up to 150%) was observed in 

the permeability of oxygen, carbon dioxide, and water vapor of Metallized- PET/EVA/LLDPE; 

the water vapor transmission being the most severely affected by HPP.  

 

Schauwecker et al. (2002) investigated the effect of high pressure processing (400, 600 and 827 

MPa, 30, 50 and 75°C, 10 minutes) on the migration of a pressure transmitting- fluid, the 1,2-

propanediol (PG) through pouches made from Polyester/nylon/aluminum/Polypropylene and 

Nylon/EVOH//PE and filled with 95% ethanol as food stimulant and sealed. Water was used as 

the food simulant at temperatures of 30, 75, 85, 90 and 95°C and at pressures of 200, 400, 690 

and 827 MPa, in order to investigate any structural changes of the films during high pressure 

processing. The authors reported no detectable PG migration into the 

Polyester/nylon/aluminum/Polypropylene pouches after pressure. However, PG migration into 

the EVOH pouches significantly decreased when treated with high pressure at 30, 50 and 75°C 

compared to control samples treated with atmospheric pressure; it was noted that PG migration 

was significantly higher than the amounts detected at 30°C. 

 

Rubio et al. (2005) investigated the effect of high pressure treatment (400 and 800 MPa, at 40°C 

and 75°C, for 5 and 10 minutes) on the oxygen barrier and morphological properties of EVOH 
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based packaging materials. The authors indicated that high pressure treatment barely affects 

packaging materials, especially when compared to the detrimental changes induced by retorting. 

 

Halim et al. (2009) examined the effect of high pressure processing (800 MPa, 70°C, 10 

minutes) on the barrier properties (oxygen transmission rate and water vapor transmission rate) 

of Nylon 6 (N6), Nylon 6/Ethylene Vinyl Alcohol (N6/EVOH) and Nylon 6/Nanocomposites 

(N6/nano) films. The films were coextruded with low-density polyethylene (PE) as the heat-

sealing layer.  The oxygen transmission rate of N6 and N6/Nano increased after HPP by 16.9% 

and 39.7% respectively, while it decreased by 53.9% in the N6/EVOH. The HPP treatment 

increased the water vapor transmission rate of N6, N6/EVOH and N6/nano by 21%, 48.9% and 

21.2% respectively.  The authors also examined the thermal characteristics and morphologies of 

the samples using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) and 

reported that the enthalpy and percent crystallinity increased by 2.3% to 6.5% in the N6/nano 

when compared with the N6 material after high pressure treatment. 

 

Galotto et al. (2010) studied the effect of high pressure processing (400 MPa, 30 minutes, 20 or 

60°C) on the barrier properties (oxygen transmission rate and water vapor transmission rate) and 

total migration of four different packaging materials, polyethylene/ethylene-vinyl-

alcohol/polyethylene (PE/EVOH/PE), metallized polyester/polyethylene, polyester/polyethylene 

(PET/PE), and polypropylene-SiOx (PPSiOx), filled with food simulants (distilled water and 

olive oil) and sealed. When water was used as food stimulant, the authors observed a low total 

migration after high pressure treatment, lower than in the untreated control samples. In the 

packages where oil was used as food stimulant, the total migration after high pressure treatment 

was higher compared to the control due to the damage that occurred to the structures after 

pressurization. The gas permeability of all films increased after high pressure processing, 

compared to the control, due to the structures damages caused by pressure treatment. The 

PET/PE film presented minimum changes in properties after high pressure processing. 
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Migration 

  

The quality and safety of the packaged food can be compromised by migration to the 

food of functional additives, such as catalysts, antioxidants, heat stabilizers, plasticizers or 

colorants which may be added to the flexible plastic packaging. This transfer of materials may 

deteriorate the quality and safety of the food, increase the risk of chemical hazards, cause 

formation of off-flavor and consequently have an adverse effect on acceptability of the food. 

 

Caner and Harte (2005) investigated the effect of high pressure processing (800 MPa, 60°C, 10 

minutes) and storage for 20 days at 40 and 60°C on the migration of a typical antioxidant, 

Irganox 1076, from polypropylene flexible pouches containing 10 or 95% ethanol aqueous food 

simulating liquids. It was reported that no significant Irganox 1076 migrated from the 

polypropylene flexible structures into the food simulating liquids immediately after high pressure 

treatment. However, significant increase in Irganox 1076 migration into the food simulating 

liquids was noted during storage time; migration into foods is likely, especially if there is a long 

contact period. The authors showed that migration level into 95% ethanol was significantly 

higher than the one into 10% ethanol; the contact phase properties such as fat, alcohol content 

and acid content can influence migration behavior. Also, the migration of Irganox 1076 into food 

simulating liquids increases with high pressure processing temperature increase.  

 

 

Sorption 

  

Masuda et al. (1992) reported that a high pressure treatment at 400 MPa for 10 minutes 

decreased the sorption of D-limonene by low-density polyethylene (LDPE) and ethylene vinyl 

acetate (EVA) films. 

 

Kuebel et al. (1996) investigated the effect of high pressure processing (0.1 – 450 MPa) on the 

sorption of aroma compounds, p-cymene and acetophenone, by flexible polymeric films 

(LDPE/HDPE/LDPE, PET/LDPE, and HDPE). The authors filled the internal pouches (70 x 12 

mm) with a solution of H2O:Ethanol:Cymene or H2O:Ethanol:Acetophenone; pouches were then 
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sealed and placed into external pouches that were filled with a solution of ethanol-water and then 

sealed, high pressure processed and compared to control atmospheric pressured samples. The 

sorption rates were measured after high pressure treatment. The authors reported that the sorption 

of aroma compounds was lower in films exposed to higher pressure (450 MPa) compared to 

unpressured samples. It was suggested that the decrease in the sorption of the aroma compounds 

after high pressure treatment was due to the transition of the films to the glassy state at higher 

pressures. It was also showed that the distribution of aroma compounds to films was a function 

of their polarity.  

 

Goetz and Weisser (2002) studied the high pressure processing effect (50 MPa, 23°C) on the 

sorption of a volatile aroma compound, p-cymene (0.25 vol. %), by LDPE/HDPE/LDPE 

(12/12/12 μm) polymer and reported a decrease in the permeation rate of p-cymene to 

LDPE/HDPE/LDPE after high pressure treatment and indicated that the extent of sorption was 

dependent on the processing pressure and time; the permeation rate decreased with increasing 

pressure. 

 

Caner et al. (2004) evaluated the sorption behavior of D-limonene by different packaging films, a 

monolayer polypropylene (PP), a multilayer polyethylene/nylon/ethylene vinyl 

alcohol/polyethylene film (PE/nylon/EVOH/PE), and a metalized polyethylene 

terephthalate/ethylene–vinyl acetate/linear low-density polyethylene (metalized 

PET/EVA/LLDPE) after high pressure treatment at 800 MPa and 60°C for 10 minutes. The films 

were filled with simulants liquids (10% ethanol or 3% acetic acid solutions) and D-limonene, 

heat-sealed and then high pressure processed. Untreated controls were prepared at 1 atm, 60°C 

and 40°C. The quantity of absorbed D-limonene was analyzed in both the films and the 

simulants liquids. The authors reported no significant absorption of D-limonene in both the PP 

and PE/nylon/EVOH/PE films after high pressure treatment; whereas the metalized 

PET/EVA/LLDPE showed lower D-limonene sorption compared to control samples. The results 

also showed that sorption behavior of all three films was significantly affected by changes in 

temperature. 
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Mechanical Properties 

 

Mechanical strength 

 

Masuda et al. (1992) measured the tensile strength of PP/EVOH/PP, OPP/PVOH/PE, 

KOP/CPP, PET/Al/CPP films after high pressure treatment at 400 MPa and 600 MPa for 10 

minutes at 20°C and 40°C and reported that the tensile strength of the studied packaging 

materials was not affected by high pressure processing. 

 

Ochiai et al. (1992) investigated the effect of high pressure (400 MPa, 10 minutes) on the 

mechanical properties of laminated PP/PVDC/PP packages filled with water and sealed and 

reported no change in tensile strength of the films. 

 

Mertens, B. (1993) evaluated the effect of high pressure treatment at 400 MPa and 60°C for 30 

minutes on the mechanical properties of flexible packaging structures LLDPE/EVA, 

EVOH/EVA/LLDPE and PET/Al Foil/PP and reported no changes in the tensile strength, 

elongation and heat-seal strength and integrity of the films after high pressure processing. 

 

Pastorelli (1997) examined the effect of high pressure processing (400 MPa, 60°C, 30 minutes) 

on the mechanical properties of LLDPE/EVA/EVOH/EVA/LLDPE and PET/AL/PP multilayer 

packaging materials and reported no significant tensile strength changes. 

 

Lambert et al. (2000) studied the effect of high pressure processing (200, 350 and 500 MPa, 30 

minutes, ambient temperature) on flexible structures, PA/PE, PET/PVDC/PE, PA/PE surlyn and 

PA/PP/PE and reported an increase of less then 25% (which is considered an allowable 

deviation) in the tensile strength of the films that became more rigid and less flexible. 

 

Goetz and Weisser (2002) showed that a high pressure treatment at 500 MPa for 5 minutes of 

PA/PE packaging films flushed with CO2 did cause the loss of transparency of the pouches and 

the appearance of cracks and folds in the films; whereas films flushed with O2 were not affected 

by the high pressure processing.  
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Caner et al. (2004) investigated the effect of high pressure (600 and 800 MPa for 5, 10, and 20 

minutes at 45°C) on the mechanical properties of pouches made from PET/SiOx/LDPE, 

PET/Al2O3/LDPE, ET/PVDC/Nylon/HDPE/PE, PE/Nylon/EVOH/PE, PE/Nylon/PE, Metallized- 

PET/EVA/LLDPE, PP/nylon/PP and PET/PVDC/EVA. The pouched were filled with distilled 

water, heat-sealed and then treated with high pressure. The authors reported no significant 

mechanical properties changes of the studied films. However, structural damages were observed 

in metalized-PET/EVA/LLDPE when the authors checked the C mode scanning acoustic 

microscopy (C SAM) and scanning electron microscopy (SEM) micrographs. 

Caner et al. (2004) also studied the effect of high pressure processing (400 MPa, 30 minutes, 

60°C) on LLDPE/EVA, EVOH/EVA/LLDPE and PET/Al/PP films and reported that the 

changes observed in tensile strength and elongation were not significant. 

 

Galotto et al. (2009) investigated the effect of high pressure processing at 500 MPa for 15 

minutes at 50°C on the physical properties (tensile strength, percent elongation and modulus of 

elasticity) of a biopolymer, polylactic acid coated with silicon oxide (PLASiOx/PLA), and a 

synthetic polymer, polyethyleneterephthalate coated with aluminum oxide (PET-AlOx). The 

pouches were filled with food stimulant (olive oil and distilled water), sealed and then high 

pressure treated (high pressure transmitting fluid used was glycol-water 25:75). The authors 

reported significant changes in mechanical properties of both PLASiOx/PLA and PET-AlOx. An 

induced crystallization was also noticed in both films. Many pinholes and cracks were formed 

during high pressure processing in PET-AlOx film and this may be the reason why a large 

reduction in the percent elongation was noted in this film; most of the properties changed more 

in the presence of oil as food stimulant. However, the PLASiOx/PLA film showed larger 

changes when in contact with water, that acted as a plasticizer.  

 

 

Delamination 

 

Lambert et al. (2000) reported that, after high pressure treatment, packaging films 

materials prepared by cast co-extrusion are susceptible to delamination, whereas the one 

prepared by tubular extrusion are more robust, have higher barrier properties and overall 

 21



integrity. A high pressure treatment at 200, 350, and 500 MPa for 30 minutes did not cause 

delamination in PA/PE, PET/PVDC/PE, PA/PE surlyn and PA/PP/PE films, whereas it did show 

delamination in PA/PE films.  

 

Goetz and Weisser (2002) showed that a high pressure treatment at 500 MPa for 5 minutes did 

cause delamination of PA/PE packaging films. 

 

The type of glue used, the presence of air pockets in packaging materials and the compressibility 

of laminated materials, can cause delamination when treated by high pressure (Lambert et al. 

(2000); Goetz and Weisser (2002)). 

 

Schauwecker et al. (2002) investigated the effect of high pressure processing (400, 600 and 827 

MPa, 30, 50 and 75°C, 10 minutes) on the delamination of pouches made from 

Polyester/nylon/aluminum/Polypropylene and Nylon/EVOH//PE and filled with 95% ethanol as 

food stimulant and sealed. Water was used as the food simulant at temperatures of 30, 75, 85, 90 

and 95°C and at pressures of 200, 400, 690 and 827 MPa, in order to investigate any structural 

changes of the films during high pressure processing. The authors reported that, after a pressure 

treatment at pressures higher than 200 MPa, at 90°C for 10 minutes, visible signs of 

delamination between the polypropylene (PP) and aluminum (Al) layers were observed. 

However, there were no high pressure processing-induced molecular changes to the treated 

pouches as the differential scanning calorimetric analyses and Fourier transform infrared (FTIR) 

spectra of high-pressure treated pouches were similar as their control samples. 

 

 

Sealing 

 

Masuda et al. (1992) studied the heat-seal performance of PP/EVOH/PP, OPP/PVOH/PE, 

KOP/CPP, PET/Al/CPP films after high pressure treatment at 400 MPa and 600 MPa for 10 

minutes at 20°C and 40°C and reported that the heat-seal performance of the studied packaging 

materials was not affected by high pressure processing. 
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Lambert et al. (2000) studied the effect of high pressure treatment at 200, 350, and 500 MPa, 

20°C for 30 minutes of PA/PE, PET/PVDC/PE, PA/PE surlyn and PA/PP/PE films; the results 

showed that the heat-seal strength of the multilayered packaging films was not modified by high 

pressure processing. 

 

Dobias et al. (2004) evaluated the effect of high pressure processing at 600 MPa for 60 minutes 

on mechanical properties (tensile and seal strengths) of single and multilayered packaging 

material films filled with food simulants (95% ethanol, isooctane, water or olive oil) and reported 

significant heat sealability losses. 

 

 

Pathogens under Pressure 

 

Effectiveness of high pressure processing on inactivation of vegetative cells 

 

Recent years have seen significant research on the inactivation of microorganisms in 

foods by high hydrostatic pressure treatment. There can be vast high pressure sensitivity among 

bacterial species and even strains (Alpas et al., 1999; Benito et al., 1999; Pagan & Mackey, 

2000; Patterson, 2005).  

 

Generally, bacterial inactivation by high pressure processing is caused by damages on the 

cell membrane including alteration in membrane permeability, inactivation of intracellular 

enzymes and rupture of the cell wall (Hoover et al., 1989; Hoover, D.G., 1993; Casadei et al., 

2002; Smelt et al., 1994). 

 

Normally, gram-positive bacteria are more resistant to environmental stresses such as 

heat and pressure than gram-negative bacteria, and cocci are more resistant than rod or 

spirochete-shaped bacteria (Alpas et al., Patterson, 2005; 1999; Smelt, 1998). This is due to the 

complexity and abundance of protein, phospholipids, and lipopolysaccharide in the gram 

negative outer wall (Patterson, 2005; Pilavtepe-Celik et al., 2008; Ritz, et al., 2000).  
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Changes that are induced in the cell morphology of the microorganisms are reversible at 

low pressures, but irreversible at higher pressures where microbial death occurs due to 

permeabilization of the cell membrane. 

 

The growth phase of microorganisms also plays a role in determining their pressure 

sensitivity. Cells in the lag or stationary phase of growth are generally more pressure resistant 

than those in the log or exponential phase; this is probably due to the fact that the cellular 

membrane is more robust and stress induced genes, that synthesize proteins that protect against 

stress conditions, can be turned on more readily in the stationary phase cells (Alpas et al., 1999; 

Bowman et al., 2008; McClements et al., 2001; Manas & Mackey, 2004). Therefore, stationary 

phase cells should be used in high pressure microbial inactivation research experiments, so that 

the process is evaluated against the most resistant cells. 

 

High-pressure treatments are generally effective in inactivating most vegetative 

pathogenic and spoilage microorganisms at pressures between 200 and 600 MPa and 

temperatures at or below ambient temperature. The rate of inactivation is influenced by the peak 

pressure (Patterson, 2005). Although, in order to accelerate the inactivation process, higher 

pressures are commercially preferred, unless protein denaturation needs to be avoided. 

 

Alpas et al. (1999) investigated the pressure resistance of six Salmonella strains at 345 MPa for 5 

to 15 minutes at 25 and 50°C. The lower temperature value yielded a reduction of 5.5-8.3 log 

cycles while the higher temperature level resulted in more than 8 log-cycles within 5 minutes. 

 

Patterson and others (1995) investigated the pressure resistance of several vegetative 

microorganisms. At 275 MPa for 15 min, Yersinia enterocolitica was reduced by 5-log cycles in 

phosphate-buffer-saline (PBS). For 5-log reduction, Salmonella Typhimurium required 350 MPa, 

L. monocytogenes required 375 MPa, Salmonella Enteritidis 450 MPa, E. coli O157:H7 required 

700 MPa, and S. aureus 700 MPa. 

 

Alpas et al. (1999) reported an 8 log-cycles reduction of a cocktail of six E. coli O157:H7 strains 

at 345 MPa for 5 minutes at 50°C.  
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Ritz et al. (2001) investigated the damage done to Listeria monocytogenes cells treated by high 

pressure for 10 minutes at 400 MPa in pH 5.6 citrate buffer. No cell growth occurred after 48 

hours on plate count agar. 

 

Chen and Hoover (2003) obtained 8 log-cycles inactivation of Listeria monocytogenes Scott A in 

UHT milk with 500 MPa at 50°C for 5 minutes. 

 

 

Effectiveness of high pressure processing on inactivation of spores 

 

Bacterial spores are not by themselves a hazard; it is the germination of the organism that 

results in toxification or spoilage of the food.  

Compared to vegetative cells, endospores tend to be extremely high pressure resistant, requiring 

treatment at pressure exceeding 1000 MPa and temperature of more than 80°C (Abee & 

Wouters, 1999; Rastogi et al., 2007; Smelt, 1998). 

 

 

Effectiveness of the combination of high pressure processing and heat on spores 

 

High pressure processing was proved to inactivate bacterial spores more effectively when 

used in combination with heat (Okazaki, 1996; Ahn et al., 2007, Reddi et al., 1999, Heinz and 

Knorr (2002)).  

 

Okazaki et al. (1996) have studied the effect of high pressure and heat on the inactivation of four 

different strains of Bacillus. Each strain revealed different survival behavior; The survival curves 

of B. subtilis and B. stearothermophilus spores became convex at 400 MPa, 65°C and 120°C for 

50 minutes, while survival curves of B. coagulans and C. sporogenes spores were linear in a 

temperature range of 50-110°C and a pressure range of 0.1- 400 MPa. 

 

Ahn et al. (2007) studied the combined pressure/thermal inactivation kinetics of spores from 

three strains of anaerobic (Clostridium sporogenes, C. tyrobutylicum, and 
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Thermoanaerobacterium thermosaccharolyticum), and six strains of aerobic (Bacillus 

amyloliquefaciens and B. sphaericus) bacteria at 700 MPa and 121°C for 1 min. Inactivation up 

to 7–8 log was shown for some of the spores tested. 

 

Reddi et al. (1999) reported a 5-log reduction of Clostridium botulinum type E spore’s strains 

Alaska and Beluga at 50°C and 55°C respectively at 827 MPa for a processing time of 5 min. 

  

Roberts and Hoover (1996) reported that spores of Bacillus coagulans were more sensitive to 

pressure both at lower pH and at higher treatment temperatures. At 400 MPa and 45°C, a 1.5 log 

reduction was observed when pH was lowered from 7.0 to 4.0. They also reported a 4 log 

reduction of spores of Bacillus coagulans when the temperature was increased from 25°C to 

70°C during pressurization at 400 MPa. 

 

 

Effectiveness of high pressure pulsed application on spores 

 

Studies have shown that low pressures can induce germination of bacterial spores. 

(Smelt, 1998; Black et al., 2005; Wuytack et al., 2000). Spores germinated at lower pressures 

were in turn more sensitive to subsequent pressure treatments. This led research to prove that 

spores could be killed by applying pressure in two stages. The first treatment, at low pressure 

will germinate the spores, while the second treatment, at higher pressures, will kill the 

germinated spores. 

 

Wuytack et al. (1998) reported that germination of Bacillus subtilis spores could be achieved 

using both low and high pressure treatments. However, spores germinated at lower pressures 

were then more sensitive to subsequent pressure treatments. 

 

Paidhungat et al. (2002) studied the mechanisms of induction of germination of Bacillus subtilis 

spores by high pressure; they concluded that a pressure of 100 MPa activates the germinant 

receptors which induce spore germination and a pressure of 550 MPa induce the release of 

dipicolinic acid from the spore core, which leads to the later steps in spore germination. 
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Setlow et al. (2001) confirmed that the process of germination could happen in two stages. Stage 

I consist of the activation of the germinant receptors and release of dipicolinic acid and Stage II 

consist of the cortex hydrolysis and the associated swelling and water uptake by the spore core. 

 

Hayakawa et al. (1994b) investigated the oscillatory compared with continuous high pressure 

sterilization on Bacillus stearothermophilus spores. Six cycles of pulsed pressure for 5 minutes at 

400 MPa and 70°C decreased the spore count from 106 to 102/ml, and at 600 MPa, complete 

sterilization was achieved. Oscillatory pressurization was more effective for spore sterilization. 

 

Butz and others (1990) reported that pre-exposure of bacterial spores at low pressures (60 - 100 

MPa) enhanced the inactivation of spores at high pressure with temperatures of 25°C to 40°C. 

 

 

Effectiveness of high pressure processing on inactivation of yeasts and molds 

 

Yeasts and molds are relatively sensitive to high pressure processing. Most vegetative 

yeast and molds are inactivated within a few minutes by 300-400 MPa at 25°C. However, heat-

resistant molds such as Byssochlamys, Neosartorya and Talaromyces are generally considered to 

be extremely resistant to high pressure. These fungi produce resistant structures know as 

ascospores. Ascospores are, like bacterial endospores, structured to withstand unfavorable 

environmental conditions and are resistant to heat, pressure, and desiccation. 

 

Butz et al. (1996) reported that Byssochlamys nivea was the most resistant of the fungi studied; 

depending on strain, a treatment of 700 MPa at 70 ◦C for 15 min resulted in a 0.4- to 1.0-log 

reduction, and after 60 min at 70 ◦C and 700 MPa, a 3.2- to 4.0-log reduction was observed. 

 

Maggi et al. (1994) studied the inactivation of Byssochlamys, Neosartorya, and alaromyces 

ascospores in apricot nectar and water and reported that a 900 MPa treatment for 20 minutes at 

20°C inactivates Talaromyces flavus ascospores, and reduces ascospores of N. fischeri by 2 log 
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but did not affect B. fulva and B. nivea ascospores. A complete inactivation of ascospores was 

achieved for all species in 1 to 4 min at 800 MPa (50°C) or 1 to 2 min at 700 MPa (60°C). 

 

Voldrich et al. (2004) studied the resistance of vegetative cells and ascospores of heat resistant 

mould Talaromyces avellaneus to the high pressure treatment in apple juice; they reported 

D600MPa of 32 min at 17°C, but at 60°C D600MPa was reduced to 10 min. 
 

Palou and others (1998) investigated the efficacy of continuous versus oscillatory pressure 

treatments on inactivation of B. nivea ascospores suspended in apple and cranberry juice 

concentrates adjusted by dilution to water activities of 0.98 and 0.94 at 21 and 60°C. Continuous 

pressure treatment at 689 MPa and 60°C did not led to an inactivation of B. nivea ascospores 

after 25 minutes. With a water activity of 0.98, oscillatory pressure treatment inactivated B. nivea 

ascospores after three or five cycles of pressurization at 60°C. With a water activity of 0.94,       

B. nivea ascospores were reduced by 1 log after five pressure cycles. At 21°C, no effect on        

B. nivea ascospores viability was reported with continuous or oscillatory treatments. Palou and 

others (1998) also proposed that the efficacy of oscillatory high pressure treatment was due to 

spore lysis promoted by increased wall permeability at high temperatures and pressures as 

observed by scanning electron microscopy. 

 

Aleman and others (1994 and 1996) reported that pulsed pressure treatments were more effective 

than static applications in the inactivation of Saccharomyces cerevisiae in pineapple juice. A 

pulsed pressure treatment at 0–270 MPa at 0.1, 1 and 2 cycles/s with 100 seconds total on-

pressure time resulted in 3.3, 3.5, and 3.3 decimal reductions, respectively; the static pressure 

treatment resulted in 2.5 decimal reductions.  

 

 

Effectiveness of high pressure processing on inactivation of viruses 

 

Pressure inactivation of viruses has not been extensively researched in comparison to 

foodborne pathogenic bacteria.  
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In response to high hydrostatic pressure, viruses show a wide range of sensitivity. Studies have 

shown that virus inactivation by pressure is due to the denaturation of capsid proteins essential 

for host cell attachment to initiate infection (Khadre & Yousef, 2002; Kingsley et al., 2002; 

Buckow et al., 2008) 

 

Noroviruses or “Norwalk-like viruses” from the Caliciviridae family are the most 

common cause of outbreaks and sporadic cases of acute gastroenteritis. Two surrogate viruses 

from the family of Caliciviridae, feline calicivirus (FCV) and murine norovirus (MNV) are 

normally used in pressure inactivation studies. 

 

Buckow et al. (2008) reported an inactivation of feline calicivirus by more than 7 logs PFU per 

ml in cell culture medium or mineral water at 75°C for 2 min at ambient pressure and at 450 

MPa and 15°C for 1 min. 

 

Kingsley et al. (2002) and Murchie et al. (2007) reported a total inactivation of feline calicivirus 

(FCV) and only a reduction of 1.8 PFU/ml of MNV with pressure around 300 MPa for 5 

minutes. 

 

The inactivation rate of feline calicivirus (FCV) by high pressure processing at temperatures 

close to ambient is acceptable, however temperatures above 50°C and below 0°C are more 

effective (Chen et al., 2005; Buckow et al., 2008). 

 

Hepatitis A virus (HAV) is the main foodborne virus of the Picornaviridae group. 

Generally, treatments with pressure higher than 400 MPa are the most effective but reduction 

rates significantly depend on the processing time and temperature. Temperatures higher than 

30°C are the most effective; HAV is more resistant at temperatures below 0°C. Oscillatory high 

pressure processing does not increase the inactivation rate of HAV (Kingsley et al., 2006). 

 

Kingsley et al. (2002) investigated the impact of high pressure processing on the inactivation of 

hepatitis A virus (HAV), poliovirus and a Norwalk virus surrogate and reported a complete 

inactivation of HAV after 5 minutes at 450 MPa, while poliovirus was unaffected by a treatment 
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at 600 MPa for 5 minutes and feline calcivirus was completely inactivated after 5 minutes at 275 

MPa. 

 

Rotaviruses from the family of Reoviridae are involved in acute food and waterborne 

gastroenteritis. 

Khadre et al. (2002) studied the susceptibility of human rotavirus to high pressure treatment at 

300 MPa and 25°C for 2 minutes; a reduction of 8 log-cycles was obtained but times longer than 

2 minutes did not additionally decrease rotavirus, a small fraction of the virus population 

remained resistant to pressure treatments at 800 MPa for 10 minutes. 

 

 

High Pressure Processing Cost 

 

The many advantages of using high pressure processing in food production have been 

known for over a century. However, the technology and equipment required to efficiently and 

reliability generate the extreme pressures (up to 600 MPa / 87,000 psi) used in high pressure 

processing have only recently become commercially viable. 

 

Avure Technologies, NC Hyperbaric, and Uhde are major suppliers of commercial scale 

pressure equipment. Both horizontal and vertical pressure vessel configurations are available. 

Commercial batch vessels have internal volumes ranging from 30 liters (7.92 gallons) to more 

than 600 liters (158.5 gallons). Commercial-scale, high pressure processing systems cost 

approximately $500,000 to $2.5 million, depending on equipment capacity (processing pressure 

vessels volumes, complete cycle time and higher horsepower intensifiers) and extent of 

automation (package and vessel loading and pc-based control system monitoring operator, time, 

lot, pressure, temperature, de-aeration of the vessel prior to pressure and faults during cycles) 

(Balasubramaniam et al., 2008).  

 

HPP treatment costs are currently ranging from 4–10 cents/lb, including operating cost 

and depreciation (Sàiz et al., 2008). Pressure-processed products currently cost 3 to 10 cents per 

pound more to produce than thermally processed products (Ramaswamy et al., 2004). As 
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demand for high pressure processing equipment grows, innovation is expected to further reduce 

capital and operating costs. 
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Figure 2.7: High Pressure Process: Equipment and Operating Costs 

(Balasubramaniam et al. (2008) through Hewson, 2008). 

 31



 

Chapter 3 - High Pressure Processing Application on Fruits and 

Vegetables 

The use of high hydrostatic pressure on fruits and vegetables processing is of great 

interest because of its ability to inactivate microorganisms and quality-deteriorating enzymes and 

its limited effects on covalent bonds resulting in minimal modifications of food-quality attributes 

such as color, flavor and nutritional values. Application of high pressure preserves the freshness 

and extends the shelf life of fruits and vegetables. However, depending on the fruit and 

vegetable, high pressure could induce chemical or biochemical reactions that can affect their 

quality and nutritional attributes (Oey et al., 2008; Sila et al., 2008). 

 

 

Effect of High Pressure Processing on Fruits 
 

Apple and Apple Juice 

 

Weemaes et al. (1998) reported a pressure inactivation of polyphenoloxidase (PPO), 

enzyme responsible for fruit browning and flavor loss, in apples treated at 600 MPa and at room 

temperature (25°C). 

 

Novotna et al. (1999) compared the aroma of apple juice treated by high pressure or pasteurized 

at 80°C for 20 min and reported that high pressure treated samples were better than pasteurized 

samples. 

 

Riahi and Ramaswamy (2003) evaluated the high pressure inactivation of pectin methylesterase 

(PME), the enzyme which normally tends to lower the viscosity of fruits products and adversely 

affect their texture, in apple juice and reported that almost a full decimal reduction in the activity 

of commercial PME was achieved by high pressure treatment at 400 MPa for 25 min. 
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Donsì et al. (2010) evaluated the effectiveness of a pulsed high pressure treatment on Annurca 

apple juice at pressure levels of 150 to 300 MPa, temperature levels of 25 to 50◦C, and pulse 

number of 1 to 10. They reported a reduction of the initial microbial load from 20 to 7 CFU/mL 

approximately. Also, there were no difference with the brightness and a* values of the juice 

immediately after the treatment, however a significant increase of the brightness and a* values 

was detected during storage under refrigerated conditions (4◦C) for 21 days. 

 

Landl et al. (2010) compared, at an industrial scale, the effect of high pressure treatments (400 

and 600 MPa/5 min/20°C) and a mild conventional pasteurization at (75°C/10 min) on total 

vitamin C, ascorbic acid and total phenolic content of an acidified apple purée product that was 

stored for 3 weeks at refrigerated temperatures (5 °C ± 1 °C). They reported that treatment at 400 

MPa did not affect the total vitamin C, ascorbic acid and total phenolic contents, although a first-

order reaction kinetic loss of total vitamin C was described at 9.3 to 10.3 days of storage for all 

three treatments. Treatment at 600 MPa affected the total phenolic content. The mild 

pasteurization treatment did not affect the total vitamin C but slightly reduced the total phenolic 

contents. 

 
 

Avocado Puree and Guacamole 

 

Lopez et al. (1998) studied the polyphenoloxidase activity, color changes and microbial 

inactivation during storage at 5, 15, or 25°C of avocado puree treated with high hydrostatic 

pressure at 345, 517, or 689 MPa, for 10, 20, or 30 min at initial pH of 3.9, 4.1, or 4.3. 

Polyphenoloxidase (PPO) activity was significantly less (p≤0.05) with increasing pressure and 

decreasing initial pH. The avocado puree with a residual PPO activity of < 45% maintained an 

acceptable color for at least 60 days when stored at 5°C.  Standard plate and yeast and mold 

counts were <10 cfu g−1 during 100 days of storage at 5, 15, or 25°C. 

 

Weemaes et al. (1998) reported that inactivation of avocado polyphenoloxidase (PPO) at ambient 

temperatures (25°C) and pH 6-7 was possible at pressure of 800 MPa.  
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Palou et al. (2000) have analyzed the effects of continuous and oscillatory high pressure 

treatments on guacamole. Significantly less (P<0.05) residual polyphenoloxidase (PPO) and 

lipoxygenase (LOX) activities were obtained by increasing the process time and number of 

pressurization–decompression cycles. A 15 minutes continuous treatment or oscillatory high 

pressure was sufficient to inactivate LOX. After four high pressure cycles at 689 MPa with a 

holding time of 5 minutes each, the lowest residual PPO activity value (15%) was obtained. 

Standard plate and yeast and mold counts of high pressure-processed guacamole were <10 cfu/g. 

Sensory acceptability and color of high pressure guacamole were not significantly different 

(P>0.05) from those of a guacamole control. Browning during storage was mainly due to 

changes in the hue attributed to a decrease in the green color. A shelf-life of 20 days was 

achieved at < 15°C compared to control samples which spoiled within 5 days at 5°C. 

 

Jacobo-Velázquez and Hernández-Brenes (2010) also reported a decrease in polyphenoloxidase 

(PPO) and lipoxygenase (LOX) in avocado paste when treated with high pressure at 600 MPa for 

3 minutes and stored for 45 days at 4°C. However, a reactivation of both enzymes was observed 

at 10 to 15 days of storage as well as a cell disruption and a gradual migration of intracellular 

components such as organic acids. Lactic acid bacteria counts were very low during storage. pH 

was consistently declining during the first 20 days of storage. 

 

 

Berries (Strawberry, Raspberry and Blackberry) 

 

Lambert et al. (1999) evaluated the effect of high pressure (200, 500 and 800 MPa, 20°C, 

20 min) on the aromatic volatile profile (furaneol (2,5-dimethyl-4-hydroxy-furan-3-one) and 

nerolidol (3,7,11-trimethyl 1,6,10-dodecatrien-3-ol)) of strawberry purée and indicated that 

pressure treatments of 200 and 500 MPa at 20°C for 20 minutes did not affect the aroma profile 

of the strawberry purée; whereas a pressure of 800 MPa significantly changed the aroma profile 

by inducing the synthesis of new compounds such as 3,4-dimethoxy-2-methyl-furan and γ-

lactone. 
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Zabetakis et al. (2000) studied the effect of high pressure (200-800 MPa) on flavor compounds 

(acids (butanoic acid, 2-methyl-butanoic acid and hexanoic acid), ketone (2,4,6-heptatrione) and 

furanones (5-hexyl-dihydro-3H-furan-2-one, 2,5-dimethyl-4-hydroxy-2H-furan-3-one and 2,5-

dimethyl-4-hydroxy-2H-furan-3-one-glucoside) of strawberries (Fragaria × ananassa, cv. 

Elsanta) after storage for 24h at 4, 20 and 30°C and indicated that the highest flavor stability was 

obtained with lower pressures treatments and storage temperatures of 4 and 30°C. 

 

Suthanthangjai et al. (2005) evaluated the anthocyanin content and color stability (cyanidin-3-

glucoside and cyanidin-3-sophoroside) of high pressure processed (200-800 MPa, 18-22°C, 15 

minutes) raspberry purée (Rubus idaeus) stored at 4°C, 20°C and 30°C for up to 9 days and 

reported that the highest stability of the anthocyanins was observed when raspberries were 

processed at 200 and 800 MPa and stored at 4°C. 

 

Shiferaw Terefe et al. (2009) indicated that high pressure treatment at 600 MPa for 10 minutes 

combined with temperature of 60°C induced up to 58% inactivation of peroxidase in strawberries 

and did not have significant effect on the total polyphenol and total anthocyanin content of 

strawberries. Although, after storage at refrigerated temperature for 3 months an average of 

22 ± 13% loss of total polyphenol content and 27 ± 10% loss of total anthocyanin contents were 

observed. 

 

Patras et al. (2009) evaluated the immediate effect of high pressure processing (400-

600 MPa/15 min/10–30°C) and thermal treatment (70°C/2 min) on total antioxidant activity and 

color of strawberry and blackberry purées and did not report significant changes in ascorbic acid 

and anthocyanins contents or color in pressure treated purées, whereas conventional thermal 

treatment caused degradation of ascorbic acid by 21%, reduction of anthocyanins levels and 

color change compared to unprocessed samples. Antioxidant activities were significantly higher 

after high pressure processing compared to thermally processed samples. Patras et al. concluded 

that high pressure is an efficient quality preservation method of strawberry and blackberry 

purées. 
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Grape Juice 

 

Moio et al. (1994) evaluated the effect of high hydrostatic pressure on red and white 

grape musts and reported that pressure of 500 MPa for 3 minutes sterilized the white grape must; 

however red grape must were not fully sterilized by a pressure of 800 MPa for 5 minutes because 

of the higher pressure stability of the natural microflora present in red grape. Little changes in 

physicochemical properties were reported. 

 

Castellari et al. (1997) demonstrated that pressures between 300 and 600 MPa had limited 

inactivation of grape polyphenoloxidase (PPO). The use of a combination of high pressure and 

mild thermal treatments (40°C – 50°C) was necessary to completely inactivate grape PPO. 

 

Weemaes et al. (1998) reported that inactivation of grape polyphenoloxidase (PPO) at ambient 

temperatures (25°C) and pH 6-7 was possible at pressure of 700 MPa.  

 

Rastogi et al. (1999) reported that polyphenoloxidase (PPO) and peroxidase (POD) in red grape 

juice can be inactivated by a combined treatment of pressure and temperature. At 60°C, the 

lowest polyphenoloxidase (41.86%) and peroxidase (55.75%) activities were achieved with 

pressure of 100 MPa and 600 MPa respectively. 

 

Daoudi et al. (2002) demonstrated that based on L*, a* and b* values, no visual color differences 

are noted immediately after high pressure treatments of white grape juice at 400 MPa/2°C, 500 

MPa/2°C or 400 MPa/40°C/10 minutes. 

 

 

Grapefruit 

 

Naringin is the bitter component in grapefruit juice; Naringinase is the enzyme that 

hydrolyzes naringin to naringenin, which is tasteless. Ferreira et al. (2008) reported that high 

hydrostatic pressure treatment (160 MPa, 37°C, 20 minutes), combined with the use of 

naringinase can increase the reduction of naringin to naringenin and achieve a debittering of 75% 
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of grapefruit juice. In model solution and at atmospheric pressure (0.1 MPa), the naringin 

reduction was only 35%. 

 

 

Guava 

 

Gow and Hsin (1996) indicated that high pressure treatment (600 MPa, 25°C, 15 

minutes) of guava puree inactivated microorganisms to less than 10 CFU mL-1. The reported 

shelf-life of the guava puree stored at 4°C was 40 days with no change in color, pectin, cloud and 

ascorbic acid content.  

 

Gow and Hsin (1999) showed that the high pressure treatment (25 °C, 600 MPa, 15 min) 

effectively sterilized guava juice but partially inactivated enzymes in the juice and this is the 

reason behind the gradual changes of the volatile components (increase in methanol, ethanol, and 

2-ethylfuran with decreases in other components) during storage periods beyond 30 days; the 

volatile distribution of 600 MPa treated guava juice was similar to that of freshly extracted juice 

when stored at 4 °C for 30 days. 

 

 

Lychee  

 

 Phunchaisri and Apichartsrang (2005) showed that a combination of high pressure and 

heat treatment (600 MPa, at 60°C for 20 min) is needed for an extensive inactivation of 

peroxidase (50%) and polyphenol oxidase (90%) in fresh lychee; inactivation rates were less for 

lychee processed in syrup. A pressure treatment of 200 MPa and 20-60°C increased POD 

activity. Compared to thermal processing, pressure treatment caused less loss of visual quality in 

fresh and syrup processed lychee. 
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Mango  

 

Boynton et al. (2002) pointed out that high pressure treatment of sliced mangos at 300 

MPa and 600 MPa for 1 minute slightly reduced fresh mango flavor and increased off-flavor and 

sweetness. After storage for 9 weeks at 3°C, high pressure treatments at 300 MPa and 600 MPa 

reduced microbial levels by 2 and 3 logs CFU/mL respectively. 

 

Ahmad et al. (2005) reported that color parameters of mango pulps remained constant after high 

pressure treatment (100–400 MPa for 15 or 30 min at 20 °C) indicating that no significant 

variation in color was observed. It has also been demonstrated that the consistency index of fresh 

pulp increased with pressure level from 100 to 200 MPa while a steady decrease was observed 

for canned mango pulp. The flow behavior index of fresh pulp decreased with high pressure 

treatment, while the canned pulp flow behavior index increased. 

 

Guerrero-Beltran et al. (2006) evaluated the effect of high hydrostatic pressure on mango puree 

(pH 3.5) containing ascorbic acid at 500 ppm and stored at 3°C for one month. They reported 

that pressure treatment at 207, 345, 483 and 552 MPa decreased the residual polyphenoloxidase 

(PPO) activity to 35.8 ± 6, 21.5 ± 13.2, 46.8 ± 53.2 and 61.8 ± 5.8% respectively. Total plate 

counts and yeasts were inactivated (<10 cfu/g) at pressure treatments of 483 or 552 MPa. The 

authors also proved that setting the pH to 3.5 and the addition of ascorbic acid reduced the rate of 

browning during storage. 

 

 

Melon and Watermelon Juice 

 

Wolbang et al. (2008) demonstrated that high pressure processing did not affect the total 

titratable acidity and total soluble solids of fresh cut melon, but it significantly increased the β-

carotene levels and decreased the ferric iron reducing capacity and the vitamin C content. 

 

Zhang et al. (2011) compared thermal, ultraviolet-c, and high pressure treatments on quality 

parameters of watermelon juice. They reported that high pressure treatment holds all-trans-
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lycopene, and cis-lycopene of watermelon juice; High pressure was the best way to keep quality 

(color, browning degree and dynamic viscosity) of watermelon juice compared to thermal and 

ultraviolet-c treatments.                                                

Ultraviolet-c treatment was the fastest and the most effective in inactivating the watermelon juice 

pectin methylesterase (PME) compared to other treatments. 

 

 

Orange Juice  

 

Cloud loss is considered to be a major quality defect in orange juice; Goodner et al. 

(1999) evaluated the effect of high pressure processing (700 MPa, 1 minute) on cloud 

preservation and shelf life of freshly squeezed orange juice and reported a 90 days shelf life 

under refrigeration conditions considering cloud preservation and microbiologically stable 

product. 

 

Polydera et al. (2003) compared the effect of high pressure (500 MPa, 35°C, 5 minutes) and 

conventional thermal processing (80°C, 30 seconds) on the shelf life of reconstituted orange 

juice stored at 0–15°C and concluded that high pressurized juice had longer shelf life compared 

to the thermally processed one as it had lower ascorbic acid degradation rate. The high pressure 

processed samples had also higher viscosity values and better sensory characteristics. 

 

Bull et al. (2004) studied the quality and shelf life of high pressure processed (600 MPa, 20°C,   

1 minute) Valencia and Navel orange juices stored at 4°C for 12 weeks. The microbial load, 

yeast and other fungi were reduced to a non detectable level immediately after high pressure 

treatment and after storage at 4°C for up to four weeks; the microbial load was less than 2 log10 

cfu/ml after storage for up to 12 weeks. A 7-log reduction of Salmonella was achievable. High 

pressure processing did not have any effect on °Brix, viscosity, titratable acid content, alcohol 

insoluble acids, browning index, color, ascorbic acid and β-carotene concentrations. 

Pectinmethylesterase (PME) activity was not completely deactivated in Valencia juice (pH 4.3) 

but was significantly reduced in Navel juice (pH 3.7). 
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Noma et al. (2004) compared the effect of a slow decompression (SD, 2 min) versus a rapid 

decompression (RD, 30 sec) on the inactivation of E. coli 0157:H7 during storage of orange 

juice at 4°C after a high pressure treatment and reported that RD showed a higher inactivation 

effect of E. coli 0157:H7 than SD, whereas untreated samples did not show any inactivation after 

5 days of storage. 

 

Butz et al. (2004) reported that high pressure processing at 600 MPa and 25°C for 5 minutes 

showed a good retention of folates; excess ascorbate strongly protected folates against pressure. 

 

Polydera et al. (2005) demonstrated that high pressure at 600 MPa at 40°C for 4 minutes of fresh 

novel orange juice preserves 49% of ascorbic acid content after storage at 15°C, and 112% after 

storage at 0°C compared to thermally pasteurized samples. High pressure treated samples had 

better sensory characteristics, flavor and apparent viscosity values compared to thermally 

processed samples. The color change was linearly correlated to the ascorbic acid loss. Polydera 

et al. also reported a decrease in total antioxidant activity mainly due to ascorbic acid loss. 

Compared to conventional pasteurization, high pressure processing led to a better retention of the 

antioxidant activity of orange juice. 

 

Baxter et al. (2005) reported that odor and flavor (volatile components) of high pressure 

processed navel orange juice was acceptable to trained sensory panel and consumer acceptance 

panel after storage at 10°C for up to 12 weeks. 

 

Bayındırlı et al. (2006) demonstrated that an inoculum of Staphylococcus aureus 485, 

Escherichia coli O157:H7 933 and Salmonella enteritidis FDA in orange juice was completely 

inactivated at 350 MPa and 40°C in 5 min. A residual pectinesterase activity of 7 ± 1.6% was 

observed after a high pressure treatment at 450 MPa and 50°C for 30 min; whereas a residual 

pectinesterase activity of 12 ± 0.2% was reported after high pressure processing at 450 MPa and 

40°C for 60 min. The enzyme inactivation is irreversible and is not reactivated upon storage.  

 

Plaza et al. (2011) explored the effect of high pressure combined with heat processing 

(400 MPa/40 °C/1 min) on the carotenoid and flavanone content of freshly squeezed orange juice 
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during refrigerated storage for 40 days at 4°C and compare it to pulsed electric fields (PEF) 

(35 kV cm−1/750 μs) and low pasteurization (LPT) (70 °C/30 s). They reported an immediate 

increase of total carotenoid (45.19%), flavanone (15.46%) and on vitamin A value (30.89%) 

contents in high pressure processed orange juice compared to untreated samples. Whereas, 

storage at 4°C decreased the flavanone content by 50% during the first 20 days and the 

carotenoid content by 11% during the last 20 days. Compared to pulse electric fields and low 

pasteurization, high pressure treated orange juice had the higher content of carotenoids and 

flavanones after storage at 4°C for 40 days. 

 

Torres et al. (2011) studied the stability of anthocyanins and ascorbic acid of high pressure 

processed (400-600 MPa, 15 min) blood orange juice during storage at 4°C for 10 days and 

reported a 99% anthocyanins content retention and a 94.5% ascorbic acid content retention 

immediately after high pressure treatment. During storage at 4°C for 10 days, retention rates for 

anthocyanins and ascorbic acid were 93.4 and 85.0% respectively, at a pressure treatment of 

600 MPa for 15 min. The degradation kinetics of processed samples followed first order kinetics 

during storage. 

 

 

Passion Fruit  

 

Laboissière et al. (2007) demonstrated that high pressure treatment (300 MPa, 5 minutes, 

25°C) of yellow passion fruit pulp improved sensory quality of yellow passion fruit juice 

compared to commercial juices.  

 

 

Peach 

 

Sumitani et al. (1994) showed that high pressure treatment (400 MPa, 20°C, 10 minutes) 

partially inactivated β-glucosidase in white peach; therefore benzaldehyde content in high 

pressure treated white peach increased during storage. 
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Dogan and Erkmen (2004) studied the high pressure kinetics of Listeria monocytogenes 

inactivation in broth, milk, peach and orange juices. The authors reported D values for aerobic 

bacteria and Listeria monocytogenes of 2.13 and 1.52 min, respectively in peach juice; the          

z value of Listeria monocytogenes in peach juice was 506 and the k values for Listeria 

monocytogenes in peach juice ranged from 0.3733 to 1.5151 min−1. 

 

Kingsly et al. (2009) indicated that high pressure treatment at 300 MPa and 25°C combined with 

citric acid (1-1.2%) inactivates peach polyphenoloxidase (PPO). High pressure processing 

increased permeability of cells and therefore enhanced the drying rate and reduced drying time. 

The authors demonstrated that high pressure processing of peach slices in acidic medium is an 

alternative for hot water blanching as pretreatment of peach fruits. 

 

 

Persimmon Puree 

 

Ancos et al. (2000) showed that persimmon puree treated with high pressure (50, 300 and 

400 MPa, 15 min, 25°C) had higher levels of extractable carotenoids, which was related with the 

increase of vitamin A. 

 

 

Pineapple 

 

Rastogi et al. (2000) reported that diffusion coefficients (for water absorption and solute 

diffusion) of high pressure pretreated and osmotically dehydrated pineapples cubes (100, 300, 

and 500 MPa for 10 min at 5, 25, and 35°C) were lower compared with ordinary osmotically 

dehydrated samples; the diffusion coefficients decreased with increase in treatment pressure. The 

decrease in diffusion coefficients is the result of the permeabilization of cell membranes, the 

release of cellular components, and the structural changes of cell materials. 

 

Buzrul et al. (2008) compared continuous (single pulse) and pulse pressure treatment (350 MPa, 

20°C for 60s×5 pulses) on inactivation of Escherichia coli and Listeria innocua in pineapple 
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juice and reported that pulse treatment significantly increased the inactivation (p < 0.05) of both 

bacteria. Microbial inactivation level further increased after storage of pulsed pressured 

pineapple juice at 4, 20 and 37°C for 3 weeks and no injury recovery bacteria were detected. 

 

Kingsly et al. (2009) studied the effect of high pressure (50, 100, 300, 500 and 700 MPa at 25°C 

for 10 minutes) on texture and drying (70°C) behavior of pineapple slices and reported that 

hardness, springiness and chewiness of pineapple slices were reduced by high pressure, whereas 

cohesiveness was not significantly affected. Higher pressure reduced drying time during 

dehydration at 70°C.  The study showed that high-pressure blanching of pineapple can be an 

alternative for hot water blanching, before dehydration. 

 

 

Tomatoes 

 
Tangwongchai et al. (2000) evaluated the effect of high pressure (200−600 MPa, 20 

minutes, 20°C) on the texture of cherry tomatoes and on softening enzymes pectinmethylesterase 

and polygalacturonase and reported that pressure up to 400 MPa resulted in an increased texture 

damage, while pressure between 400 MPa and 600 MPa caused less apparent damage compared 

to untreated samples. No significant inactivation of pectinmethylesterase in cherry tomatoes was 

reported even after treatment at 600 MPa, while polygalacturonase was completely inactivated 

after treatment at 500 MPa. 

 

Polygalacturonase (PG) is responsible for decreasing the viscosity of tomato-based products. 

Fachin et al. (2003) explored the inactivation kinetics of PG in high pressure-heat treated (200-

500 MPa/5-50°C) tomato juice and reported that a combination of high pressure and heat 

treatment inactivates PG without applying high temperatures and that polygalacturonase 

inactivation follows a first order kinetic model. 

 

Plaza et al. (2003) reported a 4-log reduction of total microbial counts and an inactivation of 

polyphenoloxidase, peroxidase and pectinmethylesterase in tomato purée treated at 400 MPa. In 
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the presence of NaCl (0.8%) the viscosity of the tomato purée increased with increasing pressure 

up to 400 MPa. 

 

Rodrigo et al. (2006) explored thermal and high pressure inactivation of polygalacturonase (PG) 

and pectinmethylesterase (PME) from four different tomato varieties and reported that PG is 

inactivated by pressure of 300-500 MPa at room temperature or by a 5 minutes heat treatment of 

65°C or 90°C (depending on PG isoform); whereas PME activity is reduced by 50% after a high 

pressure treatment of 850 MPa for 15 minutes at 25°C and thermally inactivated after treatment 

at 70°C for 5 minutes. 

 

Sánchez-Moreno et al. (2006) studied tomato purée subjected to high-pressure (HP) (400 

MPa/25 °C/15 min), low pasteurization (LPT) (70°C/30 s), high pasteurization (HPT) (90 °C/1 

min), freezing (F) (−38°C/15 min), and HPT plus F (HPT + F) and reported that CIELab uniform 

color parameters (lightness L*, green-red tonality a*, and blue-yellow tonality b*) and 

individual, total carotenoids, and provitamin A carotenoids were significantly higher in high 

pressure processed tomato purée compared to other treatments; whereas ascorbic acid and total 

vitamin C were lower in high pressure and thermal treatments compared to untreated and frozen  

tomato purées. 

 

Verlent et al. (2006) studied the rheological properties of tomato purée and indicated that a 

pressure treatment of less than 300 MPa caused significant losses in rheological properties; a 

combined high pressure/heat treatment (60°C, 500 MPa) improved the rheological properties of 

tomato purée but caused formation of a tomato gel structure; a pressure treatment of 500 MPa 

and temperatures higher than 60°C did not have any effect on the rheological properties and gel 

formation of the tomato purée. 

 

Qiu et al. (2006) evaluated the effect of high pressure (100-600 MPa, 12 minutes, 20 ± 1°C) on 

lycopene stability of tomato purée stored at 4 ± 1°C or 24 ± 1°C and the highest lycopene 

stability reported was in samples pressurized at 500 MPa and stored at 4 ± 1°C. 
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Oxidative enzymes, such as lipoxygenase (LOX) and hydroperoxide lyases (HPL) catalyze 

oxidation of unsaturated fats, producing peroxides and volatile aldehydes. Although, the volatile 

aldehydes play a major role in forming the aroma of many fruits and defending the plant against 

pest and pathogen attack, the oxidative rancidity causes off odors and can lead to a bleaching of 

the deep-red tomato color.  

Rodrigo et al. (2007) studied the thermal (25 - 90°C) and high pressure (100 – 650 MPa) stability 

of tomato lipoxygenase (LOX) and hydroperoxide lyase (HPL) in tomato juice and reported that 

a thermal treatment of 60°C for 12 minutes was needed to completely inactivate LOX and a heat 

treatment of 40°C for 12 minutes is needed to reduce 50% of HPL activity; whereas a pressure 

treatment of 650 MPa for 12 minutes was able to inactivate 80% of hydroperoxide lyase.   

Rodrigo et al. (2007) also studied the combined effect of high pressure and thermal processing 

(300–700 MPa, 65°C, 60 minutes) on tomato puree color and did not report any color 

degradation. 

 

Hsu et al. (2008) evaluated the microbial inactivation and physicochemical properties of 

pressurized tomato juice (300 – 500 MPa/25 °C/10 min) during refrigerated storage at 4°C for 28 

days. The authors demonstrated that a pressure treatment of 500 MPa for 10 minutes at 25°C 

would be an alternative for thermal processing of tomato juice as it significantly inactivates 

microorganisms and pectolytic enzymes, improves color and extractable carotenoids and 

lycopene contents and retains vitamin C even after storage at 4°C for 28 days. 

 

Patras et al. (2009) reported that, compared to untreated and thermally processed samples 

(70 °C/2 minutes), high pressure (400–600 MPa/15 minutes/20 °C) significantly retained           

(p < 0.05) antioxidant activity in tomato purée; more than 90% of ascorbic acid was retained 

after a high pressure treatment of 600 MPa. High pressure and thermal treatments did not affect 

the phenolic content in tomato puree but significantly affected color parameters. 
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Effect of High Pressure Processing on Vegetables 
 

Alfalfa Seeds  

 

Alfalfa sprouts have been implicated in multiple Salmonella and Escherichia coli 

O157:H7 outbreaks in 2009 and 2010 and therefore high pressure processing has been 

investigated as a treatment method of alfalfa seeds used for sprouting as they appear to be the 

primary source of pathogens. 

 

Ariefdjohan et al. (2004) inoculated alfalfa seeds with Escherichia coli O157:H7 and Listeria 

monocytogenes and then treated the seeds with high pressure at 275 to 575 MPa for 2 minutes or 

at 475 MPa for 2 to 8 minutes (40°C). Ariefdjohan et al. reported reductions of 1.4 logs and 2.0 

logs of Escherichia coli O157:H7 at 575 MPa (2 minutes) and 475 MPa (8 minutes) 

respectively; whereas Listeria monocytogenes counts were only reduced by 0.8-log and 1.1-log 

at the same pressures and time. The authors concluded that high pressure did not completely 

eliminate E. coli O157:H7 and L. monocytogenes in alfalfa seeds.  

The high pressure treatment did reduce the germination rates of the alfalfa seeds to 34% 

compared to 95% for the control untreated samples.  

 

Neetoo et al. (2008) inoculated alfalfa seeds with a cocktail of five different strains of E. coli 

O157:H7 and treated them, in a dry or wet state, with high pressure of 500 and 600 MPa for        

2 minutes at 20°C. The results showed that E. coli O157:H7 counts of the immersed seeds were 

reduced by 3.5 logs and 5.7 logs at 500 and 600 MPa respectively compared to < 0.7 log for dry 

seeds at both pressure levels. Neetoo et al. recommended a treatment of 650 MPa for 15 minutes 

for a complete elimination of a population of E. coli O157:H7 of > 5 logs. The high pressure 

processing did not affect the germination rates as these were the same for high pressure 

processed alfalfa seeds and untreated seeds. 

Later on, in 2009, Neetoo et al. evaluated the effectiveness of a combined treatment of high 

pressure (600 MPa for 2 minutes) and mild heat (4, 20, 25, 30, 35, 40, 45, and 50°C.) in 

decontaminating alfalfa seeds from E. coli O157:H7 and reported that the optimal treatment for a 
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5 log reduction of E. coli O157:H7 with no adverse effect on seed viability was at 600 MPa for   

2 minutes at 40°C. 

In another study, Neetoo et al. (2009) reported that a 5 cycles oscillatory pressure treatment at 

600 MPa and 20°C with a holding time of 2 minutes per cycle did not eliminate E. coli O157:H7 

from inoculated alfalfa seeds. The study also showed that the pressure inactivation of E. coli 

O157:H7 is enhanced by soaking the alfalfa seeds before the pressure treatment.  

Neetoo et al. (2010) also investigated the effect of high hydrostatic pressure on Salmonella 

contaminated alfalfa seeds and reported that a pressure of 600 MPa for 25 minutes at 4°C and 

20°C could not completely eliminate Salmonella. However, a pressure treatment at 600 MPa for 

25 minutes at 40, 45 and 50°C did completely inactivate Salmonella. The authors showed that a 

treatment at 500 MPa for 2 minutes at 45°C of pre-soaked alfalfa seeds is successful in 

eliminating both Salmonella and E. coli O157:H7 without affecting seed viability. 

In 2011, Neetoo and Chen looked at the combined effect of high hydrostatic pressure and heat 

treatment on alfalfa seeds inoculated with Salmonella and E. coli O157:H7. In order to get a 5 

logs reduction in Salmonella and E. coli 0157: H7 populations, alfalfa seeds had to be heat 

treated at 65°C for 10 days or 70°C for 24 hours; whereas a heat treatment at 55, 60, 65 and 70°C 

for 96, 24, 12 and 6 hours respectively, followed by high pressure processing at 600 MPa for 

2 minutes at 35°C were able to achieve the 5 logs reduction in Salmonella and E. coli 0157: H7 

in alfalfa seeds. Sprouting yield was reduced when seeds were heat treated at 65°C for 10 days or 

high pressure treated at 600 MPa for 2 minutes at 35°C after heat treatments at 60 and 65°C for 

24 and 12 hours respectively; in both cases, germination percentage of alfalfa seeds was not 

significantly affected. 

 

Penas et al. (2008) researched the optimized combinations of time, pressure and temperature to 

reduce total aerobic mesophilic bacteria, total and faecal coliforms and yeast and molds 

populations without affecting the germination capacity of alfalfa seeds and reported 40°C and 

100 MPa as optimal treatment conditions. 

Later on, in 2009, Penas et al. studied the combined effect of pressure, temperature and 

antimicrobial compounds, hypochlorite and carvacrol, on the reduction of microbial loads and 

germination capacity of alfalfa seeds. Microbial loads were reduced with increasing pressure and 

antimicrobial compounds concentrations. A treatment of 200 MPa and hypochlorite 
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concentration of 18,000 ppm achieved reductions between 4.5 and 5 log CFU/g without 

significantly affecting seed viability; whereas a treatment of 250 MPa and carvacrol 

concentration of 1500 ppm achieved microbial safety of alfalfa seeds but reduced germination 

percentage to unacceptable levels. 

 

 

Bamboo Shoots 

  

Miao et al. (2011) studied the texture changes of bamboo shoots after high pressure 

treatment for 10 minutes at room temperature (25°C) and storage for 7 days at 4°C. High 

pressure processing delayed the enzyme activities of phenylalanine ammonia lyase (PAL) and 

peroxidase (POD), retarded the accumulation of lignin and cellulose and reduced the firmness of 

the water bamboo shoots, extending thus their shelf life. 

 

 

Broccoli  

 

Van Loey et al. (1998) showed that, in broccoli juice, chlorophylls a and b exhibit 

extreme pressure stability at room temperature but a combined pressure-heat treatment with 

temperature higher than 50°C significantly reduces chlorophyll content. 

 

Butz et al. (2002) studied the effect of high pressure treatment (600 MPa) on the content of 

health promoting substances (e.g. vitamins, antioxidants, antimutagens), water retention, glucose 

retardation, changes in extractability and in-vitro bioavailability of carrots, tomatoes and 

broccoli. Butz et al. found that in general high pressure did not induce loss of beneficial 

substances but altered some physico-chemical properties such as higher glucose retardation 

index and water retention or reduced extractability; high pressure did not significantly impacted 

chlorophylls a and b in broccoli. 

 

Houska et al. (2006) evaluated high pressure processing (500 MPa for 10 minutes) of apple- 

broccoli juice and noted that pressure inactivates more than 5 logs of the microbial population 
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and preserves the content of sulforaphane, a compound that exhibits anticancer, antidiabetic and 

antimicrobial properties to broccoli. Houska et al. also reported that the vitamin C content is 

independent of the pressure level but depends on the holding time; sensory quality of the treated 

juice was similar to the frozen juice for up to 70 days of storage. 

 

Eylen D. et al. (2007, 2009) evaluated the effect of a combined treatment of high pressure and 

heat on myrosinase, glucosinolates and isothiocyanates. The Brassicaceae family is reach in 

glucosinolates, which can be hydrolyzed by myrosinase to produce isothiocyanates sulforaphane 

and phenylethyl isothiocyanate which have an anticarcinogenic activity. Eylen D. et al. reported 

that at pressures up to 200 MPa and temperatures of 50°C and above, pressure retarded thermal 

inactivation of myrosinase and that at pressures between 600 and 800 MPa and temperatures 

between 30-60°C, isothiocyanates were found to be relatively thermolabile and pressure stable. 

In a later research study, Eylen D. et al. showed that pressure treatment limits the loss of 

glucosinolates and consequently the health benefits of their degradation products. At 100-500 

MPa and 20°C, there was no glucosinolates degradation reported after 15 minutes but after 35 

minutes at 200-300 MPa and 20°C, a reduction of 20% of glucosinolates content was noted; 

however treatment at 100-500 MPa and 40°C showed a significant degradation of glucosinolates 

after 15 minutes. 

 

Verlinde et al. (2008) reported that high pressure treatment of broccoli (0.1–600 MPa, 25–45°C, 

30 min) significantly induced folates losses (48–78%), whereas broccoli folates were stable after 

heat treatment at temperatures up to 90°C. 

 

 

Cabbage 

 

Wennberg and Nyman (2004) indicated that treatment of white cabbage (Brassica 

oleracea var. capitata) with high pressure at 500 MPa reduced the proportion of soluble fiber 

without significantly affecting the total dietary fiber (TDF) content. 
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Li et al. (2010) evaluated the effect of high pressure processing (200-600 MPa; 10-30 minutes) 

on microbial loads of sour Chinese cabbage after storage at 4, 27 and 37°C for 90 days and 

reported a reduction of total aerobic bacteria (TAB) counts by 2.7–4.0 log10 CFU/g at 400 MPa 

and 4.2–4.5 log10 CFU/g at 600 MPa; lactic acid bacteria (LAB) were reduced by                     

2.4 – 4.3 log10 CFU/g at 400 MPa and completely inactivated at 600 MPa; yeasts counts were 

reduced by 1.5–2.0 log10 CFU/g at 400 and 600 MPa. Li et al. reported a shelf life of 15 days 

when pressurized (400 MPa) sour Chinese cabbages are stored at 27 and 37°C and a shelf life of 

60 days when stored at 4°C. 

 

 

Carrots 

 

Stute et al. (1996) studied high pressure processing of vegetables at ambient temperature 

and results showed destruction of carrot, potato and green beans cell membranes and loss of 

soluble pectin causing softening of vegetables. 

 

Sila et al. (2004, 2005) demonstrated that subjecting carrots (Daucus carota) to high pressure 

pretreatment (400 MPa, 60°C for 15 minutes) before thermal processing results in less texture 

loss. High pressure pretreatment combined with calcium infusion significantly improved textural 

properties of thermally processed carrots.  

 

Araya et al. (2007) showed that all high pressure treatments of carrots studied (100, 200 and 

300 MPa at 20°C) resulted in a significant loss of hardness (5, 25 and 50% respectively). 

Increase in pressure levels did not induce greater texture losses. Cell deformation, shape factors, 

elongation and turgidity loss were also observed. 

 

Nguyen et al. (2007) indicated that pressure-assisted thermal processed carrots (500-700 MPa, 95 

to105°C) had better quality attributes such as color and carotene content compared to thermal 

processed ones. 

 

Rastogi et al. (2008a) demonstrated that carrot’s pretreatment with, pressure (100–400 MPa), 
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temperature (50–70 °C), calcium chloride (0.5–1.5% w/v), and their combinations, after 

pressure-assisted thermal processing (PATP) and thermal processing, increased product 

hardness; pressure (200 MPa), heat (60 °C) and calcium chloride (1.0%) pretreatments increased 

pressure-assisted thermal processed carrots hardness by 1.2, 2.0 and 2.4 times respectively, and 

thermally processed carrots hardness by 2.7, 3.6 and 2.4 times respectively. Combined 

pretreatments increased the hardness of PATP carrots by 9.16 times and thermally processed 

carrots by 13.22 times. 

 

Zhou et al. (2009) evaluated the effect of high pressure carbon dioxide on the quality of carrot 

juice and reported an increase in L-value and a-value, whereas b-value was similar to the control. 

The study also showed a decrease in pH, browning degree and a significant increase in cloud, 

titratable acidity and juice viscosity. 

 

 

Green Beans  

 

Stute et al. (1996) studied high pressure processing of vegetables at ambient temperature 

and results showed destruction of green beans cell membranes and loss of soluble pectin causing 

softening of the green beans. 

 

Krebbers et al. (2002) indicated high pressure processing (500 MPa, 25°C) and two-pulse 

pressure treatment increased shelf life of green beans as treated products did not show outgrowth 

of microorganisms after 1 month storage at 6°C or 20°C and significantly retained firmness and 

ascorbic acid content. Two-pulse pressure treatment of green beans induced more than 99% 

inactivation of peroxidase, whereas high pressure did not have a significant effect on peroxidase 

as 76% of its initial activity remained after high pressure processing. 
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Mushroom 
 

Matser et al. (2000) demonstrated that polyphenoloxidase, enzyme responsible for 

browning, is very pressure-resistant in mushrooms and a pressure of 950 MPa is needed to 

inactivate it. 

 

 

Navy Beans 

 

Ramaswamy et al. (2005) demonstrated that treatment of navy beans with moderate 

pressure (33 MPa), achieved high initial moisture uptake (0.59 to 1.02 kg/kg dry mass) and 

reduced loss of soluble materials over a soaking time of less than one hour. 

 

 

Onion 

 

Butz et al. (1994) demonstrated that treatment of fresh onions at 350 MPa, 25°C and 

40°C for 30 minutes significantly reduced the microbial load of fresh onions but did damage 

onions membrane without inactivating undesirable enzymes which lead to changes in the odor 

and flavor of fresh onions. Pressures above 100 MPa damaged the cell structure, releasing 

polyphenoloxidase (PPO) and inducing then browning of the onions. Browning rate increased 

with increasing pressure. 

 

Roldán et al. (2009) studied the combined effect of high pressure (100-400 MPa) and thermal 

processing (5°C) on flavonol content (Quercetin and quercetin glucosides) and antioxidant 

activity of onions (Allium cepa L. var. cepa, ‘Grano de Oro’). Roldán et al. demonstrated that the 

combination of high pressure and thermal process resulted in a better extraction of flavonols and 

increased antioxidant activity. Treatment at 400 MPa and 5°C, increased quercetin glucosides 

extraction by 33% compared to untreated controls and maintained initial antioxidant activity. 
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Gonzalez et al. (2010) evaluated the effect of high pressure processing (50, 100, 200, 300, or 600 

MPa; 5 minutes holding time) and thermal processing (40, 50, 60, 70, or 90 °C; 30 minutes) on 

onions membrane integrity and texture and indicated that a membrane destabilization is observed 

at pressure of 200 MPa and above and temperature of 50°C. Membrane rupture was observed at 

300 MPa and above and 60°C and above. 

 

 

Pepper 

 

Castro et al. (2008) compared the effect of pressure treatment (100 and 200 MPa; 10 and 

20 minutes) to thermal blanching (70°C, 80°C and 98°C; 1 and 2.5 min) on sweet green and red 

bell peppers and indicated that high pressure processing resulted in a lower reduction of soluble 

protein and ascorbic acid contents and better firmness. Compared to untreated red peppers, 

pressure treatment showed an increase in ascorbic acid content by 15-20%. However, high 

pressure treatment resulted in comparable polyphenol oxidase activity, higher pectin 

methylesterase and peroxidase activities than thermal blanching. Microbial loads were similar in 

pressurized and thermally treated green peppers, whereas pressurized red peppers showed higher 

microbial loads than blanched ones. 

 

 

Potato 

 

Eshtiaghi and Knorr (1993) compared the effect of high hydrostatic pressure treatment 

(400 MPa, 15 minutes, 5–50°C) to hot water blanching (100°C, 30–180 seconds) and indicated 

that microbial loads reduction and potatoes softness were comparable for both treatments. The 

authors also showed that a combination of high pressure with citric acid solution (0.5%) 

treatments resulted in a complete inactivation of polyphenoloxidase at 20°C. A 20% reduction in 

leaching of potassium was observed after high pressure treatment of potatoes. High pressure 

processing resulted in retention of 90% of ascorbic acid at 5°C and 35% at 50°C. 
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Stute et al. (1996) studied high pressure processing of vegetables at ambient temperature and 

results showed destruction of carrot, potato and green beans cell membranes and loss of soluble 

pectin causing softening of vegetables. 

 

Luscher et al. (2005) studied the effect of pressure-shift freezing at pressures up to 400 MPa on 

quality attributes of potatoes tissues such as texture, color and visual appearance and showed 

considerable improvements compared to conventional freezing.  

 

Benet et al. (2006, 2007) investigated the effect of high pressure low temperature processing on 

quality attributes of potatoes and reported that after freezing and thawing processes, 

polyphenoloxidase (PPO) activity of pressurized potatoes was not increased and color, drip loss, 

texture and microstructure of pressurized potatoes were better than in atmospheric control 

samples. Benet et al. also showed a reduction in processing time of pressure-induced thawing at 

pressure levels of 290 MPa. 
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Chapter 4 - Conclusion 

 High pressure processing has a significant potential as a novel technology in the food 

industry as it permits manufacturing of value-added food products with extended shelf life by 

inactivating microorganisms and enzymes at low temperatures without changing organoleptic 

and nutritional properties of foods and without the use of additives and preservatives. 

 

The use of high pressure processing has expanded from U.S. and Japan to reach the 

international market, which reflects the important growth of the technology. Hormel Foods, 

Kraft Foods, Perdue, Foster Farms, Wellshire Farms (ready-to-eat deli meats), Maple Leaf Foods 

(ready meals), Avomex (guacamole, salsa, avocado pieces, juices, ready meals), Pressure Fresh, 

Australia (fruit, vegetable and herb products), Leahy Orchards (applesauce), Winsoms of Walla 

Walla (chopped onions), Motivatit Seafoods, Nisbet Oyster, Joey Oysters (oysters), Zwanenberg, 

The Netherland (mousse and spreads), Infantis, Greece/Germany (deli meats), Fressure Foods, 

New Zealand (avocados and guacamole), DGG Marketing, Australia/Singapore (red & white 

grape juice) are examples of companies that already have successfully utilized the technology for 

a variety of products. 

 

HPP treatment costs are currently ranging from 4–10 cents/lb, including operating cost 

and depreciation (Sàiz et al., 2008). Pressure-processed products currently cost 3 to 10 cents per 

pound more to produce than thermally processed products (Ramaswamy et al., 2004). As 

demand for high pressure processing equipment grows, innovation is expected to further reduce 

capital and operating costs. 

 

Although high pressure processing can not be used across the board on all food products, 

it does have its niche applications.  

 

In this report we have covered the application of high pressure processing on fruits and 

vegetables but this technology has been also used in other type of foods such as meats, seafood 

and dairy. 
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High pressure processing has been very effective in the seafood industry as a shucking 

process of shellfish (oysters, mussels, clams, scallops, crabs and lobsters). The hign pressure 

processing technology denatures the adductor muscle, which will enable easy opening of the 

shellfish shell and this offers economical advantages such as reducing the labor cost, eliminating 

the risk of physical injuries, improving meat recovery, yields and product quality (Murchie et al., 

2005; Torres & Velazquez, 2005). High pressure processing also increases microbiological 

safety and shelf life, eliminates Vibrio spp. in raw shellfish and Listeria spp. in other seafood 

products. 

 

High pressure processing has been very successful in the treatment of ready-to-eat deli 

meats (beef, pork, turkey, chicken), sliced and diced cooked meat and dry cured meat products, 

by eliminating Listeria, E. coli, Salmonella, Vibrio, yeasts and molds and is already being used 

as a treatment method in many deli-meats industries. Besides satisfying the USDA alternative 1 

rule for Listeria monocytogenes control in ready-to-eat meats, high pressure processing 

eliminates the use of preservatives, improves sensory properties, and extends shelf-life. The U.S 

Department of Agriculture/Food Safety and Inspection Service has already approved the use of 

high pressure processing as an acceptable method for eliminating Listeria monocytogenes in 

processed meat products (Hayman et al., 2004; USDA, Food Safety Inspection Service, 2006).  

High pressure processing can influence muscle’s protein conformation and induce protein 

denaturation, aggregation, or gelation. It may also tenderize or toughen the meat depending on 

the meat protein system, the pressure, the temperature and the duration of the pressure treatment. 

Myoglobin, lipid oxidation, meat color, juiciness and chewiness can also be affected by high 

pressure processing (Cheftel and Culioli, 1997; Balny et al., 1993). Combination of high pressure 

processing, antimicrobial and refrigerated storage could be very effective to obtain value-added 

ready-to-eat products (Marcos et al., 2008a). 

 

High pressure processing, combination of pressure and temperature and periodic 

oscillations of pressure are effective methods to reduce microorganisms and extend shelf-life of 

milk (Hite et al., 1899; Vachon et al., 2002; Mussa and Ramaswamy, 1997). High pressure 

processing is also related to the increase in curd firming rate, the reduction in rennet coagulation 
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time, the increase in cheese yield, and the acceleration of cheese ripening (Zobrist et al., 2005; 

Lopez et al., 1996; Molina et al., 2000, O’Reilly et al., 2001). 

 

 The combination of high pressure processing with non-thermal technologies such as 

gamma irradiation, alternating current, ultrasound, carbon dioxide or anti-microbial agent such as 

lacticin, nisin, or lactoperoxidase has been shown to work synergistically to enhance microbial 

lethality (Haas, 1989; Park et al., 2002; Crawford et al., 1996; Shimada, 1992; Knorr, 1995). 

 

Consumers are usually conservative and skeptical towards new technologies and changes 

overall, independently on the advantages that the novel techniques are offering. However, 

according to a study done in June 2000 by the TRD Frameworks research company based in 

Seattle, on consumers acceptance of high pressure processing, 500  U.S. primary shoppers rated 

the technology between 6-7 on a 1-7 scale, showing the great potential of high pressure 

processing.
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