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I. Introduction

A. Definitions

Barclay (1950) defines demography as the "numerical portrayal of a

human population." According to Thomlinson (i960), demography consists

principally of three concerns: the measurement (especially numerical),

the causes, and the consequences of the actions of an aggregate of

persons. For the sociologist, measurement and measurement analysis are

only the initial steps toward understanding a human process ; but for the

statistician, analysis is an end in itself. This paper will focus on the

methods used in measuring and predicting migration , one of the more im-

portant demographic variables. The paper is intended primarily as a

survey of the various methods of migration analysis which are currently

available to the population researcher.

Several concepts prevalent in the demographic vocabulary should be

clarified. A migrant may be defined as a person who has changed the

location of his residence, severing all previous community ties. Since

it is difficult to collect data on "community ties", a more practical

definition of a migrant, given by Bogue (1957) is "a person who crosses

a boundary [usually political] in changing residence." This paper will

be concerned primarily with internal migration, or migration which does

not involve international boundaries.

In general, internal migration may be studied from two different

aspects - that of migration streams and that of migration differentials .

Migration stream analysis is concerned with the volume and direction of



place-to-place movements, while migration differential analysis deals with

the differences in the characteristics of migrants and nonmigrants and the

differences among migrant subgroups. According to Rogers (1966), the an-

alysis of migration streams is "concerned primarily with the effect that

variations in environmental conditions at origins and destinations have

on volumes of flow, the study of differentials is concerned with the traits

of migrants in various age-sex-income-race classifications."

Other factors given by Bogue (1957) which must be determined in

measuring migration are the boundaries of residence areas, the time inter-

vals to be considered, and the classification of origins and destinations

of the migrants. The comparability of any migration data depends on the

constancy of the boundaries involved, the equality of the time intervals

,

and the use of similar classifications of origins and destinations. Also

the study of migration with respect to a given area or community must

differentiate among in-migration, out-migration, and net migration.

3. Standard migration rates

In reference to volume of migration, demographers usually prefer the

use of relative numbers instead of enumerated numbers, since relative

numbers give more valid comparisons and projections. In general, the

numerator of a demographic rate must be the total number of events clas-

sified as having occurred, and the denominator must be the total population

exposed to occurrence or to the risk of the event. The following ratios

cited by Bogue (1957) have been used to compute crude migration rates:

migrants received
crude in-migration rate =

population of receiving area
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migrants lost
crude out-migration rate =

population of sending area

in-mi grants minus out-migrants
crude net migration rate =

population 01 ;-;iven area

If attention is to be focused on the trcam of movement between two

areas instead of on a particular area, t ... the origin and destination

areas are used in computing the migration rate. For example, the following

rates, given by Bogue (1957). have been used:

M-k estimates the number of migrants per unit of population
O.D at origin per unit of population at destination, multi-

plied by a constant,

M estimates the number of migrants divided by the geometric
r—— mean of the origin and destination populations, and

M estimates the number of migrants divided by the arithmetic
(0+D) mean of the origin and destination populations,

where

M = number of migrants (in one direction only)

= population at origin

D = population at destination

k = constant.

These rates are not valid if either the sending or receiving population

is zero, or approaches zero.

C. Inadequecies of data and analysis

Migration studies have always been hampered by the lack of accurate

data and by the absence of qualified statistical information and analysis,



It is difficult not only to collect and record migration data, but also

to define exactly what constitutes a migrant. (Political boundaries,

boundary changes, a mover's purpose, time periods involved, and the oc-

currence of multiple moves must all be considered in defining a "migrant".)

Once data are obtained, simple migration is usually given in terms of the

number of migrants from A to B in a given period of time, qualified to

some unknown extent by the time periods involved, the number of boundary

lines, and the distances moved. Thus while calculation of the crude

standard migration rates given above is quite straightforward, interpre-

tation is at best subjective, and often incoherent. It is clear that

more sophisticated statistical techniques are needed.

The difficulties and deficiencies existent in migration data and

analysis are numerous and not all of them are mentioned above. The pre-

ceding summary is intended only as a brief introduction to the concepts

and terms used in the field of migration study.



II. Migration Models

E. G. Ravenstein

Ravenstein (1885) made one of the first attempts to determine some

of the quantitative rules which govern migration. He listed the following

"laws of migration", where absorbing and dispersing centers are receiving

and sending areas respectively:

1. The great body of migrants will move only a short distance,

causing a kind of universal displacement which produces

"currents of migration" in the direction of large industrial

and commercial centers

.

2. A growing town will "recruit" the inhabitants of the surrounding

neighborhoods, whose places are then filled by migrants from

more remote districts. The process continues step-by-step to

the most remote areas of the country.

3. The process of dispersion is the inverse of that of absorption

and exhibits similar features.

k. A main current of migration will produce a compensating counter

current

.

5. Long-distance migrants will usually go to the large commercial

and industrial areas.

6. In general, residents of towns are less apt to migrate than

rural residents.

7. Females are more likely to migrate than males.

Some of these laws are currently valid, and some are not, but more impor-

tantly, they represent a functional scheme in which several independent



variables are related to the dependent variable, migration.

B. Models for migration stream analysis

1. Samuel Stouffer - "intervening opportunities" hypothesis

Stouffer (19^0) was one of several later migration analysts who not

only formulated a functional scheme for migration, but also defined a

relationship between the dependent and independent variables. He proposed

that "the number of persons going a given distance is directly proportional

to the number of opportunities at that distance and inversely proportional

to the number of intervening opportunities."

Figure 1. Circular model of intervening opportunities.

Symbolically, if Ay is the number of persons moving from the origin

to the circular band with width As, if x is the cumulated number of

opportunities between the origin and distance s , and if Ax is the number

of opportunities within the circular band of width As, then

(!) £y_ _ a Ax
^ X>

As x As *

Ax
Hote that here we are considering — , or the ratio of opportunities in
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the circular band (receiving area) to the intervening opportunities.

Rather than a direct and invariant relation "between mobility and distance,

Equation (l) formulates a direct relation between mobility and opportun-

ities. Mobility and distance may be related if desired in any auxiliary

manner which expresses intervening opportunities as a function of distance.

If Equation (l) is written in terms of differentials, and if we assume

that x is a continuous function, say f(s), then

dy _ a_ d f(s)

ds f(s) ' d(s)

Integrating, we have

(2) y = a • log f(s) + c .

If y is the cumulated number of movers between the origin and a circle of

radius s, and f(s) is the cumulated number of opportunities within the

circle, then Equation (2) states that the total number of persons who

migrate to any point within the circle is directly proportional to the

logarithm of the number of opportunities within the circle.

2. G. K. Zipf - the V^JV hypothesis

Zipf (19^6) hypothesized that "the inter-community movement of goods

(by value) and of persons between any two communities, P and P , that are

separated by an easiest transportation distance, D, will be directly

proportionate to the product, P-jP
? > an(^ inversely proportionate to the

distance D." Zipf based his theory on the following principles. Assuming

an equal average income and an equal proportion of gainfully employed, a

given community, P, will contribute to the total production, C, of the



1system an amount proportional in value to P/C. Community P will also

receive from the system an amount that is proportional to P/C (during a

certain time interval). Then if community P has a share of the total

flow of gooes equal to P../C, and community P_ during the same time in-
— 2.

terval has a share equal to P/C, then the value interchange "between P

and V would be proportional to

h h p
i
,?

2

C C"
c
2 '

Then using Lemma 1, Zipf obtained the final result.

Lemma 1. The number and sizes and locations of communities in a

given social economy represent equilibria in the min-

imizing of work in transporting raw materials through

industrial processes to consumers.

Thus a value interchange, or interchange of goods, between P and P

should be inversely proportional to D, the easiest intervening trans-

portation distance. Finally, the interchange, in value, for any two com-

ities P and P will be directly proportional to P P /D. In equationmun

-0^,

P P12
Y = —-— , where

Y = value of goods between any P and P

This theory applies only if all members of the population get an ap-
proximately equal share of the national income, i.e., the average real
income per person is about the same in any community regardless of its
size, and also if an approximately equal percentage of persons in each
community are gainfully employed.



Zipf substantiated his hypothesis with the use of highway, railway,

and airway travel data. As a result of his findings, he disagreed with

Stouffer's general theory relating mobility and distance.

3. T. R. Anderson - comparison of Zipf and Stouffer

According to Anderson (1955), the hypotheses of both Zipf and Stouffer

made use of the basic model,

X
m = a •

-

where m is the number of migrants in a given stream, a is a constant, and

X and Y are independent variables. For Stouffer,

"opportunities" or total in-mi grants
El = S. '

i . \ .

distance (.as a function of intervening opportunities)

In Zipf's model, assuming uniform income and unemployment,

population size of area
m = a • 7—'—-——-——'

'

distance (in terms of easiest intervening transportation
distance)

After testing the hypotheses of Zipf and Stouffer, Anderson concluded

that Zipf's formula, especially, had several sources of error. Ke noted

that the P-i^?^ hyp ^631*-3 °id not take into account a migrant's inclin-

ation to stay in a given state or to move to areas of high employment.

Anderson included the following results:

l) Distance as a function of intervening opportunities is no more

accurate than distance in terms of highway mileage.
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2) In Zipf's hypothesis, population size should be corrected for

unemployment, more closely corresponding to the concept of

"opportunities" in Stouffer's hypothesis.

3) The accuracy of Zipf's formula is reduced, as already noted, by

the influence of state boundaries.

k) Zipf's formula is more accurate if both population size and

distance are raised to powers other than one — size to a

constant power, and distance to a variable power.

Anderson suggested that the powers to which the basic variables X and Y

are raised be treated as variables from one application to another, rather

chan being held constant. This idea agrees with the finding that Zipf's

model is more accurate if the distance, Y, is raised to a variable power.

h. S. C. Dodd - the interactance hypothesis

Dodd (1950) adopted the basic P P /D hypothesis of Zipf , adding the

dimensions of time, per capita activity, and a constant of interacting.

Defining the index of interacting, I , as the observed number of interacts

between each of the ( ? ) pairs in a set of n groups, and the index of inter-

actance, I , as the expected interacting, Dodd then hypothesized that the

correlation index, r , between the observed interacting and the expected
eo

interactance would approach unity, where

k I, ?, L P_ T
(3) I

e
=

A * * B
,

Jj

or I represents the (
*) calculated products of the seven observed factors:

e d

T = total time of interacting,

P.,P
B

= populations of any two groups, A and 3,
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L = distam .cen the two groups A and i,

where the exponent 1 (small L) weights the

base factor,

I.,I
T ,

= the specific indices of level, or the Toer
A ii

* *

capita activity, characterizing each group

or subset of groups in a unit period, ana

k = a constant for each type of interacting in

a given culture and period.

According to Dodd, the interactance hypothesis can be roughly stated

as follows: "Groups of people interact more as they become faster,

nearer, larger, and leveled up in activity." The hypothesis thus states

the factors determining the quantity of group interaction regardless of

the form of the activity. The converse of the hypothesis states that

people will interact proportionately less as their groups (a) have

fewer actions per period, (b) are further apart, (c) have smaller pop-

ulations, and (d) have a greater diversity in average activity.

The interactance hypothesis includes the P P /D hypothesis as a

special case. If the factors of time (T) , the specific indices of level

(I , I
T} ), and the constant of interacting (k) are either controlled or

neglected (and hence are equal to unity), then Equation (3) reduces to

P P
t -

A B

e _1
L

A further explanation of the factors I and I may be of interest.
A a

These indices of specific level are weighing factors which equate the

heterogeneity of the groups A and B. The index of level for each group

may be the -ge acting of a given kind in a unit period. For example,
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the average number of per capita phone calls handled by the exchange of

a given city might represent the city's "telephonic" level for some period.

In liquation (3), the average level is I, ( = (Tl). / P) , where P is the

number of persons in a group who are interacting in some way. V/hen

multiplied by P, the average level becomes the total number of acts,

(][l)»» for some period. Then,

(IDA
= I

A
P
A

= the "activity" of group A,

for a unit period. It follows that the interact ance of two groups in a

unit period and a unit distance apart (i.e., T = 1, L = l) would be in

proportion to the product of their activities, or

U) 1,-ki.p, LPs = k (Ji) A (IDA A 3 3

Thus the index of level of activity, I, for each group may be found as

the per capita activity of that group.

The subfactors which determine an index of specific level of activity

may be such influences as age, income, occupation, etc. For Dodd, I and

I_ represented those differential grout) characteristics which increased
b

the correlation index, r . In the future, other variables might be
eo

included as indices of specific level depending on whether or not their

inclusion increases the index r
eo

Support of Dodd's hypothesis has come from the inspection of scatter-

grams of interacting vs interactance, and from related studies of types

of interacting. It has not yet been completely verified.

A direct application of the interactance hypothesis may be made to

migration between communities. In this case, I and I.., might represent
A a



average moves per person between communities A and B in a given time

period. The other factors in liquation (3) would be defined as they were

previously.

5. Ralph Thomlinson - mathematical model

Thomlinson (i960) proposed a migration model which would enable

demographers to compare migration rates by controlling for the following

seven spatial factors: (l) size of area of origin, (2) size of area of

destination, (3) shape of area of origin, (k) shape of area of destin-

ation, (5) distribution of population within area of origin, (6) distri-

bution of population within area of destination, and (7) distance moved.

The model was designed to estimate the number of migrants attributable

to the seven spatial factors. If this model is satisfactory, demographers

will be able to isolate those social factors in which they are interested

by controlling for the spacial factors.

Thomlinson constructed his model in the following manner. Given a

circle of radius r. with center in area A, and with a segment of the peri-

meter of the circle falling in another area (B) , then the probability that

a person starting at the center of the circle and moving a distance r.
1

will be an inter-area migrant is given by

length of arc in area 3
P =

circumference of circle

Averaging this probability for all possible points in A would give the

probability that a man starting from any point in A and moving r. miles

would go to area B, assuming A had a uniform density of population. Since

this latter assumption is rarely met, a weighted average, obtained by
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multiplying the probability at each point times the population at that

point, must be used.

In setting up his model, Thomlinson found that two short cuts were

necessary to make the study practicable. First, he restricted the number

of center points to as small a number as would give an acceptable amount

of detail for area A. Second, he used a set of distance bands instead

of computing every possible (theoretical) distance.

The relative "desirability" of a given area might be indicated by

the ratio of actual to expected migration, using in, out, or net migration.

For a symbolic representation of this design, consider Fig. 2, where A

is a source area of irregular shape and density D, B is a terminal area

of irregular shape, the distance of migration is r. from the point of

origin (h,k), and s_ is the arc of intersection of the circle with area B.

Fig. 2. Schematic .-epresen*'. ation of
the moc._i, Tho::_ii-.sG.. ,._>c0).
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Then,

(5) P [migrant settles in B | move of r. miles from (h,k)]

s D
- B h,k

2IIr.
1

The probability that a migrant traveling r. miles from a point in A settle:

in 3 is given by

/ / sB Dw dx dy

(6) P(A, B; r. ) =
c a

7.
XJ

.

2nr. / / D ds dyica xy

Then if M(A, B; r. ) is the total number of migrants from A to B, and

M(A; r. ) is the total number of migrants going r. miles from A,

M(A, B: r.) = P(A, B; r.) • M(A; r. ) .

Tne total pattern of migration between all sub-areas of A and all

sub-areas of B may be expressed by the following set of equations (for

simplification, assume that there are three sub-areas (a , a , a..) of A,

two sub-areas (b, , 0) of B, and four distances (r , r , r_, r. ) )

:

i. 2 1 d j 4

(T) M(a^, aj = P(a ,a ;r )
• Mta^jr ) + Pfa^.a^jx^) • Mfa^fg)

+ P(a^,a*:rJ • M(«^r ) + Pta^a^jr^) • MU^r^)

M(alS a
2

) = ?(a
1
,a

2
ir
1

)
• Mfa^;*^) + PU^a^i^) Uia^iT^

+ P(a
1
,a

2
;r

3
)

• Mfia^jrJ + PU^a^r^) • MU^r^)

M(b
2

, b
2

) = P(b
2
,b

£
irJ • M^jJ^j + P(b

2
,b

2
;r
2

) • MCbgi^)

+ P(b
2
,b

2
ir

3
) • I^b

2
;r

3
) + ?(b

2
,b.;r,,) • M(l>

2
;r^) .
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There are 25 such equations in all. Migration between areas i;2 representee

as follows

:

M(A,A) = IIlM(a ,a ;r )

ijk J k -

M(A,B)
ijk J k

-

M(B,A) -nw*
J -v*i )

M(B,B) = HlM(b b
k
;r.)

whe•re i = 1,2,3, U; j = 1,2,3; k = 1,2.

Each of these equations may also be determined as the sum of several of

the sub-•equations of (T)

M(B,B) = M(b
x ,

For example,

,b ) + M(b
1
,b

2
) + M(b

2
,b

i/
+ M(b

2
,b

2
) .

In order to compute> the expected -frequencies of migration (for corn-

parison with the observed frequencies), the following steps are necessary:

1) Determine the centers of the sub-areas, and find 2a below.

2) Multiply together

a) proportion of circumference of circle falling in sub-area of

B

b) reciprocal of distance to base sub-area (area A)

c) population of sub-area of origin (area A)

d) population of sub-area of destination (area B)

.

3) Add together all products (one for each distance for every sub-

area of A).

k) Add the sums o:f products for each base sub-area.
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5) Divide this grand sum into the total known number of migrants

between areas A unci B, to get k.

6) Multiply k times each product in 2 above to get the expected

number of persons who move between each base sub-area and each

other sub-area.

The comparison of the computed and observed frequencies is then made through

a series of indices. For each area, the following indices are computed:

observed out migrants
I = index of out migration = —

:

r—: —- . 100
computed out migrants

observed in migrants
I, = index of in migration = . : . 100
1 computed m migrants

obs . net migr - comp. net migr
L_ = index of net migration = —

-: :
-

• 100
N computed gross migrants

observed migrants within area
I T = index of local migration = —

:

;
r-—

:

• 100
L computed migrants within area

observed gross migrants
I = index of gross migration = —

:

;

—- . 100
G computed gross migrants

If A represents one area and beta all other areas, i.e., 3 = 3,C,D,...,

then

Observed migrants from A to 3

(8) I = . 100

°A niM(ar Bki r.)

i jit

Observed migrants from B to A
I . 100

A HlM(ek ,a;r)
i,ik

k J x

Observed migrants from A to A
I. = . 100
^A H M(a ,a ;r )

ij
J "

*
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(Observed migr from A to 3) - (0"bs migr from ft to A) -

T =

A HI M(a ..,& *J +

ijk J k x

M(vvv IS
M(ek'Vr

i
]

i^kiJ*
. 100

+ H), M(2v> a j;rJ
ijk

K J l

There airoears to be little need for the calculation of I_ . Indices may
G
A

also be computed for every possible move , giving

observed migrants

(9) I = index of simple migr = -—:—: — . 100
s * computed migrants

obs net migr - comp net migr
I = index of net migr = —

:

;

;
. 100

n computed gross migration

r(obs migr in (obs migr-i r(comp migr in (comp migr-i

dir of move) opp move) dir of move) ' opp move)

computed gross migration
,100

I, = index of local migration (identical with IT ) .

1 u

Interpretation of the area and move indices is straightforward. An

index of about 100 indicates average desirability, indices above 200 show

great desirability, and indices under 50 indicate undesirable moves or

areas

.

Thomlinson noted that the composite index which he called F, the

Force of Attraction, might be a better measure of migration than a single

index. He used the following form:

F * I
T

- I + 2I
H

.

This index -..
! s intended only for use with areas ,
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6a. Richard Morrill - migration simulation

In his study of migration and urban settlement, Morrill (19&5) Pre-

sented a migration model which used simulation techniques. He stated that

there were three important factors which affected the destination of

migrants from a given area:

1) the distance of the (destination) area,

2) the differential attractiveness of the area, and

3) previous migration.

The relative attractiveness, called I, , is an index of factors tending

toward regular net gains or losses, (in this discussion, sources will he

designated by j_, destinations by k, both from 1 to n.) Let b. be the total

population of area k, b, be the urban population, and b be the weighted
* u

mean population of all areas. Then,

k k *• k L k
-r U . . C Ut S where = .

k
b

n

The probability of migration between two areas j and k is expressed by

Jk b

where & is the distance between j and k, and a is a constant weighing

factor.

Variations in "regional attraction" are often reflected in the number

of migrants, since populations with similar potential mobility will have

different volumes of movement, depending on the number of opportunities

in the surrounding areas. The actual migration volume may then be found

by multiplying the basic sum of probabilities (£x> . , or the sum of the
k JJt
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probabilities or migrating from one area j to the k possible destinations)

times the "ideal" number of migrants. If we let N represent the ideal
J

number of migrants from j as a function of population and economic con-

ditions, then the actual number of migrants from j is given by

(11) M. = N.Yt> .

A summary of all migrations may be represented by

which gives the total migrants from each area to every other area. The

value m._ is found by l) normalizing To., , i.e.,
jk *» £- jjs

2) converting

kIP
ik

= 1 = IP' J

k
jK

k °K

kjk*J[ lljkl '

3) assigning random numbers to M.,
J

M, ~ Yr. i

and U) selecting a migration path

r. ." iq... I
-> m..

until all K. are assigned.
J

The total number of migrants to a single area k is represented by

Then the net internal migration is given by

% = ^k-Kk (V
where gv is the net gain or loss,

xw
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6b. Programming of migration simulation

The migration model which Morrill (1965) designed, involves a great

deal of computation. The distances between every pair of areas must be

calculated, and the probabilities of migrating from a given area to all

other areas must be determined. Then the random numbers which were

selected to represent the migrants must be matched against the accumulated

probabilities, area by area, and finally the whole process must be repeated

for each time period desired. Fortunately, this sequence of steps is not

hard to program for a computer.

The program consists of the following basic steps:

1) Select the first area.

2) Compute the distance from this area to the second area by the

(x^x ) + (y-j-yg)

3) Enter this distance into the distance probability function (10)

and compute p10 «

h) Multiply this probability times the index of attraction I , and

store the product. .

5) Repeat steps 2-k for all other values of k from 3 to n.

6) Store these products and add them accumulatively in the order

computed.

7) Multiply the total sum times the ideal number of migrants (N.

)

to get the number of random digits needed.

8) Normalize the products to total 1 and express as a tally of

discrete numbers.
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(1)

j select area i=l

1
(2)

compute distance tol-

[area ,T=2

(3)
compute probability
of in

and J

of interaction, i

~?y

(5)

if distance is under
6, substitute 6

compute distance to area j+1 etc. 1

and repeat steps 2-5 for all re- L
maining are as j=2 , 3 , ^ , . .

.

liil
multiply (3) times at-
traction index to get raw
migration probability

(6) i (7)
store and accumulate multiply sum (6) times

ideal number of mi grants
for actual number

-•ration probabilities (k)
/

(9)

match random numbers
(T) of them against ac- -p

cumulated probabilities

:s) j
normalize and convert
into discrete tally

(10 A)

print out destinations i£- -[or]'

(10 B) (10 C)
-* store destinations as

a tally

iiii i
repeat steps 1-10 for
area i=2,3 ,k t . ..

(12)-
repeat for remaining
areas

-3 A)

or

print out total in and out
migration from areas

(13 B)

print out summed number
of migrants from each
area to all other areas

Fig. 3. 71ow chart for simulation of migration program, Morrill
(1965).



9) Match the random numbers against the accumulated products (8)

to find the migration destinations.

10) Either print out the destinations or store them as a tally.

11) Select the second area and repeat steps 1-10.

12) Repeat for all remaining areas, 3 to n.

13) Depending upon available storage, the net total migration for

an area, or the summed number of migrants from each area to

each other area, may be printed out.

The flow chart for this program is illustrated in Fig. 3.

Morrill concentrated his research on the technique of simulation as

a way of looking at human processes. Although his model was greatly

simplified, and undoubtably left out some relevant factors, it is useful.

Morrill pointed out that while the simulation technique was not to be used

for its own sake, it could provide an "operational framework for explan-

ations of spatial behavior."

7. A. T. Bharucha-Reid - stochastic models

It is possible to describe one-way migration models as finite birth

processes, with the "birth 1

' of an individual in the destination area being

due to the migration of an individual from the origin area. The following

models were presented by Bharucha-Reid (i960).

Consider two disjoint regions R and R
2

, and assume that (l) only one-

way migration from R to R can occur, and (2) at time t=0 there are n

individuals in R^^ and n
Q

in R . The models described here will determine

the probability that in -che time interval Q) 9t), x individuals will migrate

from R., to R .
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et X(t) denote the number of migrants from R. who are ir. R at time

t. Note that at anv time t > 0, there will be n_ + x individuals in R, ,

2 2

where x = 0,1, . . . ,n.. . Next, let p(x,t)At denote the probability that

in the time interval (t, t+At) one individual will migrate from R to R
? ,

given that x individuals have migrates ir: the interval [0,t). Then let

q_(y,t)At denote the probability that in the interval (t, t+At) exactly

y individuals will migrate from R.. to R , given the migration of x in-

dividuals in the time interval [0,t). Assuming that the migrants are

statistically independent, ve get the following equations:

(12) q r
(l,t)At = p(x,t)(n -x)At + o(At)

(13) q (0,t)At = 1 - q (l,t) + o(Lt)
x x

= 1 - p(x,t)(n
1
-x)At + o(At) .

Finally in order to get the probability that x individuals will

migrate from R to R in the interval [0,t), we use the migration prob-

ability function p(x,t), and derive differential equations for P'(t),

where

P (t) = P [X(t)=x] , x=0,l,...,n .

The following models 'will give examples of this process

.

(l) Let P(x,t) = f(x) be some function of time which is subject

only to the condition

(n.j-jh-tj) j- (n_-k)f(k) J ,k = 0,1 n .

In this case P. (t) satisfies the differential-difference equations:



CU)
d P (t)

x

dt
A
x-l

P
x-l

(t) "\c P
x
(t)

>
»"1.2....-.B

d P (t)

where A = (n -x)f(x). The solution of the above system isA J.

P (t) = g J
(-3-)

. e x=l,2, . . . ,n,x ,
'- a ,

' ' 1
is.=0 XK

P (t).. °

where a . = n v., for k < x ,xk
i=Q

'ik

iA

Y, v
= ^ - A,.

,

X-l
and S = II A. .

X
i=0

x

(2) In the second model, let

el + )

p(x,t) = ——- for x < n,r^-x 1

x=n

vhere f(t) is an almost arbitrary function of time. P (t) will satisfy

lation (ik) with

A
x
(t) = f(t) (.yx)"

1
x=0

3 l,...,n,-l .

solution for this A-value is
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P(t) =^e-A(tJ x=0,l,...,n-l

where A(t) = f f(x) dt; . If x = n. , the solution is
o x

V1

p (t) = 1 -
I p (t) .

1 x=G

For this particular model, P (t) is the Poisson distribution. If two-way

migration were to be considered, the migration models coulc. be formulated

as birth-and-death processes.

C. Models for migration differential analysis

1. James D. Tarver - migration prediction

Tarver (1961) proposed a migration model which would predict the move-

ment of people during a given time period, in order to test his hypothesis

that demographic, economic, and social conditions were interdependent in

explaining social mobility. According to his model, "migration among the

various subdivisions of states, or of the United States, is a corollary

of the distinctive demographic, economic, and social structure existing

therein." Tarver also presented a technique which partitioned the coef-

ficients of multiple correlation, based on three sets of structural

variates, into their independent and interactive components.

For his study, 'Tarver let the dependent variable (Y) be the state

not. migration rate, and the independent variables (X. ) be the initial

demographic, economic, and social variables. Thus Y is a function of the

X-variates, or
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I — f^X_ , Xp , . . . , A J .

The following mathematical model was used:

(15) '

\iaj = "
+ (ZA + (Z

2
}

i
+

(Va + ^1'Vhi
+

(Wha
+ (Z2' Z 3

} ia
+ 'VVVhia + e

hiaJ

where Z
1

contains the economic variables, Z the social variables, Z the

demographic variables, and e^N(0,o 2
). The various groupings of the

variables are given in Table 1. In this case regression analysis was

used to find a solution.

Z - Economic Variables

X
n

Percent of employed persons working in the construction

industry

Z„ - Social Variables

X Median years of school completed by persons 25 years and over

X_ Percent of population, 25 years and over, completing four or

more years of high school

Z_ - Demographic Variables

X> Percent of population under 20 years of age

Xc
Percent of population white

Y

Net migration rate, 19^0-1950

Table 1. Dependent and independent variables, by states,

Tarver (l96l).



Tarver postulate, not only was Y dependent on the X.'s, but aleo

that Y was some linear function of the X.'s, and that interaction was

present among the independent variables. Regressions were computed

using a step-wise procedure. ;le 2 shows the results of the analysis,

Regres-
R
2

sion • Function Component

Number

1 Y = f(Z
1

) .69^8
2

r
y.i

2 Y = f(Z
2

) .1+089
2

r
y.2

3 Y = f(Z ) .1961;
2

r ,y-3

It Y = f(Z. ,Z
2

) .8588 R - ^
y.j.2

5 Y = f(Z, ,Z_)
1 o

• T20U
y.13

6 Y = f(Z„ fZj
2 3

.5^31 p
2

y.23

7 y> f(z
1
,z
2
,z

3
) .9779

:

R
2

y.123

J
Table 2. Functional relations and R for final equation (white

population) , Tarver (1961).

The results show, for example, that the two social variables in Z
p ,

both of which are indices of educational attainment, explain about kl% of

the variation in Y. The most significant correlation coefficient is that

2
This technique enters the independent variable having the highest simple
correlation with the dependent variable in the regression analysis first;
thereafter, it selects, successively, the lext independent variable
having the hi ilanatory pc rer for si-duals. It excludes the
variables which are linear combinations s others, as well as those which
insignificantly augment the coefficients of multiple correlation.
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for Liquation 7, which contains all three types of index variables. Thus

the demographic, economic, and social variables, considered together,

explain over 97$ of the net migration rate variations among the white

population.

The analysi::, demonstrates that migration is a composite of inter-

related demographic, economic, and social factor:;. Economic factors are

clearly more significant than demographic and social factors in explaining

net ndgration.

3. L. S. Lee - census survival and state-of-birth data

Applied studies in demography are often limited to the type of data

available for analysis. It is for this reason that most studies of

migration in the United States are based upon the U.S. Decennial Census,

virtually the only complete source of U.S. population data. The following

two methods of analysis, given by Lee (1957), nave more practical value

then they have theoretical interest, and they are included only for

completeness

.

Census survival ratios may be computed in two forms , forward or

reverse. A forward census survival ratio is the ratio of the number of

persons in an age-sex group of a closed population at a given census to

the number of persons ten years younger at the preceding census . For

example

,

native white males aged 20-24, U.S., 19U0
*£. = . - ..—-— —, 11-. —. . -.. — .1. — .—— - 1—— ... . , - ,1.

native white males aged 10-14, U.S., 1930

This ratio, when multiplied by the enumerated native white males aged

10-14 in each state in 1930, gives an estimate of the number of persons



aged 10-lU who, under the asGumptions of this method would have lived to

be enumerated in 19^0. The difference between this expected population

and the en ;ed population for each state is defined as net mi ./ration .

In symbols,

p' - rp = M„* - for

where M„ = (forward) estimate of net migration for the state
for

p
1 = state's enumerated native white male population

aged 20-2U in 19^0,

p = state's enumerated native \;hite male population
aged 10-12+ in 19 30, and

r = forward census survival ratio.

The reverse census survival ratio is actually the inverse of the

forward ratio. Symbolically,

(u 1

) - - x) = M
- r * rev

where M is the (reverse) estimate of net migration for the state,
rev

Several assumptions are inherent in census survival estimates of

migration. First it is necessary that the census enumerations be con-

sis-cent from one census to the next. Although this assumption is rarely

if ever met, demographers usually ignore the discrepancy. (As the data

is manipulated and ratios computed, enumeration errors tend to cancel

each other, at least in part.) It is also assumed that the census

survival ratio is the same for each state as for the nation. Since this

assumption can be tested directly, it is possible to adjust for dis-

crepancies in the ratios

.



For a state-of-birth analysis of migration, the following data may

be obtained directly from census tabulations:

1) the number of persons born in each state and living there at

the time of the census (the "nonmigrants")

,

2) the number of persons living in each state and born in any

other state, and

3) the number of persons born in each state and living in any other

state

.

Using these values, the following derived measures, can be obtained:

1) the net gain and loss in the interchange between two states,

2) the in-migrants into a state,

3) the out-migrants from a state, and

k) the "birth-residence index", found by subtracting (3) from (2)

directly above.

State-of-birth indicators are obviously incomplete and vague, for

they fail to specify exact time periods and they omit the effects of

certain types of mortality as well as the occurrence of return migrations.

In spite of these defects, state-of-birth methods are invaluable for

practical szudies , since they make use of the most readily available and

the most complete data source, the U.S. Census. Lee, et al. (1957),

Tarver (1962), Zachariah (1962), and Siegel and Hamilton (1952) give more

complete investigations of census-related migration models.

k. Andrei Rogers - Markovian model

Parzen (1962) defines a stochastic process as a random phenomenon

that arises through a process which is developing in time in a manner

controlled by probabilistic laws. If we accept this c .ion, then a



Markov process is defined as follows. Let {X(t), t=0,l,...} be a dis-

crete parameter stochastic process J such that for any set of n time points

\ < J
°
2

< •" < \ in the index set of the process, the conditional dis-

tribution of X(t
n ), for given values of X^) X(t _ ) , depends only

on X(t ). Symbolically,

' PtX(t
a

) <x
n |

X(t
x

) =xr ...,X(
V:L ) =x

n_1
]

(16)

= P[X(t
n

) <x
n I

X(Vl ) - ^J .

Then {X(t) , t _> 0} is said to be a Markov process.

Markov chain theory has provided a useful tool for analyzing mobility

in all forms - social, industrial, and geographic. While the concepts

involved in Markovian analysis have had only a limited success in migra-

tion stream analysis, they have proved to be very useful in differential

analysis. Rogers (i960) investigated migration differentials in

California, and the following section is based on his work.

Suppose we have a geographical system of m regions with a population

consisting of n cohorts. Then for some cohort r, assume each member of

the cohort behaves independently of the other members and according to an

m x m transition matrix P^. Each element of P may be estimated by the

following formula

(17) r
Pi ^

m k

I
J-l
Er«

r=l,. . .,n; i,j=l,. . . ,m

Lscrete parameter processes are used
;
and the possibility

- »: - ic processes vS be



re k. .
= number of persons moving; from region i to :. j in

ecified time period. The following concepts are basic to the con-

struction c
' a Markov model for migration: the cohort transition matrix,

: tines, and the equilibrium vector (related to the

property of a long-run or stationary distribution).

The nobility of a migrant class is illustrated in a cohort-specific

sition :r.atrix . If for example,

(18) p =
r

B

A

1/2. 1/2

1A 3/1

then there is a 50% chance that an individual in region A will move to

on B in a unit time period. There is a probability of only 1/U

however that an individual in region 3 will move to region A in the same

time period. (Here it is assumed that A and B exhaust all possible moves.)

Thus P is actually the matrix of probabilities given in Equation 19,

where m and n are a unit time period apart and hence will be omitted in

the future

.

(19) P =
r

PA,A
(n >n) PA,B

(n ' n)

B,A B,B*

pAA PAB

PBA PBB

where p, T,(n,m) = P(X =B|x =A) ,*A,B m ' n

and 1 p. .(n,m) = 1 for all i

Then, for example, p.. . (n,m) = P(X =A|X =B) is the -orobabilitv that an
•vB ,A rr. ' n

indi" - iual is esiding in area A at .. t=m given he had been a resident



of area B ao t=n, a unit time period before.

i diagonal elements of transition matrices give an indication of

the non-mobility or "stability" of the populations in each area. If the

probability given by the d for some area Q is low, then

the relative mobility of area Q is high. Also if more than two regions

were to be considered, then the relative "attraction" of different

destinations for a given source area could be compared.

It is sometimes of interest to consider the length of time required

for an individual to move from state i to state j for the first time, or

the first passage time. The mean of the distribution of this random

variable is called the mean first -passage time .

Returning to Equation 19, consider the probability that an individual

currently in region A will move for the first time to region B in n time

i n )

periods. Call this probability g . Beginning with n equal to 1,

. (1)

'AB PAB

(2) .. r
'AB " PAA PAB

= PAA * °AB
(1)

Thus the probability of going from A to B for the first time in one time

period is by definition p.
fi

. The probability of going from AxoB for

the first time in two steps is equal to the probability of remaining in

A for the first time period multiplied by the probability of moving from

A to B in the next unit period. Generalizing, we have

, . 'n) (n-l)
< 20 > W ' - PAA ' *M

^

/ \n-l= (pAA



which gives the first passage time distribution. Since p = I-.

(n) /. \n-l
eAB

= PAB U_P
Ali

}

This function is the geometric distribution and hence the mean first

passage time is

1
=

The mean first passage times are described in matrix form by

M =

m. . m A _AA A3

"SA ^BB

In general, the elements of the matrix M may be found by the following

formula due to Parzen ( 1962 )

,

(21) m.
i i

= X +
I Pi k \ i ' ^

Other methods for computing the mean first passage time matrix are given

by Kemeny and Snell (i960) and Parzen (1962).

I'lean first passage times provide a measure of contiguity based on

interchange probabilities rather than distance. Thus they might be viewed

as indices of "aspatial interregional distance". This measure of proxi-

mity is defined as "migrant distance".

From the transition matrix P we may derive information about the

Markov process illustrated above. For example, suppose we want to find

the probability that an individual currently residing in area A will be

in area B two unit time periods .later. This event can occur only if

l) the individual stays in area A for the first time period and

tes to 3 during the sec r'iod, c:
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2) the individual from A to B at time t=I and t

tains in B during the next time period.

Thus for the matrix given in Equation 18,

(2)
PAB

= PAA PAB
+ PAB PBB

= (l/2)(l/2) + (1/2)(3A)

= 5/8 .

In the same manner,

vj 2)
- 3/8 ,

PBA
(2)

= 5/16 ,

PBB
= 11/16 .

These values may then be put in the matrix

(22)

vhich describes movement between two periods of time. This result may be

generalized to n time periods. Hence the transition matrix P. completely

determines the migration process. It is thus possible to use this data

to compare present movement patterns, to project them into the future,

and to determine the distributional consequences of a particular movement

structure.

The nth order transition probabilities are easily derived by matrix

multiplication. In particular the nth order transition probabilities of

a transition matrix ? may be found by multiplying P by itself, n number

of times, c_

A B

p (2)
=
A 3/8 5/3

r
B 5/16 11/16
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p
(n) - P

n

As a demonstration of this property, note that

3/8 5/8

P
2

r

5/16 11/16

= p
(2)

r

The final concept to be considered is the equilibrium probability

vector . It can be shown that as n increases, p. .

xl

, the probability

of migrating from i to j in n time periods, approaches a limit H
. , or
J

(23) limp (n)
= II ,

n-Ko
1 ' J J

where H . is independent of i . A Markov chain with this property is

said to possess a long-run distribution, and hence is stationary, or in

"equilibrium". The values II. form a vector. This eauilibriua vector

gives an index of- the long-term implications of current migratory behavior,

providing the migrant doesn't die and the transition probabilities remain

constant.

The Markovian model described by Rogers is based on strict and not

necessarily valid assumptions concerning human behavior. (Transition

probabilities are known to vary over time as well as space, and an indi-

vidual will ultimately die). For this reason Markovian analysis must be

limited in ixs usefulness as a long-term forecaster of interregional

flows of migration. Nonetheless, when used for analyzing differential

behavior during observed time periods, Markovian analysis provides insights

not readily obtainable by other means.



III. Condusi>

This paper was intended as a survey of the different theories of

migration prediction, measurement, and analysis. The models may be clas-

sified into two basic groups - those uealing with migration streams and

those concerned with migration differentials. Examples of both types were

presented,' explained, and evaluated in the preceding paper.

It is evident that the migration models available for use vary in

their sociological or statistical points of view, in their structural

bases, and in their practicability and applicability to real life situ-

ations. The researcher should pick the model which fits his data and

his hypothesis. The models of Stouffer (19I+O) , Zipf (19^6), and Dodd

(1950), while similar, will yield varying results. Each also involves

certain data which may not always be available. Stouffer' s theory of in-

tervening opportunities , for example, could be used when data are available

on such "opportunities" as job or housing vacancies in a given area. Tr^e

researcher right use Zipf's P..P /D hypothesis when data on human movement

from commercial travel sources or hotel registers are obtainable. Finally

the use of bodd's interactance hypothesis would involve some intuitive

understanding of the factors contributing to a level of activity. In

this instance, the researcher would need not only a complete data source,

but also a thorough acquaintance with the economic and social aspects of the

areas being studied.

ze of the research and the consequent information desired

..-idered when a model is being selected. The intervening op-

heory is useful, for example, in analyzing the observed dif-

ferentials in the distances moved by persons from different occupational



may be no ... ; in this case Stouffer.' s theory coulci alr;o

be classified under r:.igr. differential analysi:; . ) The theories of

both Zipf and Dodd may also apply to other forms of movement than human

migration. Zipf's hypothesis, for instance, may be applied to the

movement of commercial goods between two areas, while Dodd's hypothesis

y be used to study any form of interaction between areas. It is also

important to remember that the hypotheses of Zipf and Stouffer conflict

to some extent, and corrections for error may be necessary.

The models involving probability, specifically those of Morrill

(1965), Bharucha-Reid (i960) , Thomlinson (i960), and Rogers (1966) , may

be of interest to the researcher who is attempting to predict future

migration, basing his prediction on data from past migrations. Although

some of these models involve complex mathematics and unrealistic as-

sumptions, they do offer valid indications of possible migration trends

in both migration stream and migration differential analysis.

Other distinctions are also evident. The mathematical model given by

Thomlinson (i960), the Markovian analysis and the census survival analysis,

for example, may all be used directly on census data. The model given by

Morrill was completely simulated. Also those models based on strict

mathematical or statistical reasoning, such as the stochastic models pre-

sented by Bharucha-Reid and the Markovian model, must be differentiated

from those of Stouffer and Dodd, which are more sociological. It might

also be noted that the models of Stouffer, Zipf, Dodd, and especially

Ravcnstein (1S85) represent some of the earliest efforts regarding mi-

tion analysis, while most of the ethers ..re more recent.



ogy could -'-e sociological stand-

point as veil as from the statistical. Demographers need to take

finitive approach to the study of migration, i.e., they need to

formulate more concise terminology and set up a relevant, coherent frame-

work in which mar-ration coula be studied. Better definitions arid greater

clarity in the presentation of information concerning migration are

definitely needed. Demographers will continue however to study migration

from its many different aspects, and thus migration will probably remain

a complex field, but it need not remain an incoherent one.

From the other direction, there is a need for statistical techniques

and models which give good approximations with incomplete data. Due to

inconsistencies in real life, there is usually a gap between theoretical

and practical application, -he solution could be more accurate data, or

it might be better "approximation" techniques, and the latter seems to be

the most relevant approach.

Probability models seem to hold the most promise for future develop-

ments in predicting migration. It may be that human as well as other

forms of migration will occur according to a probabilistic design, much

as natural phenomena follow mathematical laws. In this case, probability

theory could serve as the mathematical tool necessary for a complete

understanding of migration.

Other approaches to the study of migration might use the concepts

involved in vector analysis, the theory of games, and directional

derivatives. For instance, migration might be conceptualized as a two-

perscn game between x,he resident of an area (who must make a decision

her or not xo move) and his environment. Game theory might be ap-

cable in .his situaoi^ I



The approach to dcmograph; become more closely associated with

statistics In recent years. According to Landry (19^5)*

"...la dempgraphie comme histoire n'existerait pour

isi dire pas sans la statistique. Quant a la demo-
•aphie comme thcbric, elle n'a pas dans la statistique

non seul instrument; mais la statistique est pour elle,

en diverges manieres , un instrument precieux. C'est au

veloppement et aux progres de la statistique qu'elle

b redevaole, pour une grande partie, de son propre
developpement et de ses progres . Les liens qui

.issent aujourd'hui la the"orie demographique et la

statistique ne pouront cue se reserrer davantage
encore dans l'avenir."



Li;

Figure 1. Circular riodel of intervening opportunities. 6

2. oc':.c).i;.tie representation of the model, Th oralinson (i960). lU

3. Flow chart for simulation of rigration program, Morrill

(1965). 22



e 1. 1 and independent variables by .
. , Tarver (..' ). 27

Lations R for final equations (white
pulation), Tarver (I90l). 'sj'j
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Migration may be analyzed from the basis of migration streams or that

of migration differentials. Migration stream analysis is concerned with

the volume and direction of place-to-place movements , while migration

differential analysis deals with the differences among migrant subgroups.

Most methods of migration analysis may be placed in one of these two

categories.

This paper deals with some of the more characteristic attempts at

migration prediction and measurement. Migration stream analysis is

represented by the following models: Stouffer's theory of intervening

opportunities, Zipf's P P./D hypothesis, Dodd's interactance hypothesis,

Thomlinson's mathematical model, and the stochastic models given by

Bharucha-Reid. Morrill's model for migration simulation is also included.

The methods cited as examples of migration stream analysis include Roger's

MarkQvian model, the census-related methods given by Lee, and Tarver's

model for migration prediction.

This paper was intended primarily as a survey of the methods avail-

able for migration analysis. The method chosen for use in any one study

will depend on the purpose of the research and on the available data.


