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Abstract 

Mares in estrus can exhibit erratic and fractious behavior that may adversely 

affect their ease of handling. Current treatments for suppression of estrus in the mare 

include an oral progestin, Regu-mate® (Hodgson et al., 2005),  uterine insertion of a glass 

ball (Nie et al., 2003), fetal crushing through rectal palpation (Lefranc, 2004) and surgical 

sterilization (McCue, 2003).  Although effective, all of these procedures are problematic 

for different reasons.  Immunization against an endogenous hormone critical to fertility is 

an attractive alternative in suppressing estrus; especially if it is less intrusive and 

reversible.  This strategy has been demonstrated by targeting gonadotropin-releasing 

hormone (GnRH) in gilts (Esbenshade and Britt, 1985), ewes (Clarke et al., 1978), mares 

(Garza et al., 1986), and heifers (Johnson et al., 1988).   

The antigen developed for this study was produced using the sequence of the 

bacterial protein, glutathione-S-transferase (GST) linked to three in-tandem repeats of the 

mammalian GnRH gene coding sequence (GST-GnRH3).  Six reproductively sound 

mares, between the ages of 3 and 8 years, were used in this study. The anti-GnRH group 

(n=4) received 1 mg of GST-GnRH3 in 2ml of incomplete Freund’s adjuvant (IFA) as 

the primary injection.  Four weeks later, mares received a single booster injection of 

0.5mg of GST-GnRH3 in 1ml of IFA. The control mares (n=2) received similar doses of 

GST protein only, in identical injection volumes of IFA as the anti-GnRH group.  The 

entire duration of the study ran for 22 weeks from early May through September.  

 



 

Ovaries were monitored three times weekly to track follicular growth and 

ovulation via transrectal ultrasonography. In addition, all mares were exposed to a 

stallion twice weekly and observed for estrous behavior. Weekly blood samples were 

collected to evaluate progesterone levels and serum binding of GnRH.   

The GST-GnRH3 antigen suppressed follicular activity in all treatment mares 

within 45 days following the second injection. Estrous behavior was suppressed in all but 

one mare in the anti-GnRH group. When exposed to the stallion, this mare displayed 

strong estrous behavior for seven weeks despite her lack of ovarian cyclicity. Follicular 

activity and estrous behavior remained normal in one of the control mares (avg. cycle 

length = 20 days). For the final 10 weeks of the study, however, the other control mare 

developed large follicles but failed to ovulate according to the ultrasound data. This mare 

did not display estrous behavior during this period, and her progesterone levels remained 

greater than 2 ng/ml for most of the final 10 weeks of the study.  Approximately 2 weeks 

after the booster injection all anti-GnRH mares had progesterone levels of <1ng/ml. 

GnRH antibody binding peaked two weeks following booster immunization in all treated 

mares and remained undetectable in control mares throughout the study.  

The GST-GnRH3 treatment induced GnRH binding, suppressed follicular activity 

and reduced progesterone concentrations in all four mares.   Although estrous behavior 

was abolished in 3 of the 4 treated mares, one did continue to demonstrate estrous 

behavior in the presence of a stallion.  This dissociation of ovarian activity and estrous 

behavior was evident in our study with a limited number of animals, but the vaccine does 

show promise in reducing unwanted estrous behavior.   
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CHAPTER 1 - Review of Literature 

Estrous Cycle of the Mare 

Horses are seasonal polyestrous breeders and mares in the Northern Hemisphere, 

in general, have estrous cycles beginning early spring and continuing through mid-fall.  

However, the reproductive cycle of the mare is more variable than any other domestic 

species and anestrous is not necessarily consistent throughout the winter months (Ginther, 

1992).  One of the most important environmental signals for controlling estrus and 

anestrous is photoperiod.  During short day months the pineal gland secretes melatonin 

suppressing estrus in the mare, in contrast to long day months when melatonin secretion 

is low and allowing for persistent waves of follicular development.       

The mare’s estrous cycle is approximately 21 days long beginning with 5-7 

consecutive days of sexual receptivity (standing estrus).  Ovulation usually occurs on 

days 3, 4, or 5 of the estrous cycle with behavioral estrus subsiding 24 to 48 hours after 

ovulation.  A follicle stimulating hormone (FSH) surge at 1-2 weeks prior to ovulation 

initiates the growth and selection of the dominant follicle.  Luteinizing hormone (LH) 

secretion in the mare is unique to other domestic species.  In contrast to a quick burst, LH 

concentrations gradually increase during the follicular phase reaching maximum 

concentrations 1-2 days after ovulation and then slowly decline over the next 4-6 days 

(Ginther, 1992).    

Gonadotropin-Releasing Hormone (GnRH) is composed of a highly conserved 10 

amino acid sequence (pyroGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) and is a 

fundamental regulator of reproductive function through initiation of the hypothalamic-
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pituitary-gonadal axis (Schally, 1975).  Neurosecretory cells located in the medial basal 

hypothalamus synthesize and release GnRH into the hypothalamo-hypophyseal portal 

circulation enabling small quantities of hormone to be deposited in the primary portal 

plexus of the pituitary stalk (Senger, 2004).  GnRH is rapidly transferred to a second 

capillary bed within the anterior pituitary and binds to GnRH-receptors expressed by the 

pituitary gonadotropes.   

GnRH hormone-receptor binding initiates synthesis and release of gonadotropin 

hormones through signal transduction.  Phosphorylation of guanosine diphosphate (GDP) 

on the intracellular G protein-coupled receptor alpha subunit (Gα) initiates activation of 

the phospholipase C (PLC) signaling pathway.  PLC hydrolyses the phosphodiester link 

in phosphotidylinostitol 4,5 bisphosphate (PIP2), cleaving it into second messengers 

inositol triphosphate (IP3) and transmembrane diacylglycerol (DAG).  IP3 quickly 

diffuses through the cytosol to the endoplasmic reticulum (ER) where it binds to a ligand 

gated calcium (Ca2+) channel allowing release of Ca2+ into the cytosol.  DAG activates  

protein kinase C (PKC) stimulating synthesis of the gonadotropins, luteinizing hormone 

(LH) and follicle stimulating hormone (FSH).  Release of LH and FSH into the 

circulation results from the   influx and accumulation of calcium as well as PKC (Hirota 

et al., 1985).  

Gonadotropins bind to receptors expressed on cells of developing follicles to 

stimulate follicular growth and ovulation.  Granulosa cells in developing follicles 

synthesize and secrete the steroid hormone estrogen, which in turn acts on the 

hypothalamus to increase synthesis and secretion of GnRH, causing the LH surge 
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required for ovulation.  After ovulation the corpus luteum develops and will secrete 

progesterone which inhibits GnRH concentrations.        

Estrus Prevention 

Typically it is a producer’s goal to enhance the fertility in livestock species.  This 

is obviously important for breeding stock, but in other production situations suppression 

or abolition of estrus and its associated behavior is advantageous.  For example, there are 

several negative economic factors associated with heifers entering the feedlot pregnant 

including reduced average daily gain, decreased dressing percentage and the risk of 

calving in the feedlot (Sewell, 1993).  Owners of performance, ranch, show or racing 

horses tend to devalue mares due to aggression and inattentive behavior exhibited during 

the 5-7 days of estrus (N. Edward Robinson, 2008).  Handling of some mares in estrus 

can be difficult and dangerous due to their aggressive and obstinate demeanor.  While 

estrous behavior is most apparent when the mare is in close proximity to a stallion, 

aggression and decreased response to commands can be demonstrated under any 

circumstance during estrus.  The peak of sexual receptivity is characterized by lowering 

of the pelvis and spreading hind limbs, lifting of the tail, exposing the perineal region by 

rhythmic eversions of the clitoris, and frequent urination (Crowell-Davis, 2007).  At these 

times it is impractical and potentially dangerous to use these animals, as they often 

attempt to bite or kick other horses.  In an effort to eliminate these problems several 

methods of suppressing estrus and estrous behavior in mares have been explored.  
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Progesterone Treatments 

The most common method of suppressing estrus in mares is by the use of 

progesterone and synthetic progestins.  High levels of progesterone suppress the release 

of hypothalamic GnRH which reduces pituitary output of LH and FSH thereby 

suppressing follicular growth and estrogen concentrations known to induce estrous 

behavior.  Progesterone, in an oil base, was shown to effectively suppress cyclicity and 

estrous behavior in mares when injected intramuscularly at a dose of 100 mg daily or 400 

mg every other day (Loy and Swan, 1966).  However, weekly administration can cause 

moderate to severe site reactions and muscle soreness.  Medroxyprogesterone acetate 

(MPA) was investigated as another off-label use of progesterone for suppressing estrus in 

mares (Gee et al., 2008).  In this study, an initial dose (1.6 g) of compounded MPA with 

subsequent weekly doses of 400 mg did not suppress estrous behavior or follicular 

development in any of the treated mares.  Progesterone-estradiol benzoate (Synovex-S® 

implants; Syntex Animal Health, Des Moines, Iowa), labeled for use in cattle to promote 

feed efficiency and weight gain, were investigated as a method of suppressing estrus in 

mares (McCue, 1997).  A normal dose of Synovex-S® consists of 8 implants equivalent 

to 200 mg of progesterone and 20 mg of estradiol benzoate.  In this study estrous activity 

was not suppressed in mares receiving 0, 8, 32 or 80 implants 5 days post-ovulation.  

Alternatively, oral administration of the synthetic progesterone Regu-mate® 

(Altrenogest, Intervet Inc, Millsboro, DE) is labeled for use to help maintain pregnancy 

and delay estrus in cycling mares, and is widely used for performance and show horses.  

Altrenogest has shown to be 94% effective at suppressing estrous behavior and follicular 

development when administered daily for 15 days (Webel and Squires, 1982).  Of the 
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mares that displayed estrus during the treatment period, some displayed estrus for the first 

5-8 days while others displayed sporadic estrous behavior or remained in estrus the entire 

duration of the treatment.  Daily doses of Regu-mate® (0.44 mg/kg) placed on the back 

of mare’s tongue can be difficult to administer, expensive (approximately $2.50 - $4.00 a 

day) and must be handled with care as it is readily absorbed through skin which could 

cause a disruption of menstrual cycles of women. 

Oxytocin Treatments 

Oxytocin during the equine luteal phase is not thought to be secreted by the CL to 

the same degree as other domestic species (Stevenson et al., 1991).  However, it was 

reported that repeated injections of oxytocin during the midluteal phase was effective at 

prolonging the luteal phase in the mare (Stout et al., 1999; Vanderwall, 2007).  A recent 

study demonstrated that injections of oxytocin every 12 hours from days 7-14 post-

ovulation prolonged the CL and held progesterone levels above 1ng/ml for approximately 

60 days (Vanderwall, 2007).  More research is needed to improve our understanding of 

the impact that oxytocin has on estrus suppression and associated behavior in mares.    

Uterine Glass Ball 

Uterine insertion of a glass ball (UGB) has been a technique used to suppress 

behavioral estrus in the mare by prolonging the luteal phase and sustaining high 

progesterone levels.  While the method of action by which the luteal phase is prolonged is 

unclear, the UGB may mimic a conceptus and movement around the uterus inhibits 

endometrial release of prostaglandin preventing luteolysis (Nie et al., 2003).  A study of 

the efficacy of UGB treatment found that insertion of a ball approximately 35 mm in 
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diameter 24 hours post ovulation prolonged luteal function for up to 87 days post-

ovulation in 39% of mares.  A smaller 25 mm UGB was less effective as it was expelled 

in 50% of the mares tested, while no expulsion occurred in mares receiving a 35 mm 

UGB (Nie et al., 2003).  Insertions of UGBs are effective at maintaining progesterone 

levels above 1ng/ml, and may serve as an alternative to daily administration of 

progesterone.  This method is an easy, inexpensive and reversible method of suppressing 

estrus in the mare.  However, the low efficacy rate, the possibility of microbial 

contamination and the need for monitoring cyclic activity to determine the time of 

insertion followed by removal of the ball makes it an unattractive method for many horse 

owners. 

Surgical Sterilization 

A more common procedure used to suppress estrous behavior and prevent 

pregnancy, compared to use of a UGB or manually reducing pregnancy, is surgical 

sterilization or ovariectomy.  It is speculated that in most domestic species initiation of 

estrous behavior is due to ovarian steroid hormones, and by removing the ovaries such 

behavior would be eliminated.  However, studies have shown that this is not always true 

and that continuous estrous behavior in the absence of ovarian activity has been observed 

in some ovariectomized, anovulatory, or mares with small inactive ovaries (Asa et al., 

1980; Dalin et al., 2002; Hooper, 1993; Kamm and Hendrickson, 2007).  It was also 

reported that the probability of an ovariectomized or anovulatory mare showing estrus 

behavior is higher on any given day than it is for an intact mare during the ovulatory 

season (Asa et al., 1979).  This frequent behavior qualifies these females as good 

candidates for use as jump mares on breeding farms but can be problematic for a 
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performance horse owner.  Irregular estrous patterns observed in anovulatory and 

ovariectomized mares could be the result of specific social compositions of mares teased 

in groups or due to individual mare preference for certain stallions  (Asa et al., 1980).  

Moreover, estrous behavior in mares with inactive ovaries may be initiated by the release 

of estrogenic steroids from the adrenals (Asa et al., 1980; Crowell-Davis, 2007), 

suggesting estrous behavior displayed by ovariectomized or anovulatory mares may be 

due to low progesterone levels and circulating adrenal estrogens.  Due to the 

unpredictable behavior after surgery and irreversibility of this method, it is not an ideal 

procedure for owners of mares that would like to reduce or eliminate typical behaviors 

associated with mares in estrus. 

Immunocontraception 

Immunization against an endogenous hormone critical to fertility is referred to as 

immunocontraception.  The method by which immunocontraception initiates an immune 

response and suppresses estrus is through initiation of humoral immunity involving the 

proliferation of B immune cells and their production of antibody proteins.  Upon primary 

immunization, a short burst of the immunoglobulin IgM is secreted by B cells as the 

initial response to neutralize the newly recognized antigen.  The IgM response is 

associated with the action of innate immune cells which process and clear the antigen 

before presenting antigen to B cells to stimulate production of specific immunoglobulins.  

Subsequent exposure to the same antigen results in a secondary immune response 

involving the secretion of the memory immunoglobulin IgG.  This secondary immune 

response is slightly delayed and IgG is secreted at a much higher concentration and for 
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longer periods of time than IgM secretion to ensure the binding, destruction and clearance 

of antigen.  

    In order to elicit an immune response to an endogenous reproductive hormone, 

a mimicking antigen must be linked to a foreign carrier protein.  Antibodies will be 

produced against the foreign protein-hormone complex.  These hormone-specific 

antibodies generated will cross react with the endogenous hormone and prevent it from 

reaching its target tissue. This methodology is an attractive alternative to other methods 

of reducing fertility and has been demonstrated to suppress estrus in horses by targeting 

the reproductive hormone gonadotropin-releasing hormone (Dalin et al., 2002; Elhay et 

al., 2007; Garza et al., 1986; Imboden et al., 2006; Tshewang et al., 1997).   

Typically, the source of protein hormone used as antigens are chemically 

synthesized or purified from tissues and then chemically conjugated to a foreign carrier 

molecule.  One disadvantage of this procedure is the variation of immunogenicity in 

antigen preparations as a result of the purification and conjugation procedures (Grieger 

and Reeves, 1990).  As an alternative, the DNA coding sequence for a specific peptide 

can be linked to a bacterial carrier molecule DNA sequence through recombinant DNA 

engineering.   

Anti-GnRH Vaccine in the Mare 

An early study investigated the effects of a GnRH conjugated to bovine serum 

albumin vaccine on the secretion of LH and FSH (Garza et al., 1986).  Mares received an 

immunization of 4.0 mg of the GnRH conjugate in Freund’s complete adjuvant, followed 

4 weeks later by a 2.0 mg dose of antigen in Freund’s incomplete, which was then 

administered every 6 weeks until ovariectomy at week 30.  Findings from this study 
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concluded that this anti-GnRH vaccine successfully suppressed plasma concentrations of 

progesterone, LH and to a lesser extent FSH while increasing tritiated GnRH binding 

after the third immunization.  

  Recently, commercial conjugate anti-GnRH vaccines such as Improvac® (Pfizer 

Animal Health P/L, West Ryde, NSW, Australia)  and Equity™ (Pfizer Animal Health 

P/L, West Ryde, NSW, Australia) have been evaluated as effective methods of 

suppressing estrus in the mare (Elhay et al., 2007; Imboden et al., 2006).  Improvac®, 

commonly used in Australia to treat against boar taint, was administered to 9 mares on 

weeks 0 and 4 (Imboden et al., 2006).  Follicular development and progesterone 

concentrations were suppressed following the second injection, however sporadic estrous 

behavior of the Improvac® treated mares was observed throughout the duration of the 

study.  Similarly, two injections of Equity™ administered 4 weeks apart successfully 

suppressed follicular development and progesterone levels, but was not capable of 

suppressing estrous behavior in all mares (Elhay et al., 2007).  Equity™ is currently 

approved for use in fillies and mares to suppress estrous behavior and activity in 

Australia.     

Recombinant DNA Technology 

The use of recombinant DNA technology eliminates the need for tissue 

purification of protein and conjugation steps (Johnson et al., 1988).  Recombinant DNA 

is the incorporation of two or more sources of DNA to construct a new recombinant 

molecule.  This technology is an attractive alternative to conjugation of tissue-purified 

protein due to the similarity and repeatability between batches of recombinant antigen.  A 

recombinant glutathione S- transferase-GnRH vaccine (Koster and Grieger, 1995) was 
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effective in abolishing estrous cycles in yearling beef heifers (Holladay et al., 2003).  Use 

of recombinant DNA technology in a vaccine against GnRH was described by Zhang et 

al. (1999) employing ovalbumin as the carrier protein source.  This recombinant GnRH 

vaccine was shown to be effective at suppressing follicular development in mice (Zhang 

et al., 1999), rats (Conforti et al., 2007), rams (Ulker et al., 2005) and cattle (Geary et al., 

2006; Hernandez et al., 2005; Sosa et al., 2000; Stevens et al., 2005).      
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CHAPTER 2 

Suppression of cyclicity and estrous behavior in mares through 

immunization using a recombinant GnRH antigen. 

Introduction 

Typically it is a producer’s goal to enhance the fertility in livestock species.  This 

is obviously important for breeding stock, but in other production situations suppression 

or abolition of estrus and its associated behavior is advantageous.  For many horse 

owners, mares are less valuable than geldings as working or performance horses due to 

gender-related behavior problems such as aggression, focused attention to surroundings, 

and a decreased response to commands.  Ranch or show mares often exhibit behavioral 

problems during estrus that may adversely affect their ease of handling.  At these times it 

is impractical and potentially dangerous to use these animals, as they often attempt to bite 

or kick other horses.  

Current treatments for suppressing estrus in the mare include the oral progestin, 

Regu-mate® (altrenogest, Intervet, Inc. (Hodgson et al., 2005), uterine insertion of a 

glass ball to suppress behavioral estrus (Nie et al., 2003), fetal crushing through rectal 

palpation (Lefranc, 2004), oxytocin treatments (Vanderwall, 2007) and surgical 

sterilization (McCue, 2003).  However, all of these procedures are problematic for 

different reasons.  Regumate must be administered daily, fetal crushing is uncommon and 

often viewed as ethically unaccepted, and surgical sterilization is effective but 

 11



irreversible.  An effective, non-invasive and reversible method of sterilization would be 

ideal for the horse owner, whether their mares are used for pleasure, show, or ranch and 

feedlot work.  

Immunization against an endogenous hormone critical to fertility is referred to as 

immunocontraception.  This methodology is an attractive alternative to other methods of 

suppressing fertility and has been demonstrated by targeting the reproductive hormone 

gonadotropin-releasing hormone (GnRH) in gilts (Esbenshade and Britt, 1985), ewes 

(Clarke et al., 1978), mares (Garza et al., 1986), and heifers (Johnson et al., 1988). 

Gonadotropin-releasing hormone is a hypothalamic peptide that causes release of 

follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior 

pituitary gland (Hafez and Hafez, 2000). Since the primary roles of FSH and LH are to 

cause follicle growth and ovulation, altering the function of GnRH will disrupt 

reproductive cycles.  However, in order to immunize animals against an endogenous 

“self” protein such as GnRH, the peptide must first be linked to a foreign carrier molecule 

which will induce an immune response.  Typically, the source of protein hormone for use 

as antigens are chemically synthesized or purified from tissues, and then chemically 

conjugated to a carrier molecule.  One disadvantage of this procedure is the variation of 

immunogenicity in antigen preparations as a result of the purification and conjugation 

procedures (Grieger and Reeves, 1990).  As an alternative, the DNA coding sequence for 

GnRH can be linked to a bacterial carrier molecule DNA sequence through use of 

recombinant DNA engineering.  This methodology eliminates the need for tissue 

purification of protein and conjugation steps.  The use of recombinant DNA technology 

to produce fusion proteins can also provide a consistent source of antigen.  Previous 
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studies in our laboratory reported the development of a recombinant GnRH vaccine 

(Koster and Grieger, 1995) that was effective in abolishing estrous cycles in yearling beef 

heifers (Holladay et al., 2003).  In mares it would be ideal to give vaccinations against 

GnRH at selected times of the year to suppress unwanted estrous periods.  Since 

immunocontraception has been shown to be reversible in cattle (Grieger and Reeves, 

1990; Sosa et al., 2000), this may be very beneficial in the equine industry where estrus 

could be suppressed early in a mare’s life, with the option of breeding her when she is 

older.  The objective of this study was to test the use of a recombinant GnRH vaccine as a 

method of inducing temporary sterility in mares.    
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Materials and Methods 

Plasmid Construction 

The construction of the expression plasmid GST-GnRH3 was previously 

described by Holladay and coworkers in 2003 (Figure 1).  The commercial expression 

vector (pGEX-4T-3; GE Healthcare, Piscataway, NJ) was engineered to include three 

tandem copies of the coding sequence for GnRH in-frame and downstream of the 

glutathione-S-transferase coding sequence.  The expression plasmid created was named 

pGEX-GnRH3.  In the current study the plasmid was transformed into E. coli DH5-α 

cells, an attenuated laboratory strain used for plasmid replication and protein expression.  

Transformed cells were streaked onto Luria-Bertani (LB) ampicillin agar plates and 

grown overnight at 37°C.  Resulting colonies were cultured and plasmid DNA was 

isolated using QIAprep® Spin Miniprep Kit (Qiagen, Valencia, CA).  Purified plasmid 

DNA was digested with restriction endonuclease BamH I (New England Biolabs, 

Ipswich, MA) or both BamH I and EcoR V (New England Biolabs).  Digests were 

evaluated on a 2% agarose gel containing ethidium bromide to verify predicted insertion 

size.     

The control vaccine was generated using GST protein from the pGEX-4T-3 

vector.  Vector DNA was digested with BamH I to confirm absence of GnRH3 insert.        

Protein Expression 

 A 25 ml aliquot of an overnight culture of plasmid-transformed DH5-α cells was 

used to inoculate 500 ml of LB ampicillin broth.  The 500 ml flasks remained under 

constant shaking at 37°C until A600 was between 1.0 - 2.0 relative absorptive units.  When 
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the culture reached desired confluence, isopropyl β-D-1-thiogalactopyranoside (IPTG) 

was added to a final concentration of 0.1 mM to induce protein expression. 

A series of four different treatments were investigated to determine which would 

render the greatest yield of soluble fusion protein (GST-GnRH3).  Incubation time and 

solubilizing buffer were the two factors tested.  Time of IPTG incubation was either 

overnight at room temperature or for 3 hours at 37°C.  The solubilizing buffer consisted 

of either lysozyme alone or lysozyme plus sarcosine (Sambrook and Russell, 2001).  

Each treatment culture was replicated twice.  

In treatments using sarcosine buffer, the culture containing IPTG was left to shake 

overnight at room temperature or for 3 hours at 37°C.  After either 3 hours or an 

overnight incubation time, cultures were centrifuged at 3300xg for 20 minutes at 4°C, 

supernatant was discarded and a 1/20 volume of Gibco DPBS was used to resuspend the 

remaining pellet.  Cell walls were disrupted by adding 1 mg/ml lysozyme to the 

resuspended pellet and placed on ice for 30 minutes.  The cell lysate was centrifuged at 

10,000 xg for 10 minutes at 4°C, the supernatant was removed and saved while the pellet 

was solublized in an 8 ml detergent solution containing 1.5% N-lauroylsarcosine, 25 mM 

triethanolamine and 1 mM EDTA (pH 8.0).  The resuspended pellet was mixed on a 

rocker for 10 minutes at 4°C then centrifuged at 10,000 xg for 10 minutes at 4°C.  The 

remaining supernatant was combined with the supernatant from the initial detergent-free 

lysate supernatant and filtered through a 0.45 micron filter.        

In treatments without sarcosine buffer, the culture containing IPTG was left to 

shake overnight at room temperature or for 3 hours at 37°C.  After allowing the correct 

incubation time, cultures were centrifuged at 3300 xg for 20 minutes at 4°C, supernatant 
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was discarded and a 1/20 volume of Dulbeco’s Phosphate Buffered Saline (DPBS; 

Invitrogen, Carlsbad, CA) was used to resuspend the remaining pellet.  Cell walls were 

disrupted by adding 1mg/ml lysozyme to the resuspended pellet and placed on ice for 30 

minutes.  Triton X-100 at a 1% concentration was added to the cell lysate and shaken 

vigorously.  DNase (Sigma, St. Louis, MO) and RNase (Sigma) were then added to the 

detergent and lysate at a final concentration of 5µg/ml and mixed on a rocker for 10 

minutes at 4°C.  Centrifugation at 3,000 x g for 30 minutes at 4°C was performed and 

supernatant collected.  Dithiothreitol at a final concentration of 1mM was added to the 

supernatant then filtered through a 0.45 micron filter.   

For production of the control vaccine (GST-only) a 3 hour IPTG incubation 

without sarcosine buffer was used. 

Protein Purification 

Purification of the GST-GnRH3 protein was done with glutathione bound GSTrap 

FF columns (1 ml; GE Healthcare) in conjunction with a peristaltic pump.  Each 

treatment and control vaccine protein was filtered through a 0.45 micron filter and 

assigned to an individual column.  The columns were equilibrated with 5 ml of binding 

buffer (Gibco DPBS) before the sample was applied at a flow rate of approximately 0.7 

ml/min.  The columns were then washed with 10 ml of binding buffer at an increased 

flow rate of approximately 1.3 ml/min and the protein was eluted with a buffer consisting 

of 50 mM Tris-HCl and 10 mM reduced glutathione (pH 8.0; Sigma).  Samples were 

collected in 1ml aliquots and protein concentration quantified using a spectrophotometer 

(Nano Drop ND-1,000).  Total protein isolated from the GSTrapFF columns was 

calculated individually for each treatment type.   
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Approximately 15 mg of GST-GnRH3 protein and 17 mg of GST protein was 

transferred into a dialysis membrane (12,000-14,000 molecular weight cut off) and stirred 

slowly in 4 L of filtered water at 4°C overnight.  The samples were then dried using a 

FTS systems (Stone Ridge, NY) model FD-20-54 lyophilizer and condensed with a TDS-

4A DuraStop tray dryer. 

Western Blots 

Western blot analysis was used to confirm size and specificity of recombinant 

protein.  Bio-Rad precast gels (12% gradient) were loaded with 10 µg of GST-GnRH 

protein, electrophoresed at 200 V for 35 minutes, and stained with Coomassie blue to 

determine size of bands.  An identically loaded gel was electrophoretically transferred to 

a nitrocellulose membrane for western blot analysis.  After a 1 hour 100 V transfer, the 

membrane was cut in half and blocked for 30 minutes with 1X casein.  One half of the 

membrane was probed with goat anti-GST antibody at 1:2000 and the other half was 

probed with rabbit anti-GnRH at 1:100.  Both halves were left to incubate overnight.  

Membranes were washed with 1X casein for 15 minutes prior to a 30 minute incubation 

with either a 1:500 dilution of biotinylated anti-goat antibody or a 1:200 dilution of 

biotinylated anti-rabbit antibody.  The membranes were each washed in 1X casein and 

incubated with prepared Vectastain ABC Reagent (Vector Laboratories, Burlingame, 

CA) for 30 minutes with subsequent washing in 1X casein.  Membranes were placed in a 

TMB substrate solution peroxidase (Vector Laboratories) until desired color development 

occurred; development was stopped with a distilled water rinse and membranes were left 

to air dry.     
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Animals 

All procedures used in the care, handling and sampling of animals in our study 

were approved by the Kansas State University Institutional Animal Care and Use 

Committee.  Six reproductively sound Quarter Horse mares (ages 3 to 8 years) were used.  

Four were assigned to an anti-GnRH treatment (505.91 ± 6.89 kg) and two were assigned 

as controls (515.91 ± 19.55 kg).  Ultrasonography (Sonovet 600; 5mHz linear transducer) 

of ovaries three times per week was used to demonstrate reproductive cyclicity of all 

mares for one month prior to the initial treatment.  Following primary injection and 

throughout the end of the study all mares were continually scanned three times a week 

(Figure 2).  In order to synchronize the estrous cycles for the initiation of treatments, one 

control mare was administered a 10 mg dose of Prostamate (Agrilabs, St. Joseph MO) 8 

days after a recorded ovulation and one anti-GnRH mare received Prostamate (10 mg) 5 

days post-ovulation.  Human chorionic gonadotropin (hCG; 2500 IU; Intervet Inc, 

Millsboro, DE) was administered on day 22 of cycle to induce ovulation in another anti-

GnRH treated mare followed by an injection of Prostamate (10 mg) 5 days post-

ovulation.   

Mares were exposed to a stallion twice weekly to monitor estrous behavior in a 

group setting with the stallion located in a center tease pen.  Each mare was assigned a 

teasing score of 1-5.  A mare received a score of 1 if she showed no interest or exhibited 

aggressive behavior towards the stallion, and received a score of 5 for leaning into the 

stallion, squatting and urinating.  Weekly blood samples were collected via jugular 

venipuncture into 10 ml vacutainers.  Samples were collected for 22 weeks from May 9, 

2008 to October 3, 2008.  Following collection, samples were refrigerated and allowed to 
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clot overnight at 4°C.  Samples were centrifuged and the serum stored at -20°C until 

assayed.          

Immunizations 

Mares in the anti-GnRH treatment group received an intramuscular injection of 

1mg of GST-GnRH3 in 2 ml incomplete Freund’s adjuvant (IFA; Sigma) in the right side 

of the neck.  Four weeks later, mares received a second immunization of 0.5 mg of GST-

GnRH3 in 1ml IFA in the right mid-gluteal region.  The antigen and adjuvant dose was 

reduced in half for the second immunization due to adverse reactions observed following 

the primary injection.  Control mares (n=2) received similar doses of GST protein only in 

identical injection volumes of IFA.  Mares were observed twice daily for the 

development of injection site reactions (heat, pain, swelling)  for 7 days following 

vaccination ; body temperatures of all mares were also recorded twice a day for one week 

following each immunization.  

Hormone Assays 

Serum binding of GnRH was analyzed using an enzyme-linked immunosorbent 

assay (ELISA) as described previously (Holladay et al., 2003).  Nunc brand maxisorp 96-

well microtiter plates (Fisher Scientific, Waltham, MA) were coated with 100 ng/well of 

GnRH peptide (Anaspec, San Jose, CA) in 0.01M carbonate-bicarbonate buffer (Sigma), 

shaken for 1 hour at room temperature and incubated at 4°C overnight.  Plates were 

rinsed with wash buffer (Kirkegaard and Perry Labs, Gaithersburg, MD), blocked for 1 

hour at room temperature with lab buffer (BSA, sodium azide, Tween 40, DTPA) and 

then rinsed with wash buffer.  Serum diluted in lab buffer at 1:100 was added and 
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incubated for 1 hour before being rinsed with wash buffer.  Binding was detected by 

adding 100 µl of a 1:1000 dilution of goat anti-horse IgG horseradish peroxidase (HRP) 

conjugate (Bethyl, Montgomery, TX), incubated for an hour then rinsed with wash 

buffer.  100 µl of the visualizing agent tetramethylbenzidine (TMB; BioFX, Owings 

Mills, MD) was added and left to incubate for 15 minutes before including 100 µl of 450 

stop reagent (BioFX). The plate was read at 450 nm using a Wallac 1430 multilabel 

counter.  Plates were adjusted to eliminate plate variation using a common serum sample.  

Progesterone concentrations were determined by radioimmunoassay as previously 

described (Stevenson, 1981).  For each sample 20 µl of serum was assayed in duplicate.  

The intra-assay CV was 7.6%.  

Statistical Analysis 

Statistical analysis on GnRH binding and progesterone concentration was 

performed with SAS 9.1 (SAS; SAS Institute, Cary NC) using PROC MIXED model.  

GnRH binding and progesterone means before and after second injection were compared 

with treatment as a fixed effect.  Mares were initially included as a random effect but 

were not significant, therefore they were not included in the final model. 
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Results 

Plasmid and Protein Analysis 

BamH I and BamH I/EcoR V digests of the pGEX-GnRH3 plasmid resulted in the 

predicted band sizes of a 90 bp GnRH3 fragment (Figure 3).  A BamH I digest of the 

plasmid produced products of approximately 4970 bp and 90 bp in length, which match 

the predicted size of the vector and GnRH3 insert, respectively (Figure 1).   The BamH 

I/EcoR V digest resulted in products of approximately 3285 bp, 1785bp and 90 bp.  There 

is a unique EcoR V site within the vector sequence which was used to further confirm the 

identity of the plasmid.  A BamH I digest of pGEX-4T-3 vector used to produce control 

protein (GST only) resulted in a single predicted 4968 bp fragment (Figure 4).    

In the two treatments tested to increase fusion protein yield, the amount of total 

protein collected between the two replications was similar.  The 3-hour incubation 

without sarcosine buffer yielded the highest amount of protein (18.9 mg) from the GST 

columns.  Overnight incubation without sarcosine buffer yielded 4.7 mg, overnight 

incubation with sarcosine yielded 1.5 mg, and the 3 hour incubation with sarcosine 

yielded 0.3 mg of protein from the GST columns.        

The GST only vector for control mare immunizations was expressed using the 3-

hour incubation without sarcosine buffer and resulted in 17.0 mg of protein.  

Polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate the GST-

GnRH3 protein by size in order to assess molecular weight (Figure 5).  As a control on 

the gel, 20 ug of bovine serum albumin (BSA) was loaded and displayed a major protein 

at approximately 70 kD.  GST-GnRH3 lanes contained major proteins at approximately 
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25 kD and 30 kD.  From the protein sequence, GST alone is approximately 26 kD while 

the GST-GnRH3 fusion protein is 29kD.   

Western blot analysis was used to verify the specificity of the recombinant GST-

GnRH3 protein (Figure 6).  The anti-GnRH serum bound to bands in the area of 30 kD.     

Follicular Development and Estrous Behavior 

The GST-GnRH3 vaccine suppressed follicular activity in all treated mares 

following the second immunization (Figure 7).  One of the anti-GnRH mares (T-2) 

displayed only small follicles (<10 mm) within the first two days following the second 

injection while the other three anti-GnRH mares (T-1, T-3, T-4) displayed only small 

follicles within 45 days after the second injection.  Follicles and ovaries of all anti-GnRH 

mares remained small and inactive through the end of the study. 

At time of the second injection two anti-GnRH (T-2, T-4) mares had large (> 40 

mm) follicles present on their ovaries (Figure 7).   One mare (T-2) ovulated this follicle 2 

days after the injection and no estrous behavior or ovarian activity was observed from 

this point throughout the end of the study.  The large follicle on the ovary of the other 

anti-GnRH mare (T-4) slowly regressed over 5 weeks.  This mare began to display 

continuous estrous behavior 2 weeks following the second immunization which lasted for 

7 consecutive weeks despite the lack of ovarian activity during the latter half of this 

period.  The other two anti-GnRH treated mares (T-1, T-3) both had 28 mm and 23 mm 

follicles, respectively, at the time of the second injection.   

Estrous behavior was suppressed in 3 of the 4 anti-GnRH mares following the 

second injection (Figure 8).  One anti-GnRH treated mare (T-4) displayed strong estrous 

behavior for seven weeks following the second injection before behavior ceased.  One of 
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the control mares (C-1) exhibited normal 21 day estrous cycles with normal estrous 

behavior throughout the study.  The other control mare (C-2) cycled normally until the 

beginning of August in which large follicles developed but failed to ovulate.  This control 

mare did not display estrous behavior and progesterone levels remained moderately high 

(4.6ng/ml) for 6 weeks towards the end of the study.  

 

Serum Progesterone 

Progesterone concentrations fluctuated between 0.29 ng/ml and 13 ng/ml 

depending on the stage of the estrous cycle during the first 5 weeks prior to primary 

immunization (Figure 9).  Before the second injection mean progesterone concentrations 

of the anti-GnRH (4.06±0.46 ng/ml) and control mares (4.00 ± 0.65 ng/ml) were similar; 

whereas, the mean progesterone concentration were significantly lower (p<0.01) for the 

anti-GnRH mares (0.95 ± 0.38 ng/ml) as compared to the control mares (4.07 ± 0.54 

ng/ml) following the second injection (Table 1).  Mean progesterone concentrations of 

the control mares varied due to the stages of their estrous cycle, although levels remained 

above 2.5 ng/ml during the period in which one of the control mares (C-2) failed to 

ovulate (Figure 9).  Three weeks after the second injection all anti-GnRH treated mares 

demonstrated anestrous-like progesterone profiles (<1.0 ng/ml), which remained low 

throughout the final 9 weeks of the study. 

Serum Binding of GnRH 

Binding of GnRH with serum from both anti-GnRH (0.27 ± 0.12 A450 nm) and 

control (0.20 ± 0.12 A450 nm) mares was similar up to the second immunization.  
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However, following the second immunization binding of GnRH with serum from anti-

GnRH mares (0.59 ± 0.11 A450nm) was significantly higher (p<0.01) than binding of the 

control mares (0.33 ± 0.12 A450 nm; Table 1).  GnRH binding for anti-GnRH mares 

peaked at week 6; two weeks following the second injection (Figure 10).   

Adverse Reactions 

Adverse injection reactions were observed in all but one anti-GnRH mare as well 

as both control mares.  Adverse reactions were defined as visible granulomas (Figure 11) 

and elevated temperatures ranging from 39°C to 40°C.  Horses with fevers were treated 

twice daily with 0.5 mg/kg body weight of Banamine® (flunixin meglumine) until 

temperatures subsided.  All fevers occurred within 7 days of immunization and subsided 

in 2-5 days.  Granulomas appeared 24 hours post primary injection and all were reduced 

to only a small palpable knot within one week.  No granulomas were found in the hind 

quarters after the second injection.  Three months following the primary injection one of 

the anti-GnRH mares developed a granuloma in the region of the first injection (right 

neck) which was still visible at the end of the study.  
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Discussion   
The pGEX-4T vector is commercially designed to produce fusion proteins 

through the use of GST-glutathione binding affinity.  GST and GST fusion proteins can 

be recovered with elution by free reduced glutathione (Smith and Corcoran, 1994).  

Previously in our laboratory, one factor impeding the yield of GST-GnRH3 fusion 

protein was formation of insoluble proteins (inclusion bodies) after plasmid expression in 

E. coli (Holladay et al., 2003).     

N-laurolysarcosine buffer was tested in the present study to reduce insoluble GST 

fusion proteins (Sambrook and Russell, 2001).  Although, Hull et. al. (1992) saw 

improved recovery of soluble protein after using this buffer, this was not the case in the 

present study.  It was found that the 3-hour incubation without sarcosine buffer 

preparation produced the highest fusion protein yields.  It is possible that combining the 

soluble pellet resuspension with the sarcosine buffer treatment suspension reduced yield, 

increased precipitate, and subsequently decreased binding to the affinity column.    

The recombinant GnRH vaccine suppressed cyclicity and serum progesterone in 

each of the anti-GnRH mares following the second injection through the remainder of the 

study.  All anti-GnRH mares reached this state within 45 days following the second 

immunization.  The ultrasound data confirmed that ovaries were in an anestrous state due 

no evidence of a CL present and only small diameter follicles visible on the ovarian 

surface.  Increased serum binding of GnRH following the second immunization 

demonstrated the presence of endogenous anti-GnRH antibodies.  Presumably this 

binding prevented GnRH from binding to gonadotroph receptors in the anterior pituitary, 

thereby decreasing the release of LH and FSH.  
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The recombinant GnRH vaccine used in this study suppressed follicular activity 

and cyclicity in mares similar to a previous report for heifers (Holladay et al., 2003). This 

immunocontraception strategy was also effective in mares treated with conjugated GnRH 

vaccines (Dalin et al., 2002; Elhay et al., 2007; Imboden et al., 2006; Tshewang et al., 

1997).  GnRH vaccines have also been successful at reducing serum testosterone levels 

and sperm motility in sexually mature stallions (Turkstra et al., 2005) and colts (Dowsett 

et al., 1993).  Moreover, this method of immunocontraception was proven to be 

reversible in studies which evaluated return to estrus or functional reproduction (Dalin et 

al., 2002; Dowsett et al., 1993; Elhay et al., 2007; Holladay et al., 2003; Imboden et al., 

2006; Tshewang et al., 1997).  In our study two of the anti-GnRH mares were available to 

be examined one year after the initiation of treatment.  One of the mares had a CL while 

the other had a large follicle but no evidence of a CL at the time of ultrasonography.  

These results suggest a return to cyclicity is possible in the subsequent breeding season 

following vaccine treatment.  

Continuous estrous behavior in the absence of ovarian activity was observed in a 

previous study using an anti-GnRH vaccine (Dalin et al., 2002) as well as in 

ovariectomized or anovulatory mares (Ginther, 1992). This behavior is hypothesized to 

be initiated by the release of estrogenic steroids from the adrenals (Crowell-Davis, 2007).  

However, in our current study one anti-GnRH mare (T-4) was developing a large follicle 

at the time of the second injection.  Rather than ovulate, this large follicle regressed 

slowly until undetectable through ultrasonography and no significant structures were 

visible on the ovary throughout the rest of the study.  Since this was the treated mare that 

displayed continuous estrous type behavior it is possible that this slowly regressing 
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follicle was a factor.  The treated mare which received the second immunization just prior 

to ovulation established an anestrous like ovary and suppressed estrous behavior almost 

immediately following injection.  Due to this finding, it may be best to immunize just 

prior to or following ovulation so that slowly regressing follicles do not present a source 

of estrogen.    

It was unclear why one of the control mares built follicles which failed to ovulate 

during the latter part of the study, although after evaluating progesterone data it is 

possible that persistent luteal tissue was undetected with ultrasonography.  This mare 

proved to be difficult to ultrasound throughout the study and the presence of luteal tissue 

was questioned during scanning.  In a comparable study, Dalin and coworkers (2002) 

reported one mare that failed to ovulate three months after immunization and then 

displayed some cyclic activity 5 and 7 days prior to entering seasonal anestrous.  We 

hypothesize that due to elevated progesterone levels and the absence of ovulation and 

estrous behavior the control mare in the present study sustained a persistent CL.  

The adverse reactions to the immunizations reported here were similar to those 

observed in earlier reports (Dalin et al., 2002; Elhay et al., 2007; Imboden et al., 2006).  

Each of these studies investigated different GnRH conjugates and adjuvants and though 

the severity of reactions varied, they cause concern about the safety of GnRH vaccines.  

Adverse reactions in the mares in the present study were thought to be caused by the 

adjuvant or carrier protein as they occurred in both the anti-GnRH and control mares.  

Results from this study demonstrated a significant reduction in adverse reactions when 

both the adjuvant and antigen dose was reduced in half and then administered in the mid-

gluteal region.  This region may be the best site for injection due to the continuous 
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flexing and movement of this muscle reducing the possibility for the formation of a 

granuloma.  It is also important to evaluate different adjuvants used as 

immunostimulators for this type of contraception.  Researchers are currently investigating 

the use of CpG motif-based adjuvants in recombinant GnRH vaccines (Conforti et al., 

2007) and synthetic GnRH vaccines which includes three linear repeats of GnRH, the 

hinge region of human IgG1 (hinge), and a T-helper epitope from the measles virus 

protein (MVP), conjugated to a purified recombinant heat shock protein 65 (Hsp65) of 

Mycobacterium bovis, as an alternative for common adjuvants (Jinshu et al., 2005).   

In conclusion, the GST-GnRH3 vaccine was effective in suppressing follicular 

development and progesterone concentrations in mares by stimulating antibody 

production against GnRH.  In this study with a limited number of animals, estrous 

behavior was suppressed in all but one treated mares.  This type of vaccine is beneficial 

for suppressing estrous behavior in mares that are often exposed to a stallion during 

competition or working situations.  Immunocontraception also provides the owner with 

the option of breeding the mare later in life.  However, for this method to be safe, 

effective and practical, an optimal dose of antigen and adjuvant needs to be determined. 
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Figure 1.  A map of the pGEX-GnRH3 protein expression plasmid. 
(A) A 90bp coding sequence coding for 3 copies of GnRH was inserted at the BamH I     
 restriction site of pGEX-4T-3.  (B) The sequence of the coding region downstream of 
GST:  The 3 tandem repeated coding region of GnRH is highlighted in green and the 
recognition site for BamH I in purple.  
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Figure 2.  Experimental design. 
(A) Immunization schedule.  (B) Weekly data collections of ultrasound (U/S), teasing and 
bleeding. 
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Figure 3.  Restriction endonuclease digest of the pGEX-GnRH3 plasmid. 
An ethidium bromide stained agarose gel loaded with 100bp DNA ladder (lane 1), the 
undigested pGEX-GnRH3 plasmid (lane 2), BamH I (lanes 3 and 4), BamH I and EcoRV 
(lanes 5 and 6) and a 1.0kb DNA ladder (lane 7).  The bold arrow indicates the 90bp 
GnRH-3 BamH I fragment.     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 31



 

                          

    1       2      3      4       5 

1000bp-- 

500bp-- 

100bp-- 

 

 
Figure 4.  Restriction endonuclease digest of the pGEX-4T vector. 
An ethidium bromide stained agarose gel was loaded with 100bp DNA ladder (lane 1), 
undigested pGEX-4T (lane 2), BamH I digest (lanes 3 and 4) and 1.0kb DNA ladder 
(lane 5). 
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Figure 5.  Coomassie blue stained gel of GST-GnRH3 fusion protein. 
An acrylamide gel loaded with GST-GnRH3 protein from the 3-hour incubation without 
sarcosine treatment (lanes 1: 3mg, and lane 2: 6mg), overnight incubation with sarcosine 
treatment (lane 3), overnight incubation without sarcosine treatment (lane 4), 20 ug of 
BSA (lane 5), and molecular weight standards (lane 6). 
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Figure 6.  Western blot analysis of GST-GnRH3 fusion protein. 
A PVDF membrane was probed with rabbit anti-GnRH.   Lanes 1 and 2 were loaded with 
GST-GnRH3; lane 3 contained purified GnRH for control;  and lane 4 was loaded with 
molecular weight standards.  Bold arrows depict the purified GnRH band (lane 3) and the 
GST-GnRH3 band (lane 1). 
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Figure 7.  Ovarian ultrasonography data for individual mares. 
T-1, T-2, T-3 and T-4 represent the four anti-GnRH treated mares, while C-1 and C-2 
represent the two control mares.  The arrows indicate times of the immunizations.  Small 
follicles were categorized to be approximately ≤10mm, medium follicles 11-15mm and 
large 16-20mm.  A post ovulation CL was arbitrarily assigned a 5mm designation.
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Figure 8.  Teasing scores for individual mare after exposure to a stallion. 
Estrous behavior of anti-GnRH (T-1, T-2, T-3 and T-4) and control (C-1 and C-2) mares.  
Teasing behavior was evaluated when exposed to a stallion and mares were assigned a 
score of 1-5.  Arrows indicate times of the immunizations.  
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Figure 9.  Serum progesterone profiles for individual mares. 
The progesterone profiles of each anti-GnRH mare (T-1, T-2, T-3 and T-4) and control 
mares (C-1 and C-2).  Arrows indicate times of the two immunizations. 
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Figure 10.  Serum binding of the GnRH. 
The circles indicate the GnRH binding of serum from anti-GnRH mares (n=4) while the 
squares indicated GnRH binding of serum from control mares (n=2).  Arrows indicate 
times of the immunizations. 
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Figure 11.  Injection site granuloma from an anti-GnRH mare.  
Photograph was taken two days after the primary immunization.  The circled area 
represents the area of a granuloma. 
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Table 1.  Mean serum progesterone concentration and GnRH binding. 
Mean progesterone concentration and GnRH binding in Anti-GnRH immunized mares 
and Control mares before 2nd immunization (-5 to 3 wk) and after 2nd immunization (4 
to 16 wk). 
 

 
*Significant differences (p<0.01) within columns with different superscripts. 
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