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Abstract  10 

As part of the C111 spreader canal project, structural and operational modifications involving incremental 11 

raises in canal stage are planned along one of the major canals (i.e., C111) separating Everglades National 12 

Park and agricultural production areas to the east of the park. This study used Dynamic Factor Analysis 13 

(DFA) as an alternative tool to physically based models to explore the relationship between different 14 

hydrologic variables and the effect of proposed changes in surface water management on soil and bedrock 15 

water contents in south Florida. To achieve the goal, objectives were to: (1) use DFA to identify the most 16 

important factors affecting temporal variation in soil and bedrock water contents, (2) develop a simplified 17 

DFA based regression model for predicting soil and bedrock water contents as a function of canal stage 18 

and (3) assess the effect of the proposed incremental raises in canal stage on soil and bedrock water 19 

contents. DFA revealed that 5 common trends were the minimum required to describe unexplained 20 

variation in the 11 time series studied. Introducing canal stage, water table evaporation and net recharge 21 

resulted in lower Akaike information criterion (AIC) and higher Nash-Sutcliffe (Ceff) values. Results 22 

indicated that canal stage significantly (t > 2) drives temporal variation in soil and bedrock water 23 

contents, which was represented as scaled frequency while net surface recharge was significant in 7 out of 24 

the 11 time series analyzed. The effect of water table evaporation was not significant at all sites. Results 25 

also indicated that the most important factor influencing temporal variation in soil and bedrock water 26 
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contents in terms of regression coefficient magnitude was canal stage. Based on DFA results, a simple 27 

regression model was developed to predict soil and bedrock water contents at various elevations as a 28 

function of canal stage and net recharge. The performance of the simple model ranged from good (Ceff 29 

ranging from 0.56 to 0.74) to poor (Cef f ranging from 0.10 to 0.15), performance was better at sites with 30 

smaller depths to water table (< 1 m) highlighting the effect of micro-topography on soil and bedrock 31 

water content dynamics. Assessment of the effect of 6, 9 and 12 cm increases in canal stage using the 32 

simple regression model indicated that changes in temporal variation in soil and bedrock water contents 33 

were negligible (average<1.0% average change) at 500 to 2000 m from C111 (or low elevations) which 34 

may be attributed to the near saturation conditions already occurring at these sites. This study used DFA 35 

to explore the relationship between soil and bedrock water dynamics and surface water stage in shallow 36 

water table environments. This approach can be applied to any system in which detailed physical 37 

modeling would be limited by inadequate information on parameters or processes governing the physical 38 

system. 39 

Key words: Soil water content, bedrock water content, scaled frequency, Dynamic Factor Analysis, canal 40 

stage, water table 41 

Abbreviations: DFA, dynamic factor analysis; SF, scaled frequency; Rnet, net surface recharge; MWT, 42 
mean water table elevation; S177T, C111 canal stage;  SFWMD, South Florida Water Management 43 
District; AIC, Akaike information criterion; BIC, Bayesian information criterio; VIF, variance inflation 44 
factor;  NGVD29, National Geodetic Vertical Datum of 1929. 45 
  46 
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1. Introduction 47 

 In an attempt to correct some of the undesired consequences of south Florida’s extensive drainage 48 

canal network on the region’s ecosystem, an environmental restoration project named the Comprehensive 49 

Everglades Restoration Plan (CERP) is currently under implementation. CERP was approved by the 50 

United States Congress under the Water Resources Development Act (2000). One of the 68 components 51 

that comprise CERP is the C111 spreader canal project whose goal is to reduce the impacts of C111 (i.e., 52 

reduce groundwater seepage into C111) on Everglades National Park (ENP) and Taylor Slough which is a 53 

natural drainage feature that conveys water to Florida while maintaining existing levels of flood 54 

protection in the adjacent agricultural and urban areas (U.S. Army Corps of Engineers [USACP] and 55 

South Florida Water Management District [SFWMD], 2009). As part of the C111 spreader canal project, 56 

structural modifications and operational adjustments involving incremental raises in canal stage are 57 

planned along one of the major canals (i.e., C111) separating ENP and agricultural production areas to the 58 

east of the canal. The increase in canal stage will occur by changing surface water management at the 59 

gated spillway located at structure named S18C (Fig. 1) in the form of incremental raises in canal stage of 60 

up to 12 cm.  61 

 It is anticipated that the planned rise in C111 canal stage will affect water table levels in the adjacent 62 

agricultural areas. Earlier research indicated that there is substantial interaction between the highly 63 

permeable Biscayne aquifer and water level in canals (Genereux and Slater, 1999). The hydraulic 64 

connection between Biscayne aquifer and canal C111 causes the shallow water table system to fluctuate 65 

with respect to changes in canal stage. Using the drain to equilibrium assumption, Barquin et al. (2011) 66 

showed that water table elevation in the Biscayne aquifer significantly influenced soil and bedrock water 67 

contents in a fruit orchard with soil and bedrock formations that are very similar to our current study site. 68 

Therefore, raising water table elevation could result in increased soil and bedrock water contents or 69 

greater saturation of the root zone which could affect the production of winter vegetables predominately 70 

grown in this area. Saturation of the root zone could impact yield potential by impairing root growth due 71 
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to anoxia, reducing stomatal conductance, and reducing net CO2 assimilation (Schaffer, 1998). In addition 72 

to physiological stress, having the soils saturated could render movement of machinery difficult and also 73 

impact growing season and market dates. However, it is not known to what extent the proposed structural 74 

modifications and operational adjustments along canal C111 would impact water table elevations and thus 75 

soil and bedrock water contents in agricultural areas east of the canal.   76 

 Vegetable production in Miami-Dade County, a substantial proportion of which is located along the 77 

extensive eastern boundary of ENP, is a significant contributor to both the local and state economies. 78 

According to the 2007 Census of Agriculture from the US Department of Agriculture (USDA, 2007), the 79 

total value of vegetables produced in Miami-Dade County was over 128 million dollars in 2007. Green 80 

beans, sweet corn, squash, tomatoes and sweet potato are the dominant vegetables grown in the area. 81 

There is need to quantify the impacts of hydrological modifications and surface water management on 82 

agricultural land use at field scale because large regional hydrology models have discretization that might 83 

not be suitable for resolving small scale micro-topographic differences within the landscape. 84 

 Long term monitoring and exploratory analysis of soil and limestone bedrock water contents could 85 

characterize the effect of various drivers on the temporal variability of water contents. The soils in the 86 

agricultural areas east of C111 were created from scarification of the underlying limestone bedrock hence 87 

they are very shallow and have high gravel content. Three main stresses that influence soil water content 88 

that could be included in exploratory analysis are 1) canal stage, which affects water table elevation; 2) 89 

rainfall, and 3) evapotranspiration. While these stresses may be assessed using physically based models of 90 

vadose zone flow and transport,  implementation of unsaturated flow models (e.g., WAVE [Vanclooster 91 

et al., 1995] or HYDRUS [Šimůnek, et al., 2008]) is not an easy task since they contain numerous 92 

parameters and processes that have to be quantified (Ritter et al., 2009). In very gravelly and shallow soils 93 

such as those in south Miami-Dade County, quantifying parameters such as hydraulic conductivity for use 94 

in Richards’ equation is further complicated by having porous gravely soils that are not homogeneous. 95 

Previous applications of WAVE, for example, in gravely soils of south Florida have indicated that a 96 
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detailed description of soil hydraulic properties (e.g., using dual porosity) could result in improved 97 

robustness of vadose zone models (Duwig et al., 2003; Muñoz-Carpena et al., 2008). Therefore the 98 

success of applying physically based models to simulate soil and bedrock water dynamics depends largely 99 

on proper conceptualization of location specific processes and proper measurement or estimation of 100 

parameters. In this context, complementary exploratory tools such as Dynamic Factor Analysis (DFA) 101 

which are not processes based are desired as simpler preliminary exploratory tools that could also be used 102 

for preliminary predictions of the impact of surface water management decisions on land use.    103 

 A comprehensive description of DFA and modeling can be found in Zuur et al. (2003). For purposes 104 

of aiding discussion, we only provide a brief description of this technique. DFA is a dimension reduction 105 

multivariate time series analysis technique that is used to estimate underlying common patterns (common 106 

trends) in short time series as well as the effect of explanatory variables on response variables. The 107 

advantage of DFA over other traditional dimensional reduction techniques (e.g., Factor Analysis or 108 

Principal Component Analysis) is that DFA accounts for the time component. This allows the underlying 109 

hidden effects driving the temporal variation in the observed time series data to be detected (Zuur et al., 110 

2003). DFA does not require observed time series to be long and stationary. Although non-stationarity 111 

could be handled through de-trending, trends in the times series could hold necessary information 112 

required to explain the temporal dynamics in the observed variable (Ritter et al., 2009). In addition, DFA 113 

can handle missing values in the observed time series (i.e., DFA does not require data sets to be regularly 114 

spaced). Missing values in observed time series data sets are not uncommon especially when time series 115 

data are obtained from unattended automatic data logging field instruments (e.g., multi-sensor capacitance 116 

probes for soil water monitoring).  117 

 DFA applications are documented in literature from several disciplines (e.g., Geweke, 1977; Márkus 118 

et al., 1999; Zou and Yu, 1999; Zuur et al., 2003; Zuur and Pierce, 2004; Muñoz-Carpena et al., 2005; 119 

Ritter and Muñoz-Carpena, 2006; Zuur et al., 2007; Ritter et al., 2009; Kaplan et al., 2010a; Kaplan and 120 

Muñoz-Carpena, 2011). Thus, we only provide a brief review of the most relevant examples.  Ritter and 121 
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Muñoz-Carpena (2006) applied DFA and modeling to study interactions between surface water and 122 

groundwater levels within the Frog Pond agricultural area located west of canal C111 in south Florida 123 

(Fig.1). Their results indicated that the two canals surrounding the Frog Pond area had the greatest 124 

influence on temporal changes in water table elevation. Their study did not address the issue of the impact 125 

of surface management decisions on soil water content.  Soil water is a major concern for vegetable 126 

growers in south Florida due to the impact saturated or near saturated soil conditions have on planting 127 

dates and yield losses (Fig. 1).  128 

 Others have applied DFA and modeling to study soil water dynamics. Ritter et al. (2009) applied 129 

DFA to analyze temporal changes in soil water status of a humid, subtropical, evergreen forest in Canary 130 

Islands, Spain. Kaplan and Muñoz-Carpena (2011) applied DFA to study the complementary effects of 131 

surface and groundwater on soil water dynamics in a coastal flood plain. Thus, DFA was successfully 132 

used to identify unexplained variability in observed hydrologic time series and to assess the effect of 133 

selected explanatory variables on response variables (observed time series of interest).  134 

 The difference between our study and prior studies is that we applied DFA to investigate the effect of 135 

surface water management in canals on soil water dynamics in an agricultural area with very shallow very 136 

gravely loam soils, and unlike in the previous studies we also considered not only the effects of potential 137 

evaporation (ETo) but also the effect of water table evaporation given the shallow water table. We then 138 

attempted to develop a simple model, using information from the DFA, to predict soil water content from 139 

easily measured variables such as canal stage and recharge (i.e., difference between rainfall and 140 

evapotranspiration). Canal stage was selected instead of water table elevation since water table elevation 141 

data in our study area are less complete due to the limited period of record and the limited number of 142 

continuously monitored groundwater wells. Canal stage has been monitored for a longer period of record 143 

and has no foreseeable end of data collection, thus it is a more reliable measurement for long-term use. 144 

We assumed that at any given time, water table elevation is approximately equal to canal stage. We 145 

concede that at certain times this assumption might not hold e.g., immediately after or during storm 146 
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events; however, due to the high permeability of the aquifer and the daily time step used, the assumption 147 

holds for the majority of the time. 148 

 The goal of this study was to use DFA and modeling to investigate how the proposed raises in canal 149 

stage along C111 could impact soil and bedrock water contents in low lying farmlands located between 150 

canals C-111 and C-111E. The specific objectives were to: (1) apply DFA to identify the most important 151 

factors affecting temporal variation in soil and bedrock water contents, (2) develop a simplified DFA 152 

based regression model for predicting soil and bedrock water contents as a function of canal stage, and (3) 153 

use the developed simple regression model to predict the impact of proposed incremental raises in canal 154 

stage on soil and bedrock water contents at various elevations and distances from the canal. 155 

2. Materials and methods 156 

2.1 Experimental site 157 

 The study was conducted in southern Miami-Dade County, Homestead, Florida, United States in a 158 

small agricultural area approximately 17 km2 (Fig. 1). The area is located east of ENP between SFWMD 159 

canals C111 and C111E which are planned to experience increases in canal stage under the C111 spreader 160 

canal project. Canal stage upstream in the two canals is controlled by a remotely operated spillway at 161 

S177 and a culvert at S178, respectively (Fig. 1). C111 is the larger of the two canals and the two join to 162 

become a single canal at the southern end of the study area which is managed using a gated spillway at 163 

S18C. It is proposed that stage will be increased by modifying operation of S18C and thus affect canal 164 

stage in the reach of C111 between S177 and S18C. The hydrogeological system at the study site consists 165 

of the Biscayne aquifer which is a highly permeable shallow unconfined aquifer with hydraulic 166 

conductivities reported to exceed 10,000 m/day, which explains the high connectivity between the canals 167 

and the aquifer (Chin, 1991). The shallow nature of the water table implies that evaporation from the 168 

groundwater could impact soil water content. The topography at this site is essentially flat with elevation 169 

ranging approximately between 1.2 to 2.0 m above sea level NGVD 29. The climate is subtropical with 170 



Submitted to journal of Hydrology 
 

8 
 

dry season (November to May), which is the growing season for vegetables, and wet season (June to 171 

October). Approximately two thirds of all the rain (average annual rainfall ranges between 1100 to 1524 172 

mm) is received during the wet season months.  173 

 The soil at the study site is very shallow (10 to 20 cm) with underlying limestone bedrock. According 174 

to Nobel et al. (1996), the soils east of C111 vary and could be classified as either Krome and Chekika 175 

very gravely loam (loamy skeletal, carbonatic, hyperthermic, Lithic Undorthents), or Biscayne Marl 176 

(loamy, carbonatic, hyperthermic) based on their physical characteristics. We performed particle size 177 

analysis using a standard 2-mm sieve and determined that the soils contain on average of 45% fine 178 

fractions and 55% gravel. Color analysis using the Munsell soil color charts (Munsell soil charts, 2000) 179 

and the color guide in Noble et al. (1996) identified the study site soils to be broadly characterized as 180 

Chekika soil series.  181 

 Three monitoring sites were used in this study located at 500, 1000 and 2000 m along a transect 182 

perpendicular to canal C111, the three sites also had varying topographies and represented areas expected 183 

to experience the greatest impact from the proposed raises in canal stage. Sites were selected to capture 184 

differences in soil texture within our study area; this was done with a soil survey map and site visits. Sites 185 

were also selected to ensure they were in privately owned agricultural low lying lands that were expected 186 

to be impacted by the rises in water table elevation. For each site: i) GPS coordinates and elevation data 187 

were collected, ii) groundwater wells were constructed and each was equipped with level loggers 188 

(Levelogger, Gold Solinst Canada Ltd., 35 Todd Rd, Georgetown, Ontario, Canada) to record water table 189 

elevation every 15 minutes, iii) multi-sensor capacitance probes (MSCP) (EnviroScan probes, Sentek 190 

Technologies, Ltd., Stepney, Australia) were installed at each site to monitor soil and bedrock water 191 

contents. Monitoring site locations are shown in Fig. 1; elevations are shown in Fig.2.  Differences in the 192 

length of times series at the three sites was due to differences in the dates of installation of the EnviroScan 193 

probes (i.e., probes could only be installed when water was at least 50 cm below the ground surface) and 194 
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relocation of the probes due to initial poor installation. Site T500 was installed on August 25, 2010, while 195 

sites T1000 and T500 were installed on January 21, 2011.  196 

 197 

Figure 1. . Map of the study area showing Everglades National Park, Taylor Slough, Florida Bay, 198 

SFWMD canal network and low lying agricultural areas east of canal C111 in south Florida 199 
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 200 

Figure 2. Showing a topographic changes along transect T and the elevation of the EnviroScan sensors at 201 

the three sites.  202 

2.2 Soil and bedrock water contents monitoring  203 

 Two EnviroScan probes were installed at each site for a total of six. Each access tube with a diameter 204 

of 50.5 mm housed four sensors positioned at various elevations as shown in Fig. 2. The elevations 205 

correspond to 10, 20, 30 and 40 cm from the ground surface at each site. The top 20 cm typically 206 

represent the scarified soil layer which is used for crop production and the lower 20 cm represent the 207 

underlying limestone bedrock in which plant roots cannot penetrate. To minimize the problem of air 208 

pockets, we used fast setting cement slurry between the access tube and the soil. The purpose of installing 209 

two EnviroScan probes at the same location was to ensure that at least one probe was functioning at any 210 

given time. Due to the shallowness of the limestone bedrock at all the study sites, a motorized drill was 211 

required to bore a hole that held the access tube in a vertical position. Water content data were logged 212 

every 15 minutes and were downloaded weekly and averaged daily.  213 

 EnviroScans are an example of capacitance based sensors which measure frequency of an oscillating 214 

electrical circuit. The oscillator is coupled electrically to capacitive elements that are made of two metal 215 

cylindrical electrodes. The electrode system is arranged so the soil becomes part of the dielectric medium 216 

affected by the fringing electromagnetic field. Volumetric soil water content affects the electrical 217 
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permittivity of the soil which in turn affects the capacitance causing the oscillation frequency to shift 218 

(IAIA, 2008) since the soil dielectric constant is a combination of mineral particles (2-4), water (80), and 219 

air (1). According to Dean et al. (1987) the oscillatory frequency from the capacitance soil water sensor 220 

could be expressed eq. (1): 221 

2/1

111

2

1












cb CCCL
F

  (1) 222 

Where Cb is the total base capacitance and Cc is the total collector capacitance and these represent 223 

capacitances of internal circuit elements to which the electrodes are connected, L is the inductance of the 224 

coil in the circuit, and C is the capacitance of the soil access tube system. Therefore capacitance of the 225 

soil access tube system, C, can be expressed as a function of the soil dielectric constant (ε) and a value g 226 

representing the geometry of the sensor as shown in eq.(2). 227 

gC 
 (2) 228 

 Differences in oscillatory frequency among sensors at the same soil and bedrock water contents were 229 

eliminated by normalizing the oscillatory frequency values using values of frequency when the sensor 230 

was surrounded by water and air. The normalized oscillatory frequency is known as the scaled frequency 231 

(SF) and is estimated as in eq. 3. The manufacture default calibration equation (eq. 4) can be used to 232 

convert scaled frequency to volumetric soil water content (θ)   233 

awa FFFFSF  /  (3) 234 

475.2)0226.0*792.0(  SF  (4) 235 

where F is the oscillatory frequency value measured by the EnviroScan sensor, Fa is frequency value 236 

when the EnviroScan probe is surrounded by air, and Fw is the frequency value when the EnviroScan 237 

probe is surrounded by water. To avoid location specific calibration for each sensor, we use SF as 238 
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surrogate for θ for investigating the effect of various factors on soil and bedrock water contents and thus 239 

did not use eq. (4). This approach was successfully applied by Ritter et al. (2009) when studying the 240 

effect of various factors on hydrologic fluxes in a forest top soil using refractive index from time-domain 241 

reflectometry (TDR) as a surrogate for volumetric soil water content. Gabriel et al. (2010) observed that 242 

the manufacturer’s calibration equation overestimated volumetric soil water compared to the locally 243 

developed calibration equation. However, they noted that despite the overestimation of volumetric soil 244 

water content, the manufacturer’s equation was able to reproduce temporal soil water dynamics. 245 

Therefore, if the goal is to measure relative changes in water content the manufacturer’s default 246 

calibration equation is sufficient.    247 

2.3 Measurement and estimation of hydrologic variables 248 

 Hydrologic variables including canal stage, water table elevation NGVD29 m, rainfall (P), potential 249 

evapotranspiration (ETo) and groundwater evaporation (E) were measured or estimated to assess their 250 

influence on soil and bedrock water content time series.  251 

2.3.1 Canal stage 252 

 Canal stage data were measured at the S177 spillway for headwater (S177H) and tail water (S177T) 253 

every 15 minutes but daily averages were used. Canal stage data were measured by the SFWMD and are 254 

publically available from the online environmental database (DBhydro; 255 

http://www.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu). During the first phase of the C111 256 

spreader canal project, the main operational adjustments will involve incrementally raising canal stage at 257 

S18C (Fig. 1) which will result in increased stage in the reach of C111 between the spillways at S177 and 258 

S18C.  259 

2.3.2 Water table elevation 260 

http://www.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu
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 Water table elevation data were collected from three observation wells constructed at the three 261 

monitoring sites. Water table elevation was measured by the University of Florida (UF) every 15 minutes 262 

and averaged daily using a multi parameter pressure transducer at T1000 (Levelogger, Gold Solinst 263 

Canada Ltd., 35 Todd Rd, Georgetown, Ontario, Canada). Atmospheric corrections were included using a 264 

STS Barologger (Solinst Canada Ltd) in the well at T1000 (Fig. 1). Data were downloaded from the well 265 

weekly and as a quality control procedure, water table elevations were also measured manually with a 266 

Model 102 Laser water level well meter (Solinst, Canada Ltd). Wells T2000 (C111AE) and T500 267 

(C111AW) were installed and operated by the SFWMD and published on DBHydro. 268 

2.3.3 Rainfall  269 

 Gauge adjusted Next Generation Radar (NEXRAD) rainfall data used in this study were obtained 270 

from the SFWMD. The United States National Weather Service operates two NEXRAD sites close to the 271 

study site (i.e., KBYX in Key West, FL and KAMX in Miami, FL) that provide 2 km x 2 km NEXRAD 272 

rainfall data. There are tradeoffs between rainfall estimated by rain gauges and NEXRAD. Rain gauges 273 

(e.g., tipping buckets) provide accurate point estimates of rainfall which are acceptable for frontal related 274 

rainfall events. However, in South Florida where most of the rainfall is received in summer and summer 275 

rainfall is dominated by conventional or tropical rainfall forming processes, rain gauges may fail to 276 

accurately represent the orientation of the rainfall front or fail to capture the entire rainfall event (Pathak, 277 

2008). On the other hand, measurement of rainfall by NEXRAD relies on the raindrop reflectivity which 278 

could be affected by factors such as raindrop size and microwave signal reflection by other particles in the 279 

atmosphere. Skinner et al. (2008) showed that the best of the two measurement methods is realized by 280 

using rain gauge or tipping bucket data to adjust NEXRAD values.  281 

2.3.4 Ground surface potential evapotranspiration  282 

 Ground surface reference evapotranspiration (ETo) was computed from micrometeorological data 283 

(i.e., solar radiation, temperature, relative humidity and wind speed) obtained from a Florida Automated 284 
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Weather Network (FAWN; http://fawn.ifas.ufl.edu/) station located approximately 10 km northeast of the 285 

study site at the Tropical Research and Education Center, Homestead, FL. The American Society of Civil 286 

Engineers (ASCE) standardized Penman–Monteith equation was used to estimate ETo values (ASCE, 287 

2005). We assumed a crop with the following characteristics transpiring at a potential rate: crop height 288 

(0.12 m), albedo (0.23), active leaf area index (1.44), and well illuminated leaf stomatal resistance (100.8 289 

s/m). We applied the tool REF-ET (Allen, 2011) to calculate the ASCE standardized ETo from weather 290 

data.  291 

2.3.5 Evaporation from the water table 292 

 Flux due to water table evaporation may influence soil and bedrock water contents. Previous studies 293 

have shown that when canal influences are negligible, direct evaporation from the water table 294 

significantly contributes to water table declines in the Biscayne aquifer (Merrit, 1996; Chin, 2008). Two 295 

types of models are available to estimate evaporation from a water table: physically based models and 296 

empirically based models. In this study, the latter was used because the former requires detailed data such 297 

as coefficient of diffusion of water vapor through the soil and vapor pressure above the soil surface which 298 

were not collected. Empirical models simply relate water table evaporation rate to the depth of the water 299 

table below the ground surface and are used in groundwater studies (e.g., MODFLOW uses this approach; 300 

Chin, 2008). We used a model similar to that proposed by McDonald and Harbaugh (1988) (eq. (5)). Chin 301 

(2008) modified eq. (5) and obtained eq. (6) for south Florida conditions. 302 
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where E is water table evaporation [mm/day], E0 (same as ETo) is the potential evaporation rate at the 305 

ground surface [mm/day], d is the depth of the water table below the ground surface [m], dcr is the critical 306 

depth below which evaporation ceases [m], T is annual average air temperature [oC] which is 307 

approximately 25oC in south Florida, d0 is water table depth above which water table evaporation 308 

proceeds at potential rate i.e., at the rate similar to the ground surface evapotranspiration [m]. Chin (2008) 309 

proposed parameters d0 and dcr in eq. (6) at each observation well can be estimated from the least squares 310 

best fit of eq. (7) and the parameters described as eq. (8) and (9). 311 

d
E

E
 

0

 (7) 312 



 1
0


d  (8) 313 




crd  (9) 314 

2.4 Dynamic factor analysis 315 

 DFA uses eq. (10) to describes a set of N observed time series (Lütkepohl, 1991; Zuur et al., 2003; 316 

Ritter and Muñoz-Carpena, 2006). The goal in DFA is to keep M as small as possible while still obtaining 317 

a good model fit. Including relevant explanatory variables helps to reduce some of the unexplained 318 

variability in the observed time series.  319 
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where sn(t) is a vector containing the set of N time series being modeled (response variables), m (t) is a 322 

vector containing the common trends (same units as the response variables), 
nm ,

 are factor loadings or 323 

weighting coefficients that indicate the importance of each of the common trends to each response 324 

variable (unitless), n is a constant level parameter for shifting time series up or down, )(tk is a vector 325 

containing explanatory variables, and nk , are weighting coefficients for the explanatory variables 326 

(regression parameters) which indicate the relative importance of explanatory variables to each response 327 

variable (inverse units to convert )(tk into response variable units) , and )(tn and )(tm   are 328 

independent, Gaussian distributed noise with zero mean and unknown diagonal covariance matrix. The 329 

elements in the covariance matrix represent information that cannot be explained by the common trends 330 

or the explanatory variables. The unknown parameters 
nm ,

 and n were estimated using the Expectation 331 

Maximization (EM) algorithm that is described in Dempster et al. (1977) and Shumway and Stoffer 332 

(1982). The common trends in eq. (11) were modeled as a random walk (Harvey, 1989) and were 333 

predicted using the Kalman filter and EM algorithms. The regression parameters in eq. (10) are estimated 334 

using the same procedure as used in linear regression (Zuur et al., 2003). DFA was implemented using a 335 

statistical package called Brodgar Version 2.5.6 (Highland Statistics Ltd., Newburgh, UK). 336 

 The results from the DFA were interpreted in terms of the canonical correlations ( nm, ), factor 337 

loading (
nm ,

 ), regression parameters ( nk , ) and agreement between modeled and observed soil and 338 

bedrock water contents (i.e., expressed as scaled frequency). The goodness-of-fit between modeled and 339 

observed soil and bedrock water contents were quantified using the Nash-Sutcliffe coefficient of 340 

efficiency (Ceff; Nash and Sutcliffe, 1970), the Akaike’s Information Criteria (AIC; Akaike, 1974) and the 341 

Bayesian information criterion (BIC). Ceff   provides an estimate of how well a model predicts an observed 342 

data set, while AIC and BIC are relative measures of the goodness-of-fit of a statistical model. A model 343 

with the Ceff closest to 1 and lowest AIC and BIC is the preferred DFA model. Cross correlations between 344 
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the soil and bedrock water content time series and common trends were measured using nm, . In our study 345 

nm, close to unity implied that the common trend was highly associated with water content time series. 346 

Typically canonical correlations are classified as follows: | nm, |>0.75, 0.5-0.75, and 0.3-0.5 as high, 347 

moderate, and weak correlations, respectively. The influence of the explanatory variables on water 348 

content time series were quantified using the magnitude of the nk , coefficients and their associated 349 

standard errors which were used with a t-test to assess whether the response variable and explanatory 350 

variables were significantly related.  351 

 DFA was implemented sequentially by varying the number of common trends M until a minimum 352 

AIC and BIC and Ceff closest to one were achieved (Zuur et al., 2003). After identifying the minimum M, 353 

different combinations of explanatory variables were introduced into the analysis until a combination of 354 

common trends and explanatory variables that resulted in the most parsimonious model with best good-355 

of-fit indicators was achieved. The procedure followed here is similar to that described by Ritter et al. 356 

(2009).  357 

2.4.1 Explanatory variables  358 

 Soil and bedrock water content time series are autocorrelated (Kaplan and Muñoz-Carpena, 2011) 359 

while evapotranspiration and rainfall time series are not. For example, soil and bedrock water contents at 360 

time t will depend on antecedent soil and bedrock water contents at time (t-1) whereas the rainfall today 361 

does not depend on rainfall yesterday. Therefore in order to relate the soil and bedrock water content time 362 

series and evapotranspiration and rainfall time series, we calculated a new variable called net cumulative 363 

recharge (Rnet) using eq. 12.  364 


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where Pt is the total rainfall for day t (mm) and Eot is the potential evapotranspiration on day t (mm/day). 366 

Cumulative water table evaporation was also used instead of daily values. To minimize multi-colinearity 367 

of explanatory variables, we used mean water table elevation instead of water table elevation at each well. 368 

Before proceeding with the DFA, multi-colinearity of explanatory variables was quantified by computing 369 

variance inflation factors (VIFs) for each explanatory variable (Zuur et al., 2007). 370 

2.5 Simple predictive regression model for soil water content 371 

 The simple regression model was developed from a DFA model having the minimum number of 372 

common trends required to explain underlying common patterns in the eleven time series and explanatory 373 

variables with significant influence on modeled soil water and bedrock water content time series. To 374 

enable practical use of the simple model, DFA was performed again for the identified model using non-375 

normalized/non-standardized time series. After estimating the parameters through DFA the common 376 

trends were ignored in the model to derive a simple expression relating identified significant explanatory 377 

variables and soil and bedrock water contents. The period from August 25, 2010 to December 2011 was 378 

used to develop the regression model while the data from December 01, 2011 to June 30, 2012 was used 379 

to validate the new simple model. The developed simple model was then applied to predict the impact of 380 

a 6, 9 and 12 cm increase in canal stage on soil and bedrock water contents at the study sites. 381 

3. Results and discussion 382 

3.1 Visual exploratory analysis of experimental time series 383 

 Visual inspection of soil and bedrock water content time series expressed as SF indicates that there 384 

were some common patterns in the temporal variation of soil and bedrock water contents at the three sites 385 

(T500, T1000 and T2000) along the transect perpendicular and east of canal C111. From February 2011 386 

to July 2011, soil and bedrock water contents gradually decreased at all monitoring elevations and all sites 387 

(Fig. 3). The gradual decrease in soil and bedrock water contents corresponded to the decline in canal 388 

stage and water table elevation (Fig. 4). The period from April to August was characterized by 389 
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pronounced drying and wetting cycles at all sites. The wetting or spikes in soil and bedrock water 390 

contents in this period correspond to the start of the rains while the drying cycles correspond to the 391 

increasing potential evapotranspiration during the same period (Fig. 4). The period from late March to 392 

July corresponds to the end of the growing season and beginning of the wet season. From August 2011 to 393 

February 2012, soil and bedrock water increased corresponding to stage operation criteria within the canal 394 

network that enhances water storage in the system.  395 

 However, there were observed differences in temporal soil and bedrock water variability at the three 396 

monitoring sites along the transect. Site T500 which is the shallowest and closest to the canal exhibited 397 

lack of temporal variation in bedrock water content at elevations less than 0.9 m NGVD29 while soil 398 

water content at 1.0 m NGVD29 exhibited temporal variation in the same period probably due to 399 

irrigation during the growing season. Site T1000 (i.e., approximately 1000 m from canal C111) exhibited 400 

the least increase in water content between March 2011 and June 2012. Unlike sites T500 and T2000, the 401 

trends in soil and bedrock water contents at T1000 were not identical to the temporal variation in canal 402 

stage or water table elevation suggesting micro-topography within the field might be affecting soil and 403 

bedrock water contents since this site had the highest elevation along the transect (Fig. 2). At site T2000 404 

(i.e., approximately 2000 m from canal C111), soil and bedrock water contents for the periods between 405 

August 2010 to March 2011 and August 2011 to February 2012 were similar characterized by small 406 

temporal variation similar to those exhibited at site T500. Sites T500 and T2000 have very similar 407 

elevation (1.1 and 1.2 m NGVD29 respectively) implying that topography or ground surface elevation 408 

might exert a stronger influence on temporal variation of soil and bedrock water contents compared to 409 

distance from the canal. Differences also existed at the different monitoring elevations with bedrock water 410 

content generally higher at the lowest elevation at each site. Other reasons for observed differences in 411 

water content at the different sites could be a combination of several factors such as differences in soil 412 

surface conditions, soil and limestone bedrock heterogeneity (specifically differences in soil water 413 
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retention and unsaturated hydraulic conductivity) and differences in the environments surrounding the 414 

EnviroScan access tubes.  415 

 All the hydrologic variables monitored (Fig. 4) exhibited seasonal variations with rainfall increasing 416 

during wet season (May to October) resulting in increased water table elevation and canal stage. ETo also 417 

increased during the wet season. In turn, decreased depth to water table and increased ETo resulted in 418 

increased E (Fig. 4).The water table evaporation parameters for eq. (6) were computed following the 419 

procedure described by Chin (2009) in which steady declines in water table elevation particularly in the 420 

dry season when canal stage was maintained relatively constant are assumed to be caused by water table 421 

evaporation. Using data from a total of six wells (i.e., the 3 wells along transect T and 3 additional wells 422 

approximately 1 km north of the transect) within the vicinity of the study area, we obtained an average 423 

critical depth of 1.94 m which is within the range of 1.5 to 2.9 earlier reported by Chin (2009). We 424 

obtained a value of 0.59 m for the depth above which water table evaporation proceeds at the potential 425 

rate which is approximately half the average value of 1.4 reported by Chin (2009).  The water table 426 

elevations at the three monitoring sites were very similar and also corresponded to the temporal variations 427 

in canal stage on the tail water side of the spillway at S177. 428 
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 429 

Figure 3. Temporal variation in scaled frequency (i.e., soil and bedrock water contents ) at three sites (i.e., 430 

T500, T1000 and T2000 with soil and bedrock water contents monitored at different elevations using 431 

EnviroScan probes) along a transect perpendicular to C111 on the tail water side of the spillway at 432 

structure S177 during the period August  2010 to June 2012. 433 
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 434 

Figure 4. Temporal variation in hydrologic factors evaluated for their influence on soil and bedrock water 435 

contents at the study site during the period August 2010 to June 2012. 436 
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3.2 Response and explanatory variables 437 

 Visual inspection indicated that seasonality affects temporal variation of both response variables (i.e., 438 

soil and bedrock water contents at different elevations) and explanatory variables (i.e., ETo, rainfall P, 439 

water table elevation, E and canal stage). We attempted to remove seasonality effects through seasonal 440 

standardization following procedures described by Salas (1993), but this approach was abandoned since it 441 

resulted in poor model fit compared to the models in which seasonal effects were assumed to be masked 442 

in the common trends (i.e., average Ceff < 0.7 and Ceff > 0.9, respectively). The poor model fit could be 443 

attributed to loss of information resulting from seasonal standardization. Ritter et al. (2009) also reported 444 

improved DFA model fit after back transforming refractive index data from a TDR as a surrogate for soil 445 

water content compared to seasonally standardized refractive index.  446 

 To facilitate interpretation of factor loadings and comparison of regression parameters as suggested 447 

by Zuur et al. (2004), all the time series were normalized. Therefore, the DFA results presented in 448 

reference to objective 1 are based on normalized time series data. Prior to performing the DFA, 449 

multicollinearity in explanatory variables was quantified by calculating Variance Inflation Factor (VIFs) 450 

for each explanatory variable. Threshold VIF of 5 was set as the highest, high values of VIF indicate 451 

multicollinearity in the explanatory variables which makes interpretation of regression results difficult 452 

(Ritter et al., 2009). As expected there was high multi-colinearity between water table elevation time 453 

series for different wells (VIFs > 30), but this was considerably reduced when mean water table elevation 454 

at the three sites was used instead (i.e., VIFs < 2). There was also high multi-colinearity between 455 

headwater and tail water canal stages at S177 (VIFs > 8) implying that these two time series could not be 456 

used as explanatory variables in the same DFA model. Mean water table elevation was also correlated to 457 

canal stage S177 (VIFs >10) probably due to the high hydraulic connectivity between C111 and Biscayne 458 

aquifer. The correlation coefficient between canal stage and water table elevation time series was greater 459 

than 0.9. 460 
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3.3 Common trends 461 

 We developed the DFA model by exploring common trends and explanatory variables in relation to 462 

the 11 observed water content time series. Results of the DFA model selection are summarized in Table 1. 463 

We used the AIC, the BIC (which penalizes more strongly for over parameterization than the AIC) and the 464 

Ceff  statistic for deciding which of the DFA models with zero explanatory variables  best described the 465 

response time series. Ten was the maximum number of common trends used to describe common 466 

variability in the 11 response water content time series. However, the goal of DFA is to minimize the 467 

number of common trends while maintaining a good model fit. Several models consisting of fewer 468 

numbers of common trends and noise were tested and model 4 with five common trends was determined 469 

to be the model with the minimum number of common trends required to describe the 11 response time 470 

series. Model 4 was selected since using M>5 resulted in negligible improvement in model goodness-of-471 

fit measures while increasing the number of parameters to be interpreted.  The three common trends with 472 

high ( nm, |>0.75) to moderate (0.5< nm, <0.75) canonical correlations particularly at sites T500 and 473 

T2000 are shown in Fig. 5. Common trends 2 and 3 exhibited minor cross correlation with water content 474 

time series as measured by nm, < 0.5 at all the sites and in the interest of brevity are not presented. 475 

 Visually, the unexplained variation in soil and bedrock water contents described by the common 476 

trends in Fig. 5 is similar to the seasonal variation of soil and bedrock water contents at sites T500, T1000 477 

and T2000 for the period August 2010 to August 2011. There was greater uncertainty as shown by a large 478 

(95%) confidence interval from August 25, 2010 to January 21, 2011 which is due to missing data for 479 

sites T500 and T1000 during this period. The first common trend exhibited high positive (|
n,1 | 0.75) 480 

correlation with soil and bedrock water content time series at sites T500 and T2000 with low surface 481 

elevation (1.1 and 1.2 m NGVD29, respectively) compared to the moderate to weak correlation at site 482 

T1000 with ground surface elevation of 2.17 m NGVD29. Indicating that in addition to other factors, such 483 
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as irrigation during the growing season, micro-topography within the field influences temporal variations 484 

in soil water content as it governs the effect exerted by the water table.  485 

Table 1. Dynamic Factor Analysis (DFA) models tested based on the following goodness-of-fit measures: 486 

AIC, BIC and Ceff  487 

Model 

No. of 

common 

trends Explanatory variables 

No. of 

parameters AIC1 BIC2 Ceff
 3 

Step I (DFA model with K=0) 

1 2 None 98  -2690.50 -2041.75 0.68 

2 3 None 107 -4654.23 -3945.90 0.84 

3 4 None 115 -5830.21 -5068.92 0.88 

4 5 None 122 -6901.47 -6093.84 0.97 

5 6 None 128 -7028.76 -6181.40 0.97 

6 8 None 137 -7263.94 -6357.01 0.97 

Step II (DFA model with K>0) 

7 5 Rnet
4,  133 -7018.644 -6138.193 0.97 

8 5 Rnet, E5 144 -7797.525 -6844.255 0.98 

9 5 S177T6 133 -7340.981 -6460.530 0.97 

10 5 S177T, Rnet 144 -7542.680 -6589.410 0.97 

11 5 Rnet, E, MWT7 155 -8052.436 -7026.346 0.98 

12 5 MWT, Rnet 144 -7444.030 -6490.761 0.97 

13 5 Rnet, E, S177T 155 -7922.346 -6896.257 0.98 

1AIC Akaike information criterion 488 
2BIC Bayesian Information Criterion  489 
3Ceff Nash-Sutcliffe coefficient calculated based all the nine observed time series 490 
4Cumulative net surface recharge 491 
5Rnet Cumulative water at table evaporation 492 
6S177T Canal stage in C111 493 
7MWT Mean water table evaporation 494 
 495 
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 496 

Figure 5.  Common trends with 95% confidence interval describing unexplained temporal variation in 497 

scaled frequency as a surrogate for soil and bedrock water content and the canonical correlation for 498 

quantifying the correlation between water time series and the common trends, in the nomenclature for site 499 
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names the number represents distance from the canal in m, and the numbers in the parenthesis represent 500 

elevation NGVD 29 m. 501 

3.4 Relative contribution of explanatory variables 502 

 Introducing net surface recharge, water table evaporation, and mean water table elevation or C111 503 

canal stage to model 4 resulted in the best models (11 and 13). Inclusion of explanatory variables in the 504 

DFA model also produced regression parameters ( nk , ) and since response and explanatory variables 505 

were normalized, the regression parameters were used to quantify the relative influence of each 506 

explanatory variable on the modeled soil and bedrock water content time series. It is worth noting that 507 

substituting mean water table elevation in model 11 with canal stage as in model 13 resulted in AIC and 508 

BIC that were not substantially different and similar goodness-of-fit indicator (Table 1). Since part of the 509 

motivation for this research was to assess the effect of canal stage management on soil and bedrock water 510 

contents, further analysis was made on model 13 because canal stage data have a more consistent record 511 

compared to water table elevation data. At the study site, canal stage can be used as a good approximation 512 

to water table elevation due to the high permeability of the aquifer.  513 

 Model 13 fitted plots are shown in Figs. 6 to 8; these figures indicate that DFA modeling was 514 

successfully applied to describe temporal variations in soil and bedrock water contents at all three 515 

monitoring sites and elevations (Ceff > 0.9). Results in Table 2 indicate that net surface recharge (Rnet) had 516 

a significant influence (t value >2) on the temporal variation of soil and bedrock water contents at sites 517 

T500, T1000, and T2000 but was not significant at lower elevations at sites T1000 and T2000 as shown (t 518 

value <2). The significance of Rnet could be attributed to rainfall (P) patterns in the study area in which 519 

two thirds of the P was received in the wet season (SFWMD, 2011) and these large amounts of net water 520 

input to the vadose zone are sufficient to maintain soil and limestone bedrock near saturation, while 521 

absence of P in the dry season was responsible for the dry conditions. Lack of significance at lower 522 
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elevations at sites T1000 and T2000 could be attributed to heterogeneity in soils and bedrock (e.g., 523 

differences in hydraulic conductivity), and differences in surface cover which influence ETo.  524 

 Water table evaporation was found to not significantly influence temporal variation of soil and 525 

bedrock water contents (t value <2) at all the sites monitored. The non-significant effect of water table 526 

evaporation on soil and bedrock water content could be attributed to the fact that there is sufficient water 527 

for evaporation due to the shallow water table. However, the negative effect was stronger at site T1000, 528 

the negative effect is due to the fact that water table evaporation is a net loss from the vadose zone 529 

system. The small positive water table evaporation regression coefficient at T1000 and T2000 (Table 2) 530 

could be attributed to computational numerical errors. These results are worth highlighting given the fact 531 

that meteorological based methods for estimating ETo like Penman Monteith equation are criticized for 532 

ignoring evaporation from the shallow water table meaning they might under estimate total ETo losses. 533 

These observations could be attributed to that fact ETo in such cases is not limited by water availability 534 

but by available energy only.  535 

 C111 canal stage on the tail water side at the S177 spillway (Fig. 1) had the strongest influence on 536 

soil and bedrock water content temporal variations (t value >7) for most sites. This finding is significant 537 

because it confirms the hypotheses that the shallow water table and canal stage are highly connected and 538 

that canal stage can be used to predict soil water content at a given location. From a hydrologic 539 

perspective, these results were expected because in this case canal stage is used an approximation for the 540 

shallow water table which serves as the lower boundary condition for the vadose zone and therefore 541 

regulates available storage during the rainy season. Based on the relative magnitudes of the regression 542 

coefficients (Table 2), the overall contribution of canal stage on the respective soil and bedrock water 543 

content time series is higher than that of net recharge.   544 

 The factor loadings (
n,1 ) for the five common trends are shown in Table 2, these represent the 545 

influence of each common trend on the modeled soil and bedrock water content time series at the 546 
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different monitoring sites and elevations. Since the time series in the DFA were normalized, the 547 

coefficients nk , and 
n,1 can be compared (Zuur and Pierce, 2004). The results indicate that trend 1 was 548 

very critical for describing unexplained variation in soil water dynamics at site T2000, while common 549 

trends 2 and to a lesser extent 3 were more critical for describing unexplained variation in soil water 550 

content at site T1000. Site T500 was sufficiently described by the explanatory variables and constant level 551 

parameters given their magnitudes were larger compared to the
n,1 . Trends 4 and 5 had minor effects at 552 

all the monitoring sites. 553 

 Overall at all the sites, compared to regression coefficients and the constant level parameters, 554 

common trends had less influence on soil and bedrock water dynamics. However, since the values of the 555 

factor loadings are not zero (i.e., they account for some unexplained variability) especially at T2000 and 556 

site T1000, this implies that the information provided by the hydrologic variables used as the explanatory 557 

variables in the DFA models only account for part of the unexplained variability in the temporal variation 558 

of the soil and bedrock water contents. Other information such as irrigation, differences in soil surface 559 

conditions, differences in the environment surrounding the EnviroScan access tube, and variation in soil 560 

hydraulic properties not considered in this study might account for part of the remaining unexplained 561 

variability.  562 

 563 
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Figure 6. Fitted Dynamic Factor Model (DFM) and observed temporal variation in scaled frequency (used 564 

as a surrogate for soil and rock water) in gravely loam soils and limestone bedrock at a site located 500 m 565 

along a transect from C111 and the numbers in the parentheses indicate elevations. 566 

 567 

Figure 7.  Fitted Dynamic Factor Model (DFM) and observed temporal variation in scaled frequency 568 

(used as a surrogate for soil and rock water) in gravely loam soils and limestone bedrock at a site located 569 

1000 m along a transect from C111 and the numbers in the parentheses indicate elevations. 570 
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 571 

Figure 8.  Fitted Dynamic Factor Model (DFM) and observed temporal variation in scaled frequency 572 

(used as a surrogate for soil and rock water) in gravely loam soils and limestone bedrock at a site located 573 

2000 m along a transect from C111 and the numbers in the parentheses indicate elevations. 574 

Table 2. Dynamic Factor Analysis results for model 13 with 5 common trends and 3 explanatory 575 

variables  576 

sn 
n,1  

n,2  
n,3  n,4  n,5  n  Rnet  

E  stageC111  Ceff 

1T500 

(1.0) 0.05 0.02 0.04 -0.02 -0.03 0.28 (0.6) 0.34 (6.9) 0.00 (0.0) 0.24 (8.8) 0.93 

T500 

(0.9) 0.05 0.06 0.03 -0.04 -0.05 0.37 (0.5) 0.24 (3.5) -0.14 (-0.3) 0.29 (8.3) 0.94 

T500 

(0.8) 0.04 0.06 0.03 -0.03 -0.04 0.34 (0.6) 0.20 (3.2) -0.17 (-0.5) 0.22 (7.5) 0.90 

T500 

(0.7) 0.03 0.02 0.01 0.00 -0.01 0.13 (0.6) 0.18 (7.1) -0.09 (-0.7) 0.13 (9.1) 0.90 

T1000 

(1.97) 0.04 0.16 0.13 -0.02 0.00 0.95 (0.9) 0.47 (3.1) -0.53 (-0.7) 0.62 (8.7) 0.85 

T1000 

(1.87) 0.04 0.20 0.11 0.01 0.01 0.82 (0.8) 0.38 (2.1) -0.61 (-0.8) 0.70 (8.5) 0.81 

T1000 

(1.77) 0.01 0.50 0.01 0.00 0.00 0.00 (0.0) 0.44 (1.1) 0.23 (0.1) 0.77 (4.6) 0.67 

T2000 

(1.11) 0.10 0.04 0.06 -0.07 0.01 0.07 (0.1) 0.13 (2.0) 0.05 (0.1) 0.50 (11.6) 0.99 

T2000 0.13 0.05 0.06 -0.02 0.06 -0.09 (-0.1) 0.03 (0.3) -0.03 (0.0) 0.68 (13.2) 0.90 
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(1.01) 

T2000 

(0.91) 0.17 0.03 0.06 0.01 -0.01 -0.12 (-0.1) 0.05 (0.4) -0.22 (-0.3) 0.71 (12.4) 0.93 

T2000 

(0.81) 0.16 0.04 -0.03 -0.02 -0.02 -0.31 (-0.3) 0.08 (0.8) 0.02 (0.0) 0.46 (8.8) 0.96 

γ Factor loading corresponding to common trend 1to 5 and observation, n= 1,2, 3…., 11 577 
µ Constant level parameter in dynamic factor model with associated t-value in parenthesis 578 
ß Regression parameter corresponding to the 3 explanatory variables (net recharge [Rnet], water table 579 
evaporation [E], and canal stage in C111 [C111stage]) with associated t-value in parenthesis 580 
Ceff is Nash-Sutcliffe coefficient 581 
1Site name nomenclature; T is refers to transect name T, number refers to distance from canal and number 582 
in parentheses refers to elevation NGVD29 m 583 
n number of observations 584 

3.5 Predicting soil and bedrock water contents using a simplified dynamic factor analysis based 585 

model  586 

 To enable practical application of the DFA model, the common trends and two of the exploratory 587 

variables included in model 13 were used in a new DFA model with non-standardized time series. This 588 

new model was referred to as model 14. To further simplify model 14, we ignored the common trends to 589 

derive a simple model that predicts soil and bedrock water contents as function of net recharge and canal 590 

stage expressed as eq. 13 591 

),()(177),()(),(),,( 111 ZXtTSZXtRZXtZXSF CnetRnet    (13) 592 

where SF(X,Z,t) is the SF at distance X from the canal, at elevation Z, and time t, other terms in 593 

are previously described and varies with elevation and distance from the canal. The coefficients 594 

for eq. 13 at all the sites and monitoring elevations are obtained from Table 3. The Ceff in Table 3 are 595 

calculated based on eq. 13 with common trends removed. As expected, performance of the simple model 596 

(eq. 13) was lower as shown by the reduction in Ceff (Table 3 and Figs. 9 to 10) compared to the DFA 597 

models that include common trends particularly for site T1000.  598 

 Since factor loadings are not zero for all the trends (Table 3), this suggests that the explanatory 599 

variables (net recharge and canal stage) used in the DFA model are not sufficient to explain all the 600 

observed variations in the soil and bedrock water content time series. This is particularly true at site 601 
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T1000 which is affected by 4 out of the 5 common trends. Common trend number 2 appears to affect all 602 

the sites, it probably masks common variation such seasonal changes in rainfall, evapotranspiration and 603 

canal stage. Other common trends had minor effects at sites at all the other sites particularly at site T1000.  604 

The difference in response at site T1000 could be attributed to differences in elevation as shown in Fig. 2, 605 

site T1000 has a higher surface elevation and hence larger depth to water table.  606 

 The results in Table 3 also underscore the point that the effect of canal stage is stronger at low 607 

elevation sites T500 and T2000 compared to T1000. Thus, proper interpretation of modeling results in 608 

this area requires accurate quantification of micro-topography. Model performance ranged from good at 609 

sites T500 and T2000 to poor at site T1000 with root mean square error (RMSE) ranging from 0.005 to 610 

0.01. Figs. 9 to 10 show model performance during the calibration and validation periods, after removing 611 

the common trends, it can be seen that the simple model misses the peaks but is able to generally predict 612 

the temporal variation in soil and rock water content. The simple model (eq. 13) could be improved by 613 

using location specific water table elevation since canal stage is simply a good approximation of the mean 614 

water table elevation. Another simple sigmoidal regression model to predict soil and bedrock water 615 

contents from canal stage proposed by Kaplan et al. (2010a) was tried but later abandoned due to lower 616 

Ceff (i.e., averaging 0.2). This approach is based on the physical concept of drain to equilibrium. However, 617 

for our study site this condition was hard to achieve since during the dry season irrigation was taking 618 

place and in the rainy season there was frequent rainfall hence by removing data points corresponding to 619 

rainfall or irrigation, very few data points were left to develop a useful sigmoidal model for predicting soil 620 

and bedrock water content from canal stage. 621 

Table 3. Dynamic Factor Analysis results for model 14 with 5 common trends and 2 explanatory 622 

variables implemented with non-standardized time series 623 

sn 
n,1  

n,2  
n,3  n,4  n,5  n  Rnet  stagec111

 

effC  effC  

1T500 

(1.0) -0.003 0.000 0.000 0.000 0.000 0.72 0.14 0.06 0.73 0.70 

T500 

(0.9) -0.001 -0.004 0.000 0.000 0.000 0.72 0.11 0.04 0.61  0.62  
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T500 

(0.8) -0.001 -0.004 0.000 0.000 0.000 0.75 0.09 0.02 0.51 0.56 

T500 

(0.7) -0.001 -0.002 0.002 0.000 0.000 0.76 0.07 0.01 0.81  0.74  

T1000 

(1.97) 0.003 -0.005 -0.002 0.000 0.001 0.73 0.10 0.02 0.61  0.15 

T1000 

(1.87) 0.002 -0.003 -0.001 0.000 0.001 0.74 0.05 0.01 0.51  0.13  

T1000 

(1.77) 0.001 -0.003 0.001 -0.002 0.000 0.77 0.02 0.00 0.25  0.11  

T2000 

(1.11) 0.000 -0.003 -0.002 0.000 0.000 0.76 0.08 0.06 0.70  0.61  

T2000 

(1.01) 0.000 -0.003 0.000 0.000 0.001 0.76 0.05 0.05 0.60  0.67  

T2000 

(0.91) 0.000 -0.002 0.000 0.000 0.001 0.77 0.03 0.04 0.67  0.63  

T2000 

(0.81) -0.001 -0.001 0.000 0.000 0.001 0.80 0.02 0.02 0.65  0.61  

γ Factor loading in the dynamic factor model 624 
µ Constant level parameter in dynamic factor model 625 
ß Regression parameter corresponding to the 2 explanatory variables (net recharge [Rnet], and canal stage 626 
in C111 [C111stage]) 627 
1Nash-Sutcliffe coefficient are calculated after ignoring common trends 628 
2Nash-Sutcliffe coefficient during validation 629 

 630 

Figure 9. Performance of a simple model for predicting scaled frequency (used as a surrogate for soil and 631 

bedrock water content) as a function of canal stage and net recharge at specific elevations in parentheses 632 

NGVD29 at a site located 500 m along transect T from C111. 633 
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Figure 10. Performance of a simple model for predicting scaled frequency (used as a surrogate for soil 635 

and bedrock water content) as a function of canal stage and net recharge at specific elevations in 636 

parentheses NGVD29 at a site located 2000 m along transect T from C111. 637 

3.6 Assessing the impact of proposed operational changes in C111 canal stage management on soil 638 

and bedrock water contents 639 

 The low lying agricultural areas east of canal C111 are anticipated to experience the greatest 640 

impact from the proposed changes in C111 stage operation (i.e., canal stage increases of 6, 9, and 641 

12 cm); a simple DFA based regression model eq. 13 was proposed to predict the soil and 642 

bedrock water contents as a function of canal stage. We considered the period from January 01, 643 

2012, to June 30, 2012 for the analysis. Increases in canal stage were computed by simply adding 644 

the proposed incremental rises in canal stage to the daily canal stage recorded at S177T while P 645 

and ETo from the original dataset were not changed.  646 

 The results from using this simplified DFA based model (Figs. 11 and 12) indicate that the 647 

proposed increases in canal stage were predicted to have changes in daily mean SF for the study 648 

period (i.e., which is used as a surrogate for soil and bedrock water contents) of <1%  at all sites 649 

and all elevations monitored. The range in daily SF differences was 0.065 to -0.024 and 0.075 to 650 

-0.041 at sites T500 and T2000 respectively, which indicates that the simple model over 651 

predicted and under predicted SF on certain days during the study period.  However, note that the 652 

daily differences in SF are not substantially large, this may be attributed to already high values of 653 

soil and bedrock water contents observed in the area. On an event basis the potential to flood or 654 

saturate the root zone would depend on the size of the storm and storm contingency planning for 655 

lowering of canal stage in anticipation of heavy storms.  Since we showed using DFA that soil 656 

and bedrock water contents were significantly affected by canal stage and net recharge.  657 
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 The simple model used in this evaluation was more accurate at sites T500 and T2000 and 658 

therefore results at these two sites would be considered with less uncertainty. Soil and bedrock 659 

water responses to incremental raises in canal stage were not computed for site T1000 since 660 

results at this site would be considered less accurate (greater uncertainty) because model 661 

performance was very poor at this site. Figs. 11 and 12 show that changes in soil and bedrock 662 

water contents were more noticeable at the highest elevation. However, at the lowest elevations 663 

monitored the difference between mean SF before and after all increments was zero at T500. 664 

These observations could be attributed to the fact that low elevation sites are normally close to 665 

saturation. For example, at site T500 (0.7) when water elevation was above the sensor (implying 666 

saturated conditions), SF was recorded as 0.786 compared to average SF of 0.775 for the study 667 

period meaning small changes in water table may not result in substantial changes in soil water 668 

content since the pores are already near saturation. 669 

 It is worth noting that the simple model developed above should be applied with the 670 

following limitations in mind. The model does not account for water input from irrigation and 671 

therefore would under predict soil and bedrock water content during the growing season, the 672 

model also uses canal stage as an approximation for water table elevation at a specific location 673 

although the two are usually close there may be deviations especially after large rainfall events, it 674 

ignores water content drivers that were masked in the common trends, and lastly the simple 675 

model ignores the effect of E which might vary based on micro-topography within the field as 676 

well as differences in land surface cover conditions. Finally, although the simplified DFA based 677 

model is empirical in nature, the results suggest it can be used as a preliminary tool to relate the 678 

potential impacts of surface water management decisions on soil and bedrock water contents in 679 

low lying farmlands adjacent to canal C111. This is because during the duration of the study, we 680 
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able to capture a wide range of variation in canal stage and water table elevation e.g., on June 10, 681 

2011 we recorded canal stage and groundwater table elevation of 0.14 m NGV29 which is lower 682 

than the optimum design stage of 0.6 m for the reach of C111 between S 18C and S177 under 683 

current canal stage operational criteria. During the summer of 2011 (on October 09, 2011) we 684 

recorded canal stage and groundwater levels as high as 0.9 and 1.02 m NGVD29 which is close 685 

to the level supposed to trigger the spillway to open at S177 under current operational criteria.  686 

 687 
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Figure 11. Boxplots showing soil and rock water content as measured using scaled frequency at site T500 688 

before and after 6, 9 and 12 cm increase canal at structure S18C along C111. 689 

 690 
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Figure 12.  Boxplots showing soil and rock water content as measured using scaled frequency at site 691 

T2000 before and after 6, 9 and 12 cm increase canal at structure S18C along C111. 692 

  693 
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4.0 Summary and Conclusions 694 

 The response of soil and bedrock water contents to incremental raises in canal stage proposed under 695 

the C111 spreader canal project whose goal is to restore the hydrology of ENP while maintaining flood 696 

protection in the adjacent agricultural areas was investigated using DFA. The study objectives were to use 697 

DFA to identify the important factors driving temporal variation in soil and bedrock water content above 698 

the shallow water table at the study site, develop a simple model for predicting soil water content as a 699 

function of canal stage and assess the effect of the proposed incremental raises in canal stage on soil and 700 

bedrock water contents. Five was the minimum number of common trends required to account for the 701 

unexplained variation in the eleven observed soil and bedrock water content time series while producing 702 

an acceptable model fit. Introduction of explanatory variables i.e., net recharge, water table evaporation, 703 

and canal stage or water table elevation to the DFA model resulted in lowering AIC and BIC values while 704 

Ceff values did not substantially change. Evaluation of the regression coefficients indicated that net 705 

recharge and canal stage had significant effects on temporal variation of soil and bedrock water contents 706 

while the effect of water table evaporation was non-significant. Based on the magnitude of the regression 707 

coefficients, canal stage had the greatest influence on the temporal variation of soil and bedrock water 708 

contents at all elevations and distances from the canal at the locations monitored. The effect of canal stage 709 

and mean water table elevation in the DFA model was similar confirming the high hydraulic connectivity 710 

between the canal and Biscayne aquifer.  711 

 Based on the high connectivity between surface water in the canal and Biscayne aquifer, a simple 712 

DFA based regression model (DFA model in which the common trends were removed), was developed to 713 

predict soil and bedrock water contents as a function of canal stage and net recharge at various elevations. 714 

The performance of the simplified regression model was described as good to acceptable at sites with low 715 

elevation (i.e., water table elevation within 1m from the ground surface) and poor at the location at with 716 

water table depth greater than 1.5 m. These findings highlight the effect of micro-topography within the 717 

field on soil water content.  The study also revealed that factor loadings were not zero for all the common 718 
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trends suggesting that the explanatory variables (net recharge and canal stage) used in the DFA model are 719 

not sufficient to explain all the observed variations in the soil and bedrock water content time series. 720 

 The effect of the proposed 3 incremental raises in canal stage on soil and bedrock water content was 721 

simulated using the developed simple DFA based regression model for a total of 181 days beginning 722 

January 01, 2012. The results based on the data collected indicate that the proposed raises in canal stage 723 

would result in negligible changes in average soil and bedrock water contents at low elevations monitored 724 

in this study based.  Changes in soil water content near the ground surface were more noticeable. The 725 

DFA based regression model developed is limited in its prediction ability to the range of canal elevations 726 

and net recharge by which it was developed. The uncertainty in predictions could be minimized by 727 

continuously updating the regression coefficients and constant level parameters as more data on response 728 

and explanatory variables are collected. The results of the regression model could be further evaluated 729 

using physically based modeling approaches. The approach used in this study could be applied to any 730 

system in which detailed physical modeling would be limited by inadequate information on parameters or 731 

processes governing the physical system. 732 
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