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NOMIENCLATTURE

A = piston area, in.2
Ay = servovalve area, in.”
b = width of hydraulic actuating piston, in.
Cq = discharge coefficient
Cy, = viscous damping constant of load, lbf—in/sec.
C,. = viscous damping constant of piston, lbf—in/sec.
d = diameter of servovalve spool, in.
E = system error, volts
Fp, = force delivered by actuator at maximum power point. lbf.
f = viscous damping const lb.-in/sec.
force reflected to actuating pisten rod, lbg,
a small increment of time, sec.
0 = servoamplifier gain
Kl = partial derivative of flow with respect teo X
K2 = negative partial derivative of flow with respect to AP
K3 = design constant
L = length of cylinder, in,
m = mass of load, lbg- sec“/in.
= mass of piston, lb —sec‘/ln.
P = pressure, lbr/in
AP = pressure drnk across servewvalive, 1u+,tn.2
(AP)y = pressure drop across seryovalve at some initial steady state
operating point, 1hfgin.
Py drain pressuwie. Jurj]ﬂ.
P, = pressure on left side of actuating piston, ‘n./in.’
Pr = pressure on right side OL actuating piston, lo;/ln.‘

bali=alle
L]

i

L[}

Ps = supply pressure, 1bg/in.?
flow rate, in.?/sec.
R = amplitude of input signal, volts

Tl = time constant, sec.

T3 = time constant, sec.

Vi, = volume of compressed fluid within the lines, in.3

Vy = volume of comoressed fiuid within the servovalve, in.

X = distance traveled by valve spool, in,

Xmax = maximum spool travel, in.

X9 = spool position at some steady state operating point, in.
Y = distance traveled by actuating piston, in.

Yp = actuater velecity at point nf maximum power, in/sec.
fluid bulk, modulus, ¢D:/1n.
damping ratio %
fluid density, lbg-sese™/in.
frequency ot inpui signal, radians/sec.

= natural frcquency, radians/sec.
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CHAPTER I

INTRODUCTION

Hydraulic actuating systems are used extensively where the design
applications call for quick response and a corresponding large amount of
force. In such applications the closed-loop servo-type hydraulic system is
usually employed.

In a masters report Gupta (1) discussed a design procedure for determin-
ing the critical dimensions of a four-way zero-lapped servovalve and =
loaded doubIEuendéd, double-acting cylinder sb that it could follow a
sinusoidal input of predetermined design frequencv and design amplitude.
These critical dimensions are the valve spool diameter, d, the maximum spool
travel, Xpa,%, and the area of the actuating piston. 7This design procedure
is known as the "Mazimum Power Method." Gupta used this design procedure
and studied the response characteristics of a system so designed within the
framework of an open-loop system in which the servo-valve spool was assumed
to be driven by a sinusoidal input at the predetermined design frequency
and at a peak-to-peak amplitude of 2X_ .

This masters report is intended to be a logical extension of Gupta's
work in that the hydraulic elements designed by the maximum power technique
are pla;ed in a closed loop servo-system. The requirements placed upon the
additional elements in the closed loop system are studied along with the
response characteristics of the complece system,

The closed-lcop system was first approximated by a completely linear
model; later the non-linearities of fluid compressibility and flow across
the servovalve are included in the mathematical model., The author's con-

clusions are hased upon studies of tidis nonlinear model.



CHAPTER IX

THE MAXIMUM POWER DESIGK METHOD

The maximum power design method is based upon the premise that a
load consisting of inertia and viscous dumping is to be driven sinusoidally
at a predetermined design frequency and design amplitude. This design
technique can be used to arrive at the dimensions of a four-way, zero-lapped
serve-valve and double-ended, double-acting cylinder as shown in Figure 1,

If one were to plot the velocity of the load (%) as a function of the
fbrce (F) requirea to drive the load, for sinﬁsoidal motion, one would obtain
a plot similar to Figure 2.a. Since power 1s the product of force and
velocity, lines of constant power would be hyperbelas such as those plotted
in Figure 2.a. Obviously the point on the load force~velocity locus corres-—
ponding to the maximum power required by the load is point "AY, Figure 2.b.
is a plot of servovalve=cylinder characteristics for varioué values of spool
travel., Cowmparing these plots with the plots of constant power superimposed
upon them it becomes obvious that the point at which maximum power is
delivered by the servovalve-cylinder is point "B", which is generated when
the spool is at its maximum displacement from the null position,

The central idea underlying the maximum power technique is that these
two points {("A" & "B"), which correspend respectively to the maximum power
required by the load and the maximum power delivered by the actuator, should
be equated and the serveovalve and actuating cylinder dimensions determined
by the coordinates of this point. The design equations used by Gupta, which

are based upon this idea are:
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Figure 1: TFour-way Zero-Lapped Servovalve and Double-Ended Double-Acting

Cylinder.



(a)

(b)

Figure 2: Velocity-Force characteristics for (a) a load driven sinusoidally,
(b) a servovaive-cylinder. Lines of constant power are shown in

dashes.
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The following assqmptions were made in formulating these design equations:

1. Supply pressure, PS’ is constant.

2. Drain pressure, Py, is zero.

3. The flow discharge coefficient, Cg,is constant.

4, Leakage is negligible.

5. Valve body, lines, and cylinder have rigid walls.

6. Line pressure drops are negligible,

7. Hydraulic fluid is incompressible,.

In his master's report Gupta demonstrated the maximum power method
by applying it to an example problem in which it was desired to drive a
load consisting of inertia* and viscous &émping** at a frequency of five
hertz (31.41 radians/second) with a peak-to-peak amplitude of one half inch.

Using design equations (1) and (2) Gupta obtained the following results:

A= 1.284 in.?
d = 0.25 in.

Xpax = 0.0098 in.

These same dimensions for the cylinder and servovalve will be used throughout
this report so that cewparisons may be made between Cupta's open loop results

and the closed loop results obtained in this study.

*mass wias oy + my = 1.555 =

*¥damping was C g :
. B in,



CHIAPTER III

PLACING LINEAR MODLLS OF THE OPEN-LOOP

ELEMENTS IN A CLOSED-LOOP SYSTEM

The first step in studying the closed-loop response of thé servovalve
and cylinder designed by the maximum power method was to approximate their
characteristics, and these of the additional elements used to make a closed
loop system, by linear models. The block diagram of the complete closed
loop system is shown in Figure 3,

In Figure 3 fhe servoamplifier is repreéented as a constant gain and the
servovalve torque motor is represented by a first order transfer function.
This choice for the servovalve was made based upon the recommendations of
the Moog Company, a leader in the field of servovalves (2). In reference
number three Moop also advises that a second order transfer funection may
be used to represent the servovalve. Throughout this rEport either a first
or a second order representaticn is adopted for this element in the hopes
that ;he analytic results of this report may, at some future time, be
compared to experimental results obtained from the servosystem in the
Mechanical Engineering Laboratory, which uses a Moog servovalve..

The servovalve-cylinder with load is represented by the following

transfer function which is taken from D'Azzo and Houpis (3):

K3

1 (3)
565+ 73)

The quantities K3 and T3 are defined by the relationships: (2)
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AK1
K3 = %7 RO
T3 = mK2 (5)
AZ 4+ cK2

The quantities K1 and K2 used in these formulas are determined when the
equation governing the flow rate to or from the actuating piston is

linearized using the Taylor's series expansion. The flow equation is:

—
Q= cymax 2 (6)

The constants Kl and K2 are defined to be:

KL =29 = ¢4 X d,z(ap)o (7
X ——e

p

</ A i/__.}____._

In the derivation of Kl and K2 assumed initial steady state operating point
values of (AP)O and Xy must -be used. The value of X; so used was assumed to
be small so that a good approximation could be made to the average value of
X at steady state conditions (X = 0). ?his was necessary for the simple
fact that letting Xy = 0 would make KZ = 0, The value (AP)D was assumed to
be the average pressure difference along the fluid flow path when X5 is very
small.

The maximum power desipgn technique determines the values of A, A ,y,

and d used for the servovalve and cylinder, Therefore for a given design



incorporating these values, a mathematical model can be constructed. As
indicated previcusly the same example used by Gupta was used here.

Primary interest was focused on the values of KO and Tl which resulted
in an amplitude ratio of unity when the rest of the closed-loop system was
defined as above., This is of importance because an amplitude ratio of
unity means that the output of the system exactly follows the input, A
digital computer program was written which solved for KO as Tl was varied
so that the amplitude ratio remained unity when the system is excited at the

design freguencv (see appendix}, The results of this analysis are tabulated

in Fipure 4 for different assumed values of (AP)O and X5. Figure 4 indicates
that the wvalues of KO and Tl required are sensitive to the assumed quantities
(&P) 0 and XO .

Figure 5 pertrays the effect of varying the input frequency on the
amplitude ratio. The velues of KO, T1, (4P),, and X, were picked so as to
make the amplitude ratio unity at the design frequency of 31.41 radians per
second.

When using a completely linearized model for a servovalve cylinder
system great care must be taken in deriving the transfer functions and in.
interpreting any résults so obtained, however the results may be used as a
guide in establishing trends. The most significant trends which are obtained
from this completely linearized analysié is that an amplitude ratio of one
is possible at the design frequency and that the design frequency is the
largest frequency on the frequency response curve for which an amplitude

ratio of one is obtained.
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CHAPTER 1V

REPRESENTING TUIE SERVOVALVE AND CYLINDER DBY
NONLINEAR EQUATIONS IN A CLOSED LOOP SYSTEM

The next step in this study was to replace the linear model of the
servovalve and cylinder with equations which incorporated the nonlinear
effects of fluid compressibility and servovalve flow as a function of
pressure drop. The derivation of these nonlinear equations is involved and,
for the sake of brevity, not included here. The reader is referred to the
masters report by Gupta for this derivation. The dynamic nonlinear equations
for the servovalve and cylinder are listed in the appendix along with an
explanation of the digital computer programs used in the calculations.

The graphs on the following pages are the results of the computer study
made, The nonlinear equaticns were used in a closed loop system with either
a first order or a second order linear model to represent the servoamplifier
and servovalve torque motor necessary for a closed loop system, see Figure 6.
This approach was used because quite often a designer will choose either a
first or second order servosystem model for these elements (2) as indicated
previously. A ranée of parameter values was assumed for the first and second
order models so that analytic results could be related to experimental result:
for Moog servovalves. Some typical parémeter values for Moog servovalves are
first order time constants (T1l) ranging from 0.0013 to 0.0029 seconds and
second order natural frequencies ranging from 110 Hz, to 240 lz. A value of

1.3 was used a

wn

a damping ratio on all second order svstems because this
value corresponds to the particular loog servovalve in the Mechanical

Engineering Laboratory.
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R+ KO
- 1 X Non-linear Y
5+ = Equati
T quations
(a)
R i
I‘\-O
A 5 5 X Non—linear I Y
S€ + 28w, S + wy Equations i
(b)

Figure 6:

Servovalve and cylinder represented by nonlinear equations in
a closed loop system with the servoamplifier and servotorque
motor represented by a (2) first order transfer function, (b)

second order transfer function.
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In Figures 7 throngh 19 the author refers to either first or second orde
systems according to whetber the serveamplifier and servotorque motor are
represented by elther a first or second order transfer function.

Figure 7 is a graph of zmplitude ratic versus servoamplifier gain (KO)
for a first order transfer function with time constant Tl = 0.0005 sec,
Figure 7 indicates that for KO = 38 the amplitude ratio of this system is cone
It also indicates that for large values of KO the amplitude ratio approaches
a constant value, or the system becomes saturated. Figure & is a portiou of
the frequency response of this system when KO is specified to be 38. This
graph indicates that the bandwidth of this system corresponds to approximatel
47 radians per second,

Figure 9 is a plot of amplitude ratic versus servoamplifier gain (XO)
for a first order system having time censtant T1 = 0,00081 sec. Figure 9 alse
indicates that the system became saturated for large values of KO. A value
of KO = 20,0 gives an amplitude ratio cof one. Figure 10 shows a frequency
response for this system with KO specified to be 20.0. This frequency
response curve is typicallof those for the other systems. A complete curve
was not formed for each case due to the computer time necessary.

Figures 11 and 12 are similar to Figures 7, 8, 9, and 10. Figure 11
shows amplitude ratio as a function of serveamplifier gain for a first
order system with Tl = 0.0081l. Figure 12 shows a portion of the frequency
response for this system with KO specified to be 1.70 (corresponding to an
amplitude ratio of unity).

The throe first order cases referred to zbove proﬁide a range of
values covering the typical values for first order systems recommended by

Moog.
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Figures 13 through 18 refer to the second order system shown in Fipure
6.b. The value of damping ratio £ = 1,3 was adopted because it corresponded
to Moog specifications for the particular servovalve in the mechanical
engineering laboratory. Three values of natural frequency (w, = 350 radians
per second, w, = 735 radians per second, and w, = 1470 radians per second)
were used to cover the range of typical values already referred to,

Figures 13, 15, and 17 are plots of amplitude ratio versus servo-
amplifier gain for these three cases. They all exhibit the same general
shape that the first order cases did.

Figures 14, 16, and 18 are frequency response curves for each second
ordey case, On each graph the value of KO was picked so as to give an
amplitude ratio of unity at the design frequency of 31.14 radians per second.

Beside cach calculated point on the graphs just referred to is annotated
the maximum value which the spool travel, X, obtained. Freow this it 1s seen
that the spool travel never obtained its maximum design value, X .y, except
for large amplitude raties. This suggests the possibility of modifying
tﬁe design equations, based on the maximum power design method, so that a
smaller value of X .y would result when the design calculations are made.
Another way of viewing this could be as a built-in safety facter to off-set
whatever inadequate assumptions might have been made in deriving the original
design equations., Conditions which would violate these assumptions in an
actual system are:

(1) Variable supply pressure, P

(2) drain pressure, P,, greater than zero

(3) wvariable flow discharpe coefficients, Cq

(4) expansion of supply lines

(5) sizeable line pressure drops.
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Gupta obtained similar results in his report., lle took the servovalve and
¢ylinder as elements of an open-loop system and assumed that the servovalve
spool was sinusoidally driven at the design frequency with a peak-to-

peak amplitude of 2X,... When this was done he consistently obtained
maximum values for Y which exceeded the design value for Y.

Figure 19 illustrates how the amplitude ratio varies as the compressed
volume of fluid Letween the servovalve and cylinder is increased. To
construct this graph the case of a first order model for the servoamplifier
and servovalve torque motor in the closed loop system was used. The
constants for the first order element are shown in Tigure 10, For compressed

3 the amplitude ratio drops off linearly. This

volumes exceeding 270 in.
graph can also be interpreted as showing the effects of changing the value of
ghe fiuid buik modulus of a system since increasing the compressed volume

has the same effect as lowering the fluid bulk modulus. In a real system

the fluvid bulk modulus is lowered whenever air is entrained in hydraulic
fluid (4)., TFor example, if the entrained air is 10% of the total volume,

the bulk modulus is reduced by approximately 350%.

In all six cases of first and second order systems studied a point was
reached at which the amplitude ratio was constant for all greater values of
gain., In light of the relationship indicated in Figure 19 this would seem
Eo indicate that 1f the compressed volume of fluid is too large, or the

value of bulk modulus too small, then it is not possible to obtain an

amplitude ratio of unity.
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CHAPTER V
CONCLUSIONS

When the servovalve and cylinder for a hydrsulic servosystem were
desipned using the maximum power method, and the closed loop performance

of this system studied, the following conclusions were reached:

l. The maximum value of spool travel Xmax’ which is calculated
using the desipn method is never attained for the amplitude ratio
of unity, with an input amplitude equal to the design amplitude,
repgardless of input frequency. This can either be viewed as an
overdesign or as a margin of safety apainst inadequate assump-

tions used in the desipgn methed, as discussed in Chapter 1V,

2. The size of the conpressed voluwe of fluid between the servovalve
and cylinder is critical in determining closed loop system perform-
ance, The compressed volume sliculd be as small as possible., The
effect of an increase in compressed volume can also be obtained
by lowering the fluid bulk modulus as was discussed in Chapter IiI.
As an example of this, the larpgest compressed volume allowable with
a value of & = 220,000 lb/in2 was 270 in.3 (for which an amplitude
ratio of unity was obtained): this is equivalent to stating that

3 the smallest allowable wvalue of

for a compressed volume of 100 in
fluid bulk modulus is 8,150 lbs/in2 {(which allows for an amplitude

ratio of one}. It is possible for the compressed volume to place

a limlt on the amplitude ratio obtainable from a given system.
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Linearized models for the servovalve and cylinder bear only faint
resemblence to the more accurate non-linear mathematical model,

therefore results obtained from linear models should be interpreted

with care.
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APPENDIX
SUMMARY OF SLRVOVALVE AND CYLINDER EQUATIONS

The motion of the loaded hydraulic cylinder is governed by the

equation:

ARy -~ PL) = (mp + ) ¥+ (¢, +cp) Y (A.1)

The following equations apply for the servovalve-cylinder combination
but only when the conditions on X, PL, and Pr are as specified in each of
the five cases listed. Also the first six assumptions listed on page 5

apply.

(-AY-} (8) - E.’ 2
(Vy + ¥V, + AY) L (A.2)
(AY) (B) _ 2
(Vg FV, + AL - 6 - 1)) Pr {3
X>0, I‘S > PL
B (€ (M YE (0g - 7y) - AT - (A.4)
+ - PL

(vv + vy o+ AY)



P, >0

r

!2 .
B((~Cq) (m) (d) (X) = By b AY)

=P

(Vg + Vg + A (L-b-¥)) t

P _<0

r

e((cd)cn)(d>(x>J§.|rr| + AY)
: ‘ = P,
(Vy + Vv, + A (L-b-Y))

X>0, Pg < Py

B((-Cq) (1) (@ (% () D)

(Vy + VI, + AY)

mm@wnaqupr-+ﬁ)

(Vy + vy, + A (L-b-1))

=P‘[’
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(A.5)

(A.6)

(A.7)

(A.8)



P <0
r

B((Cd)(v}(d)(x)llf P |+ a9

(Vy + Vp + & (L-b-Y))

mPr

X<0, PS>Pr

7 .
B((—Cd)(ﬂ)(d)(x)1f5-(Ps - P.) + AY)

(Vv'+ VL + A (L-b-Y))

P, >0
BlepM@E[2p, -
2= PI
(Vy + Vp, + AY) ’
PL < Q
BLECY () (&) () g.gpL| -AY)
= PL

(Vy + vV, + AY)

X <0, Pg <P
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(A.9)

(A.10)

(A.11)

(A.12)
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2 L]
B((Cy) (m) (&) (X)JD— (P, - Py) + AY)

=P, (A.13)
PL > 0
2 .
B((Cy) (v)(d)(x), o PL =AY)
=B (A.14)
(VV + Vv + AY)
PL <0
B((~Cg) (T) (d) (X) / —;’: B -av)
= Py (A.15)
(VV + VL + AY)

The above equations make up the block labeled '"nonlinear equations" in
Figures A.l and A.2. These equations were used in conjunction with the
differential equations obtained from the tramsfer function representations
of the servoémplifier and servotorque motor,

Figure A.l shows a closed-loop system in which a first order model is
used to represent the servoémplifier and servovalve motor. The relation-

ship between X and the error signal E is given by:

== (A.16)

E 1 Al
8+

SX + o7 =(KO)E | (A.17)

T1



RFY0+R sin wt

K0 7 Nonlinear
Equations

Figure Al:

Closed loop system in which a first order system is used to

represent servoamplifier and servovalve torque wotor.
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R = YO + R sin(wt)

E

KO

— e

S

2

4 2£wnS + Wy

2

Nonlinear
Equations

Figure A.2: C(losed loop system in which a2 second order model is used to

represent tihe servoamplifier and servotorque motcr,
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When this equation is converted to the time domain it becomes:

dx X
at - (KO)E-37

(A.18)

To simulate this system on a digital computer it is first made a
discrete system by dividing the time domain solution into small increments
of time, Initial values of Py, P., Y, X, and time are assumed and then as
time 1s slowly incremented i, ér: Py, and Y are calculated at each discrete

point. A recurrence formula of the type:

S-1 dt (A.19)

is then used where h = a small increment of time.

By using this relationship a time domain solution for Y(t) can be
derived, Tigure A.3 hows the typical results for y compared with the
assumed sinusoidal input to the closed loop system, The computer program
which does this for the complete closed loop system (with first order model)

is on the following pages. The computer symbols are listed in Table I.
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TABLE Al

Digital Computer Symbols

A = area of actuator piston

B = fluid bulk modulus

BE = thickness of actuacor piston
BL damping coefficient of load
BP = damping coefficient of actuating piston
CD = discharge coefficient

D = spool diameter

DDX = second derivative of X

DDY = second derivative of Y

DX = first derivative of X

DY = first derivative of Y

E = damping ratio

H = differential time increment
KO = gain

L = length of actuating cylinder
ML = mass of load

MP = mass of piston

PL =7

PI. = prassure on left side of actuating piston
PR = pressure on right side of actuating piston
PS = supply pressure

R = amplitude of forcing function
= fluid density
T = time
Tl = time constant
VL. = compressed volume of fluid in lines
W = compressed voliume of fluid in valve
W = design frequency
WN = natural frequency
X = spool displacement
Y = actuating piston displacement
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12

{r .l{,’_

KND=6500,10

WN=T730,7]

E=0.5

VV=51 40

Vi=23e9

H=0,{1}l

W=21l.14%

T1=0.0u031

R=De25

PS=1000,.0

R=2200089

CN=0, 625

Pl=3,1416

D=0.25

RO=3eJd 371813

A=1.284

L=4.0

RE=N.5

RP=104G

BL=9",.2

ML=1,40

DX=iiqe

X":Q'D

Y=1e75

DY=)q 2

PL=500.0C

PR=50040

DN 99 J4=1,500,41

T=J%H

DX=A(KG={ {175+ (RESINIWHTII)~YPI-{X/T1)
TFIXeGTellali} GO T 11
TF{XalLTo i a®) A TN 22
IF{Xes BN ) GO T 33
CONTT ML

TR{Xer T TatOR) X=17,11098
TF{PSGTPL) GO TD 44
DPL=8x{ [ {~1)  COxP Iy =S0RT{{2/RD)*{PL-PS) ) )=(A%DY )}/ {VV+
CVL+{AxY))

TF(PP oGl outa) DPR=B={{COXPI*0*X=SQRT((2/RD1=PR) 1+ (A=DY)}/

CIVV+VIE 2% (L-RE=Y))

IF(PR LT dasi) MPR=R:z (NPT =DNAXZSORTI(2/RO}F=(=1)=(PR) )} +

CLlADY I/ (VVHY L+ {As (L~BE=-Y)))

DDY={(2=PL }=(A%DPR)={ (RP+BL )} EDY) )/ (MP+ML)

PL=PRL+{DPL=H)

PR=PR+[OPIP=H)

Y=Y+ ({DY=H)

TR(Ye3To205) Y=2u5

IF(YalTor «T) Y="0a2

DY=DY4+(D0iyxH)

X=X+ (OIX=H)

lnI{I.rr“{’f“rlfi) ”I_-Dc’yﬁ\';‘hX.T

FOAmaT (1M 34FL4e %)

GG T2 99

CORTIMIE

OPL=0 2 ({COsP T X=GRTA(2/F0Y={PE=PLY Y )=(A3DY) )/ {VVHVL+(A
(YY)} '

IF PR aOT e lell) NPR=Ax({{-1)4CD*PTANEXSSART{L2/R0)I=PRY )~ { A%
DY/ VYA (LR =Y ) ))
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23

55

56

COYIY/LVY+VL+ A (L-RE=Y]]))

DOY=((ARPL )~ (AXDRY-((BP+BRL) =0}/ {MB+ML)
PL=PL4{1D] »H)
PR=P+ (NP RHY
Y=Y+ {NYsH )
IF(Y.f;TUE.S)
IF(Yo LT.:-.Q}
NY=DY +{NNYHH)
X=X+ {OX=H)
WRITFE{A445) PLyPRyDY sV eXaT

FORMAT{IH 46Flbe%}

GO TN 59

CONT THUF

IFl e LTe=ins 98} X=={,u098

TF{PS.GE-PP Y} GO Tt 55
DPR=AX(CNvPIxNEXHSAST{(2/RT)%{PR=PS )} )+ (A*DY )} /{VV+VL+A=(L
C~RF=-Y)) ,

IF({PL LGRS ) DPL=Ra({LDHPTxNuXxSORTILZ2/RAIXPLYY-(ASDY) )/
ClVVHVL+(ASY))

TF{PL alTe e} NPL=BR{{{-1)%CO*PIxNxX=SQRT{{Z/RO)*={-1)4=PL)
Cr=(AsDy 1) A LVY+VL+{AxY )}

DOY={ (AP L)={2=PR}=({3P+BLI*DY )/ (MP+ML)

PL=PL+{DPL¥H])

PR=PR+{DPEHH)

Y=Y+ [ DYIH)

IF{Y.GTs2.5) Y=245

TR IYaLTole) Y=040

NY=NY+{DDY*H}

X=X+ {NXxH]

WORITE (6 423) PLWPRyDY 2 Y%, T

FORMAT (1Y ,6F14.4)

GO TN 39

CONTIMNUF

PRR=AR=({{ =1 0P w2508 T({2/RTIX{PS~PR) ) I+ (AxDY) )/ {VY
CHVL+(AS{L-RF=-Y)))

IF{PL oGFeNal DPL=RX({CO®PIHDxX=SCRT({2/RQ)=PL)}-(AXNY))/
CAvV+VLALEmY))

IF{PLeLT e o) DRI AR=( (=1 )00 TDa X2 SORT(LIZ/RD) (=1} {PL
Cyyr=(asxny i/ {vy+vL+ (A=Y ))
DOY=LLA=PLY~(A%PR)~{ [BP+RL)=DY ) )/ [MP+ML)

PL=PL +{0OP{ *H) '

PR=PR4+(NPOoH)

Y=Y+{NY+H)

TF{YefiTe5e5) ¥=2,5

IF(YJLT-"nr') Y=g}

DY=NY+{DOYEH)

X=X+ {02X*H)

WRITE (A58 PLAPR DY 3 Y4 Xy T

FORMAT (1M ,6Fl4.4)

GO TN 99

CONTI M

NPL={ (1) "2sasnyY Y/ (VV+VL+{AxY) )

DRR={ ARDY =0/ LyV+VE+ (2n{E=RBi=Y 1))

PRY=( L ASPL Y= (A%PR} = {AP+RLIEDY )/ (MP+ML)

PL=P{ +10DY] k1)
PR=DZI (NPT EH])
Y=Y+{DYaH)
IF(Y.GT.3-KJ, Y=3-
TRl LTe le ) ¥=T,D

W
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X=X+ DX%HY)

WRITFE {6y 24)
34 FORMAT {1H
99 CONTINUE

RETURN

END

PLaPP DY oY oeXsT
vEF1%e )

45



46

e

Figure A.2 shows a closed-lowsp systor in which a second order model is
used to represent the serveamplifier and servovalve torque motor. The

relationship between X and the ervor signzl e is given by:

x KO
E ™ . .

$2 4+ 2ewsy + wy” (A.20})
828 + 26wpSR b up K = (KOYE (A.21)

when this equation is cornverted teo rhe time domain it becomes:

9
XL oop K 2y w
52 T 2Eua gr + wg X = (RO)E (4.22)

To simulate this svstem ¢n a digital conputer it is first made a
discrete system by dividing the time domain selution into small increments

of time. Initial values of Ph, ., ¥, X, X, and tine are assumed and then

r!
aé time is slowly incremented i, ﬁr, §L’ Y, and Y are calculated at each
discrete point, A recurrence formula of the type:
dX
= X + h = -
S T (A.23)
is then used where h = a small increment of time,
By using this relationship a time domain solution for Y(t) can be
derived. The computer program which performs the computations for the

complete closed loop system (with second order model) is on the following

pages,
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KO=9550.0

WN=T3 jel

E=0e5

VV=62,.0

Vi=21.1

H=Ja0J1

Tl=aouuBl

R=0}a25

PS=10u0eid

B=220 Juu

CD=0e H25

PI=3,1416

D=0.25

RO=Ue U081

A=1,224

L=44i3

BE={s5

BP=1Uae0

BL=90.0

ML=1la49Y

MP=(4 065

NX=0.0

X=0D70

Y=1.75

DY*’”J:Q

PL=50040

PR=5Uge i

DO 99 Jd=1,500,1

T=J%H

DDX=KO% Lo 75+ {RRSTN(WRTY ) =Y )= (2FESWNSRDX b= { {WN*x22 ) X}

IC(Xar’ToaU’GU T’j .‘Ll . )

TF{XeLTaiawd 60 7O 22

IF{Xea e d GO TG 33

CONT INNE

IF(XeBTeZaUN28) X=0,ul88

IF{PS GTL2L)Y GO TO 44
DPL=R={{{-1)=C0=PT=DxXESORT{(2/RD)=(PL=PS 1) )=(A=0Y )}/ (VV+
CVL+LA=Y))

IF(PR.GE, Jau) DPE=R®({CD*PIxD=X=SORT{{2/RO)I*PR) I+ (ADY))/
ClVV+VL+a {(L=RFE=-Y]) )

TFIPRGLTo Jaid) TPR=RBRIICHD#PI=D=CRSORT{(2/ROY 4L ~1)={PR)) )+
C{A=DY ) )/ vyl +{a=(1L-4E-Y})])

DOY={ (A%=PL)=(A%PRI=({(B3P+BL)=DY) I/ IMP+ML)
PL=PL+{ 0P H)

PR=PR+{[PPxH)

Y=Y+ {DY=H])

TE(YeBTals5) Y=2,5
IF(YO{.T.'.,J’B;:}) Y=-:'.|‘J

DY=DY+ (DY)

K=X+{OXnH)

DX=NX+(H>30X)

WRITE{ Oy L2) PLaFE DY Yo X T
FURMAT (1d ,6F1l4.4)

GO TO 99

CONT U=

DPL=3=((CU=PT*D=X*SORTI(2/FP0 )= {PS=PLI})I-{AXDY ) )/ {VV+VL+(A

C*Y))
TE(DPR ,GF e ™) NPR=Bu(( (=] )4 CNapIAnaXsSARTI(2/7014PR) )= A
CRY))/ VYL +{ 2= (L-dz=-Y]))
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22

23

55

o

IFIPR LT guair) NOP=Rx({COP ] 2NEXHSORT{{2/R0)={=1)%PR}}—-{ Ax
COYI /7 lyvevi+{uas{L-Be=Y}))

DOY=({ AP )= {4%PR )= (P +BL) =0Y}I/{MPENL)

PL=PL+{LirLxH]

PR=PR+ (DD R

Y=¥+{NHY~H)

IF{YalTe: oil} Y=lal

NY=DY+ {(DuY™*H)

X=X+ (DxX=11)

DX=0X+(H>DNX)

WRITE(GH245) PLPR DY Y4 X, T

FORMATIIN 446F1l4.4%)

GJd TN 99

CONT INIE

IF{XaLTe—adl98) X=-7.0098

IF{PS .G wpi Gy T 85

DPR=R= {1 pT#ﬂ»X*SQQr({ﬁflﬂl*(pR ~PS)Y+{AXDY))/(VV+VL+AF (L
C-BE-Y))

IF{PLGGES Ja) DPL=R*x({CDxPI=D%X*=SORT{(2/R0)%=PL})=-{AXDY)})/
CIVVHVIL+1L%5Y))

IF(PLeLT. e) DPL=BA{{{~- 1)*Cﬂ*°‘*““X*ﬁQnT{(2/R0}°(*1lﬁDL)
Cl={ADY)Y)Y/ TVV+VLF(ARY))

TDOY={LAROL )= {A¥PR)=({RP+BL)*DY))/{MP+ML)

PL=PL +(DPL*H}

PR=PR+(NPRXH)
Y=Y+{DY+H)

IFIY«0Te3:5) Y
TF{YelTaaf) Y
DY=DY+{DDY=H)

X=X+ {DXieH)
DX=DX+ (H=020X)
WRITF{H,25) PLyPR DY VX, T
FORMAT {1H 46F1%e%)

GO TN g9
CONT INUE '
DPR=R={{{~1)=COxPIxNIXHSORT((2/RD)Ix{PS=PR )} }+(A=%DY) }/ (VV
Cevi+{ A={l ~-BL=Yv))) '

IFIPL Gl Ge) DPL=BR ({COXPL#=DEXASQRI{TI2/RGI®PL) )-1A¥DY)} )/
COVV+EVL+TAYY))

TE(PLeLTe e} DPLIB*({=1)CORPI®D=X*SQRT((2/RO)*={-1}=*{PL
CrY)I=( A=Y/ {VYV+VL +{ASY]) ) .

DRY=( (A%PL)=(A=PR)I-L{BP+BL)=DY) ) /A (MP+MAL)

Pl=PL+{UPL*H)

PR=PR+{{P2%5H )

Y=Y+ {OY#H)

TF(Ye3Ta345) Y=345

]F(Y“LT."'OE\}] Y::x_j.(}

DY=DY+ {007 =H)

X=X+ (DX

DA=DX+ {tvNY)

‘JF‘IT': (ﬁv‘;'ﬁi 235 ,T’P,DY !Y’X'T

Se

e

II i

FORMAT (1M ,6F1444)
62 TO 99
[‘_ ﬁ1'¥"¥-1 '-"|]L

DPL={{=3) == Y) S IVVEYL+(25Y ) )

NPRat 2Ny R/ VY VL LAS{L=-BE=-Y}))
DOY=((AZOL)=(A¥PR)=({BP+BL)=DY})/ (MP+ML)
PL=PL+ {0 VLAH)
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g9

Y=Y+( DY TH)

[IF(YeGTu3e5) Y=3.5
IF{YelTewald Y=l 00

)

-

DY=DY + (DY ~H)

X=X+ {0X=1)

UX=0X+[H=D0X)

WRTTE MGy 34)
FORMAT (1H
COMTTNE
RETURN

END

CLyPR4DY s Yy Xy T
1 6F14.4)
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This report is a study of how a four-way zero—-lapped servovalve and a
loaded double-ended, double-acting cylinder designed by the maximum power
design method respond when placed within a closed loop sysﬁem.

The closed loop system is first approximated by a completely linear
model; then the servovalve and cylinder are represented by nonlinear
equations which account for fluid compressibility and fiow across the
valve due to preséure drop. The other element in the closed loop system
is represented by both first and second order transfer functioms,

Computer analyses are made of the response of the closed loop system
and results are obtained based ;fon these analyses., The conclusions reached
specify what requirements are placed upon the parameters of the system so
ihaten1input of predetermined frequency and amplitude can be reproduced by
the closed loop system., Conclusions are also reached concerning how either
an increase in the compressed volume of fluid or a decrease in the fluid

bulk modulus affect the ability of the cleosed loop system to reproduce a

given sinusoidal input of predetermined frequency and amplitude.





