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Abstract 

 

Palmer amaranth is a competitive weed and has caused variable corn yield losses in 

diverse environments of Kansas.  The objectives of this study were to 1) determine corn and 

Palmer amaranth growth, development, and grain (seed) production, 2) determine soil water 

content throughout the growing season, and 3) evaluate the performance of the modified 

ALMANAC model for simulating monoculture corn yield and corn yield loss from Palmer 

amaranth competition when corn and Palmer amaranth were grown alone or in competition 

under dryland and irrigated environments.  For the first objective, field experiments were 

conducted in 2005 and 2006 with whole-plots of dryland and furrow irrigation arranged in a 

side-by-side design.  Within each soil water environment, sub-plot treatments were monoculture 

Palmer amaranth at one plant m-1 of row, and corn with zero, one, and four Palmer amaranth 

plants m-1 of row.  Corn height, leaf number, LAI, and total plant dry weight were reduced with 

increasing water stress and were reduced further in the presence of Palmer amaranth.  Corn yield 

losses were similar with increasing Palmer amaranth density across soil water environments in 

each year, except for 2006 dryland corn.  Palmer amaranth growth and development were 

negatively impacted by corn interference and weed density.  For the second objective, Time 

Domain Reflectometry measurements documented seasonal trends of volumetric soil water 

content at the 0 to 15 and 0 to 30 cm soil profile depths for treatments in dryland and irrigated 

environments each year.  The soil water depletion rate increased as water received prior to a 

drying period increased at the 0 to 30 cm soil depth in the dryland and irrigated environments.  



For the third objective, the modified ALMANAC model was parameterized based on 

monoculture corn and Palmer amaranth growth data.  The model underestimated monoculture 

corn yield but overestimated corn yield with Palmer amaranth competition.  The model 

performance was not consistent when comparing simulation results to dryland and irrigated 

experiments conducted across Kansas.  Overall, the experiment provided an improved 

understanding of corn yield loss risks associated with water management and Palmer amaranth 

competition.  
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INTRODUCTION 

 

In the semiarid areas of the U.S. Great Plains region, water is the most limiting resource 

for crop production (Smika 1970).  Crop yields in the region are impacted by highly variable 

precipitation, low soil water availability, and high evapotranspiration.  Producers’ management 

decisions to maximize potential yield and profitability are dependent on their ability to minimize 

yield losses.  Weed interference with crops is one source of crop yield loss because weeds 

compete for solar radiation, nutrients, and water.  The level of interference weeds have on crops 

for water availability depends on the weed species, density, time of emergence, and spatial 

distribution and duration of growth with crop with the environmental conditions limiting water 

availability (Patterson 1995).  Weeds have adapted to water stress by possessing one or more 

mechanisms which include: 1) avoidance of stress, 2) conservation and efficient use of water, or 

3) tolerance to water stress (Radosevich et al. 1997).  The adaptations are based on the 

morphology and distribution of the root system, leaf characteristics, physiological mechanisms 

for maintaining high water use efficiency (WUE), stomatal control, and osmotic adjustment 

(Radosevich et al. 1997).  The variations of these adaptations among species of crops and weeds 

will influence the rate, magnitude, duration of crop-weed water interference when water 

availability declines (Patterson 1995).  In addition, weeds that are more effective competitors for 

soil water could cause more yield loss when soil water is limiting, but this is not always the case 

when crop potential yield is lowered due to water stress (Patterson 1995, Mortensen and Coble 
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1989).  Thus, the competition between crops and weeds growing in variable environments is 

poorly understood (Mortensen and Coble 1989).  Therefore, competitive mechanisms for crops 

and weeds need to be better understood and quantified to develop effective crop management 

solutions to minimize yield loss in water limited environments.  

Improved understanding of the crop growth, development, and yield potential in 

association with sensitivity to seasonal water stress in water limited environments would aid crop 

managers in making profitable decisions for weed control.  Variability in environmental 

conditions and implementation of crop management operations are the major factors influencing 

the dynamics of weed-crop interference relationships among sites and years (Lindquist et al. 

1996).  The interactions can be simulated with eco-physiological process-oriented crop and weed 

competition models, such as ALMANAC (Agricultural Land Management Alternatives with 

Numerical Assessment Criteria).  The ALMANAC model can provide a practical, easily adopted 

tool for simulating competition in mixed plant communities (Kiniry et al. 1992).   The 

ALMANAC model contains detailed functions  to simulate plant growth, water balance, and 

nutrient cycling, as in the EPIC (Erosion-Productivity-Impact Calculator or Environmental 

Policy Integrated Climate) model (Sharpley and Williams 1990, Williams et al. 1984, 1989), 

together with additional detail for light competition, population density effects, and vapor 

pressure deficit effects which enable it to simulate the growth and yield of two or more 

competing plant species in a wide range of environments (Kiniry et al. 1992, 1997, McDonald 

and Riha 1999 a, b, Stockle and Kiniry 1990).  Simulation accuracy has been validated for corn 

and sorghum yields in irrigated and water-stressed dryland environments (Kiniry et al. 1997, 

Kiniry and Blockholt 1998, Yun et al. 2001).  The most optimistic use of crop-weed simulation 
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models can be to explore the within season and year-to-year variations in crop yield loss caused 

by water stress and/or weed interference. 

The ALMANAC model was modified to improve plant competition relationships and 

incorporated into GAPS (General purpose simulation model of the Atmosphere-Plant-Soil 

system) (McDonald and Riha 1999a, b, Rossiter and Riha 1999).  The modified ALMANAC 

model partitions radiation into a mixed plant leaf canopy by replacing the functions developed by 

Spitters and Aerts (1983) with the Wallace (1995) method.  The radiation partitioning method 

can characterize a fuller range of competitive relationships among interacting crop and weed 

species, where a linear interpolation is used to calculate the fraction of light intercepted by 

species in canopies in which one species does not exert complete dominance over the other 

(McDonald and Riha 1999a).  The modified ALMANAC model improved the impact 

environmental stress on plant growth over the original ALMANAC model, where the daily index 

of environmental stress is incorporated in the equations for canopy height and root expansion 

(McDonald and Riha 1999a).  The modified ALMANAC was altered to make daily increases in 

leaf area index (LAI), height, and rooting depth attenuated on the basis of accumulated 

aboveground biomass and by environmental stress (McDonald and Riha 1999a).   The linkage of 

morphological development to resource capture is important for accurately simulating the growth 

and impact of weeds on crops, especially with weed cohorts, growth in stressful environmental 

conditions, and crops tolerant to certain weed species.  McDonald and Riha (1999a) used the 

modified ALMANAC model to simulate monoculture corn yields and corn:velvetleaf 

competition from a field study, and they concluded that the model was capable of distinguishing 

between environmental conditions that facilitate large and small corn yield loss caused by 
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velvetleaf competition.  Furthermore, corn and velvetleaf competition simulated over 30 years at 

a single site showed water stress and indicated the probability of years where large corn yield 

losses would result from velvetleaf competition (McDonald and Riha 1999b).  The competition 

simulation with historical weather data suggested that moisture stress during corn’s exponential 

growth phase changes the competitive balance between the crop and weed, in that higher levels 

of crop yield loss were associated with moisture-deficit years (McDonald and Riha 1999b).  This 

evaluation illustrates the potential to use simulation plant growth models for crop-weed 

competition, and how simulated estimates of seasonal environmental variations can aid in 

predicting crop yield losses.  Also, crop and weed simulation models can give insight as to why 

specific responses are evident in the field in only certain sites and years, while providing a useful 

tool for quantifying the long-term occurrences of specific crop and weed interactions (McDonald 

and Riha 1999a).  

In the Great Plains of the United States, Palmer amaranth (Amaranthus palmeri) is one of 

the most aggressive Amaranthus species (Whitson et al. 2002).  Palmer amaranth emerges in 

early May, grows rapidly, and produces prolific numbers of seed (200,000 to 600,000 seed per 

female plant) (Guo and Al-Khatib 2003, Horak 1997, Horak and Loughin 2000, Keeley et al. 

1987, Sellers et al. 2003).  Palmer amaranth, a native from the Sonoran Desert of North America, 

is a summer annual, dioecious plant that can grow up to 3 m in height (Horak 1997, Horak et al. 

1994, Horak and Loughin 2000).  Palmer amaranth control is possible with pre-emergence and 

post-emergence herbicides, however Palmer amaranth can escape management as a result of 

poor herbicide efficacy or herbicide-resistant biotypes.   In the last 15 years, researchers have 

reported biotypes of Palmer amaranth resistant to the acetolactate synthase (Horak and Peterson 
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1995, Sprague et al. 1997), dinitroaniline (Gossett et al. 1992), triazine (Heap 2006), and glycine 

(Culpepper et al. 2006, Heap 2006) herbicide groups.   

Palmer amaranth is considered one of the most troublesome weed problems in the Mid-

west region of the United States (Stoller et al. 1993) and has become a problematic weed in the 

Great Plains (Horak 1997).  Palmer amaranth reduces yields of soybean (Bensch et al. 2003, 

Klingaman and Oliver 1994), cotton (Morgan et al. 2001, Rowland et al. 1999), grain sorghum 

(Moore et al. 2004), and corn (Liphadzi and Dille 2006, Massinga et al. 2001, 2003).  Massinga 

et al. (2001) reported that Palmer amaranth emerging with irrigated corn reduced yield from 11 

to 91% for densities from 0.5 to 8 plants m-1 of row in western Kansas.  In eastern Kansas, 

Liphadzi and Dille (2006) reported dryland corn and irrigated corn yield loss was 6 to 60% and 5 

to 38%, respectively, for Palmer amaranth densities of 0.25 to 6 plants m-1 of row.  Corn yield 

loss was variable between site-years and water management across Kansas.  Massinga et al. 

(2001, 2003) demonstrated that irrigated corn yield losses were a result of reduced potential light 

interception with Palmer amaranth due to a decrease in corn leaf area index with increasing 

Palmer amaranth density.  Information is needed for dryland corn production because corn yield 

loss and competition for light could be different when soil water is limited.   

The degree of competition for water between a crop and a weed is determined by the 

relative root volume occupied by each species (Aldrich 1984) and subsequently, the competition 

for water will be greatest when the crop and weed roots are in the same volume of soil.  Davis et 

al. (1965) described the root moisture extraction profile for Palmer amaranth and other weeds.  

Palmer amaranth had a relatively narrow lateral root distribution and extensive vertical root 

distribution.  Palmer amaranth extracted more water from the upper 0.3 m soil layer which 
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suggests a higher density of roots near the soil surface, but it could also be more competitive 

because it can extract water from greater depths when soil moisture is limited.  Palmer amaranth 

was observed to have rapid root expansion rates (Weise 1968), which would serve as a 

mechanism to compete for soil water (Davis et al. 1967).  Also, Palmer amaranth tolerated 

moisture stress similar to grain sorghum and better than corn when dry matter production was 

compared for wet, intermediate, and dry soil moisture conditions (Weise and Vandiver 1970).   

The overall objective of this research was to investigate Palmer amaranth interference 

with corn produced in dryland and irrigated environments in Kansas.   The specific objectives 

were: 

1) to determine corn and Palmer amaranth growth, development, and grain (seed) 

production when grown alone or in competition, 

2) to determine soil water content throughout the growing season when corn and Palmer 

amaranth were grown alone or in competition, and 

3) to evaluate the performance of the modified ALMANAC model for predicting 

monoculture corn yield and corn yield loss from Palmer amaranth competition in dryland 

and irrigated environments. 
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CHAPTER 1 - Corn and Palmer Amaranth Interactions in Dryland 

and Irrigated Environments 

 

ABSTRACT 

 

Palmer amaranth is a competitive weed in corn fields in the Great Plains of the United 

States.  Field experiments were conducted in 2005 and 2006 at the Department of Agronomy 

Ashland Bottoms Research Farm near Manhattan, KS.  The objective was to determine corn and 

Palmer amaranth growth, development, and grain (seed) production when grown alone or in 

competition under dryland and irrigated environments.  The experiment was arranged in a side 

by side design with whole plots being dryland and furrow irrigation.  Within each soil water 

environment, sub-plot treatments were monoculture Palmer amaranth at one plant m-1 of row, 

and corn with zero, one, and four Palmer amaranth plants m-1 of row.  Water stress occurred 

earlier and caused more drought-like conditions in 2006 than 2005.  Corn height was impacted 

more by water stress than by Palmer amaranth presence.  Corn leaf number, LAI, and dry weight 

were reduced with increasing water stress and were reduced further in the presence of Palmer 

amaranth.  In both years, dryland monoculture corn yield was 50% less when compared to 

irrigated monoculture corn.  Corn yield reductions were similar with increasing Palmer amaranth 
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density across soil water environments in each year except for 2006 dryland corn.  Palmer 

amaranth growth and development were negatively impacted more by corn interference and 

Palmer amaranth density than by water stress.  Growth and development trends of corn and 

Palmer amaranth in dryland and irrigated environments were used to understand competition 

during the season and end of season corn yield loss.  The information improved the 

understanding of corn and Palmer amaranth interference in well-watered and limited soil water 

environments. 

Key words:  competition, furrow irrigation, leaf area index, water stress, weed seed production, 

yield loss  
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INTRODUCTION 

 

In the semi-arid region of the U.S. Great Plains, water is the most limiting resource for 

crop production (Smika 1970).  Crop yields in the region are impacted by highly variable 

precipitation, low soil water availability, and high evapotranspiration.  Corn grown under 

dryland conditions often encounter water stress during the growing season, which results in 

unpredictable corn yields and yield losses due to water deficits.  The potential corn yield in a 

given year is impacted by soil water availability and crop management practices.  Any crop 

management practice that reduces the availability of soil water for corn plants can result in 

water-stressed plants such as allowing weed competition to occur, which subsequently will limit 

and reduce corn yield potential.  If improper weed management occurs, then weeds also compete 

with corn for solar radiation, and nutrients, in addition to available soil water.  The level of 

interference weeds have on crops for soil water depends on the weed species, density, time of 

emergence relative to crop, and spatial distribution and duration of weed growth with crop, 

together with the environmental conditions that limit water availability (Patterson 1995).  In 

addition, weeds that are more effective competitors for soil water could cause more yield loss 

when soil water is limiting, but this is not always the case when potential crop yield is also 

lowered due to water stress (Mortensen and Coble 1989, Patterson 1995).  Thus, the extent of 
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competition between crops and weeds growing in variable environments is poorly understood 

(Mortensen and Coble 1989).  Effective crop and weed management solutions to minimize yield 

loss could be developed with an improved understanding of the crop growth, development, and 

yield potential in association with sensitivity to seasonal water stress in water-limited 

environments. 

In the Great Plains of the United States from Kansas south to Texas, Palmer amaranth 

(Amaranthus palmeri) is one of the most aggressive Amaranthus species (Whitson et al. 2002).  

Palmer amaranth emerges in early May, grows rapidly, and produces prolific number of seed 

(200,000 to 600,000 seeds per female plant) (Guo and Al-Khatib 2003, Horak and Loughin 2000, 

Keeley et al. 1987, Sellers et al. 2003).  Palmer amaranth, a native from the Sonoran Desert of 

North America, is a summer annual, dioecious plant that can grow up to 3 m in height (Horak et 

al. 1994, Horak and Loughin 2000).  Palmer amaranth control is possible with pre-emergence 

and post-emergence herbicides, however this weed can escape management as a result of poor 

herbicide efficacy or herbicide-resistant biotypes.   In the last 15 years, researchers have reported 

biotypes of Palmer amaranth resistant to the acetolactate synthase (Horak and Peterson 1995, 

Sprague et al. 1997), dinitroaniline (Gossett et al. 1992), triazine (Heap 2006), and glycine 

(Culpepper et al. 2006, Heap 2006) herbicide groups.   

Palmer amaranth reduces yields of soybean (Bensch et al. 2003, Klingaman and Oliver 

1994); cotton (Morgan et al. 2001, Rowland et al. 1999), grain sorghum (Moore et al. 2004), and 

corn (Liphadzi and Dille 2006, Massinga et al. 2001, 2003).  Massinga et al. (2001) reported 

Palmer amaranth emerging with irrigated corn reduced yield from 11 to 91% for densities from 

0.5 to 8 plants m-1 of row in western Kansas.  In eastern Kansas, Liphadzi and Dille (2006) 
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reported dryland corn and irrigated corn yield losses were 6 to 60% and 5 to 38%, respectively, 

for Palmer amaranth densities of 0.25 to 6 plants m-1 of row.  Corn yield loss was variable 

between site-years and water management across Kansas.  Massinga et al. (2001, 2003) 

demonstrated that irrigated corn yield losses were a result of reduced potential light interception 

with Palmer amaranth as measured by a decrease in corn leaf area index (LAI) with increasing 

Palmer amaranth density.  Information is needed for dryland corn production because corn yield 

loss and competition for light could be different when soil water is limited.   

   A mechanistic approach to quantifying corn and Palmer amaranth growth and 

development throughout the growing season would provide information to explain the causes of 

corn yield loss in different soil water environments.  The objective of this study was to determine 

corn and Palmer amaranth growth, development, and grain (seed) production when grown alone 

or in competition under dryland and irrigated environments. 

 

MATERIALS AND METHODS 

 

Field experiments were conducted in 2005 and 2006 at the Kansas State University 

Agronomy Department Ashland Bottoms Research Farm 8 km south of Manhattan, KS.  In 2005, 

the experiment was established on Eudora silt loam soil (coarse-silty, mixed, superactive, mesic 

Fluventic Hapludoll) with a pH of 5.8 and 2.0 % OM.  The previous crop was soybean.  The 

field was fertilized with 224 kg N ha-1 using liquid urea-ammonium nitrate (28-0-0) and a dry 

blend of 45 kg ha-1 muriate of potash, 33.5 kg ha-1 sulfur (90%), 13.5 kg ha-1 zinc sulfate (31%),  
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and 336 kg ha-1 pell-lime in spring, then incorporated by field cultivation.  The field was set up 

for furrow irrigation one month prior to planting with ridged rows made with one pass planter 

furrow row units and a second pass with a furrow cultivation unit.  In 2006, the experiment was 

established in a neighboring field where the soil was a Belvue silt loam (coarse-silty, mixed, 

superactive, nonacid, mesic Typic Udifluvents) with a pH of 5.6 and 1.1 % OM.  The previous 

crop was soybean followed immediately with winter wheat, which was terminated in early April.  

The field was fertilized with 224 kg N ha-1 using liquid urea-ammonium nitrate (32-0-0) and a 

dry blend of 56 kg ha-1 muriate of potash, 33.5 kg ha-1 sulfur (90%), 13.5 kg ha-1 zinc sulfate 

(31%), and 336 kg ha-1 pell-lime.  Ridged furrow irrigation rows were established with one pass 

planter furrow row units and two passes with a furrow cultivation unit one month prior to 

planting, which also incorporated the fertilizer.  Corn hybrid ‘DKC60-19RR’ was planted at 

76,600 seeds ha-1 at 0.76 m row spacing on May 6, 2005 and May 11, 2006 on the ridged rows. 

Experiments were arranged in a split-plot design with two whole plot treatments being 

soil water environment (dryland and well watered furrow irrigation).  Replication was restricted 

to within each soil water environment due to logistics of irrigation methods.  Within each soil 

water environment, four sub-plot treatments were established including monoculture corn, 

monoculture Palmer amaranth at one plant m-1 of row, and two mixtures of corn with Palmer 

amaranth at one and four weeds m-1 of row.  The weed densities were selected based on previous 

research results for Palmer amaranth competitiveness in dryland and irrigated environments 

(Blinka 2004, Liphadzi and Dille 2006, Massinga et al. 2001).  Treatments (sub-plot) were 

replicated four times and arranged in a randomized complete block within each soil water 

environment.  Each sub-plot was four corn rows wide and 17 m long to allow for up to 12 
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destructive plant harvests, yield estimation, and soil environment measurements.  Immediately 

after planting, the plot layout was established and Palmer amaranth seeds were hand sown to all 

four rows of a plot and lightly raked to cover seed with soil.  The Palmer amaranth seed was 

collected in fall (2004 and 2005) at the Ashland Bottoms Research Farm.  All plots were furrow 

irrigated to establish corn and Palmer amaranth where two and one irrigation applications were 

made in 2005 and 2006, respectively.  The irrigated plots were watered as needed by the crop 

with each application being approximately 50 mm.  In 2005, irrigation applications were made 

June 27, July 14 and 28, and August 9, and in 2006, applied on  June 9, 22, 30, July 19 and 27, 

and August 2 and 10. 

  After emergence, Palmer amaranth seedlings were hand thinned to treatment densities 

with plants located 10 cm of each corn row and corn was removed from monoculture Palmer 

amaranth plots.  Plots were hand weeded to maintain treatment densities and to remove other 

weed species for the duration of the experiment.  Destructive plant harvests started five days 

after crop and weed emergence (DAE) and sampling was repeated every four to nine days until 

corn tasseled and a final plant harvest was taken after plant physiological maturity (Table 1.1).   

At each harvest date, two corn and/or two Palmer amaranth plants were randomly selected from 

one row meter in the two center rows of the four row plots.  In the field, plant growth stage and 

height data were measured. Corn plant height was determined from the soil surface near the plant 

to the tallest portion of the upper most developed leaf.  Corn growth stage (leaf number) was 

determined based on Ritchie et al. (1996).  Palmer amaranth plant height was determined from 

the soil surface to the top of the apical node at vegetative stages and to the top of inflorescence 

once reproductive structures were initiated.  Plants were then cut at the soil surface, labeled, and 
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taken to the Kansas State Weed Ecology laboratory for further processing.  During plant 

processing, plants were separated into stem, leaf, and reproductive parts.  Palmer amaranth 

leaves were cut from the plant without the petiole and total plant leaf number was recorded.  

Corn plants were partitioned into stem, leaf, and reproductive (ear and tassel) parts.  Green corn 

leaf blades and Palmer amaranth leaves were used to determine leaf area per plant in cm2 using a 

LI-COR Li-31001.  Partitioned plant parts were placed into individual paper sacks, dried at 66° C 

to constant weight, and final dry biomass was determined.  At corn and Palmer amaranth 

physiological maturity, the plants were collected and processed as previously described, except 

no leaf number and leaf area measurements were determined.  Palmer amaranth seed was sieved 

from the inflorescence and further cleaned with a seed air blower device2.  Palmer amaranth seed 

was weighed and a 0.25 g sub-sample was counted to determine total seed production per plant.  

Corn grain yield was determined by harvesting two m from each of the two center rows in each 

sub-plot.  Corn yield was adjusted to 15.5% moisture content.   

Soil moisture was measured in the 0-15 and 0-30 cm depths to evaluate early season soil 

water availability.  Soil moisture was measured within one treatment plot for one replication 

using Time Domain Reflectometry (TDR1003).  Rainfall was measured using a tipping bucket 

rain gauge4.  Rainfall data were recorded every 60 minutes to the data logger.  The data 

acquisition and control system and rain gauge were installed after planting and soil moisture 

probes were installed after establishment of Palmer amaranth plant densities.  Data were 

downloaded from the data logger5 to a laptop computer at least once each week to monitor 

operation of the instruments and data quality. 



Soil physical properties were determined for the two soil types used in the experiment.  

Percent sand, silt, and clay were determined to a 120 cm depth by the Soil Testing Laboratory at 

Kansas State University.  Dry bulk density of the field soils were determined from soil cores 

taken to 30 cm.  Soil water content was determined at -0.03 and -1.5 MPa soil water potential 

with a cellulose acetate membrane from soil samples taken at 0 to 20 cm depth (conducted by Dr. 

L. Stone and Brian Frank, Kansas State University). 

Dates of planting, emergence, and plant harvests are presented in Table 1.1.   Corn and 

Palmer amaranth plant destructive data (specifically leaf number, height, and total plant weight 

on a per plant basis), LAI, corn grain yield, and weed seed production were analyzed using the 

GLIMMIX procedure in SAS v9.16.  The analyses were conducted for each plant species 

response and sample date.  The LAI was calculated for each species in the sub-plots.  The PROC 

GLIMMIX procedure calculated the least-squared means and least-squared standard errors.  The 

difference between the standard errors was used to determine the Least Significant Difference 

(LSD) at α = 0.05 for both within each soil water environment for sub-plot treatments and 

between soil water environments to test for soil water environment (whole-plot) and sub-plot 

treatment differences.   

Response of corn height at tassel to Palmer amaranth density and response of weed height 

to increasing weed density were described using a linear regression model for treatments within 

environments: 

dHgt by0 +=         [1] 

where Hgt is the height (cm), y0 is the intercept, b is the slope of the line, and d is the weed 

density (plants m-1 of row).  Corn and Palmer amaranth plant height data that showed no 
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response to weed density were analyzed with the GLIMMIX procedure to determine if 

differences existed due to environment and treatments. 

Cumulative thermal time from emergence was calculated using growing degree days 

(GDD): 

ΣM = ([{Tmax +  Tmin}/2] – TB)     [2] 

where M is the degree days for a given day, Tmax and Tmin are daily maximum and minimum air 

temperatures (°C), respectively, and TB is the base temperature set at 10°C.  The weather data 

were compiled from the Kansas State Weather Data Library (M. Knapp, personal 

communication).  Precipitation data sources were the Ashland Bottoms Research Farm and rain-

gauge measurements from within the field.  The reference evapotranspiration (ETo) was 

calculated based on methods described by Allen et al. (1998).  Monthly mean air temperatures 

and total precipitation data for the period from April through September in 2005 and 2006 along 

with 30-yr normal values are presented in Table 1.2.   

 

RESULTS AND DISCUSSION 

 

Growing season monthly mean temperatures were near 30-yr normal temperatures for 

2005 and 2006 but the 2006 season was slightly warmer overall than 2005 (Table 1.2 and Figure 

1.1).  Total rainfall received from May 1 to August 31 was 496 mm and 366 mm for 2005 and 

2006, respectively (Table 1.2 and Figure 1.1).  In both years, the May rainfall was almost 90 mm 

less than 30-yr normal precipitation.  In 2005, 53% of the growing season rainfall occurred in 



23 

 

 

early June, while July received only 60 mm of rainfall and August precipitation was too late in 

the season to impact corn yield results.  The June 2005 rainfall provided near optimum growing 

conditions for corn and Palmer amaranth but limited rainfall thereafter generated a moderate 

midsummer drought.  In 2006, rainfall deficits from 30-yr normal continued from May through 

July to generate a severe midsummer drought since 57% of the May through August rainfall 

occurred in mid to late August.  Therefore, dryland corn was under water-limited stress 

throughout most of the 2006 growing season.   

The difference in extent of water stress between the two years was not limited to rainfall 

but the 2005 field soil (0.26 cm3 cm-3) had 1.5 times higher available water content than the 2006 

field soil (0.18 cm3 cm-3) in the 30 cm profile depth.  The soil texture characteristics of the 2005 

soil were 30, 59, and 11 percent sand, silt, and clay, respectively, while the 2006 soil had 44, 47, 

and 8 percent sand, silt, and clay, respectively, at the 0 to 30 cm depth.  The volumetric soil 

water content determined by the TDR showed the seasonal trends of soil water for dryland and 

irrigated environments, which highlighted dryland water stress periods in the 2005 and 2006 

growing season (data not shown, see Chapter 2).  The cumulative ETo from emergence to corn 

physiological maturity was 480 mm and 510 mm in 2005 and 2006, respectively (Figure 1.2), 

which indicated that the environmental demand for water was higher in 2006 than 2005.  The 

furrow irrigated environment received a total of 203 mm and 356 mm of water in 2005 and 2006, 

respectively, from emergence to the final plant harvest.  The difference in applied irrigation was 

attributed to differences in cumulative ETo and soil physical properties for the two years, where 

2006 had higher demand for water.   Cumulative thermal time from emergence to corn 

physiological maturity was 1,676 GDD in 2005 (September 12) and 1,556 GDD in 2006 (August 
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28) (Table 1.1 and Figure 1.2), which indicated that corn matured slightly earlier in 2006 than 

2005, due to warmer temperatures.  

Corn and Palmer amaranth emerged at the same time in 2005 and 2006 aided by the 

irrigation of both soil water environments immediately after planting.  The available soil water 

was equal in both soil water environment plots at the time of crop and weed emergence, however 

after emergence, rainfall was the only source of water for the dryland environment plots.  First 

subsequent irrigation was June 27 in 2005 and earlier in 2006 on June 9 due to limited soil water.  

Corn: emergence to tassel 

Corn growth and development responses from emergence to mid-season are presented in 

Figures 1.3 through 1.10 for 2005 and 2006.  In 2005, corn height differences were inconsistent.  

By corn tassel stage (620 GDD), dryland monoculture corn was significantly taller than dryland 

corn with Palmer amaranth at one plant m-1 of row, but not different from dryland corn with four 

Palmer amaranth plants m-1 of row or any irrigated corn treatments (Figure 1.3A).  Irrigated corn 

height was not affected by Palmer amaranth at any weed density.  In 2006, significant 

differences in corn plant height were not observed until 402 GDD, where dryland corn height 

was reduced due to water stress and continued to be 80 cm shorter than irrigated corn at 643 

GDD (Figure 1.3B).  Irrigated corn heights were taller than 200 cm and dryland corn heights 

were shorter than 150 cm.  Height of dryland corn (116 cm) with four Palmer amaranth plants m-

1 of row was reduced 47% when compared to irrigated monoculture corn (220 cm).  At tassel 

stage (643 GDD), corn height decreased with increasing Palmer amaranth density for dryland or 

irrigated environments with a slope of -7.16 and -4.26 cm weed-1 m-1 of row, respectively (Figure 



25 

 

 

1.4).  Liphadzi and Dille (2006) also observed dryland corn height reductions from Palmer 

amaranth interference with a slope of -1.58 cm weed-1 m-1 of row.   

In 2005, corn leaf number per plant at 620 GDD ranged from 18 to 19 leaves with no 

differences among treatments (Figure 1.5A).  Corn leaf number in 2006 was the same across 

treatments until after 309 GDD when water stress appeared to have delayed leaf appearance and 

reduced leaf number for subsequent harvest dates (Figure 1.5B).  Corn had one and two more 

leaves per plant at 402 and 500 GDD, respectively, in the irrigated compared to the dryland 

environments.  At 643 GDD, irrigated monoculture corn had 19 leaves and presence of Palmer 

amaranth did not reduce corn leaf number.  Palmer amaranth at four plants m-1 of row reduced 

corn leaf number per plant by two leaves in the dryland environment.  Corn had three, three, and 

five fewer leaves per plant with zero, one, and four Palmer amaranth plants m-1 of row, 

respectively, in the dryland environment compared to monoculture irrigated corn (Figure 1.5B). 

Corn LAI has been documented to provide an early indication of the effect of weed 

competition (Hall et al. 1992, Knezevic et al. 1994, Massinga et al. 2001, 2003, Tollenaar et al. 

1994).  Palmer amaranth’s competitive ability to reduce corn LAI in water limited and non-

limited conditions demonstrated the potential to reduce biomass and yield. Massinga et al. (2001) 

reported that irrigated corn LAI at silking decreased as Palmer amaranth density increased.  In 

contrast, the results of this study showed that irrigated corn LAI reductions from Palmer 

amaranth interference were non-significantly less than LAI reductions previously reported by 

Massinga et al. (2001) (Figure 1.6).  Corn LAI increased developmentally in the irrigated 

environment for both years with maximum LAI occurring at corn tassel (Figures 1.6).  Palmer 

amaranth interference did not significantly reduce LAI in irrigated plots in both years.  At 620 
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GDD, LAI for dryland and irrigated monoculture corn was 20% larger than dryland corn with 

both Palmer amaranth densities. In 2006 early water-stress reduced LAI of dryland corn by 22 to 

37% across Palmer amaranth densities when compared with irrigated monoculture corn at 402 

GDD (Figure 1.6B).  At 500 GDD, dryland corn LAI was 38% lower than all irrigated corn 

treatments.  Leaf area index of dryland corn with 4 Palmer amaranth plants m-1 of row LAI was 

27% lower than dryland monoculture corn (4.3 m2 m-2) at 643 GDD.  The 2006 water-stressed 

dryland corn LAI reductions were similar to Massinga et al. (2001) previously reported irrigated 

corn LAI reductions, which indicated there were differences in hybrid selection and crop 

management, which can greatly influence corn LAI values regardless of weed presence.  Corn 

LAI reductions of 23 and 27% in 2005 and 2006 for dryland corn with 4 Palmer amaranth plants 

m-1 of row, respectively, were similar to those reported by Blinka (2004) with LAI reduction of 

23%.  The results indicate that actively growing non-stressed corn can compete with Palmer 

amaranth at low densities but when corn is water-stressed and resulting plant growth slows, 

Palmer amaranth can significantly reduce corn LAI and thus out-compete corn for light.   

Corn grown alone had total plant dry weights that were not different between dryland and 

irrigated environments at 620 GDD, however corn grown with one or four Palmer amaranth 

plants m-1 of row had 20% less corn dry weight within either soil moisture environment in 2005 

(Figure 1.7A).  In 2006, water stress began to reduce dryland corn dry weight compared to 

irrigated corn by 402 GDD (Figure 1.7B).  The combination of water stress and Palmer amaranth 

interference further reduced corn dry weight.  At 643 GDD, irrigated monoculture corn had the 

highest corn dry weight at 124 g plant-1 and corn dry weight was reduced 22 and 41% with one 

and four Palmer amaranth plants m-1 of row, respectively.  Dryland corn dry weight decreased 25 
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and 47% with one and four Palmer amaranth plants m-1 of row, respectively, similar to influence 

of Palmer amaranth on irrigated corn dry weight.  Overall, dryland corn with zero, one, and four 

Palmer amaranth plants m-1 of row had 50, 62, and 74% less plant dry weights compared to 

irrigated monoculture corn.    

Overall by corn tasselling, water stresses impacted corn height, leaf number, LAI, and 

total dry weight.  The presence of Palmer amaranth further reduced these corn growth and 

developmental measures, especially in 2006 with the early season drought.    

Corn: final plant harvest and grain yield 

Corn dry weight accumulation and grain production from emergence to physiological 

maturity are represented by final harvest results (Table 1.3).  Corn that experiences stress during 

the flowering and grain fill period can severely limit potential yield (Runge 1968, Shaw 1988).  

The experimental fields received 66 and 51 mm of rainfall from silking to dent corn growth stage 

in 2005 and 2006, respectively (Figure 1.1).  The low rainfall amounts resulted in moderate 

drought stress in the dryland corn in 2005 but the 2006 field soil had lower soil water retention 

properties and therefore resulted in severely water-stressed dryland corn.  The irrigated corn 

needed additional water application in 2006 compared to the 2005 growing season.   

Corn plant dry weight at final harvest was impacted by the cumulative effects of leaf, 

stem, and reproductive tissue maintenance and growth with the major component being corn ear 

and grain development. These were further impacted by water-limited stress and presence of 

Palmer amaranth.  Irrigated monoculture corn had the largest plant dry weight at 398 and 379 g 

plant-1 in 2005 and 2006, respectively (Table 1.3).  Dryland monoculture corn dry weight was 
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36% less than irrigated monoculture corn, which was similar to irrigated corn with Palmer 

amaranth.  In 2005, irrigated corn with one and four Palmer amaranth m-1 of row had  total plant 

dry weights that were 36 and 42% less than irrigated monoculture corn, respectively, although 

not different from each other.  Plant dry weights for dryland corn with one and four Palmer 

amaranth plants m-1 of row were 34 and 53% lower, respectively, than dryland monoculture corn 

and 58 and 70% lower than irrigated monoculture corn at the same respective Palmer amaranth 

densities. These results indicate that moderate late season water stress can reduce dryland corn 

dry weight similar to irrigated corn with one and four Palmer amaranth plants m-1 of row.  In 

2006, all irrigated corn plant dry weights were greater than dryland corn with or without Palmer 

amaranth.  Plant dry weights for irrigated corn with one and four Palmer amaranth plants m-1 of 

row were reduced 35 and 51%, respectively, due to the presence of Palmer amaranth 

interference, but they were not different (Table 1.3).  Dryland corn plant dry weights were 

reduced 62 and 80% when in competition with one and four Palmer amaranth plants m-1, 

respectively, than corn grown alone (180 g plant-1).  Water stress alone caused 52% reduction in 

dry weight and water-weed stress in combination reduced dryland corn dry weights by 82 and 

90% with one and four Palmer amaranth plants m-1 of row, respectively, relative to irrigated 

monoculture corn.   

Dryland corn with one and four Palmer amaranth plants m-1 of row had little biomass 

accumulation from corn tassel stage to physiological maturity, which resulted from poor corn ear 

development.  Thus in both years corn plant dry weight was reduced with increasing water stress 

and further reduced with increasing Palmer amaranth density.  Dryland corn dry weights were 
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impacted more by water stress in 2006 than 2005 because the stress started earlier in the growing 

season and the soil had less water retention properties.     

In 2005, corn grain yield had comparable reductions from Palmer amaranth and water 

stress as plant dry weight (Table 1.3).  Dryland and irrigated monoculture corn grain yields were 

7,005 and 15,435 kg ha-1, respectively, and irrigated monoculture corn grain yield had the largest 

yield.  Palmer amaranth at one and four plants m-1 of row reduced irrigated corn yield 35 and 

43% while those populations reduced dryland corn yield 31 and 45%, respectively.  Dryland corn 

yield was reduced 55, 69, and 75% with zero, one, and four Palmer amaranth plants m-1 of row 

when compared to irrigated monoculture corn, respectively.  In 2006, irrigated monoculture corn 

grain yield was 16,108 kg ha-1 and greater than corn yields with water and Palmer amaranth 

stresses (Table 1.3).  Irrigated corn yield loss with one and four Palmer amaranth plants m-1 of 

row was 39 and 52%, respectively.  Dryland monoculture corn yield was 53% less than irrigated 

monoculture corn and Palmer amaranth at one and four plants m-1 of row reduced dryland corn 

yield 87 and 99% (1,013 and 98 kg ha-1), respectively.  The high dryland corn yield loss from 

Palmer amaranth presence and water stress was supported by the plant dry weight results, 

previously described.  Potential yield of dryland corn was greatly reduced by the termination of 

crop growth and development caused by severe water stress combined with increasing Palmer 

amaranth density. 

Percent corn yield losses were similar with increasing Palmer amaranth density between 

soil environments in each year, except for 2006 dryland corn, which corresponds to dry weights.  

The 2005 and 2006 irrigated environments provided optimum water and nutrients for corn, and 

corn yield losses still ranged from 35 to 39% and 42 to 52% for corn with one and four Palmer 
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amaranth plants m-1 of row, respectively.  Two different water-stress environments were studied 

across years; 2005 had mid-season drought while 2006 had an early season severe drought.  

Dryland corn yield loss with one and four Palmer amaranth plants m-1 of row was 31 and 45% in 

2005 and 87 and 99% in 2006, respectively to weed density.  Massinga et al. (2001) also 

observed irrigated corn yield losses from Palmer amaranth emerging with corn to be between 24 

to 47% with one Palmer amaranth plant m-1 of row and 50 to 86% with four Palmer amaranth 

plants m-1 of row across four site-years in southwestern Kansas.  Liphadzi and Dille (2006) 

reported much lower irrigated corn yield losses of 16 and 34% for corn with one and four Palmer 

amaranth plants m-1 of row, respectively, from one site-year in northeastern Kansas.  The dryland 

corn yield losses reported by Liphadzi and Dille (2006) were 21 and 51% with one and four 

Palmer amaranth plants m-1 of row, respectively at two site-years.  Blinka (2004) had 52% 

dryland corn yield loss from four Palmer amaranth plants m-1 of row.  These previously reported 

dryland corn yield loss results were very similar to the 2005 corn yield reductions.  There are 

occasions, however, when dryland corn does not produce any grain with or without weeds 

because of severe drought after tasselling (Blinka 2004, Liphadzi and Dille 2006).  This 

demonstrates the challenge in predicting corn yield loss in water-stressed environments, and 

difficulties in making economical weed control decisions.     

Palmer amaranth: emergence to final plant harvest 

Palmer amaranth growth and development responses from emergence to mid-season 

(corn tassel stage) are presented in Figure 1.8 (height), Figure 1.9 (LAI), and Figure 1.10 (total 



31 

 

 

plant weight) with final plant harvest results presented in Table 1.4 for 2005 and 2006.  Overall, 

the growth and biomass accumulation of Palmer amaranth was greater in 2006 than 2005. 

In 2005, dryland and irrigated Palmer amaranth heights at both densities with corn were 

taller (137 to 149) than monoculture Palmer amaranth (122 cm) from 445 GDD through 620 

GDD in both environments (Figure 1.8).  In 2006 by 643 GDD, irrigated Palmer amaranth was 

taller than dryland Palmer amaranth.  Palmer amaranth in 2006 had earlier gains in height that 

could be attributed to warmer temperatures and the soil was not excessively wet, unlike early 

June 2005.  Three weeks after emergence (~ 300 GDD), Palmer amaranth was more than two 

times taller in 2006 than in 2005 for respective treatments.  In both years, corn interference with 

Palmer amaranth had little impact on weed height but four Palmer amaranth plants m-1 of row 

with corn was taller than monoculture Palmer amaranth beginning 300 GDD but not always 

different.  Palmer amaranth height doubled every 60 GDD from emergence to 445 or 402 GDD 

in 2005 and 2006, respectively. 

At final plant harvest Palmer amaranth height ranged from 256 to 305 cm in 2005 and 

from 264 to 243 in 2006 (Table 1.4).  In 2005, Palmer amaranth height was not impacted by mid-

to-late season low soil moisture, however in 2006, heights of dryland monoculture Palmer 

amaranth and dryland Palmer amaranth with corn were reduced 15 to 20% at tassel and maturity 

when compared to irrigated Palmer amaranth grown alone.  This indicated that water stress 

negatively impacted Palmer amaranth with and without corn interference.  Height measurements 

included any terminal inflorescence, and thus Palmer amaranth heights were taller than those 

previously reported for monoculture Palmer amaranth height by Horak and Loughin (2000) and 

Sellers et al. (2003).    
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Palmer amaranth at four plants m-1 of row with corn had the highest LAI in dryland and 

irrigated environments for both years from emergence through 300 GDD (Figure 1.9).  After 300 

GDD, Palmer amaranth growth increased exponentially resulting in rapidly increasing LAI 

across all treatments.  By 620 GDD in 2005, LAI for monoculture Palmer amaranth was 1.48 and 

2.29 m2 m-2 for dryland and irrigated environments, respectively (Figure 1.9A).  This was more 

than 6.5 and 2 times greater than LAI for one and four Palmer amaranth plants m-1 of row with 

corn, respectively.  In 2006 by 643 GDD, one Palmer amaranth plant m-1 of row with corn had 

less LAI than one Palmer amaranth plant m-1 of row in monoculture or at four Palmer amaranth 

plants m-1 of row with corn.  Palmer amaranth at one and four plants m-1 of row with corn in the  

dryland environment had the greatest increase in LAI from 500 to 643 GDD because the corn 

was water-stressed and, as a result, corn interfered less with Palmer amaranth growth.  Our LAI 

values were similar to those reported by Massinga (2000) for the same Palmer amaranth densities 

with irrigated corn.  Also, Palmer amaranth LAI increased with the addition of Palmer amaranth 

plants with corn, which agrees with Massinga et al. (2003).  

Palmer amaranth dry weight per plant was reduced due to corn interference beginning at 

378 and 302 GDD in 2005 and 2006, respectively (Figure 1.10).  In 2005, dryland and irrigated 

monoculture Palmer amaranth dry weights were 171 and 199 g plant-1 at 620 GDD and were 

1,121 and 1,176 g plant-1 by 1,676 GDD, respectively (Figure 1.10A and Table 1.4).  Corn 

interference correspondingly caused over 55 and 65% reduction in Palmer amaranth dry weight 

at 620 and 1,676 GDD, respectively with no difference between dryland and irrigated 

environments.  Palmer amaranth dry weight was greater in 2006 than 2005, which corresponds to 

taller plants with more leaf area (Figure 1.8 and 1.9).  In 2006, Palmer amaranth had rapid early 
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season growth which was over five times greater than 2005.  In 2006 at 500 GDD, dryland 

Palmer amaranth dry weight was significantly reduced due to corn interference with increasing 

Palmer amaranth density compared to the irrigated Palmer amaranth treatments.  At 643 GDD, 

however, dryland and irrigated monoculture Palmer amaranth dry weights were not different at 

376 and 428 g plant-1, respectively.  Dryland Palmer amaranth at four plant m-1 of row with corn 

and irrigated Palmer amaranth at one and four plants m-1 of row with corn had the lowest plant 

dry weights at 105, 115, and 88 g plant-1, respectively.  The dry weight of irrigated Palmer 

amaranth with corn decreased from 500 to 643 GDD.  This indicated that irrigated corn reduced 

Palmer amaranth biomass accumulation, while the weed was repartitioning growth for 

reproductive development and light interception.  This means Palmer amaranth was senescing 

lower leaves (-0.32 g leaf dry weight plant-1) in the canopy in an effort to develop stem (+0.21 g 

stem dry weight plant-1), leaves, and inflorescence higher in the canopy, but corn competition 

limited this development due to its rapid growth during this period.   During the same period, 

however dry weight of dryland Palmer amaranth at one plant m-1 of row with corn increased at 

0.93 g plant -1 GDD-1, which was similar to dryland and irrigated monoculture Palmer amaranth 

at 1.12 and 1.18 g plant -1 GDD-1, respectively.  The increase in dryland Palmer amaranth growth 

at one plant m-1 of row with corn at this time indicated that interference by water-stressed and 

corn was less than irrigated corn at the same weed density.  Dry weight of dryland corn with one 

Palmer amaranth m-1 of row was 50% less than irrigated corn at the same weed density, which 

confirms the opportunity for Palmer amaranth growth.  In 2006 at final harvest (1,556 GDD), 

irrigated monoculture Palmer amaranth plant dry weight (1,739 g plant-1) was greater than all 

other Palmer amaranth water environment and density treatments with similar reductions in plant 
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dry weight at 643 GDD (Figure 1.10).  Dryland monoculture Palmer amaranth,  dryland Palmer 

amaranth at one and four plants m-1 of row plant with corn, and irrigated Palmer amaranth at one 

and four plants m-1 of row plant with corn plant dry weight was reduced 26, 46, 79, 69, and 73 

%, respectively when compared to irrigated monoculture Palmer amaranth.  The 2006 Palmer 

amaranth dry weight was reduced with increasing water stress, corn interference, and Palmer 

amaranth density.  In 2005 and 2006, Palmer amaranth plant dry weights were similar to those 

previously reported (Horak and Loughin 2000, Sellers et al. 2003).  The 2006 monoculture 

Palmer amaranth plant dry weights from emergence to 400 GDD were similar to Horak and 

Loughin (2000) results with more rainfall, but the 2006 late season plant dry weight 

accumulations were greater than previously reported values. 

Palmer amaranth seed production 

Seed production by Palmer amaranth in both years was not different due to high 

variability among treatments, but positive trends with means were observed (Table 1.4).  Seed 

production plant-1 decreased with increasing Palmer amaranth density and the number of seeds 

m-2 increased with increasing weed density with corn, which agrees with previous studies 

(Bensch et al. 2003, Massinga et al. 2001).  Liphadzi and Dille (2006) found no effect of Palmer 

amaranth density on seed production plant-1 in adverse environmental conditions.   In 2005, 

dryland and irrigated monoculture Palmer amaranth produced near 300,000 seeds m-2.  When 

Palmer amaranth was grown with corn, irrigated Palmer amaranth produced more seed m-2 than 

dryland Palmer amaranth.  In 2006 less seeds m-2 were produced by dryland and irrigated 

monoculture Palmer amaranth with 147,000 and 111, 000 seeds m-2.  All of 2006 dryland Palmer 
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amaranth with corn had higher seed production due to less corn interference and the ability to 

grow and develop opportunistically in water-stressed conditions.  Fewer seeds produced in 2006 

than 2005 could be attributed to high rainfall and high winds severely lodged Palmer amaranth 

plants in mid-August, which caused plants to abort or shatter seeds.  Overall, seed production 

results may have been underestimated due to seed loss from shattering at harvest and seed 

separating procedures. 

 

CONCLUSIONS 

  

The results of this study showed that corn and Palmer amaranth growth, development, 

and grain (seed) production potential were dependent on which species had the competitive 

ability to capture a limiting resource (water and light).  In this side-by-side comparison with 

different soil water environments, water stress negatively impacted corn more than Palmer 

amaranth and the magnitude of corn reductions depended on corn’s ability to suppress Palmer 

amaranth. Lindquist et al. (1998) showed that high values of maximum corn LAI, rate of corn 

canopy closure, or corn height at which leaf area occurs vertically in the canopy can improve 

corn tolerance and suppressive ability of velvetleaf (Abutilon theophrasti). Our results showed 

that when Palmer amaranth had rapid early season growth, it was able to interfere more with 

corn and cause greater reductions in corn dry weight and LAI.  Water-stressed dryland corn did 

not have the ability to suppress Palmer amaranth and subsequently Palmer amaranth significantly 

reduced corn growth and yield.  The extent of dryland corn yield loss depended on the period of 
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water stress and weed density, whereas irrigated corn yield losses were caused by Palmer 

amaranth interference.  Massinga et al. (2003) showed that in an irrigated environment Palmer 

amaranth had a higher leaf area concentration in the upper canopy and able to intercept more 

solar radiation than corn.   

Results of this research improve the understanding of interactions between corn and 

Palmer amaranth when soil water is both optimum and limited throughout the growing season.  

The information gained from this experiment has provided an improved understanding of corn 

yield loss risks associated with water management and Palmer amaranth competition.  The 

research provided results to re-emphasize that corn management can be used as a tool to suppress 

weed competitiveness and ultimately minimize potential yield loss.  Further research is needed to 

evaluate corn and Palmer amaranth interactions under limited irrigation systems to improve 

irrigation application profitability and environmental stewardship of water use.  This future 

knowledge will improve crop-weed competition models and ultimately, optimize corn water use 

and weed management decisions in diverse environments. 

 

SOURCES OF MATERIALS 

 

1   LI-3100 Leaf Area Meter.  LI-COR Inc., 4421 Superior Street, Lincoln, NE 68504. 

2   Model 757 South Dakota Seed Blower. Seedburo Equipment Co. 1022 W. Jackson BLVD., 

Chicago, Ill 60607.  



37 

 

 

3   TDR100  Time Domain Reflectometer (with PC-TDR software). Campbell Scientific, Inc., 

815 W. 1800 N., Logan, UT 84321-1784.  

4   Sierra-Misco Model 2501. Nova Lynx Corporation, 431 Crown Point Circle, Suite G, Grass 

Valley, CA 95945. 

5   CR23X-4M Micrologger. Campbell Scientific, Inc., 815 W. 1800 N., Logan, UT 84321-1784. 

6   Statistical Analysis Systems, Version 9.1. 2003. Statistical Analysis Systems Institute Inc.  

100 SAS Campus Drive, Cary, NC 27513-2414.    

 

 

 

 

REFERENCES 

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop Evapotranspiration: Guidelines for 

computing crop water requirements. Irrigation and Drainage Paper 56, Food and 

Agriculture Organization of the United Nations, Rome. 

Bensch, C.N., M.J. Horak, and D. Peterson. 2003. Interference of redroot pigweed (Amaranthus 

retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in 

soybean. Weed Science 51:37-43. 

Blinka, E.L. 2004. Growth analysis of shattercane (Sorghum bicolor), common sunflower 

(Helianthus annuus), Palmer amaranth (Amaranthus palmeri), and corn (Zea mays). MS 

thesis, Kansas State University, Manhattan, pp. 6. 



38 

 

 

Culpepper, S.A., T.L. Grey, W.K. Vencill, J.M. Kichler, T.M. Webster, S.M. Brown, A.C. York, 

J.W. Davis, and W.W. Hanna. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus 

palmeri) confirmed in Georgia. Weed Science 54:620-626. 

Gossett, B.J., E.C. Murdock, and J.E. Toler. 1992. Resistance of Palmer amaranth (Amaranthus 

palmeri) to dinitroaniline herbicides. Weed Technology 6:587-591. 

Guo, P. and K. Al-Khatib. 2003. Temperature effects on germination and growth of redroot 

pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common 

waterhemp (A. rudis). Weed Science 51:869-875. 

Hall, M.R., C.J. Swanton, and G.W. Anderson. 1992. The critical period of weed control in corn 

(Zea mays). Weed Science 40:441-447. 

Heap, I. 2006. The International Survey of Herbicide Resistant Weeds. Online. Internet 

Available www.weedscience.com, January 25, 2006. 

Horak, M.J. and T.M. Loughin. 2000. Growth analysis of four Amaranthus species. Weed 

Science 48:347-355.   

Horak, M.J. and D.E. Peterson. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and 

common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. 

Weed Technology 9:192-195. 

Horak, M.J., D.E. Peterson, D.J. Chessman, and L.M. Wax. 1994. Pigweed identification: A 

pictorial guide to common pigweeds in the Great Plains. S-80 Cooperative Extension 

Service, Kansas State University. Manhattan, Kansas. pp. 9. 

Keeley, P.E., C.H. Carter, and R.M. Thullen. 1987. Influence of planting date on growth of 

Palmer amaranth (Amaranthus palmeri). Weed Science 35:199-204. 

http://www.weedscience.com/


39 

 

 

Klingaman, T.E., and L.R. Oliver. 1994. Palmer amaranth (Amaranthus palmeri) interference in 

soybeans (Glycine max). Weed Science 42:523-527. 

Knezevic, S.Z., S.F. Weise, and C.J. Swanton. 1994. Interference of redroot pigweed 

(Amaranthus retroflexus) in corn (Zea mays). Weed Science 42:568-573 

Lindquist, J. L., D. A. Mortensen, and B. E. Johnson. 1998. Mechanisms of corn tolerance and 

velvetleaf suppressive ability. Agronomy Journal 90:787-792. 

Liphadzi, K.B. and J.A. Dille. 2006. Annual weed competitiveness as affected by preemergence 

herbicide in corn. Weed Science 54:15-165. 

Massinga, R.A. 2000. Palmer amaranth (Amaranthus palmeri S. Wats.) interference in corn (Zea 

mays L.). Ph. D. Dissertation, Kansas State University, Manhattan, pp. 83. 

Massinga, R.A., R.S. Currie, M.J. Horak, and J. Boyer, Jr. 2001. Interference of Palmer amaranth 

in corn. Weed Science 49:202-208. 

Massinga, R.A., R.S. Currie, and T.P. Trooien. 2003. Water use and light interception under 

Palmer amaranth (Amaranthus palmeri) and corn competition. Weed Science 51:523-

531. 

Moore, J.W., D.S. Murray, and B. Westerman. 2004. Palmer amaranth (Amaranthus palmeri) 

effects on harvest and yield of grain sorghum (Sorghum bicolor). Weed Technology 

18:23-29. 

Morgan, G.D., P.A. Bauman, and J.M. Chandler. 2001. Competitive impact of Palmer amaranth 

(Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed 

Technology 15:408-412. 



40 

 

 

Mortensen, D.A. and H.D. Coble. 1989.  The influence of soil water content on common 

cocklebur (Xanthium strumarium) interference in soybeans (Glycine max). Weed Science 

37:76-83. 

Patterson, D.T. 1995. Effects of environmental stress on weed/crop interactions. Weed Science 

43:483-490. 

Ritchie, S.W., J.J. Hanway, and G.O. Benson. 1996. How a corn plant develops, Special Report 

No. 48. Iowa State University of Science and Technology Cooperative Extension Service, 

Ames, Iowa. 

Rowland, M.W., D.S. Murray, and L.M. Verhalen. 1999. Full-season Palmer amaranth 

(Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Science 

47:305-309. 

Runge, E.C. 1968. Effects of rainfall and temperature interactions during the growing season on 

corn yield. Agronomy Journal 60:503-507. 

Sellers, B.A., R.J. Smeda, W.G. Johnson, J.A. Kendig, and M.R. Ellersieck. 2003. Comparative 

growth of six Amaranthus species in Missouri. Weed Science 51:329-333. 

Shaw, R.H. 1988. Climate requirement. P. 609-638. In G.F. Sprague and J.W. Dudley (ed.) Corn 

and corn improvement. 3rd ed. Agron. Monogr. 18. ASA, CSSA, and SSSA, Madison, 

WI. 

Smika, D.E.  1970.  Summer fallow for dryland winter wheat in the semiarid Great Plains.  

Agronomy Journal 62:15-17. 



41 

 

 

Sprague, C.L., E.W. Stoller, L.M. Wax. and M.J. Horak. 1997. Palmer amaranth (Amaranthus 

palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-

inhibiting herbicides. Weed Science 45:192-197. 

Tollenaar, M., A.A. Dibo, A. Aguilera, S.F. Weise, and C.J. Swanton. 1994. Integrated pest 

management: Effect of crop density on weed interference in maize. Agronomy Journal 

86:591-594. 

Whitson, T.D., L.C. Burrill, S.A. Dewey, D.W. Cudney, B.E. Nelson, R.D. Lee, and R.Parker. 

2002. 9th ed. Weeds of the West. Newark, CA: Western Society of Weed Science, the 

Western United States Land Grant Universities Cooperative Extension Services, and the 

University of Wyoming. pp. 2.  

 

 

 

 

 

 

 

 

 

 

 



42 

 

 

FIGURES AND TABLES 

 

Figure 1.1  Air temperature and precipitation summary for 30-year normal, 2005, and 2006 

at Manhattan, KS.   

1971-2000 [normal daily maximum, mean, and minimum air temperature; mean daily 

precipitation]; 2005 and 2006 [daily maximum, mean, and minimum air temperature; daily 

precipitation]. 
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Figure 1.2 Corn and Palmer amaranth emergence to final harvest cumulative thermal time 

(GDD) (A) and cumulative reference evapotranspiration (ETO) (B) for 2005 and 2006 at 

Manhattan, KS. 
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Figure 1.3 Corn plant height in dryland (DL-open symbols) and irrigated (IR-closed symbols) environments grown alone 

(Corn) and with one (C:PA1) or four (C:PA4) Palmer amaranth plants m-1 of row in 2005 (A) and 2006 (B).  

 Letter within columns by harvest date compare means using LSD (across ENVIR). 

 

 



Figure 1.4 Corn plant height at tasseling in response to Palmer amaranth densities for 

2006.   

Regression lines were fitted using Equation 1: DL Corn, Hgt = 147 - 7.16d, R2 = 0.165, P = 

0.0281; IR Corn, Hgt = 223 - 4.26, R2 = 0.244, P = 0.0083. 
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Figure 1.5 Corn leaf number per plant in dryland (DL-open symbols) and irrigated (IR-closed symbols) environments grown 

alone and with one or four Palmer amaranth plants m-1 of row in 2005 (A) and 2006 (B).   

Letter within columns by harvest date compare means using LSD (across ENVIR). 
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Figure 1.6 Corn plant leaf area index in dryland (DL-open symbols) and irrigated (IR-closed symbols) environments grown 

alone (Corn) and with one (C:PA1) or four (C:PA4) Palmer amaranth plants m-1 of row in 2005 (A) and 2006 (B).   

Letter within columns by harvest date compare means using LSD (across ENVIR). 
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Figure 1.7 Corn total dry weight (g plant-1) in dryland (DL-open symbols) and irrigated (IR-closed symbols) environments 

grown alone (Corn) and with one (C:PA1) or four (C:PA4) Palmer amaranth plants m-1 of row in 2005 (A) and 2006 (B). 

Letter within columns by harvest date compare means using LSD (across ENVIR). 
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Figure 1.8 Palmer amaranth plant height in dryland (DL-open symbols) and irrigated (IR-closed symbols) environments 

grown alone (PA1) at one Palmer amaranth plant m-1 of row and with corn at one (PA1:C) or four (PA4:C) Palmer amaranth 

plants m-1 of row in 2005 (A) and 2006 (B).   

Letter within columns by harvest date compare means using LSD (across ENVIR). 
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Figure 1.9 Palmer amaranth leaf area index in dryland (DL-open symbols) and irrigated (IR-closed symbols) environments 

grown alone at one Palmer amaranth plant m-1 of row and with corn at one or four Palmer amaranth plants m-1 of row in 2005 

(A) and 2006 (B).   

Letter within columns by harvest date compare means using LSD (across ENVIR). 
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Figure 1.10 Palmer amaranth total dry weight (g plant-1) in dryland (DL-open symbols) and irrigated (IR-closed symbols) 

environments grown alone (PA1) at one Palmer amaranth plant m-1 of row and with corn at one (PA1:C) or four (PA4:C) 

Palmer amaranth plants m-1 of row in 2005 (A) and 2006 (B).   

Letter within columns by harvest date compare means using LSD (across ENVIR). 



Table 1.1 Corn and Palmer amaranth planting, emergence, and harvest dates for 2005 and 

2006. 

Year Event
Calender 

Date DOY 1 DAE 2
Thermal time 

(GDD 3 )

2005 Planting Date May 5 126 0 ―
Emergence Date 4 May 21 141 0 ―
Harvest 1 May 26 146 5 73
Harvest 2 June 1 152 11 124
Harvest 3 June 6 157 16 186
Harvest 4 June 10 161 20 244
Harvest 5 June 15 166 25 306
Harvest 6 June 20 171 30 378
Harvest 7 June 24 175 34 445
Harvest 8 June 30 181 40 551
Harvest 9 July 5 186 45 620
Final Harvest Sept. 12 255 113 1,676

2006 Planting Date May 11 131 0 ―
Emergence Date 4 May 22 142 0 ―
Harvest 1 May 26 146 4 68
Harvest 2 May 31 151 9 143
Harvest 3 June 5 156 14 207
Harvest 4 June 9 160 19 270
Harvest 5 June 13 164 22 309
Harvest 6 June 19 170 28 402
Harvest 7 June 26 177 35 500
Harvest 8 July 5 186 44 643
Final Harvest Aug. 28 240 98 1,556

1 DOY =  Day of Year
2 DAE =  Days after emergence 
3 GDD =  Growing degree days (Cumulative from emergence)
4 Emergence Date = Corn and Palmer amaranth emerged on the same date  
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Table 1.2 Monthly mean air temperatures and total precipitation for 2005, 2006, and 30-

year normal (1971-2000) at Manhattan, KS. 

Month 2005 2006 Normal 2005 2006 Normal

April 12.9 15.0 12.8 55 66 78
May 17.8 18.6 18.3 40 41 129
June 24.6 23.9 23.7 261 36 133
July 25.6 27.2 26.6 60 80 104
August 24.8 26.0 25.6 134 209 83
September 22.1 17.5 20.4 95 40 93

May to August1 23.2 23.9 23.6 496 366 449

1 May to August = mean temperature and total precipitation from May to August

----------------------------------------------------------------------------------------------------

Precipitation (mm)Temperature (°C)
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Table 1.3 Average final harvest total plant dry weights and grain yield of corn for 2005 and 

2006 at Manhattan, KS. 

Year

no. m-1 row g plant-1 kg ha -1

2005 Dryland 0 254 b3 7,005 c
Dryland 1 167 c 4,849 d
Dryland 4 120 d 3,886 d
Irrigated 0 398 a 15,435 a
Irrigated 1 253 b 9,976 b
Irrigated 4 229 b 8,820 bc

LSD (within ENVIR)1 44 1,569
LSD (across ENVIR)2 43 1,913

2006 Dryland 0 183 c 7,665 b
Dryland 1 70 d 1,013 c
Dryland 4 38 d 98 c
Irrigated 0 379 a 16,108 a
Irrigated 1 246 b 9,829 b
Irrigated 4 185 bc 7,699 b

LSD (within ENVIR)1 62 2,383
LSD (across ENVIR)2 58 2,650

LSD (across ENVIR)

Soil water 
environment

1 LSD (within ENVIR) = LSD (0.05) for comparing means within soil water environment
2 LSD (across ENVIR) = LSD (0.05) for comparing means across soil water environment
3  Means with the same letter within columns for each year are not different according to 

Palmer 
amaranth 
density

Total 
plant dry 
weight

Grain 
yield
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Table 1.4 Average Palmer amaranth final harvest height, total plant dry weight, and seed 

production for 2005 and 2006 at Manhattan, KS. 

Year
environmen
t

Corn 
density Height

Total plant 
dry weight

Seed 
Production

cm g plant-1 seeds m-2

2005 Dryland 0 1 282 abc3 1,122 a 333,360 a
Dryland 5.25 1 260 bc 206 b 61,600 a
Dryland 5.25 4 256 c 162 b 197,450 a
Irrigated 0 1 284 ab 1,176 a 296,100 a
Irrigated 5.25 1 305 a 369 b 158,370 a
Irrigated 5.25 4 284 ab 211 b 234,550 a

LSD (within ENVIR)1 29 277 135,170
LSD (across ENVIR)2 27 247 137,500

2006 Dryland 0 1 264 d 1,282 b 147,690 a
Dryland 6 1 288 cd 936 b 95,090 a
Dryland 6 4 289 bcd 364 c 157,230 a
Irrigated 0 1 342 a 1,739 a 111,810 a
Irrigated 6 1 338 ab 537 c 44,200 a
Irrigated 6 4 335 abc 471 c 108,750 a

LSD (within ENVIR)1 55 403 81,150
LSD (across ENVIR)2 50 382 76,640

LSD (across ENVIR)

3  Means with the same letter within columns for each year are not different according to 

Palmer 
amaranth 
density

______no. m-1 row _____

1 LSD (within ENVIR) = LSD (0.05) for comparing means within soil water environment
2 LSD (across ENVIR) = LSD (0.05) for comparing means across soil water environment
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CHAPTER 2 - Corn and Palmer Amaranth Soil Water Competition 

 

ABSTRACT 

 

Weeds that compete with crops for soil water can decrease the available soil water for the 

crop and increase the potential for water stress.  Palmer amaranth is a competitive weed in corn 

fields in the Great Plains of the United States.  An improved understanding of Palmer amaranth 

competitive interactions for soil water and the impact on soil water depletion in the root zone is 

necessary for predicting crop yield losses under different soil water conditions.  Field 

experiments were conducted in 2005 and 2006 at the Department of Agronomy Ashland Bottoms 

Research Farm near Manhattan, KS.   The objective was to determine soil water content 

throughout the growing season when corn and Palmer amaranth were grown alone or in 

competition under dryland and irrigated environments.  The experiment was arranged in a side 

by side design with whole plots being dryland and furrow irrigation.  Within each soil water 

environment, sub-plot treatments were monoculture Palmer amaranth at one plant m-1 of row, 

and corn with zero, one, and four Palmer amaranth plants m-1 of row.  Soil water was measured 

within one treatment plot for one replication using Time Domain Reflectometry (TDR).  The 

TDR measurements provided seasonal trends of volumetric soil water content for treatments in 

dryland and irrigated environments at the 0 to 15 and 0 to 30 cm soil profile depths each year.  
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The soil water depletion rate per day increased as water received prior to a drying period 

increased at the 0 to 30 cm depth for soil drying periods in the dryland and irrigated 

environments.  The loss of soil water during drying periods for corn and Palmer amaranth 

populations in both environments and years varied due to plant and atmosphere water demand.  

Key words:  crop and weed competition, root distribution, Time Domain Reflectrometry 

volumetric water content 
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INTRODUCTION 

 

Corn grown under the semi-arid conditions of the U.S. Great Plains region are impacted 

by highly variable precipitation, low soil water availability, and high evapotranspiration.  The 

state of Kansas lies in this water-limited region where it ranks tenth in total corn grain production 

in the U.S. (NASS 2005).  In the last 15 years, total corn production acreage in Kansas has 

increased 56% and the production of irrigated and dryland acres have increased 32% and 74%, 

respectively (NASS 2005).  The average harvested acreage (grain yield) from 2001 to 2005 was 

589,680 ha (5,132 kg ha-1) for dryland and 583,200 ha (11,055 kg ha-1) for irrigated production.  

Therefore in recent years, the state land area has been equally managed for dryland and irrigated 

corn production but the irrigated corn grain yields were two times higher than dryland yields.  

This clearly shows that supplemental water must be applied to attain higher potential yields.  

Corn grown under dryland conditions often encounters seasonal water stress, which results in 

unstable corn yields and yield loss due to water deficit.  Also, the potential corn yield for dryland 

and irrigated conditions are impacted by choice of crop management practices.  Any crop 

management practice that reduces the availability of soil water for corn plants can result in water 

stressed plants, which subsequently will limit and reduce corn yield potential.  One crop 

management practice that could reduce soil water availability is to allow weed competition for 

soil water.  If improper weed management occurs and weeds are growing with the corn, then 

available stored soil water is depleted, thus increasing the risk of potential corn yield loss.  

Improved understanding of corn yield loss from weeds in association with sensitivity to seasonal 

water stress in water-limited environments would aid crop managers in making profitable 
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decisions for weed control.  Variability in environmental conditions and implementation of crop 

management operations are the major factors influencing the dynamics of weed-crop interference 

relationships among sites and years (Lindquist et al. 1996).  The impact of a weed population on 

a crop however, is difficult to predict particularly in dryland crop production systems (Lindquist 

et al. 1996).   

Palmer amaranth (Amaranthus palmeri S. Wats.) is considered one of the most serious 

weed problems in the Great Plains of the United States due to its ability to reduce crop yields and 

interfere with harvest (Horak et al. 1994).  Palmer amaranth has been reported to compete 

aggressively and cause significant yield loss in irrigated soybean (Bensch et al. 2003, Klingaman 

and Oliver 1994), cotton (Morgan et al. 2001, Rowland et al. 1999), and grain sorghum (Moore 

et al. 2004).  Even across Kansas, irrigated and dryland corn yields were impacted significantly 

by competition with low densities of Palmer amaranth (Liphadzi and Dille 2006, Massinga et al. 

2001).  Corn yield loss from Palmer amaranth among site-years and water management practices 

were variable in Kansas, therefore an improved understanding is needed to determine the extent 

to which Palmer amaranth reduces soil water to the detriment of corn. 

The degree of competition for water between a crop and a weed is determined by the 

relative root volume occupied by each species and subsequently, the competition for water will 

be greatest when the roots of the crop and the weed are in the same volume of soil (Aldrich 

1984).  Davis et al. (1965) described the root moisture extraction profile for Palmer amaranth 

and other several weeds.  Palmer amaranth had a relatively narrow lateral root distribution and an 

extensive vertical root distribution compared to other weeds.  Palmer amaranth extracted more 

water from the upper 30 cm layer of soil than lower in the soil profile, which suggests a higher 
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density of roots near the soil surface, but it could be more competitive because it can also extract 

water from greater depths when soil moisture is limited.  Palmer amaranth was observed to have 

rapid root expansion rates (Weise 1968), which would be a mechanism for soil water 

competition (Davis et al. 1967).  Also, Palmer amaranth tolerated moisture stress similar to grain 

sorghum and better than corn when dry matter production was compared for wet, intermediate, 

and dry soil moisture conditions (Weise and Vandiver 1970).  Furthermore, corn, grain sorghum, 

and Palmer amaranth are C4 plants and considered to have greater water use efficiencies than C3 

plants (Black et al. 1969).   

Limited research has been conducted on the effects of soil moisture on Palmer 

amaranth’s competitiveness with crops across different soil water environments.  Palmer 

amaranth’s competitive ability and increasing presence in crop fields has alerted researchers to 

investigate the mechanisms of Palmer amaranth interference with crops.  Massinga et al. (2003) 

demonstrated the total water use and water use efficiency of irrigated corn in competition with a 

range of Palmer amaranth densities.  Volumetric soil water content (VWC) was determined in 

the top 240 cm of the soil profile in 30 cm increments next to corn alone and corn with Palmer 

amaranth.  The water use varied due to the evapotranspiration experienced between locations and 

years studied, however the maximum water use period for corn occurred from tasseling through  

pollination. Water use increased most as Palmer amaranth density increased up to two plants m-1 

of row.  Then as density increased to eight plants m-1 of row water use rate was slower 

(Massinga et al. 2003).  It was suggested that the canopy cover provided by the increase from 

two to eight Palmer amaranth plants m-1 of row contributed to maximum water loss caused by 

evapotranspiration, but resulted in little change in water use because mutual shading was 
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occurring between plants.   The higher Palmer amaranth densities in corn shaded the soil surface 

and decreased soil water evaporation.  Water use efficiency in production of corn grain yield 

decreased as Palmer amaranth density increased.  Measured VWC was lowest in the upper 30 cm 

depth of the soil profile, indicating crop and weed roots were competing for extractable water in 

this zone of interference.  Massinga et al. (2003) indicated that future work was needed at 

different levels of soil water availability to better understand the dynamics of water competition 

by these two species. 

Soil water measurement methods, such as Time Domain Reflectrometry (TDR) have 

been developed to determine soil water content on a continuous automated basis.  Time Domain 

Reflectrometry measurements can provide real-time soil water content based on a specified 

measurement time interval defined by the user.  The depth of measured soil water content 

depends on probe length, installation depth, and position (vertical, horizontal, or angle).  

Continuously measuring the soil water content and its rate of decline over with time after a 

precipitation or irrigation event would improve the understanding of corn and Palmer amaranth 

competition for soil water.  The objective of this study was to determine soil water content 

throughout the growing season when corn and Palmer amaranth were grown alone or in 

competition under dryland and irrigated environments. 
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MATERIALS AND METHODS 

 

Field experiments were conducted in 2005 and 2006 at the Kansas State University 

Agronomy Department Ashland Bottoms Research Farm 8 km south of Manhattan, KS.  In 2005, 

the experiment was established on Eudora silt loam soil (coarse-silty, mixed, superactive, mesic 

Fluventic Hapludoll).  The previous crop was soybean.  The field was spring fertilized with 224 

kg N ha-1 using liquid urea-ammonium nitrate (28-0-0) and a dry blend of 45 kg ha-1 muriate of 

potash, 33.5 kg ha-1 sulfur (90%), 13.5 kg ha-1 zinc sulfate (31%),  and 336 kg ha-1 pell-lime, 

then incorporated by field cultivation.  Furrowed rows were made with one pass planter furrow 

row units and a second pass with a furrow cultivation unit one month prior to planting.  In 2006, 

the field soil was a Belvue silt loam (coarse-silty, mixed, superactive, nonacid, mesic Typic 

Udifluvents).  The previous crop was soybean, followed by that had fall planted winter wheat, 

which was terminated in early April.  The field was fertilized with 224 kg N ha-1 using liquid 

urea-ammonium nitrate (32-0-0) and a dry blend of 56 kg ha-1 muriate of potash, 33.5 kg ha-1 

sulfur (90%), 13.5 kg ha-1 zinc sulfate (31%), and 336 kg ha-1 pell-lime.  Furrowed rows were 

made with one pass planter furrow row units and two passes with a furrow cultivation unit one 

month prior to planting, which also incorporated the fertilizer.  Corn hybrid ‘DKC60-19RR’ was 

planted at 76,600 seeds ha-1 with a 0.76 m row spacing on May 6, 2005 and May 11, 2006. 

Experiments were arranged in a split-plot design with the whole plot treatments being 

soil moisture environment which consisted of dryland and well-watered furrow irrigation.  

Replication was restricted to within each soil moisture environment due to logistics of irrigation 

methods.  Within each soil moisture environment, four sub-plot treatments were established 
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including monoculture corn, monoculture Palmer amaranth at one plant m-1 of row, and two 

mixtures of corn with Palmer amaranth at one and four weeds m-1 of row.  The weed densities 

were selected based on previous research results for Palmer amaranth competitiveness in dryland 

and irrigated environments (Blinka 2004, Liphadzi and Dille 2006, Massinga et al. 2001).  

Treatments (sub-plot) were replicated four times and arranged in a randomized complete block 

within each soil moisture environment.  Each sub-plot was four corn rows wide and 17 m long.  

Immediately after planting, the plot layout was established and Palmer amaranth seeds were hand 

sown to all four rows of a plot and lightly raked to cover seed with soil.  The Palmer amaranth 

seed source was from the Ashland Bottoms Research Farm.  All plots were furrow irrigated to 

establish corn and Palmer amaranth emergence at the same time.  The well watered plots were 

furrow irrigated as needed by the crop.  The plots were established in both years to maximize 

furrow irrigation effectiveness based on slope of land.  A six meter buffer was established 

between irrigation pipe and start of the experimental plots.  Irrigation water was applied to every 

row furrow.  

  After emergence, Palmer amaranth seedlings were hand thinned to treatment densities 

with plants located within 10 cm of each corn row and corn was removed from monoculture 

Palmer amaranth plots.  Plots were hand weeded or hand hoed to maintain treatment densities 

and to remove other weed species for the duration of the experiment.   

Soil moisture was measured within one treatment sub-plot for one replication using a 

TDR1001 with sixteen TDR probes2 and three coaxial multiplexers3 (Labeled I, II, III).  The 

TDR100 and coaxial multiplexer (I) were located in the data acquisition and control system 

(DACS) enclosure4 located in the center of the field study area.  Two coaxial multiplexers were 



65 

 

 

located in smaller enclosures5 within the dryland (II) and irrigated (III) environments.  Coaxial 

multiplexer (I) was connected to coaxial multiplexers (II and III) with 6 m of RG8 coaxial 

cable6.  Eight TDR probes were connected to each coaxial multiplexer (II and III) with cable of 9 

m in length.  Within the sub-plot, soil moisture was measured with one probe per treatment per 

environment at 0 to 15 and 0 to 30 cm depths.  Four TDR probes were inserted into the soil at a 

30° angle from the soil surface to acquire an integrated soil moisture measurement at the 0 to 15 

cm.  Four TDR probes were inserted perpendicular to the soil surface for an integrated soil 

moisture measurement over the 0 to 30 cm depth in each environment.  The TDR probes were 

placed 5 cm from the center of the row next to separate monoculture plants or between corn and 

Palmer amaranth plants.  The TDR measurements were taken every 60 minutes and then the data 

logger7 recorded the VWC data.  The VWC was determined from TDR measurements using the 

Topp et al. (1980) equation.  Rainfall was measured using a tipping bucket rain gauge8.  Rainfall 

data were recorded every 60 minutes and daily totals were recorded to the data logger.  The 

DACS and rain gauge were installed after planting and TDR probes were installed after 

establishment of Palmer amaranth plant densities.  The DACS was powered by a 12 Volt battery9 

equipped with a trickle solar charger10.  Data were downloaded from the data logger to a laptop 

computer at least once a week to monitor instrumentation operation and data quality.   

The 2005 TDR probes were installed later than intended because of the extremely wet 

early June, where a majority of the focus at that time was to establish Palmer amaranth treatment 

densities.  The 2006 probes were installed the same week as corn and Palmer amaranth 

emergence when weed densities were established.  The installation of TDR probes occurred 

without the ability to differentiate male and female Palmer amaranth plants.  In both years at 
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both depths, there was an equal member of male and female plants where TDR probes were 

installed.  At this time, no research has shown water use or root pattern distribution differences 

between male and female Palmer amaranth during the growing season.  Both female and male 

Palmer amaranth plants in this study were actively living until corn physiological maturity and 

assumed to have no differences in measured VWC. 

Soil physical properties were determined for the two soil types used in the experiment.  

Percent sand, silt, and clay were determined to a 120 cm depth by the Soil Testing Laboratory at 

Kansas State University.  Dry bulk density of the field soils were determined from soil cores 

taken to 30 cm.  Soil water content was determined at -0.03 and -1.5 MPa soil water potential 

with a cellulose acetate membrane from disturbed soil samples taken at 0 to 20 cm depth 

(conducted by Dr. L. Stone, Brian Frank, and Ryan Cyr, Kansas State University).  The soil 

water contents were used to calculate the VWC for the 0 to 15 and 15 to 30 cm soil depths with 

their respective bulk density values. 

The weather data were compiled from the Kansas State Weather Data Library (M. 

Knapp, personal communication).  Precipitation data sources were the Ashland Bottoms 

Agronomy Research Farm and within-experiment rain gauge measurements.  The reference 

evapotranspiration (ETo) and corn evapotransporation (ETCorn) (single crop coefficient) were 

calculated based on methods described by Allen et al. (1998). 

Root distributions of Monoculture corn and monoculture Palmer amaranth were 

determined in early October 2006.  A tractor-mounted Giddings probe11 with a 5 cm diameter 

core was used to take soil cores.  Four corn and four female Palmer amaranth plants were 

randomly selected in an area of replication three of the experiment where plants had not been 
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removed or disturbed in the dryland and irrigated environments.  Four cores were taken 8 to 10 

cm from the plants to a depth of 120 cm.  The soil cores were hand broken at 15 cm intervals and 

visible roots were counted at each core break.  The percent of visible roots by depth were 

determined from the total counted roots in each 120 cm core.  An analysis of variance was 

conducted using SAS v9.112 PROC GLM for each environment and species and means of 

percent visible roots by soil depth were separated by Least Significant Difference (LSD) at α = 

0.05.   

 The VWC for each soil water environment (dryland and irrigated) and each depth (0 to 

15 and 0 to 30 cm) was visually inspected for differences, since no statistical analyses could be 

performed with data obtained from only one replication by probe depth in each sub-plot.  Soil 

water (mm) was calculated from VWC for each probe depth.  The rate of soil water depletion 

was calculated by determining the change in soil water for the period of days after a precipitation 

or irrigation event to the day prior to the next soil wetting occurrence.  The beginning of the 

drying period started one day after the VWC started to decrease and the loss of soil water was 

calculated daily to the last day of the drying period (next wetting event).  The cumulative loss of 

soil water was calculated for each depth measured and then the rate was based on the number of 

days in the drying period.  A drying period consisted of at least four days.  The rate of water loss 

by ETCorn was calculated with the same procedure as soil water loss for each drying period.  The 

effective precipitation prior to a drying period was summed to show the amount of water gained 

and was estimated to be 80% of total rainfall received, if equal to or greater than 10 mm.  When 

rainfall was less than 10 mm, then 100% of the total rainfall received was considered to be 

effective precipitation.  The 10 mm rainfall threshold was based on observations that revealed 
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that rainfall over 10 mm had 20% runoff from the furrowed ridges where the TDR probes were 

placed and did not add to the gain of soil water.  Water applied as furrow irrigation was 

considered 100% effective because the experiment was bermed on all sides of both environments 

and resulted in no runoff from the study.   

 

RESULTS AND DISCUSSION 

 

The impact on VWC by corn and Palmer amaranth can be best understood from 1) the 

precipitation and irrigation patterns, 2) soil properties, 3) ETCorn, 4) plant root distribution, and 5) 

soil water depletion rates.  The total rainfall received from May 1 to August 31 was 496 mm and 

366 mm for 2005 and 2006, respectively.  In 2005, the May rainfall was almost 90 mm less than 

the 30-yr normal amount of precipitation (Figure 2.1).  In June 2005, precipitation was 128 mm 

above the 30-yr normal and 53% of the growing season rainfall occurred in early June.  In July 

2005, there was only 60 mm of rainfall and this was 44 mm below the normal monthly 

precipitation.  August precipitation was received too late in the season to impact plant growth 

requirements because corn and Palmer amaranth were near physiological maturity.  The June 

2005 rainfall provided near optimum growing conditions for corn and Palmer amaranth but 

limited rainfall thereafter generated a moderate midsummer drought.  The 2006 growing season 

was much drier than 2005.  In May 2006, rainfall was almost 90 mm less than the 30-yr normal 

precipitation (Figure 2.1).  Opposite to 2005, June 2006 precipitation was near 100 mm below 

the 30-yr normal.  Rainfall deficits from the 30-yr normal continued from May through July in 
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2006 to generate a severe midsummer drought since 57% of the May through August rainfall 

occurred in mid to late August.  Therefore, dryland corn was under water-limited stress 

throughout most of the 2006 growing season.   

Field soil properties differed across the two years that further impacted the extent of 

water-limiting stress that occurred (Table 2.1).  The 2005 field soil was an Eudora silt loam that 

had an average 30, 59, and 11 percent sand, silt, and clay content, respectively, while the 2006 

Belvue silt loam soil had 44, 47, and 8 percent sand, silt, and clay content, respectively at the 0 to 

30 cm depth.  The Eudora soil had 2.0% organic matter whereas the Belvue soil had only 1.1%.  

The Eudora soil in 2005 having a higher silt and less sand content in addition to more organic 

matter than the Belvue soil in 2006 provided ~1.4 times more plant available VWC (PAW) in the 

upper 30 cm of the soil profile (PAW: Eudora soil = 0.268 cm3 cm-3, Belvue soil = 0.187 cm3 

cm-3).  So in addition to limited precipitation, the soil physical properties limited the 2006 soil 

from holding sufficient soil water available for corn and Palmer amaranth growth.  

The cumulative ETCorn from emergence to corn physiological maturity was 400 mm and 

440 mm in 2005 and 2006, respectively, which indicated that the environmental demand for 

water was higher in 2006 than 2005.  In 2005 and 2006, the irrigated environment received a 

total of 203 mm and 356 mm of irrigation water, respectively, from emergence to the final plant 

harvest.  Corn and Palmer amaranth emerged at the same time in both years aided by irrigating 

both soil water environments immediately after planting.  After emergence, rainfall was the only 

source of water for the dryland environment plots.  The next irrigation in 2006 was June 9 and 

was earlier than first irrigation in 2005 since June rainfall was above normal. The difference in 

total irrigation amounts was attributed to differences in water requirements during crop 
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development, precipitation patterns, evapotranspiration, and soil physical properties for the two 

years, where in the 2006 crop had higher demand for water. 

The measured water content peaks and depletion periods at both depths each year 

followed precipitation and irrigation patterns that occurred.  The 0 to 15 cm probe depth (Figure 

2.2) and 0 to 30 cm probe depth (Figure 2.3) in 2005 along with the 0 to 15 cm probe depth 

(Figure 2.4) and 0 to 30 cm probe depth (Figure 2.5) in 2006 resulted in similar trends of soil 

water content in each year indicating both depths captured the change in VWC through the 

growing season and that there was little difference in VWC between treatments.  In both years, 

the 0 to 15 cm depth had less soil water overall and exhibited more rapid rise and fall in water 

content than the 0 to 30 cm depth.  This was expected based on water storage with increasing 

depth.  The monoculture Palmer amaranth treatment had highest soil water content in the 

irrigated environment at both depths in 2005 (Figures 2.2 and 2.3).  Treatments of corn with one 

and four Palmer amaranth plants m-1 of row consistently had the lowest soil water content 

throughout the growing season at both depths in the dryland environment in 2005.  Growth and 

development of corn in 2005 with and without the presence of Palmer amaranth had few 

differences.  Both dryland and irrigated plots showed no visible plant water stress up to corn 

tassel stage (DOY 186) where the 0 to 30 cm depth water contents were above 50% of field 

capacity (0.19 cm3 cm-3 ) (refer to Chapter 1).  Dryland corn development thereafter, however, 

exhibited physical water stress symptoms of leaf rolling at the late phase of individual drying 

periods, for example on DOY 194 and 206 (personal observation).  Dryland corn with Palmer 

amaranth during grain fill had measured soil water contents of 0.13 cm3 cm-3 at the 0 to 30 cm 

depth (DOY 202 to 206 and DOY 211 to 221), and this was near the wilting point of 0.115 cm3 
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cm-3.  Even though the Eudora soil was capable of holding adequate moisture for the corn, the 

limited dryland precipitation resulted in water stress conditions that reduced monoculture corn 

yield 50% when compared to the irrigated monoculture corn at physiological maturity (refer to 

Chapter 1).  Even though the corn had roots that were expected to be below 30 cm, it appeared 

that available soil water was limited and could not meet the demand of the crop from corn 

tasselling through the grain fill period (DOY 186 to 221).  Monoculture corn and corn with 

Palmer amaranth in the irrigated environment resulted in similar soil water content trends at the 0 

to 15 cm and 0 to 30 cm depths.  Plants could have competed for soil water at greater soil depths 

but this was not measured. 

In 2006, water stress started at the early vegetative stage of corn due to the limited 

rainfall in May and June, and soil water content was 20% below field capacity (DOY 159) 

(Figure 2.5).  This stress was likely a combination of heat and water stress but visible leaf rolling 

started at the 6-leaf stage, so irrigation was applied (personal observation).  The dryland plots 

continued to decrease in soil water content to 0.10 cm3 cm-3, equal to 60% below field capacity, 

just prior to corn tassel (DOY 180) at both depths.  Precipitation that occurred during pollination 

(DOY 188 to 190) protected dryland corn yield to some degree and allowed it to escape 

premature death.  During ear development and grain fill, however corn with and without Palmer 

amaranth present encountered severe water stress at both depths.  During this period, 

monoculture Palmer amaranth had approximately 10% more soil water at the 0 to 30 cm depth in 

the dryland environment than any of the corn plots.  This indicated that monoculture Palmer 

amaranth required less soil water to meet its water needs or it was capable of extracting soil 

water from deeper depths.  One Palmer amaranth plant m-1 of row with dryland corn grew and 
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developed with little water stress and had near equal biomass compared to dryland monoculture 

Palmer amaranth (refer to Chapter 1).     

The distribution patterns of monoculture corn and Palmer amaranth roots over depth was 

determined in 2006 (Figure 2.6).  The percentage of roots at each depth was calculated from the 

number of total visible roots and used to describe the distribution pattern with depth using a soil 

“core break-count” method.  Dryland and irrigated Palmer amaranth had 70% of the roots in the 

upper 0 to 30 cm soil depth with the remaining proportion of roots gradually tapering off to the 

120 cm depth (Figure 2.6).  Palmer amaranth root distribution results agree with Davis et al. 

(1965), where Palmer amaranth was reported to have extracted more water from the upper 30 cm 

soil layer which suggests a higher density of roots near the soil surface.  Davis et al. (1965) also 

reported that Palmer amaranth had a relatively narrow lateral root distribution and an extensive 

vertical root distribution.  In this study dryland Palmer amaranth had more roots below 75 cm in 

the soil profile than irrigated Palmer amaranth, which indicated that the dryland plants had the 

ability to extract more soil water at greater depth in the profile when soil water was limited in the 

upper soil profile, which agree with Davis et al. (1965).   

Dryland and irrigated corn had 60 to 70% of its roots concentrated in the upper 30 cm of 

the soil profile (Figure 2.6).  This agrees with Follet et al. (1974) where corn roots were 

concentrated in the upper 40 cm of the soil profile.  Irrigated corn had more visible roots at the 

30, 45, and 60 cm depths than dryland.  The dryland corn was severely water stressed and 

probably did not have the ability to produce roots to meet its water demand but it did have 

similar percent visible roots as irrigated corn below 75 cm in the soil profile.   
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Both corn and Palmer amaranth appear to have the majority of their roots in the upper 30 

cm of the soil profile when planted on top of a ridge designed for furrow irrigation.  This 

indicated that the 0 to 30 cm profile depth would provide adequate estimates of water depletion 

rates if soil water was extractable by roots in this zone.  Roots below the 30 cm depths likely 

contributed to meeting the dryland corn and Palmer amaranth water requirements but water 

content was not measured at those depths.  Therefore, only 0 to 30 cm depth soil water depletion 

rates are presented and discussed. 

The effective precipitation or effective precipitation plus irrigation prior to the drying 

periods, the daily loss of water from ETCorn, and the soil water depletion rate per day at the 0 to 

30 cm depth for soil drying periods in the dryland and irrigated environments in 2005 and 2006 

are shown in Figures 2.7 to 2.10.  The ETCorn shows the estimated loss of water to meet the 

environmental demand from monoculture corn with respect to climatic conditions.  The water 

prior to the drying period shows the amount of water that could have been extracted by plant 

roots, lost by soil evaporation, or drained through the upper 30 cm soil profile.   

In 2005, four drying periods were identified and resulted in the dryland environment 

using less water (Figure 2.7) than the irrigated environment (Figure 2.8).  The treatments in the 

irrigated environment depleted the soil water at a greater rate than treatments in the dryland 

environment, likely due to more water at the beginning of the periods from irrigation 

applications.  Dryland depletion rates were lower due to less effective precipitation with no 

irrigation prior to the drying period and less available for plant uptake in the 0 to 30 cm depth.  

Thus soil water was extracted from below 30 cm in the soil profile because roots were deeper 

than 30 cm in the soil profile.  Irrigated corn alone and with Palmer amaranth had the higher 
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depletion rates than monoculture Palmer amaranth for all drying periods (Figure 2.8).  In the last 

two drying periods during corn grain fill (202 – 206, 211 – 221), depletion rates were almost two 

times greater for corn treatments than Palmer amaranth alone.  In the same periods, monoculture 

corn had the highest depletion rates.  In all drying periods, ETCorn was greater than any species 

alone or in mixture for each environment, which indicated that water loss from ETCorn appeared 

to be extracted from depths greater than 30 cm.   

In 2006, seven drying periods were used to calculate soil water depletion rates.  The rate 

of soil water depletion in the dryland environment corresponded to the amount of precipitation 

received prior to the drying event (Figure 2.9).  When available soil water was high then 

depletion rates were high and vice versa.  In the first three drying periods, the depletion rates 

were similar across dryland plant populations.  In the four later drying periods, dryland 

monoculture Palmer amaranth and corn with one Palmer amaranth plant m-1 of row had the 

highest depletion rates when rainfall was received prior soil drying.  This indicated that the 

Palmer amaranth was growing actively and continued to extract more soil water in the upper 30 

cm profile where it had a greater proportion of roots compared to lower soil depths. 

The rate of soil water depletion from the irrigated environment (Figure 2.10) was greater 

than dryland because more water was available in the upper 30 cm soil profile and corresponded 

to the amount of water received prior to the drying period.  In the first three drying periods 

irrigated monoculture corn had similar rates to corn with one or four Palmer amaranth m-1 of 

row, but greater than irrigated monoculture Palmer amaranth.  During the last four drying 

periods, irrigated monoculture corn had the lowest depletion rates compared to corn with Palmer 

amaranth, where the highest Palmer amaranth density with corn had the greatest soil water 
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depletion rates. Also during the last four drying periods, irrigated monoculture Palmer amaranth 

depleted soil water at greater rates than earlier in the growing season, mainly due to the plants 

were larger and had greater demand for soil moisture. The depletion rates were greater than 

ETCorn likely due to soil water drainage through the profile, more plant water use, or an 

underestimation of ETCorn.  The irrigated corn depletion rates agree with Massinga et al. (2003) 

where irrigated corn with Palmer amaranth water use increased as Palmer amaranth density 

increased.  

The soil water depletion rates during drying periods were higher when total added 

precipitation with and without irrigation to the soil system and plant population water demand 

were greater.  Plant populations that were large in size and had higher total biomass depleted soil 

water at higher rates.  Palmer amaranth with corn can deplete the soil water more than 

monoculture corn when plants are not water stressed.  Severe water stressed dryland corn with 

Palmer amaranth have lower soil water depletion rates than monoculture Palmer amaranth. 

Investigations were made to estimate the treatments’ evapotranspiration using water 

balance methodology, but the number of assumptions and estimates of soil drainage resulted in 

unacceptable calculations and conclusions.  The soil profile water content was needed to measure 

the total change in soil water content for the entire root depth.  The root depth distribution data 

showed that monoculture corn and Palmer amaranth roots were below 30 cm in the soil profile.  

The results presented were for the upper 30 cm and readers need to recognize that profile soil 

water competition did occur, but not determined.  Future work is needed to determine the soil 

water extraction in the soil profile through the growing season along with the root distributions 

of corn with Palmer amaranth in different soil water availability regimes.  The information 
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would improve the understanding of competition for soil water between corn and Palmer 

amaranth, which would ultimately improve water use modules in crop:weed competition models. 

Time Domain Reflectrometry method was useful to determine the soil water content at 

the 0 to 15 cm and 0 to 30 cm on a continuous basis. Once the equipment was setup and 

programmed to read and record data, the system was very reliable.  The TDR instrumentation 

was new to the Kansas State Weed Ecology group and required one growing season (2004) to 

fully operate and understand the process and data collection.  Researchers with experience in soil 

water measurement would not likely require the same time to establish an operating system. The 

major limitation was probe length offered by the manufacture, but users can construct and 

calibrate probes to measure water content at greater depths (Long et al. 2002).  This study lacked 

profile soil water measurements and could not account for soil water extracted below the 30 cm 

long TDR probes.  The TDR probes can be buried at greater depths to measure profile water 

content, but other instruments can also be used to determine profile soil water. Dalley et al. 

(2006) and Massinga et al. (2003) demonstrated the water use of crop and weed population using 

incremental measurements in the soil profile.  Although this study only had a single replication 

of soil water content measurements at two depths in the upper 30 cm, the information was 

insightful for the temporal change in VWC and soil water depletion rates when soil water was 

available where 60% of the roots were concentrated.  The single replication limited the ability to 

identify the treatments with the highest and lowest soil water content due to the high degree of 

variability of spatial arrangement of mixed species and all probe placements on the row ridges.  

The slight difference in land slope and furrowed ridge affected the water content measurements 

with probe installation, perhaps more than plant spacing.  The probes were installed next to 
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plants based on  their spatial arrangement, not on ridge height or geometry.  The probe 

installation procedure resulted in measuring unequal increases in soil water more after irrigation 

than rainfall events. This observation can be seen with all the irrigated treatments at both depths 

(Figures 2.2 to 2.5).  Since the VWC was determined from the soil in contact with the probe 

rods, there were equal differences in depletion of soil water when compared to the gain after 

precipitation or irrigation events.  Therefore, the ability to determine the depletion or loss of soil 

water during a drying period after a wetting event was possible.  Regardless of the challenges in 

differentiating temporal changes in soil water content among individual treatments, trends were 

observed that matched corn and Palmer amaranth growth and development and the soil’s water 

holding capabilities.  Future research investigating soil water competition will need replication 

for the treatments and for individual plants of interest, along with full profile measurements for 

soil water content change with increasing depth of the root zone.     
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SOURCES OF MATERIALS 

1   TDR100  Time Domain Reflectometer (with PC-TDR software). Campbell Scientific, Inc., 

815 W. 1800 N., Logan, UT 84321-1784. 

 2   CS605 (3-rod TDR Probe with RG58 coaxial cable). Campbell Scientific, Inc., 815 W. 1800 

N., Logan, UT 84321-1784. 

3   SDMX50 (50 Ohm Multiplexer). Campbell Scientific, Inc., 815 W. 1800 N., Logan, UT 

84321-1784. 

4   ENCTDR100 40.6 x 45.7 cm  Enclosure, NEMA Type 4, single door. Campbell Scientific, 

Inc., 815 W. 1800 N., Logan, UT 84321-1784. 

5   25.4 x 30.5 cm Enclosure, NEMA Type 4, single door. Campbell Scientific, Inc., 815 W. 1800 

N., Logan, UT 84321-1784. 

6   COAXTDR (RG8 coaxial cable). Campbell Scientific, Inc., 815 W. 1800 N., Logan, UT 

84321-1784. 

7   CR23X-4M Micrologger. Campbell Scientific, Inc., 815 W. 1800 N., Logan, UT 84321-1784. 

8   Sierra-Misco Model 2501. Nova Lynx Corporation, 431 Crown Point Circle, Suite G, Grass 

Valley, CA 95945. 

9   Die Hard, Deep Cycle Marine Battery. Sears Auto Center, 103 Manhattan Town Center, 

Manhattan, KS 66502. 

10  American Hunter 12-Volt Solar Panel. Cabela’s, 400 E. Ave. A, Oshkosh, NE 69190. 

11  Giddings probe Model GSRTS. Giddings Machine Company Inc., Ft. Collins, CO. 

12  Statistical Analysis Systems, Version 9.1. 2003. Statistical Analysis Systems Institute Inc.  

100 SAS Campus Drive, Cary, NC 27513-2414.    
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Figure 2.1 Monthly precipitation deviation from 30-yr normal for 2005 and 2006 at Manhattan, KS.  
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Figure 2.2 Soil water content at 0 to 15 cm depth, precipitation, and irrigation for the 2005 growing season.   

Dryland (DL-open symbols) and irrigated (IR-closed symbols) environments with monoculture corn (Corn), monoculture 

Palmer amaranth at one plant m  of row (PA1), and corn with one or four Palmer amaranth plants m  of row (C:PA1 or 

C:PA4). 
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Figure 2.3 Soil water content at 0 to 30 cm depth, precipitation, and irrigation for the 2005 growing season.   

Dryland (DL-open symbols) and irrigated (IR-closed symbols) environments with monoculture corn (Corn), monoculture 

Palmer amaranth at one plant m  of row (PA1), and corn with one or four Palmer amaranth plants m  of row (C:PA1 or 

C:PA4). 
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Figure 2.4 Soil water content at 0 to 15 cm depth, precipitation, and irrigation for the 2006 growing season.   

Dryland (DL-open symbols) and irrigated (IR-closed symbols) environments with monoculture corn (Corn), monoculture 

Palmer amaranth at one plant m  of row (PA1), and corn with one or four Palmer amaranth plants m  of row (C:PA1 or 

C:PA4). 
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Dryland (DL-open symbols) and irrigated (IR-closed symbols) environments with monoculture corn (Corn), monoculture 

Palmer amaranth at one plant m  of row (PA1), and corn with one or four Palmer amaranth plants m  of row (C:PA1 or 

C:PA4). 
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Figure 2.5 Soil water content at 0 to 30 cm depth, precipitation, and irrigation for the 2006 growing season.   
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Figure 2.6 Monoculture corn and Palmer amaranth percent visible roots by soil depth for 

dryland and irrigated environments at the end of the growing season in 2006.   

Horizontal bars represent mean ± standard error. A) Palmer amaranth at one plant m  of 

row [LSD (0.05): DL = 4.08, IR = 3.91] and B) corn at six plants m  of row [LSD (0.05): DL 

= 3.40, IR = 2.73].   
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Figure 2.7 Effective precipitation prior to soil drying period (A), rate of soil water depletion 

and corn evapotranspiration (B) for each drying period in the 0 to 30 cm depth in the 

dryland environment in 2005.
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Figure 2.8 Effective precipitation + irrigation prior to soil drying period (A), rate of soil 

water depletion and corn evapotranspiration (B) for each drying period in the 0 to 30 cm 

depth in the irrigated environment in 2005.
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Figure 2.9 Effective precipitation prior to soil drying period (A), rate of soil water depletion 

and corn evapotranspiration (B) for each drying period in the 0 to 30 cm depth in the 

dryland environment in 2006.
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Figure 2.10 Effective precipitation + irrigation prior to soil drying period (A), rate of soil 

water depletion and corn evapotranspiration (B) for each drying period in the 0 to 30 cm 

depth in the irrigated environment in 2006.
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Table 2.1 Selected properties of the Eudora (2005) and Belvue (2006) field experiment soils at Manhattan, KS. 

Sand Silt Clay Organic
Depth (0.05–2 mm) (0.05–0.002 mm) (<0.002 mm) matter pH (-0.030 MPa) (-1.50 MPa)

cm meq/100g g/cm3

0 – 15 28 58 14 2.0 5.8 14.7 1.38 0.380 0.113
15 – 30 32 60 8 1.6 6.1 11.0 1.40 0.385 0.115
30 – 45 42 54 4 1.3
45 – 60 46 48 6 0.6
60 – 75 42 51 7 0.6
75 – 90 52 44 4 0.5

90 – 105 59 37 4 0.5
105 – 120 55 41 4 0.5

Sand Silt Clay Organic
Depth (0.05–2 mm) (0.05–0.002 mm) (<0.002 mm) matter pH (-0.030 MPa) (-1.50 MPa)

cm meq/100g g/cm3

0 – 15 44 48 8 1.1 5.6 7.0 1.45 0.249 0.062
15 – 30 44 46 10 1.0 5.8 6.8 1.45 0.249 0.062
30 – 45 42 46 12 0.8 6.5
45 – 60 40 46 14 0.6 6.7
60 – 75 42 46 12 0.6 6.9
75 – 90 56 36 8 0.5 7.1

90 – 105 60 34 6 0.5 7.3
105 – 120 52 42 6 0.5 7.4

Particle size distribution

__________________________________%________________________________

Soil water potential
Volumetric water content

____________cm3 cm-3____________

Cation 
exchange 
capacity

Bulk 
density

Eudora silt loam (2005)

Belvue silt loam (2006)

__________________________________%________________________________ ____________cm3 cm-3____________

Particle size distribution Cation 
exchange 
capacity

Volumetric water content
Bulk 

density
Soil water potential
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CHAPTER 3 - Corn and Palmer Amaranth Competition Simulated 

by a Crop:Weed Growth Model 

ABSTRACT 

 

An improved understanding of plant interactions for resources of limiting solar radiation, 

water, and nutrients, and their impact on growth is necessary for predicting crop yield losses 

under different environmental conditions.  These interactions can be simulated with mechanistic 

crop-weed competition models.  The modified ALMANAC model was parameterized to simulate 

both monoculture corn and corn with Palmer amaranth competition for dryland and irrigated 

conditions in Kansas.  Correlation coefficients between simulated and measured corn grain 

yields for monoculture corn and for corn with one and four Palmer amaranth plants m-1 of row 

were 0.55, 0.55, and 0.13, respectively.  The model underestimated monoculture corn yield but 

overestimated corn yield with Palmer amaranth competition.  Overall, the model was unable to 

sufficiently simulate corn yield loss for ten site-years in Kansas.  Based on these preliminary 

validation simulations, the modified ALMANAC model was not able to consistently simulate 

corn and Palmer amaranth competition in dryland and irrigated environments in Kansas but it 

was capable of distinguishing dryland and irrigated yield potential and causing an increase in 

yield loss with the addition of Palmer amaranth plants.  The model could be improved by 

partitioning water stress between plant populations and modifying the light interception module 

to account for vertical leaf area distribution of each plant population’s canopy. 
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Key words:  crop and weed competition, modified ALMANAC, simulation models, yield loss 

INTRODUCTION 

 

Crop yields in the U.S. Great Plains region are impacted by highly variable precipitation, 

low soil water availability, and high evapotranspiration.  Producers’ management decisions to 

maximize potential yield and profitability are dependent on their ability to minimize yield losses.  

Heiniger et al. (1991) stated that, “the ability to raise a profitable crop is tied to the ability to 

predict the conditions under which that crop will be grown and then to manage that crop and its 

immediate environment to best take advantage of those conditions. As the costs of crop inputs 

(fertilizer, seed, and pesticides) have increased over the years, so has the need for predictable 

yields in order to optimize economic gain. Unfortunately many agricultural areas, particularly in 

the Great Plains region of the United States, have climates that are variable and unpredictable.”  

The ability to predict and minimize yield loss in a crop’s environment is very complicated 

because of biotic and abiotic interactions.  Weed interference with crops is one source of crop 

yield loss because weeds compete for solar radiation, nutrients, and water.   

Improved understanding of crop yield loss from weeds in association with sensitivity to 

seasonal water stress in water-limited environments would aid crop managers in making 

profitable decisions for weed control.  Variability in environmental conditions and 

implementation of crop management operations are the major factors influencing the dynamics 

of weed-crop interference relationships among sites and years (Lindquist et al. 1996).  The 
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impact of a weed population on a crop, however, is difficult to predict particularly in non-

irrigated crop production systems (Lindquist et al. 1996).   

Interactions among crop, weed, and environment can be simulated with eco-physiological 

process-oriented competition models such as ALMANAC (Agricultural Land Management 

Alternatives with Numerical Assessment Criteria) (Kiniry et al. 1992).  The ALMANAC model 

provides a practical, easily adopted tool for simulating competition in mixed plant communities 

(Kiniry et al. 1992).   The model requires a relatively small number of species-specific plant 

parameters and is considered of intermediate complexity (Debaeke et al. 1997).  The 

ALMANAC model contains detailed functions to simulate plant growth, water balance, and 

nutrient cycling as in the EPIC (Erosion-Productivity-Impact Calculator or Environmental Policy 

Integrated Climate) model (Sharpley and Williams 1990, Williams et al. 1984, 1989), together 

with additional detail for light competition, population density effects, and vapor pressure deficit 

effects, which enable it to simulate the growth and yield of two or more competing plant species 

in a wide range of environments (Kiniry et al. 1992, 1997, Stockle and Kiniry 1990).  The 

ALMANAC model simulates grain yield based on harvest index (HI), which is grain yield as a 

fraction of total above-ground biomass at maturity.  Simulation accuracy has been validated for 

monoculture corn and grain sorghum yields in irrigated and water-stressed dryland environments 

(Kiniry et al. 1997, Kiniry and Blockholt 1998, Yun et al. 2001).   

The ALMANAC model was modified to improve plant competition relationships and 

incorporated into GAPS (General purpose simulation model of the Atmosphere-Plant-Soil 

system) (McDonald and Riha 1999a, b, Rossiter and Riha 1999).  The modified ALMANAC 

model partitions radiation into a mixed plant leaf canopy by replacing the functions developed by 
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Spitters and Aerts (1983) with the Wallace (1995) method.  The radiation partitioning method 

can characterize a fuller range of competitive relationships among interacting crop and weed 

species, where a linear interpolation is used to calculate the fraction of light intercepted by 

species in canopies in which one species does not exert complete dominance over the other 

(McDonald and Riha 1999a).  In the original ALMANAC model four environmental stress 

factors, i.e. nutrient, aeration, temperature, and water stress, can limit daily biomass 

accumulation, leaf area development, and reduce HI, where the lowest valued factor among the 

four stress indices is considered the limitation for daily index of environmental stress.  In the 

modified ALMANAC model, environmental stress is set equal to the daily water stress index and 

it does not consider stress effects from aeration or nutrients (McDonald and Riha 1999a).  Water 

stress is determined by the ratio of actual to potential transpiration (T-ratio) calculated on a daily 

time-step (McDonald and Riha 1999a).  Also, the modified ALMANAC model does not simulate 

the influence of vapor pressure deficit on plant radiation use efficiency as in ALMANAC 

(McDonald and Riha 1999a).  The modified ALMANAC model improved the environmental 

stress impact on plant growth over the original ALMANAC model, where the daily index of 

environmental stress (T-ratio) was incorporated into the equations for canopy height and root 

expansion (McDonald and Riha 1999a).  This is important for simulating competition when 

water stress occurs, so that impacts of environmental stress simulation impacts are not limited to 

biomass accumulation, leaf area development, and HI.  McDonald and Riha (1999a) recognized 

that the original ALMANAC model’s morphological development was driven by cumulative 

thermal units from establishment and was not influenced by resource capture (rate of carbon 

assimilation).  Therefore, the modified ALMANAC model was altered to make daily increases in 



98 

 

 

leaf area index (LAI), height, and rooting depth attenuated on the basis of accumulated above-

ground biomass and by environmental stress (McDonald and Riha 1999a).   The linkage of 

morphological development to resource capture was important for accurately simulating the 

growth and impact of weeds on crops, especially with weed cohorts, growth in stressful 

environmental conditions, or crops not impacted by certain weed species.   

McDonald and Riha (1999a) used the modified ALMANAC model to simulate 

monoculture corn yields and corn competing with velvetleaf from a field study.  They concluded 

that the model was capable of distinguishing between environmental conditions that facilitate 

large and small corn yield losses caused by velvetleaf competition.  Furthermore, corn and 

velvetleaf competition simulated over 30 years at a single site with water stress determined the 

probability of years that large corn yield losses would result from velvetleaf competition 

(McDonald and Riha 1999b).  The simulation of competition with historical weather data 

suggested that water stress during corn’s exponential growth phase changed the competitive 

balance between the crop and weed, in that higher levels of crop yield loss were associated with 

moisture deficit years, and corn competing with velvetleaf could have greater than 20% yield 

reductions two out of ten years (McDonald and Riha 1999b).  This evaluation illustrated the 

potential to use simulation plant growth models for crop-weed competition and how simulated 

estimates of seasonal environmental variations can aid in predicting crop yield losses.  Also, crop 

and weed simulation models give insight as to why specific responses were evident in the field in 

only certain sites and years, while providing a useful tool for quantifying the long-term 

occurrences of specific crop and weed combinations (McDonald and Riha 1999a).  
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The ability to improve and maximize corn yield involves development of corn genetics 

and optimizing crop management practices to obtain potential crop yields in a given 

environment.  To profitably produce corn, growers require information and tools to predict and 

minimize yield loss while balancing the cost of crop inputs to crop value.  Yield loss due to 

weeds is important, but more crucial is understanding or determining the mechanisms that cause 

yield loss.  Research conducted to understand the mechanisms of yield loss caused by weeds 

would improve the development of potential weed management strategies.  Also, an improved 

understanding of the crop-weed interference environment (ie. soil water, light, and nutrients) 

would provide information to develop management strategies for environmental resources.  The 

quantification of weed and crop growth during competition can be used to simulate crop yield 

loss with crop-weed competition models in different environments and management conditions 

(Kiniry et al. 1992, McDonald and Riha 1999a, b).  

Palmer amaranth (Amaranthus palmeri) is considered one of the most serious weed 

problems in the Great Plains of the United States due to its ability to reduce crop yields and 

interfere with harvest (Horak et al. 1994).  Palmer amaranth has been reported to compete 

aggressively with corn in Kansas (Liphadzi and Dille 2006, Massinga et al. 2001, 2003).  

Massinga et al. (2001) reported Palmer amaranth emerging with irrigated corn reduced yield 

from 11 to 91% for densities from 0.5 to 8 plants m-1 of row in western Kansas.  In eastern 

Kansas, Liphadzi and Dille (2006) reported dryland corn and irrigated corn yield losses were 6 to 

60% and 5 to 38%, respectively, for Palmer amaranth densities of 0.25 to 6 plants m-1.  Corn 

yield loss from Palmer amaranth between site-years and water management were variable in 

Kansas and competition models can be a tool to improve the mechanistic understanding of this 
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interaction.  Corn and Palmer amaranth competition studies provided an opportunity to test the 

performance of the modified ALMANAC model for predicting the effect of weed interference on 

corn yield in diverse environments.  The objective was to evaluate the performance of the 

modified ALMANAC model for predicting monoculture corn yield and corn yield loss from 

Palmer amaranth competition in dryland and irrigated environments in Kansas. 

 

MATERIALS AND METHODS 

 

The modified ALMANAC model was parameterized with specific plant parameters for 

corn and Palmer amaranth that were estimated, adopted, or developed for optimum growth 

conditions in Kansas.  Monoculture corn parameter values came from previously reported studies 

(Kiniry et al. 1992, McDonald and Riha 1999a) and from Manhattan, KS field experiments (Rule 

unpublished data) (Table 3.1).  Palmer amaranth data from both monocultues and in competition 

with corn were used to estimate parameter values because limited data exists for monoculture 

Palmer amaranth over a wide range of plant densities (Massinga 2000, Rule unpublished data, 

see Chapter 1).   

The output from the parameterized modified ALMANAC model was evaluated against 

yield data of monoculture corn and corn with Palmer amaranth from field experiments in Kansas 

(Table 3.2).  The experimental locations included Garden City, Manhattan, and Rossville.  

Garden City is located in southwest Kansas where irrigated corn production predominates.  The 

field experiment was conducted in 1996 to 1998 for optimum corn and Palmer amaranth growing 
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conditions in all four site-years.  Manhattan and Rossville are located in northeast Kansas where 

corn production occurs in both dryland and irrigated environments.  The northeast Kansas data 

set includes four dryland and four irrigated site-years.  The 2001 Manhattan and 2002 Rossville 

were managed for normal production practices and 2004 to 2006 Manhattan site-years were 

managed for optimum growing conditions.  The data sets provided a wide range of environment 

and management conditions to evaluate the model. 

The parameterized modified ALMANAC model was used for all simulations.  A 

description of the modified ALMANAC model and its input parameters was documented by 

McDonald and Riha (1999a), while the original model was described by Kiniry et al. (1992).  

The methods for soil water uptake and flow processes in original ALMANAC model were used 

for all simulations.  Daily potential evapotranspiration was estimated using the Penman-Monteith 

equation.  Both temperature and water stress functions were included in the simulations.  Model 

simulations were conducted based on input data for soil, climate, location, and management for 

each site-year (Table 3.2).  The climate data input files were developed for each evaluation site-

year from weather data compiled from the Kansas State Weather Data Library (M. Knapp, 

personal communication).  Climate variables used in the simulations included maximum and 

minimum temperature, solar radiation, precipitation, humidity, and wind speed.  Soil input 

parameters were obtained and estimated on a horizon basis from soil survey data and 

experimentally-determined field data.  The soil series for each site-year are shown in Table 3.2.  

The soil input data included bulk density, initial water content, field capacity, wilting point, 

percent clay, and percent silt with all other parameters set to default values.  The location and 

sequence input parameters were developed based on site-year experimental information.  The 



location input parameters included information for irrigation where actual data were used when 

possible.   

The modified ALMANAC model performance or predictive ability was evaluated by 

comparing measured and simulated monoculture corn yield, corn yield with Palmer amaranth 

competition, and percent corn yield loss using correlation coefficients and estimates of bias and 

root mean squared error (RMSE).  Bias was calculated as the average of the differences between 

measured and simulated values and indicated whether the simulation was, on average, higher or 

lower than the measured values:  

∑
=

=
n

i
iiN 1

)measured - (simulated1  Bias       [1] 

Root mean squared error was an estimate of the overall differences between measured and 

simulated values: 

∑
=

=
n

i
iiN 1

2)measured - (simulated1  RMSE           [2]   

where N was the total number of measured values.  A relatively small value for RMSE indicated 

good simulation values compared to measured values. 

 

RESULTS 

 

The modified ALMANAC model simulated corn yield accurately for monoculture corn 

and corn with one Palmer amaranth m-1 of row but poorly for corn yield with four Palmer 
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amaranth m-1 of row (Figure 3.1).  Monoculture corn yield was simulated with a relative average 

ability (r = 0.55, p = 0.0658) and was less than measured yield (bias = -1.66, RMSE = 1.99).  A 

visual inspection of Figure 3.1A indicated that the model simulated dryland corn at Manhattan 

and irrigated corn at Garden City more accurately than irrigated corn at Manhattan (2005, 2006) 

and Rossville (2002).  The correlation of measured corn yield with one Palmer amaranth plant m-

1 of row to simulated yield was r =  0.55 (p = 0.0993) (Figure 3.1B), but corn yield with four 

Palmer amaranth plant m-1 of row (r = 0.13, p = 0.7114) was poorly simulated (Figure 3.1C).  

Corn yield was overestimated when competing with one and four Palmer amaranth plants m-1 of 

row (bias = 0.19, RMSE = 1.71 and bias = 0.93, RMSE = 1.64, respectively to one and four 

Palmer amaranth plants m-1 of row).  A visual inspection of simulated corn yields with one and 

four Palmer amaranth plants m-1 of row indicated that the model consistently underestimated 

irrigated corn yield at Manhattan (2005, 2006) and Rossville (2002).  Simulated corn yields with 

one and four Palmer amaranth plants m-1 of row dryland Manhattan 2006 were overestimated by 

4.5 Mg ha-1.  Measured corn yields dryland Manhattan 2006 were very low due to early season 

water stress that continued throughout the growing season, this greatly reduced corn growth, 

while Palmer amaranth continued to grow well, while resulted in more interference and 

additional impact on corn growth and yield.    

Measured and simulated corn yield losses with one Palmer amaranth plant m-1 of row 

were poorly correlated (r = 0.07) and overall simulated yield loss was underestimated (bias = -

10.71, RMSE = 3.90) (Figure 3.2A).  The range of measured corn yield losses for corn with one 

Palmer amaranth plant m-1 of row was 15 to 87% and for simulated corn yield losses was 21 to 

35%.  The simulated corn yield loss for 2006 dryland Manhattan resulted in an outlier for the 
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model evaluation because the model failed to simulate corn yield with both weed pressure and 

severe water stress   Likewise, the model also underestimated corn yield loss with four Palmer 

amaranth plants m-1 of row (bias = -13.88, RMSE = 5.08) but the correlation between measured 

and simulated corn yield loss did improve (r = 0.28) (Figure 3.2B).  Again, the model poorly 

simulated 2006 Manhattan dryland corn yield loss but it also failed to simulate corn yield loss 

from the 1996 irrigated Garden City site.  

The model’s performance was improved when the data of the outlier site-year of 2006 

Manhattan dryland was removed for corn yield loss from one Palmer amaranth plant m-1 of row 

(r = 0.41, bias = -5.24, RMSE = 3.77).  When 2006 Manhattan dryland and 1996 Garden City 

irrigated data were removed from the data set, the correlation coefficient slightly decreased (r = 

0.27) and the bias and RMSE values improved to -4.38 and 5.76, respectively (Data not shown). 

  

DISCUSSION 

 

Numerous corn-weed competition experiments conducted by the Kansas State Weed 

Ecology research group has resulted in crop failures because of drought and high temperatures 

leading to premature crop death or barren corn plants.  These simulation results reflect a 

preliminary investigation of a crop-weed competition model to simulate corn yield with and 

without weed competition with a water-stress module.   

Overall, the modified ALMANAC model did not simulate corn yields and yield loss as 

expected when compared to results of previous studies by McDonald and Riha (1999a, b).  Their 
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simulations adequately captured (average) monoculture corn grain yield and yield variation 

among years in the state of New York.  Their model was also able to simulate corn yield loss 

from velvetleaf competition and segregate years when velvetleaf had a large impact on corn yield 

from years with little velvetleaf impact on corn yield, regardless of weed infestation density.   

The results indicate that the modified ALMANAC model inadequately simulated 

monoculture corn yield in Kansas from the data sets used.  When corn was competing with one 

Palmer amaranth plant m-1 of row, the model simulated Kansas dryland and irrigated yields with 

an average performance.  The model was unable to simulate actual yield for corn with a 

moderate Palmer amaranth density, or capture the corn yield loss from Palmer amaranth among 

site-years, regardless of water management or weed density.   

A number of observations/parameterizations highlighted the gaps, shortfalls, and 

limitations of the modified ALMANAC model to simulate corn yields in Kansas with very 

dynamic water environments, when competing with Palmer amaranth known to have very 

dynamic growth characteristics, and inadequate water uptake and light partitioning aspects of the 

model.  Palmer amaranth growth was very plastic in order for it to compete aggressively with 

crops in diverse environments (Bensch et al. 2003, Klingaman and Oliver 1994, Liphadzi and 

Dille 2006, Massinga et al. 2001, Moore et al. 2004, Morgan et al. 2001, Rowland et al. 1999).  

When dryland corn was water stressed during the growing season, the Palmer amaranth 

continued to grow and overtop corn, thereby reducing light interception by corn.  Palmer 

amaranth appeared to be less susceptible to water stress and was capable of maintaining growth 

when in competition with corn, thus increasing its competitiveness and causing more yield loss 

to already stressed corn.  The modified ALMANAC model was not able to simulate crop and 
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weed competition when soil water was limited, because plant available soil water was not 

partitioned adequately for those competing plants, as was described by McDonald and Riha 

(1999a).  The model allows the first-established plant population (corn) to meet its daily 

transpirational demand, then the plant population established next (Palmer amaranth) is allowed 

to extract the remaining available soil water from the root zone.  McDonald and Riha (1999a) 

implied that this method biases the impact of water storage against plant populations established 

after the first.  They suggested future modifications to the model so it would partition available 

soil water to multiple competing plant populations based on root length density in a given soil 

layer, as described by Ball and Shaffer (1993).  If this approach would be incorporated into the 

modified ALMANAC model, then model simulations would be improved to account for those 

weed populations capable of tolerating water stress when the crop is under water stress.  This 

would provide much more realistic yield loss predictions in our semi-arid environments of 

Kansas.   

The modified ALMANAC model was used because it incorporated a radiation-

partitioning method described by Wallace (1995), which was an improvement over the original 

ALMANAC model because one specie’s canopy does not exert complete dominance over the 

other specie’s canopy.  This simple method assumes, however that leaf area distribution is 

uniform over each plant population’s canopy height.  Massinga et al. (2003) reported that 

irrigated corn and Palmer amaranth in competition resulted in a corn leaf area distribution pattern 

that was similar across 0.5 to 8 Palmer amaranth plants m-1 densities, where 70 to 75% the total 

corn leaf area occurred 0.5 to 1.5 m above the ground.  In contrast, Palmer amaranth intercepted 

60 to 80% of the light 1 m above the ground, where 80% of the weed leaf area was concentrated.  
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Corn and Palmer amaranth do not have uniform vertical leaf area distribution, which is supported 

by Massinga et al. (2003) data.  Also, our field observations revealed that Palmer amaranth 

competing with non-stressed corn distributes over 70% of its leaf area into the upper 20% of the 

canopy (Personnel observations).  These plants produce fewer larger leaves slightly above the 

corn canopy, when compared to monoculture Palmer amaranth at low densities.  Therefore, the 

model’s solar radiation partitioning method could be improved to account for the vertical leaf 

area distribution of each plant population’s canopy.   

Overall, the modified ALMANAC model was a simple mechanistic plant competition 

model that simulated canopy level interactions over large areas, thus more generalized than 

models that simulate individual plant-to-plant interactions.  Also, the modified ALMANAC 

model required fewer species-specific parameters allowing for simulations with limited data.  

The modified ALMANAC model distinguished dryland and irrigated corn yield thus appropriate 

for predicting yields in different environments.  Improvements are needed however to partition 

water stress more appropriately across competing plant populations.  Future modifications to the 

model need to maintain the simple parameterization utility as intended by the original 

ALMANAC model.    
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FIGURES AND TABLES 

 

Figure 3.1 Simulated corn yield across 10-12 site-years in Kansas using modified 

ALMANAC.  

 A) weed free corn yield; B) corn with one Palmer amaranth m  of row; C) corn with four 

Palmer amaranth m  of row.  Simulations evaluated using: r = correlation coefficient; 

RMSE = root mean squared error (Mg ha ); and Bias = simulated minus measured (Mg 

ha ). 
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Figure 3.2 Simulated corn yield loss across 10 site-years in Kansas using modified 

ALMANAC.  

 A) corn with one Palmer amaranth m  of row and B) corn with four Palmer amaranth m  

of row.  Simulations evaluated using: r = correlation coefficient; RMSE = root mean 

squared error (%); and Bias = simulated minus measured (%).  

-1 -1
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Table 3.1 Corn and Palmer amaranth plant input parameters used in modified ALMANAC. 

Parameter Units Corn Palmer amaranth

PHU (thermal units to maturity) °C 1600 1600
RUE (radiation use efficiency) kg MJ -1 40 50
Tb (base temperature for development) °C 10 10
k (light extinction coefficient) ― 0.65 0.95
HI (harvest index) kg kg -1 0.56 0.10
MaxHeight (maximum canopy height) m 2.0 3.0
HeightPoint 1 (first point, height vs. heat unit curve) X = proportion of PHU 0.1687 0.1687

Y = proportion of MaxHeight 0.163 0.08
HeightPoint 2 (second point, height vs. heat unit curve) X = proportion of PHU 0.3125 0.3125

Y = proportion of MaxHeight 0.564 0.44
MaxLAI (maximum potential LAI) m m -2 6.0 4.5
LAIPoint 1 (first point, LAI vs. heat unit curve) x = proportion of PHU 0.1687 0.1687

y = proportion of potential LAI 0.0731 0.02
LAIPoint 2 (second point, LAI vs. heat unit curve) x = proportion of PHU 0.3125 0.3125

y = proportion of potential LAI 0.7164 0.53
LAI-Pop 1 (first point, LAI vs. plant density curve) x = density (plant m -2) 5.0 1.0

y = proportion of MaxLAI 0.66 0.45
LAI-Pop 2 (second point, LAI vs. plant density curve) x = density (plant m -2) 6.5 10.5

y = proportion of MaxLAI 0.83 0.95
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Year Site Water management Code4 Corn density Soil series
Plants m -2

1996 Garden City3 Furrow irrigated GC96 IR 7.5 Ritchfield silt loam
1997 Garden City3 Furrow irrigated GC97 IR 7.5 Ritchfield silt loam
1998E Garden City3 Furrow irrigated GC98E IR 7.5 Ritchfield silt loam
1998W Garden City3 Furrow irrigated GC98W IR 7.5 Ritchfield silt loam
2001 Manhattan1 Dryland MTHN01 DL 5.5 Reading silt loam
2004 Manhattan2 Dryland MTHN04 DL 5.5 Bismarckgrove silt loam
2004 Manhattan2 Furrow irrigated MTHN04 IR 5.5 Bismarckgrove silt loam
2005 Manhattan2 Dryland MTHN05 DL 6.8 Eudora silt loam
2005 Manhattan2 Furrow irrigated MTHN05 IR 6.8 Eudora silt loam
2006 Manhattan2 Dryland MTHN06 DL 7.8 Belvue silt loam
2006 Manhattan2 Furrow irrigated MTHN06 IR 7.8 Belvue silt loam
2002 Rossville1 Sprinkler irrigated ROSS02 IR 7.4 Eudora silt loam

1 Site data source: Liphadzi 2004; Liphadzi and Dille 2006
2 Site data source: 2004 Rule unpublished data; 2005 and 2006 Rule 2007 Chapter 1
3 Site data source: Massinga 2000; Massinga et al. 2001; Massinga et al. 2003
4 Code represents site, year, and water management for year-site figure legends  

Table 3.2 Sources of year-site data for validation of model. 
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CONCLUSIONS 

 

This research investigated Palmer amaranth interference with corn across dryland and 

irrigated environments in the same site-year and location.  Previous research had conducted corn 

and Palmer amaranth interference studies in dryland and irrigated environments, but not in the 

same site, year or/and under similar management.  This field study improved the understanding 

of corn and Palmer amaranth growth and development throughout the growing season when 

grown alone and in competition.  It also provided information to explain the causes of corn yield 

loss from Palmer amaranth competition in different soil water available environments (Chapters 

1 and 2).  The crop model research evaluated the performance of the modified ALMANAC 

model to simulate corn yield and corn yield loss from Palmer amaranth competition in Kansas 

(Chapter 3).  The information obtained provided a better understanding of corn yield loss from 

Palmer amaranth competition to maximize corn yield potential. 

Chapter 1 

The results of this study showed that corn and Palmer amaranth growth, development, 

and grain (seed) production potential were dependent on which species had the competitive 

ability to capture a limiting resource (water and light).  In this side-by-side comparison with 

different soil water environments, water stress negatively impacted corn more than Palmer 

amaranth and the magnitude of reductions depended on corn’s ability to suppress Palmer 

amaranth.  Our results showed that when Palmer amaranth had rapid early season growth, it was 
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able to interfere more with corn and cause greater reductions in dry weight and LAI.  Water-

stressed dryland corn did not have the ability to suppress Palmer amaranth and subsequently 

Palmer amaranth significantly reduced corn growth and yield.  The extent of dryland corn yield 

loss depended on the period of water stress and weed density, whereas irrigated corn yield losses 

were caused by a decrease in light interception from Palmer amaranth interference.  When water 

stress was mid-late season, dryland corn yield loss with increasing Palmer amaranth density was 

similar to irrigated corn yield loss.  In 2006, early season water stress limited dryland corn yield 

potential and was further reduced with the presence of Palmer amaranth and water stress during 

grain fill.  Palmer amaranth seed production plant-1 decreased with increasing Palmer amaranth 

density and the number of seeds m-2 increased with increasing density with corn. 

Chapter 2   

The soil VWC measurements demonstrated the seasonal trends of soil water with respect 

to precipitation and irrigation, soil physical properties, root distributions, ETCorn, and soil water 

depletion rates in the 0 to 30 cm depth of the soil profile.  The 2005 soil had higher plant 

available soil water content than the 2006 soil, which subsequently generated more water stress 

with less precipitation in the dryland environment.  The soil VWC measurements in the field 

experiment provided an estimate of soil water in the 0 to 15 cm and 0 to 30 cm depth, where over 

60% of the roots were found in monoculture corn and Palmer amaranth.  Reductions in corn 

growth and development from water stress depended on the water requirement of corn with 

respect to stage of development, available soil water, and the extent of Palmer amaranth 

interference.  Soil water depletion rates during drying periods were higher when total added 

precipitation with and without irrigation was high and plant population water demand was high.  
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Palmer amaranth with corn can deplete the soil water more than monoculture corn when plants 

were not water stressed.  Severe water-stressed dryland corn with Palmer amaranth had lower 

soil water depletion rates than monoculture Palmer amaranth.  The research results presented 

were for the upper 30 cm and future research is needed to determine the soil water extraction in 

the soil profile throughout the growing season along with the root distributions of corn with 

Palmer amaranth in different soil water availability regimes.  Also, future research investigating 

soil water competition should have replication for the treatments and for individual plants of 

interest, along with profile measurement for soil water content change with increasing depth to 

the root zone.    

Chapter 3 

Overall, the modified ALMANAC model did not simulate corn yields and yield loss as 

expected, when compared to results of previously reported simulations.  The results indicated 

that the modified ALMANAC model inadequately simulated monoculture corn yield in Kansas 

from the data sets used.  When corn was competing with one Palmer amaranth plant m-1 of row, 

the model simulated Kansas dryland and irrigated yields with an average performance.  The 

model was unable to simulate actual yield for corn with a moderate Palmer amaranth density, or 

to capture the corn yield loss from Palmer amaranth among site-years, regardless of water 

management or weed density.  The model underestimated monoculture corn yield but 

overestimated corn yield with Palmer amaranth competition.  The model performance was not 

consistent when comparing simulation results to dryland and irrigated experiments conducted 

across Kansas. 
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A number of observations/parameterizations highlighted the gaps, shortfalls, and 

limitations of the modified ALMANAC model to simulate corn yields in Kansas with very 

dynamic water environments, when competing with Palmer amaranth known to have very 

dynamic growth characteristics, and inadequate water uptake and light partitioning aspects of the 

model.  The modified ALMANAC model was not able to capture the plastic growth of Palmer 

amaranth and subsequently, could not simulate Palmer amaranth competition with corn.  When 

dryland corn was water stressed during the growing season, the Palmer amaranth continued to 

grow and overtop corn, thereby reducing light interception by corn.  Palmer amaranth appears to 

be less susceptible to water stress and is capable of maintaining growth when in competition with 

corn, thus increasing its competitiveness and causing more yield loss to already stressed corn.  

The modified ALMANAC model was not able to simulate crop and weed competition when soil 

water was limited because plant-available soil water was not partitioned adequately for the 

competing plants. The modified ALMANAC model distinguished dryland and irrigated corn 

yield, thus it was appropriate for predicting yields in different environments.  Improvements are 

needed to partition water stress more appropriately across competing plant populations, which 

would add value for the modified ALMANAC model to be used as a tool to improve corn and 

Palmer amaranth competition in diverse environments and management practices.  

Overall summary 

Results of this research improved the understanding of interactions between corn and 

Palmer amaranth when soil water was both optimum and limited throughout the growing season.  

The information gained from this experiment has provided an improved understanding of corn 

yield loss risks associated with water management and Palmer amaranth competition.  The 
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research provided results to re-emphasize that corn management can be used as a tool to suppress 

weed competitiveness and ultimately minimize potential yield loss.  When improvements to the 

modified ALMANAC model for soil water and light partitions are made, then future simulations 

can be conducted to explore and evaluate corn and Palmer amaranth interactions under limited 

irrigation systems to improve irrigation application profitability and environmental stewardship 

of water use.  This future knowledge will improve crop-weed competition models and ultimately, 

optimize corn water use and weed management decisions in diverse environments. 
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Appendix A - Chapter 1 



Figure A.1 Corn leaf dry weight (g plant-1) in dryland (DL-open symbols) and irrigated (IR-closed symbols) environments 

grown alone (Corn) and with one (C:PA1) or four (C:PA4) Palmer amaranth plants m-1 of row in 2005 (A) and 2006 (B). 

Letter within columns by harvest date compare means using LSD (across ENVIR).
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Figure A.2 Corn stem dry weight (g plant-1) in dryland (DL-open symbols) and irrigated (IR-closed symbols) environments 

grown alone (Corn) and with one (C:PA1) or four (C:PA4) Palmer amaranth plants m-1 of row in 2005 (A) and 2006 (B). 

Letter within columns by harvest date compare means using LSD (across ENVIR).  
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Figure A.3 Corn leaf area per plant leaf (1 x 10-3 m2) in dryland (DL-open symbols) and irrigated (IR-closed symbols) 

environments grown alone (Corn) and with one (C:PA1) or four (C:PA4) Palmer amaranth plants m-1 of row in 2005 (A) and 

2006 (B). 

Letter within columns by harvest date compare means using LSD (across ENVIR).
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Figure A.4 Corn specific leaf area per plant leaf (m2 g-1) in dryland (DL-open symbols) and irrigated (IR-closed symbols) 

environments grown alone (Corn) and with one (C:PA1) or four (C:PA4) Palmer amaranth plants m-1 of row in 2005 (A) and 

2006 (B). 

Letter within columns by harvest date compare means using LSD (across ENVIR).
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Figure A.5 Palmer amaranth leaf dry weight (g plant-1) in dryland (DL-open symbols) and irrigated (IR-closed symbols) 

environments grown alone (PA1) at one Palmer amaranth plant m-1 of row and with corn at one (PA1:C) or four (PA4:C) 

Palmer amaranth plants m-1 of row in 2005 (A) and 2006 (B).   

Letter within columns by harvest date compare means using LSD (across ENVIR).
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Figure A.6 Palmer amaranth stem dry weight (g plant-1) in dryland (DL-open symbols) and irrigated (IR-closed symbols) 

environments grown alone (PA1) at one Palmer amaranth plant m-1 of row and with corn at one (PA1:C) or four (PA4:C) 

Palmer amaranth plants m-1 of row in 2005 (A) and 2006 (B).   

Letter within columns by harvest date compare means using LSD (across ENVIR).
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Figure A.7 Palmer amaranth leaf number per plant in dryland (DL-open symbols) and irrigated (IR-closed symbols) 

environments grown alone (PA1) at one Palmer amaranth plant m-1 of row and with corn at one (PA1:C) or four (PA4:C) 

Palmer amaranth plants m-1 of row in 2005 (A) and 2006 (B).   

Letter within columns by harvest date compare means using LSD (across ENVIR).
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Figure A.8 Palmer amaranth leaf area per plant (m2) in dryland (DL-open symbols) and irrigated (IR-closed symbols) 

environments grown alone (PA1) at one Palmer amaranth plant m-1 of row and with corn at one (PA1:C) or four (PA4:C) 

Palmer amaranth plants m-1 of row in 2005 (A) and 2006 (B).   

Letter within columns by harvest date compare means using LSD (across ENVIR).
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Figure A.9 Palmer amaranth specific leaf area per plant (m2 g-1) in dryland (DL-open symbols) and irrigated (IR-closed 

symbols) environments grown alone (PA1) at one Palmer amaranth plant m-1 of row and with corn at one (PA1:C) or four 

(PA4:C) Palmer amaranth plants m-1 of row in 2005 (A) and 2006 (B).   

Letter within columns by harvest date compare means using LSD (across ENVIR).

 

 

 



Table A.1 Field experiment irrigation applications for 2005 and 2006. 

Dryland Irrigated
mm mm

2005 May 12 132 ― 50.8 50.8
May 20 140 ― 50.8 50.8
June 27 178 503 ― 50.8
July  14 195 760 ― 50.8
July 28 209 991 ― 50.8
Aug. 9 221 1,184 ― 50.8

2006 May 15 135 ― 50.8 50.8
June 9 160 271 ― 50.8
June 22 173 452 ― 50.8
June 30 181 560 ― 50.8
July  19 200 880 ― 50.8
July  27 208 1,013 ― 50.8
Aug. 2 214 1,134 ― 50.8
Aug. 10 222 1,285 ― 50.8

1 DOY =  Day of Year
2 GDD =  Growing degree days (Cumulative GDD from emergence)

Thermal time 
(GDD 2 )

Soil water environment

Year
Calender 

Date DOY 1
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Appendix B - Chapter 3 

Figure B.1 Effective precipitation prior to soil drying period (A), rate of soil water 

depletion and corn evapotranspiration (B) for each drying period in the 0 to 15 cm depth in 

the dryland environment in 2005. 
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Figure B.2 Effective precipitation + irrigation prior to soil drying period (A), rate of soil 

water depletion and corn evapotranspiration (B) for each drying period in the 0 to 15 cm 

depth in the irrigated environment in 2005. 
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Figure B.3 Effective precipitation prior to soil drying period (A), rate of soil water 

depletion and corn evapotranspiration (B) for each drying period in the 0 to 15 cm depth in 

the dryland environment in 2006. 
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Figure B.4 Effective precipitation + irrigation prior to soil drying period (A), rate of soil 

water depletion and corn evapotranspiration (B) for each drying period in the 0 to 15 cm 

depth in the irrigated environment in 2006. 
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Table B.1 Soil water content at selected soil water potentials of the Eudora (2005) and 

Belvue (2006) field experiment soils at Manhattan, KS. 

Eudora silt loam (2005)

Sample analyses1 (-0.010 MPa) (-0.020 MPa) (-0.030 MPa) (-0.040 MPa) (-1.50 MPa)

Mean 0.390 0.330 0.275 0.230 0.082
Standard deviation 0.0116 0.0199 0.0142 0.0115 0.0005

Coefficient of Variability % 2.96 6.05 5.17 4.99 0.61

Sample analyses1 (-0.010 MPa) (-0.020 MPa) (-0.030 MPa) (-0.040 MPa) (-1.50 MPa)

Mean 0.308 0.204 0.172 0.148 0.043
Standard deviation 0.0158 0.0157 0.0150 0.0161 0.0004

Coefficient of Variability % 5.13 7.67 8.69 10.88 0.86

______________________________________________g g-1_________________________________________________

Soil water potential
Water content

______________________________________________g g-1_________________________________________________

Belvue silt loam (2006)

1 Soil sample from 0 to 20 cm depth and mean, standard deviation, and coefficient of variability mass weight 
water content determined from four replications at each potential

Water content
Soil water potential
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