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CHAPTER 1: REVIEW OF LITERATURE

Undernutrition and growth. Undernutrition during early stages of

growth has permanent and irreversible effects. Widdowson and McCance

(1) demonstrated that rats malnourished by litter expansion grew more

poorly than those reared in smaller litters; and those differences

persisted throughout their lives. When rats were underfed after three

weeks of age, again, they grew more slowly than well-fed rats, but could

recover with refeeding depending on the length of deprivation (2). These

studies suggest that early stages of growth are more sensitive to

nutritional inadequacy than later stages.

Enesco and LeBlond (3) have studied growth at a cellular level.

Their method is based on the premise that the amount of deoxyribonucleic

acid (DNA) per nucleus (6.2 pg in a rat diploid cell) is constant. The

number of nuclei or cells in the tissue is estimated by dividing the

total DNA in a tissue by the constant DNA content per nucleus. Cell

size is estimated by dividing total tissue weight or protein content by

the number of nuclei or cells (wt/DNA or protein/DNA)

.

Enesco and LeBlond used these calculations to describe three phases

of growth in the rat. Phase one is characterized by an increase in cell

number or hyperplasia. Growth during phase two is a combination of

hyperplasia and hypertrophy (an increase in cell size). Phase three

marks the end of almost all cell division; and growth occurs chiefly by

hypertrophy.

Winick and Noble (4) investigated the effects of undernutrition

during these three phases. Male rats were divided into three groups



where each group was deprived of food for 21 days at a different age.

Group one was undernourished during suckling using larger than normal

-

size litters. Group two was given only one half of the required

calories from 22 days to 43 days of age. Group three was restricted

similarly for three weeks beginning at 65 days of age. All animals were

refed after the deprivation period until sacrifice at 133 days of age.

Total organ weight, protein, RNA, and DNA were measured after the period

of caloric restriction and again after refeeding.

The results showed that rats underfed during suckling were unable

to attain normal body weight, organ weight, or organ DNA content after

refeeding. Animals in group two exhibited similar stunting except that

brain and lung tissue had completely recovered. Rats underfed at the

oldest age suffered no permanent depression in growth in any tissue

measured.

These results were used by Winick and Noble to describe cellular

growth of various organs (Fig. 1). All organ growth in rats until 22

days of age proceeds mainly by cell hyperplasia. From 22 to 42 days of

age hyperplasia continues in all organs except brain and lung, because

cell division is already complete in those organs. By 65 days all cell

division is complete and growth proceeds by cellular hypertrophy.

They concluded that malnutrition at every stage inhibits

increases in weight, total protein, and RNA. Increases in DNA, however,

were diminished by caloric restriction only during critical early

periods of growth. Thus, failure to grow can be attributed to two

effects: reduction in cell number which results in permanent stunting

or two, reduction in cell size which is reversible upon refeeding.
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Figure 1. DNA (mg) during normal growth in the rat. DNA content
reaches a maximum in every organ before growth stops. This indi-
cates there must be a period of growth after which cells are no
longer dividing, and the individual cell must be gettina larger (5).



The growth of rat adipose cells is similar to that of other organs.

Early growth of adipose tissue is mainly hyperplastic because

undernutrition in suckling rats permanently reduces adipose cell number

(6). On the other hand, malnutrition in adult rats decreases the size

of fat deposits solely by decreasing cell size; cell number is

unaffected (7, 8). Few new adipocytes are created in rats after 35 days

of age. Rat adipocyte number is determined primarily during the

preweaning period and is evidently fixed in adults (9).

Skeletal muscle growth and its response to undernutrition proves

much more difficult to measure as it is multinucleated, consequently,

DNA content (nuclear number) does not equate with cell number, and the

ratio of protein/DNA does not reflect cell size (10).

Enesco and Puddy (11) studied the growth pattern of skeletal

muscle in young rats and found that the increase in muscle size resulted

from an increase in associated connective tissue, not an increase in

muscle fiber number. The muscle fibers enlarged with age, DNA content

increased due to increases in the number of nuclei. But DNA increases

did not reflect fiber number increases.

Chronic food restriction reduced the diameter and length of muscle

fibers in weanling rats (10) but did not change the number of fibers.

Furthermore, DNA content was low in these deprived rats; the number of

nuclei was reduced, but there was no change in measured cell number.

Some of these findings were supported by Picou et al . (12) and

Cheek et al
. (13) in studies on malnourished children. In children

suffering from protein-calorie malnutrition, the major loss of muscle

mass was due to loss of cell size rather than number.



As discussed, undernutrition inhibits cellular growth in organs and

adipose tissue of suckling rats, and development of muscle fibers in

young rats. In addition, stature is stunted in young rats. Kuramitsu

et al . (14) reported rats fed diets deficient in either protein or

energy had shorter femurs than controls because the malnourished rats

experienced no growth spurt. Furthermore, appositional growth in bones

slowed and eventually ceased during prolonged malnutrition in rats (15).

Metabolic effects of starvation. The metabolic events of

starvation in man reviewed by Saudek and Felig (16) and Cahill (17),

reflect the adaptations necessary to conserve protein and expend adipose

tissue as a fuel source. They stated that even during brief starvation

man's metabolism is markedly altered. The body adapts to maintain

critical plasma glucose homeostasis, because glucose is required by

certain tissues unable to metabolize fatty acids. Those tissues are

nervous tissue, erythrocytes, leukocytes, bone marrow and renal medulla.

If glucose is not provided by exogenous sources or declining glycogen

stores, gluconeogenesis increases. Lactate and pyruvate are recycled

into glucose via the Cori cycle which is driven by fatty acid oxidation

(Fig. 2). Triglycerides also play a direct role as a glucose source,

through the conversion of glycerol to glucose.

The most expensive source of glucose is the body's protein stores.

Most tissues (muscle, heart, kidney, etc.) use little glucose during

prolonged starvation, thereby sparing protein from gluconeogenesis. At

the onset of starvation; however, the increase in gluconeogenesis

demands the use of amino acids as a substrate. Pozefsky et al . (18) and
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Figure 2. General scheme of fuel metabolism in a fasted man,
showing the two primary sources, muscle and adipose tissue,
and the three types of fuel consumers, nerve, pure glycolyzers
and the remainder of the body that use fatty acids and ketones

(17).



Felig et al . (19) measured the effect of brief starvation and found the

amount of alanine, the principal nitrogenous glucose precursor,

constituted greater than 30 percent of all amino acids released from the

muscle. Consistent with this increase was the increased extraction of

alanine by the liver for conversion to glucose. More alanine was

converted into glucose in the liver than any other amino acid measured

(20).

Alanine, however, is not the predominant amino acid in muscle,

constituting only 5 to 7 percent of muscle protein. According to

Goldberg and Odessey (21) and Odessey et at. (22) alanine is synthesized

in the muscle by transamination of pyruvate with branched-chain amino

acids (isoleucine, leucine, valine).

Adipose tissue is the largest energy reserve and the primary fuel

source during starvation. Because citric acid cycle function is

reduced, due to loss of substrates (particularly oxaloacetate) to

gluconeogenesis, fatty acids are only partially oxidized to acetoacetate

and beta-hydroxybutyrate (ketone bodies) (23, 24). Initially, the

ketone bodies are metabolized for fuel by all organs with the exception

of the tissues requiring glucose listed above. But in prolonged

starvation, the body must reduce its need for glucose or protein, the

major gluconeogenic source, would be fatally depleted after several

weeks.

Owen et al
. (25) found that one such adjustment occurs when the

brain uses ketones instead of glucose as fuel during prolonged

starvation. Up to 50 percent of the brain's energy requirements may be

met by ketone bodies. Not only will these ketone bodies be used by the



brain as an energy source, but they provide a signal to the muscle to

reduce amino acid catabolism and alanine output (26).

When rats are fasted they exhibit the same physiological

adaptations seen in humans. Palou et al . (27) measured the effects of

food deprivation for up to 24 hours on plasma metabolic parameters.

Initially, liver and muscle glycogen were metabolized to maintain plasma

glucose levels; liver glycogen levels dropped by 50 percent after three

hours of fasting. Plasma glucose was maintained by gluconeogenic

precursors. Lactate levels dropped sharply in the first three hours due

to increased conversion to glucose. Fasting also induced a four- to

five-fold increase in glucose synthesis from glycerol, and an increased

formation of ketone bodies.

Hormonal responses to starvation. The metabolic events of

starvation are triggered by a series of endocrinologic changes designed

to conserve energy. Levels of hormones mediating fertility and growth

decrease while hormones that maintain glucose homeostasis are enhanced.

The metabolic response to hormonal flux can be broken into three basic

phases (28). The absorptive phase begins after food intake and the

subsequent rise in blood glucose concentrations. Rising insulin levels

stimulate cellular uptake of glucose and amino acids, enhance

lipogenesis, and inhibit lipolysis and gluconeogenesis. In the post-

absorptive phase, growth hormone is secreted and, together with insulin,

stimulates protein synthesis. In this way, growth hormone acts

anabolically, mediating growth. Later, insulin levels decrease and

glucose is cleared from circulation. In this phase, the fasting
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phase, the action of growth hormone dominates. Growth hormone now

mobilizes lipid stores, sparing plasma glucose and glycogen stores and,

indirectly, protein. This anti-catabolic action of growth hormone is

its second role.

These phases are greatly simplified because endocrine action during

starvation is complex. Insulin is one of the key hormones in fasting

metabolism though its levels are very low. Insulin, even in small

amounts, indirectly inhibits peripheral lipolysis and proteolysis by

lowering cyclic-AMP levels which, in turn, decrease catabolic enzyme

concentrations (29, 17). Opposing and overriding insulin's effects

during a fast are glucagon, growth hormone, thyroid stimulating hormone,

and adrenocorticotropic hormone (17).

The low levels of insulin during starvation may also be directly

associated with growth retardation. Children with diabetes mellitus,

receiving inadequate insulin therapy, exhibited stunted growth though

growth hormone levels were above normal (30).

Li et al
. (31) found that muscle weight dropped in response to a

72-hour fast in rats, and that this was attributed to a decrease in the

rate of protein synthesis. They proposed that a decrease in the level of

plasma insulin was related to a block in peptide-chain initiation and a

reduction in protein synthesis. Perfusion of the muscle in the presence

of insulin removed the block, restoring protein synthesis.

The actions of insulin were similar to those of growth hormone in

hypophysectomized rats (32, 33). Rapid growth was stimulated with slow-

acting insulin and a high-carbohydrate diet. These rats grew heavier,

longer, had increased epiphyseal cartilage width and increased nitrogen



retention compared to control animals. One explanation for these

results was that insulin stimulated the utilization of amino acids and

the synthesis of proteins while inhibiting protein catabolism. In the

complete absence of insulin, growth hormone and other hormones exerted

predominantly catabolic effects.

Unlike insulin, secretion of growth hormone varies with the type

and severity of malnutrition (34, 35, 30). Elevated growth hormone

levels were measured in children suffering from kwashiokor, a disease

due to a protein deficient diet. Researchers speculated that because

growth hormone is protein sparing, more is secreted during malnutrition

to prevent protein depletion. On the other hand, victims of marasmus,

protein-calorie malnutrition, showed low, normal or elevated growth

hormone levels. Raghuramulu and Jaya Rao (36) inferred from low plasma

amino acid levels in kwashiokor that raised levels of growth hormone may

be an attempt to increase the efficiency of utilization of the available

amino acids. In marasmus, however, plasma amino acids were in normal

ranges as was growth hormone.

When rehabilitating malnourished children with elevated growth

hormone levels, dietary protein reduced growth hormone levels more than

an increase in caloric intake. Glucose administered to kwashiorkor

patients did not produce a fall in growth hormone levels, and sometimes

resulted in a rise (30). Pimstone et al . (34) found a strong inverse

relationship between growth hormone levels and plasma concentrations of

leucine, isoleucine, valine and, especially, arginine.

Elevated growth hormone levels have also been considered a stress

response to starvation (37). Alternately, they may be attributed to a
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decreased metabolic clearance rate of growth hormone, not to increased

secretion (38).

Undernourished children are stunted despite typically normal or

elevated growth hormone levels. As mentioned above, chronically low

insulin levels may be one explanation. However, research by Phillips

and Young (39) suggests that the somatomedins may be responsible for

skeletal growth or lack of it in undernourished rats. Cartilage growth

activity dropped significantly after 72 hours of fasting as did

somatomedin levels, independent of growth hormone levels. Thus, the

depression of growth could not be attributed to growth hormone

deficiency. Refeeding reversed depressed somatomedian levels followed

by an increase in cartilage growth activity.

Other mediators in the anabolic effects of growth hormone are the

insulin-like growth factors (IGFs) (40). Fasting resulted in a decrease

in both types of IGFs. These falling plasma levels of IGFs are thought

to be responsible for the change in growth hormone activites, from

growth-promoting to substrate mobilization for fuel homeostasis.

Cortisol levels are elevated during fasting to maintain glucose

homeostasis by scavenging glucose precursors for gluconeogenesis and

inhibiting peripheral glucose utilization (37). As hypothesized for

growth hormone, high levels of Cortisol measured in children suffering

from marasmus were attributable to impaired degradation of Cortisol

rather than excess secretion (41).

High levels of glucocorticoids also interfere with growth hormone's

effect on growth. They may result in decreased growth hormone

secretion, interferrence with somatomedin generation or action, or

11



direct action on the cartilage to stunt growth (30).

Rehabilitation after undernutrition. Growth can be restored to

undernourished children through refeeding; however, these children

develop more body fat once the expected weight for height is reached

(42). Harris & Widdowson (43) discovered the same trend when

rehabilitating underfed rats. After refeeding, the rats remained

smaller than controls but possessed the same amount of total lipids as

the controls. Therefore, the refed rats contained a higher proportion

of body fat. Feed intake was not calculated in this study. Bjorntorp

and Yang (44) did measure "food efficiency" or the increase in body

weight per gram of food consumed and concluded that food efficiency

increases fivefold in refed-fasted rats. They suggested that

"starvation-induced energy conservation processes seemed to persist

during refeeding."

Departing from traditional methods of rehabilitating undernourished

children, Torun et al . (45) observed that children recovering from

protein-calorie malnutrition benefitted from mild exercise. Subjects,

two to four years old, were involved either in sedentary activities

common to programs dealing with malnourished children, or in daily, mild

walking and running while playing. In the six week study, both groups

showed improvement but the active group experienced significantly

greater increases in height and lean-body mass as measured by creatinine

excretion. The researchers concluded that exercise had a growth-

enhancing effect. With an increase in activity, they suggested dietary

amino acids may be more efficiently used and incorporated into muscle

proteins.

12



Exercise and growth. Studies have shown that regular exercise in

rats promotes growth of muscle (46, 47, 48) and bones (49, 46, 50, 51)

while discouraging development of adipose tissue.

Muscle hypertrophy occurs in both isometric and isotonic exercise,

but in different muscle components. Muscle actomyosin increases with

isometric exercise while muscle sarcoplasm (the energy-storing protein)

increases with isotonic exercise (46).

Watt et al . (47) reported significant growth in forelimb and

hindlimb muscles of rats undergoing two weeks of brief isometric

exercise. The muscles of the active rats had accumulated higher DNA,

RNA and protein contents than the muscles of the sedentary controls.

Studies in which rats performed isotonic exercise, such as daily

swimming, also showed that exercise resulted in increased DNA

concentration in the hindlimb muscles (48).

Bone growth in rodents is accelerated by voluntary exercise.

Exercised hamsters had greater axial and appendicular growth than

sedentary hamsters. Appendicular skeletal growth continued at a higher

rate than controls even after exercising ceased (50). The body length of

rats also showed greater gains with voluntary exercise (51).

Bones of rats allowed access to running wheels exhibited increased

bone density in a 22-week study (49). In contrast, Saville and Whyte

(46) observed no increase in bone densities of exercised rats over that

of sedentary controls. In fact, as a result of daily running, the bones

hypertrophied in proportion with adjacent muscles.

The antagonistic effects of regular exercise on development of

adipose tissue in rodents are well documented (52, 53, 54, 51, 55, 56,

13



57, 58). Oscai et al . (55) subjected eight-day-old male rats to a

swimming program for 15 weeks. Compared with controls, the exercised

rats gained weight slower and had significantly lower final body

weights. Much of the difference in weight was due to differences in fat

content. Exercised rats possessed fewer and smaller adipocytes in

epididymal fat pads.

In contrast, exercise in adult rats reduces the size of adipocytes

but not their number (59, 60, 61). Lower fat content was measured in

seven-week-old rats which ran on a motorized treadmill one hour per day,

five days per week for nine to seventeen weeks. Reduced fat content in

exercised rats was attributed to diminished adipocyte size, not number,

when compared to controls (57).

Effects of exerci se on food intake. Alterations in body weight

and composition in exercised rats may be attributed, in part, to changes

in food intake. Mayer et al . (52) found that female rats exercised up

to one hour exhibited decreased food intake and weight loss; but those

exercised longer periods of time increased their intake proportionally

so that weight was maintained. In contrast to Mayer's findings, more

recent studies showed that prolonged exercise suppressed appetite in

male rats (54, 62, 63). Crews et al . (54) noted reduced food intake in

male rats subjected to two hours of daily treadmill running. Oscai et

al
. (62) observed that a swimming program (six hours per day, six days

per week) depressed weight gain in male rats but not in female rats.

Only the exercised female rats, not the exercised male rats, increased

their food intake with increased energy expenditure.

14



The suppression of appetite is thought to be the result of exercise

of high intensity rather than that of long duration (64, 63). Several

factors may explain the effect of exercise on food intake.

Catecholamines, which are secreted during exercise, are thought to be

related to appetite suppression (62, 63). Baile et al . (65) found that

high levels of blood lactate, comparable to those found during severe

exercise, depressed food intake.

Metabolism during exercise. The substrates metabolized during

exercise are primarily carbohydrates and lipids. The ratio of their

usage depends upon exercise duration and intensity (66). Initially,

carbohydrate stored as glycogen in the muscle are burned by the

exercising muscle. As exercise continues and muscle glycogen stores

drop, glucose is required from hepatic glycogenolysis.

This phenomenon was confirmed by Blawacka et al . (67). After ten

minutes of moderate exercise, the glycogen level in the muscle of rats

decreased by about 65 percent and in the liver by about 33 percent.

After thirty minutes, the reduction was 85 percent for the muscles and

60 percent for the liver.

The exercising muscle continues to increase its dependency on

blood-borne glucose from the liver over time. Wahren et al . (68)

reported that uptake of blood glucose by exercising muscle accounted for

75 to 90 percent of its total carbohydrate oxidation after 40 minutes.

Glucose utilization by active muscle peaks at 90 minutes and then

decreases.

15



Concomitantly, fat usage in the form of plasma free fatty acids

increases progressively with the duration of exercise. Ahlborg et al

.

(69) found that free fatty acids provided 40 percent of the total

energy after 40 minutes of activity in men. This amount increased to 50

percent at 3 hours and over 60 percent at 4 hours. They speculated that

the increased uptake of free fatty acids by the muscle are a consequence

of increased availability rather than improved extractability (69).

During light exercise, triglycerides are mobilized from peripheral

adipose tissue stores; during intense exercise, triglycerides come from

within the muscle (70). Muscle catabolizes the fatty acids while the

glycerol moiety is shunted to the liver for gluconeogenesis.

Gluconeogenesis becomes increasingly vital to plasma glucose

homeostasis during prolonged exercise. Alborg et al . (69) found that

hepatic gluconeogenesis accounted for 45 percent of the glucose released

after four hours of exercise, compared to 20 to 25 percent at rest and

at 40 minutes of exercise. Splanchnic uptake of gluconeogenic

precursors, alanine, lactate, and pyruvate were doubled; glycerol

oxidation increased tenfold.

The source of alanine for gluconeogenesis is active muscle,

analogous to the gl ucose-al anine cycle described in starvation

metabolism (20, 71). Felig & Wahren (71) reported muscle output of

alanine was proportional to exercise intensity in men bicycling. They

suggested that alanine served not only as a glucose precursor, but as a

carrier of ammonia away from the muscle. The ammonia is a product of

branched-chain amino acid oxidation within the muscle supplying

additional energy for activity (72). Thus, amino acids, are a minor

16



energy source during exercise, providing only 5 to 15 percent of the

energy utilized (73)

.

Hormonal response to exercise. During prolonged exercise, energy

demands are met while plasma glucose levels are maintained. Similar to

a fasting situation, the substrate shifts during exercise are mediated

by hormones. Hartley et at. (74) measured hormonal responses in

bicycling men. As exercise progressed, insulin levels fell; whereas,

all stress hormone levels rose. These hormones include glucagon,

catecholamines, growth hormone and Cortisol.

Hypoglycemia does not occur during exercise even though glucose

utilization accelerates. Exercise results in a fall in plasma insulin

levels which, in turn, allow more hepatic glycogenolysis and

gluconeogenesis (68, 75). Glucagon is secreted in response to the

falling blood glucose and insulin levels (76). The release of glucagon,

however, is dependent on exercise intensity. Increased levels were

noted in strenuous exercise but not in moderate exercise (75).

Glucagon is a powerful gluconeogenic hormone in addition to

modulating lipid metabolism. It provides sufficient lipid metabolites

to support exercising muscle. Glucagon's lipolytic action is twofold. It

stimulates the release of fatty acids from adipose stores and enhances

the hepatic conversion of fatty acids to ketone bodies while suppressing

synthesis of triglycerides (77).

Glucagon release is also stimulated by catecholamines, epinephrine

and norepinephrine, which act as the initial messenger for adaption to

exercise (76). Catecholamine levels increase as work becomes more

17



intense. Elevated heart rate, vascular resistance, and dropping glucose

levels trigger catecholamine release (78). These hormones exert

powerful lipolytic action and stimulate glucogenolysis in the liver and

muscle through the stimulation of cellular cyclic-AMP (76, 78).

As part of a generalized stress response to exercise, growth

hormone levels rise. Hunter et al . (79) suggested that increased growth

hormone levels during exercise were important in mobilizing lipids

during moderate exercise. Yet, during prolonged exercise levels have

been noted to drop (79, 74) while free fatty acid levels continue to

rise. This phenomenon and the delayed effect of growth hormone on

adipose, raise doubts about its lipolytic role (80).

Hartley et al . (74) found Cortisol levels rose prior to exercise

and remained elevated 60 minutes after exhaustion. Cortisol mediates

gluconeogenesis and mobilzation of amino acids and fatty acids for fuel

(81). Unlike glucagon and catecholamines, Cortisol's effects are

delayed due to its mechanism of action. Cortisol is a mobile hormone,

penetrating its target cell to stimulate new nuclear RNA and protein

synthesis of catabolic enzymes (76).

In conclusion, during fasting and during exercise, animals resort

to a post-absorptive state of metabolism. Though carbohydrates are a

preferred substrate, peripheral stores of energy, adipose and protein,

also are consumed to conserve glycogen and maintain blood glucose

homeostasis.

Unlike starvation, exercise has been shown to have an anabolic

effect. One explanation may be the altered hormone levels observed

during exercise. Oversecretion of growth hormone in exercised hamsters

18



was associated with accelerated growth (82). In addition, some studies

found androgen levels stimulated by exercise (83, 84, 85). Growth

hormone and androgens have been found to produce greater somatic growth

than growth hormone alone (30), And while growth hormone levels may be

elevated in starvation, androgen levels are not (37).

19



LITERATURE CITED

1. WIDDOWSON, E.M. & McCANCE, R.A. (1960) Some effects of
accelerating growth. I. General somatic development. Proc. Roy.
See. 152: 188-206.

2. WIDDOWSON, E.M. & McCANCE, R.A. (1963) The effect of finited
periods of undernutrition at different ages on the composition and
subsequent development of the rat. Proc. Rov. Soc. 153B: 329-342.

3. ENESCO, M. & LeBLOND, C.P. (1962) Increase in cell number as a
factor in the growth of the organs and tissues of the young male
rat. J. Embrvol . Exp. Moroh. 10: 530-562.

4. WINICK, M. & NOBLE, A. (1966) Cellular response in rats during
malnutrition at various ages. J.Nutr. 89: 300-306.

5. WINICK, M. (1971) Cellular changes during early malnutrition. An
audio-visual series. Currents in maternal and child health. Ross
Laboratories. Columbus, Ohio. p. 6.

6. KNITTLE, J.L. & HIRSCH, J. (1968) Effect of early nutrition on the
development of rat epididymal fat pads: cellularity and metabolism.
J. Clin. Invest. 47: 2091-2098.

7. HISRCH, J. & HAN, P.W. (1969) Cellularity of rat adipose tissue:
effects of growth, starvation and obesity. J. Lipid Res. 10: 77-82.

8. STERN, J.S. & GREENWOOD, M.R.C. (1974) A review of development of
adipose cellularity in man and animals. Fed. Proc. 33: 1952-1955.

9. GREENWOOD, M.R.C. & HIRSCH, J. (1974) Postnatal development of
adipocyte cellularity in the normal rat. J. Lipid Res. 15: 474-483.

10. GLORE, S.R. & LAYMAN, D.K. (1983) Cellular growth of skeletal
muscle in weanling rats during dietary restrictions. Growth. 47:
403-410.

11. ENESCO, M. & PUDDY, D. (1965) Increase in the number of nuclei and
weight in skeletal muscle of rats of various ages. Am. J. An at.
114: 235-244.

12. PICOU, D., REEDS, P.J., JACKSON, A. & POULTER, N. (1975) Total
muscle mass and body water before and after severe protein-energy
malnutrition. Proceedings: Tenth International Congress of
Nutrition, pp. 245-246.

~

13, CHEEK, D.B., HILL, D.E., CORDANO, A. & GRAHAM, G.G. (1970)
Malnutrition in infancy: changes in muscle and adipose tissue
before and after rehabilitation. Pediat. Res. 4: 135-144.

20



14. KURAMITSU, N., MATSUR, T., YANO, H. & KAWASHIMA, R. (1985) The
influence of protein and/or energy deficiency on the growth of long
bone in rats. J. Nutr. Sci. Vitaminol

.

31: 189-196.

15. LEE, M. & MYERS, G.S. (1979) The effect of protein-energy
malnutrition on appositional bone growth in the rat. Experientia.
35: 824-825.

16. SAUDEK, CD. & FELIG, P. (1976) The metabolic events of starvation.
Am. J. Med. 60: 117-126.

17. CAHILL, G.F., Jr. (1970) Starvation in man. N. Eng. J. Med. 282:
668-675.

18. POZEFSKY, T., TANCREDI, R.G., MOXLEY, R.T., DEPRE, J. & TOBIN, J.D.
(1976) Effects of brief starvation on muscle amino acid metabolism
in nonobese man. J. Clin. Invest. 57: 444-449.

19. FELIG, P., OWEN, O.E., WAHREN, J. & CAHILL, G.F., Jr. (1969) Amino
acid metabolism during prolonged starvation. J. Clin. Invest. 48:
584-594.

20. FELIG, P., POZEFSKY, T., MARLISS, E. & CAHILL, G.F., Jr. (1970)
Alanine: key role in gluconeogenesis. Science. 167: 1003-1004.

21. GOLDBERG, A.L. & ODESSEY, R. (1972) Oxidation of amino acids by
diaphragms from fed and fasted rats. Am. J. Phvsiol. 223: 1384-
1391.

22. ODESSEY, R., KHAIRALLAH, E.A. & GOLDBERG, A.L. (1974) Origin and
possible significance of alanine production by skeletal muscle. J
Biol. Chem. 249: 7623-7629.

~

23. OWEN, O.E. & REICHARD, G.A., Jr. (1971) Human forearm metabolism
during progressive starvation. J. Clin. Invest. 50: 1536-1545.

24. OWEN, O.E., FELIG, P., MORGAN, A. P., WAHREN, J. & CAHILL, G.F., Jr.
(1969) Liver and kidney metabolism during prolonged starvation. J
Clin. Invest. 48: 574-583.

~

25. OWEN, O.E., MORGAN, A. P., KEMP, H.G., SULLIVAN, J.M., HERRERA, M.G.
& CAHILL, G.F., Jr. (1967) Brain metabolism during fasting. J
Clin. Invest. 46: 1589-1595.

26. SHERWIN, R.S., HENDLER, R.G. & FELIG, P. (1975) Effect of ketone
infusions on amino acid and nitrogen metabolism in man. J. Clin
Invest. 55: 1382-1390.

'

27. PALOU, A., REMESAR, X., AROLA, L., HERRERA, E. & ALEMANY, M. (1981)
Metabolic effects of short term food deprivation in the rat. Horm
Metab. Res. 13: 326-330.

21



28. SIMS, E. & HORTON, E.S. (1968) Endocrine and metabolic adaptation
to obesity and starvation. Am. J. Clin. Nutr. 21: 1455-1470.

29. JUNGAS, R.L. (1966) Role of cycl ic-3' ,5'AMP in the response of
adipose tissue to insulin. Proc. Nat. Acad. Sci

.

56: 757-763.

30. DAUGHADAY, W.H., Herington, A.C. & Phillips, L.S. (1975) The
regulation of growth by endocrines. Ann. Rev. Physiol. 37: 211-244.

31. LI, J.B., HIGGINS, J.E. & JEFFERSON, L.S. (1979) Changes in protein
turnover in skeletal muscle in response to fasting. Am. J. Phvsiol

.

236: E222-E228.

32. SALTER, J.M. & BEST, C.H. (1953) Insulin as a growth hormone. Br.
Med. J. 2: 353-356.

33. LAWRENCE, R.T.B., SALTER, J.M. & BEST, C.H. (1954) The effect of
insulin on nitrogen retention in the hypophysectomized rat. Br.
Med. J. 2: 437-439.

34. PIMSTONE, B.L., BARBEZAT, G., HANSEN, J.D.L. & MURRAY, P. (1968)
Studies on growth hormone secretion in protein-calorie
malnutrition. Am. J. Clin. Nutr. 21: 482-487.

35. BEAS, F., CONTRERAS, I., MACCIONI, A. & ARENAS, S. (1971) Growth
hormone in infant malnutrition: the arginine test in marasmus
and kwashiorkor. Br. J. Nut. 26: 169-175.

36. RAGHURAMULU, N. & JAYA RAO, K.S. (1974) Growth hormone secretion in
protein-calorie malnutrition. J. Clin. End. Metab. 38: 176-180.

37. PUGLIESE, M.T. & LIFSHITZ, F. (1985) Endocrine adaptations to
undernutrition. Clin. Nutr. 4: 48-53.

38. MOSIER, H.D.,Jr., JANSONS, R.A. & DEARDEN, L.C. (1985) Increased
secretion of growth hormone in rats undergoing catch-up growth
after fasting. Growth. 49: 346-353.

39. PHILLIPS, L.S. & YOUNG, H.S. (1976) Nutrition and somatomedin I:
Effect of fasting and refeeding on serum somatomedin activity and
cartilage growth activity in rats. Endocrinol

.

99: 304-314.

40. MERIMEE, T.J., ZAPF, M.J. & FROESCH, E.R. (1982) Insulin-like
growth factors in fed and fasted states. J. Clin. End. Metab . 55-
999-1002.

41. ALLEYNE, G.A.O. & YOUNG, V.H. (1967) Adrenocortical function in
children with severe protein-calorie malnutrition. Clin. Sci. 33
:189-200.

42, ASHWORTH, A. (1969) Growth rates in children recovering from
protein-calorie malnutrition. Br. J. Nutr. 23: 835-845.

22



43. HARRIS, P.M. & WIDDOWSON, E.M. (1978) Deposition of fat in the
body of the rat during rehabilitation after early undernutrition.
Br. J. Nutr. 39: 201-211.

44. BJORNTORP, P. & YANG, M. (1982) Refeeding after fasting in the rat:
effects on body composition and food efficiency. Am. J. Clin. Nutr.
36: 444-449.

45. TORUN, B., SCHUTZ, Y., BRADFIELD, R. & VITERI, E. Effect of
physical activity upon growth of children recovering from protein-
calorie malnutrition. Proceedings: The Tenth International
Congress of Nutrition, pp. 247-249.

46. SAVILLE, P.D. & WHYTE, M.P. (1969) Muscle and bone hypertrophy.
Clin. Orthor. Rel . Res. 65: 81-88.

47. WATT, P.W., KELLY, F.J., GOLDSPINK, D.F. & GOLDSPINK, G. (1982)
Exercise-induced morphological and biochemical changes in the
skeletal muscles of the rat. J. AdpI . Physiol

.

53: 1144-1151.

48. BAILEY, D.A., BELL, R.D. & HOWARTH, R.E. (1973) The effect of
exercise on DNA and protein synthesis in skeletal muscle of growing
rats. Growth. 37: 323-331.

49. BAUER, K.D. & GRIMINGER, P. (1983) Long-term effects of activity,
and of calcium and phosphorus intake on bones and kineys of female
rats. J. Nutr. 113: 2111-2121.

50. BORER, K.T. & KUHNS, L.R. (1977) Radiographic evidence for
acceleration of skeletal growth in adult hamsters by exercise.
Growth. 41: 1-13.

51. RING, G.D., BOSCH, M. & LO, C.S. (1970) Effects of exercise on
growth, resting metabolism, and body composition of Fischer rats.
Proc. Soc. ExD. Biol. Med. 133: 1162-1165.

52. MAYER, J., MARSHALL, N.B., VITALE, J.J., CHRISTENSEN, J.H.,
MASHAYEKHI, M.B. & STARE, F.J. (1954) Exercise, food intake, and
body weight in normal rats and genetically obese adult mice. Am. J.
Physiol. 177: 544-548.

53. OSCAI, L.B. & HOLLOSZY, J.O. (1969) Effects of weight changes
produced by exercise, food restriction, or overeating on body
composition. J. Clin. Invest. 48: 2124-2128.

54. CREWS, E.L. Ill, FUGE, K.W., OSCAI, L.B., HOLLOSZY, J.O. & SHANK,
R.E. (1969) Weight, food intake, and body composition: effects of
exercise and of protein deficiency. Am. J. Phvsiol. 216: 359-363.

55. OSCAI, L.B., SPIRAKIS, C.N., WOLFF, C.A. & BECK, R.J. (1972)
Effects of exercise and food restriction on adipose tissue
cellularity. J. Lioid Res. 13: 588-592.

23



56. OSCAI, L.B., BABIRAK, S.P., DUBACH, F.B., McGARR, J. A. & SPIRAKIS,
C.N. (1974) Exercise or food restriction: effect on adipose tissue
cellularity. Am. J. Phvsiol

.

227: 901-904.

57. BOOTH, M.A., BOOTH, M.J. & TAYLOR, A.W. (1974) Rat fat cell size
and number with exercise training, detraining and weight loss. Fed.
Proc. 33: 1959-1963.

58. BULBULIAN, R., GRUNEWALD, K.K. & HAACK, R.R. (1985) Effect of
exercise duration on feed intake and body composition of Swiss
albino mice. J. AdpI . Physiol . 58: 500-507.

59. ASKEW, E.W., HUSTON, R.L., PLOPPER, C.G. & HECKER, A.L. (1975)
Adipose tissue cellularity and lypolysis. Response to exercise and
Cortisol treatment. J. Clin. Invest. 56: 521-529.

60. McGARR, J. A., OSCAI, L.B. & BORENSZTAJN, J. (1976) Effect of
exercise on hormone-sensitive lipase activity in rat adipocytes.
Am. J. Phvsiol. 230: 385-388.

61. OWENS, J.L., FULLER, E.O., NUTTER, D.O. & DIGIROLAMO, M. (1977)
Influence of moderate exercise on adipocyte metabolism and hormonal
responsiveness. J. AdpI. Phvsiol. 43: 425-430.

62. OSCAI, L.B., MOLE, P. A. & HOLLOSZY, J.O. (1971) Effects of exercise
on cardiac weight and mitochondria in male and female rats. Am. J.
Phvsiol. 220: 1944-1948.

63. STEVENSON, J.A.F., BOX, B.M., FELEKI, V. & BEATON, J.R. (1966)
Bouts of exercise and food intake in the rat. J. Add!. Phvsiol. 21-
118-122.

64. KATCH, V.L., MARTIN, R. & MARTIN, J. (1979) Effects of exercise
intensity on food consumption in the male rat. Am. J. Clin . Nutr
32: 1401-1407.

65. BARE, C.A., ZINN, W.M. & MAYER, J. (1970) Effects of lactate and
other metabolites on food intake in monkeys. Am. J. Phvsiol. 219:
1606-1613.

66. FELIG, P. & WAHREN, J. (1975) Fuel homeostasis in exercise. New
Enq. J. Med. 293: 1078-1083.

67. BLAWACKA, M., ROTH, Z., WOJCIECHOWSKA, F. & KARON, H. (1977) Effect
of exercise on glycogen level in muscles and liver in rats. Acta
Phvsiol. Pol. 28: 431-440.

68. WAHREN, J., FELIG, P., AHLBORG, G. & JORFELDT, L. (1971) Glucose
metabolism during leg exercise in man. J. Clin. Nutr. 50: 2715-
2725.

24



69. AHLBORG, G., FELIG, P., HAGENFELDT, L., HENDLER, R. & WAHREN, J.
(1974) Substrate turnover during prolonged exercise in man. J.
Clin. Invest. 53: 1080-1090.

~

70. KAMINSKY, N. (1983) Fuel metabolism in the long-distance runner.
In: Sports Medicine. (Appenzeller, 0. & Atkinson, R., eds.) Urban &
Schwarzenberg, Baltimore, pp. 99-113.

71. FELIG, P. & WAHREN, J. (1971) Amino acid metabolism in exercising
man. J. Clin. Invest. 50: 2703-2714.

72. LEMON, P.W.R. & NAGLE, F.J. (1981) Effects of exercise on protein
and amino acid metabolism. Med. Sci. Sports. 13: 141-149.

73. DOHM, G.L., KASPEREK, G.J., TAPSCOTT, E.B. & BARAKAT, H.A. (1985)
Protein metabolism during endurance exercise. Fed. Proc. 44: 348-
352.

74. HARTLEY, L.H., MASON, J.W., HOGAN, R.P., JONES, L.G., KOTCHEM,
T.A., MOUGEY, E.H., WHERNY, F.E., PENNINGTON, L.L. & RICKETTS, P.T.
(1972) Multiple hormonal responses to prolonged exercise in
relation to physical training. J. Add!. Phvsiol. 33: 607-610.

75. VRANIC, M., KAWAMORI, R. & WRENSHALL, G.A. (1975) The role of
insulin and glucagon in regulating glucose turnover in dogs during
exercise. Med. Sci. Sports. 7: 27-33.

76. SCAHDE, D.S. (1983) Stress hormone response to exercise. In: Sports
Medicine- Appenzeller, 0. & Atkinison, R., eds.) Urban &
Schwarzenberg, Baltimore, pp. 149-156.

77. SCHADE, D.S., Woodside, W. & Eaton, R.P. (1979) The role of
glucagon in the regulation of plasma lipids. Metabolism. 22: 874-
886

.

78. HARTLEY, L.H. (1975) Growth hormone and catecholamine response to
exercise in relation to physical training. Med. Sci. Sport<; 7-
34-38.

79. HUNTER, W.M., FONSEKA, C.C. & PASSMORE, R. (1965) Growth hormone:
important role in muscular exercise in adults. Science. 150: 1051-
1053.

80. TERJUNG, R.L. (1979) Endocrine systems. In: Sports MedicinP and

^u^^'.°l°^^
(Strauss, R.H., ed.) W.B. Saunders Company,

Philadelphia, pp. 147-165.

81. THARP G.D. (1975) The role of glucocorticoids in exercise. Med
Sci. Sports. 7: 8-11. -

82. BORER, K T. (1986) Alteration of pulsatile growth hormone secretion
by growth-inducing exercise. Endocrinol. 118: 844-850.

25



83. REMES, K., KUOPPASALMI, K. & ADLERCREUTZ, A. (1979) Effects of
long-term physical training on plasma testosterone, aldosterone,
leutinizing hormone and sex hormone binding globulin capacity.
Scand. J. Clin. Lab. Invest. 39: 743-749.

84. SUTTON, J.R. (1973) Androgen responses during physical exercise.
Br. Med. J. 1: 520-522.

85. SUTTON, J.R., COLEMAN, M.J. & CASEY, J.H. (1978) Testosterone
production rate during exercise. In: Third International Symposium
on Biochemis try of Exercise: Regulatory Mechanisms in Metabolism
during Exercise, pp. 227-234. Symposia Specialists, Miami.

26



CHAPTER 2:

THE EFFECTS OF EXERCISE ON CATCH-UP GROWTH

OF RATS RECOVERING FROM EARLY UNDERNUTRITION
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INTRODUCTION

The growth retardation resulting from chronic undernutrition early

in life has been extensively studied in man, rats, and other species (1-

8). A return to normal nutriture and subsequent recovery is often

characterized by a rapid rate of "catch-up growth" (9-12). This

accelerated growth response is an attempt to normalize body size to a

pre-retardation level. The degree of recovery may be affected by the

type of diet used during rehabilitation (6,13-16), or the severity (17-

19), duration (20), or age at onset (1-3) of the undernutrition period.

The objective of the present study was to examine the effects of

exercise on growth during the recovery period in rats. Because growth

is rapid during recovery, the animals may be particularly sensitive to

external stimuli such as exercise. Exercise increases growth of

skeletal muscle (21-23) and bones (24-26). Additionally, although

exercise usually reduces voluntary feed intake in (male) rats (27-29),

there are some reports that it increases intake in nutritionally-

compromised animals (30,31).

Interest in this research stems from the previous finding that

rats exercised during a feed deprivation regimen grew better than

deprived animals not exercised (31). The present trial is conducted

similarly except that rats began exercising after the feed deprivation

period.
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MATERIALS AND METHODS

Animals and Diet. Three-week-old male Wistar rats (Hsd:WI:BR,

Harlan Sprague-Dawley, Indianapolis, IN), 55-85g each, were housed in

wire-bottom, stainless steel cages (18 x 24 x 18 cm) in a temperature-

and light-controlled room (21-23 C, 12-h light/dark cycle). Rats were

allowed water ad libitum throughout the study and were fed AIN-76A diet

(Teklad Test Diets, Madison, WI), which is a nutritionally adequate,

purified diet (Appendix 1). This diet has been previously described

(32), and modified (33). Feed consumption was measured daily and rats

were weighed twice weekly throughout the study.

Experimental protocol. Rats were randomly assigned to one of 2

groups for the first 4 wk of the study. Rats in one group received feed

ad libitum; those in the other group were fasted every other day (EOD).

Fasted EOD rats were given feed on alternate days in the morning hours,

and the remaining feed was removed from the feed cups the following

morning. This method of feed deprivation was chosen because of its

simplicity and because it had been shown to cause growth retardation in

young rats (31, 34-35).

After 4 wk, 8-9 rats from each group were killed to obtain baseline

values and the remaining animals in both groups were divided into

exercise and non-exercise sub-groups; all were allowed feed ad libitum.

Exercised rats ran at a speed of 24 m/min (zero grade) for 75 min/d and

5d/wk (M-F) on a 1/2 hp Radiotrol treadmill (Boston Gears, Quincy, MA).

To acclimitize the rats to running, the treadmill speed was

progressively increased within the 75-min exercise period during the

first 2 wk of the 8 wk exercise period.
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Several rats were eliminated from the study. Three were eliminated

from the first 4 wk of the study because they habitually dumped their

feed from the feed cups and subsequently became underweight. Three more

were dropped from the 8 wk exercise study: one for refusing to run on

the treadmill, another was found to be a female, and the third had a

chronic eye infection.

Killing procedures . After 8 wk, animals were killed by ether
TM

overdose, shaved, and dehaired with a commercial depilatory (Nair ,

Carter-Williams Products Inc., NY). The lungs and the digestive tract

were removed and, after decapitation, each carcass was weighed in air

and then underwater to determine specific gravity (Appendix 2), and

subsequently, body fat (36). Carcass lean mass was calculated as carcass

weight minus carcass fat. Epididymal, retroperitoneal, and abdominal fat

depots were removed and weighed. Livers, kidneys, hearts, brains, and

vastus and gastrocnemius muscles from both hindlimbs were removed,

weighed, and stored at -18 C for later analyses.

Analytical procedures. Femurs and tibias removed from left

hindlimb were immediately cleaned of adherent tissue, dried in a 103 C

forced air draft over for 24 h, and weighed after cooling in a

desiccator. After bones were measured for length, they were soaked for

48 hr in deionized water and weighed underwater to determine specific

gravity.

Protein and deoxyribose analyses were performed on livers, kidneys,

brains, hearts, and vastus and gastrocnemius muscles (Fig 3). Appendices

3 and 4 describe reagents used in analyses. Whole livers were
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homogenized on an Oster blender (Oster, Milwaukee, WI); other tissues

were homogenized using a Polytron high speed homogenizer (Brinkman

Instruments, Westburg, NY). Tissue protein was measured by the Lowry et

al. procedure (37a). Deoxyribose was extracted from the tissues by the

method described by Schneider (37b) and then assayed by the

diphenylamine reaction (37c). Statistical tests employed were least

significant differences tests following significant (P < 0.05) analysis

of variance procedures (38). The computer program used for data analysis

is in Appendix 5.
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PROTEIN

Tissues

hcmogenizaticn:

liver 1:7, kicheys 1:6, and brain

or nLEcles 1:4

huiuija Hte

DECDCrRIBOSE

Di lute haiDgerate further: liver or

kicheys 1:144, heart or nvjscles

1:256, brain 1:100

1.0 ml dil. hcmagerete or standards or blanks

(in dLplicate)

*5.0 ml alkaline reagent

Mix

6.0 ml

Let stand a r.t. 10 rain

+0.5 ml Folin-Ciocalteaj reagent

Mix iimediately on vortex

6.5 ml

Let stand 3 r.t. 30 min

READ a 750 rm (blue)

(spectrophotcmBter

)

Sediment

(discard)

I

I

1.0 ml hcncgenate

+ 2.5 ml cold 10% TC»

Mix

Centrifuge at TOO rpn

Discard aqLCOus phase

Sediiiuit

+ 5.0 ml 95% EtOi

Mix

(^trififle at 1000 rpm

Discard aqueous phase

Sediment (lipid-free)

+1.5 ml 5%TC»
Mix

90 C, 15 min (shake every 5 min)

Centriftge at 2000 rpm

Aqueous (use 1.0 ml for deoxyribose

I

analysis)

1 .0 ml (sanple, standard, or blank)

+ 2.Ch)l diphenylamine reagent

Mix (vortex)

3.0 ml

I

90 C, 10 min

I

(ix>l in HOH a r.t. Smin

READ a 600 rm (blue)

(spectrophotometer)

Fig 3. Protein and deoxyribose extraction and analysis
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RESULTS

Weight ga in, carcass composition and feed intake. Rats killed

after fasting EOD the first 4 wk ate 46% less feed and gained 44% less

weight than those fed ad libitum, even though they had free access to

feed on alternate days (Table 1). Carcasses of the fasted EOD rats also

contained 53% less fat and 37% less lean mass than those of the ad

libitum animals. When the fasted EOD rats were refed for the next 8 wk

they still remained smaller than rats that had been fed ad libitum,

regardless of exercise treatments.

The 8-wk exercise program after the initial feeding period reduced

weight gain in both groups of rats, but had a greater effect on rats

that had been fasted EOD. Underfed rats that were exercised gained 24%

less weight, and their carcasses contained 46% less fat and 8% less lean

mass than underfed rats that were not exercised. In rats that had

always been fed ad libitum, exercise reduced weight gain by 20% and

carcass fat by 44%, but actually increased carcass lean mass by 2%.

Tissue Growth. The smaller weight gains of the fasted EOD rats

after the 4-wk period were accompanied by smaller tissues and organs as

well (Table 2). Livers, kidneys, brains, and gastrocnemius and vastus

hindlimb muscles were lighter and had less protein contents in fasted

EOD rats than ad libitum fed rats.

Exercise reduced liver weights and liver protein contents in both

groups of animals. However, the effects of exercise on other tissues

were different in early underfed and normal-fed rats. In previously ad

libitum fed rats, exercise increased the weights and protein contents of
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kidneys, brain, and hindlimb muscles; in fasted EOD rats exercise

reduced growth of those tissues.

Perhaps the most dramatic effect of the 4-wk fasting EOD regimen

was its effect on fat depots (Table 3). Epididymal, retroperitoneal, and

abdominal fat pads were reduced in weight by 50 to 72%. When animals

were refed they gained weight in those tissues; however the

retroperitoneal depot still remained lighter in the fasted EOD rats even

after 8 weeks of refeeding.

Exercise reduced weights of all three fat pads in both ad libitum

and fasted EOD rats to a similar extent, between 37 to 44%, over the 8-

week period. Exercise further seemed to reduce weight of all three fat

pads comparably, without preference for any one location.

Hindlimb bone growth was also studied as a function of exercise and

early nutriture. Fasting EOD for 4-wk reduced femur and tibia wt and

length; those effects persisted even after refeeding. Exercise tended

to increase bone weights in ad libitum fed rats even though the effects

were not statistically significant. In contrast, exercise in underfed

rats significantly reduced femur weight by 10%.

Tissue nucleic acid contents. We performed DNA analysis on tissues

but found the values variable and higher than those usually reported.

Consequently we did not include them in our research results, but they

are shown in Appendices 12-16.
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TABLE 1

Effects of exercise following nonrel or uxter-nutrition en uei^t gain, bod/ ccnposition,

1

and feed intake of growing male rats

Ad Libitun

MeosLi am It

Initial wt, g

Final wt, g

Total wt gain, g

Ave. dai ly wt gain, g

Carcass ccnposition

Wt, g

Fat, g

Fat, X

Lean nass, g

Lean nsss, X

Ave. daily feed intake

total g/d

per 100g bod/ wt

Feed efficiency, g total

gain/g total feed

2 Followed b/S-tic

(Baseline) -Exercise -tExercise

(72 +2) 295+6 315+6

(237 +6) 549 +13 516 +14

(225 +.8) 254 +12 200 +12

(8.0 +0.3) 4.5 +0.2 3.6 +0.2

(253 +7) 476 +13 441 +14

(45 j3> 98+6 55+6

(18+1) 20+1 13+1

(208+5) 378 i9 385 +10

(82 +1) 80+1 87+1

(19.8+0.5) 24.9+0.6 21.9+0.7

(13.7+0.2) 6.0+0.1 5.4+0.1

Fasted ECD

Follcuedb/8-kk
(Baseline) -Exercise +€xercise

(70 +2) 204+6 205+6

(196 +9) 521 +14 447 +14

(126 +9) 317 +12 242 +12

(4.5 +0.3) 5.7 +0.2 4.3 +0.2

(152 +7) 448 +14 380 +14

(21+3) 79+6 43+6

(14+1) 18+1 11+1

(131+5) 368+10 337+10

(86 +1) 82+1 89+1

AWCVA

Fasted

Fasted, Exercise

Fasted, Exercise

Fasted, Exercise

Fasted, Exercise

Fasted, Exercise

Exercise

Fasted

Exercise

(10.7+0.5) 24.2+0.7 20.9+0.7 Exereise

(9.2+0.3) 7.1+0.1 6.7+0.1 Fasted, Exercise

(0.41+0.01) 0.18+0.01 0.16+0.01 (0.42+0.01) O.ZJ +0.01 0.21+0.01 Fasted, Exercise

1

Values are meens + SB1 for 8 or 9 rats.

2

Baseline values obtained after the initial 4-Jc feedir^ period.

Two-way analysis of variance perfomed on the post exercise or
si^ificant (P 0.05).

non-exercise grxxfs. Main treatment effects listed are
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TASLE 2

Effects of exercise following nonrnl or mder-rutrition on growth

1

and protein contents in tissues of growing nale rats

Ad Libitun Fasted ECD

2 Followed ty 8-vic Followed ty 8-wk 3
>^eeeuKi\a,l. (Baseline) -Exercise >€xen:ise (Baseline) -Exercise -tExercise awova

Liver

W*' 3 (17.53t0.63) 24.79*1.26 22.88*1.33 (11.44*0.67) 21.76*1.33 18.10*1.33 Fasted, Exercise

Wt, g/IOOg bod/ wt (5.88*0.12) 5.31+0.3 5.18*0.24 (5.86*0.13) 5.20+0.24 4.86*0.24 N.S.

Protein, total g (2.58+0.11) 3.79^0.19 3.4()+0.20 (1.60|+0.12) 2.99+0.20 2.76*0.20 Fasted

Kidieys (both)

^' 9 (2.66*0.05) 3.49t0.12 3.71+0.12 (1.86*0.06) 3.38i0.12 3.30*0.12 Fasted

Wt, g/IOOg bod/ wt (0.90*0.02) 0.75+0.02 0.84+0.02 0.95+0.02) 0.81+0.02 0.89+0.02 Fasted, Exercise

Protein, total wg (388.6+8.8) 557.2+20.2 616.5+21.4 (268.3*10.0) 541.9+21.4 536.5+21.4 Fasted

{1.1()+0.13) 1.4310.17 1.38+0.09 (O.71+O.06) 1.38*0.06 1.24+0.08 N.S.

(0.37+0.03) 0.24*0.02 0.27+0.01 0.36+0.02) 0.26*0.01 0.28*0.02 N.S.

(160.9+12.9) 216.9+37.7 206.0*25.0 (111.3*18.8) 207.4+31.9 209.6+15.2 N.S.

Wt. 9

wt. g/lOOg bod/ wt

Protein, total ng

Brain

Wt, 9 (1.9BK).a2) 2.19t0.04 2.25i0.04 (1.81+0.02) 2.16*0.04 2.06+0.04 Fasted, Fasted^ercise

Wt, g/lOOg bod/ ut (0.67+0.(B) 0.47+0.01 0.51+0.02 (0.93*0.03) 0.52+0.02 0.56*0.02 Fasted, Exercise

Protein, total wg (194.3+2.8) 223.4^4.2 226.4*4.4 (178.0*3.0) 213.6*4.4 213.4+4.4 Fasted

GastrocnemiLB nuscle

Wt. 9 (3.11+0.09) 5.59+0.14 5.86+0.15 (2.25+0.09) 5.75+0.15 5.36*0.15 Fasted^ercise

Wt, 9/lOOg bod/ wt (1.06*0.03) 1.20*0.03 1.53*0.05 (1.15+0.05) 1.3£W).CB 1.45*0.03 Fasted, Exercise

Protein, total mg (504.0*17.2) 880.0*31.2 841.3+33.1 (355.0*18.2) 831.8+33.1 866.0+33.1 N.S.

Vastus nLBcle

"t. 9 (3.04*0.08) 3.34+0.13 3.49*0.14 (2.15+0.06) 3.36*0.14 3.21+0.14 N.S.

Wt, 9/100g bod/ wt (1.03*0.02) 0.72+0.03 0.79^0.05 (1.10*0.02) 0.81+0.03 0.87+0.03 Fasted, Exercise

Protein, total itb (549.3+19.4) 601.6*15.3 665.3*16.3 (399.3*20.6) 622.4*16.3 582.3*16.3 FastecfExereise

1

Values are means + sa for 8 or 9 rats. Muscles frem both hindlinte were pooled for neasurarents.

Baseline values obtained after the initial 4-wk feedirg period.

Two-vay analysis of variance perfomed en the post exercise or non-exercise groups. Main treetmmt effects listed are
sigitficant (P 0.05).
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TABLE 3

Effects of exercise following normal or mder-nutrition en growth of fat

1

depots and hindlinb bcnes of growing male rats

Ad Libitun

Heasuamit

Fat depots

Epididynel fat

Wt, g

Wt, 9/100g txxV wt

Retroperitoneal fat

Wt, g

Wt, g/IOOg bcxif wt

Abdam'nal fat

Wt, g

Wt, g/100g bod/ wt

2 Followed tvS-vic

(Baseline) -Exercise -tExercise

(3.6+0.2) 11.1+0.7 7.0+0.7

(1.2+0.1) 2.4+0.1 1.6+0.1

(5.8 +0.4) 21 .8 +1 .2 12.9 +1 .2

(1.9+0.1) 4.7+0.2 2.9+0.2

(4.2 +0.3) 13.8 +0.8 8.3 +0.9

(1.4+0.1) 2.9+0.1 1.9+0.2

Fasted ECD

Hindi infa bones

Tibia

Wt, mg (389 +7) 564 +16 586 +17

Length, m (36+0) 40+0 40+0

Specific gravity (1.53+0.02) 1.64+0.02 1.57+0.02

(Baseline)

Followed b/8-Uc
-Exercise +Exercise ANO/A

(1.6+0.2) 9.7+0.7 6.0+0.7 Exercise

(0.8+0.1) 2.3+0.1 1.6+0.1 Exercise

(1.6+0.5) 16.6+1.2 9.3+1.2 Fasted, Exercise

(0.8+0.1) 4.0+0.2 2.5+0.2 Fasted, Exeftise

(2.1+0.3) 12.4+0.9 7.0+0.9 Exercise

(1.1+0.1) 3.0+0.2 1.9+0.2 Exereise

(286+7) 556 +17 520 +17 Fasted

(33+0) 40+0 40+0 N.S.

(1.43+0.02) 1.58+O.Oe 1.60 +O.02 N.S.

Femr
Wt, mg (417 +6) 818 +18 841 +19

Length, m (31+0) 38+0 39+0

Specific gravity (1.57+0.02) 1.53+0.02 1.52+0.02

(309 +6) 812 +19 733 +19 Fasted, FastecTExercise

(28+0) 38+0 37+0 Fasted

(1.46+0.02) 1.52+0.02 1.52+0.02 N.S.

1
—

Values are means + SSI for 8 or 9 rats.

2

Baseline values obtained after the initial 4-v* feeding period.

Two-way analysis of variance perfoniBd en the post-exercise or non-exercise grotps. Main treatiTBit effects listed are
siyiificant (P 0.05).
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DISCUSSION

Our study shows that exercise during recovery from early

undernutrition reduces catch-up growth in rats. Exercise following an

intermittent fasting period reduced feed intake, feed efficiency, weight

gain, and carcass contents of fat and lean mass. The smaller weight

gains of the exercised underfed rats were accompanied by smaller

visceral organs and hindlimb muscles and bones.

Exercise had somewhat different effects in rats fed ad libitum early

in life. Exercise again (to a lesser extent) reduced feed intake, feed

efficiency, weight gain, and carcass fat; but carcass lean mass was

increased slightly and weights of kidneys, brains, and hindlimb muscles

and bones were maintained or increased.

Our results suggest that the response to exercise can be modified

by prior nutritional status. The underfed rats may not have been able

to respond normally to exercise because of physiological impairments

resulting from early undernutrition. Feed deprivation in young animals

has been shown to reduce muscle growth (1,39-42) and oxidative capacity

(43-45), and result in earlier fatigability during exercise (43).

Previously undernourished rats exhibited poorer motor coordination and

balance than control rats when tested later in life (46,47). Human

studies demonstrate poor work capacity in malnourished children and

adults (see review, ref. 48). These studies suggest that, at best, a

prior period of undernutrition would make exercise difficult; it would

also probably affect the normal training response as well.

On the other hand, there is some evidence that exercise may be a

useful adjunct for the recovery from undernutrition. Torun et al . (49)
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compared growth responses of active and sedentary 2 to 4-year-old

Guatemalan children recovering from malnutrition. The active children

participating in games involving moderate energy expenditure grew taller

and had more lean body mass than children who followed the typical

hospital level of physical activity (sedentary games). More recently,

this laboratory found that young rats exercised during an intermittent

fasting regimen ate more feed and gained more weight than fasted rats

not exercised (31). Those data led to the question of whether exercise

would have the same beneficial effects if begun after the period of

undernutrition. As shown, exercise begun after the undernutrition

period was not beneficial; it actually reduced growth.

A comparison of both these studies may reveal why exercise had

apparently opposite effects. Both studies employed the same diet,

method of feed deprivation, and exercise program; they differed only in

the timing of exercise relative to the undernutrition period.

The physiological response of an animal to undernutrition is quite

different from that response during recovery or "catch-up growth", and

exercise may have different effects during those times. Undernutrition

is characterized by a reduction in metabolic rate (50), growth rate (1-

3), protein synthesis (14,38,51), and circulating levels of somatomedin

C (52), thyroxine (53), and insulin (5,51,54). These physiological

adjustments reflect the need to preserve "self" when resources are

limited. Exercise may have been beneficial during that time because it

allowed the animals to eat more on the days that they were allowed feed

(31). Also, exercise is known to increase growth hormone levels

39



(55,56) and reduce the need for insulin (57,58) which is needed for

growth.

Recovery following undernutrition is also a period of physiological

stress, because demands imposed by rapid growth imply greater tissue

deposition and subsequent nutrient need. During catch up growth

voluntary food intake greatly increases (59) and efficiency of weight

gain is improved (59,60). Serum levels of growth hormone (61) and

insulin (51,54) increase, and those of corticosterone decrease (51)

which are changes consistent with anabolic processes. Exercise during

this rapid period of growth may have reduced growth further because it

increases, irreversibly, the oxidation of branched chain amino acids

(62,63), which are essential to growth.

Another potential factor affecting the growth response to exercise

is the age of the rats when they begin to exercise. When rats were

exercised during the undernutrition period they were younger and

possibly more responsive to environmental stimuli. Winick and Noble

(64) have shown that cellular growth of most organs and tissues in rats

is complete by 44 days of age. Consequently exercise may have a greater

impact when performed during the linear portion of the growth curve,

when growth is more plastic and perhaps more easily modified by

external factors. The clinical implications of our study suggest that

exercise may be more valuable to growth if begun early in life before

growth is complete (i.e. a "critical period" for exercise).

Alternately, exercise may reduce recovery from undernutrition if begun

at a later stage of the life cycle.
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The effects of exercise on individual organs and tissues has

previously been studied. Dohm and coworkers found exhaustive bouts of

exercise significantly reduced portein levels of skeletal muscle and

liver (66, 67). They reported that exercise caused a decrease in

protein synthesis and an increase in protein degradation in muscle and

liver. This protein loss was accompanied by increased free lysosomal

activity. And in rats which were fasted before exercise, activity

levels were severalfold greater. They suggested that fasting alters the

structure of lysosomes which further enhances the catabolic effect of

exercise. Our data on liver response confirm these findings. Muscle

growth, however, was stimulated by exercise in rats fed ad libitum. Our

rats were not exhaustively exercised; protein loss in these tissues may

be dependent on the duration of exercise. Also protein synthesis has

been found to increase after exercise (68) and may overcome any

catabolic effects of exercise.

Recovery from undernutrition has also been examined for its effects

on body composition. Harris and Widdowson (4) studied 3-wk-old rats fed

a restricted diet for 10 wks followed by another 12 wks of unlimited

diet. They found that the previously undernourished rats deposited more

fat during rehabilitation than the control animals in the same number of

days and over the same gain in body-weight.

Bjorntorp and co-workers have examined the physiological changes

that occur during short-term fasting and refeeding in rats (60). They

found that when 2-month-old rats were fasted for 65 hr and refed ad

libitum their body weight and body composition returned to the levels of

nonfasting controls by 8 days and that feed efficiency was higher during
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the refeeding period than ad libitum eating. The refeeding period was

characterized by an increase in glucose turnover, synthesis of glycogen

and lipid in liver and adipose tissue, and repletion of protein losses

in liver and muscle (54). When rats were exercised during the 8-day

refeeding period they re-gained less body weight and fat without

compromising the restoration of lean tissue (65).

Data from our study support those findings with only a few

departures, which might be attributed to differences in experimental

protocol. Our weanling (4-wk-old) male rats fed a restricted diet for 4

wk gained more weight and were more feed efficient during the refeeding

period than rats that had been fed ad libitum; but they did not attain

the body weights of the ad libitum fed rats over the 8-wk period. Their

carcass percent fat was comparable at the end of the study. However

exercise reduced the amount of fat re-gained and also, to a lesser

extent, the amount of lean body mass re-gained in previously underfed

rats. Our rats may not have been able to re-synthesize lean mass as

effectively because their energy stores were low. This result of

underfeeding coupled with the demands of exercise, may have reduced the

energy available for growth.
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APPENDIX 1

1

Composition AIN-76A purified diet

Ingredient Amount

g/kg

Casein, high protein 200.0
DL-Methionine 3.0
Sucrose 499.99
Corn starch 150.0
Corn oil 50.0
Non-nutritive fiber (cellulose)

2

Mineral mix

50.0

35.0
3

Vitamin mix 10.0
Choline bitartrate 2.0
Ethoxyquin 0.01

1

Supplied by Teklad Test Diets, Madison, WI.
2

Supplied as AIN-76 mineral mix in grams/kg of mix:
calcium phosphate, 500.0; sodium chloride, 74.0; potassium
citrate monohydrate, 220.0; potassium sulfate, 52.0; magnesium
oxide, 24.0; manganous carbonate, 3.5; ferric citrate, 6.0; zinc
carbonate, 1.6; cupric carbonate, 0.3; potassium iodate, 0.01;
sodium selenite, 0.01; chromium potassium sulfate, 0.55; sucrose
finely powdered, 118.03.

3

Supplied as AIN-76A vitamin mix in grams/kg of mix-
thiamin HCl

, 0.6; riboflavin, 0.6; pyridoxine HCl , 0.7; niacin,
3.0; calcium pantothenate, 1.6; folic acid, 0.2; biotin, 02;
vitamin B12 (0.1% trituration in mannitol), 1.0; dry vitamin A
palmitate (500,000U/g), 0.8; vitamin D3 trituration (400,000U/g),
0.25; dry vitamin E acetate, 10.0; menadione sodium bisulfite
complex, 0.15; sucrose finely powdered, 981.08.
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APPENDIX 2

1

Density of water at different temperatures

2

Temperature ( C) D^ (grams/ml)

21 0.9980
22 0.9978
23 0.9975
24 0.9973
25 0.9971

26 0.9968
27 0.9965
28 0.9963
29 0.9960
30 0.9957

31 0.9954
32 0.9951
33 0.9947
34 0.9944
35 0.9941

36 0.9937
37 0.9934
38 0.9930
39 0.9926
40 0.9922

1

Extracted from Weast, R.C. (Ed.): Handbook of Chemistry and
Physics 54th ed., Cleveland: The Chemical Rubber Company
1967, p. F-11.

*^ ^'

2

Rounded to 0.0001.
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APPENDIX 3

1

Reagents for protein analysis (Folin-Lowry)

1- Alkaline sodium carbonate solution (2% Na2C03 in 0.1 N NaOH)
Dissolve 20 grams Na2C03 and 4 grams NaOH in a liter of
deionized water.

2- Copper sulphate-sodium potassium tartrate solution (0.5%
CuS04 in 1% Na, K tartrate).
Dissolve 0.25 grams CuS04 in 50 ml 1% Na, K tartrate.

3. Alkaline solution prepare day of use by mixing 50 ml of (1)
and 1 ml of (2).

4. Folin-Ciocalteau reagent
Dilute commercial reagent (Fisher Scientific, St. Louis, MO)
with an equal volume of deionized water on the day of use.

5- Stock standard protein solution (0.2 mg/ml):
Dissolve 50 mg bovine serum albumin (Sigma Chemical Co., St.
Louis, MO) in 250 ml deionized water, store refrigerated.

6. Working protein standards (0.0-0.2 mg/ml):
The stock protein solution is diluted appropriately to
obtain working standards.

Dilution factors for protein samples, diluted with ddH20
during homogenizing and before analysis: brains, 500 (5x100)-
ivers 1008 (7x144); kidneys, 864 (6x144); muscles, 1280

1

Procedure described in: Plummer, D.T. (1971) An
Introduction to Practical Biochemistry, McGraw Hill. London, UK.
pp. 155-157.
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APPENDIX 4

Reagents for deoxyribose analysis

1. Deoxyribose stock standard (0.4 mg/ml):
Dissolve 40 mg of deoxyribose in 100 ml deionized water and
store at 4 C. (Deoxyribose purchased from Sigma Chemical Co.,
St. Louis, MO).

2. Deoxyribose intermediate standard (40 ug/ml):
Mix one ml of deoxyribose stock standard solution with 9.0
ml of deionized water,

3. Working deoxyribose standards (0-40 ug/ml):
Prepare from intermediate standard, one ml is run parallel
with samples.

4. 10% TCA :

Ten grams of tricholoacetic acid is dissolved in deionized
water and brought up to 100 ml

.

5. Diphenvlamine reagent :

Dissolve 0.5 grams of diphenylamine in 50 ml glacial acetic
acid and 1.37 ml of concentrated sulfuric acid, mix.
Prepare fresh daily.

Dilution factors for nucleic acid samples, diluted with ddH20
during homogenizing and with 5% TCA during separation: brains
12.5 (5x2.5); liver, 14 (7x2); kidneys, 12 (6x2); muscles, 10
(5x2).
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APPENDIX 5

COMPUTER PROGRAM

//aCKEIJ JO'J (333o09934x , , 7 ) , ' D S 30 1 1 - FN ' ^ T I M := ( 3 , 5 ? )

/ROUTE PR1I4T LOCAL
/•REGION jUO<
// EXEC SA3
//SY3IN uu *

DATA GME;
TITLE EIGHT WEiK. STUDY AFTER ex;:^Cl3^-;
INPUT (12 GRJUP SATtiTl M'JN.JTI 3U«rZ M^NWTe 3ATwr3 njNJTj 3ATWr4

.lONWTA SflT«'T5 MCMWT5 S A T ,; I i) !':o;)«I6 SATwI? :iCNWr7 SAIft'T8 '-ICflWTa

SATUT9 :i'Z FEE0SS1 F'£E;;f<F1 FzE03j2 Fti£D(1F.L Fi£i;3S3 F'.EUMF3
FEEU3S-* FEED H Fit FE5D3S5 f::EDi1FJ FE!iOSS6 FEEDHF6 FELDSSr
FEEDMF7 FEEDSSa F E c D r1 F 3 3Pi P5RFAT HViR.VT KlONhYWr HEARTWT
AaDOMFAT RHTROFAT cPIDFAT TldlAWT ri:ilAL^^ TILilAWI FE'^URUT
FEHURLE FEMURWI BRAH^WT VASTUo^T GASTRWT DUMPER CARCASS ECO EXER
FEMUR 83 TI3IAI33 FEMURS^ TldlASri VA3TU5U VA3TUSP JAGTRCCO
GAJTROCP tRAiND 3RAINP LIv:RD LIVEHP KID'-JEYD KIDNEYP)
(Z. 1. ir*3. 1. 3.1 4.1 3.1 4.1 j.1 H,l 3.1 ff2 4.1 3.1 4.1 3.1
4.1 3.1 <..1 3.1 4.1 1. 5.3 ^.2 d*i.2 3*4. J 3. 3.1 2.1 3. .

5.1 2.1 3-2 »3 2*2.1 1. 3. c*^. 2*3.2 i*<..3 3. J 4.1 S.2 4.1
3.2 ^..l 3.2 (..1 3.2 <f.n;

VASTDt)A = VA3TUSD*VA5TUSiJT; VAJTPRJ = \/A3 1USP*VASTUSiJT;
GA3TDNA = 3ASTR0CD*GASrRUT; GA3TPRU = GAiIR0CP*0ASIR.JT;
URNDNA = BRAIND*3RA1NWT; URr^FRU = tiRAINP*dHAI^JW^;
I 1 .1 1\ n l\ ~ I I \f c n (\ A I T VI C D '.J T '

I T \; C 3 n - ) T Vi C D D * l T \/ P 3 IJ T *

FEcUSS 3 + FE;DMFo;
FELDEFF = rOTGAl!i/TOTF££D;
FE£DDAY=TOTFE£0/36;
GAiN3Sl=I10NWT1-SAT.JTl; G A I HM F 1 =3 A T'rt T 2-flCiJU T U
GAIN352 = riONWT2-SATWT2; GAi:iMF2-SATwr 3-f1U;Ju T2;
GAINSS3 = MONWT3-SATWT3; G A I NM F i - 3 A T w F 4-H0M- 1 3;
GAINSSi. = .10NWT4-SATI-iT4; GAi;jMF4-SATuT 5-MOfJW 14;
r* fi T Kt '• r C — tA r% nt t r C ^ C A T \ T Z • I'ft t MMCC. -^ftT. T t^ - !A n tU T ^ *

GAJ
GAl ,,- - -. -. - - --

GAINSS7 = lGAINS31*-GAINS32 + GAIfJ333 + GAi:JS5'.*GAlUS35*GAin3
G A I N S 3 ti ) / 7 ;

GA^tJMF7=(GAINMF1+GAIN^1F2*GAIfJ^F3<GAIIJ^;F';GAIUMF5«•GA^l(1F6
GAiNMF3)/ 7i

AV3SGAIN = (GAINSS1+aAIMSS2+GAIN333*-GAlN3S^*-
GAIN3S5 + GAINSS0+3AIN33i'«-jAlriJi3J/16;

AVI1FGAIN=(3A IN1F1 +GA niMF2+ GAINMF3'- JA INiIF^ +

GA irriF5 + GAINI1F&+ GA INilF 7«- jAUJflF 3) /4y;
GAINDAY=IUTGAlN/5&;
AV33FD1=FlED3S1/2; AVnFFD1=FEEDMF1/5;
AV3SFD2=FEeD3S2/2; AVMFFD2=F5£DMF2/5;
AV3SFD3=FElDSS3/2; AVMFF03=Fttt)MF3/5;
AV3SFD4 = FEE0SS<./2; AVMFFD4 = F?tJMF'./3;
AVSSFD3=FEEDSS5/2; AvMFFD5=Ftt3Mr3/5;
AVS3FD6 = FE£D3Ss/2; AvriFFD6 = F£EDriF6/5;
AVSSFDa=FZ£D5SJ/2; AVMFFC2=F£tJMF.3/3;
AVSSFD7=(AVSSFDUAVSSF02«-AVS3FD3 + AVS3rC4*AVSSFD5*AVS:;F'JO*

AVSSFDo)/?;
AV,1FFD7 = CA*^MFFD1*AVMFFD2 + AVMFFD3 + A\/f1FFD4*AVMFFD5 + AVMFFD&«-

AVMFFlioJ/ 7:
AVS5FD=(AVSSFD1+AVS3FD2+AV3SFD3*'WSSFD4+

MV3SFD5+AV3SFDo+AV33FD7+AV33FDJ)/a;
AVMFFO = (AVf1FFDl*AVMFFD2 + AVMFFC3 + AvriFFD4 +

AV(1FFD5-«-AVMFFD'.-»-AUf1FFn7+A»/MFFD?)/H;
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FDI«TSS1=AVS3F
F0WTSS2=AVSSF
FDWTSS3 = AViS F

FU»T3S4=AV5SF
FDJTSS5=AViSF
FDWTSS6=AV3SF
FD-JTSS3 = AVSS F

FDWTSS7 = CFi>WT
FDWrSSiiJ/ 7

FDJTMF7=(FI>WT
FDWTMFS)/?

AVFOkJTSS = (FDW
FOWT

AVFDWTi1F=CFD-J
FDWT

FDi«(TDAY=(CAVF
LbM=(10C-PERF
FDcFFIC=rOTGA
CARCLfa,'1=CL3M/
CARCFAT=(PtRF
ABDOMPER=( ABO
RETROPER=CRET
EPIDPER=(EPI
DEPOPER=(ABDO
FATSUM=AjDOMF
LIVEftP£R=(LIV
HtARTPER=(HEA
VASTPER=CVAST
ri3IAPER=Cri3
FLENPER=(FEMJ
IF 10 = 35 THE.'J
cards;
SAOD DEBjATA
PROC 6lm; CL
MODEL 5ATwrl

CARCFAT P
FEEDDAY F

EPIDFnT E

LIViiR,^ Kl
SRAIN.JT 8
VASTU3WT
GASTR*T G
TIBIArfT T
TLENPER F

LSMEANS tOD
/*

D1/3A
D^/SA
D3/SA
D4/SA
D5/SA
0S/3A
Dd/3A
SS1 + F

KF1+F

TSS1 +

5S5 + F

T-1F1 +

MFS + F

DwTSS
ad;
i;j/TO
lUO)"
at/io
C!^FAT
R3FAT
FAT/S
MPER +

AT + RE
ERWT/
RTWT/
U3WT/
lAUT/
RLt/S
DELE

2
ASSE3
SATJT

cRFAI
OwTDAY
PIDPER
DNEYWT
RAINPc
VASTPE
ASTPER
ISIAPE
EMUR3S

TFc
CAR
0)«
/SA
/SA
ATA
RET
TRO
SAT
SAT
SAT
3AT
ATW
te;

ed;
CASS
CARC
T*'T5
TWT5
T5)*
ROPE
FAT +

UTS)
WT5)
WT5)
WT5)
T5)*

ASS
) *1
) *1
VJO
Rf£
cPI
*10
*10
*10
*10
1 3U

oc;
oc;

Pi'jpER);
dfat;
o; kid!>tr = (k;dueywt/3atwt5)*100;
O; df<AINP£.^=(BRAi,NWT/SATWT5)*100;
O; GASTP£a=( JASTRWT/SATWT5)*10J;
j; F£MJRPEr<=(FEMURJT/SAT JT3)*100;
; TLENPER={TI3IALe/SATWT5)*10a;

Eoo exer;
9 TOTGAIiJ jAiroAY CA-(CA3S
CARCLBM LEM
FtEDEFF A-jDOMFAT Aj:;Or'lPER RETRCFAT RETROPER
LIV£R»JT LIV;RPER lIVERD LiVJNA LIVLRP LIVPRO
KiDPER KIDNEYD KliO-.iA K-IDNEYP KIOPRO KIONEYR

R 3RAIND oRNDNA BRAi.^lP UR\PRJ JRAI'JR
R VA3TUS3 VAiTJNA VA3TUSP VASTPR'J vASTUSR
GASTROCD oAJTDfJA oASTROCP GASTPRO 3ASTR0CR

R FEMURWT Ft.lURPER FEMURLE FLENPER TiBIALE
TIBIA3S FtfrURSCi TIoIAiti=£OD EXER EOD^EXER;

EXiR e30*exer/ stde-^r;
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APPEM}IX6

Effects of exercise foUcwing nonrat or irdemitn'tion on uei^t gain

in growing male rats

CONTRg FASTH) ECD

Measurement (Baseline) Exer •*• Exer (Baseline) - Exer + Exer

70 201 207

68 182 220

62 200 218

77 220 208

76 202 200

7D 213 187

66 203 188

76 208 211

Beginning wt, g 75

71

75

67
77

7D

68
69

77

72*2

250

296

333

299

321

27D

310

291

285

295*6

303

310

331

340

303

330

290

316

315*6 70*2 204-hS 205*6

Ending wt, g 2B3

268

338

305

254

306

282

301

539

297*a

582

546

632

611

571

490

548

485

473

531

497

560

541

465

510

488

534

172

188

148

229

207

206

177

189

546

478

497

500

558

562

522

502

440

497

447

425

456

390

454

467

549*13 516*-14 196*9 521+14 447+14

Total wt gain, g 208

197

265

238

177

236

214

Z32

262

332

250

299

312

250

220

238

194

188

228

187

229

201

162

180

198

218

102

120

86

152

131

136

111

113

345

296

297

280

356

349

319

294

233

277

229

217

256

203

266

256

225+8 254+12 200+12 126*9 317+12 242+12

Ave. dai ly wt gain, g 7.4

7.0

9.5

8.5

6.3

8.4

7.6

8.3

9.4

5.9

4.5

5.3

5.6

4.5

3.9

4.2

3.5

3.4

4.1

3.4

4.1

3.6

2.9

3.2

3.5

3.9

3.6

4.3

3.1

5.4

4.7

4.9

4.0

4.0

6.2

5.3

5.3

5.0

6.4

6.2

5.7

5.2

4.2

4.9

4.1

3.9

4.6

3.6

4.8

4.6

8.0*0.3 4.5+0.2 3.6*0.2 4.5*0.3 5.7+0.2 4.3*0.2
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APPOOIX 7 •

Effects of exercise foUcHing normal or iTdemutn'ticn en carcass ccnpoeiticn

In grcuing male rats

Heasui tjiml

CCWTRa FASTH) ECD

(Baseline) - Exer + Exer (Baseline) - Exer * Exer

Carcass ut, g 2A2

224

288

257

214

257

243

264

287

508

481

554

535

502

410

478

411

407

454

428

486

464

391

432

412

460

131

148

110

175

165

145

138

161

478

404

423

429

488

482

453

424

378

430

378

355

389

329

382

399

253+7 476 +13 441 +14 152+7 448+14 380+14

Carcass fat, g 41

35

55

42

25

55

42

46

65

45 +3

111

107

121

122

114

80

97
54

74

58

68

60

67

42

36

54

57

15

24

22

17

2B

16

20

24

78

52

67

80

97

84

95

81

45

70

35

20

41

41

29

66

98+6 55+6 21 +3 79+6 45 6

Carcass fat, % 17

16

19

16

12

21

17

18

a
18+1

22

22

Z2

23

23

19

20

13

18

13

16

12

14

11

8
13

12

12

16

15

12

17

11

15

15

16

13

16

19

20

18

21

19

12

16

9

6

10

12

8
16

20+1 13+1 14+1 18+1 11 +1

Carcass lean nsss, g 201

189

za
215

189

201

201

218

222

208+5

397

374

433

414

388

330

381

357

332

378+9

396

360

426

397

349

396

358

403

3ffiTlO

116

123

93

153

137

129

118

137

13i~J5

399

352

355

349

391

398

358

343

332

360

343

334

348

288

352

334

368 +10 337 +10

Carcass leen itbss, % 83

84

81

84

88

78

S3

82

77

82+1

78

78

78

77

77

81

80

87

82

80+1

87

84

88

86

89

92

87

87+1

88

84

85

88

83

89

85

85

86+1

84

87

84

81

80

82

79

81

82+1

84

91

94

90

88

92

84

~W^1

58



APPEM3IX 8

Effects of exercise following normal or mdemutrition en feed intake

of growing nsle rats

OONTRg FASTH) EOD

HeasurgTg'it (Baseline) Exer + Exer (Baseline) - Exer * Exer

Ave. dai ly feed intake

Total g/day

Ave. daily feed ints^e

per 100 g bod/ wt

Feed efficiency

g total gain

/g total feed

18.7

16.8

21.9

20.6

17.5

20.6

19.0

20.2

22.8

13.0

12.6

13.9

14.5

12.6

14.3

13.8

14.2

14.0

25.1 21.9

25.9 20.5

28.5 23.8

27.1 24.9

24.9 20.0

22.0 20.4

25.8 22.2

22.0 21.7

22.5

19.8+0.5 24.9 tO.6 21.9 •0.7

6.1

6.2

6.1

6.1

5.7

6.2

6.0

5.7

6.1

5.8

5.3

13.7+0.2 6.0 +0.1 5.4+0.

0.40 0.24 0.19

0.42 0.17 0.16

0.43 0.19 0.17

0.41 0.20 0.14

0.36 0.18 0.14

0.41 0.18 0.16

0.40 0.16 0.16

0.41 0.16 0.18

0.41 0.15

9.4 25.7 21.4

10.6 20.4 24.1

11.9 Z3.1 20.1

11.0 23.8 19.8

11.5 25.4 21.1

11.1 26.8 18.2

10.0 24.9 20.5

10.1 23.7 22.1

1.7+0.5 24.2 +0.7 20.9+0.7

8.3 7.2 7.0

9.4 6.8 6.7

8.7 7.0 6.3

10.6 7.0 6.4

9.1 7.1 6.7

9.6 7.4 6.6

9.6 7.4 6.7

8.3 6.9 7.0

9.1 +0.3 7.1 +0.1 6.7 +0.1

0.39 0.24 0.19

0.41 +0.01 0.18 +0.01 0.16 +0.01

0.40 0.26 0.20

0.46 0.Z3 0.20

0.46 0.21 0.20

0.41 0.25 0.22

0.44 0.23 0.20

0.40 0.23 0.23

0.40 0.22 0.21

0.42 +0.01 0.23+0.01 10.21 +0.
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APFQOIX 9

Effects of exercise foUcuins noniBl or mderrutriticn on adipose tissue

of grouing imle rats

COMTin. FASTH) ECD

MeesLTOTEnt (Baseline) - Exer + Exer (Baseline) - Exer Exer

EpididynBi fat 2.6 12.4 7.7 1.5 11.2 5.9

Ut, g 3.9 10.1 6.4 1.8 7.4 6.8

4J 10.8 8.7 2.0 8.3 6.9

3J 15.8 6.9 1.4 8.9 3.5

2.7 12.2 4.8 2.0 13.2 6.0

4.5 8.0 6.0 1.2 10.5 5.3

3.4 12.0 7.2 1.4 11.7 5.1

3.5 7.8 8.5 1.7 6.7 8.6

3.9 11.1

3.6 +0.2 11.1 +0.7 7.0ib.7 i.r+b.2 9.Tkl.7 6.0^0.7

EpidicViBl fat 0.9 2.6 1.8 0.9 2.5 1.6

Wt, 9/100 g body wt 1.4 2.2 1.5 1.0 1.9 1.6

1J 2.0 1.8 0.9 2.1 1.9

1.2 3.1 1.5 0.7 2.2 1.0

1.0 2.5 1.2 1.0 3.0 1.6

1.5 2.0 1.4 0.6 2.3 1.6

1.2 2.5 1.7 0.8 2.8 1.4

1.2 1.8 1.8 0.9 1.7 23
1.2 2.6

1.2 +0.1 2.4 +0.1 1.6+0.1 0.8+0.1 2.3 iO.1 1.6+0.1

Retreperitcneel fat 4.8 22.8 11.9 0.9 14.3 8.6
Wt, g 3.1 24.6 12.6 1.9 10.9 13.8

6.8 28.4 15.7 2.3 16.6 8.4

5.9 27.1 15.8 0.9 14.6 4.4

3J 21.6 11.0 2.1 20.8 8.1

7.0 17.8 9.3 1.8 18.0 10.0

5.4 20.1 12.2 1.1 18.9 5.9

6.6 14.6 14.4 2.0 18.5 15.6

8.8 19.7

S.8 +0.4 21.8+1.2 12.9+1.2 1.6+0.5 16.6+1.2 9.3 +1.2

1.7 4.7 2.7 0.5 3.2 2.3
Ut, g/100 g body wt 1.2 5.3 2.9 1.0 2.9 3J

2.0 5.4 3.2 1.0 4.1 2J
1.9 53 3.5 0.4 3.6 1.2

1.5 4.5 2.7 1.0 4.7 2.1

2J 4.4 2.2 0.9 4.0 3.0

1.9 4.2 2.8 0.6 4.4 1.6

2.2 3.4 3.2 1.0 4.7 4.0

2.6 4.7

1.9+0.1 4.7 +0.2 2.9 +0.2 0.8+0.1 4.0 +0.2 2.5 10.2

Abdrarinal fat 3.7 13.7 9.1 1.9 14.6 6.4
Wt, g 3.6 11.9 8.2 2.0 7.3 10.0

5.6 16.5 9.9 1.9 13.2 6.7
3.9 18.4 9.0 2.1 11.7 5.3

3.2 15.6 6.0 2.6 15.6 7.0

6.2 9.2 5.5 2.0 13.6 6.1

2.6 14.5 10.5 2.2 13.6 5.8
4.1 9.3 8.3 2.2 9.9 9.0
5.4 15.0

4.2 +0.3 13.8 +0.8 8.3 +0.9 2.1 +0.3 12.4 +0.9 7.0 +0.9

Abdaninet fat 1.3 2.8 9.1 1.1 3.3 1.7
Wt, a/100 g body wt 1.4 2.6 8.2 1.1 1.9 2.4

1.7 3.2 9.9 0.8 3.3 1.8

1.3 3.6 9.0 1.1 2.9 1.5

1.2 3.2 6.0 1.3 3.5 1.8

2.0 2.2 5.5 0.9 3.0 1.8

0.9 3.0 10.5 1.2 3.2 1.6
1.4 2.2 8.3 1.2 2.5 2.4
1.6 3.6

1.4+0.1 2.9+0.1 1.9+0.2

6D

1.1 +0.1 3.0 +0.2 1.9+0.2



APPDOIX 10

Effects of exercise following ronnal or Lnderrutriticr en tibia nEasurenEnts

of growing male rats

CONTROL FASItD ECD

Measurenent (Baseline) - Exer + Exer (Baseline) - Exer + Exer

Tibia

Wt. mg 393 594 566 260 580 488

368 606 540 261 496 592
un 620 608 315 507 494

A04 633 626 316 554 522
390 624 566 302 587 501

397 447 602 273 632 517
362 531 567 283 522 523
414 516 618 282 572 520
370 503

3as>i7 564+16 58M7 2^ 55M7 52^7

Length, tng 36 40 41 33 41 39
36 41 40 32 39 41
37 42 42 36 40 39
37 40 40 34 40 39
35 41 39 34 41 41

35 38 40 B 40 39
37 40 40 33 39 40
36 41 41 33 39 39
37 39

36*0 40*0 4WD ^ 4M) 4M)

Specific gravity 1.57 1.56 1.52 1.52 1.58 1.53

1.61 1.54 1.65 1.46 1.60 1.55

1.58 1.71 1.55 1.39 1.69 1.61

1.44 1.57 1.58 1.40 1.60 1.63
1.49 1.56 1.54 1.45 1.54 1.65

1.52 1.60 1.59 1.44 1.54 1.65
1.51 1.66 1.56 1.31 1.58 1.60
1.51 1.83 1.61 1.49 1.52 1.57
1.50 1.73

1.53*0.02 1.64+0.02 1.57+0.02 1.43+0.02 1.58+0.02 1.60*0.02

Breaking strength, kg 2.68 3.68 2.52 1.32 3.20 3.00
2.60 1.24 2.52 2.44 3.88 4.64
2.04 4.80 4.32 2.56 1.20 2.04
2.08 3.88 2.08 1.88 3.28 3.40
1.80 3.60 4.56 2.28 2.40 2.88
1.92 1.76 1.96 2.80 4.44 3.36
2.80 1.80 3.24 3.32 7.00 2.96
1.48 4.28 3.72 2.68 2.48 3.00
2.12 3.04

2.17+0.17 3.12*0.41 3.12+0.44 2.41+0.18 3.48+0.44 3.16H).44
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APPENDIX 11

Effects of exercise following nonral or irdemLitriticn on fenvr measurements

of growing male rats

Measurement

CCWTROL FASTH) ECD

(Baseline) Exer + Exer (Baseline) - Exer t- Exer

Femr
Wt, mg 414

3»
446

393

410

434

419

418

421

818

879

881

866

891

703

790

800

733

840

7»
899

839

810

874

812

293

282

331

330

330

307

291

307

827

753

866

786

829

876

745

811

679

818

686

709

730

742

760

742

417+6 818*18 841+19 309+6 812+19 733*19

Length, nm 31 38 39 27 38 37
30 38 37 27 38 38
32 40 40 30 38 36
31 38 39 29 37 37
31 39 38 28 38 38
30 36 39 a 38 37
32 38 38 2B 37 38
31 39 39 28 37 36
32 36
31+0 38+0 3W) 2EW 3W) 3M)

Specific gravity 1.53 1.50 1.53 1.50 1.53 1.46

1.53 1.53 1.49 1.44 1.50 1.46

1.69 1.52 1.59 1.39 1.41 1.58

1.54 1.53 1.48 1.61 1.52 1.58
1.54 1.47 1.56 1.40 1.59 1.53

1,50 1.48 1.56 1.38 1.49 1.49

1.55 1.65 1.46 1.39 1.57 1.55

1.61 1.57 1.52 1.57 1.53 1.48

1.62 1.58

1.57+0.02 1.53*0.02 1.52+0.02 1.46+0.02 1.52+0.02 1.52+0.02

Breaking strength, kg 1.24 2.60 1.32 2.56 4.04 2.40

3.32 2.44 2.68 2.40 2.88
1.88 2.92 4.80 2.72 2.76 3.76
1.32 2.80 2.04 2.04 4.32 1.68
3.20 2.92 2.08 1.36 4.24 1.88

1.36 2.16 3.76 1.00 2.68 2.16
2.36 2.40 2.76 1.24 1.44 3.40
1.80 1.88 2.88 2.16 2.72 3.64
2.36 2.24

1.94+0.24 2.58+0.29 2.76+0.31 1.97+0.24 3.08H).31 2.72^.31
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APPQOIX 12

Effects of exercise foUowina nomal or Lrderrutriticn en protein and ncleic acid

ccntents in livers of growing male rats

CONTROL FASIH) ECD

Measurencnt (Baseline) - Exer + Exer (Baseline) - Exer + Exer

Liver 16.10 31.66 25.51 9.96 24.76 20.54

Wt. g 15.27 26.21 22.81 11.30 22.56 25.66

21 J1 29.50 zs.a6 11.63 22.71 17.29

17.9e 30.07 26.05 12.68 21.10 13.22

14.2B 21.18 19.95 12.78 22.85 16.62

19.1* 18.43 22.27 11.08 26.93 16.01

16.2B 22.72 20.34 10.53 19.22 17.42

16.7^ 21.88 22.27 11.52 13.94 18.07

20.75 21.49

17.53t0.63 24.79*1.26 22.88*1 .33 11.44*0.67 ;21.76*1.33 18.10*1.33

Wt, g/100 g body wt 5.69 6.60 5.81 5.79 5.63 5.51

5.7D 5.65 5.34 6.01 5.97 6.11

6.30 5.6J 4.87 5.08 5.6S 4.72

5M 5.92 5.72 6.40 5.20 3.(»

S.62 4.41 4.94 6.17 5.15 4.37

6.25 4.53 5.16 5.38 5.97 4.90

5.77 4,77 4.75 5.95 4.54 4.94

5.56 5.12 4.87 6.10 3.52 4.74

6.12 5.12

5.88 +0.12 5.31 +0.23 5.18 +0.24 5.86+0.13 5.20 +0.24 4.86 +0.24

DNA, total mg 36.71 75.03 55.36 20.02 62.64 41.90
..... 58.44 53.60 50.99 52.60

48.59 71.68 57.02 24.42 35.20 40.80

35.48 48.71 34.12 27.77 34.60 31.20

25.27 35.79 34.71 23.00 42.50 29.91

35.02 36.31 47.21 16.40 55.21 28.33

31.42 39.76 43.73 14.53 53.24 41.11

37.16 44.63 49.88 22.00 37.08 39.93

36.73 48.35

35.aOt2.02 51.00*3.64 46.96*3.87 21.16*2.16 46.43*3.87 38.20*3.87

Protein, total g 2.61 4.82 3.76 1.49 3.85 3.28

4.52 3.25 3.20 3.90

3.15 4.27 3.63 1.65 3.04 2.55

2.68 4.50 3.60 1.81 2.72 2.00

2.12 3.00 2.95 1.71 2.66 2.66

2.47 2.69 3.34 1.65 3.50 2.37

2.22 3.41 3.16 1.34 2.58 2.75

2.25 3.34 3.46 1.57 2.41 2.57

3.12 3.55

3.40 +0.20 1.60+0.12 2.99 +0.202.58 +0.11 3.79+0.19 2.76 +0.20

Protein/DNA, ng/ng 71.18 64.22 67.83 74.48 61.15 78.33

77.30 60.68 62.88 74.24

61.78 59.63 63.68 67.67 86.52 62.58

75.61 92.41 108.09 65.25 78.66 64.07

%.m 83.79 84.88 74.50 62.58 88.50

70.49 74.21 70.85 100.47 63.41 83.73

70.78 86.83 72.18 92.39 48.41 66.86

60.63 74.85 M.2S 71.52 65.00 64.30

84.86 73.47

72.8 +3.9 76.4 +4.0 74.7 +4.2
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78.0 +4.1 66.1 +4.2 72.8 *4.2



APPENDIX 13

Effects of exercise following nonreil or mdemLitrition en protein and nucleic acid

contents in kicheys of grouing mate rats

CONTRa FASTH) BCD

MG3Sijr€ncnt (Baseline) - Exer + Exer (Baseline) - Exer + Exer

Kidieys (both) 2.52 3.71 3.67 1.81 3.72 3.68
Wt. g 2.69 3.39 3.78 1.68 3.32 3.58

2.90 3.63 4.03 2.04 3.22 3.20

2.58 4.02 3.30 2.00 3.45 2.88
2.41 3.83 3.11 1.94 3.62 3.48

2.80 3.24 3.54 1.72 3.79 2.81

2.75 2.66 3.77 1.78 3.14 3.66
2.63 3.69 3.95 1.87 2.75 3.10
2.71 3.28

2.66-t0.05 3.49+0.12 3.71+0.12 1.86+0.05 3.38+0.12 3.30+0.12

Wt, g/100 g body wt 0.89

1.00

0.86

0.84

0.95

0.92

0.9B

0.87

0.80

0.77

0.73

0.69

0.79

0.80

0.80

0.56

0.86

0.78

0.84

0.88

0.82

0.S5

0.77

0.81

0.88

0.86

1.05

0.89

0.89

1.01

0.9J

0.83

1.00

0.98

0.84

0.88

0.80

0.84

0.81

0.84

0.74

0.69

0.99

0.85

0.87

0.80

0.92

0.86

1.01

0.81

0.90 +0.02 0.75 +0.02 0.84+0.02 0.95 +0.02
: 0.81 +0.02 0.89 +0.02

DNA, total wg 8.22 12.28 12.96 6.50 13.21 11.33
9.01 11.83 14.51 3.67 10.16 12.85
10.96 14.12 14.43 5.47 10.30 11.65
6.76 13.02 11.67 9.3; 12.14 10.60
7.50 12.25 9.33 6.21 12.67 10.61

7.64 10.21 11.86 6.11 13.03 8.73
9.52 11.46 11.95 7.10 10.96 10.96
7.04 11.29 12.60 9.21 10.23
6.23 11.94

8.10 +0.47 12.05 +0.46 12.41 +0.49 6.73 +0.53 11.46+0.49 10.87 +0.49

Protein, total ng 410.5 641.1 648.5 283.8 620.5 578.5
391.7 546.1 630.5 254.0 534.8 597.1
461.1 591.0 696.4 272.3 531.3 521.0
37D.0 569.6 607.2 290.4 532.0 498.0
362.5 619.9 513.2 2».1 530.0 552.0
377.4 4».2 568.9 242.2 609.0 429.6
387.2 453.8 651.4 264.5 542.6 625.9
353.5 529.1 616.2 454.8 490.1
384.0 596.3

388.6*8.8 557.2+20.2 616.5+21.4 268.3*10.0 :541.9+21.4 536.5*21.4

ProteirVWW, ma/mg 50.0 52.2 50.0 43.7 47.0 51.0
43.5 46.2 43.4 39.9 52.6 46.5
42.1 41.8 48.3 49.8 51.6 44.7
54.7 43.7 52.0 31.1 43.8 47.0
48.4 50.5 55.0 43.3 41.8 52.0
49.4 46.0 48.0 39.7 46.7 49.1
40.7 39.6 54.5 37.2 49.5 57.0
50.1 46.9 48.9 47.2 47.9
61.6 50.5

48.9+2.1 46.3+1.3 50.0+1.4
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40.7+2.4 47.5+1.4 49.4+1.4



APPEfOIX 14

Effects of exercise following nonmt or irdemitrition on protein ard nucleic acid

contents in brains of growing nele rats

coNika FASTH) ECD

Measurencnt (Baseline) - Exer + Exer (Baseline) - Exer + Exer

Brain

Wt, g 1.90 2.08 3.67 1.72 2.16 1.78

2.05 2.18 3.78 1.73 2.20 1.91

1.» 2.24 4.03 1.85 2.05 2.20

1.97 2.26 3.80 1.79 2.17 2.11

1.9^ 2.20 3.11 1.82 2.09 2.16

2.02 2.30 3.54 1.89 2.39 2.W
2.07 2.23 3.77 1.86 2.13 2.24

2.01 2.21 3.95 1.83 2.13 2.08
1.93 2.00

1.96K).02 2.19*0.04 2.25*0.04 1.81+0.02 2.16*0.04 2.06*0.04

Wt, g/lOO g bod/ wt 0.67 0.43 0.53 1.00 0.49 0.48

0.76 0.47 0.55 0.92 0.58 0.45
0.56 0.43 0.45 0.80 0.51 0.60

0.64 0.44 0.49 0.90 0.53 0.59
0.76 0.45 0.51 0.87 0.47 0.57

0.66 0.56 0.54 0.91 0.53 0.61

0.73 0.46 0.53 1.05 0.50 0.62

0.67 0.51 0.48 0.97 0.54 0.54
0.57 0.47

O.67+O.03 0.47+0.01 0.51+0.02 0.95+0.03 0.52+0.02 0.56*0.02

DfM, total mg 2.72 2.37 2.88 3.05 2.74 2.70
3.42 3.75 3.18 2.% 2.97 3.36
2.65 3.14 3.40 2.42 2.87 2.88
2.78 3.16 2.83 2.76 2.76 2.68
3.32 3.19 3.00 2.71 3.20 2.74

2.91 3.13 3.05 3.33 3.42 2.86
3.46 2.92 3.13 3.39 3.04 2.98
3.06 2.53 3.18 3.06 3.26 3.18
3.22 2.98

3.06*0.11 3.06*0.09 3.08+0.09 2.96*0.11 3.03+0.09 2.92+0.09

Protein, total mg 197.6 211.1 234.8 180.9 207.8 194.9

210.1 223.4 243.4 182.5 220.0 204.0
186.7 232.5 219.3 178.0 215.2 253.6
194.6 234.6 234.2 174.5 208.8 216.3
189.2 231.0 208.0 177.4 211.5 226.8
194.3 238.7 229.1 191.3 233.0 213.0
199.1 237.5 227.0 167.0 207.7 215.5
196.6 206.6 215.5 168.7 204.9 202.8
178.5 195.0

194.3f2.8 223.4*4.2 226.4+4.4 178.0+3.0 213.6*4.4 213.4+4.4

Protein/DNA, mg/mg 72.7 89.0 81.6 ».8 75.7 72.0
61.4 59.6 76.5 61.7 74.1 60.7
7D.6 74.1 64.6 73.4 75.0 81.1
72.6 74.1 82.7 63.3 75.7 80.7
57.0 72.4 69.4 6S.4 66.1 82.7
66.8 76.3 75.6 57.5 68.2 74.5
57.6 81.3 72.5 49.3 68.2 72.3
66.0 70.3 67.7 55.2 62.9 65.7
55.4 65.4

64.5f2.3 73.6+2.4 73.8+2.5 60.7+2.5 70.7+2.5 75.5*2.5

65



APPEM)IX 15

Effects of exercise foUcMing noniBl or irdermtritien en protein and nucleic acid

contents in gastrocnemius nuscles of growing male rats

OQNTROL FASTH) ECD

MeasuTBnent (Baseline) - Exer + Exer (Baseline) - Exer + Exer

Gastrxxremius nuBcle

Wt, g 2.9 5.6 5.6 2.1 5.8 5.1

2.9 6.1 5.8 2.1 5.4 6.4
3.6 6.0 6.5 2.7 5.8 5.4
3.2 6.0 6.2 2.0 5.7 5.2
2.9 5.5 6.1 2.5 6.6 5.4
3.0 5.5 5.6 2.4 5.9 4.9
3.3 5.7 5.1 1.8 5.3 5.1

3.0 5.1 6.0 2.4 5.5 5.4
3.2 4.8

3.11+0.10 5.59+0.14 5.8WD.15 2.^.10 5.75b.15 5.^.15

Ut, g/100 g bod/ wt 1.02 1.17 1.28 1.22 1.32 1.37
1.06 1.31 1.36 1.12 1.43 1.52
1.06 1.14 1.33 1.18 1.45 1.48
1.05 1.18 1.36 1.01 1.40 1.45
1.14 1.14 1.51 1.21 1.49 1.42
0.9B 1.35 1.30 1.16 1.31 1.50
1.17 1.20 1.91 1.01 1.25 1.42
1.00 1.19 1.31 1.27 1.39 1.42
0.94 1.14

1.05+0.03 1.20*0.03 1.33+0.03 1.15+0.03 1.38+0.03 1.45+0.03

IMA, total mg 1.16 1.29 1.40 0.88 1.86 1.17
1.04 1.16 1.74 0.76 1.94 1.66
1.69 1.96 1.88 1.16 1.68 2.11
1.38 2.04 1.49 1.02 2.00 1.56
1.25 1.60 2.01 1.02 2.24 1.7B
1.05 1.65 2.07 0.94 1.53 1.72
1.62 1.77 1.38 0.68 1.54 1.45
1.20 2.09 1.68 0.94 1.54 1.84
1.34 1.39

1.30*0.07 1.66*0.10 1.71+0.10 0.92+0.87 1.79+0.10 1.66+0.10

Protein, total ng 553.0 535.2 863.5 330.5 790.5 868.0
523.4 1057.7 857.2 350.7 673.9 1027.8
47D.2 796.6 736.4 321J 796.1 718.7
446.4 802.8 773.8 272.4 76S.1 948.5
464.0 897.6 901.6 440.0 869.9 850.0
518.4 950.4 881.4 368.6 1065.0 818.3
487.7 824.2 806.3 312.1 895.7 894.5
501.0 894.5 910.2 445.4 795.3 801.9
571.5 758.9

5O4.01+17.O 880.0*31.2 841.3*33.1 355.0*18.1 !331.8*33.1 866.0*33.1

ProteiiVDNA, rtg/mg 476.8 726.1 616.8 374.8 425.9 740.0
501.4 912.6 492.7 463.9 346.7 617.7
277.9 403.3 390.7 276.7 474.5 341.3
324.4 393.5 520.0 267.1 384.0 606.0
372.1 562.8 447.9 429.3 387.6 477.0
493.7 576.0 425.4 393.8 694.2 477.1
301.6 466.4 585.6 456.3 582.8 626.4
417.5 427.8 541.8 475.9 516.4 436.8
425.2 545.2

399.0*27.7 557.1+43.2 502.6*45.8 392.2+29.4 476.5*45.8 540.5+45.8

&6



APPENDIX 16

Effects of exercise foUoMirg rormal or LTdemutrition on protein and nucleic acid contents

in vastus nuscles of growing nale rats

(XtmCL FASTH) ECD

MeasurefTient (Baseline) • Exer + Exer (Basel ine) - Exer + Exer

Vastus mjscle

Wt, g 3.1 3.1 3.2 2.0 3.5 3.5

2.9 3.3 3.7 2.0 3.3 3.6

3.5 3.5 4.1 2.6 2.9 3.3

2.9 4.1 3.1 2.0 3.3 3.2

2.9 3.3 4.3 2.3 3.4 3.0

2.9 3.1 2.9 2.3 4.1 2.8

2.9 3.8 3.1 1.9 3.2 3.1

3.0 3.0 3.5 2.1 3.2 3.2

3.3

3.0i+O.CB

2.9

3.34+0.13 3.4W).14 2.iW).08 3.3W).14 3.21+0.14

Wt, g/100 g bod/ wt 2.00 0.64 0.73 1.16 0.80 0.94

1.06 0.71 0.87 1.06 0.87 0.86

1.04 0.67 0.84 1.14 0.72 0.90

0.95 0.81 0.7D 1.01 0.81 0.89

1.14 0.69 1.06 1.11 0.76 0.79

0.95 0.76 0.67 1.12 0.91 0.86

1.03 0.80 0.72 1.07 0.76 0.86

1.00 0.70 0.76 1.11 0.81 0.84

0.97

1.03*0.02

0.69

0.72+0.03 0.79*0.(3 I.IOf+0.02 0.81+0.03 0.87+0.03

DNA, total mg 1.18 0.59 1.02 0.88 1.30 0.80

1.22 0.82 1.04 0.68 1.85 0.85

1.68 1.30 1.35 1.20 0.81 2.05

1.28 0.70 0.81 0.54 0.96 0.86

0.96 0.89 1.20 0.74 1.16 0.87

1.07 1.12 1.39 0.90 0.78 0.64

1.19 1.03 0.83 0.76 0.90 0.81

0.78 0.78 1.16 0.52 1.76 0.96

1.09

1.16*0.08

0.67

0.88+0.11 1.10i+0.12 0.7B+0.08 1.19+0.12 0.98*0.12

Protein, total ng 523.9 504.1 628.8 367.4 672.0 548.8

508.7 576.5 670.

1

326.4 544.8 608.4

656.3 613.9 719.1 490.9 580.9 578.8

536.5 655.1 650.7 410.8 595.6 610.2

534.5 629.3 663.1 431.2 602.8 572.1

553.0 620.9 606.7 406.2 658.5 4%.4
484.3 622.4 626.8 336.9 688.0 616.9

501.0 625.8 755.0 424.6 636.8 626.6
665.3

549.3*19.4

586.4

601.6+15.3 622.4+16.3665.3+16.3 399.2!+20.6 582.3+16.3

Protein/DNA, mg/mg 444.7 855.8 614.1 417.5 518.9 681.7
417.6 698.8 646.8 480.0 294.8 734.8
378.8 474.0 531.5 410.4 715.4 282.9
420.4 911.2 807.3 760.7 622.4 706.3

558.5 706.3 550.7 585.9 521.5 657.6
515.4 556.4 437.3 452.8 845.3 770.9
407.3 606.7 748.9 443.2 767.8 765.4

642.3 802.3 653.6 808.8 361.8 652.7
610.9 879.1

488.4+43.0 721.2+52.6 6Z3.8+55.8

67

544.9*45.6 581.0+55.8 656.5+55.8
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ABSTRACT

The effects of an 8-wk exercise program were studied on growth of

rats following a period of normal nutrition or undernutrition. Male

Wistar weanling rats, underfed by fasting on alternate days for 4-wk,

gained 44% less weight than ad libitum fed rats (carcass: 53% less fat;

37% less lean mass), and had markedly smaller fat depots, visceral

organs, brains, and hindlimb muscles and bones. Rats in both groups

were then allowed free access to feed and subdivided into exercise or

non-exercise groups. Eight wk of treadmill exercise (speed, 24 m/min;

duration, 75 min/d; frequency, 5 d/wk) reduced weight gain in both

normal -fed and underfed rats, but had a greater effect on underfed rats.

Underfed rats that were exercised gained 24% less weight (carcass: 46%

less fat; 8% less lean mass), and tended to have smaller tissues than

underfed rats that were not exercised. Data suggest that exercise

following a postweaning period of undernutrition (between 4-8 wks of

age) reduces "catch-up" growth in rats.


