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ABSTRACT Genomic selection, a breeding method that promises to accelerate rates of genetic gain,
requires dense, genome-wide marker data. Genotyping-by-sequencing can generate a large number of de
novo markers. However, without a reference genome, these markers are unordered and typically have
a large proportion of missing data. Because marker imputation algorithms were developed for species with
a reference genome, algorithms suited for unordered markers have not been rigorously evaluated. Using
four empirical datasets, we evaluate and characterize four such imputation methods, referred to as k-nearest
neighbors, singular value decomposition, random forest regression, and expectation maximization impu-
tation, in terms of their imputation accuracies and the factors affecting accuracy. The effect of imputation
method on the genomic selection accuracy is assessed in comparison with mean imputation. The effect of
excluding markers with a large proportion of missing data on the genomic selection accuracy is also
examined. Our results show that imputation of unordered markers can be accurate, especially when linkage
disequilibrium between markers is high and genotyped individuals are related. Of the methods evaluated,
random forest regression imputation produced superior accuracy. In comparison with mean imputation, all
four imputation methods we evaluated led to greater genomic selection accuracies when the level of
missing data was high. Including rather than excluding markers with a large proportion of missing data
nearly always led to greater GS accuracies. We conclude that high levels of missing data in dense marker
sets is not a major obstacle for genomic selection, even when marker order is not known.
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Genomic selection (GS) (Meuwissen et al. 2001) is a relatively new
breeding methodology reviewed by Hayes et al. (2009), Heffner et al.
(2009), and Lorenz et al. (2011) that is increasingly attractive for the
genetic improvement of various species because of its potential to
increase the rate of genetic gain (Wong and Bernardo 2008; Lorenzana
and Bernardo 2009; Heffner et al. 2010). With GS, a training pop-
ulation having both phenotypic data and genome-wide marker data
is used to develop a prediction model for the trait of interest. Before

phenotyping, this prediction model is then applied to selection can-
didates that have been genotyped. Genomic-estimated breeding val-
ues are calculated for the selection candidates and selections are
made using these values. These breeding values are estimated using
genotypes instead of phenotypes; therefore, selection can occur in early
stages on a single plant basis or in situations in which phenotyping is
either not possible, unreliable, or too expensive, thus leading to shorter
selection cycles.

One of the requirements for GS is genome-wide marker coverage.
In general, one marker should be in linkage disequilibrium (LD) with
each segregating segment of the genome. The choice of marker
platform is driven by the available genotyping technology and the cost
per data-point. Genotyping-by-sequencing (GBS) is gaining popularity
because it can be less expensive than other platforms and can provide
genome-wide marker coverage for species that lack genotyping
resources such as pre-designed single-nucleotide polymorphism plat-
forms (Poland and Rife 2012). Polymorphic loci scored by GBS can
contain a large proportion of missing data across samples because
random fragments of the genome are sequenced at low depth, leading
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some loci to have zero coverage in some individuals (Elshire et al. 2011).
The proportion of missing data depends on the sequencing depth and
library complexity. Greater sequencing depth leads to a smaller propor-
tion of missing data but increases genotyping cost. Less-complex libraries,
on the other hand, will have less missing data but a fewer markers. To
generate a large number of markers at low cost, low sequencing depth is
commonly used, leading to a large proportion of missing data points.
Most analyses require a complete dataset; therefore, marker imputation is
a necessary step before GBS data can be used for most purposes.

Imputation has been shown to increase power in association
mapping studies (Marchini et al. 2007; Marchini and Howie 2010)
and, for GS, imputation can enable the use of low-density genotyping
without a major loss in accuracy because a closely related reference
panel genotyped at high density can be used to impute markers not
present in the low-density marker panel. (Habier et al. 2009; Weigel
et al. 2010; Dassonneville et al. 2011; Mulder et al. 2012). Although
several highly accurate and widely used imputation algorithms have
been developed to assign allelic states of missing values in genotype
data (reviewed by Pei et al. 2008 and Marchini et al. 2010), these
algorithms were designed for human genetic data, and they require
that the order of the markers be known because they are based on
constructing haplotypes. For species lacking a reference genome and
complete reference linkage map such as wheat, Triticum aestivum L.,
the majority of markers typed on a given population are unordered,
and current genotype imputation methods cannot be used. Although
for biparental populations linkage maps can be constructed, breeding
populations for GS are derived from multiple parents and not well
structured for developing genetic maps. Thus, alternative imputation
strategies that are map-independent are necessary when GBS is used
for species lacking a reference genome sequence and for populations
unsuitable for linkage map construction. There are many general
imputation methods that do not require any prior information about
the variables to be imputed. Although these methods are used across
many disciplines, they have not been tested for imputation accuracy of
genome-wide marker data. It is also not known how imputation with
a general and potentially less accurate method before GS model training
will affect the GS model accuracy. However, we expect these imputation
methods to improve the GS accuracy because during the imputation
step, genotypic information from both the training and selection sets is
used to estimate missing values. Thus, the validation set helps improve
imputation of the training set and vice versa.

The objective of this study was to evaluate imputation strategies that
do not require previous information about the order of the markers. The
imputation methods compared were: mean imputation (MNI), k-nearest
neighbors imputation (kNNI) (Troyanskaya et al. 2001), singular value
decomposition imputation (SVDI) (Troyanskaya et al. 2001), expectation
maximization imputation (EMI) (Dempster et al. 1977), and random
forest regression imputation (RFI) (Stekhoven and Bühlmann 2011). By
using array-based genotypic datasets with varying levels of simulated
missing data, we compared these methods in terms of their imputation
accuracy, computation time, and impact on GS prediction accuracy. The
factors affecting imputation accuracy for each method at the marker
genotype and individual genotype level were also examined. Finally,
we determined whether excluding rather than including markers with
high levels of missing data could lead to higher accuracy.

MATERIALS AND METHODS

Original datasets
We used five different datasets consisting of genome-wide markers
and breeding value estimates. These datasets are referred to as winter

wheat (WW), spring wheat (SW), drought tolerant maize (DTM),
North American barley (NAB), and stem rust resistant wheat
(SRRW). The WW data (Supporting Information, File S2) consists
of 374 elite inbred individuals originating from the Cornell winter
wheat breeding program. The markers consisted of 1158 polymorphic
diversity array technology (DArT) (Akbari et al. 2006) markers coded
as “21” and “1.” For a more detailed description of this dataset, refer
to Heffner et al. (2011). The traits used for the evaluation of cross-
validated GS accuracies for WWwere grain yield, height (HT), protein,
and days to heading. The SW data are a historical dataset consisting
of 599 elite inbred spring wheat lines originating from the Interna-
tional Maize and Wheat Improvement Center (CIMMYT) wheat
breeding program. The markers consist of 1279 polymorphic DArT
markers coded as “0” and “1” and the trait used for the evaluation of
cross-validated GS accuracies was grain yield in CIMMYT mega-
environment 1. The DTM data consists of 264 tropical CIMMYT
maize lines. The trait used to calculate cross-validated GS model
accuracies for DTM was grain yield. The marker data consists of
1135 single-nucleotide polymorphisms coded as “21”, “0”, and “1.”
For more details about the SW and DTM datasets, or to access these
datasets, refer to Crossa et al. (2010). The NAB dataset consists of
a North American spring barley association mapping panel evalu-
ated from 2006 to 2008 as part of the Barley Coordinated Agricul-
tural Project (2011). The panel consists of 911 individuals with 2146
polymorphic single-nucleotide polymorphisms. The trait used to
calculate GS model accuracies was beta-glucan content (B-glucan).
The data can be accessed at http://triticeaetoolbox.org/barley.

The SRRW dataset consists of 360 recent, elite CIMMYT spring
wheat lines that have been selected for quantitative resistance to stem
rust caused by Puccinia graminis f.sp. tritici. The markers consist of
more than 130,000 GBS polymorphisms. Three different versions
of the SRRW GBS data, described in Table 1, were created based on
different per-marker percent missing data thresholds. For the first
version referred to as SRRW version NA20 (File S3), markers were
excluded if they had more than 20% missing values, which resulted in
2014 total markers. For the second set and third sets, referred to as
SRRW versions NA50 and NA70 (File S4 and File S5), markers were
excluded if they had more than 50% and 70% missing data, respec-
tively, and then 2014 markers were randomly selected. The percent of
the data points that were missing in the original WW, SW, DTM, and
NAB datasets was between 0.2 and 3%. This low level of pre-existing
missing data was assumed to have a negligible effect on the imputation
and GS accuracies and for these datasets the original marker data are
referred to as version NA0.

Calculation of LD between marker pairs
For the original WW, SW, DTM, and NAB datasets, LD between all
marker pairs was measured using the r2 statistic, where r2 between two
markers was calculated using the formula:

r2 ¼ D2

p1q1p2q2

where D = x11 -p1p2; x11is the probability of observing the combi-
nation of allele 1 at marker j and allele 1 at marker l, p1 is the
probability of allele 1 at marker j, q1 is the probability of allele 2
at marker j, p2 is the probability of allele 1 at marker l, and q2 is the
probability of allele 2 at marker l. A maximum likelihood estimate of
x11 was obtained using an expectation maximum approach reviewed
by Foulkes (2009). All calculations of the r2 statistic were imple-
mented in the R package “genetics” (Warnes et al. 2011).
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Missing data simulation
For each of the WW, SW, DTM, and NAB datasets three versions of
the genotypic data, summarized in Table 1, were created with different
levels of simulated missing data. In each of the versions: NA20, NA50,
and NA70, missing values were introduced at random but the max-
imum percent missing data at a given marker was set to 20%, 50%,
and 70% respectively. Examples of the simulated markers sets are
illustrated in the Figure S1. A total of 10 replicates of each simulated
dataset were created, and the mean percent of total data points that
are missing across the 10 replicates is shown in Table 1. The distri-
bution of per-marker percent missing values from the SRRW data
versions NA20, NA50, and NA70 were used to assign the percent
missing at each marker for each of the WW, SW, DTM, and NAB
datasets to produce versions NA20, NA50, and NA70, respectively.
Across all the missing data versions of all the datasets, the percent
missing per marker distribution had a long left tail and a large con-
centration of values near the threshold level.

Imputation methods
In all cases, the genotypic data were considered continuous variables.
The methods MNI, kNNI, SVDI, EMI, and RFI were used to impute
the simulated missing values. For all methods the input was an m x n
genotype matrix M with m individuals and n markers. For MNI, each
missing data-point xij at a given marker j was replaced with the mean
of the non-missing values at that marker.

For kNNI (Troyanskaya et al. 2001), the data points were imputed
by replacing them with the weighted average of the data points at the
k closest markers. Euclidean distance was used as the measure of
marker distance. Euclidean distance between marker genotype vectors
q! and v! of length m was defined as:

d
�
q!; v!

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q12v1

�2þ�
q22v2

�2þ � � � þ�
qm2vm

�2q

In detail, (1) missing values were first replaced using MNI and the
Euclidean distance between all of possible pairs of marker vectors
was computed. Each marker was included in the marker matrix twice,
both in its original and flipped state, to ensure that markers in negative
LD would not be considered distant to the marker of interest. (2) For
each marker j, markers were sorted based on Euclidean distance to

marker j. (3) For each row i of marker j the weighted average of the k
closest markers with nonmissing values at row i were used as an estimate
of marker data point xij. The weight of each marker was 1/d2 were d is
the Euclidean distance between marker j and the marker to be weighted.
kNNI makes no assumptions about the distribution of the data.

For SVDI (Troyanskaya et al. 2001), a singular value decomposi-
tion of genotype matrix M was used to obtain a set of the k most
significant Eigen-vectors of the markers. These k Eigen-vectors were
then used as the predictors for linear regression estimation of the
missing data points. SVDI was implemented in R (R Development
Core Team 2011) using the package “bcv” (Perry 2009). The genotype
matrix M can be described as:

M ¼ U
X

VT

Where U has dimensions m · k, V has dimensions n · k, and S is
a k · k diagonal matrix. U contains the left singular vectors with are
equivalent to the Eigen-vectors of the markers. The corresponding
singular values are in the diagonal elements of S. The singular values
are equivalent to the square root of the Eigen-values. The k most
significant Eigen-vectors of the markers were those with the k largest
Eigen-values. The imputation procedure is described as follows: (1)
Missing values were originally imputed using MNI. (2) Singular
value decomposition was used to estimate the k most significant
Eigen-vectors of the markers: Û. (3) For each marker j, linear re-
gression coefficients of each column of Û were estimated by the
multiple linear regression equation:

Y ¼ Ûbþ e

Where Y is a column vector for marker j, Û is anm · kmatrix of k Eigen-
vectors, b is a vector of regression coefficients and e is a random error
term. Only individuals with nonmissing values in Y were used to estimate
b. (4) Û and the estimates of the regression coefficients, b̂, were used to
estimate the missing values at marker j. (5) Using the current version of
the genotype matrix, we repeated steps two through four for a total of 10
iterations, sufficient to meet the convergence criteria, which was:

jRSS0 2RSS1j
RSS1

, 0:02

n Table 1 Description of datasets used for imputation and genomic selection

Dataset Versiona Mean Percent Missing Data Pointsb Number of Markers Number of Individuals

NA20 12.13 1158 374
WW NA50 34.08 1158 374

NA70 58.84 1158 374
NA20 12.1 1279 599

SW NA50 34.98 1279 599
NA70 60.54 1279 599
NA20 11.99 1135 264

DTM NA50 34.9 1135 264
NA70 60.53 1135 264
NA20 12.1 2146 911

NAB NA50 35.03 2146 911
NA70 60.49 2146 911
NA20 12.16 2014 360

SRRW NA50 35.13 2014 360
NA70 60.72 2014 360

WW, Cornell winter wheat; SW, CIMMYT elite spring wheat; DTM, CIMMYT drought-tolerant maize; NAB, North American barley; SRRW,
CIMMYT stem rust-resistant wheat.
a
NA20: up to 20% missing data per marker, NA50: up to 50% missing data per marker, NA70: up to 70% missing data per marker.

b
The percent of total data points that are missing.
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RSS is the residual sum of squares between the nonmissing values
and their SVDI model approximation. RSS0 and RSS1 are the RSS
values of successive iterations. SVDI assumes that the genotype ma-
trix is multivariate normal distributed. For the optimal k value cal-
culation methods and results for both kNNI and SVDI, see File S1.
Optimal k values are listed in Table S1.

For EMI, the nonmissing marker data were used to obtain max-
imum likelihood estimates of the vector of means, û, and covariance
matrix X̂ of the individuals based on the markers. These estimates
were then used to obtain multiple linear regression estimates of the
missing marker values. û, and X̂ were then re-estimated and were used
to re-estimate the missing marker values. This process was repeated
until the difference between the new estimate and the previous esti-
mate of ûþ X̂ � X̂T

was 0.02 or less. EMI was implemented using the
R package rrBLUP (Endelman 2011). For a more detailed description
of this EMI algorithm, refer to Poland et al. (2012). For a more
through description of the EM imputation algorithm in general, refer
to Dempster et al. (1977).

For RFI, missing marker values were estimated using random forest
regression (Breiman 2001) using all available data to predict the
missing values for every marker. RFI was implemented in R using
the package “MissForest” (Stekhoven and Bühlmann 2011). The im-
putation procedure was: (1) for marker matrix M, markers were
sorted from lowest to highest percent missing and missing values
were imputed using MNI. (2) At each marker j containing missing
values, the nonmissing values, Y, were used to grow 100 random
forest regression trees Q1. . . Q100. Each tree was grown using
a bootstrapped sample of individuals Y and a random sample offfiffiffiffiffiffiffiffiffiffiffiffiffi
n2 1

p
marker predictors were used where n-1 is the number of

markers excluding marker j. Each tree Q contains the terminal node
values and a set of instructions for recursively partitioning the obser-
vations into the terminal nodes: these instructions include the split
variables at each node, and the value of the split variable used for
partitioning. (3) Missing values at marker j were imputed as:

Ŷ ¼ 1
100

X100

1
hðx; QÞ

where x is an input vector.
(4) Marker j was then updated in marker matrix M by using the Ŷ

values as the estimate of the missing values. (5) Steps two through four
were repeated for each subsequent marker until all markers were
imputed. (6) Then, using this imputed matrix, we repeated steps
two through five until convergence or for a maximum of 10 iterations.
Convergence was declared as soon as the DN increased for the first
time where:

DN ¼
P

j2nðM12M0Þ2P
j2nðM1Þ2

M1 and M0 are the newly imputed and previously imputed marker
matrices respectively. If the convergence criterion was met, M0 was
used as the final estimate of M. RFI makes no assumptions about the
distribution of the data. The implementation of all imputation meth-
ods is demonstrated in File S6.

Imputation accuracy calculations
The per-marker imputation accuracy, R2

m, was described using the R2

value between predicted data points and the original data points for
a given marker vector or individual vector x of length j. The R2 was
defined as

R2 ¼ 12

P
jðxj true2xj imputedÞ2
P

jðxj true2meanðxÞÞ2

The R2
m, as well as the imputation R2 of the individual genotypes,

referred to as R2
i , were calculated. For each dataset and missing data

level, average R2
i and R2

m across the 10 missing data simulations were
also calculated and referred to as R2

i and R2
m.

To compare with imputation accuracies reported in other
publications, for each R2

m value, the equivalent percent correct was
also calculated. Because imputed values were continuous, the percent
correct for each marker could not be directly calculated. Instead, for
each marker, equivalent percent correct values were determined by
simulation using each marker’s MAF and R2

m (see File S1).

Computational time
For the first replicate of simulated missing datasets, whenever a dataset
was imputed, the number of seconds required for imputation to be
completed using one central processing unit was recorded. All jobs
were submitted to the Computational Biology Service Unit at Cornell
University, which uses (1) a 240 core Windows cluster consisting of 60
Dell PowerEdge 1855 nodes with two x64 Pentium 4 Xeon 3.4 GHz, 4
GB RAM, and 144 GB HD each and (2) a 400 core Windows cluster
consisting of 200 Sun V20Z nodes with two AMD Opteron 248
2.2GHz, 2 GB RAM, and 300 GB HD each.

Assessment of factors affecting imputation accuracy
For each imputation method factors affecting the imputation accuracy
were assessed. A marker’s minor allele frequency (MAF), number of
nonmissing data points, and level of LD with other markers were
considered as factors that could impact its imputation accuracy. The
distance between an individual and its closest relative and the expected
prediction error variance (PEV) were considered as factors affecting
the imputation accuracy on an individual genotype basis. The impact
of each of these factors was assessed for each imputation method
using the WW, SW, DTM, and NAB datasets post imputation.

First, the impact of MAF on the imputation accuracy was assessed.
For each dataset-imputation method combination, R2

m was averaged
across dataset versions NA20, NA50, and NA70 and this overall es-
timate of marker imputation accuracy is referred to as R2

m.The median
R2
m for each value of MAF rounded to the nearest tenth was calculated.

The relationship between the median R2
m and the MAF value was then

plotted to characterize the relationship.
The impact of the number of nonmissing data points at a marker

on the marker’s imputation accuracy was assessed for each dataset-
imputation method combination using data from all 10 replicates and
versions NA20, NA50 and NA70 combined. For each marker, the
number of nonmissing data points was rounded to the nearest factor
of 5, and for each value the median R2

mwas calculated.
To determine the impact of the LD level with other markers on the

imputation accuracy, markers were first classified as markers in low
LD with all other markers or markers in at least moderate LD with at
least one other marker. Markers whose highest r2 statistic was less
than 0.5 were considered to be in low LD with all other markers. A
marker that had at least one r2 statistic greater than or equal to 0.5 was
considered to be in at least moderate LD with at least one other
marker. The median R2

m of markers in low LD and of markers in at
least moderate LD with at least one other marker was calculated. The
ratio of R2

m for markers in low LD to the R2
m for markers in at least

moderate LD was then examined.
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To assess the effect of the genetic distance between an individual
and its closest relative on the individual genotype imputation accuracy,
the Euclidian distance was calculated for each pair of individuals and
the R2

i of each dataset was measured for each simulated dataset and
imputation method combination. The mean R2

i values across all repli-
cates, R2

l , were averaged across versions NA20, NA50, and NA70 of
a given dataset-imputation method combination to calculate an overall
mean R2

i for each individual which is referred to as R2
l . The Euclidian

distance between each individual and its closest relative, rounded to the
nearest whole number was plotted against the median R2

l to examine
the relationship.

The relationship between PEV for the genetic values and the R2
l

was also examined. An individual’s PEV is a measure of genetic
connectedness to the other individuals (Kennedy and Trus 1993)
where an individual’s connectedness is determined by the number
and strength of the genetic relationships between that individual
and the other individuals in the dataset. For example, a low PEV
indicates high connectedness and high degree of genetic relationship.
To measure an overall PEV value for each individual, a vector of PEVs
was calculated for each marker using the mixed model equations
(Searle et al. 1992) implemented in the R package “rrBLUP” (Endelman
2011). The genetic and error variance components were estimated using
restricted maximum likelihood, and the genomic relationship matrix,
excluding the response variable marker, was used as the covariance
matrix between genotypes. The sum of the PEV vectors across all
markers was used as the overall PEV vector. Because PEV is a re-
flection of the number and strength of the genetic relationships
between individuals, it is expected to be a useful indicator for how
well and individual’s missing data can be imputed using all other
individuals as a reference.

GS accuracy calculation
All 10 simulations of missing data versions NA20, NA50, and NA70 of
the WW, SW, DTM, NAB, and SRRW marker sets were imputed with
each of the imputation methods: MNI, kNNI, SVDI, EMI, and RFI.
Then, each of the 10 replicates of the marker set-imputation method
combinations was used to calculate the 10-fold cross validation GS
accuracy for both Ridge-Regression (Whittaker et al. 2000) and Bayes-
ian LASSO (de los Campos et al. 2009), see File S1. GS accuracies are
computed as the Pearson’s correlation between the phenotype esti-
mated breeding values and the genomic-estimated breeding values.
The mean accuracy for each marker set-imputation method-prediction
model combination was computed. GS accuracies were also computed
using version NA0 of the WW, SW, DTM, and NAB genotypic data.

RESULTS

LD between markers
For each dataset, the LD between marker pairs was quantified using
the r2 statistic. Markers that had at least one other marker associated
with r2$ 0.5 were considered to be in at least moderate LD with at
least one other marker. In the WW, SW, DTM, and NAB datasets,
62%, 74%, 12%, and 69% of the markers had at least one other marker
in at least moderate LD, respectively. Comparatively, LD between
markers was high in the SW, NAB, andWW datasets and much lower
in the DTM dataset.

Imputation accuracy
The imputation accuracy reported as the median R2

m is shown in
Figure 1 for kNNI, SVDI, RFI, and EMI. For all dataset-imputation
method combinations, R2

m values were non-normal, and there were

Figure 1 Median R2
mof each imputation method

across all datasets. (A) WW; (B) SW; (C) DTM; and
(D) NAB. For each population median R2

m
obtained using kNNI, SVDI, RFI, and EMI are
shown for the three dataset versions: NA20
(black), NA50 (gray), and NA70 (white), which
contain up to 20%, 50%, and 70% missing values
per marker, respectively.
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many extreme values. The median R2
m values and the equivalent per-

cent correct values are listed in Table 2. The population with the
highest median R2

m for each of the levels of missing data were the
NAB population, whereas the lowest imputation accuracies were ob-
served with the DTM population. As expected, median R2

m values
always decreased as the level of missing data increased. RFI always
produced the highest accuracies; kNNI generally produced the second
highest accuracies, followed by EMI and SVDI. The rankings were
slightly different for the DTM dataset, where RFI was most accurate
followed by EMI, SVDI, and kNNI. The rankings of the methods for
each dataset according to the median percent correct are the same as
those according to the median R2

m; however, the median percent cor-
rect values could not be compared across datasets because percent
correct values are influenced by the MAF which differs among datasets.

Computational time
Large differences in the computational requirements for the imputation
methods were observed (Table 3). kNNI, SVDI, and EMI required
relatively little computation time on average, while RFI required at least
95x, 760x, and 65x more computation time than kNNI, SVDI, and
EMI, respectively. For SVDI and kNNI, the computation time required
for determining optimal k values was not included in the estimates of
the average computational time because the computation time for
optimal k estimation depends on the method used for estimation.
The 10-fold cross validation approach that we used to estimate optimal
k values for SVDI and kNNI requires approximately 50 runs of the
SVDI and kNNI respectively. If the time required to estimate optimal k
values for SVDI and kNNI was included in the total computational
time, EMI would be the fastest of the four imputation methods.

Factors affecting imputation accuracy

MAF: For all datasets, R2
m values for markers with MAF , 0.1 were

low compared with that of markers with MAF . 0.1; however, the

relationship between MAF and R2
m for markers with MAF . 0.1 was

different for each dataset (Figure 2). In general, R2
m increased as MAF

increased as long as MAF, 0.4; however, with the NAB dataset (Figure
2D) there was no relationship between MAF and R2

m for MAF . 0.1.
Accuracy in terms of percent correct had a strong negative linear re-
lationship with the MAF across all imputation methods and datasets.
Markers with lower MAF values tended to have higher percent correct
values (data not shown).

Number of nonmissing data points: With almost all dataset-
imputation method combinations, as the number of non-missing
data points increased, the R2

m levels increased in a linear fashion
(Figure 3). The strength of this linear relationship was similar for all
imputation methods; however, with the DTM dataset, R2

m for kNNI
and SVDI were close to zero regardless of the number of nonmissing
data points.

LD between markers: The ratio of the median imputation R2
m for

markers with no other markers in moderate LD to the median im-
putation R2

m for markers with at least one other marker in moderate
LD was always less than one (Table 4), indicating that the imputation
accuracy for markers without markers in moderate LD was always
lower than that for markers that had at least one other marker in
moderate LD. Across all datasets, the R2

m ratios for the two classes of
markers was much smaller for kNNI compared to the other imputa-
tion methods, indicating that the imputation accuracy of kNNI was
more strongly influenced by the level of LD between markers compared
to the other methods. With the WW, SW, and NAB datasets the R2

m
ratios for the two classes of markers was similar for SVDI, RFI, and
EMI indicating that the accuracy of these three methods is influenced
by the level of LD between markers to a similar degree. However, with
the DTM dataset, the R2

m ratio for the two classes of markers was
closer to one for SVDI compared to the other methods, indicating that
for this dataset, the accuracy with SVDI was less affected by the LD
between markers, compared to the other methods.

n Table 2 Median R2
m and median percent correct for each

imputation method and across all datasets

Imputation Method

Dataset Versiona kNNI SVDI RFI EMI

WW NA20 0.8 / 97 0.44 / 93 0.84 / 98 0.58 / 95
NA50 0.71 / 96 0.36 / 92 0.77 / 97 0.5 / 93
NA70 0.48 / 94 0.27 / 89 0.61 / 95 0.35 / 91
Mean 0.66 / 96 0.36 / 91 0.74 / 97 0.48 / 93

SW NA20 0.76 / 96 0.52 / 93 0.8 / 97 0.5 / 93
NA50 0.65 / 95 0.43 / 93 0.72 / 96 0.49 / 93
NA70 0.43 / 93 0.31 / 91 0.58 / 94 0.35 / 91
Mean 0.61 / 95 0.42 / 92 0.7 / 96 0.45 / 92

DTM NA20 20.01 / 82 0.04 / 83 0.2 / 88 0.07 / 85
NA50 0 / 82 0.04 / 83 0.14 / 87 0.08 / 84
NA70 20.03 / 82 0.01 / 83 0 / 84 0 / 83
Mean 20.01 / 82 0.03 / 83 0.11 / 86 0.05 / 84

NAB NA20 0.83 / 99 0.73 / 98 0.94 / 100 0.76 / 98
NA50 0.73 / 99 0.61 / 98 0.88 / 99 0.7 / 98
NA70 0.43 / 97 0.44 / 97 0.75 / 99 0.52 / 97
Mean 0.66 / 98 0.59 / 98 0.85 / 99 0.66 / 98

Median R2
m and median percent correct are separated by a backslash (/). kNNI, k-

nearest neighbors imputation; SVDI, singular value decomposition imputation;
EMI, expectation maximization imputation; RFI, random forest regression impu-
tation; WW, Cornell winter wheat; SW, CIMMYT elite spring wheat; DTM, CIM-
MYT drought-tolerant maize; NAB, North American barley.
a
NA20: up to 20% missing data per marker, NA50: up to 50% missing data per
marker, NA70: up to 70% missing data per marker.

n Table 3 CPU minutes required to complete the imputation of
one dataset

Imputation Method

Dataset Versiona kNNI SVDI RFI EMI

WW NA20 2.5 0.4 364.8 2.2
NA50 4.7 0.4 411.6 3.1
NA70 5.6 0.4 280.2 2.7

SW NA20 5.3 1.5 132.6 5.5
NA50 9.7 1.5 935.4 9.1
NA70 11.5 1.5 610.2 7.3

DTM NA20 1.7 0.2 271.8 0.8
NA50 3.3 0.2 440.4 0.8
NA70 4.1 0.2 223.8 1.0

NAB NA20 24.4 6.0 4084.8 64.6
NA50 45.1 5.8 4204.2 106.7
NA70 50.3 5.8 2349 86.2

SRRW NA20 7.1 0.7 2364.6 3.5
NA50 14.2 0.6 1618.8 4.8
NA70 17.1 0.6 1309.2 4.1

CPU, central processing unit; kNNI, k-nearest neighbors imputation; SVDI,
singular value decomposition imputation; EMI, expectation maximization impu-
tation; RFI, random forest regression imputation; WW, Cornell winter wheat; SW,
CIMMYT elite spring wheat; DTM, CIMMYT drought-tolerant maize; NAB, North
American barley; SRRW, CIMMYT stem rust-resistant wheat.
a
NA20: up to 20% missing data per marker, NA50: up to 50% missing data per
marker, NA70: up to 70% missing data per marker.
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Distance from the closest relative and PEV: Regardless of the dataset
or the imputation method, the smaller the distance between an
individual and its closest relative, the higher the R2

l (Figure 4). One
exception was observed with the DTM dataset, where for kNNI there
was no relationship between the distance between an individual and
its closest relative and R2

l . We observed very similar trends between R2
l

and the overall PEV (Figure S2). As an individual’s PEV increased,
indicating a decrease in the strength and number of genetic relation-
ships between that individual and all other individuals, its R2

l de-
creased in all cases except when the DTM dataset was imputed with
kNNI.

Effect of imputation method on GS accuracy
In nearly all cases, GS accuracies did not differ greatly from one
imputation method to another, with the exception of MNI, which
sometimes led to much lower accuracies compared to all other
methods when the NA70 dataset version was used (Figure 5 and 6).
Overall, GS accuracies were least affected by the imputation method
for dataset version NA20, and most affected by the imputation
method for dataset version NA70. The relative performance of each
method in terms of GS accuracy after imputation depended on the
dataset, and dataset version; however, RFI consistently performed well
across all datasets. For the WW datasets, the relative performance of
the imputation methods in terms of GS accuracy was inconsistent
across the four traits tested.

For, a given dataset and dataset version, the rank of each method
based on R2

m, was not consistent with the rank based on GS accuracy

using RR or BL post-imputation. The rank of the imputation methods,
however, was consistent between the two different GS models. We
also found that including rather than removing ‘sparse’markers, those
with large amounts of missing data, nearly always led to higher GS
accuracies (methods and results described in File S1, Table S2, and
Figure S3), especially when RFI, kNNI, or EMI were the imputation
methods used (Figure S4).

DISCUSSION

Imputation accuracy
This study found that map-independent imputation methods other
than MNI can be surprisingly accurate, especially when LD between
markers is high and the genotyped individuals are related. RFI was the
most promising method overall because of its consistently high
performance in terms of imputation accuracy and subsequent GS
accuracy; however, it was the most computationally intensive method
evaluated. kNNI, although less accurate than RFI, may be a good
alternative to RFI if there are computational limitations to completing
the imputation. It is likely that RFI and kNNI produced comparable
levels of accuracy because both use a similar model free approach for
imputation that involves weighting a selected set of k important
variables according to a distance metric (Lin and Jeon 2006). The
weighted average of these variables is the predicted value of the vari-
able of interest. For kNNI the distance metric was the Euclidean
distance and k was a fixed number across all variables. For RFI, the
k important variables and their weights are determined by the splitting
scheme of the tree that is determined using the response variable. The

Figure 2 Relationship between the MAF and R2
m.

The median R2
mobtained for a given MAF rounded

to the nearest tenth is plotted for each dataset: (A)
WW; (B) SW; (C) DTM; and (D) NAB. Each color and
symbol represents a different imputation method:
kNNI, orange triangles; SVDI, purple squares; RFI,
red circles; and EMI, blue crosses.
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increased accuracy but greater computational burden of the RFI
method compared with kNNI is due to its adaptive weighting of
variables that takes into account the response variable.

A possible reason that EMI and SVDI were less accurate than RFI
and kNNI is that the genotypic datasets that we used may have
violated multivariate normality, an underlying assumption for EMI
and SVDI. Alternatively, EMI and SVDI may not have been as
effective at ignoring uninformative predictors. If true, linear regression
based imputation methods involving variable selection could be as
accurate as kNNI or RFI. However, due to multicollinearity, attempts
to test imputation based on subset selection methods such as stepwise
regression were not successful. Regression imputation using variable
selection methods which can cope with multicollinearity, such as the

least absolute shrinkage and selection operator (Tibshirani 1996),
would be interesting to test in future studies.

EMI performed consistently better than SVDI which is likely
because EMI incorporates all the marker data as predictors whereas
SVDI first used a data reduction step, potentially eliminating useful
information. SVDI may have outperformed EMI if the datasets had
a greater rate of genotyping error because it is expected to better cope
with noisy data (Troyanskaya et al. 2001).

For all methods, average median imputation accuracies on
an individual genotype basis R2

l were not always homogenous
across population sub-groups as illustrated in Figure S5, which
shows individuals plotted according to the first two principal compo-
nents of their marker genotypes and color coded according to their

Figure 3 Relationship between the number of
nonmissing datapoints and R2

m . The median R2
m

obtained for a given number nonmissing data
points rounded to the nearest factor of 5, is plotted
for each dataset: (A) WW; (B) SW; (C) DTM; and (D)
NAB. Each color and symbol represents a different
imputation method: Each color and symbol repre-
sents a different imputation method: kNNI, orange
triangles; SVDI, purple squares; RFI, red circles;
and EMI, blue crosses.

n Table 4 Ratios of median R2
mof markers having no markers in moderate linkage disequilibrium (LD) to that of markers with at least one

other marker in moderate LD

Imputation Method

Dataset kNNI SVDI RFI EMI

WW 0.16 (0.13/0.8) 0.36 (0.17/0.47) 0.49 (0.41/0.84) 0.39 (0.23/0.59)
SW 0.14 (0.1/0.7) 0.47 (0.23/0.49) 0.62 (0.47/0.76) 0.58 (0.29/0.5)
DTM 20.18 (20.03/0.17) 0.33 (0.02/0.06) 0.18 (0.09/0.5) 0.14 (0.03/0.22)
NAB 0.31 (0.24/0.78) 0.59 (0.40/0.68) 0.74 (0.67/0.9) 0.63 (0.46/0.73)
Mean 0.11 0.44 0.51 0.44

Reduced ratios are reported followed by the values used to compute the reduced ratios in parenthesis. At least moderate LD was defined as r2 statistic$ 0.5. kNNI, k-
nearest neighbors imputation; SVDI, singular value decomposition imputation; EMI, expectation maximization imputation; RFI, random forest regression imputation;
WW, Cornell winter wheat; SW, CIMMYT elite spring wheat; DTM, CIMMYT drought-tolerant maize; NAB, North American barley.
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imputation accuracy. With the DTM and WW datasets, small sub-
groups of individuals that clustered together according to the first two
principal components of marker genotypes tended to have similar
ranges of accuracy. However, with the SW and NAB datasets R2

l
was relatively homogenous across population subgroups. An associa-
tion between R2

l and population subgroup is undesirable because it
may create or worsen an association between GS accuracy and pop-
ulation sub-group. Using large datasets with minimal population
structure for imputation and GS is advocated to avoid heterogeneity
of imputation and GS accuracies across subgroups of individuals.

Population structure may also lead to increased imputation ac-
curacy for markers with high levels of population subdivision (Iwata
and Jannink 2010) because an individual’s allelic state can be predicted
largely based population sub-group alone. Accuracy levels for datasets
with many markers highly subdivided by population may be high
largely because of structure; we therefore calculated R2

m excluding
markers with high levels of population subdivision as indicated by their
Fst values, where high Fst indicates high population subdivision (for
methods, see File S1). For markers with MAF . 0.1, on average, R2

m
excluding markers with the 25% highest Fst values were 0.9, 1.17, 1.02,
and 0.9 times those of overall R2

m for the WW, SW, DTM, and NAB
datasets, respectively. Thus, for the WW and NAB datasets, the high
imputation accuracies we observed may have been in small part due to
population structure.

Comparing our imputation accuracy results with those of other
studies is difficult because each study uses different populations of
different sizes, levels of missing data, MAF distributions, and levels of

LD between markers. In addition, accuracy reported as percent correct
cannot be compared across datasets with different MAF distributions.
Nevertheless, we assume that map-dependent imputation methods
would outperform the map-independent methods that we evaluated
(given the availability of an accurate genetic or physical map) because
physically linked markers are used to predict missing values. These
physically linked markers should be more reliable predictors com-
pared to markers that are in LD but may not be physically linked. As
genetic and physical maps develop for wheat and barley the
assumption that map-dependent methods would outperform the
map-independent methods can be tested.

Factors affecting imputation accuracy
Markers with very low MAF had low R2

m values. There are two pos-
sible explanations for this observation. First, because of the way R2

m is
calculated, a single imputation error has a much larger negative im-
pact on the R2

m for markers with lower MAF values (Figure S6). Thus,
it is harder to achieve high R2

m for markers with a low MAF. Second,
individuals with the minor allele at a given marker are not well rep-
resented, making their marker genotype more difficult to predict. A
similar relationship between MAF and R2

m was also found by studies
by Iwata and Jannink (2010) and Li et al. (2011), which used map-
dependent imputation methods. Unlike R2

m, imputation accuracy in
terms of percent correct had a negative linear relationship with MAF
(data not shown), this is because markers with lower MAF can always
be imputed with a reasonably high percent correct based on the marker
mean alone. Other studies of map-dependent imputation methods report

Figure 4 Relationship between the distance from
the closest relative and R2

I . The median R2
I

obtained for a given Euclidean distance between
an individual and its closest relative rounded to
the nearest whole number is plotted for each data-
set: (A) WW; (B) SW; (C) DTM; and (D) NAB. Each
color and symbol represents a different imputation
method: kNNI, orange triangles; SVDI, purple
squares; RFI, red circles; and EMI, blue crosses.
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a negative relationship between MAF and percent correct (Pei et al.
2008; Hickey et al. 2012).

The number of nonmissing data points, analogous to reference
panel size in other studies was found to positively impact the R2

m. This
finding is consistent with other studies in which researchers tested the
effect of reference panel size on the imputation accuracy using map-
dependent methods (Pei et al. 2008; Druet et al. 2010; Li et al. 2010).
For RFI, EMI, and SVDI, which involve a model training step, fewer
missing data points means that more individuals are available for model
training. With kNNI, a smaller number of nonmissing data points at
a given marker leads to a more accurate estimate of its distance from all
other markers. However, with the DTM set there was no trend between
accuracy and the number of nonmissing data points with kNNI. This
was because accuracy with kNNI for this dataset was very low overall.

The presence of one or more markers in moderate LD (r2 statistic$
0.5) was a more important factor for kNNI compared with RFI, EMI,
and SVDI because kNNI bases its predictions on a fixed number of
close markers, whereas RFI, EMI, and SVDI use information from all

markers in the dataset to generate predicted values for the missing
data points. The LD between markers on a whole dataset basis also
appeared to be an important factor affecting the R2

m of all methods
because accuracies with the DTM dataset, which had low levels of LD
between markers overall, were much lower than accuracies with the
WW, SW, and NAB datasets. Other publications that have evaluated
the effect of LD on imputation accuracy for map-dependent methods
have found similar trends (Pei et al. 2008; Hickey et al. 2012).

We found that imputation accuracy on an individual genotype
level was negatively correlated with the distance from the closest
relative in the dataset, and the PEV, which is an indication of the
relationship between an individual and other genotypes. A similar
relationship between imputation accuracy and relationship has been
found by other studies of map-dependent imputation methods (Druet
et al. 2010; Zhang and Druet 2010; Hickey et al. 2012). It is clear that
to ensure effective imputation, the dataset to be imputed should con-
tain related individuals. If the dataset is suited for GS, it is likely that
the individuals are already related. However, to increase the chances

Figure 5 GS accuracy obtained using ridge regression after imputation. Mean GS accuracies obtained using the dataset versions NA0, NA20,
NA50, having up to 0%, 20%, 50%, and 70% missing data per marker, respectively, imputed with either MNI (black stars), kNNI (orange triangles),
SVDI (purple squares), EMI (blue crosses) and RFI (red circles) are shown for (A) WW-yield, (B) WW-height, (C) WW-protein, (D) WW-days to
heading, (E) DTM, (F) SW, (G) NAB, and (H) SRRW datasets. Each plot has a different y-axis range. Error bars depict SE.

436 | J. E. Rutkoski et al.



that an individual will have close relatives in the dataset, all available
genotypic data for the germplasm pool of interest should be combined
before imputation.

GS accuracy
The GS accuracies that we observed may be sufficiently high to lead to
increased rates of genetic gain compared to phenotypic selection (PS),
depending on the accuracy of PS and the selection cycle duration of
both PS and GS. It is important to note that all GS accuracies reported
for a given dataset are global estimates across all potential subpopu-
lations. Based on other studies evaluating GS accuracies within and
across subpopulations (Zhao et al. 2011, Heslot et al. 2012, Windhausen
et al. 2012), this global accuracy estimate may be greater than the
accuracy measured within individual subpopulations.

Effect of imputation method on the GS accuracy
Improved accuracy of GS after application of map independent
imputation methods was another important finding of this study. Based
on our results, unordered markers with missing data can be included in

the dataset to improve accuracy through imputation with RFI, kNNI,
EMI, or even SVDI rather than MNI. However, for datasets with low
levels of missing data (up to 20% per marker), imputing with MNI is
sufficient. Although our results do not support removing markers with
high levels of missing data prior to GS, in many datasets markers with
low levels of missing data may be sufficient to saturate the genome.
With the datasets used in this study, the average number of markers
with up to 20% and 50% missing data were 18 to 37 and 99 to 186
respectively, and these reduced marker sets were not sufficient to
saturate the genome. Thus, including markers with larger amounts
of missing data led to improved GS accuracies. Interestingly, a low
median R2

m was not reflective of the merit of imputation prior to GS.
The median R2

m for the datasets with up to 70% missing data per
marker were the lowest of all the missing data levels; however we saw
the greatest gain in GS accuracy from kNNI, SVDI, EMI, or RFI
relative to MNI with this level of missing data. This was especially
apparent for the DTM dataset, which had a median R2

m near zero for
most methods when there was up to 70% missing data per marker.
However, RFI on this dataset produced GS model accuracies 1.3 times

Figure 6 GS accuracy obtained using Bayesian least absolute shrinkage and selection operator after imputation. Mean GS accuracies obtained using
the dataset versions NA0, NA20, and NA50, having up to 0%, 20%, 50%, and 70% missing data per marker respectively, imputed with either MNI
(black stars), kNNI (orange triangles), SVDI (purple squares), EMI (blue crosses) and RFI (red circles) are shown for (A) WW-yield, (B) WW-height, (C)
WW-protein, (D) WW-days to heading, (E) DTM, (F) SW, (G) NAB, and (H) SRRW datasets. Each plot has a different y-axis range. Error bars depict SE.
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greater than those achieved when MNI was used before GS. Surprisingly,
the most accurate imputation method was not always the method that
gave the greatest GS accuracy. This may be caused by nonrandom
imputation errors. If some imputation errors are similar for related
individuals, these nonrandom errors may able to capture some ge-
netic relationships in the GS model. The idea that the imputation
errors may capture some genetic relationships was suggested by
a study by Weigel et al. (2010).

This study has important implications for species that lack a reference
genome, complete reference map, and predesigned high-throughput
genotyping platforms. First, unordered markers can be imputed with
high levels of accuracy, and even greater accuracies may result if
additional reference genotypes can be added to the dataset prior to
imputation. Based on the results of this study, if a large number of
marker genotypes are produced (so that markers are in LD with each
other), and the population contains individuals with some genetic
relationship, missing data can be imputed with reasonable accuracy
even if the level of missing data are high; up to 70%. Future work to
improve upon and reduce the computational burden of the most
promising methods in this study, RFI and kNNI, would be especially
useful if these methods are to be used widely. The second implication
of this study is that a large proportion of missing data in dense marker
sets is not a major concern for GS. As long as the marker density is
sufficiently high, the accuracy does not appear to be strongly negatively
affected. In cases where missing data does negatively impact the GS
accuracy imputation using a method other than MNI before GS model
training and validation can help improve the accuracy. Overall, map-
independent imputation shows promise for the feasibility of applying
GS, enabled by emergent sequence-based genotyping technologies, to
almost any species regardless of the availability of pre-existing genotyping
resources.
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