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CHAPTER 1. INTRODUCTION

Automation of engineering design is one of the most promising areas

for applying computer technology. Efforts at automating the engineering

design tasks have resulted in two categories of products: design tools

which act as aids to a designer and do not have capabilities to invent a

new structure on their own, and automated design systems which generate

structures essentially on their own. Of these two, the former have

enjoyed wide spread acceptance and confidence among design engineers,

whereas the latter are not "trusted" by practicing engineers because of

their inability to match up with an experienced designer's performance

and to justify the solutions they provide. In this respect, engineering

design is similar to medical diagnosis; both have stringent requirements

of performance and justification. In medical diagnosis, the survival

(recovery) of a patient is critical, and in engineering design, the

survival of a company or a plant is at stake.

The present work is towards the development of an automated design

system by employing an AI based approach. Engineering design process

typically consists of four stages: synthesis, analysis, evaluation and

optimization. The last three steps, which constitute the detailed

design phase, have enjoyed reasonable success at automation. The lack

of success of the present day automated design systems can be attributed

to ineffective automation of the first stage of the design process,

which constitutes the conceptual phase of design. Ability to conceive

innovative designs is a hallmark of human intelligence. This fact alone

necessitates an AI based approach to its automation, since AI is the
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discipline (of computer science) that provides techniques for

encapsulating intelligent human behavior. Expert designers acquire the

ability to conceive "good" designs by learning through experience.

Therefore;, to evolve usable automated design systems, it is imperative

that attempts be made to characterize, model and quantify the designers'

thought processes involved In visualization, conception, and evaluation

of new designs. These thought processes include tasks such as decision-

making in the presence of incomplete and/or uncertain knowledge,

subjective evaluations and qualitative trade-offs, planning with

constraints and resource allocation.

Existing approaches to automate the conceptual design phase rely

mainly upon the numerical estimation of the operational characteristics

of the system being designed for making the structural decisions. The

quality of the solution obtained by such an approach depends on the

accuracy of the estimation. Since the operational characteristics

depend on several parameters, some of which are not known until the

detailed design phase, the estimation procedures are usually not very

accurate. Furthermore, these procedures tend to be very complex and

computation intensive. These factors, coupled with the excessively

large number of possible structural configurations, render the present

methods too complex and ineffective in solving large industrial

problems

.

Good designers do not reason on the basis of numerical estimation

of the operational characteristics [see, e.g., Williams, 1985]; rather,

they use their knowledge about the qualitative relationships between the

structural and operational characteristics of the system being designed.
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An AI based approach to design automation advocates that for developing

effective automated design systems, this knowledge should be identified

and captured in computer based systems. This approach has been

successfully applied to the problem of digital circuit design [De Kleer,

1985]

.

The scope of the present work is to use an AI based approach

towards the automation of the conceptual phase of design. We present a

state-space search formulation of a typical design problem, viz., that

of synthesizing energy integration networks for chemical and power

plants. We use the available domain knowledge to direct the search for

an optimal solution. To demonstrate the feasibility of our approach, a

prototype systems has been implemented in the object-oriented paradigm

of LOOPS environment on a Xerox AI workstation. The system is capable

of generating a set of network configurations that possess the desired

structural characteristics for a given energy integration problem.

The most significant aspect of our approach is that it is not based

on the estimation of approximate real cost ($/year) of the candidate

structures. So far, all existing methods, used for computer based

synthesis of energy integration networks, require the cost computation

and provide a single structure that has the minimum estimated real cost.

The disadvantage of such an approach is that the candidate structure so

generated may not be an overall optimal design; it may possess

unacceptable operational characteristics, when analyzed and evaluated

during the detailed design phase. Furthermore, several structures have

costs that are very close to each other and one can not guarantee any

particular structure to have the minimum cost, since the cost estimation
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function is usually not accurate by more than 20V These features

render the performance? of the present methods unacceptable to most

industrial designers (see, e.g., Linnhoff et al, 1982; Barton et al,

1987). Instead of the numerical estimation of the cost, the present

approach relies upon the domain knowledge in the form of qualitative

relationships between the structural characteristics and the cost of the

completed structure. The prototype system developed in the present work

attempts to generate a set of structures that have acceptably lower

costs and provide a designer with several candidates for evaluating the

other operational characteristics in the detailed design phase. It,

therefore, conserves computational resources by not searching for the

minimum-cost structure.

The implementation reported herein constitutes the first prototype

in the ongoing HENSYN project in the Department of Chemical Engineering.

The project aims to develop an "intelligent" automated design system for

energy integration networks. Additionally, it is intended that this

prototype will aid the participating knowledge engineers and domain

experts in

(a) extraction and formalization of additional knowledge required for

the synthesis of energy integration networks,

(b) testing the adequacy and efficiency of new design strategies.

This thesis is divided into five chapters. Chapter 2 presents a

background of the domain, the description of the problem, and the domain

knowledge employed in the present work. The third chapter presents a

brief discussion of search systems, and formulates the synthesis task

under consideration as a state-space search problem. We define the
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state-space of the problem, the operators and control strategy for

manipulating the domain knowledge. Chapter 4 deals with the

implementation of the proposed state-space search formulation for

synthesizing energy integration networks in LOOPS environment. The

chapter contains an overview of LOOPS and the LOOPS representation of

the three components of the search system for the problem under

consideration. Additionally, we describe the workings of the user

interface. The chapter ends with an analysis of the performance of the

prototype. The last chapter summarizes the accomplishments of the

present work and identifies the future enhancements of the prototype.



CHAPTER 2. HEAT BXCHANGER NETWORK SYNTHKSis

In u chemical plant, a nunber of streams are required to be heated

or cooled, each from one temperature (source temperature) to another

(target temperature) . Traditionally, the heating is carried out by

steam and cooling by cold water. However, if the energy of "hot"

streams can be utilized to heat the "cold" streams, considerable savings

can result. Such energy transfer between a pair of streams is carried

out using a device called heat exchanger . A network of heat exchangers,

chosen judiciously, can drastically reduce the amount of utilities

(steam and cooling water) required to run a plant. Given the prevailing

scales of operation, this can translate into annual savings of millions

of dollars for the plant. Consequently, the optimal design of a heat

exchanger network (HEN) is a problem of significant interest.

2 . 1 BACKGROUND

A stream in a chemical plant is any material, mainly in liquid

and/or gaseous form, flowing through a pipe. The material of a stream

is modified or transformed while transiting through a processing unit of

the plant. Each transformation results into a change in the energy

content of the stream. This change manifests itself in a variety of

forms. Of interest to the present work is the change in a specific form

of energy, called enthal py , at constant pressure. Such a change in

enthalpy changes the temperature of the material. Associated with each



stream are several characteristics; of these, relevant to the present

work are the following three:

(1) temperature, denoted by T,

(2) rate of flow of the material, denoted by m,

(3) specific heat at constant pressure, denoted by c .

The last one, specific heat, is a measure of the ease of changing the

temperature of a stream. It is expressed as the change in temperature

of unit amount of material , for a unit change in the enthalpy of the

material at constant pressure.

The most common and obvious way of changing the energy content of a

stream is by supplying or removing heat. When Q units of heat is

supplied to (or removed from) a stream, it results in a change AH in the

enthalpy content of the stream. The first law of thermodynamics

specifies that under reasonable assumptions, this change in enthalpy is

equal to the amount of heat (Q) supplied to or removed from the stream

[see, e.g. , Kyle, 1983]

:

Q = AH (2-1)

Note that in this relationship, both the quantities are positive if heat

is supplied to the stream and both are negative if heat is removed from

the stream. The change in enthalpy is manifested as a change in

temperature of the stream, from T to T , and is governed by the

following relationship:

AH = mc
p
(T

f
- T

1
) (2-2)

Combining Equations (2-1) and (2-2), we obtain,



Q CpCT T ) (2 3)

where T is the initial temperature before the supply (or remival ) of

f
heat, and T is the final temperature after it. For the purpose of this

work, the product of the flow rate m and the specific heat c can be

treated as a single entity, termed as heat capacity flow rate, denoted

by »C_. Note that both Q and (T - T ) in Equation 2-3 are positive when

heat is supplied to a stream and negative when heat is removed, since

the temperature will increase in the former case and decrease in the

latter case. For the initial temperature equal to the source

temperature and the final temperature equal to the target temperature,

Equation 2-3 gives the total amount of heat required to be supplied to a

cold stream (positive) or removed from a hot stream (negative). The

absolute value of this amount of heat is called the heat duty of the

stream

.

When a hot stream is used to heat a cold stream, a certain amount

of heat gets "transferred" from the former to the latter. Just as a

liquid flows naturally from a higher level to a lower level, heat

"flows" from a higher temperature to a lower one. Greater the

temperature difference between the two streams, faster is the rate of

heat transfer between them. This temperature difference is termed as

the driving force for heat transfer (or heat exchange); it is denoted by

AT. According to the theory of heat transfer, the rate of heat flow

(per unit area of the heat exchange surface) and therefore, the amount

of heat transferred, is directly proportional to this driving force.

8



Thus, when the driving force approaches zero, in the limiting case, the

rate of heat transfer also approaches zero. From this standpoint, it is

desirahle to have as high a driving force as possible. On the other

hand, the second law of thermodynamics suggests that for the maximum

utilization of the heating and cooling potentials, and therefore, for

the least amount of external heating and cooling requirements, the

driving force should be as small as possible. Thus, we have two

conflicting effects: higher driving force, which leads to smaller heat

exchangers, reduces the capital cost of the network, whereas lower

driving force reduces the operating cost of the network by reducing the

amount of external heating and/or cooling required for the network.

Since the operating cost is substantially higher than the capital costs,

smallest permissible driving force is usually preferred by the

designers. In practice, to prevent excessively large heat exchangers, a

certain threshold value is specified as the minimum acceptable driving

force. No two streams which have a driving force lower than the minimum

value, AT . , can be "watched" for heat transfer,
min

In dealing with the real world problems, usually one class of

streams (hot or cold) have less total heat to be transferred than the

other class. Additionally, there may be situations when a particular

stream can not exchange heat with any other stream due to the minimum

driving force constraint. To deal with such situations, "special"

streams called utility streams (or simply, ut i I i t i es) are employed for

heat transfer. Two types of utilities, hot and cold, are available. A

typical example of hot utility is steam and that of a cold utility is



cooling water. To differentiate with the utilities, the "original"

streams are called process streams. Since the total cost of utilities

constitute the major portion of the operating expenses for a heat

exchanger network! it is desirable to minimize the utility consumption.

In fact. the minimum utility consumption is a prime optimal ity

Cr i t er i on

.

It is a usual design practice to assume that the utilities have

extreme temperatures; i.e.. steam has a temperature higher than any of

the target temperat ures of cold streams. and cooling water has a

temperature lower than any of the target temperatures of hot streams.

Therefore, any hot stream can be completely cooled by the cold utility

(cooling water) and any cold stream can be completely heated by the hot

utility (steam). To effectively utilize the heating and cooling

potentials of the utilities to the maximum extent, their use is

restricted as follows: a hot utility should be used to only to heat a

cold process stream to its target temperature, and a cold utility should

be used only to cool a hot process stream to its target temperature.

Another assumption made during the design of a heat exchanger

network is that utilities do not change their temperatures during the

heat exchange process. In reality there is a slight change, but it is

negligible and does not affect the design or the performance of the

final network. Consequently, the amount of utilities are measured in

terms of their heat duties; their heat capacity flow rates (»c values)

are not required for designing the networks. In contrast, process
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streams change their temperatures during the heat exchange, the

temperatures of hot streams decrease and those of cold streams increase.

Finally, to reflect the type of streams participating in any match,

the resultant heat exchange units are classified into three categories.

If both streams are process streams, then the unit is called a heat

exchanger. If the hot stream is a utility (e.g., steam), it is

classified as a heater and if the cold stream is a utility (e.g. cooling

water), it is classified as a cooler. Obviously, it does not make any

sense to match a hot utility with a cold utility for heat exchange. All

three categories of units are generically referred to as heat transfer

units (HTUs). The amount of heat exchanged between the two streams in

an HTU is called its heat load.

2.2 THE HEN PROBLEM

The heat exchanger network synthesis problem can be formulated as

follows [see, e.g., Nishida et al., 1981; Mehta, 1986]:

Given a set of process streams, with specified flowrates and

heat capacities , find an optimal set of heat transfer units

(HTUs) that will transform the given source temperatures of

all the streams to their respective desired target

temperatures.

The following simplifying assumptions are usually made [Nishida et al

.

1981; Jezowski and Hahne, 1986]:

(1) The utility streams, such as steam and cooling water are

available at desired temperatures. The amounts are not

11



specified, but are assumed to be available in sufficient

quant it i es

(2) The utility streams do not change tbeir temperatures during he.ji

transfer

.

(3) The heat capacities of all the streams are constant; they do not

vary with the temperatures of the streams.

(4) Each HTU belongs to one of the three categories: a counter-

current single-pass heat exchanger, a heater, or a cooler.

The following operational characteristics of a HEN are used for

evaluating a candidate network.

(a) The annual investment and operational cost ($/year).

(b) The ease of instrumentation and control (control I abi I i ty)

.

(c) The ability to survive through load fluctuations (resi I i ency)

.

(d) The ease of start-up and shut-down of the plant (operabi I i ty)

.

(e) The modular network structure with interchangeable components

(flexibi I ity)

.

(f) Safety and reliability.

Except for the annual real cost ($/year), which is to be minimized, it

is desired to maximize all other characteristics.

The synthesis or the preliminary design phase generates one or more

candidate networks for detailed design phase. The total cost of a

network is the only characteristic that can be estimated (within an

accuracy of 20%) during the synthesis phase. All present automated

synthesis systems attempt to generate the minimum cost structure.

However, more often than not, this structure does not possess good (or

acceptable) operational characteristics (b) through (f). Consequently,

12



alternate candidates, which have more than the minimum cost, are needed.

It is for this reason that existing automated synthesis systems are not

used by designers to solve complex industrial problems.

Experienced designers conceive several candidate structures, at

least some of which have good operational characteristics (b) through

(f) and, at the same time, none of them has excessively high cost [see,

Barton et al., 1987]. These candidate structures are not generated by

computing the estimated cost; instead, they are based on the qual i tat ive

relat ionshi ps between the structural and operational characteristics of

HENs [see, e.g., Nishida et al . , 1981; Linnhoff et al
. , 1982]. Some of

these structural characteristics are

(1) the number of HTUs in the network,

(2) the amount of utility consumption,

(3) the average driving force for each HTU in the network, and

(4) the distribution of heat loads of the HTUs in the network.

These relationships constitute the domain knowledge on which our Al

approach is based to generate candidate structures in the synthesis

phase of HEN design. At present, one such relationship is available

from the literature [see, Nishida et al., 1981; Linnhoff et al , 1982;

Linnhoff and Hindmarsh, 1983; Jezowski and Hahne , 1986]:

To generate a cost efficient (near minimum cost) heat

exchanger network, the number of HTUs and the amount of

utility requirement should be minimized

.

For any given problem, several structures exist that satisfy this

criterion. All of them have near minimum cost, only the other

operational characteristics differ. Note that this set of structures

13



always contain! the minimum cost structure, since it must also satisfy

the siimc criterion. Therefore, this set of Structures (or a subset of

it) is usually preferred by the Industrie] designers as the starting

point of for the next phase of design. Based on the foregoing analysis,

the objective of the present work is to generate B set of candidate

structures that satisfy the following optimality criteria:

(1) the minimum number of HTUs , and

(2) the minimum utility consumption.

It should be noted that the number of such structures, which is

extremely small compared to the number of all possible structures, can

be further reduced if and when additional relationships (domain

knowledge) involving other structural and/or operational characteristics

are available. Each additional piece of knowledge will make the task of

HEN design less and less complex.

2.3 GRID DIAGRAM FOR NETWORK REPRESENTATION

The standard graphical representation scheme for a heat exchanger

network (HEN) is the so-called grid diagram. Figures 2-1, 2-2 and 2-3

show typical grid diagrams with no network, partial network, and

complete network, respectively. Each stream in a grid diagram is

represented by a directed line from the source temperature to the target

temperature, both of which are labeled at appropriate ends of the

stream. All hot streams are drawn at the top with the source

temperatures on the right-hand side and the target temperatures on the

left-hand side, i.e. the hot streams "go" from the right to the left at

14



HI (14.77) 148.9 -^ 271.1(1804.9) HI

H2 ( 7.17) 82.2 -^ 198.9 (836.7) H2

H3 (10.53) 93.3 —< 187.8 (995.1) H3

CI ( 8.07) 37.8 226.7 (1524.4) CI

C2 (11.61) 82.2 226.7 (1677.6) C2

C3 (18.71) 60.0 160.0(1871.0) C3

Fig. 2-1. Grid diagram for a HEN problem at the
beginning of synthesis.
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in (14.77) 14 8.9 ~^- 271 . 1 ( 1804.9) 111

H2 ( 7.17) 19 8.9 -^ (T)-

113 ( 10.53) 187.8 G>

CI ( 8.07) 141.5

C2 (11.61) 82.2

o-
(836.7)

198.9 (0.0) 112

187.8 (0.0) 113

<D— 141.5 (0.0) CI

(687.7)

•" 226.7 (1677.6) C2

C3 (18.71) 113.2

(995.1)

- 160.0 (875.9) C3

Fig. 2-2. Grid diagram for a partial solution of
the HEN problem in Fig. 2-1.
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HI (14.77) 148.9

H2 ( 7.17) 198.9

<£>-©-

-G>

H3 (10.53) 187.8 -Mr •©

CI ( 8.07) 141.5

C2 (11.61) 82.2

C3 (18.71) 113.2

6
(836.7)

6-
(929.1)

148.9 (0.0) HI

198.9 (0.0) H2

187.8 (0.0) H3

-&-»- 141.5 (0.0) CI

(687.7)

"(7) 82.2 (0.0) C2

(748.5)

o—

o

- 113.2 (0.0) C3

(995.1) (875.8)

Fig. 2-3. Grid diagram for a complete solution of
the HEN problem in Fig. 2-1.
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thfl top of the diagram. All cold streams are drawn at thfl bottom ol thfl

diagram with thfl lource teeperaturei on thfl left hand sid«- and thfl

target temperatures on thfl right h.ind side, i.e., the cold streams "go"

I i uni the left to the right at thfl bottom of the diagram. Thus, in

Figures 2-1, 2-2 and 2-3, there are three hot streams, HI, H2 and H3

,

and three cold streams, CI, C2 and C3 . Note that for any stream, hot or

cold, the higher temperature is at the right end of the diagram;

therefore, it is called the hot end of the stream, and the corresponding

temperature, the hot end (or hot side) temperature. Similarly, the

lower temperature of any stream is on the left end of the diagram, which

is called the cold end of the stream and the corresponding temperature,

the cold end (or cold side) temperature. The temperatures of all

streams increase from the left to the right, but not according to any

scale. As the network is being synthesized, the amount of heat required

to be supplied to or removed from a stream (i.e., its heat duty)

changes. This causes changes in the hot and/or cold end temperatures of

the streams. The temperatures at the two ends of a stream are the

"current" values for the respective temperatures. This can be readily

observed by comparing the Figures 2-1 and 2-2; the cold end temperatures

of streams H2, H3 and CI have changed from 82.2 to 198.8, 93.3 to 187.8

and 37.8 to 141.5, respectively. Also, the hot end temperature of CI

has changed from 226.7 in Figure 2-1 to 141.5 in Figure 2-2. In Figure

2-3, each stream has equal cold and hot end temperatures, indicating the

end of synthesis.

Two additional values associated with each stream are displayed in

the grid diagram; on the left edge of the stream is the heat capacity

18



flow rate, rac , (the product of flow rate and specific heat of the

stream), and on the right is the unsatisfied heat duty of the stream.

To distinguish these values from the source and target temperatures,

they are parenthesized. Finally, the identification tag of a stream

(e.g., HI, H2, ..., and CI, C2 , ... etc.) is displayed at both the ends

of the stream. Utility streams are not shown in the diagram. Usually,

there is only one stream of each utility type, therefore, not showing

them in the grid diagram is not likely to cause confusion. The

identification tags are HU1 for the hot utility and CU1 for the cold

utility. As shown in Figure 2-2 and 2-3, each HTU in the grid diagram

is represented by a circle on the corresponding stream(s) with

identification number (1, 2, 3, etc.) indicating the sequence in which

the it has been created. A heat exchanger involving two streams is

represented by a vertical line connecting the two circles on the

corresponding streams, with the top circle containing the identification

number. The heat load of a heater is displayed in parenthesis below the

corresponding circle, that for a cooler is displayed above the

corresponding circle, and for a heat exchanger, it is displayed below

the "bottom" circle, i.e., the one on the cold stream. Each match (HTU)

in a network is referred to by a name that is a concatenation of the hot

and the cold stream (in that order) constituting the match, with a "/"

in between. For example, a match between two streams H2 and C3 will be

referred to as H2/C3, and a match between cold utility CU1 and hot

stream H3 will be referred to as H3/CU1 . The partial network shown in

Figure 2-2 has two heat exchangers, corresponding to matches H2/C1 with

19



a heat load of 836.7 units, H3/C3 with a heat load of 99.r> 1 units, and a

heater HU1/C1 with a heat Load of 687.7 units.

Any REN can be represented uniquely in a grid format The units

for the values are not shown anywhere in the diagram; there are no

restrictions except that all the values must be in a consistent set of

units. Unless otherwise mentioned, the standard set of units will be

used throughout this work: Temperatures in °C, heat loads in kcal/hr

and heat capacity flow rates in kcal/hr-°C.

2.4 THF, FRAMEWORK FOR SYNTHESIZING HEAT EXCHANGER NETWORKS

The solution process for HEN synthesis consists of two steps:

preanalysis and network invention. Preanalysis establishes the minimum

utility requirement for a given problem. This amount depends upon the

problem specifications (data) and is independent of the network

configuration. It is worth noting that this minimum utility requirement

is not just the net difference between the total heating needed for the

cold streams and the total cooling needed for the hot streams. The

target must also account for the minimum driving force constraint.

Well-established algorithms are available to predict this target [see,

e.g., Linnhoff and Flower, 1978; Cerda and Westerberg, 1980; Linnhoff

et al . , 1982]. Therefore, in the present work, it is assumed that the

value of this target is known and available as part of the problem

specifications

.

It is possible that some problems require both kinds of utilities,

hot as well as cold. In such cases, to ensure that the resultant
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network does not violate the minimum utility requirement, the problem

must be partitioned into two subproblems, each of which requires only

one kind of utility (hot or cold) and must be solved independently by

the network invention step. Final solution is obtained by putting the

two subnetworks together. Once again, for the present work, it is

assumed that such a partition, if required, has been already performed

by the user. Thus, the scope of the present work is restricted to

automating the task of network invention.

The network invention step is concerned with conceiving a network

for a given problem (or a subproblem) with the minimum number of HTUs

and featuring the minimum utility requirement as determined in the

preanalysis step. It generates a network by sequentially matching pairs

of streams; for each match it determines

(a) a pair of streams to be matched, and

(b) the extent and location of a match.

The extent of a match between a pair of streams is the amount of heat

transferred in the match, i.e., the heat duty of the resultant HTU. The

location of a match specifies the portions of the two heat duties that

are matched. There are three possibilities for each heat duty, hot,

intermediate and cold. Thus, there are nine possibilities for the

location of a match for a selected pair of streams. The network

invention procedure employed in the present work is based on the

so-called elimination strategy [Linnhoff et al., 1982; Linnhoff and

Hindmarsh, 1983; Mehta, 1986], which can be stated as follows:

To generate a network with the minimum number of HTUs and the

minimum utility consumption , each match between a pair of
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stream must el I mi nate at least one of the streams and, if

possi bl e , both.

in essence, the elimination strategy specifies the restrictions on the

extent and location of a natch to ensure the optimality of the network

be i ng genera t ed

.

To ensure that the network being conceived features the minimum

number of HTUs . the quantity of heat transferred in each HTU (i.e., the

extent of each Batch) must be maximized. ObviousJy, the upper bound for

this value is the smaller of the two heat duties of the streams being

matched. Therefore, the maximum extent of heat transfer will reduce the

heat duty of one of the stream to zero, thereby el i mi nat I ng it from

consideration for further matching. For the maximum extent of a match,

the possible number of location of the match reduce to two. One

location is hot end, where heat transfer begins at the hot ends of the

two streams and terminates when one of the streams gets eliminated,

thereby leaving the cold end of the other stream for further matching.

The other match location is cold end, where the heat transfer begins at

the cold end and once again, terminates when one of the streams get

eliminated, thus leaving the hot end of the other stream for further

matching. Figure 2-4 illustrates the hot and cold end matching for a

pair of process streams. Note that a hot end match modifies (reduces)

the hot side temperatures and a cold end match modifies (increases) the

cold side temperatures of the process streams being matched.

As the heat is being transferred in an HTU, the driving force

between the two streams (AT) may increase, decrease, or remain
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HI (14.77) 252.1 ^d>
H2 ( 7.17) 82.2 "^"

H3 (10.53) 93.3 -^"

271.1 (280.5) HI

198.9 (836.7) H2

187.8 (995.1) H3

CI ( 8.07) 226.7

C2 (11.61) 82.2

6- *- 226.7 (0.0) CI

(1524.4)

- 226.7 (1677.6) C2

C3 (18.71) 60.0 - 160.0(1871.0) C3

(a) Hl/Cl match at the hot end

HI (14.77) 148.9 ** O-

H2 ( 7.17) 82.2 -^"

H3 (10.53) 93.3 -^"

167.9 (280.5) HI

198.9 (836.7) H2

187.8 (995.1) H3

CI ( 8.07) 37.8

C2 (11.61) 82.2

6— 37.8 (0.0) CI

(1524.4)

- 226.7 (1677.6) C2

C3 (18.71) 60.0 - 160.0 (1871.0) C3

(b) Hl/Cl match at the cold end

Fig. 2-4. Two ways of matching a pair of streams
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unchanged, depending upon the relative magnitude-, of the mi value-. Ol

the sti'iMns. Consequently, if both streams involved in a Batch are

procesfl streams, then there is a possibility that before the maximum

possible amount of heal is transferred (i.e., before one of the stream

t-ets eliminated), the minimum driving force constraint is violated.

Note that such a situation does not arise when one of the streams is a

utility stream, since is has been assumed that utility streams have

"constant" temperatures that are sufficiently high (or low) to heat (or

cool) any process stream. The necessary and sufficient conditions for

ensuring that the maximum extent of heat transfer is possible without

the violation of the minimum driving force constraint have been derived

and are available in the literature [Mehta, 1986). They are, for the

hot end match,

ATU > AT (2-4)
he min

and

[

AT
h

- min(Q Q ;

e he {(»c
p

)
h

(mc
p )j

> AT
nun

(2-5)

where

AT. « T* - T
he h c

(2-6)

and for a cold end match,

AT > AT .

c e mm (2-7)

and

AT - min(Q ,Q )
<- r

ce n c (mc n )P'h
(BC

P
)

c

> AT .

m in
(2-8)

where
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AT = T, - T
S

(2-9)
ce h e v

'

In all the above relationships, Q, mc and T are the heat duty, heat

capacity flow rate, and temperature of a stream, respectively;

subscripts h and c designate the hot and cold streams, respectively; and

superscripts s and t, the source and target values of temperatures,

respectively. As long as a pair of streams selected for matching

satisfy one of the above two sets of conditions, at least one of the

streams will be eliminated and the maximum amount of heat will be

transferred (equal to the minimum of the two values Q, and Q )

.

h c

It is possible to arrive at a situation during HEN synthesis where

no two streams satisfy even one of the two sets of elimination

conditions. In such situations, stream splitting is resorted to, rather

than settling for a less-than-the-maximum value for the extent of a

match. By splitting a stream, two or more substreams are generated;

these substreams have lower values of heat capacity flow rates

(mc values), thereby enhancing the possibility of satisfying the

elimination conditions. Note that the sum of the mc values for all the

substreams add up to the mc value of the "parent" stream, and

therefore, the substreams can be merged any time to yield the original

stream (albeit with the modified temperature). To obtain the minimum

number of units in the resultant HEN, each substream must eliminate all

the streams with which it is matched. The task of stream splitting has

not yet been formalized, therefore sufficient amount of domain knowledge

is not available to carry out this task. Most existing methods do not
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split streams without the user's help. The user- specifies the Banner in

which the splitting is to be accomplished. The details ot how to carry

out this task are beyond the scope ot this work and hence will not In-

pursued here. For the purpose of this work, l In- infoim.it ion regarding

which stream to split and what subst reams to be generated will be

assumed to be available, whenever required.
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CHAPTER 3. AN AI APPROACH TO THE HEN SYNTHESIS PROBLEM

Several methods have been employed for computer-based synthesis of

heat exchanger networks. These methods are based either on numerical

techniques such as linear programming [Kesler and Parker, 1969;

Kobayashi et al., 1971; Cena et al., 1977] and mixed integer linear

programming [Papoulias and Grossmann, 1983], or on search techniques,

such as total enumeration [Pho and Lapidus, 1973], branch and bound

[Rathore and Powers, 1975; Greenkorn et al., 1978; Grossmann and

Sargent, 1978] and depth-first branch and bound [Jezowski and Hahne,

1986]. Each of these methods yield only one candidate structure,

namely, the one having the minimum estimated cost ($/year). Finding

such a specific solution is a task of considerable complexity, since

enormous number of feasible network structures exist for a given

problem. Since the estimated cost is only 20% accurate and the minimum

cost network may not possess acceptable operational characteristics,

there is a need to generate alternate structures which have near minimum

cost. These networks can then be analyzed and evaluated in the detailed

design phase.

Numerical techniques based methods may be employed for generating

successive minimum cost networks, provided each time the problem is

reformulated with added constraints prohibiting the previously obtained

configurations. Such an approach, though potentially feasible, is not

pragmatic; finding a single solution is too cumbersome to repeat the

method multiple times. For example, Papoulias and Grossmann [1983] have

reported an MILP formulation that requires 30 binary variables, 172
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COntlnuOUl Variables and 11*) constraints for a ten slrcin problem (the

so called 10SIM test problem) , The methods b.ised on search techniques

can be Modified to generate multiple candidate networks. However, they

do not employ domain knowledge to focus their search, thereby, end up

searching the entire search space?. For example, JezowskJ and Hahne

I
1986] have reported generating over 10,000 nodes for the 10SFM test

problem, and close to 100,000 nodes for a problem with twenty streams.

As evident from this analysis, the complexity of the conventional

methods increase sharply when multiple candidate structures are

required. To overcome this complexity, we propose an AI based approach,

which utilizes the available domain knowledge. We employ heuristic

search technique based on the elements of domain knowledge presented in

sections 2.2 and 2.4 to reduce the search for the desired network

conf igurat ions

.

3. 1 SEARCH SYSTEMS

A search system associated with a problem has three components

[see, e.g., Nilsson, 1980; Barr and Feigenbaum, 1981; Rich, 1983]:

(1) a database , which describes both the current task-domain

situation and the goal (the solution);

(2) a set of operators to manipulate the database; and

(3) a control strategy for deciding what operator to apply and where

to apply it.

The successive applications of operators to the current task-domain

situation to produce a modified situation, is called a forward reasoning
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strategy. Thus, a forward reasoning strategy starts with the initial

problem configuration and transforms it into a goal configuration. On

the other hand, a backward reasoning control strategy applies operators

to the goal (i.e., the solution configuration) to produce one or more

subgoals whose solutions will lead to the solution of the original

problem. Each of these subgoals then becomes a current goal and is

treated in similar fashion. Thus, a backward reasoning strategy starts

with the solution configuration and by recursive applications of the

available operators, arrives at the initial problem configuration. For

complex problems, the two strategies can be combined to form a

bidirectional or opportunistic reasoning strategy. Often, the forward

reasoning is called data directed or bottom-up strategy, whereas the

backward reasoning is called goal directed or top-down strategy.

Obviously, the operators needed for the two strategies are of different

types.

Any goal-oriented problem can be solved using a search system; the

problem is formulated as a state-space search problem. The search space

is perceived as consisting of a set of all possible problem states,

including the start state(s), goal state(s) and all the intermediate

states, and a set of operators for state transformations. Each operator

acts upon one state (the "current" state) to produce one or more "new"

states. Forward, backward, or bidirectional reasoning strategy may be

employed to "move" around in the state-space of the problem.

Finding a solution in a search system can be modeled as the

traversal of a directed graph in which each node represents a state and

each arc represents the operator that transforms one operator into
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UlOther state. The search system must find .1 path through the graph,

starting at the initial (start ) state and ending in one or BOre I 1n.1l

(goal) states. since the graph to be searched can, in principle) be

generated from the operators, the graph is said to be implicitly

it-presented by the operators. Only those parts of the graph thai need

to be searched are generated explicitly (i.e., actually constructed by

the system). The size of the graph actually constructed by a system

depends upon the nature and extent of the search, which, in turn, is

determined by the control strategy. For this reason, the control

strategy is often referred to as the search techni que or the search

strategy

.

General-purpose search techniques include generate- and test , hill

climbing, breadth-first, best-first, problem reduction, constraint

satisfaction and means-ends analysis. (For a detailed discussion of

these techniques, see Barr and Feigenbaum [1981] or Rich [1983]). All

these techniques are more or less independent of any particular task or

problem domain. The past decade of AI research has revealed the

inability of these general-purpose methods to efficiently solve complex

real world problems. More often than not, these techniques suffer from

combinatorial explosion of the search space (search space grows

exponentially with the size of the problem). Therefore, they are called

weak methods in AI literature.

By early 1970's, the AI researchers realized that a good search

strategy should use some form of knowledge about the problem domain for

efficiently solving the problem. The performance of a weak method can

be significantly improved by using the domain knowledge to appropriately
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guide the search. Thus, weak methods provide a framework into which

domain knowledge can be placed to create powerful problem-specific

strategies to solve complex problems. This shift in approach has given

considerable impetus to the research on knowledge representation,

resulting in several formalisms, such as predicate calculus, production

systems, frames, scripts, conceptual dependencies and conceptual graphs.

The selection of any one formalism for solving a problem depends on the

nature and characteristics of the problem and the domain knowledge. To

exploit the fullest power of these formalisms, various programming

paradigms and environments have been suggested, including the logical

programming, functional programming and object-oriented programming

paradigms

.

3.2 A SEARCH SYSTEM FOR THE HEN SYNTHESIS PROBLEM

The search system formulated in the present work differs from the

systems discussed at the beginning of this chapter in the following

ways.

(a) It is capable of providing several candidate network structures,

all featuring the minimum number of HTUs and the minimum utility

consumption without searching the space multiple times.

(b) It uses the domain knowledge, in the form of the elimination

strategy and the associated necessary and sufficient conditions

(cf. section 2.4), to focus the search in the restricted region

of the search space.
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(c) It does not use the t'st imated cost ol the network ($/year ) a\ I be

has is for evaluating the potential candidate etructun

(d) it permits stream splitting to generate split structure! with the

minimum number ol units and minimum utility < onsumpt i on , when

unsplit solutions are not feasible. In such cases. the split

Structure! generated by the present system will have lower cost

than the unsplit structures reported by the other methods

(e) It. employs a heuristic control strategy that utilizes the domain

knowledge in an attempt to prevent the generation of infeasible

structures, thus focusing the search and minimizing the

backt racking

.

In the sticceeding subsections, we formulate the HKN synthesis task

as a state-space search problem and define the three components that

constitute the search system. Furthermore, we show how domain knowledge

can be incorporated into this framework to restrict the search space and

to guide the control strategy.

3.2.1 State-Space Representation of HEN problem

A "state" of a HEN synthesis problem consists of the characteristic

values (the source and target temperatures, the heat duty, and the

specific heat flow rate) of all the streams in the problem, as well as

the feasibilities of matching all the pairs of "unel iminated" streams.

The states are transformed by four operators; an operator applied to a

state modifies both, the characteristic values of one or more streams

and the feasibilities of matching this (or these) stream(s). The
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states, which constitute the search space, can be classified into the

foJ lowing four categories:

(a) the initial problem state or the start state, where no matches

have been made and consequently, the heat duty of none of the

streams is satisfied, either partially or completely (i.e., the

heat duty of every stream is the same as the initial value),

(b) the solution states, where the heat duty of every stream is

completely satisfied (i.e., the heat duty of every stream is

zero)

,

(c) the intermediate states where heat duties of some (but not all)

of the streams are satisfied, either partially or fully, and

(d) the dead-end states, where heat duties of one or more streams can

not be satisfied completely with any match.

All these states constitute an implicit form of a directed graph. Only

those portions of this graph, which are explored by the control

strategy, are explicitly generated by applying the operators described

in section 3.2.2. Each arc connecting two states in the explicit form

of the search graph can be perceived as representing an operator that

transforms the source state into the destination state.

3.2.2 Operators

The HEN synthesis problem requires only four operators. These

operators and the effect they produce are as follows:

33



MATCH: Makes a natch between the spn M i imI pa i i ol streams at the

specified end as selected by the control strategy. The extent ol I

match is the maximum possible value, i. e. , the lower - ol the heat dut

of thfl two streams being matched, in accordance with the elimination

Strategy. As a consequence of th(? match, an MTU is "produced" for the

match between these two selected streams, and the heat duties of the two

streams get reduced by an amount equal to the HTU load. Also, the

process streams that take part In the match (at least one, at most two)

change their characteristic values; for a hot end match, the hot side

temperature(s) get reduced, whereas for a cold end match, the cold side

temperature(s) get increased. In the event that the extent of match

equals the residual heat duty of any of the two constituent streams

(before the match), this stream gets eliminated and if it is a process

stream, then the hot and cold side temperatures will become equal.

For example, each of the partial networks in Figure 2-4 are

obtained by a single application of MATCH operator to the start state of

the problem in Figure 2-1. In each case, the operator acts on the same

pair of streams (HI and CI), but at different ends. In both cases, the

match generates a heat exchanger with a load of 152.4 units, eliminates

CI (heat duty becomes 0.0) and reduces the heat duty of HI from 1804.9

in Figure 2-1 by an amount equal to 1524.4 units to 280.5 in Figure 2-4.

However, the temperature changes depend on the end at which the operator

is applied. In case (a), the operator MATCH is applied at the cold end,

resulting in the change of cold end (left edge) temperatures of HI (from

148.9 in Figure 2-1 to 252.1 in Figure 2-4) and CI (from 37.8 in Figure

2-1 to 226.7 in Figure 2-4). In case (b), the operator MATCH is applied
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at the hot end, resulting in change of hot end (right edge) temperatures

of HI (from 271.1 to 167.9) and CI (from 226.7 to 37.8). Note that

since CI has been eliminated, its hot and cold end temperatures are

identical in each case, 226.7 in (a) and 37.8 in (b). The difference in

the values between (a) and (b) is due to the difference in the manner of

application of the MATCH operator.

UNMATCH : Produces exactly the opposite effect of the MATCH operator.

This operator is essential for back-tracking the solution steps, should

a dead-end state be encountered. The restriction for applying this

operator is that only those streams which were matched by the latest

application of the match operator are eligible. In other words, at any

instant, only the last match can be "undone." Nevertheless, by

successively applying this operator, several matches can be undone, in

the reverse order of their making. Note that successive application of

MATCH and UNMATCH operators will bring the problem back to the same

state.

SPLIT : Splits the specified stream into the specified number of

substreams. The value of the heat capacity flow rate for each stream is

specified by the control strategy as a fraction of the corresponding

value for the original or parent stream. Note that this operator can

act upon either a process stream, or a utility stream. Splitting a

stream temporarily disables that stream for further operations; only the

substreams can be operated upon. Each substream inherits both the hot

and cold side temperatures from its parent stream. Finally, at all
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times, each substream irl.iins the identity of its parent stream, and the

paranl si rem rataini the identify of all it-, substream

MERCK: Merges the Specified substreams at the specified end (hot or

cold) tO form either the parent stream (when all the snhst reams .11 •

merged) or a composite substream (when only some of the substreams are

Barged). The substreams that are Barged are disabled for any subsequent

operations. If merging results in the parent stream, then it is

reactivated for subsequent operations. The temperature of the resultant

stream is obtained by taking the weighted average of the corresponding

substream temperatures, the weight factor being the corresponding heat

capacity flow rates. If the MERGF operator is applied immediately

following an application of the SPLIT operator, then merging all the

substreams returns the problem back to the same state (the source state

for the SPLIT operator). In contrast, if one or more applications of

MATCH operator separates the application of SPLIT and MERGE operators,

then the destination state will not be the same as the source state for

the SPLIT operator when all the substreams are merged.

3.2.3 Use of Domain Knowledge to Restrict the Search

Even for an average size problem, the search space described in the

preceeding subsection is too large and complex to handle. For example,

consider a problem with 10 streams. For simplicity, the following

discussion is restricted to only one operator, MATCH. Furthermore,

suppose that the extent of match is the maximum amount of heat transfer
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permissible between a pair of streams. In a "blind" search strategy,

each of the 10 streams can be matched with 9 others (a stream can not be

matched with itself!) at either of the two ends, hot and cold. Thus,

for the start state, we have 180 immediate successors. Of course, as we

move towards one of the goal states, this number reduces all the way to

1. Nevertheless, the search graph generated for the problem under the

restrictions stated in 3.2.2 is too large to be efficiently handled.

Rather than burdening the search technique (control strategy) with the

task of selecting the successor states from this enormous number of

possibilities, the available domain knowledge can be utilized to reduce

the possible number of successor states to a minimum. The elimination

strategy can restrict the search in the following four ways.

(A) From the discussion in section 2.1, we know that the intent of

matching a pair of streams is to use the hot stream to heat the

cold stream. To utilize this knowledge, we can divide the set of

streams (process streams as well as utility streams) into two

subsets: hot streams and cold streams. Now, for matching, only

one stream from each category needs to be considered;

furthermore, hot utilities must not be matched with the cold

utilities. These constraints substantially reduce the possible

number of immediate successor states that need to be considered

for traversing the graph. Suppose that the 10 stream problem

considered earlier in this subsection consists of 6 hot streams

and 4 cold streams, with one utility each. Now the number of

immediate successor states that need to be considered are 46 (23

pairs of streams with possible matches at both ends). Compared
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to the previous figure <>t iho, we can see tti.it t tie search ipecfl

lias been reduced to out- I mirth'

(B) The second element of the domain knowledge r<-,ti n | | the t he

number of successor st.itrs to those which do not violate I In-

optimal ity criteria (the minimum number of Hills and the minimum

utility consumption). To ensure this, it is necessary to follow

the elimination strategy , i . e . , each match must eliminate at

least one of the streams, and if possible, both (cf. section

2.4). The necessary and sufficient conditions for following this

strategy (Equations 2-4 and 2-5 for a hot end match and Equations

2-7 and 2-8 for a cold end match) depend only on the

characteristic values of the two streams being matched.

Consequently, we can put a restriction that a match between a

pair of streams is feasible at hot and/or cold end if and only if

the corresponding elimination conditions are satisfied.

Obviously, this will maximize the extent of the match. Now only

those pairs of streams, for which the match is feasible at least

at one of the ends, need be considered. Note that whenever any

characteristic value of any one of the stream changes, the

feasibilities of all the matches involving this stream, must be

re-evaluated. On the other hand, if none of the characteristic

values of any of the two streams of a match change, then its

feasibility remains unaltered.

(C) The third element of the domain knowledge exploits the nature of

the utility streams. Based on the assumptions (a) and (b) in

section 2.2, we can conclude that a hot utility can, at all
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times, be used to heat any cold process stream to its target

temperature, and a cold utility can, at all times, be used to

cool any hot process stream to its target temperature.

Furthermore, as stated in section 2.4, for utilizing the maximum

heating and cooling potentials, and thereby not violating the

minimum utility consumption constraint, a hot utility must be

matched with a cold process stream only at its hot (target) end,

and a cold utility must be matched with a hot process stream only

at its cold (target) end. This gives us the following "rule" for

determining the feasibility between a utility stream and a

process stream. Any match between a hot process stream and a

cold utility stream is always feasible at the cold end and never

feasible at the hot end, whereas any match between a cold process

stream and a hot utility stream is always feasible at the hot end

and never feasible at the cold end. Once again, the extent of a

match equals the minimum of the heat duties of the two streams

being matched, in accordance with the elimination strategy.

(D) The fourth and the final element of the domain knowledge is that

an eliminated stream should not be considered at all for any

further application of any operator.

Out of the above four elements of the domain knowledge, (A) and (D)

arise out of the basic background of the domain, whereas (B) and (C)

arise solely out of the elimination strategy chosen for the present

work. The extent of reduction of the search space due to this

additional knowledge (elements B, C and D) can not be predicted apriori;

it depends on the characteristic values of streams constituting the
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problem iisu.iiiy, the reduction is greater for larger problems. In Mil

event, this reduction is always significant, ranging I inm ^o to 80

percent

The grid diagram described in section ?.
.

'A is not BqU i pped to

portray the restricted nature of the search space. An alternate, battel

representation, called match matrix, has been chosen in the present work

for displaying the state of a URN problem. This representation is a

Significantly modified version of the original one proposed by Pho and

Lapidus [1973]. The modifications enable a match matrix to display the

domain knowledge required by the control strategy in determining the

subsequent applications of operators to generate immediate successors in

the restricted search space.

Each of the Figures 3-1, 3-2 and 3-3 is an example of a grid

diagram and the corresponding match matrix for the start state, an

intermediate state and a solution state for a HEN problem with six

streams. Note that the grid diagrams in these figures are identical to

the ones in Figures 2-1, 2-2 and 2-3. respectively. Each row of a match

matrix contains the match information for a cold stream, and each

column, the match information for a hot stream; the rows and columns are

labeled with the corresponding stream "names". Each entry (cell) in the

matrix, belongs simultaneously to a row and a column. Therefore, a cell

displays the information pertaining to the match between the cold and

hot streams corresponding, respectively, to the row and column to which

it belongs. If a match already exists between two streams, then the

corresponding cell contains the heat load of the resultant HTU;

otherwise, it contains the feasibilities of matching the corresponding
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HI (14.77) 148.9 m^m 271.1(1804.9) HI

H2 ( 7.17) 82.2 "**" 198.9 (836.7) H2

H3 (10.53) 93.3 "<" 187.8 (995.1) H3

CI ( 8.07) 37.8 - 226.7(1524.4) CI

C2 (11.61) 82.2 *" 226.7 (1677.6) C2

C3 (18.71) 60.0 - 160.0(1871.0) C3

(a) Grid Diagram

X^Hot
Cold\ HI H2 H3 HD1 Qc

CI H C * C * C H * 1524.4

C2 H C * * * * H * 1677.6

C3 H C * C * C H * 1871.0

Qh 1804.9 836.7 995.1 1436.2

(b) Match Matrix

Fig. 3-1. Start state for a HEN synthesis problem.
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ill (14.77) l 4H .<) -^- 271 . 1 ( 1H04 .9) HI

II? ( 7.17) 19H.9

II i ( 10. S3) 187.8

—g>

©
198.9 (0.0) 112

187.8 (0.0) 113

CI ( 8.07) 141 .5

C2 ( 11 .61 ) 82.2

C3 (18.71) 113.2

6
(836.7)

-©— 141 .5 (0.0) CI

(687.7)

"^" 226.7 (1677.6) C2

6- - 160.0 (875.9) C3

(995.1)

(a) Grid Diagram

Cold\
HI B2 H3 HU1 Oc

CI 836.7 687.7 0.0

C2 H C H * 1677.6

C3 e c 995.1 n * 875.9

Qh 1804.9 0.0 0.0 748.5

(b) Match Matrix

Fig. 3-2. Intermediate state for the HEN synthesis
problem in Fig. 3-1.
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HI (14.77) 148.9 "^" 0-©"

H2 ( 7.17) 198.9—d>

H3 (10.53) 187.8 "^ ©

CI ( 8.07) 141.5

C2 (11.61) 82.2

C3 (18.71) 113.2

6-
(836.7)

O
(929.1)

148.9 (0.0) HI

198.9 (0.0) H2

187.8 (0.0)H3

<D-^ 141.5 (0.0)C1

(687.7)© *" 82.2 (0.0)C2

(748.5)

6 6 - 113.2 (0.0) C3

(995.1) (875.8)

(a) Grid Diagram

\sHot
ColdS^

HI H2 H3 HD1 Qc

CI 836.7 687.7 0.0

C2 929.1 748.5 0.0

C3 875.8 995.1 0.0

Qh 0.0 0.0 0.0 0.0

(b) Match Matrix

Fig. 3-3. Solution state for the HEN synthesis
problem in Fig. 3-1.
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pair <>( s t reams 11 t he lic.i t duty of 0A6 <>t the 1 1 i ean constituting •>

atch is Boro (i.e.. if it bai baan ellainatad), then tin- faaaibility ol

the m.i t ( h is no Longer required. Such • > cell containi .1 dash ("— ").

II neither stream (constituting the match) has been eliminated, thru 1 tit-

le 1 1 contains the faaaibility as determined by the domain knowledge (B)

and (C) described in the preceding paragraphs. The first symbol in the

Cell corresponds to the hot end match; the feasibility is Indicated by

an "H" and the infeasibi 1 i
t y , by a "*". The second symbol corresponds

to the cold end match; the feasibility is indicated by a "C" and the

infeasibi 1 i ty , by a • »•• The last row, labeled Qh , contains the

unsatisfied or residual heat duties of the hot streams (i.e., the heat

duties yet to be satisfied). Similarly, the last column, labeled Qc

,

contains the unsatisfied or residual heat duties for the cold streams.

The match matrix in Figure 3-l(b) shows that no match has yet been

made. Thus, it is a start state. The match matrix in Figure 32(b),

which corresponds to an intermediate state because some, but not all, of

the streams have been eliminated. It presents the following information

pertaining to the state of the problem.

(a) The partial network consists of three HTUs ; one heat exchanger

each for H2/C1 and H3/C3 matches, with heat loads of 836.7 and

995.1 units, respectively, and a heater for HU1/C1 match, with a

heat load of 687.7 units.

(b) Three streams have been eliminated from the problem: hot streams

H2 and H3, as well as cold stream CI.
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(c) The matches H1/C2 and H1/C3 are feasible at both, hot and cold,

ends whereas HU1/C2 and HU1/C3 matches are feasible only at the

hot ends.

From (a) and (b), it can be confirmed that the partial solution has been

able to adhere to the elimination strategy. In other words, up to this

point in synthesis, the solution has managed to have only the minimum

number of HTUs , independent of the path traversed in arriving at this

state. The information in (c) helps the control strategy in deciding

what operators should be applied and to which streams should they be

applied; e.g., which streams should be matched next, H1/C2, H1/C3,

HU1/C2 or HU1/C3. It is clear from this example that a match matrix

displays the current state of a problem in a form which facilitates the

decision-making by the control strategy. The match matrix in Figure

3-3(b) has no feasible matches. Since the heat duties of all the

streams (in the last row and last column) is zero, this is a solution

state.

3.2.4 Control Strategy

In this subsection, we describe the control strategy employed in

the present work, i.e., we specify which of the four operators is to be

applied to a problem state and which streams does the operator act upon.

The domain knowledge described in section 3.2.3 is used to restrict the

generation of explicit search graph by preventing the control strategy

from obtaining a structure that does not satisfy the two optimality

criteria (the minimum number of HTUs and the minimum utility

45



cnnsumpt ion ) . Howrvcr, this se.ui h spncc contains ,111 enormous number o(

dead cull s t ,i t rs . in addition to «i 1 l 'he licsucd solul ion sliit

Therefore, foi •> control strategy to !>•• efficient, it mist prevent as

sany deed end itetei .is possible. Tin- presenl control strategy attempts

to prevent dead ends by examining the feasibi litiet ol all satchel

This procedure selects one or more "most constrained" pairs ol st reins

which, if not matched, are likely to lead to a dead end. At each step

<>t the search, these most constrained pairs of streams form the

alternate selections for applying the MATCH operator. These alternate

selections will be explored in the depth-first fashion to generate all

possible candidate networks. The detailed descriptions of the two

components of the control strategy are as follows.

Selection of Operator : MATCH is the default operator. As long as this

operator is applicable, no other operator will be considered. In other

words, this operator will be applied till a solution state or a dead-end

state is reached. For each application of MATCH operator, one of the

most-constrained pairs of stream will be chosen at random; the others

will be "remembered" for future exploration of alternate paths. For

this purpose, a pair of streams which can be matched at both the ends,

hot and cold, are considered as separate choices. The extent of the

match. i.e., the heat load of the resultant HTU will be in accordance

with the elimination strategy, as specified in section 3.2.2.

In the event that there are no more feasible matches in the match

matrix, a dead-end or a solution state is reached. After informing the

user about the situation, the UNMATCH operator will be applied. Since
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only the last match can be undone, the question of selection of streams

does not arise. The match undone will be remembered and will not be

considered ever again. After one application of UNMATCH , the MATCH

operator will be considered again, this time the selection will be from

the remaining pairs of most constrained streams for that state.

Application of UNMATCH operator is essentially a backtracking step in

traversing the search graph. If there are no more pairs of streams

available as alternate matches after an application of UNMATCH operator,

then the UNMATCH operator will be applied recursively until an alternate

pair of streams can be found. If no amount of backtracking (unmatching)

yields an alternate pair of streams for matching, and not a single

solution state has been reached, then the operator SPLIT will be

applied. The choice of a stream to be split and the manner of splitting

will be obtained from the user, as the adequate knowledge is not

available to define a formal splitting strategy. Once again, this

knowledge can be eventually incorporated when it is available. Once a

stream is split, all the resultant substreams should be eliminated by

applying the match operator. When all substreams have been eliminated,

they are recombined together using the MERGE operator. At any given

time, only one stream can remain split; only when it is merged back, can

another stream be split.

Selection of Streams : Amongst all pairs of streams that constitute

feasible matches (for a particular state), those which are the most

constrained, are selected for making the next match. The following

stepwise procedure is employed for the selection.
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(i) Detersine the number of feaelble satchel f < > i each stress. Poi

this purpose (
<> hot end Batch ; >"«i cold <'ih1 Batch between th<-

s.imt- two treaaa are considered -is two satchel Bssentlslly,

this sBounti to counting the numbers of H's snd C*i in each roe

(for cold streams) <imi each column (for hot streams). Thus,

BSSOClSted with each stream is the number of feasible BBtchei

into which it can participate.

(2) Select the stream(s) having the lowest non-zero number of

feasible matches that it (they) can participate into.

(3) From all the streams that can be matched with the stream selected

in (2), select the one that has the least non-zero number of

feasible matches.

(4) If only one stream is selected in (2) and only one in (3), then

these two streams constitute the most constrained pair of

streams. If more than one stream get selected in (3), but not in

(2), then each stream selected in (3), together with the one

selected in (2), constitutes a most constrained pair of streams.

(5) If more than one streams are selected in (2), then for each of

them, obtain the most constrained pairs of streams using (3) and

(4) above. From these pairs, those that have the least total

number of feasible matches constitute the set of most constrained

pairs of streams.

The list of most constrained pairs of streams obtained as above is used

by the control strategy to restrict the application of MATCH operator to

focus the search.
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CHAPTER 4. HENSYN: AN IMPLEMENTATION USING LOOPS

The principal aims of this implementation are

(a) to demonstrate the feasibility and effectiveness of the AI based

approach to HEN synthesis task described in section 3.2, and

(b) to evaluate the performance of the control strategy proposed in

section 3.2.4.

One of the most noteworthy developments in the area of knowledge

programming techniques has been the use of object-oriented programming

paradigm. Increasing number of AI systems are being developed in this

paradigm. Objects provide the highest degree of data abstraction and

encapsulation that leads to systems with excellent modularity. This

feature makes the paradigm ideally suited for rapid prototyping and

exploratory programming. Additionally, it permits hierarchic and

non-hierarchic inheritance of structure (variables and data) and

behavior (procedures that manipulate the data) among objects. This

feature is highly desirable for representing and manipulating the

structural and taxonomic information required to effectively reason

about engineering domains such as HEN synthesis. Based on these

criteria as well as the availability of a system, the LOOPS environment

[Bobrow and Stefik, 1983] on a Xerox AI workstation has been chosen as

the implementation medium for the present work. LOOPS is built on top

of the powerful Interlisp-D [Xerox, 1982] environment, which is host to

the Xerox AI workstation. It, therefore, extends the full power of the

system development and debugging tools of the Interlisp-D environment.

Additionally, it offers bit-mapped graphics with a user-friendly
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Interface consisting of windows, nenui snd soase. Combination ol thi

feature! makes loops our ot the lost powerful knowledge programming

environment svallable. To nave better understanding ol the strut ture

of the prototype developed In I he present work, an overview of LOOPS

environment is essential.

4.1 AN OVBRVIBM OF LOOPS

LOOPS. which stands for Lisp Object Oriented Programming System,

integrates four programming paradigms; in addition to the convention.il

procedure-oriented paradigm, it offers object-oriented, data-oriented

and rule oriented paradigms. Since different programming paradigms

provide different ways of representing and manipulating knowledge, for a

given application some paradigms can be more cost-effective than others;

the cost includes the resources required for developing, debugging and

modifying a system. By allowing for choice and combination of

paradigms, LOOPS enables us to build cost efficient application systems.

Out of the four paradigms offered by LOOPS, the present

implementation employs predominantly the object-oriented paradigm. The

procedural and data-oriented paradigms are sparsely used, and this

sparse usage too, is within the framework of the object-oriented

paradigm. The rule-oriented paradigm has not been used at all in the

present implementation. In addition, the procedural and rule-oriented

paradigms are more commonly found in programming languages than the

other two. In the light of these facts, the discussion of LOOPS
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features in this section has been restricted to the object and

data-oriented paradigms only.

The procedure-oriented paradigm has been, by far, the most widely

employed paradigm. In this paradigm, a program consists of a set of

procedures (also called subroutines or functions in some languages).

Data are kept separate from procedures that manipulate them. Large

procedures are built from the small ones through the use of a

composition mechanism: invocation of procedures through procedure calls.

The procedural part of LOOPS is Interlisp-D [Teitelman, 1978; XEROX,

1982]; it is an enhanced version of Lisp with several data abstraction

facilities and control structures added to the standard list processing

features of Lisp. These enhancements include data structures, such as

arrays, records, property lists, windows and menus, and control

structures, such as decisions, case statements and complex iteration

constructs, all in Pascal-like syntax. This paradigm is the foundation

on which the rest of LOOPS is built.

The object-oriented paradigm in LOOPS derives its roots from

Smalltalk [Ingalls, 1978; Goldberg, 1981; Goldberg and Robson, 1983] and

Flavors [Weinreb and Moon, 1981; Cannon, 1982]. In this paradigm, a

program consists of a set of objects combining both, data (called

variables in LOOPS) and instructions (procedures) that manipulate the

data (called methods in LOOPS). Larger objects are built up from the

smaller ones by employing the composition mechanisms, which for this

paradigm are specialization, hierarchical and non-hierarchical

(multiple) inheritance, composite objects and perspectives.

51



Object! in an ObJeCl 01 irntrd |i,i r .id i em .iir Organised Into (»t> )'
-

' '

I l.i An object class (or simply .1 class) is .1 dest 1 Ipf ion of one or

oi»> similar Objects, BSCfa Ol winch is termed an instance of the ( l.iss

Every object in loops is en Instance of exactly one class Even classes

themselves are iiestances of a (lass, usually the one (allrd Class.

Associated with each object class are Its data (variabl* and

procedures (methods). Variables of a LOOPS object ar<- < l.issified into

two categories: class variables and instance variables. Class variables

are used to contain information shared by all instances of the class,

i.e.. the information pertaining to the class taken as a whole.

Instance variables contain the information specific to an instance.

Both kinds of variables have names, values and associated property

lists. A class describes the structure of its instances by specifying

the names and default values of instance variables. Unlike sole other

knowledge programming systems, e.g., KEE [Kehler and Fikes, 1985], LOOPS

does not associate any data type with the object variables. In this

regard, it retains the flexibility of LISP rather than opting for

datatype rigidity of, say, Pascal.

All actions in an object-oriented programming come from sending

messages to objects. Message sending is a form of indirect procedure

call: instead of naming a procedure to perform an operation on an

object, a message is sent to the object, which responds to the message

by activating the appropriate method ("known" only to itself). A

selector in the message specifies the procedure (method in LOOPS) that

needs to be activated. A class associates selectors (Lisp atoms) with

methods which are the Interlisp functions. All instances of a class use
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the same selectors and methods. Any difference in the response by two

instances of the same class is determined by a difference in the value

of their instance variables.

A message in LOOPS has the following form;

(*- object selector argl arg2 ...)

where •*- is a short form of SendHessage command, Object is the recipient

of the message (a class or an instance, depending on the Selector)

,

Selector is a Lisp atom that specifies the Interlisp function to be

invoked and argl, arg2, etc. are optional arguments that are passed to

the function. The effect of a message can be a change in the data

values of one or more objects, or additional messages to one or more

objects. A message returns the result of the last computation step to

the sender. In this respect, it behaves like a function call in Lisp.

Message sending supports the important concepts of data abstraction and

encapsulation. Thus, an object need not know the internal data

structures and the implementational details for the methods of other

objects in order to communicate with them. Also, these details can be

changed without affecting the inter-object communication.

Messages are usually designed in sets to define a uniform interface

to all objects that support a specific operation. Such a set of related

messages is called a protocol. When protocols are standardized,

different classes of objects sharing these protocols can be treated

uniformly. In fact, the object-oriented paradigm is particularly well

suited to applications where the description of entities (in the form of

object classes) is simplified by the use of uniform protocols. For

example, in a graphics application, windows, lines and composite
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.1

slnii lures COOId be n'lircscnti'd .is d i I f itch I object i l.isses all of whose

i us t .tin 61 respond t (i .i u n I t oini set of messages ( .1 •, t .md.i | d i | c<l protocol)

sin h .is Displiiy. Move <ind Krase. Such protocols extend the notion of

modularity (interchangeable and modifiable pieces .is enabled by message

send i ni; )

In LOOPS, object classes are organized in the form of an

inheritance network, called lattice, with arcs determining th

inheritance path. Inheritance supports the concept of specialization

the class at the destination of an arc (called subclass) is

special i/.ut Ion of the class at the source node (called superclass). All

descriptions (instance variables, class variables and methods) of a

class are inherited by its subc lass( es ) . The fact that LOOPS forms a

graph or lattice of classes and not a tree (as in Smalltalk) implies

that it permits multiple inheritance. In other words, not only a class

can have several subclasses, but it can also have several superclasses.

These two forms of inheritance, hierarchical (single superclass) and

non- h ierarchica 1 (multiple super classes), reduce the need to specify

redundant information and simplifies updating and modification, since

information can be edited and changed at one place. Changes to the

inheritance network are very common during program development; new

classes are created and existing ones are reorganized. The LOOPS

environment facilitates such changes with the help of an interactive

graphics package called browser for adding and deleting classes,

renaming classes, splitting and specializing classes, rerouting

inheritance paths in the lattice, adding deleting or modifying the

variables and methods and so on.
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In the data-oriented programming, action is potentially triggered

when data are accessed. For this reason, this paradigm is often

referred to as access-oriented paradigm. Its basic mechanism in LOOPS

is a structure called active value, which enables a programmer to

specify whether any special procedure is to be invoked on read or write

access to a variable of an object. LOOPS checks on every variable

access whether the value (or the property being accessed) is marked as

an active value. If it is, then the procedure specified by the active

value will be executed. LOOPS employs the following convention for

active values;

#( local State getFn putFn)

The I oca I State is a place for storing data. The getFn is the name

of an Interlisp function invoked whenever a read access ("get" operation

in LOOPS) is made to the data value. Similarly, the putFn is the name

of an Interlisp function invoked whenever a write access ("put"

operation in LOOPS) is made to the data value. Every active value need

not specify both the functions; if any of the function name is NIL, then

for the corresponding operation, the data value can be accessed

normally, without any side effects. The getFn and putFn can be user

defined or built-in functions provided by the system.

The mechanism of active values is dual to the notion of messages.

A message is a way of telling objects to perform an operation, which can

change their variable values as a side effect. Active value is a way of

accessing variables, such that an operation is performed (e.g., a

message is sent) as a side effect. Composition in this paradigm is

carried out by nesting the active values, thus allowing a programmer to
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specify multiple access functions foi a Variable. Note Mi.it LOOPS

restricts t lie use of act ive values only to t lie ohjei I v.h i.ihle-.. it dOSS

not per m i t the da t a i t ems of the procedural pa i ad i gm ' o use the BCtlVS

Values. The active values can he thoueht ol as probes that can he

pi. iced on the object variables of a LOOPS program. For example. a< t ive

values drive gauges that display graphically the values of object

variables; whenever the value of a variable changes, its graphical image

gets changed appropriately. Nested active; values are analogous to

multiple probes. However, it is desirable that these "probes" are for

Independent purposes only and do not interfere with each other. Thus

this paradigm is most suitable for programs that monitor other programs.

LOOPS derives its strength not by merely putting together different

paradigms, but by integrating them to such an extent that they almost

loose their individual identities. The paradigms, therefore, not only

complement each other, but also work together as one single environment.

The following examples illustrate the integration of paradigms in LOOPS:

(a) Methods in object-classes are Inter! isp functions.

(b) The procedures in active values can be Interlisp functions, or

calls on methods (messages).

(c) Variables of an object can be active values.

Many of the facilities of the Interlisp-D environment are extended to

this integrated LOOPS environments. These facilities include the

display oriented break package, editors and inspectors, windows and

menus, DWIM (Do What I Mean-a spelling correction facility),

Programmer's Assistant (a package that acts as intelligent intermediary

between the user and system), and Masterscope (an interactive package
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for analyzing and cross referencing user programs). Thus the integrated

paradigms in LOOPS not only benefit the structure and performance of the

application systems, but also facilitate the process of developing,

maintaining and modifying these systems.

4.2 STRUCTURE OF HENSYN

The search system for the heat exchanger network synthesis

described in section 3.2, has been implemented on a XEROX 1108 AI

workstation with the hybrid knowledge programming environment LOOPS.

The system, called HENSYN, has been developed entirely within the

framework offered by the object-oriented paradigm of LOOPS; sparse use

has been made of the procedural and access-oriented paradigms.

For each element of the problem domain, such as process stream,

match, grid diagram, match matrix, etc., there is a corresponding object

class in HENSYN. This feature makes it easier to model the HEN

synthesis process in the LOOPS environment. However, this same feature

renders it very difficult to describe unambiguously the features and

behavior of the system. To prevent possible confusion, the following

notational scheme has been adapted in the remainder of this chapter.

The real-world domain elements (entities) are described in normal text

words, whereas the corresponding objects classes in the system are

preceeded by a $ sign. The instances of these object classes are

indicated by a prefix #$ followed by the identifier for the instance.

The method (procedure) and variable names are italicized. Additionally,

all LOOPS identifiers (object classes, instances, methods and variables)
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iit->» in with m cap i t h l l ft t it to differentiate froa I he real world

entities wli i i h are entirely in the sm.i I 1 case letters I i n.i I I y ,
t he

"owner" instance of <i method or a variable is referred to ei Belf for

brevity.

Pigure 1 l shows the objecl world of hknsyn. Rote the uae of

hierarchical Inheritance to Specialize 'he class $St ream to sulx lasses

$Pro(cssSt ream and futility; these classes are, in turn, spi-i i a 1 i Bed

into the corresponding hot and cold streams. Obviously, with these

specializations, there will he no need for instances of the two

superclasses, SProcessStream , futility and $Stream. Por each HKN

synthesis problem, the following object instances are required;

(a) One instance each of classes $Problem, SMatchMatrix and

SGrldDiagraa

.

(b) A set of specialized stream instances (of classes $HotUt i 1 i ty

.

SColdUti 1 ity , $HotStream and $Co IdStream)

.

(c) A set of instances of $Match; one for each pair of stream

instances, except when both are utilities.

The number of specialized streams. and consequently, the number of

$Match instances, are determined by the problem statement.

Inter object communication has been simplified by the use of

uniform protocols. For example, all four classes, $HotUt i 1 i ty

.

SColdllt i 1 i t y . SHotStream, and SColdStream, respond to a common message

IncreaseQ , albeit with different effects. Thus, any other object, say

an instance of SMatch, need not worry about which type of object is at

the receiving end of the message IncreaseQ . This uniformity enables
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File browser (selected file HEN)

^.--Utility ==

Stream <

Problem

MatchMatrix

Match

GridOiagram

__.
— ColdUtility

"*"" - HotUtility

— ColdStrearn
ProcessStrearn =-

—

~— HotStream

Fig. 4-1. The object world of HENSYN.
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other - object! to t rr.it tlicsc f our r 1 asses of ObJSCtt in LdSOtlCSl

fash ion, thus considerably tiaplifylng ths ystaa <i < •> i k>>

4.2.1 Stats Spacs

At sny Instant, ths h t ii t «* of ths problem is dsflnsd by ths

inst.uucs of classsa SHotUtlllty, iColdUtlllty, IHotStrosa, SColdstream

and INatch. Note thai the first two are the specialization of futility,

and the next two are the specialization of SProcessSt ream . Together,

these four are specialization of class SStream, and therefore, will be

referred to as specialized streams. The information defining the state

of the problem is stored as the values of variables of these object

instances

.

Both, $HotUtility and $ColdlJt i 1 i ty have an identical structure,

inherited from the superclass SUtility. Each instance has three

instance variables (IVs): the initial heat duty of the stream as

specified by the problem data (Q) , the unsatisfied or remaining heat

duty (CurrentQ) and a list of matches (SMatch instance identifiers) into

which it participates (Al matches) . The value of CurrentQ is set to

that of Q at the time of first usage with the help of the active value

facility. The initial value of variable Q is initialized to the value

specified in the problem. Once again. the initialization is done

through the active value mechanism. The value of Al matches is NIL to

begin with (default value inherited by all instances) and is updated as

and when a SMatch instance is created for that stream. Neither

SHotUtility nor SColdUtility has any class variables.
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Classes $HotStream and $ColdStream also have identical structures,

inherited from the superclass $ProcessStream, consisting of the

following instance variables (IVs).

(a) The three characteristic values of a stream at the start of the

synthesis, viz., the specific heat flow rate (mcp) , the initial

source temperature (SourceTemp) , and the initial target

temperature (TargetTemp) . All three have default value NIL and

are initialized to the values specified by the problem.

(b) Present values of the source and target temperatures

{CurrentSourceTemp and CurrentTargetTemp, respectively), set

equal to SourceTemp and TargetTemp, respectively, at the time of

first usage.

(c) A list of all matches ($Match instance identifiers) in which the

stream participates {Al /Matches) . Once again its default value

is NIL and is updated whenever a $Match instance involving this

stream is created.

(d) The initial heat duty of the stream (Q) , as specified by the

problem. This value is computed from the values of mcp,

SourceTemp and TargetTemp at the time of first usage.

(e) Unsatisfied heat duty of the stream (CurrentQ) , set equal to Q at

the time of first usage. This value is modified as matches

involving this stream are made.

Note that initializations in (b), (d) and (e) above are done through the

active value facility of LOOPS.

Each instance of class $Match contains the information on the

actual or potential match between a pair of streams, one is a hot stream
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(an Instance of MotUtlllty or IHotStreaa) and itir diIht, > i <> I d vin'.im

(.111 InttanCfl Of SColdUtllity or $ColdSt ream) . A $Match inst anrr

contains the following instance variables;

(a) the identity of the 1 1 « > t and the cold treaas tint constitute t h«-

atch ( h and c, reapectlvely) ,

(b) t he match load as per the elimination strategy (Q).

(i ) the quantity \-. r- - -. r—Y (cf. Equation
[<

mVn l"cP ,
cJ

s 2.5 and 2.8) foi

calculating the feasibilities (mcpFactor )

,

(d) the feasibilities for hot and cold end matching (HEHfeasibillty

and CEHfeasibility, respectively), and

(e) the status of the match (Status).

The default values of h . c and mcpFactor are NIL. Their actual values

are set during initialization and do not change subsequently. The

default values of Q, HEHfeasi bi I i ty and CEHfeasi bi I i ty are (zero);

their values are set (reset) whenever the instance is "asked" to

recompute its feasibility. The default value for Status is Open

indicating that the instance is available for selection of the next

match. The value of Status changes from Open to HTU on selection of the

instance as one of the matches in the solution, and from Open to Close

when one (or both) of the two streams constituting the match, h and c,

are eliminated.
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4.2.2 Operators

The operators for the search system, introduced in section 3.2.2,

have been implemented as a set of procedures (called methods in LOOPS)

distributed over all object classes. At present, only two operators

have been implemented: Match and Unmatch. The remaining two, Split and

Merge, can be implemented in a similar fashion. Figures 4-3 and 4-4

show the sequences of methods invoked in order to apply the operators

MATCH and UNMATCH, respectively, to a LOOPS configuration of a problem

state. In these figures, the boxes with names represent object classes.

A set of names underneath each box is the list of methods participating

in the chain of events. Each unbroken directed line represents a

message sent by one object to the other. Such a line originates at the

method that sends the message and terminates at the method being

invoked. Each line is numbered to portray the order of the messages. A

brief description of the events that take place for each operator

follows

.

MATCH : When the control strategy determines that this operator is to be

applied, a message ttakeMatch is sent to the $MatchMatrix instance,

thereby causing the invocation of method MatchMatr ix.HakeHatch . This

method sends two messages. The first one, GetNextHatch (message #1 in

Figure 4-2), is to Self (the $MatchMatrix instance) for selecting a pair

of streams and the location of match (hot or cold end). Note that this

method is a part of the control strategy, since the manner in which

these choices are made depends upon the control strategy. Having
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SetTemp

iminate "^"^

Fig. 4-2. Implementation of MATCH operator.
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obtained the identity of the match (i.e., the pair of streams to be

matched) and the location of match, the second message, GetHTU (message

#2), is sent to the appropriate $Match instance. This message "asks"

the $Match instance to obtain an HTU for itself. The location of match,

hot or cold end, is passed to the instance whereas the extent of match

is "known" to the instance, as instance variable Q.

In response to message GetHTU, the $Match instance changes its

status from Open to HTU, sends message ReduceQ (# 3) to each of its

"parent" or constituent streams (known to it as IVs h and c), and

finally, asks the match matrix to update the entries (values being

displayed at that moment) for the heat duties of the parent streams

(message # 11, UpdateQ)

.

The parent streams (one hot and one cold), on receiving the message

ReduceQ, reduce their remaining heat duties (IV CurrentQ) by the amount

specified in the message. Each of them then checks to see if it has

been eliminated, i.e., to see whether or not the remaining heat duty is

zero within a tolerance of 0.5. If the stream has been eliminated, a

message CloseDown (# 6) is sent to each of the matches involving this

stream to change its status from Open to Close; if Status has a value

Close or HTU, then the message is ignored. If the stream has not been

eliminated, instead of message CloseDown , message Recompute (#7) is

sent to each of the matches involving this stream. In either case, if

the stream is a process stream, its temperature at the location of the

match (hot end or cold end) is adjusted appropriately by sending message

SetTemp (# 4) to itself.
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Bach Batch (SMatch instance), receiving message Recompute. resets

its Load ;>s par the elialnation Strategy (message Resetload. 9 H) an<l

recalculate! its faatlbllltlei (aessage * 9, Recalculate) at the two

endi using the elialnation conditions (<:f. Equation! 2 4 through 2 9).

Finally. BOSaage UpdateCel I (t 10) is sent to the natch matrix for

updating the values being displayed ror this match.

UNMATCH : When the control strategy determines that this operator is to

be applied, message Unmatch is sent to the match matrix, thereby causing

the invocation of method MatchHatr i x .Unmatch . This method "undoes" the

effect of the latest application of the MATCH operator by sending

message Re I easeHTU (# 1 in Figure 4-3) to the appropriate SMatch

instance. (The sequence of all previous MATCH operator applications is

available as IV PastMatches of the $MatchMatrix instance). This

instance of SMatch sends messages IncreaseQ (t 2) to its parent or

constituent streams, changes its status from HTU to Open, and informs

the match matrix to update the values displayed for the remaining heat

duties of its parent streams (message # 9, UpdateQ)

.

The parent streams. one hot and one cold, receiving the message

IncreaseQ , increase their remaining heat duties (values of IV CurrentQ)

by the amount specified in the message. Each stream then checks to see

whether or not it has been eliminated as a result of the match being

undone. If so, then it undoes the effect of elimination by sending

message OpenUp (# 4) to each of the instances involving itself;

otherwise message Recompute (* 5) is sent to each of the matches

involving this stream. In both cases, the temperature of the stream, if
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Match

IncreaseQ -n

ResetTemp "^

Fig. 4-3. Implementation of UNMATCH operator,
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it is a process siren, ,i I thfl end wherr tin- Batch is bein^ undone i

reset hy Bending message SetTemp {t 3) to Sell

Bach of the matches receiving iti< % Recompute Bessaga respond! in the

same m. inner .is in the case of Match operator: it reset! its load as pel

the elimination strategy (message * 6, ResetLoad), recalculate the

feasibilities at the two ends (message f 7, Recalculate). and informs

the Batch matrix of the changes by sending message UpdateCell (s 8).

4.2.3 Control Strategy

The control strategy described in section 3.2.4 has been

implemented in an interactive, menu-driven form. The user chooses the

operator to be applied to a problem state? through a permanent menu

attached to the match matrix. Since only the MATCH and UNMATCH

operators have been implemented, the choice is limited to the

corresponding options, MakeMatch and Unmatch in the menu. Figure 4-4

displays the sequence of messages sent and the corresponding methods

that are invoked for the operation of the control strategy in HENSYN.

If the MATCH operator is chosen, message MakeMatch is sent to the

SMatchMatrix instance. This method, in turn, invokes the method

GetNextHatch (message t 1 in Figure 4-4) to obtain the match selection

for applying the operator MATCH. A match selection, sel . as shown

below, consists of the identity of the SMatch instance and the location

of the match (hot or cold end).

sel : (matchID location)
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hatchMatrix Match

Unmatch

MakeMatch

GetNextMatch

MostConstrainedMatches

Done? ""*

- ReleaseHTO

GetBTU

HotStream Coldstream
HotOtility ColdOtility

CountFeasibleMatches

Fig. 4-4. Implementation of control strategy.

69



Having obtained the Match Instance and the location <>f the eaten,

aeseege OetHTU (t 5) is sent to this Inatancei with the local inn as an

<i rguaen l

Method OetNextnat ch maintains and updates the history of available

alternate elections for ail previously "visited' states, in iv

Alternates of the IMatchMatrlx instance, having the following form.

Al ternates : ((statel sell sel2 . . .)

(state2 sell sel2 . . .)

... . . .))

where statel, state2, etc. are the unique Identifications for the

problem states, in the form of a list of matches (HTUs) present in the

partial network corresponding to the problem state (the value of IV

Pastttatches of $M;it chMat r ix instance), and sell, sel2, etc. arc the

unexplored alternate selections ($Match instance and location pair

described above) for the corresponding problem state. When invoked the

method first checks if the present state has been "visited" before. If

it has been, the corresponding alternate selections from IV Al ternates

constitute the list of most constrained matches from which one selection

is chosen for applying the MATCH operator and returned to the method

sending the message (GetNextHatch) ; if not, message

MostConstrai nee/Hatches (# 2) is sent to Self, which returns the list of

the most constrained matches for making a selection.

If the list of most constrained matches, obtained in either of the

above two cases, is empty (NIL), the user is informed of the situation

and the system suggests the use of UNMATCH operator for backtracking to

obtain alternate match choices. If only one alternate selection is

70



available in the list of the most constrained matches, this selection is

returned to method Nakettatch . If more than one alternate choices are

available, the user is asked to select one of these matches through a

pop-up menu. If the selected match is feasible only at one end, this

end is selected; otherwise, the user is asked to make a selection from

another pop-up menu having two options, hot and cold. The selected

match-location pair is removed from the list of the most constrained

matches for the present state and the value of IV Alternates is updated

accordingly.

Method NostConstrai nedMatches sends message CountFeasi bleMatches

(# 3) to each of the uneliminated streams (i.e., the streams having

non-zero heat duty) to determine the list of matches it can make and the

number of ways in which it can make these matches (called number of

matching possibilities). For the latter, a match at the hot end and the

same match at the cold end are counted as two matching possibilities.

Next, the method MostConstrai nedMatches determines the streams that have

the lowest non-zero number of matching possibilities. If there are no

such streams, then either a solution state or a dead-end state has been

reached. To check this, message Done? (# 4) is sent to Self, the rest

of the steps are skipped and the application of MATCH operator is

aborted. When one or more streams having the least number of matching

possibilities are obtained, for each match of each of these streams, the

number of matching possibilities of the other stream (participating in

the match) is examined and the matches with the lowest such number are

collected, along with the location(s) at which the streams can be

71



atched a list of these aatch Location pain is returned t<> the tendei

ni the MiMg« (sethod OetNextnatch) as the must constrained aatchei

Method Done? exaalnei t h«- remaining <»r unsal isi i
«

- c i in-, it dot lee ( iv

CurrentQ) of every streaa in the problea. if all sre zero, a solution

Btate his been reached; Otherwise a dead end state is reached. The

method informs the user about its findings and suggests that alternate

solutions can be obtained by backtracking with the he I p of the UNNATCH

opera t or

.

Method CountFeasi bl ettatches of class $Stream, which is inherited by

the instances of $HotStream. SColdStream, SHotUtility and $ColdUt i 1 i ty

,

examines the feasibilities (IV HEHfeasibility and CEMfeasi bi I i ty of the

SMatch instance) of each of its matches (stored in IV Al I Matches of the

corresponding stream instance) and makes a list of feasible matches (IV

Feasi bl eHatches) and counts the total number of ways in which the stream

can be matched (IV Match i ngPossi bi I i t i es) with the hot and cold end

matches counted separately. No value is returned to the message sender;

the values of the two IVs set by this method are used subsequently, by

method HostConst ra i nedHatches

.

If UNNATCH is the operator selected by the user, message Unmatch is

sent to the match matrix. Since only the last match can be undone, the

user is not asked to specify the match. The system keeps track of the

sequence of past matches including the locations (as IV PastHatches)

,

from which it selects the latest one and supplies it to operator

UNMATCH. The $Match instance thus selected is sent message ReleaseHTU

(# 6 in Figure 4-4) with location as the argument.
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With this interface, the control strategy described in section

3.2.4 can be executed very easily in an interactive fashion. The user

is required to carry out the first part of the control strategy, viz.

the depth-first search among the available choices for the most

constrained matches determined by the system. The system keeps track of

the alternate unexplored matches for each "previous" state and

determines the most constrained matches for a "new" state.

4.2.4 User Interface

The HENSYN system provides a very friendly user interface, which

forms a substantial chunk of the system. This interface performs the

following major tasks:

(a) Obtains the problem specifications (data) from the user.

(b) Instantiates and initializes the objects required for a problem.

(c) Displays the current state of the problem in the form of a match

matrix.

(d) Provides an interactive framework for executing a control

strategy.

(e) Displays the network design in the form of grid diagram.

Additionally, it provides several utility functions for the user's

convenience

.

The interface consists of three objects, each of which is an

instance of different object classes: $Problem, $MatchMatrix , and

$GridDiagram. Tasks (a) and (b) are performed by the $Problem instance,
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t.i.ks ( C ) Slid M) by the SM.it ihM.it r i x Instance, .mil t.isk ( e ) hy t he

$(.! nil) i agrss Inst so

To use thfl system tor solviii)'. .1 HEM problem, tin- 0801 invoke-, t hi-

Intel lisp function HKNSYN hy typing tht? following in tin- Inter lisp I)

exe ( 11 1 i ve w i ihIiiw :

(HENSYN)

The system in response, pops up a menu cent.lining the list of problem!

for which it has the data. Additionally, an option "*NewProb lem*" is

available for solving a problem that is not present in the menu. If the

user selects the "*NewProblem*" option, the system asks the user for the

mime of the problem, creates a new instance of class SProblem, and sends

message In i t i al i ze to this instance. If the user selects one of the

"available" problems, message Rei nit i al I ze is sent to the corresponding

SProblem instance. The only difference between the messages Ini t i al i ze

and Rei ni t i al i ze is that the former obtains the data from the user

(steps 1 and 2 below), where as the latter skips this part, since the

data is already stored in the corresponding SProblem instance. Kach of

these messages starts a chain of events that creates and initializes the

necessary objects and sets up the match matrix and grid diagram. This

chain of events is shown in Figure 4-5. This diagram is identical in

nature to Figures 4-2. 4-3 and 4-4. The only additional element in this

diagram is a dashed line, which represents the creation of one or more

new instances of an object. It originates at the method that carries

out the instantiation and terminates at the box corresponding to the

object (class) being instantiated. This line too is numbered to

indicate the order of sending messages. The following is a detailed
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HENSYN s.

' "^StartSynthesis "^

Match

Initialize

E
Recompute

ResetLoad

Recalculate

2

S Initialize

I is)
I SetParameters"^"^
\l9

Display

HotStream, Coldstream,

HotUtility,ColdOtility

nitialize \

CreatPossibleMatches -

Fig. 4-5. Initialization of HENSYN: chain of events
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deai i 1 1 > t ion <>t t tic BVMti dap it tad in Figure 1 ' Ncjt »• th.it tin- event

nuabari in this daacrlptlon corraapond to tin- message lin numbere in

p i gure i -

r
>

.

(1) Tha user is asked lor the problem data. The systci prompts the

user to supply the name (ID tap.), specific heat (low rate, source

temperature .imi target temperature of a process stream. This

procedure is repeated until the user types "none" for the name of

the next stream. All this information is stored as a list of

record! in instance variable DataTabl e of the SProblem instance.

(2) The user is asked for the minimum approach temperature, stored as

IV TDmin, and the amounts of hot and cold utilities alonp with

their names (ID tags for the corresponding instances of

SHotUtility and $ColdUti 1 i ty ) , which are stored as a list of

individual records in IV Utilities. Multiple streams are allowed

for hot and cold utilities. The end of each type of utility is

indicated by typing a zero for the amount.

(3) The SProblem instance sends a message to itself for instantiating

and initializing the streams.

(4) Instances of SHotStream, SColdStream, SHotUtility. and

SColdUtility are created, based on the values of IVs DataTabl

e

and Ut i I it ies .

(5) The stream instances created in (4) are "asked" to initialize

themselves. Each utility sets its amount (IV Q) and each process

stream sets values for its source temperature, target temperature

and specific heat flow rate (IVs SourceTemp . TargetTemp and mcp.

76



respectively). These values are supplied to the instances as

arguments of the message Initialize.

(6) As part of initialization, each instance sends message

CreatePossi bl eMatches to itself for creating all possible

candidate matches with the opposite type of streams. Thus, an

instance of $HotStream will create $Matches instances for each of

the existing $ColdStream instances as well as $ColdUtility

instances and an instance of $ColdStream will create $Match

instances for each of the existing $HotStream instances as well

as $HotUtility instances. $HotUtility and $ColdUtility instances

create $Match instances for the existing $ColdStream and

$HotStream instances, respectively. No utility creates a $Match

instance for the opposite type of utility instances.

(7) $Match instances are created as described in (6) for each pair of

streams, one hot and one cold, except when both are utilities.

(8) Having instantiated all the streams and matches, the method

Initial lie of $Problem now creates an instance of $Match Matrix.

This instance is assigned a name MM and its identity is stored in

the IV AIAf/flf of the $Problem instance.

(9) The newly created instance of $MatchMatrix, #$MM, is asked to

initialize itself. Method Initial ize of $MatchMatrix assigns

column numbers to the hot streams, including the hot utilities,

if any, and row numbers to the cold streams, including the cold

utilities, if any. These assignment lists are stored in IVs

HotStreamList and ColdStreamList , respectively, to be used in

displaying the match matrix. Next, each $Match instance is

77



BSSlgned .1 Cttll ID the match aatrix Tin- .isslnnicnt list of -ill

.itches .iiul their cell regions arc stored in IV HatchList.

Finally, the Identity of I in* INatchMa t r i x instai stored as

1
i.iss variable (CV) natchnatr IxJD of claei match rhii

coaaunicat ion link is essential for- aatchei to send update

aeeeagei to the natch aatrix.

(10) For- each SMatch instance, the match matrix asks itself to

allocate a cell region in the natch aatrix window, based on the

row and coluan numbers of the constituent or parent streams.

(11) Having completed the initialization, the match matrix is asked to

display itself. It does so in four steps: first, nessage

SetDi splayParameters is sent to Self for setting the display

parameters. Next, a window is opened for displaying match matrix

and this window is divided into cells by drawing horizontal and

vertical lines. The cell size is fixed and the window size is

determined based on the number of rows and columns required for a

problem. The third step is to fill all the border cells,

including the first and last rows, and the first and last

columns; this is accomplished by sending message F i 1 1 Borders to

Self. The last step is to fill the non-border cells; this is

carried out by sending message UpdateCe 1 1 to all the $Match

instances

.

(12) Based on the number of streams, four display parameters are set:

the number of rows and columns in the match matrix ( IVs rows and

Columns of SMatchMatrix . respectively), and the height and width

of the match matrix (IVs Height and Width, respectively).

78



(13) Method Fi I /Border of the $MatchMatrix instance fills the first

and last row as well as the first and last columns of the "empty"

match matrix. The first row contains the labels of the hot

streams, which are displayed by accessing IV Label of the

corresponding stream instances, and a label Qc in the last cell.

The first column, containing the labels of cold streams and a Qh

in the last cell, is displayed in a similar fashion. The

remaining cells of the last row and the last column contain the

unsatisfied heat duties of hot and cold streams, respectively;

these are displayed by sending message UpdateQ to Self.

(14) Method UpdateCel I locates the cell corresponding to the specified

$Match instance, erases the current contents of the cell and

writes the new information for this match. This information

depends on the status of the match. If the status is Open, then

the feasibilities of hot and cold end matching is displayed: an

"H" if the match is feasible at the hot end, and a "*" otherwise;

a "C" if the match is feasible at the cold end, and a "*"

otherwise. If the status is HTU then the heat load of the HTU is

displayed (IV Q of the corresponding $$Match instance). If the

status is Closed, " " is displayed.

(15) The $MatchMatrix instance creates a synthesis menu and attaches

it to the match matrix displayed on the screen. At present, this

menu has five options: MakeMatch and Unmatch corresponding,

respectively, to the two operators MATCH and UNMATCH, Reset to

undo all the matches to restart the synthesis, ReDisplay to erase

and redraw the match matrix and grid diagrams, and Quit to stop
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synthesis snd delete the synthesis menu Alter the

Initialisation, the user Lnteracta with the lystes solely through

this menu

.

(1(5) A new instance of $(ii i dl) i a)M am is created. Ms identity
| |

tored in the $l'roblem Instance (.is IV GDid) and in the

$M.i t chM.it fix instance (as IV Grid).

(17) The newly created Instance of $GrldDlagraa is ";isked" to

initialize itself. As part of this initialization, a window is

created for displaying the grid diagram for the current problem.

The vertical distance between two adjacent streams and the

horizontal Spacing between two adjacent HTUs are fixed. The size

of the window is determined based on these spacings and the

number of streams in a problem. Next, a message (SetParameters)

is sent to Self for determining the values of display parameters.

Finally, the window is "filled in" by sending a message Display

to Self

.

(18) Method SetParameters of $GridDiagram determines the vertical

position of each stream on the grid diagram. The lists of tuples

(stream ID, vertical position) are stored in IV HotStreams for

the instances of $HotStream and in IV ColdStreams for the

instances of SColdStream.

(19) Method Display draws the initial grid diagram in the window

created earlier by the method Initialize of $(iridl)iagram . For

each hot or cold process stream, a directed line is drawn, with

arrowhead at the appropriate end, and the information pertaining

to the right and left edges of the line are displayed. The right
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edge contains the label of the stream, specific heat flow rate

(parenthesized) and cold end temperature of the stream (target

temperature for a hot stream and source temperature for a cold

stream). The left edge contains the hot end temperature (source

temperature for a hot stream and target temperature for a cold

stream) , the unsatisfied or current heat duty and the label of

the stream.

(20) The last step in initializing a problem is to initialize all the

$Match instances for the problem. Method Initialize of $Match

sets the values of IV mcpFactor if both constituent streams are

process streams, and then sends message Recompute to itself for

determining the feasibilities at the two ends. Method Recompute

determines the heat load of the resultant HTU and computes the

values of IVs HEMfeasi I i bi ty and CENfeasibility, all by resorting

to the elimination strategy.

The initialization is now complete and the user can generate possible

network solutions for the HEN problem by interactively executing the

control strategy (as described in section 3.2.3) through the synthesis

command menu attached to the match matrix. This menu has five options:

(1) MakeMatch : Initiates the application of MATCH operator to the

present state of the problem by sending message MakeMatch to the

$MatchMatrix instance.

(2) Unmatch : Initiates the application of UNMATCH operator to the

present state of the problem by sending message Unmatch to the

$MatchMatrix instance.
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( :» ) KeUisplay: Clears the j». r i *J diagram it nci the Batch m.i t r i x windows

,iihI iimIi.iks rewrites the contents.

(4) Reset: Bring* the problem hark to the start st.ite by unmatchin^

,i I I existing matches and clearing the history by letting the IV

Al ternates to Nib.

(!>) Quit ; Deletes the synthesis command menu and stops fnrthei

synthesis. Note th;rt the $Prohlem instance, which contains the

data for the problem remains in the system to be used

subsequen t 1 y when needed.

When additional operators SPLIT and MERGE are i mp J ernented , the synthesis

command menu can be expanded to include these operators. This ienu acts

as the sole means of obtaining the user inputs during the process of HKN

synthesis. The system uses the prompt window to keep the user informed

of its activities and to display its suggestions/findings during the HKN

synthesis process.

4.3 PERFORMANCE ANALYSIS OF HKNSYN

The implementation described in the previous section constitutes

the first prototype of the knowledge-based system for HKN synthesis. In

these section, the performance of the HKNSYN system is analyzed in the

light of the aims delineated at the beginning of this chapter. Towards

this end, the succeeding subsections will

(a) show how the present system can be employed to generate a set of

networks satisfying the desired optimality criteria.
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(b) evaluate the performance of the control strategy employed in the

present implementation, and

(c) identify the possible modifications for enhancing the performance

of the present system.

These tasks will be accomplished by solving four standard test problems

and examining their results. These test problems have been proposed by

various researchers over the last two decades and are widely used for

benchmarking purposes. Two factors are usually considered for comparing

the results obtained by different systems: efficiency (how "fast" the

solution has been reached) and quality (how "good" the solution is). As

discussed in section 2.2, the desired quality of solution for the

present system has been predetermined to be a set of networks having the

minimum number of HTUs and the minimum utility consumption. Due to the

domain knowledge (in the form of elimination strategy) built into the

system, it only "looks" for the networks satisfying the two optimality

criteria. Analyzing the performance therefore, reduces to examining how

many candidate networks are obtained and how many dead-ends are

encountered in the process.

4.3.1 An Example of HENSYN Usage

The usage of the system is exemplified with the help of a test

problem, the so-called 6SP2 problem, first reported by Shah and

Westerberg [1975]. The problem consists of six process streams, three

hot streams, HI, H2 and H3, and three cold streams, CI, C2 and C3 . The

minimum utility requirement is one hot utility stream, HU1 , with a heat
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duty of 1496.2 units The Characteristic values ol .1 I 1 tin- streams .ire

reproduced in Figure i 8 The minimum driving force is 11.1 <i i-j' i
«•<•,

To st.ut the system, t lie user t ypes (HENSYN) in the Inter lisp I)

executive window The systcu responds with ;i menu containing the list

ut existing (previously solved) problems and an additional choice

" *NewProh 1 em* " . Presuming thai t hi- system does not have the date Tor

the 6SP2 probleB, the option " •Newl'roh I em* " is selected. The system

prompts for the name of the problem to which the user types in 6SP2

.

The system then starts asking the user for the data for this problem.

Figure 4 7 shows the dialogue between the user and the system during

initialization. For each stream, the user needs to input the label

(streaa ID), specific heat flow rate ( mc ) , source temperature and the

target temperature; these values constitute the information in the

corresponding row in the data table of Figure 4-6. The end of data is

indicated by typing "none" for the label (ID) of the next stream. The

system then asks for the amounts of hot and cold utility requirements

for the problem; for each utility the amount and label are asked for.

The end of each type of utility streams is indicated by entering

(zero) for the amount of next stream. After obtaining the utilities,

the system starts creating and initializing various object instances for

the present problem (cf. section 4.2.4). Each time a new object is

created or initialized, a message is displayed in the Interlisp-D

executive window. Finally, the match matrix and grid diagram for the

problem are displayed in two new windows; the user is asked to specify

the location of these windows. The match matrix window has a synthesis
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Stream ID mc Source Temp Target Temp

HI 14.77

H2 7.17

H3 10.53

CI 8.07

C2 11.61

C3 18.71

271.1 148.9

198.9 82.2

187.8 93.3

37.8 226.7

82.2 226.7

60.0 160.0

AT = 11.1
min

Minimum Utility Requirement: hot utility (HU1): 1436.2 units

Fig. 4-6. Data for 6SP2 problem
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Nil
()'.• (ill n:;yn)

N.uni: for rwu prntilm --> BSP2
I'll-, iM t yp« • In tin- data for a 1 tin- | t r earns

lo indicate tin: end of il.it.i.

type none for '.(rrja MM
N.une ol tin- next NtriM* (/ 1) --> Ml
Spa) tin hr.it fh«j rati.- (mcp) for Ml --> 14 //

Sourca loapsratura for Ml --> 271 i

larcjit temperature for Ml --> L48.fi

N.inie of tin: next streaa (/ ?) — > M2
Specific lii-it flow rate (acp) for M2 --> 7.1/
MK ii- ttmperature for M? --> LOB.fi

Target temperature for M2 --> 82.2

Name of the next streaa (/ 3) --> H3
Specific heat flow rate (acp) for M3 --> 18.53
Source temperature for M3 --> 187.8
Target temperature for H3 --> 93.3

Name of the next streaa (/ 4) — > CI
Specific heat flow rate (m< p) for CI --> 8.87
Source temperature for CI --> 37.8
Target temperature for CI --> 226.7

Name of the next streaa (/ 5) --> C2
Specific heat flow rate (ncp) for C2 --> 11.61
Source temperature for C2 --> 82.2
Target temperature for C2 --> 226.7

Name of the next streaa (/ 6) --> C3
Specific heat flow rate (acp) for C3 --> 18.71
Source temperature for C3 --> 68.8
Target temperature for C3 --> 168.8

Name of the next streaa (/ 7) -»> none

Minimum allowable driving force --> 11.

1

Enter the hot utilities for 6SP2 problem ...

(At end enter 8 for aaount )

Amount "> 1436.2
Name(ID) -=> MU1

Amount ==> 8

Enter the cold utilities for 5SP2 pr ih Km . . .

(At end enter 8 for aaount )

Amixjnt "> 8

Fig. 4-7. Initialization of 6SP2 problem.
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command menu attached to it. Figure 4-8 shows the screen image at the

end of initialization.

At this time the user can proceed to synthesize a network by

choosing the appropriate commands from the synthesis command menu, which

controls both, the match matrix and grid diagram. To make a match, the

user selects MakeMatch command from the menu. The system, in response,

determines the most constrained matches for the present state. If only

one such match is found, then it is selected as the next match. If more

than one most constrained matches are found, then the system pops up a

second level menu containing a list of these matches and the user

selects the desired match from this list by clicking the left or middle

button of the mouse. If the match is feasible only at one end, the

match is made at that end; otherwise, the system asks the user to

specify the end by popping up the third level menu with two options, hot

and cold. As a consequence of making this match, the match matrix and

the grid diagram are updated as described in Figure 4-2 and section

4.2.2. The system is now ready to execute the next synthesis command.

If the system does not find any most constrained match, then a check is

made to see if the current state is a solution state or a dead-end

state. It informs the user of its finding by displaying appropriate

message in the prompt window. If a dead-end has been reached, the

system advises the user to backtrack using the UNMATCH operator. To

undo the last match, the user selects Unmatch command. The match

created by the preceeding MakeMatch command is removed and the match

matrix and the grid diagram are restored accordingly (cf. Figure 4-3 and

section 4.2.2).
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II 1(14//) MM1

11/ ( / 1 /) •/ /

IIJ ( III %J) '« 1 J

i: i < ii u/) j/

1/ ( 1 Hl| IIJ

CJ < II / 1) ton

i ( MM ») mi

1 (III./) 11/

« ( MA < ) iij

/ ( IS/4 4) CI

/ ( ifc// *) i./

u ( 11/ 1 ) CJ

fc >'*-

to.
,7fc

in 112 11:1 mn Q-

.WiUiMKlAMi MiT.r

MakeMatch
Unmalch

CI H C * C • C ii
•

ir>z-i.-4
ReDisplay

Resel

C2 M C * * • *
ii

•
1677.6

Quit

(I ii r C * V H • 1871.0

Qh isai.o 8;i6.7 905.1 I4J6.2

Fig. 4-8. Screen image at the end of initialization
of 6SP2 problem.
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On initialization, the 6SP2 problem is in start state, S, as shown

in Figure 4-9. Next, we will see how the proposed control strategy

synthesizes a network for this problem.

(1) The match matrix of Figure 4-9 reveals that H2 and H3 are the

most constrained streams; each can be matched in two possible

ways. Furthermore, each stream can be matched with the same two

cold streams CI and C3. Thus, in this state, there are four most

constrained matches: H2/C1 , H3/C1 , H3/C3 and H2/C3. On selection

of MakeMatch command (MATCH operator), the system pops-up a menu

with these four choices. In keeping with the proposed control

strategy, H2/C1 is chosen at random; making this match will

transform the problem into state 1, as shown in Figure 4-10. The

resulting HTU, a heat exchanger, has a heat load of 836.7 units,

and it eliminates the hot stream H2.

(2) As can be seen from Figure 4-10, in state 1 the problem has only

one most constrained match, H3/C3. It is the only match possible

for H3. The selection of MakeMatch command, therefore, makes

this match without the user's intervention. This match

transforms the problem to state 2, shown in Figure 4-11. The

resulting HTU, a heat exchanger, has a heat load of 995.1 units.

Hot stream H3 gets eliminated as a result of this match.

(3) In state 2 (Figure 4-11), cold stream CI is the most constrained

stream with only two possible matches. Out of these two matches,

Hl/Cl and HU1/C1, the second one is more constrained than the

first one; hot stream HI can be matched in five different ways,

whereas hot utility HU1 can be matched in three ways. Therefore,
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111(14//) 1111 ••

C 1 ( U.O/) 3/.B

C2 (ll.bl) 82.2

C3 ( 111 / 1 ) 6U.0

11/ ( /. 1 /) (I// _^

HJ ( 11) 43) 93.3 ^_

// 1 1 ( 1111)4 <l) 11 1

I'll) -l ( ii.ii, /) M/

197.1 ( <«')', i ) m.)

_^_ //(>./ ( 1674.4) CI

_^_ 226.7 ( 1()//.(.) C2

_^. lf.0.0 (1870.9) C3

HI H2 H3 HU1 Qc

CI H C • C * C H * 1524.4

C2 H C * * * I H * 1677.6

C3 H C * c * C H * 1S70.9

Qh 1S04.9 S36.7 995.1 1436.2

Fig. 4-9. 6SP2 problem: starte state.

90



HI (11.77) 118.9 «4

H2 ( 7.17) 198.9

H3 (10.53) 93.3

CI ( 8.07) 141.5

C2 (11.61) 82.2

C3 (18.71) 60.0

-o-
« 836.7)

271.1 (1804.9) H1

198.9 ( 0.0) H2

187.8 ( 995.1) H3

-|»_ 226.7 ( 687.7) CI

.£»_ 226.7 (1677.6) C2

_^. 160.0 (1870.9) C3

HI H2 H3 HU1 Qe

CI H * 836.7 * * H * 6S7.7

C2 H C * * H * 1677.6

C3 H C * C H * 1S70.9

Qh 1804.9 0.0 995.1 1436.2

Fig. 4-10. 6SP2 problem: state 1
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Ml (11.//) 1 1 H

N2 ( /i/) IM.1 -^—/T\

ii.i ( io ?.;») lo/.H

C1 ( 0.0/) 11 1.5

C? ( 1 1.61) 82.?

C3 ( 18.71) 1 13.?

<?

o
o

171.1 (1801. «1) Ml

198.9 ( 0.0) M?

18/. 8 ( (i (i) MJ

_^_ ??6.7 ( 687.7) CI

_^. ??6.7 (1677.6) C?

_^_ 160.0 ( 875.8) C3

HI H2 H3 HU1 Qc

CI H * 836.7 H * 687.7

C2 H C H * 1677.6

C3 H C 995.1 H • S75.8

Qh 1804.9 0.0 0.0 1436.2

Fig. 4-11. 6SP2 problem: state 2
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match HU1/C1 is made as the response of the next MakeMatch

command. Making this match transforms the problem into state 3,

in Figure 4-12. The resulting HTU, a heater, has a heat load of

687.7 units and it eliminates cold stream CI.

(4) State 3 (Figure 4-12) has hot utility HU1 as the most constrained

stream (two matching possibilities). Both matches, HU1/C2 and

HU1/C3, are equally constrained since the cold streams C2 and C3

are identically constrained (three matching possibilities for

each). Thus, both the matches (HU1/C2 and HU1/C3) qualify as the

most constrained one. On selection of MakeMatch command,

therefore, the system will ask the user to choose one from a

pop-up menu. Match HU1/C3 is chosen at random. This match

transforms the problem into state 4, Figure 4-13. The resulting

HTU, again a heater, has a heat load of 748.5 units. It

eliminates hot utility HU1

.

(5) In state 4 (Figure 4-13), the most constrained streams are C2 and

C3 (two matching possibilities apiece). Since both the streams

match with the only remaining hot stream HI at hot as well as

cold end, both the matches, H1/C2 and H1/C3, qualify for the most

constrained match. Once again, based on random selection, H1/C3

match is chosen from the menu popped-up by the system. The match

is feasible at both ends; so, once again through the menu hot end

is chosen at random. Making H1/C3 match at hot end transforms

the problem into state 5, as shown in Figure 4-14. This match, a

heat exchanger, has a heat load of 127.4 units and it eliminates

cold stream C3.
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111(11//) 1111 I

m/ ( /.i/) |M •• _^—£)

M.I ( HI '. .1) 111/11

c i ( b.o/) ii i.i

C2 ( 1 1.1.1) 82.2

C3 ( IB./ 1) 1 13.2

<*>

o-

o
< e*'.r.

// 1 . 1 ( HI 01 .'») M i

IM 'l ( 0.0) M2

10/. t! ( 0.0) Ml

111.6 ( 0.0) CI

_^_ 226.7 (1G77.6) C2

*_ 160.0 ( 876.8) i:.i

HI H2 H3 HU1 Qc-

CI S36.7 6S7.7 0.0

C2 H C H * 1677.6

C3 H C 995.1 II * S75.8

Qh 1S04.9 0.0 0.0 74S.5

Fig. 4-12. 6SP2 problem: state 3
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H1 (14.77) 148.9 _^f-

H2 ( 7.17) 198.9 ^ SJ\

H3 (10.53) 187.8 ^

C1 ( 8.07) 141.5

C2 (11.61) 82.2

C3 (18.71) 113.2

<a>

( 836. 7,

-o-
( 6€)S.1)

271.1 (1804.9) HI

198.9 ( 0.0) 112

187.8 ( 0.0) H3

141.5 ( 0.0) C1

226.7 (1677.6) C2

<*>
< r46.s,

-^_ 120.0 ( 127.2) C3

HI H2 H3 HU1 Qc

CI 836.7 687.7 0.0

C2 H C 1677.6

C3 H C 995.1 74S.5 127.2

Qh 1804.9 0.0 0.0 0.0

Fig. 4-13. 6SP2 problem: state 4
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111(14//) 1 '. / '. _^

H2 ( / W) i'»ii •» ^ 0_
ii.i ( 10.63) hi/ "

C 1 ( 8.0/) 14 |.f

C? ( 1 1.1 1) 8?.?

Ci (18.71) 170.0

o

^>

o-

o-o

7/1.1 ( lb// 1.) I1

1

IM I ( o.o) H2

111/11 ( 0.0) IIJ

<*
( 740.5 i

1 1 l '.
( 0.0) CI

_^_ 77G./ ( 11,//. (,) C2

.^ 1. u ii ( 0.0) C3

HI H2 H3 HU1 Qc

CI S36.7 6S7.7 0.0

C2 H C 1677.6

C3 127.2 995.1 748.5 0.0

Qh 1677.6 0.0 0.0 0.0

Fig. 4-14. 6SP2 problem: state 5
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(6) As revealed by Figure 4-14, state 5 has only one possible match

(the last one), H1/C2. It is feasible at both, hot and cold

ends. However, for this match, both ends are equivalent, since

both the streams are getting eliminated. Making this last match

transforms the problem into state 6, which, as shown by Figure

4-15, is a goal state. The resulting HTU, a heat exchanger with

a heat load of 1677.5 units, eliminates the last two streams, hot

strain HI and col stream C2.

The search tree explicitly generated in the process of arriving at the

present solution is shown in Figure 4-16. Each state is represented by

a node (circle) with appropriate label. Each arc (connecting a pair of

circles) represents the application of MATCH operator, with the selected

match ID as its label. Nodes labeled 1 through 6 are the states

described in the preceeding paragraphs, whereas those labeled a through

g are the states reached by choosing the alternate most-constrained-

matches in steps (1), (4) and (5) above.

On continuing the search by backtracking with the help of alternate

choices available in steps (1), (4) and (5) above, the search graph

shown in Figure 4-17 is generated. Each node in this search graph (a

circle in the diagram) represents a problem state and each arc (a line

connecting two nodes), an application of MATCH (or UNMATCH while

backtracking) operator. The start state is indicated by an "S" in the

corresponding node. Each arc is labelled with the match selected for

the operator. In case of a match feasible at both ends, the

corresponding labels are qualified with a [c] or an [h] corresponding to

the cold and hot end match, respectively. A solution state as well as a
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in ( 14.77) IS7.f .^

11/ ( /i/) IN.I ^ 0_

0-<^>

1 1.1 ( 10.63) HI/ II

CI ( U.0/) 14 1.6

C2 ( 1 1.61) b2.2

C3 (10/1) 120.0

<^>

o i oa.-.r,

<K) O

16 / '.
(

n ii) ) ii i

1'JU.«J ( 0.0) 11/

111/ 11 ( 0) 113

141.6 ( 0.0) CI

82.2 ( 0.0) ) CI

120.0 ( 0.0) l)J

( (rtrs.i ) \2T i>

HI H2 H3 HIM Qr

CI S36.7 6S7.7 0.0

C2 1677.6 0.0

C3 127.2 995.1 7-1S.5 0.0

Qh 0.0 0.0 0.0 0.0

Fig. 4-15. 6SP2 problem: state 6
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B2/C1

H1/C2

Fig. 4-16. 6SP2 problem: search tree for the first solution,
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H2/C1^" / **x^B2/C3

'b3/C3 B3/C1

HU1/C3/ \BU1/C2

Fig. 4-17 . Search graph for 6SP2 problem.
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dead-end state in the graph is indicated by a smaller concentric circle

in the corresponding node. To differentiate the two, the inner circle

is shaded for a dead-end state, whereas for a solution state, it is not.

For the ease and convenience of drawing and understanding the graph, it

is broken up into several substructures, labelled A, B, C, etc., in

diamond-shaped boxes. A substructure appears one or more times in the

top level graph and/or other substructures.

As can be seen from the search graph in Figure 4-17, the system has

generated eight distinct networks without encountering a single

dead-end.

4.3.2 Evaluation of Control Strategy

As seen in the previous section, the system has provided

satisfactory results for the 6SP2 problem. The system has been tested

with three additional problems in a manner similar to that for the 6SP2

problem. In each case, only the search graph explicitly generated by

the system is reported and discussed here. The individual network

configurations are not included here.

The data for 7SP2 test problem [Masso and Rudd, 1969] is shown in

Figure 4-18. The problem consists of three hot streams, HI, H2 , H3, and

four cold streams, CI, C2 , C3, C4 . The minimum utility requirement for

the problem is one hot utility stream, HU1 , with a heat duty of 217.6

units. The minimum driving force is 20 degrees. The search graph

explicitly generated for this problem is shown in Figure 4-19. As can

be seen from this graph, once again, the control strategy succeeds in
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Stream II) m<: Source Temp i ii get Teap

111 2.370

112 1 .577

H3 1 .32

CI 1 .60

C2 1 .60

C3 4. 128

C4 2.624

590

471

533

200

100

300

150

400

200

150

400

430

400

280

AT .
20"

Bin

Minimum Utility Requirement: hot utility (HU1): 217.6 units

Fig. 4 18. Data for 7SP2 problem
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Fig. 4-19. Search graph for 7SP2 problem.
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voiding Mil dead ends while immu'i.ii inn eight distinct network

i mil i gui •• I Ion

fit-in. j ;•() siniws trie data for the third tost problea, the I0SP1

problem | Pho and LapldlUS, 1973]. fhe problea iimsist', (i( fivr hot

proceai streams, in through H5, and five cold process streams, CI

through C5 . The minimum utility requirement consists of one cold

utility, CU1, with a heal duty of 1877 units. The minimum driving force

is 11.1 degrees. Figure 4-21 displays the search graph for this problem.

The system generated twenty distinct network configurations, but in I he

process, encounters six dead ends. All the dead-ends are confined to one

substructure of the graph, labeled B. The match responsible? for all the

dead-ends, viz., H5/C4 match at the cold end, could not be avoided by

the present control strategy.

The fourth and the last test problem is the 7SP1 problem [Masso and

Rudd , 1969], the data for which is shown in Figure 4-22. The problem

consists of three hot process streams, HI through H3 , and four cold

streams. CI through C4 . The minimum utility requirement is one cold

utility, CU1 , with a heat duty of 1203.2 units. The search graph for

this problem is displayed in Figure 4-23. In sharp contrast to its

performance for the previous test problems, the system fails to generate

a single network configuration and encounters eight dead-ends. Note

that the system can obtain split candidate networks (in which one or

more streams are split), if operators SPLIT and MERGE are available.

The present results indicate that the system has failed to obtain an

unsplit network configuration, which is usually preferred over a split

configuration, even if both feature the minimum number of HTUs and the
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Stream ID mc Source Temp Target Temp

HI 8.79

H2 10.55

H3 14.77

H4 12.55

H5 17.72

CI 7.62

C2 6.08

C3 8.44

C4 17.28

C5 13.90

160.0 93.3

248.9 137.8

226.7 65.6

271.1 148.9

198.9 65.6

60.0 160.0

115.6 221.7

37.8 221.1

82.2 176.7

93.3 204.4

AT .
= 11.1'mm

Minimum Utility Requirement: cold utility (CU1): 1877 units

Fig. 4-20. Data for 10SP1 problem
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HS/C4

BS/C1

U4/C1

H2/C4
B2/CS

H3/C5

H3/C1

H4/C1

Fig. 4-21. Search graph for 10SP1 problem (contd.)
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H4/C4 [c]

Fig. 4-21. Search graph for 10SP1 problem (contd.

)
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Streal ID mc Source Temp Target Temp

HI 14.77 226.7 65.6

H2 12.56 271 1 148.9

H3 17.72 198.9 65.6

CI 8.44 37.8 221.1

C2 17.28 82.2 176.7

C3 13.90 93.3 104.4

C4 10.47 176.7 210.0

AT = 11.1mm

Minimum Utility Requirement: cold utility (CU1): 1203.2 units

Fig. 4 22. Data for 7SP1 problem
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Fig. 4-23. Search graph for 7SP1 problem.
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minimum utility consumption The inability of t h .-m to obtain an

unspiit network is due to the fact that the present control strategy

makes decisions based on the "current" feasibilities ol I lie matches. It

does not take into account the "future" changes in the feasibilities "I

other matches, as the consequence of a match being made "at present".

Making a match between a pair of streams changes the feasibilities of

some or all of the matches that involve the remaining or uue 1 i

m

i n

a

t ed

stream. The number of such Batches thai change their feasibilities on

making a match determines how constrained a problem is. For a highly

Constrained problem, the control strategy does not perform well (e.g.,

7SIM problem); for a less constrained problem, it performs excellently

(e.g., BSP2, 7SP2 and 10SP1 problems). The possible directions for

I ut ure enhancement of the control strategy to alleviate this situation

are suggested in chapter 5.
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

In the present work, an AI based approach has been introduced for

automating the synthesis (preliminary design) of energy integration

networks. The approach relies on the explicit usage of domain knowledge

to reduce the complexity associated with the search for desired

solution(s). All prevailing approaches to this design task attempt to

find a network configuration with the minimum annual cost ($/year).

However, since this network usually possesses undesirable operational

characteristics, alternate configurations having near-minimum cost, are

required for the detailed design phase. No existing computer based

synthesis method is suitable for this purpose.

Good designers usually employ qualitative relationships between the

cost of a network and its structural characteristics, such as the number

of units (HTUs) and the amount of utility consumption, for generating

the alternate network configurations required for the detailed design

phase. The AI based approach adopted in the present work utilizes these

relationships and focuses on the structural characteristics of the

network being generated, rather than on the annual cost. In other

words, the problem of finding a set of networks, each with a

near-minimum cost, has been transformed into that of finding a set of

structures possessing specific structural characteristics, viz., the

minimum number of units and the minimum utility consumption.

The problem of finding candidate networks with the desired

structural characteristics has been formulated as a state-space search

problem in the present work. The state-space, its representation, and
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domain knowledge ( In the fora "t .1 set «ii feasihi 1 i t y rules based on 1 h«

-

eliaination strategy and the assoi i.ited -,s.nv mid sufficient

condlt inns, to reduce tin- extent «>i search required to obtain the

ili-s 1 t I'd solutions. A control strategy has been proposed to exploit t he

domain knowledge for minimizing the backtracking during the search.

TO demonstrate the leasibility and effectiveness of the proposed AI

baaed approach as well as to evaluate the proposed control strategy, the

earch system formulated in the present work has been implemented on a

Xerox AI workstation using the knowledge programming environment LOOPS.

Of the four different programming paradigms offered by the LOOPS

environment, the present prototype, termed HENSYN, has been built

entirely within the object oriented paradigm. The structure of the?

prototype has been described with the help of the implementat ional

details of the user interface? and the three components of the search

system (the state space, operators and control strategy). Two

operators, MATCH and UNMATCH , out of the four required, have been

implemented in the present prototype. It is possible to solve a number

of problems without the remaining two operators, SPLIT and MERGE. The

usage of the HENSYN system has been demonstrated in detail with the help

of a test problem (the so-called 6SP2 test problem). Moreover. the

prototype system has been tested by solving three additional synthesis

problems taken from the literature (the so-called 7SP1 . 7SP2 and 10SP1

test problems). A performance analysis has been presented with the

results of the four test problems. The HENSYN system has found eight
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distinct network configurations each for the 6SP2 and 7SP2 problems,

twenty configurations for the 10SP1 problem and none for the 7SP1

problem. In the first two problems, all dead-ends were successfully

avoided, whereas for the last two problems, six and eight dead-ends,

respectively, were encountered. The system requires the remaining two

operators SPLIT and MERGE to obtain one or more solutions the 7SP1

problem, though unsplit solutions exist. This inability of the present

prototype to obtain the unsplit network configurations has been analyzed

and its cause has been identified. The possible remedy is suggested in

a later paragraph.

The capabilities of the HENSYN system can be summarized as follows.

(a) It is capable of generating multiple network configurations

without searching the state space multiple times. Each of these

networks has a near-minimum cost, or equivalently , they feature

the minimum number of HTUs and the minimum utility consumption.

This capability is due solely to the knowledge it possesses about

the feasibilities of all matches.

(b) It has an efficient control strategy that utilizes the domain

knowledge to minimize the backtracking during the search, by

successfully avoiding most of the dead-ends.

(c) It provides an effective visualization of problem states as well

as the partial and complete networks.

(d) It has a menu-driven, user-friendly interface that enables a user

to synthesize HENs easily and efficiently.

(e) The system has excellent modularity. It is easy to modify any

parts of the system without excessive "follow-up" changes. This
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powei is derived 1 1 om the object 01 Lented paradlga ol LOOPS, upon

wi i Ien it h,is been bu lit.

(f) it separates tin- liom.iin knowledge end the control eecheniee th.it

uses this knowledge. Thus, add 11 inn or mod i 1 i< .it ion in .iny one

will not .1 1 1 .-I i t he ot her

Baaed on tin' results of the present work, we can conclude th.it t he

ai baaed approach is not only Feaalble and useful, but also superior to

the conventional approaches for automating the conceptual deelgn

(synthesis) tasks. It reduces the complexity of a desip.n task by

appropriately using the available domain knowledge. The approach.

coupled with the knowledge programming tools and techniques, enables us

to develop incrementally an "intelligent" computer aided design system

by updating its knowledge content and/or enhancing the search techniques

(control strategies). Finally, a useful side benefit of developing such

a system is that the necessary design knowledge, not readily available

through the textbooks or classroom instruction. gets formalized.

Consequently, the approach employed in the present work is recommended

for developing the automated problem solving system in a variety of

engineering design domains, such as the electrical power distribution

systems, digital circuits, chemical process flowsheets, waste water and

sewage treatment, and piping layouts for water distribution systems.

Additionally, the approach can also be recommended for solving problems

involving the resource allocation and scheduling with constraints in

other domains, such as distributed computer systems, resource management

for large scale computer systems, financial planning and project

management

.
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The present work can be extended in two ways. The first is the

improvement of the quality of the networks generated by the system. It

involves extraction and formalization of additional domain knowledge,

relating other structural characteristics (e.g., the average driving

force in each HTU and the distribution of heat loads of the HTUs) to the

annual cost as well to the other operational characteristics, such as

controllability, resiliency, and flexibility. This task requires

extensive participation of domain experts. The present prototype can

aid in this task by acting as an experimentation device for the

participating domain experts and knowledge engineers. The second form

of extension is the enhancement of the performance (efficiency) of the

system in obtaining the candidate networks. It deals with identifying

and remedying the limitations of the present prototype to improve its

efficiency. Towards this end, the following two enhancements are

suggested.

(a) The performance of the system is dependent on the nature of the

problem. For highly constrained problems, such as 7SP1 , it does

not yield good results, in that, unsplit network configurations

can not be found. This limitation can be overcome by imparting a

"look ahead" capability to the control strategy. This would

involve a thorough analysis of the effects of the characteristic

values of a pair of streams on the changes in the feasibilities

of their match.

(b) The system currently supports only two operators, MATCH and

UNMATCH, out of the four required for HEN synthesis. The

remaining two, SPLIT and MERGE, are required for solving some
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probiens ( ii lit ,i i i problems require streaa splitting) Th<

operators can be implemented as sequences ol methods in the •
. . i mi

rash ion .is the iwo operator! Implemented in the present •.y. , '*m.

Nevertheless, m should be noted that the presenl system can be

utilized for synthesizing hkns requiring streaa splitting,

provided that the user specifies each suhstream a-. a Separate

stream. Such an approach is not elegant , but is workable.

With these enhancements , the HF.NSYN system can be employed as in

automated synthesis system for the design of energy Integration

networks. Even without these enhancements, i.e., in the present form,

the prototype can be used by novices (students and inexperienced

designers), since it performs better than them; however, an experienced

designer may be able to outperform the present prototype'. In such

cases, the system is still useful as a design tool; the user can

override the system's decisions whenever required.
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ABSTRACT

An AI based approach is introduced in the present work for

automating the preliminary or conceptual phase of design. The approach

is used for a typical engineering design problem, viz., that of

synthesizing energy integration networks for chemical and power plants.

This synthesis problem is concerned with generating a set of networks,

possessing acceptable lower costs (in $/year), for subsequent analysis

and evaluation in the detailed design phase. By using the available

qualitative relationships between the cost of a network and its

structural characteristics, the problem of generating a set of

near-minimum-cost networks is transformed into that of finding network

configurations featuring the desired structural characteristics. The

need and rationale for such a transformation are provided.

The problem of generating a set of energy integration networks,

each featuring the desired structural characteristics, is formulated as

a state-space search problem. The most distinguishing aspect of this

formulation is that it focuses the search for a desired solution by

utilizing the available domain knowledge about how to attain the desired

structural characteristics for an energy integration network. A search

system has been defined by identifying a scheme for representing the

problem states and four operators for state transformations. A control

strategy, which exploits the domain knowledge to minimize the extent of

backtracking, is proposed. The search system generates multiple network

configurations for a given problem without searching the state space

multiple times.



To demonstrate the feasibility and »*f fect lveness of the Al biisi.l

approach, the search system defined in the present work has IMM

implemented in the object oriented envlrormcnt LOOPS on ,1 Xerox AI

workstation. The structure of the prototype, viz., the Implement at iona

1

details of the three components of the search space and the user

interface, is described. The usage of the systea is exemplified by

solving a test problem taken from the literature. The system has been

tested by solving three additional problems. The performance analysis

and evaluation of the prototype are discussed with the help of the

results of the four test problems. Finally, the capabilities and

limitations of the prototype are summarized and future enhancements of

the prototype are proposed.




