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1.0 INTRODUCTION

This thesis touches briefly on several phases of Radiation Chemistry;

however, most of the attention is given to computation of electron energy

spectra arising from several types of radiation. These spectra are neces-

sary for accurate determination of the chemical yield induced by these

electrons. The purpose of this work is to accurately predict the chemical

yield of a reaction induced by ionizing radiation and thereby predict the

molecular yield of a certain chemical species per 100 ev of radiation ab-

sorbed (G values). Prom the electron spectra and the electron cross sec-

tion, k(E,x), the chemical yield for a simple chemical reaction is deter-

mined. By treating a set of complex reactions as a simple reaction, G

values are predicted for the oxygen-free Pricke dosimeter.

This work considers a very simple but typical reaction mechanism. It

is assumed that the medium being irradiated breaks into free radicals to

provide the mechanism for the chemical stage, which is Justified by Kupper-

man (16). Specifically, the reaction mechanism is:

R
2

- 2R i

R + R -* R
2

ii

R + S - RS iii

in which R is the free radical and S is a reactive solute.

To predict the chemical yield over a wide range of linear energy trans-

fer (LET), both a track model and a spur model are used. For radiation of

low LET, energy is transferred to the medium in discrete bundles and the

spur theory is valid. If the radiation has a high LET, the R species are

generated continuously along a cylindrical track and the cylindrical track



model must be used. An extensive example is presented in section 2.1 for

a radical diffusion kinetics spur model. No development is given for the

cylindrical track model. The necessary information from the track model is

taken from a paper by Faw and Miller (10).

Usually, theoretical formulations of a problem involve several unknown

parameters, and there are a number of parameters associated with the theo-

retical prediction of the chemical yield. If the LET of the radiation is

such that the spur theory is valid, one must know, determine or assume: (a)

D, the diffusion constant of the medium, (b) r , the spur radius, (c)

£'(E,6 ), a spectrum of spur separation distances, (d) /t\ , a weighted

average spur size, and (e) 6 , an effective maximum spur size. Other un-

certainties are involved but the above is the extent of those considered in

this work. The parameters of D, r and 6 are chosen from a previous work

by Paw and Miller (10) while fix) and £'(E,6 ) are obtained herein. Prob-

lems associated with predicting the chemical yield from the cylindrical

track model are not considered in this work.

The uncertainty in Cry and £'(E,6 ) stems from the lack of knowledge

of the electron-electron collision cross section, k(E,t), for low energy E

as well as for small energy losses t. A reasonably good approximation of

the cross section for small energy losses is obtained from a synthesized

cross section utilizing inelastic collision cross section data. It is neces-

sary to know the electron-electron collision cross section for low energy

electrons to obtain accurate results for the average spur size and for the

spectrum of spur separation distances. An extrapolation is performed for E

below 2 Kev, which may or may not be accurate. Both (t/ and £'(E,6 ) are

fairly strong functions of 6 .



The theory is given in section 2.0 and is broken into 10 subsections.

The results are presented and discussed in section 3.0. Likewise, the com-

puter programs are explained in corresponding subsections of section 6.0.

Remaining sections are adequately described in the Table of Contents.



2.0 DEVELOPMENT OF THE THEORY

2.1 Development of the Diffusion Kinetics Model

for Application to Spur Coalescence

Chemical yields of reactions induced by ionizing radiation may be es-

timated within the accuracy of the mathematical model. Results are obtained

by the solution of the partial differential equations describing simultaneous

chemical reaction and diffusion along the tracks of the particles. For sim-

ple reactions, various approximate analytical solutions to the equations have

been published as well as have some solutions obtained by direct numerical

integration of the equations. An approximate analytic solution for the chemi-

cal yield is presented in this work.

The theoretical development of the diffusion kinetics model utilizes

the prescribed diffusion hypothesis (which will be explained later) to obtain

an approximate analytic solution to the diffusion kinetics equation. A com-

parison between results obtained by prescribed diffusion and numerical inte-

gration is given by Kupperman (16).

The radiation-chemical process is conveniently separated into three

distinct stages. The first stage is the physical interaction of the radia-

tion with the medium and may be described by the following expression:

(Medium + Radiation = Highly Excited Ions and Molecules

+ Energetic Electrons). (1)

This physical stage, consisting of the dissipation of radiant energy in the

-15
system, has a duration on the order of 10 seconds or less.

The second stage is the physlochemical stage and consists of those pro-

cesses which lead to the establishment of thermal equilibrium in the system.



According to Kupperman (16), its duration is on the order of 10"11 seconds

for aqueous solutions. During this stage, highly excited ions and molecules

lost most of their excitation energy, and it is assumed that the radiation-

produced electrons and ions interact with the surrounding medium. Using

water for an example, the following expression for the loss of excitation

energy could be written:

H2° "*" H2° ( internal conversion) \

H^O* + H + OH \ (2)

(H
2

) * HpO (internal conversion) /

H
2
0+ + H2° * H

3

0+ + 0H (3)

H
3

+
+ e" * H + H

2
(acid solution) (5)

It is usually assumed that the atom and the free radical 1 H and OH, are pro-

duced during the second stage in or near the region in which the energy is

released by the radiation. According to Magee (18), "It is possible to

think of the excitation produced by a primary particle as a wave packet formed

as a superposition of excited states of the constituent molecules. The un-

1Pree Radical according to Longuet-Higgins, H. C, "Reactions of Free Radicals

in the Gas Phase", Sugden, ed., The Chemical Society (London), 1957, p. 5.

We . . . restrict the term to molecular species in which there is at

least one unpaired electron associated with an atom . . . of a non-

metallic element whose valency shell normally comprises an even number

of electrons, all paired.



certainty principle limits the extent to which we can localize such a wave

packet. The wave length associated with momentum change (AP) of the par-

ticle is

«*>) -%-f (6)

where e is the energy loss, h is Plank's constant and v is the particle velo-

city. If v = 10 cm/sec and e = 5 ev, then A = 100 ft and it is evident

that such excitation cannot in any reasonable approximation be considered as

localized in a molecule." This localized energy loss initiates a spur 1
.

The third or chemical stage consists of diffusion and chemical reaction

of the reactive species and leads to the establishment of chemical equili-

—8
brium. Its duration ranges from 10" seconds and upwards according to Kupper-

man (16). During this final stage, diffusion, occurring simultaneously with

chemical reaction, causes expansion of the spur to radii exceeding the initial

value r . For the one radical model the following three reactions denote

those considered to be occurring during the third stage:

R
2
- 2R (7)

R + R - R
2

(8)

R + S - RS, (9)

in which (R) denotes a free radical and (S) denotes a reactive solute mole-

cule.

If the order of these reactions is known, the diffusion kinetics equa-

tion, which describes the chemical action during the third stage, can easily

1Sp_ur This localized region maintains its identity as a Spur but

increases in size as a result of diffusion.



be written by performing a simple material balance. For the one radical

model Eqs. (8) and (9) describe the chemical action. Since Eq. (8) de-

scribes a second order reaction and Eq. (9) a first order reaction, the

production terms are k^C^ (r,t) and ^^^(r^), respectively. Diffusion

loss terms are, in general, -DV C
R
(r,t). The rate balance for component

R is:

o - 3 + - 3CR(r,t)D^C
R
(r,t) "VR

(r^ * IfeWr.t) " -*3tT— (10)

in which D diffusion constant

r = generalized space vector

C
R
(r,t) = free radical concentration

Kvd = rate constant for radical recombination

kpo = rate constant for radical-solute reaction

v = Laplacian Operator.

For angularly independent cylindrical coordinates, the Laplacian operator

P "k "1/4 S
is 7 = —5- + — -r— + —5- . For angularly independent spherical coordinates,

J*^ 2 ^ 8z
2 3 2 3

it is v = —5- + - r— . This type of non-linear partial differential equa-
s

3r
d r 3r

tion is of second order in space, first order in time, and probably has no

exact analytical solution. The approximate analytical solution will be for

equally-spaced, equally-sized spherical spurs which obey the following three

major assumptions given by Kupperman (16): (a) the initial distribution of

radicals in a spur is Gaussian; (b) the Gaussian form is preserved as the

spur expands in spite of the reactions that go on; and (c) the variation of

the radius of the Gaussian distribution with time is the same as it would be

if only diffusion were occurring. The basic underlying motivation of the

three assumptions seems to have been the mathematical tractability of the



8

problem. Assumptions (b) and (c) have been called the "prescribed diffusion

hypothesis" and this terminology will be used.

The first step of the mathematical development will be to present the

basis for the prescribed diffusion hypothesis by solving the time dependent

diffusion equation for one spur. The equation to be solved is:

DV
s
2c,

R
(l,»^ s

aF"
c
'R

(r ' t ^ (11)

with the following initial and boundary conditions for spherical coordin-

ates:

1) C« (r,0) = N ii£i-
H ° W^

2) C'
R
(~,f) =

3C» (r,t)

3) 9r
- 0.

r =

For Eq. (11), the following variables are defined:

N = initial number of free radicals
o

t' = time scale considering a point source

6(r) Dirac delta function

C' (r,f) radical concentration for diffusion from a point source.

This equation is solved by first solving the infinite one-dimensional case

for plane geometry and then differentiating to obtain the point source ex-

Pi
2 3

2

pression. For the one-dimensional case, let V , —p- . Then Eq. (11)
3x

becomes

:

w2
pl

C,
H<

x »t,)_ 5P-
C,
R
(x 't,) - (12)

The solution is obtained by taking the Fourier transform of the space varl-



able, the Laplace transform of the time variable, the inverse Laplace trans-

form of the time variable, and finally the inverse Fourier transform of the

space variable. The definitions of the transforms are:

Fourier

% (w,t») =

/2^
f(x,t')e

ia)X
dx

in which w is the transform variable.

Inverse Fourier

f(x,f) = 2-1
U,f) =

/2T
£(u),t')e-

iwX
du>.

Laplace

foa

F(x,s) = e"
st

'f(x,t')dt'

in which s is the transform variable.

Inverse Laplace

•c + i°»

f(x,t') = P^Cx.s) = ^i
*c - i«

Taking the Fourier transform of Eq. (12) gives:

r «
t o°

St

'

F(x,s)e ds.

/2T

DV
2

,C« (x,t')e
i(i)X

dx = -^
Pi R jo/2T

5
|rC'R(*.f)e

1«x
dx

._»
'—CO

D(iu))
2
C» p ( w,f) = zItC' (<o,t»)

R 3t f
w

IT

-DW
2
C'
R
(a>,t) = j|rC»R(u ft»).

Taking the Laplace transform gives:

-Du)
2
C»
R
(w,s) = sC»

R
(w,s) - C f

R
(w,0)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)



in which

10

C' (a),0) = -i-
R fa

6(x)N
o
e
iu)X

dx

Loo

(21)

C'
R(o),0)

=
N

/27
(22)

Substitution of Eq. (22) into Eq. (20) gives:

N
C f

R
(a>,s) =

fa s + Deo
2 *

(23)

Taking the inverse Laplace of Eq. (23) gives:

C» <«,t» ) = -£- e
"Dw t

.

R' fa
(24)

Finally, one needs to find the inverse Fourier transform of Eq. (24) which

reads:

C'
R
(x,f) =

fa

e
°°

^_ CO

o -Do t 1 -iwX-,
e e dw

fa

C'
R
(x,t') =

fa

t °°

J- oo

N _
D

2 ,— e~ w
fcos(u)X) + i sin(wx)] dw.

fa l J

(25)

(26)

p

Since e
w

is an even function in w , it is necessary only to find the

cosine transform:

2N
c

R
(x,f)=^ e cos((ox)dx (27)

C . (x.f)-^ JL_ e
-xW

R' 2^" yst 7
"

(28)
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Since

3

fcC' R
(x,f) = - 2nC»

R
(r,t), (29)

x = r

Eq. (28) is differentiated and Eq. (29) is utilized, thus obtaining:

Ne-r
2
/(*Df)

C' (r,t») - -2 _- (30)
* (^Df)^

in which r is the distance from the center of the spherical spur.

Shifting the time scale 1 to t' = t + T and defining T = -£r- , results in
2D

N e
-r2/(ijDt + 2r

o
2)

C'(r,t) = -2 p—^75- . (3DR
{*(i|Dt + 2 r

o

2
)}

3/2

By utilizing the prescribed diffusion hypothesis, the following equations

result

:

NR(t)e-
2/^Dt + 2r

o
2)

CR(r,t)
= -2 ^—

^

(32)R
{»(i»Dt + 2r

2
)(

3/2

or

CR (r,t) = NR(tH(r,t). (33)r ,v/
r

where C
R(r,t) is the free radical concentration corresponding to the shifted

scale and ND (t) is the number of free radii
n

Substituting Eq. (33) into Eq. (10) gives:

time scale and ND (t) is the number of free radicals per spur.

lfThe fictitious time T is the time that the radicals would require to diffuse

to a radius r if they came from a point source.
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DN
R
(t)v

2

s
{<Kr,t)} - k

RR
N
R
2
(t)4»

2
(r,t)

" k
RS

N
R
(t) *(r 't)CS

=
It Nr^)^ 1"^)' (34)

The diffusion kinetics equation may be simplified by the following redefini-

tion of functions:

C
R
(r,t) = ^(r,t)e ^ b

(35)

pCr.t) = N
R
(t)4>(r,t)e^

5
. (36)

Substitution of Eq. (35) into Eq. (10) gives:

-kpcAjt 3!|;R(r,t)
DV

s
\(r,t) - k^Cr.tOe TO = -\— . (37)

With the definition

k C t

iyt) = N
R
(t)e ^ S

, (38)

substitution of Eq. (38) into Eq. (36) and Eq. (36) into Eq. (37) gives:

DM
R
(t)V

s

2
«j>(r,t) - kppM^e ^ S

4>

2
(r,t) =

f^
{M
R
(t)*(r,t) } . (39)

For the case of one spur and solute competition, one needs to solve Eq. (39).

For the case of n spurs with centers aligned and solute competition,

Eq. (39) may be rewritten as:

nytOv-^Cr^z.t) - k
RR
M
R
2
(t)e ^ S

<>

2
(r

c
,z,t)

=
ft

{M
R
(t)^Cr*

c
,z,t)}

.

(40)

To solve the problem for n spurs equally spaced, the expression for $(r ,z,t)
c

from the spherical case may be utilized.

From Eq. (32) it is evident that
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4>(r,t) =

-r
2
/(4Dt + 2 r

Q
2

)

{ir(^Dt + 2 r
2
)}

3/2
(41)

in spherical geometry, where r is the radius of the spur. For cylindrical

geometry, the following diagram indicates that for the i
th

spur, r must be

replaced by

r
2

= r
c

2
+ (z - z

± )
2

. (42)

( f \
\ y \ J

'i+l

To help explain the formalism, consider a system of orthogonal cartesian

axes whose origin is the center of the first spur and whose z axis is the

track axis. Let r be the distance from the track axis and z the distance
c

along the track axis. Due to the cylindrical symmetry of the problem, CR

has no angular dependence and is shown by:

n
N (t) I exp

CR(r ,z,t) = NR(t)<fr(r ,z,t) =
i=l

rr
c

2
+ (z - z

±Y

2r * + 4Dt
L O

'R
v*c R

x

n*
3/2

{2r
o
2
+ UDt

}

3/2
(43)

As before, N
R
(t) is the total number of radicals produced and n the number

of spurs.

To solve Eq. (40) for Mp^t) it is necessary first to integrate over the

space variables (r ) and (z). Writing the equation in integral form gives:
c



DM
R
(t) V

c
^(r

c
,z,t)dV - k^l^CtJe."*RS

C
S
1

r(rc ,z,t)dV

For simplicity, each term of Eq. (44) is considered separately.

Term 1 = <r(r
c
,z,t)dV =

V

dz

_ 00 *

2Trr
c
dr

c «fr
(r

c
,z,t)

in which

and

Term 2 = V*(rc ,z,t)dV.

Let R = r //q and Z. * (z - z.)//q; /qdZ. = dz and /qdR = dr

1^4

M
R
(t)

a<j>(r ,z,t) 3Mp(t)

-dV +
at at

Jv

<^(r
c
,z,t)dV, (44)

2. 2-2r
c

/(
^ n n

2, , 2^(r z,t) = *
V2 V2 I I e-{(z - z ^ + (z - z )^}/q (45)

q
2

= (4Dt + 2r
Q
2

)

2
. (46)

Integration for term 1 yields:

*
2
(r ,z,t)dV = i=^4

n n (z, - z,)
2
/2(4Dt + 2r

2
)

I I e
i J

JV n
2
{27r(4Dt + 2r

2
))

3/2
(47)



VWo ,z,t)dv = -^ I

v m 1=1
J

dZ
1

00

-R
2 -Zj

2

in which

15

2TiRdR7
2
(e e * }, (48)

2 2
-R -Z/ 2 „ 2

.
"

. "i -IT -Z,

1
(R,Z

1
,t) =

e

y2 3/2
= Ee e

mi q

and

E =

nUq)
372

*

Note the following:

3<fr,

3R = - 2R
*i

3R
2

_2R
_i- 2^ - 4]

1
3
*i

R 8R
=

' 2
*i

3^
8Z

±

= " 2Z
i*i

(49)

(50)

(51)

(52)

(53)

(54)

31

3Z,

1-2^(22^-1). (55)

Since

2 2

3R
2 R aR

3Z
2

1

q
(56)
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y
c

2
4»

i
(R,Z

1
,t) = 24»

i
(R,Z

i
,t)(2R

2
+ 2 Z

±

2
- 3) | (57)

or

v
cN1

(R,z
1
.t) = *£ {£ - £} I - 0,

, rm
V

(58).

v
c
%(r

c
,Z,t)dV = 0.

V

(58),

Term 3

3*4

3t~
dV

V

3<f>, HD*,(R,Z.,t) 9L _
(
2 (R^ + Z^) - 3}at

(4Dt + 2r )o

(59)

Note that the spatial dependence of Eq. (59) is the same as Eq. (57). There-

fore, it is evident that:

f 3*

3t
dV = 0. (60)

V

Term 4 = (r
c
,z,t)dV

V

n

I

4>(r.,z,t)dV = -^j, «^ ^
r

° H7r
3/2

{2r
2

+ 4Dt)
3/2

dze
-(z - Zi )

2
/(4Dt + 2r

Q
2

)

to
'—00

r
oo

2r dr e
c c

-r
2
/(4Dt + 2r

2
)

(61)



Eq. (61) results in:

d»(r
c
,z,t)dV = i

Substituting Eqs. (62), (60) and (58) into Eq. (44) gives:

17

(62)

W^2,^~kRSCSt ^(r
c
,z,t)dV = - i -g*— (63)

riyt)
c3M
R
(t)

Mr(0) ^
2 ^RR dt t{e^FS

C
S
t%

<>

2
dV) (64)

M
R
(t

>
-

1^(0)

1 + "W1

Xrs'

dt

C„t

•
j/W

4>

2
dV}

(65)

Recalling that M^t) N
R
(t)e

l^ ° and substituting this into Eq. (65)

gives:

N
R
(t) =

N
R
(0)e

"k
RS

C
S
t

ft

1 + W1 dt
.^^RSV

(66)

"dV)

Since there is now an expression for the total number of free radicals

in a chain of n spurs, it is easy to find an expression for the yield of the

RS species. The kinetics equation describing this reaction is:

3t <«<'•*> = k
RS

C
S
C
R
(r >t > (67)
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Integrating Eq. (67) over all space gives

(68)^N
RS
(t)=k

RS
C
s
N
R
(t).

The assumption of Cs as being space and time independent constitutes the "lack

of solute depletion" approximation. This approximation is valid for those

cases for which C
s

greatly exceeds the free radical concentration. This is

the usual case in radiation-chemistry experimental work. The solution of

Eq. (68) is:

N
RS

(6) " k
RS

C
S

dt N
R
(t).

Substituting Eq. (66) into Eq. (69) gives

(69)

N
RS(8)

Y
RS(0) "N^OT

^S6
-W'

de

1 + N^Okj^n dt
.j^V 2

dVf

(70)

The expression for <j> dV, Eq. (47) can be reduced to the following
V

single sum for equally-spaced spurs of distance a; where z. ia, z, a ja

4> dV = -5 5

—

-J*
. n*{2ir(4Dt' + 2T

rf)}
i/d

n-1
{n + I 2(n - m)e

m=l

-a
2m2/2(4Dt' + 2r

2
)

(71)

To simplify Eq. (70), the following changes of variables may be made:

2

,
1

kRS *

t' =
r ~ 2

t" - t^-.a
2

= -^rand e» «
2D

4r kftsS
(72)



Defining

and

the result is

A =

B =
r
o
2k
RS

C
S

2D

19

W e
>
= e

T
dx

B
1 + Ae

D
/BK(x,B,n,Jl)

(73)

in which

K(x,B,n,£) =

B + T

B

-t ' n-1 ? ?
dt'»e & + I ?)en-nk -l m B/t

(f) 3/2 2
mil

e (W

2.2 Development of the Electron Energy Spectrum

Resulting from Electron Slowing Down

This development closely follows that of Spencer and Pano (22), but

their development is expanded upon and presented in a slightly different

order and with different nomenclature.

When traversing a medium, electrons lose their energy through a series

of inelastic collisions. The great majority of these discrete energy losses

are on the order of 10 ev. However, there are a sufficient number of large

energy losses so that the determination of the electron energy spectrum,

z(E ,E), using a continuous slowing down model, gives an unrealistic result.

The differential electron energy spectrum resulting from a monoenergetic
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source at E , z(E ,E)dE is the average track length traveled by the electrons

while the electrons have energy between E and E + dE. Spencer and Fano (22)

have developed a numerical scheme which includes the effect of statistical

fluctuations of the energy loss on the electron energy spectrum.

For the development presented in this section, energy losses by brems-

strahlung have been omitted since this paper concerns source energies near

1 Mev, at a maximum. Bremsstrahlung does not play an Important role as a

mechanism for electron energy losses in this energy range. Another point

that has not been considered is the effect of the density of the medium on

the electron stopping power. When a high energy charged particle passes

through a condensed medium, a polarization of the medium takes place. As

a result long distance interactions are less probable and the stopping power

of the medium is lowered. For low-Z materials, the density effect increases

so that for water the correction is of the order of 2% at 1 Mev and 10$ at

8 Mev, according to McGinnies (20). The most serious limitation of the

numerical scheme is the inadequacy of the collision cross section at low

energies

.

The resulting electron energy spectrum depends primarily on the mean

rate of energy loss in all collisions. This mean rate is taken into account

within the uncertainty of the value of the mean ionization potential. The

probability distribution of the energy losses in individual collisions has

a subsidiary and appreciable effect on the energy spectrum. This effect

stems particularly from collisions in which an electron loses a substantial

amount (>10#) of its energy. The probability of these collisions is taken

into account through the relativistic Moller formula which gives the pro-

bability of knock-on collisions with unbound electrons. This probability
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is estimated accurately only for collisions with an energy loss much larger

than the binding energy of the electron ejected. As a result, the error

incurred has a severe influence on the results of those calculations which

pertain to electrons of energies comparable to the binding energies of the

electron which is ejected.

The highest binding energy of atomic electrons is of the order of 100

Kev for K-shell electrons of heavy elements. However, these K-shell electrons

constitute only a small fraction of the orbital electrons. For this reason,

the error incurred by the use of inaccurate probabilities of energy losses

is estimated to be small until the energy of the electrons being slowed down

falls below half of the binding energy of the L-shell electrons in heavy

elements. In light elements, the binding energies are low and the error is

expected to be small down to the lower limit of 0.^04 Kev, according to

McGirmies (20).

It is essential to derive a statistical balance for the electrons being

slowed down past an energy E in terms of a differential electron energy

spectrum. For simplicity, a monoenergetic source of electrons is assumed,

yielding N>(E ) electrons per unit time per unit volume at energy E . Let

N(E)dE be defined as the number of electrons about energy E in dE which

traverse a small spherical probe of cross sectional area ttR per unit time.

Since a normalized function is a more desirable quantity to formulate, let

<(»(E)dE = N(E)dE/irR , where $(E) is the differential electron flux as viewed

from a small spherical probe at the point of observation. Note that <fr(E)dE

has units of electrons per unit area per unit time. To put the differential

spectrum in an even more convenient form, <(>(E)dE is normalized as follows:
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Z(E ,E)dE = tf^f . (75)

(The above equation has units of cm, and E is the monoenergetic source

energy.) The physical significance of the differential energy spectrum is

mentioned in the opening paragraph of this section.

Let K(E',x)dT be defined as the probability per unit distance that an

electron of energy E' in dE 1 has a collision which results in an energy loss

of x ± p- d . The probability that a primary electron of energy E' drops be-

low E, (K (E',E)) is the integral over K(E',T)di for all energy losses be-
c

tween (E' - E) and j E '» Since a primary electron must lose less than •*

of its energy to remain a primary, the upper limit is ^ E 1
. An electron

must experience an energy loss of E 1 - E for it to fall below E.

The function K(E f ,T)di is given accurately for a wide range of E' and

x, by the relativistic Moller formula, k (E',t), which reads:

yEv)
2ttN r

2

e o

• \2(B«) t
2

(E« - x)
2

(2 + t.)

(E» + 1)'

+
<E» - x)

(E« + l)
4

,3. ^

(76)

in which N is the number of electrons per cnr: r is the classical electron
e ' o

radius; and B 1 is the ratio of the velocity of the electron to the velocity

of light, given by S
1 = r/^Vl) ' The ratio 6 ' can be derived directly

from the relativistic expression for the kinetic energy of an electron in

units of the rest energy.

1

sr=
-

1

(v/c)
2

-

(77)
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, _ yj_ /E'CE' + 2)
' (E 1 + 1)

*B' = (78)

The expression for K (E',E) is

K
C
(E»,E) =

l-
dxyE 1

,!) (79)

E' - E

or making the change of variable x = E 1 - s, one obtains

rE

dsk (E»,E - s)K
c
(E',E) = (80)

I-
where E' - E must be greater than Q. Q is a term given by Spencer and Fano

(22), as follows:

n2
Q = i (ZI /m^

2
)(E'(E' + 2)}"1e-

(e '

)
.

o o

Note further that Q is defined such that

•6

dTk
m
(E,x) = L(E,6),

Q

in which L(E,6) is the restricted stopping power and

(81)

(82)

Q
dxk (E,x) is taken

to be zero. With these criteria in mind, it becomes evident that

K (E',E) = K (E + Q,E) for E'<E + Q. (83)

From the definition of primary electrons, it is known that K (E',E) = for

E'<2E.

There is now sufficient information to write the electron balance as

follows

:

(Primary electrons slowed down past E = Electrons created above E)(84)

or
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z(E ,E')K (E',E)dE' = S (E ) +
o' c ' oo S (E')dE' (85)

in which S (E 1

) is the secondary electron source term for secondary electrons
s

created about E 1 in dE ! and z(E ,E')K (E l ,E)dE' is the mean number of elec-

trons about E* in dE dropping below E per unit time. The Moller expression

may also be used to determine the probability of the production of secondary

electrons in dE' about E' . Since the secondary electron must carry less than

p- of the incident electron energy away from a collision, the lower limit for

incident electron energies must be 2E'. However, the upper limit is limited

only to the most energetic electron available. The differential secondary

source term is:

rE

S (E')dE' = dE'
s

dE l, z(E
o
,E ,, )k

m
(E , ,E" -E 1

). (86)

2E 1

Substituting Eq. (86) into Eq. (84) and defining S
Q
(E
o

) as equal to 1 for

2E<E . one obtains
o

2E

z(E .E')K (E',E)dE f = 1 +

E

fE

dE' dE"z(E
o
,E")km(E

, ,E" - E»). (87)

2E 1

Changing the order of integration of the double integral results in

1

J

2E

Z(E .E')K (E'jEjdE 1 = 1 +

E

Defining

dE"z(E
o
,EM )

2E

1

1

dE»k
m(E

,, ,E ,
» - E»).(88)

fE
f

' - E

K
S
(E",E) = dTkm(E",t) (89)

J E"/2

and letting E» = E" - T , Eq. (88) becomes:
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2E
fi.

dE'z(E
o
,E')K

c
(E',E) = 1 +

2E'E

In which K (E»,E) and K (E",E) are:
c s

K (E',E) - for E'<2E,

<JEM z(E ,EM )K (E»»,E) (90)

(91)

K (E',E)
2ttN r

'

e o

(0')
2

-i +
E' - E E

(2 + 1/E f

)

(E» + 1)' ^(^h?

,E - E'/2 ,

(E' + 1)
;

for E + Q<E»<2E,

(92)

K (E',E) « K (E + Q,E) for E<E'<E + Q, (93)

and

Ke(E",E) =
2ttN V*

e o

(0") 2 E E" -E
2 + 1/E"

(E M + 1)'

In(S^)

E"/2 - E

(E'» - 1)'
(94)

Since K (E',E) is a strongly varying function over E* when E 1 is near
c

E, it is convenient to lower and smooth the integrand of Eq. (90) which con-

tains K (E',E). This is accomplished by introducing a function K (E',E)

which will satisfy certain requirements. By adding and subtracting

z(E_,E)K (E f ,E) from the integrand and substituting into Eq. (90) the fol-
O C

lowing is obtained:
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f2E

z(E
Q
,E) K (E , ,E)dE l = 1 +

w

E

dE"z(E ,E")K (E",E)
o s

2E

f2E

dE'

E

z(E
o
,E')K

c
(E',E) - z(E

o
,E)K

c
(E»,E) (95)

If it is assumed that z(E ,E') is a continuous function, z(E ,E') will

approach z(E ,E) when E 1 approaches E. As a result, z(E ,E')K (E',E) -
o o c

z(E ,E)K (E f ,E) will tend to be small and finite as E 1 approaches E if

K (E',E) is approximately equal to K (E',E) when E' is near E. For these

assumptions to be valid the following condition should prevail:

rE + 6

J E

dE'(K (E',E) - K (E»,E)) = (96)

and 6<<I, 6<<E and 6<<mc in which I is the mean ionization potential and

2 _
m c is the rest energy of the electron. Too, it is convenient that K (E',E)

remain rather close to K (E',E) for E'>>E and that K (E',E) be integrable

analytically. Spencer and Fano (22) have chosen:

K (E',E) * for E'>2E, (97)

K
C
(E',E)

2ttN r
'

e o
E« - E E

(2 + 1/E)

E - E'/2

(E + l)
2

(E + 1)

for E + Q<E'<2E,

In
1

E' - E
.

(98)

and

K (E',E) « K (E + Q,E) for E»<E + Q, (99)



Prom Eq. (78) it is evident that in Eq. (98)

•E(E + 2)

(E+ 1)
'

One now defines

21

(100)

rE + A

F(E
Q
,E) = dE'K

c
(E',E),

E

(101)

or

F(E
Q
,E)

2»N
e
r
o
2

6
2

1 + In (£) - £ - J2E_tll A (1 + ^ VA)
Q

L
E(E + 1)*

+ *
A

(2E - A)

(E + 1)'

in which

(102)

E, for 2E<E^
- o

E
rt

- E, for 2E>E^
» o ' o

and all terms of the order of Q have been disregarded. According to McGinnies

(20), it is possible to show that F(E ,E), when limited to small energy los-

ses, approximates the restricted stopping power.

Equation (95) now may be written in its final form:

Z(E0>E) " FTETET 1 + dE ,, z(E^,E")K(E ,, ,E)
o s

E + A

rE + A

dE'{z(E
ft
,E')K (E',E) - z(E

ft
,E)K (E',E)}

o* c

E + A

(103)

A variety of numerical integration schemes to evaluate Eq. (103) could

be used. After much consideration it was decided to choose the integration
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points on an exponential scale and use subroutine BATES (explained in section

6. 8) to generate their respective weight factors. It should be noted that

1/F(E ,E) is approximately equal to z(E ,E) near E .

As a result one can begin the iteration for z(E ,E.) by first approxi-

mating z(E ,E.) by 1/P(E ,E.). It is important to note that one cannot

evaluate F(E ,E) at E = E . This is due to the peak in ^r^—~y as E nears

E . According to McGinnies (20), E 0.95E can be used since the peak

contributes very little to the integral. For this calculation an approxima-

tion by McGinnies (20) can be used to evaluate z(E ,0.95E
Q
). This value is

then used for the first point in the iteration. The abscissa points are

chosen as follows:

E
i

= E
oC

i"1
, (104)

in which £ (.5) . Calculations for the cases of p * 3 and p * 6 are

compared. For the computer program explained in section 6.4 the following

recurrence relation is used:

E
i

= E
i - 1

K ' (105)

Rewriting Eq. (103) and replacing the integrals with finite sums, re-

sults in:

z(E
Q
,E
n ) = 1/F(E ,E){1 + I z(E

o
,E

1
)K

s
(E

i
,E
n
)W

1

- J W [(^•W^i'V - z(E
£)
,E
n
)K
c
(E

1
,E
n)]

i=n-p

- W
n O^o'WW "^WW] )• <

106 >

McGinnies (20) evaluated the last term in Eq. (106) by approximating
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it with a parabola and extrapolating analytically. However, the author of

this paper found that the n term in Eq. (106) has a limit when the follow-

ing approximations are made for K (E f ,E) and K (E',E) when E 1 nears E:
c c

K (E»,E) --S^pJLg
(6')

(107)

K
c
(E',E) = ~2 £ , _ E .

3

(108)

Prom Eq. (78) one knows that

(3')
2

= E'(E» + 2)/(E» + l)
2

(109)

6
2

= E(E + 2)/(E + l)
2

(110)

and

C = N
A
7rr
Q
Z/A = .15Z/A. (Ill)

(N. is Avogadro's number, Z is the atomic number and A is the atomic

weight.) The last term .of Eq. (106), W
n
H, can now be written with

H = 2C lim
E'-*E

z(E
Q
,E')

1
z(E

o
,E)

1

(B«)
,,2 E' -E E' - E

(112)

Applying l'Hospital's rule, simplifying, one obtains:

H = 2C lim
E'-*E

z(E
o
,E')(E)(E + 2)(E' + l)

2
- z(E

o
,E)(E')(E« + 2)(E + l)

2

E(E + 2)E(E f + 2)E' - E)
(113)

Since the limit of a product is equal to the product of the lijnits, one can

factor z(E ,E), with the final result of

H = - 2C

Substituting Eq. (114) into Eq. (106) gives:

(2)(E + 1)

[E(E + 2)]
2

(114)
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n-p n-1

z(E E )4C(E + 1)W
-z(E E )K (E E )] + -7^ "

2

"
o n c 1 n I j"E

^
(E^ + 2) j

2

Collecting and rearranging terms in Eq. (115) results in

(115)

z(E ,E
n ) =

F(E ,EM )

4C(E„ + 1)W
n

n-1

n
[£n<

E
n
+ 2

>]
i=n"p

h+l w.yE,^)
(116)

2.3 Electron Slowing-Down Spectrum Resulting

From Co Gamma Irradiation of Water

Due to the complexity of other developments, only one interaction per

photon will be considered in the production of electrons from Co gamma-

rays. Even though there are a number of ways in which radiation interacts

with matter, the only ones of interest when dealing with photons are: the

photoelectric effect, pair-production and Compton scattering. Since Co

irradiation is being considered, cross sections for 1.17 and 1.33 Mev gamma-

rays must be obtained. Gladys White Grodstein (11) has tabulated sufficient

cross sections to permit the conclusion that the photoelectric effect and

pair-production contribute negligibly to the dose when Co gamma-rays in-

teract with water. Therefore, one assumes the source electrons to be pro-

duced by first collision Compton scattering of the photons.

The Compton process must occur with a free or loosely-bound electron.
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By quantum mechanical calculations, Klein and Nishina have shown that the

differential cross section for the number of photons scattered into a unit

solid angle at polar angle p per electron of material is given by

2
d
e
g
t

dn
o

1 + oVers(p)
1 + cos

2
(p) + q

2
Vers

2
(p)

1 + aVers(p)
(117)

in which a = hv/mc are Vers(p) = l-cos(p), e is the electron's charge. The

collision process may be represented by the following diagram:

hv

P . *£L
c

free electron

scattered photon

2 2 2m c E^ m c - m c
o o e o

P irfefec

recoil electron

In the above diagram P represents momentum.

To determine the differential cross section for electron energy distri-

bution the relation between the scattering angle p and the recoil electron

energy T is used and is given by

(118)
hv Vers(p)

% " 1 + aVers(p) »

and Eq. (117). According to Johns and Laughlin (14), the differential cross

section d
e
a(E

o
)/dE

Q , for the number of electrons, with kinetic energies
'

between E
Q

and E
Q

+ dE
Q , scattered per electron is given by



d o(E )
e o
dE

•nr

.510970'

1 + E cos (p) - E cos(p)

In which m c = .51097 Mev.

Note further that

cos(p) = (a - aEQ " Eq)
.

(a* aE
o )

The combination of Eqs. (119) and (120) gives:

d o(E )e o'

dE.

nr

.51097a*

1 +
E
Q
(a

2
- aE

o
- E

Q )

2
E
o
(a

2
- aE

Q
- E

Q )

t
2 ^ 2

(0 - aE
Q ) (a - aE

o )
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(119)

(120)

(121)

Equation (121) is utilized as a FUNCTION statement to calculate the electron

source term at any energy E . The resulting electron energy spectrum y (E)

is calculated by utilizing the electron energy spectrum resulting from a

monoenergetic source in combination with Eq. (121). Specifically it is neces-

sary to evaluate the following integral:

fE,

yJE)
max

z(E
o
,E)s/(E

o
). (122)

Taking into account the two equal intensity gamma rays from Co and the

electron density (N ), the following expression for S S(E ) is obtained:

irr
2
N

S
e
S

<E
o> " T5I09T

NQ

I A
i=l a,

1 +
E
o (

°i

2
- *i

E
o - V 2

(tt
i " "iV

E
o
(a

i - a
i
Eo- EoM

|

(a,
2

-
0i
E
o

) J
J

(123)

in which
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and

2 if E <ou
2
/(l + 2a )

I
1 if E

o
>ay(l + 2a

2
)

a
2

= (1.33/. 51097) m
Q
c
2

.

2.4 Electron Spectra Resulting From Fast Neutron Irradiation of Water

This development closely follows that by Faw (8) and Faw and Miller (7).

To determine the charged particle slowing down spectra resulting from fast

neutron (14.6 Mev) irradiation of water, two neutron reactions are considered,

They are: I, the production of protons H(n,n)H and II, the production of

alpha particles (n,a)C . Neutrons of 14.6 Mev are considered since they

are easily obtained by the HJ(d,n)De reaction. The proton and alpha par-

ticle fluxes used were obtained from Faw (8). This information is then used

to calculate the resulting electron slowing down spectra.

Continuous slowing down theory is used to determine the proton and alpha

particle fluxes from their source terms as determined from reactions I and

II, respectively. Electron spectra are calculated from the slowing down of

the protons and alpha particles. Spatial dependence of the charged particles

is assumed to be negligible.

The total cross section for reaction I, o-p is taken to be .668 barns,

as given in reference (2). The distribution function g(E) is defined such

that o
T
g(E)dE is the cross section presented by hydrogen atoms for creation

of knock-on protons of energy E in dE. The proton source term, S (E), can

be written as follows:

S
p
(E) = N

H
o
lg
(EH . (124)
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in which R. is the hydrogen atom density and
<J>Q

is the 14.6 Mev neutron flux.

The distribution function, g(E), used by Paw (8) is

2

g(E) =

[-IU
1 + c 1 - 2E

o J

(125)

in which c is the anisotropy factor characteristic of the neutron energy E

and has a value of 0.06. Substituting Eq. (125) into Eq. (124) yields
4

r

S (E) - U
H
o
I

l

E.
[
1 +

f]

1 + c(l - |l)
E
o

(126)

Prom continuous slowing-down theory, the following expression for the proton

flux can be written:

VE) - ITCET
dE'S (E'). (127)

in which L (E) is the total stopping power of the medium for protons.

Computation of the alpha particle source strength and flux proceeds in

a similar fashion:

S
a
(E) = N o

I]:
f(E)4» (128)

a
(B) zpr dE'S

a
(E«) (129)

in which N
Q

is the oxygen atom density, a-r-r is the total cross section for

reaction II and is reported to be .312 barns by Kalos, Goldstein and Ray (15),

f(E) is the energy distribution of alpha particles resulting from reaction

II, E* is the maximum energy and L (E) is the total stopping power for alpha
a a

particles.

Due to fragmentary information on the energy distribution of alpha
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particles resulting from the (n,a)C ^ reaction corresponding to various

TO
excited states of the C J nucleous, only a mean excitation energy of 4.8

Mev is considered. A monoenergetic source of alpha particles of 5.8 Mev

is given by Faw (8). Equation (128) now becomes:

and Eq. (129) reduces to

S
a " Vll'o

N aT ,<f>

(130)

(13D

Daring the slowing- down process of protons and alpha particles, elec-

trons of sufficient energy to escape from the heavy particle track are pro-

duced. These electrons are taken to be those produced with energy greater

than 6 (200 ev) and are called delta rays. These delta rays in turn pro-

duce chemical effects and must be treated as a separate electron source.

In effect, the total dose resulting from the proton and alpha particles is

divided between the energy lost locally by the heavy charged particles and

the energy lost by delta rays away from the track. Differential electron

cross sections per unit energy for creation of electrons of energy E as a

result of collisions with protons or alpha particles of energy E 1 (a (E',E),

<j (E',E)) are given by Rossi (21) as follows:
a

o (E..E) |"
e
2 2p m_<rB_ E

1 6 i-+i1 ' 6
p *» 2

E 1 + V J

(132)

o
a
(E',E)

87re

2 2 2
m CTB E
e a

1-0
a E_

m
(133)

in which s or 8 is the ratio of the velocity of the proton or alpha par-
P a



36

tide to the velocity of light. Explicitly:

E'(E f + 2m O
(13*0

(E 1 + nyT)

and

a
=

E'(E» + anc^

(E' + m
a
c )

(135)

in which e is the charge on an electron, m , m , and m are the rest masses

of the electrons, protons and alpha particles, c is the velocity of light and

E is the maximum energy the particle under consideration can transfer to an

electron.

The electron source terms, S P (E) and S
a
(E), from proton and alpha

particle fluxes can be written as:

fE»

S/CE)

P 'W
dE'*

p
(E»)N

e
o
p
(E',E), 6

c
<E< -|--£ (136)

E

and

S
e
a
(E) dE'*

a
(E')N

e
o
a
(E',E),

Aim E'

« <E< g
a

c m_ (137)

in which N represents the electron density and the lower limit gives the

lowest possible proton or alpha particle energy capable of producing an elec-

tron of energy E and 6 is the maximum energy lost along the track (200 ev).
c
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The electron energy spectra resulting from electron slowing down, z(E ,E),

may be utilized to calculate the electron spectra resulting from the initial

electron sources produced by the protons and alpha particles. The expressions

for the electron spectra are:

km E'

r

6 P

\
y
p
(E) = dE f, S

e
P (E !l )z(EM ,E)

J m E

e

*im E'
e a

.

m
a

ya
(E) = dE'^^CE'^zCE"^)

* m E
a

(138)

(139)

%T

2.5 Determination of the Stopping Power of Water

for Low Energy Electrons

Accurate estimates of collision cross sections for low energy electrons

are quite difficult to obtain. A literature search gave inelastic collision

cross section data for small energy energy losses of 390 ev electrons. Utili-

zing this information and an analytic approximation, a synthesized cross

section for low energy is determined. However, since the hypothesis is made

without considering the physics of very low energy (below 200 ev) scattering

of electrons, the relative accuracy of the synthesized cross section cannot

be accurately estimated for this low energy range. This synthesized cross
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section is needed for calculation of the spur size distribution and the

weighted average spur separation distance.

Data for the inelastic collision cross section is taken from a publica-

tion by Lassettre and Francis (17). This data, k_v(t), is then approximated

by a series of straight lines (See section 6.8). Since the mean ionization

potential I
Q

is nearly independent of electron energy, it is assumed that the

form of kav (x) is independent of electron energy. Therefore, data for k (t)

obtained at one energy should be sufficient.

The Moller formula is quite accurate for electron-electron collisions

at high energy but neglects binding energy effects. Even for high energy

incident electrons, the energy loss must be large before an interaction can

be considered to be elastic. In reality, all electron-electron interactions

in a condensed medium are probably inelastic (i.e., some energy is lost to

excitation or ionization in every collision), unless it interacts with an

entire atom or molecule. As a result it can be deduced that the inelastic

collision cross section must go to zero for zero energy losses.

For small energy losses the Moller formula can be approximated by,

km(E,x)
Si|i

. (1H0)

T

According to a statement by L. V. Spencer, there is evidence that the Moller

formula underestimates the true cross section for low energy electrons. There-

fore, one should at least hypothesize a form that can become larger than

km
(E,t) for low energies and/or small losses. After much deliberation, the

following form was chosen for the hypothesized cross section:

kjjCE.T) = k
m
(E,i), x>150ev and E>2Kev (lUl)a

ME,!) = ^^r- , 6
n
<T<150ev and E>0 (lll)bn

(at + br
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k^(E,x) = AKT k
ex

(T), 0<x<6
1

and E>0 (lAl)c

in which <(E) = 2C(1/E). The behavior of the parameters (a) and (b) is de-

termined in regions where k (E,x) is valid and their behavior is deduced for

lower energies. AKT is an energy dependent term for the energy losses below

Since the integral over the Moller cross section is a valid approximation

of the stopping power for energies as low as 2 kev, the following equation

can be written:

f6.

AKT

f«'

k
ex

(T) Tdx +
<(E)xdx

(ax + b)
;

6,

Q

k^Ejxhdx, (1*»2)

The assumed boundary conditions are

AKT k ( 6l
>
= c(E)

(a6
1
+ b)'

(143)

and

:(E)

(a6
2
+ b)
rVW' cw

in which 6, is the high end of the experimental data (21 ev) and 6
2

is arbi-

trary, but must be chosen such that k^CE^) is valid. One can solve for

(a) and (b) explicitly but AKT must be obtained by iteration. Solving Eq.

(1*»3) and Eq. (lM) for (a) and (b) gives

/ k(E) I <(E)

(AKDk^)
(«

2
- «

x
)

(1*5)

and
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<(E)
- 6-

<(E)

, J 2/^>wv ^ywJ
(6

2
- 6

X
)

(1^6)

Equations (145) and (146) are substituted into Eq. (142) to carry out the

iteration. Note that the definite integrals over ^(Ejxjidx and k (E,x)xdx

have the following analytical expressions:

^(E.xhdx = ^|^
{&6

2
+ b)

" (a6^ + b)
+ In

a6
2
+ b

a6
x

+ b
(147)

and

r«2

Q

km(E,x)xdx
= 2CZ/A In

Q
(E - 6? ) (E - Q).

+ In
(E - 6

2
)

.
(E - Q) J

1 + E(2_JLl/§i

(E + 1)^

r
(6

2
- Q )

.
(E + ir.

,148)

6.5.

The computer programs used for this calculation are explained in section

2.6 Spur Size Distribution

For accurate determination of the radiation chemical yield (using spur

theory), it is necessary to either form an average of the spur size distri-

bution over the fractional yield expression or find a weighted average spur

size to use in the yield expression. The latter approach is taken for this

development

.
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The cross section developed in section 2.5 of the theory makes it pos-

sible to determine a weighted average spur size, considering the spur size

distribution at low electron energies. Since k„(E,x) dx is the probability

per centimeter that an electron of energy E has a collision which results

in an energy loss of t ± dx, xk„(E,x)dx is the probability per centimeter

that an electron loses energy t ± dx. If a spectrum y(E) of electrons is

present, \\Cj(E
i x)dTy(E)6E is proportional to the probability per centimeter

that the electrons of differential spectrum gives up energy x + dx. A func-

tion proportional to the probability of electrons of a differential spectrum

of y(E) about E in dE creating a spur with energy between x and t + dx is

written as follows:

G(E,x)dEdx = xdxdEy(E)k
H
(E,x). (149)

Integrating over the energy variable gives

G(x)dx = xdx

E
max

dEyCE^CE^). (150)

E .mm
The weighted average spur size is the first moment of x about G(t), which

gives

:

6
c

xG(x)dx

<?> = -fP* • "»)
c

G(x)dx

6
Min

The effect of both the lower and upper limits, Ej. and E^^, and 6
Q

are in-

vestigated.
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Kupperman (16) gives a spur size distribution,

-N/4
f(N

Q
) = .65e

u
(152)

for even N
Q

. When averaged for spur sizes between 2 and 2k radicals, the

result is 1..9
T-^^ .

2.7 Spur Separation Distance

To be able to evaluate the chemical yield accurately, based on the spur

model, it is necessary to average the fractional yield expression over a

spectrum of spur separation distances iKuMdJl 1

, where U(£')d£' is the dif-

ferential spectrum of spurs with separation distances between V and V + &V

Since A 1 is a function of E, for d£(E) corresponding to dE, the function

U{*'(E)} = u(Jl') is defined by:

UU»)dJL» = y(E)dE.

Then the following integral averages Y
RS

(£')

max
Y
RSU

, )UU , )<H I

Y.O = -^ (153)L

RS
max

ir.in

in which il^ would depend on the quality of the irradiation and £. is

taken as low as information on y(E) and Y(E) permits.

However, it is assumed that a weighted average I can be determined from

the radiation energy spectrum such that Y^ * Y
RS

(I), in which I = Ot'>/2r .

Therefore, several weighted averages for \ny , are hypothesized. The

forms chosen are:
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Case 1 (weighting by the electron spectrum and the relative local energy loss)

<">!
=

max

y(E)
J
min

L(E,6
C

)

L(E)
£»(E,6jdE

max

y(E)
L(E,6

c
)

L(E)
dE

J
min

(15^)

Case 2 (weighting by the local energy loss)

max

y(E)L(E,6
c
)A'(E,6

c
)dE

(>% - "min

ftmax

E
y(E)L(E,6

c
)dE

min

(155)

Case 3 (weighting by the electron spectrum)

<*>3
=

max

E .

min

y(E)i , (E,6
c
)dE

E
max

y(E)dE

"min

(156)

Case M (The definition of the average linear energy transfer (LET) is taken

from a paper by Burch (6))

E
max

y(E)

LET = "min

max

y(E)

UE,6
C

)

L(E)

L(E,6
c

)

L(E)

L(E,5 )dE

dE

(157)

min
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<*»«-& (158)
LET

The spur separation distance used in Cases 1-3 is given by

Jb£,(E ' 6c
)a

76- (159)

^(E.TjldT

in which (r\ is the weighted average spur size and 6 (200 ev) is considered

to be the effective maximum local energy loss along a track. The denomina-

tor of Eq. (159)

' 6
c

k^EjOxdT,

is the stopping power, L(E,6 ), restricted to energy losses less than 6 ,c « c

and L(E) is the total stopping power. The spur separation distance *'(E,6 )
c

has units of centimeters.

2.8 Energy Balance

For the purpose of checking the validity of a linear extrapolation for

Y(E) below 200 ev on a log-log scale, several dose rates are calculated. The

integrations to be performed are:

max
Dose 1 = S(E»)(E' -E^dE" (160)

"min

Dose 2 -
max

S(E')E'dE (161)
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fE

Dose 3

max
y(E»)L(E»)dE' (162)

J
min

Dose M

max
y(E')L(E',6

c
)dE'. (163)

E
toin

If the electron source results from proton or alpha irradiation, the

electron source terms are zero below 200 ev. If the electron spectra result-

ing from fast neutron irradiation are determined by stopping power theory,

y (E), Dose 1 should equal Dose 3 for all E. above 200 ev. However, the

results presented consider y(E) based on the theory derived in section 2.1.

Therefore, the inequality, Dose 3 > Dose 1, should be valid for all E .

above 6 . With E . = 200 ev, Dose 2 is the total dose rate. Dose 4 is the
c mln

dose restricted to energy losses less than 200 ev.

Rather than alter the computer program explained in section 6.M, the

integration for Dose 2 from the Co irradiation is performed analytically.

Simplification of Eq. (121) gives:

2

S
±
(E) = -^°-

a^ - 20^ + (1 + c^E3 )

(<x
±

2 - c^E)
2

(164)

The expression for Dose 2 is given by

Dose 2

NQ

i=l

fE
max
S
i
(E)EdE,

Inin

(165)

where NQ is defined in section 2.3, and
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S
1
(E)EdE = -A—

2 r

J E
min

- (o
1
+ 2)

(2 + o
j[

+ a^) (a
±

- E) E*(l + a
i

)

+ (a
±
+ 2)ln(a

jL

2
- o^E)

L
(a
i -°iE)

3a,

E * E_
max

E =»s
^min

Dose 1 is not obtained for the gamma ray source.

2.9 Comparison of Experimental and Theoretical G(Pe 3
) Values,

Using a One-Radical Model for an Oxygen Free Solution

16

(166)

Since the one-radical model is inadequate for the oxygen-free ferrous-

sulfate system, excellent results cannot be expected. However, the reaction

mechanism is as simple as one can expect to find. The reactions occurring

in the oxygen-free Fricke dosimeter are assumed to be:

H
2

•+ H + OH

H + OH + H
2

OH + OH -* H
2 2

H + H - H,

(167)

(168)

(169)

(170)

+3
+ OH-FE

+2
+ OH + I

Fe*
2
+ H

2 2
* Fe

+3
+ OH" + OH

Fe
+2

• HOH + H + Fe
+3

• 0H~ + H,

(171)

(172)

(173)

Fe
+3

+ H + Fe
+2

+ H
+

. (17D

To apply the one radical model, reactions (168), (169). and (170) are
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considered as one radical-radical reaction and reactions (171), (172), (173)

and (17*0 as the radical-solute reaction. One rate constant is assigned to

each set of reactions (i.e., k^ and k™).

For illustration, several approximations for G(Fe J
) are considered.

The following values are used for the required reaction parameters:

P) ^5ev,; = 2
radl^lfalr

,N
o ^.5g|^

^ - .026XX0
10 (^-'sec-1

,!^ -W C^iff'sec"1

r
Q

1.5xlO"7cm , D 4.5xl0~5cm
2
/sec

C
s

- 5.0x10"* g|| .

(The above value of e is suggested by Burch (5), ^r) is taken from this

work, C is a typical value, N is calculated from /r\ and e~and those

remaining are obtained from a paper by Faw and Miller (10).) Reaction (172)

+2
probably does not compete for the Fe ' ions in the spur. However, accord-

ing to Hochanadel (13), reaction (17*0 does deplete the H radicals in the

spur. In effect, an attempt will be made to represent a fairly complex

set of reactions by the simple hypothetical one radical model.

The first approximation will be to consider equal production of HpO,

HpOp and Hp and disregard reaction (17*0. For this case, the fractional

yield of Fe J would be:

Y(Fe
+3

) = Ypg + | (1 - Ypg) (175)

Y(Fe
+3

) = | + | Ypg. (176)

Since /t\ = 45 -^- and N =4.5 radlcals
, the number of Fe

+3
molecules

\ / spur o spur

produced per 100 ev of energy absorbed in spurs G(Fe J
) is given by:
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G(Fe
+3

) = (10.)(Y(Fe
+3

) (177)

G(Fe
+3

) = 10. (| + 1^). (178)

The second approximation is to estimate the fraction of the radical-

radical reaction going to H-CL from G values by Hochanadel (13). This esti-

mate is .115 for an initial LET near .01 ev/8. In reality, the fraction

going to HpOp increases with increasing LET. For this case:

G(Fe
+3

) = 10. (.23 + .77^). (179)

The third case will be to assume that the one radical model will give

the correct G(Fe
+3

) at an initial LET of .01/ev/8 if, in addition to the second

approximation, the contribution of the radical-solute reaction is X-jY™.

Explicitly:

G(Fe
+3

) =
(X^Rg + .23 (1 - Yj^)] 10. (180)

Solving for X
1
gives X

1
= .87, and G(Fe

+3
) = .23 + .64 Y^.

2.10 Error Analysis Methods

Due to the uncertainty in the mean ionization potential and the synthe-

sized cross section, it is possible only to estimate limits of uncertainty

for the results calculated. Both errors in the numerical integration and

the uncertainty resulting from the lack of knowledge of physical parameters

must be considered.

A standard formula is available for determining the error associated

with Simpson's integration. However, no method is available to estimate the

error associated with the chemical yield calculations which were performed

with a combination of Gauss and Laguerre integration.

Integrations using Simpson's rule in this work are performed on a loga-

rithmic scale. As a result, the following formula is given for Simpson's

rule integration:
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f*2n
f(x)dx =

|
'-x
o

n n-1
f
o

+ k l
±

x
2i-l

f
2i-l

+ 2 l
±

x
2i

f
2i

+
2n

-#fW>(0.

In the above equation,

h =
ln(x

o
/x

2n )

2n-l

(181)

(182)

It is important to note that the points on the lower end of the scale are

not nearly as important as those on the higher end, unless f(x) diverges for

small x.

Suppose that the number of integration points is changed from n, to ru.

Correspondingly, the value of h is altered from h-, to hp, the error associated

with each integration goes from E, to E~ and the value of the integral changes

from I, to Ip. Prom the expression for h, it is evident that an expression

for the relative errors can be written as follows:

5

E,

n.

n.

^V*^
ta(V*2n>

,

2n
2
- 1

2n
1

- 1

f<%)

7^ (183)

Even though £-, and C2
are not known, it appears reasonable to assume that

(h) (h)
f v

(5n) and f v

(Cp) would not change appreciably when changing the number

of integration points. Using the above assumption and simplifying,Eq. (183)

becomes

:

E„ *
n.

2n
2

- 1

2n
x

- 1

i5

(184)
J

2 "2

If I is the correct value of the integration,
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I2- I
l

= ± [<I.-E2> "d.-E^j (185)

substitution of Eq. (184) into Eq. (185) results in

5

I
2

- ^ - ± E
2 n

2

r2n
2

- ll

2n
1

- 1
^

(186)

From Eq. (186) it is evident that changing the number of integration points

from 30 to 40 or from 40 to 50 results in a smaller percent error than the

percent change in the value of the integrals.

It is also possible to approximate the effect of uncertainty in I on

the resulting electron spectra. To estimate this uncertainty, consider the

following expression:

rtVV
max

E

S(E
o
)z(E

o
,E,I )dE . (187)

The total derivative is given by

dy = dl
max

S(E
Q )

E

az(E
o
,E,i

o )

5T dE .

o
(188)

In terms of a finite change in I the following expression can be written:

Ay

max
S(E ) z(E ,E,I + AI

Q ) - z(E ,E,I ) dE
Q

. (189)

AZ
For I 65.1 ev and I + Al = 74.1 ev it can be shown that —- is

essentially independent of E , where

az
*<E ,E,I

?
+ * ) ' ^o>E> Io )

z z(E
o
,E,I

Q )
(190)
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AZ
The lower curve in Fig. M Illustrates the relation between — and E.

z

Substitution of Eq. (190) into Eq. (189) results in

Ay(E) _ Az(E) nq,x

yTET " i^ET " (191)

Therefore, from Eq. (191), it can be concluded that Fig. 4 presents a reason-

able estimate of the uncertainty in the electron spectra due to the uncer-

tainty in I .
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3.0 RESULTS, DISCUSSIONS AND CONCLUSIONS

3.1 Results, Discussion and Conclusions of the

Chemical Yield Calculations

The fractional yield for infinite time, Y^C-), was calculated by the

program described in section 6.1.3; the results for various values of A, B,

n and l are listed in Table I. Calculations for ^^o(°°) were performed by

the program explained in section 6.1.2; these results are listed in Table II

for various values of A, B, n, i and 6. Since Y^C*) is the fractional

radical-solute yield, Y^C-) 1 - Y^C-), in which Y^C-) is the fractional

radical-radical yield. Both sets of results were spot checked with the pro-

gram explained in section 6.1.1. Due to this spot check, it is concluded

that no more than 3 percent error should be considered for any result listed.

Problems associated with programming the chemical yield expression for

numerical integration are described in section 6.1.

The results for YpgC-) presented in Pig. 1 should be sufficient for

prediction of the chemical yield for general reaction parameters. Figure 2

is presented for illustration and should be self-explanatory.

The parameters A, B, n, I are defined as follows:

n
8„

3/2Dr
O

B =
r
o
k
RS

C
S

2D

£ =
2r

o

n = number of spurs in a chain
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in which k^ is the radical-radical recombination rate constant, N
R(0) is

the number of free radicals per spur at the beginning of the chemical stage,

D is the diffusion constant of the medium for the free radicals, x» is the
o

spur radius, k™ is the radical-solute rate constant, C
g

is the solute con-

centration (molecules/cm^) and £' is the spur separation distance in units

of centimeters.

In Pig. 1 it is apparent that as A increases, the chemical yield of the

RS species decreases and as B increases, the chemical yield increases. One

would expect a decrease in YpoC*) due to an increase in k^ or N
R(0)

since

these conditions favor the radical-radical reaction. As D and r increase,

the effective spur surface area increases and in turn the radical-solute

reaction is favored. As the spur separation distance increases Y^gC-) in-

creases due to the reduction in spur overlap. As the spurs come closer

together, the effective local concentration of the free radicals is increased

and the radical-radical reaction becomes more favorable. The fractional

chemical yield is reduced as the number of spurs increase due to spur over-

lap as the spurs expand.
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Table I. Chemical Yield Results for Various Values of A, B, n and i

Yield A B n SL

• 9145 .1000 .0010 1.0000 1.0000

.5169 1.0000 .0010 1.0000 1.0000

.0966 10.0000 .0010 1.0000 1.0000

.8776 .1000 .0010 2.0000 1.0000

.4186 1.0000 .0010 2.0000 1.0000

.0673 10.0000 .0010 2.0000 1.0000

.8494 .1000 .0010 3.0000 1.0000

.3625 1.0000 .0010 3.0000 1.0000

.0540 10.0000 .0010 3.0000 1.0000

.6843 .1000 .0010 1000.0000 1.0000

.1782 1.0000 .0010 1000.0000 1.0000

.0213 10.0000 .0010 1000.0000 1.0000

.9145 .1000 .0010 1.0000 2.0000

.5169 1.0000 .0010 1.0000 2.0000

.0966 10.0000 .0010 1.0000 2.0000

.8770 .1000 .0010 2.0000 2.0000

.4401 1.0000 .0010 2.0000 2.0000

.0729 10.0000 .0010 2.0000 2.0000

.8697 .1000 .0010 3.0000 2.0000

.4006 1.0000 .0010 3.0000 2.0000

.0627 10.0000 .0010 3.0000 2.0000
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Table I. (continued)

Yield A B n I

.7989 .1000 .0010 1000.0000 2.0000

.2845 1.0000 .0010 1000.0000 2.0000

.03826 10.0000 .0010 1000.0000 2.0000

.9145 .1000 .0010 1.0000 10.0000

.5169 1.0000 .0010 1.0000 10.0000

.0966 10.0000 .0010 1.0000 10.0000

.911^ .1000 .0010 2.0000 10.0000

.5071 1.0000 .0010 2.0000 10.0000

.0933 10.0000 .0010 2.0000 10.0000

.9100 .1000 .0010 3.0000 10.0000

.5028 1.0000 .0010 3.0000 10.0000

.0918 10.0000 .0010 3.0000 10.0000

.9067 .1000 .0010 1000.0000 10.0000

.4930 1.0000 .0010 1000.0000 10.0000

.0886 10.0000 .0010 1000.0000 10.0000

.9158 .1000 .1000 1.0000 1.0000

.6653 1.0000 .1000 1.0000 1.0000

.1673 10.0000 .1000 1.0000 1.0000

.9254 .1000 .1000 2.0000 1.0000

.5564 1.0000 .1000 2.0000 1.0000
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Table I. (continued)

Yield A B n I

.1127 10.0000 .1000 2.0000 1.0000

.9121 .1000 .1000 3.0000 1.0000

.5129 1.0000 .1000 3.0000 1.0000

.0965 10.0000 .1000 3.0000 1.0000

.8815 .1000 .1000 1000.0000 1.0000

.4336 1.0000 .1000 1000.0000 1.0000

.0725 10.0000 .1000 1000.0000 1.0000

.9518 .1000 .1000 1.0000 2.0000

.6653 1.0000 .1000 1.0000 2.0000

.1673 10.0000 .1000 1.0000 2.0000

.9^39 .1000 .1000 2.0000 2.0000

.6302 1.0000 .1000 2.0000 2.0000

.1^77 10.0000 .1000 2.0000 2.0000

.9409 .1000 .1000 3.0000 2.0000

.6178 1.0000 .1000 3.0000 2.0000

.1416 10.0000 .1000 3.0000 2.0000

.9348 .1000 .1000 1000.0000 2.0000

.5942 1.0000 .1000 1000.0000 2.0000

.1307 10.0000 .1000 1000.0000 2.0000

.9518 .1000 .1000 1.0000 10.0000
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Table I. (continued)

Yield A B n I

.6653 1.0000 .1000 1.0000 10.0000

.1673 10.0000 .1000 1.0000 10.0000

.9518 .1000 .1000 2.0000 10.0000

.6653 1.0000 .1000 2.0000 10.0000

.1673 10.0000 .1000 2.0000 10.0000

.9518 .1000 .1000 3.0000 10.0000

.6653 1.0000 .1000 3.0000 10.0000

.1673 10.0000 .1000 3.0000 10.0000

.9518 .1000 .1000 1000.0000 10.0000

.6652 1.0000 .1000 1000.0000 10.0000

.1673 10.0000 .1000 1000.0000 10.0000

.9977 .1000 10.0000 1.0000 1.0000

.9777 1.0000 10.0000 1.0000 1.0000

.8215 10.0000 10.0000 1.0000 1.0000

.9968 .1000 10.0000 2.0000 1.0000

.9693 1.0000 10.0000 2.0000 1.0000

.7712 10.0000 10.0000 2.0000 1.0000

.9964 .1000 10.0000 3.0000 1.0000

.9662 1.0000 10.0000 3.0000 1.0000

.7544 10.0000 10.0000 3.0000 1.0000

.9958 .1000 10.0000 1000.0000 1.0000
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Table I. (continued)

Yield A B n I

.9602 1.0000 10.0000 1000.0000 1.0000

.7233 10.0000 10.0000 1000.0000 1.0000

.9977 .1000 10.0000 1.0000 2.0000

.9777 1.0000 10.0000 1.0000 2.0000

.8215 10.0000 10.0000 1.0000 2.0000

.9976 .1000 10.0000 2.0000 2.0000

.9772 1.0000 10.0000 2.0000 2.0000

.8185 10.0000 10.0000 2.0000 2.0000

.9976 .1000 10.0000 3.0000 2.0000

.9770 1.0000 10.0000 3.0000 2.0000

.8174 10.0000 10.0000 3.0000 2.0000

.9976 .1000 10.0000 1000.0000 2.0000

.9767 1.0000 10.0000 1000.0000 2.0000

.8154 10.0000 10.0000 1000.0000 2.0000

.9977 .1000 10.0000 1.0000 10.0000

.9777 1.0000 10.0000 1.0000 10.0000

.8215 10.0000 10.0000 1.0000 10.0000

.9977 .1000 10.0000 2.0000 10.0000

.9777 1.0000 10.0000 2.0000 10.0000

.8215 10.0000 10.0000 2.0000 10.0000
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Table I. (continued)

Yield A B n i

.8876 .1000 10.0000 3.0000 10.0000

.9777 1.0000 10.0000 3.0000 10.0000

.8215 10.0000 10.0000 3.0000 10.0000

.9977 .1000 10.0000 1000.0000 10.0000

.9777 1.0000 10.0000 1000.0000 10.0000

.8215 10.0000 10.0000 1000.0000 10.0000
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Table II. Chemical Yield Results for Various Values of A, B, n, l and e

Y
RS

(6) e I n B A

.63116 1.0 1.0 1.0 10.0 .1

.86290 2.0 1.0 1.0 10.0 .1

.63116 1.0 2.0 1.0 10.0 .1

.86290 2.0 2.0 1.0 10.0 .1

.63116 1.0 10.0 1.0 10.0 .1

.86290 2.0 10.0 1.0 10.0 .1

.63079 1.0 1.0 2.0 10.0 .1

.86223 2.0 1.0 2.0 10.0 .1

.63114 1.0 2.0 2.0 10.0 .1

.86286 2.0 2.0 2.0 10.0 .1

.63116 1.0 10.0 2.0 10.0 .1

.86290 2.0 10.0 2.0 10.0 .1

.63066 1.0 1.0 3.0 10.0 .1

.86198 2.0 1.0 3.0 10.0 .1

.63113 1.0 2.0 3.0 10.0 .1

.86285 2.0 2.0 3.0 10.0 .1

.63116 1.0 10.0 3.0 10.0 .1

.86290 2.0 10.0 3.0 10.0 .1

.60593 1.0 1.0 1.0 .1 .1

.82573 2.0 1.0 1.0 .1 .1

.60593 1.0 2.0 1.0 .1 .1

.82573 2.0 2.0 1.0 .1 .1
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Table II. (continued)

Y
RS<

9) 6 I n B A

.60593 1.0 10.0 1.0 .1 .1

.82573 2.0 10.0 1.0 .1 .1

.59197 1.0 1.0 2.0 .1 .1

.80447 2.0 1.0 2.0 .1 .1

.60225 1.0 2.0 2.0 .1 .1

.81948 2.0 2.0 2.0 .1 .1

.60593 1.0 10.0 2.0 .1 .1

.82573 2.0 10.0 2.0 .1 .1

.58520 1.0 1.0 3.0 .1 .1

.79379 2.0 1.0 3.0 .1 .1

.60093 1.0 2.0 3.0 .1 .1

.81713 2.0 2.0 3.0 .1 .1

.60593 1.0 10.0 3.0 .1 .1

.82573 2.0 10.0 3.0 .1 .1

.60180 1.0 1.0 1.0 .001 .1

.82848 2.0 1.0 1.0 .001 .1

.60180 1.0 2.0 1.0 .001 .1

.82848 2.0 2.0 1.0 .001 .1

.60180 1.0 10.0 1.0 .001 .1

.82848 2.0 10.0 1.0 .001 .1

.57758 1.0 1.0 2.0 .001 .1

.79889 2.0 1.0 2.0 .001 .1
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Table II. (continued)

Y
RS

(G) e i n B A

.58364 1.0 2.0 2.0 .001 .1

.80536 2.0 2.0 2.0 .001 .1

.60006 1.0 10.0 2.0 .001 .1

.82574 2.0 10.0 2.0 .001 .1

.55898 1.0 1.0 3.0 .001 .1

.77543 2.0 1.0 3.0 .001 .1

.57230 1.0 2.0 3.0 .001 .1

.78999 2.0 2.0 3.0 .001 .1

.59929 1.0 10.0 3.0 .001 .1

.82447 2.0 10.0 3.0 .001 .1

.62268 1.0 1.0 1.0 10.0 1.0

.84744 2.0 1.0 1.0 10.0 1.0

.62268 1.0 2.0 1.0 10.0 1.0

.84744 2.0 2.0 1.0 10.0 1.0

.62268 1.0 10.0 1.0 10.0 1.0

.84744 2.0 10.0 1.0 10.0 1.0

.61922 1.0 1.0 2.0 10.0 1.0

.84111 2.0 1.0 2.0 10.0 1.0

.62249 1.0 2.0 2.0 10.0 1.0

.84709 2.0 2.0 2.0 10.0 1.0

.62268 1.0 10.0 2.0 10.0 1.0

.84744 2.0 10.0 2.0 10.0 1.0

.61796 1.0 1.0 3.0 10.0 1.0
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Table II. (continued)

Y
RS

(9 > e i n B A

.83880 2.0 1.0 3.0 10.0 1.0

.62243 1.0 2.0 3.0 10.0 1.0

.84697 2.0 2.0 3.0 10.0 1.0

.62268 1.0 10.0 3.0 10.0 1.0

.84744 2.0 10.0 3.0 10.0 1.0

.44546 1.0 1.0 1.0 .1 1.0

.59235 2.0 1.0 1.0 .1 1.0

.44546 1.0 2.0 1.0 .1 1.0

.59235 2.0 2.0 1.0 .1 1.0

.44546 1.0 10.0 1.0 .1 1.0

.59235 2.0 10.0 1.0 .1 1.0

.38419 1.0 1.0 2.0 .1 1.0

.50332 2.0 1.0 2.0 .1 1.0

.42819 1.0 2.0 2.0 .1 1.0

.56425 2.0 2.0 2.0 .1 1.0

.44546 1.0 10.0 2.0 .1 1.0

.59235 2.0 10.0 2.0 .1 1.0

.36025 1.0 1.0 3.0 .1 1.0

.46789 2.0 1.0 3.0 .1 1.0

.42237 1.0 2.0 3.0 .1 1.0

.55448 2.0 2.0 3.0 .1 1.0

.44546 1.0 10.0 3.0 .1 1.0

.59235 2.0 10.0 3.0 .1 1.0
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Table II. (continued)

Y
RS

(6) e i n B A

.42400 1.0 1.0 1.0 .001 1.0

.60952 2.0 1.0 1.0 .001 1.0

.42400 1.0 2.0 1.0 .001 1.0

.60952 2.0 2.0 1.0 .001 1.0

.42400 1.0 10.0 1.0 .001 1.0

.60952 2.0 10.0 1.0 .001 1.0

.32948 1.0 1.0 2.0 .001 1.0

.48473 2.0 1.0 2.0 .001 1.0

.34775 1.0 2.0 2.0 .001 1.0

.50470 2.0 2.0 2.0 .001 1.0

.41494 1.0 10.0 2.0 .001 1.0

.59385 2.0 10.0 2.0 .001 1.0

.27737 1.0 1.0 3.0 .001 1.0

.41171 2.0 1.0 3.0 .001 1.0

.31055 1.0 2.0 3.0 .001 1.0

.44935 2.0 2.0 3.0 .001 1.0

.41103 1.0 10.0 3.0 .001 1.0

.58681 2.0 10.0 3.0 .001 1.0

.55170 1.0 1.0 1.0 10.0 10.0

.72449 2.0 1.0 1.0 10.0 10.0

.55170 1.0 2.0 1.0 10.0 10.0

.72449 2.0 2.0 1.0 10.0 10.0

.55170 1.0 10.0 1.0 10.0 10.0
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Table II. (continued)

Y
RS

(6) e I n B A

.72449 2.0 10.0 1.0 10.0 10.0

.52773 1.0 1.0 2.0 10.0 10.0

.68495 2.0 1.0 2.0 10.0 10.0

.55034 1.0 2.0 2.0 10.0 10.0

.72215 2.0 2.0 2.0 10.0 10.0

.55170 1.0 10.0 2.0 10.0 10.0

.72449 2.0 10.0 2.0 10.0 10.0

.51955 1.0 1.0 3.0 10.0 10.0

.67167 2.0 1.0 3.0 10.0 10.0

.54989 1.0 2.0 3.0 10.0 10.0

.72137 2.0 2.0 3.0 10.0 10.0

.55170 1.0 10.0 3.0 10.0 10.0

.72449 2.0 10.0 3.0 10.0 10.0

.13311 1.0 1.0 1.0 .1 10.0

.16420 2.0 1.0 1.0 .1 10.0

.13311 1.0 2.0 1.0 .1 10.0

.16420 2.0 2.0 1.0 .1 10.0

.13311 1.0 10.0 1.0 .1 10.0

.16420 2.0 10.0 1.0 .1 10.0

.09558 1.0 1.0 2.0 .1 10.0

.11460 2.0 1.0 2.0 .1 10.0

.12242 1.0 2.0 2.0 .1 10.0

.14816 2.0 2.0 2.0 .1 10.0
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Table II. (continued)

Y
RS

(6) e I n B A

.13311 1.0 10.0 2.0 .1 10.0

.16420 2.0 10.0 2.0 .1 10.0

.08464 1.0 1.0 3.0 .1 10.0

.10000 2.0 1.0 3.0 .1 10.0

.11914 1.0 2.0 3.0 .1 10.0

.14315 2.0 2.0 3.0 .1 10.0

.13311 1.0 10.0 3.0 .1 10.0

.16420 2.0 10.0 3.0 .1 10.0

.11102 1.0 1.0 1.0 .001 10.0

.17773 2.0 1.0 1.0 .001 10.0

.11102 1.0 2.0 1.0 .001 10.0

.17773 2.0 2.0 1.0 .001 10.0

.11102 1.0 10.0 1.0 .001 10.0

.17773 2.0 10.0 1.0 .001 10.0

.06373 1.0 1.0 2.0 .001 10.0

.10309 2.0 1.0 2.0 .001 10.0

.16307 2.0 10.0 2.0 .001 10.0

.04665 1.0 1.0 3.0 .001 10.0

.07491 2.0 1.0 3.0 .001 10.0

.05615 1.0 2.0 3.0 .001 10.0

.08639 2.0 2.0 3.0 .001 10.0

.10154 1.0 10.0 3.0 .001 10.0
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Table II. (continued)

Y
RS

(6) e I n B A

.16307 2.0 10.0 2.0 ..001 10.0

.505 1 1 1000 10 10

.648 2 1 1000 10 10

.549 1 2 1000 10 10

.7211 2 2 1000 10 10

.552 1 10 1000 10 10

.726 2 10 1000 10 10

.0682 1 1 1000 1.1 10

.0781 2 1 1000 1.1 10

.113 1 2 1000 1.1 10

.134 2 2 1000 1.1 10

.138 1 10 1000 1.1 10

.164 2 10 1000 .1 10

.0145 1 1 1000 '.001 10

.0194 2 1 1000 '.001 10

.0264 1 2 1000 -.001 10

.0348 2 2 1000 .001 10

.0583 1 10 1000 .001 10

.0781 2 10 1000 .001 10

.630 1 1 1000 10 .1

.861 2 1 1000 10 .1

.631 1 2 1000 10 .1
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Table II. (continued)

Y^Ce) e l n B

.862 2 2 1000

.6311 1 10 1000

.862 2 10 1000

.570 1 1 1000

.769 2 1 1000

.598 1 2 1000

.812 2 2 1000

.605 1 10 1000

.825 2 10 1000

Ml 1 1 1000

.601 2 1 1000

.511 1 2 1000

.696 2 2 1000

.575 1 10 1000

.785 2 10 1000

.615 1 1 1000

.834 2 1 1000

.622 1 2 1000

.846 2 2 1000

.622 1 10 1000

.847 2 10 1000

.317 1 1 1000

.403 2 1 1000 .1 1.

10 .1

10 .1

10 .1

.1 .1

.1 .1

.1 .1

.1 .1

.1 .1

.1 .1

.001 .1

.001 .1

.001 .1

.001 .1

.001 .1

.001 .1

10 1.

10 1.

10 1.

10 1.

10 1.

10 1.

a 1.
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Table II. (continued)

Y
RS

(e) e i n B

.411 1 2 1000

.535 2 2 1000

.445 1 10 1000

.592 2 10 1000

.119 1 1 1000

.161 2 1 1000

.190 1 2 1000

.255 2 2 1000

.318 1 10 1000

.430 2 10 1000

.1 1.

.1 1.

.1 1.

.1 1.

.001 1.

.001 1.

.001 1.

.001 1.

.001 1.

.001 1.
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3.2 Results, Discussion and Conclusions of Calculations for the

Electron Energy Spectra Resulting From

Monoenergetic Electron Sources

The program used to obtain the results listed in Table III is ex-

plained in section 6.2. For illustration, several z(E ,E) spectra are

plotted in Fig. 3. Calculations using the same I (7^.1 ev) agreed with

values calculated by McGinnies (20). Recent data by Berger and Seltzer

(2) indicates that I should be 65.1 ev; therefore, the values listed in

Table III were obtained with the mean ionization potential equal to 65.

1

ev.

Since doubling the number of integration points only changed the re-

sults in and beyond the third place, it was assumed that less than 0.5

percent error was associated with the numerical procedure. No error esti-

mate was given by Berger and Seltzer (2). However, comparison between the

results obtained with I = 7*1.1 ev and with I = 65. 1 ev results in the

lower curve in Fig. 4 as the percent uncertainty in z(E ,E) as a function

of E. Even if I were known accurately, the resulting spectra for source

energies below 2 Kev would still be dubious since the cross section used in

this work was not accurate below 2 Kev. However, no better cross section

was available. Since the value of I given by Berger and Seltzer (2) was

probably more accurate than the 65. 1 ± 9 ev, the error obtained by compari-

son, the error estimate given by the lower curve in Fig. 4 was probably too

large. Therefore, this curve was considered to be a reasonable estimate for

the uncertainty of z(E ,E), including the error incurred by the numerical

procedure

.
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3.3 Results, Discussion and Conclusions of the Electron

Spectrum Resulting From Co Irradiation

The differential cross section for the production of electrons be-

tween E and E + dE by Co gamma rays is given in Fig. 5. Tabular values

for various sources are given in Table IV. These results are in excellent

agreement with those given by Johns and Laughlin (lM).

The electron energy spectrum listed in Table V and plotted in Fig. 6

is in close agreement with that computed by Harder (12); Table VI gives a

comparison between several values given by Harder (12) and those obtained

in this work. The spectrum obtained by Harder (12) used a somewhat dif-

ferent approach than that used for this work. The spectrum was also cal-

culated using continuous slowing theory with the results listed in Table V

and plotted in Fig. 6. The spectrum of Fig. 6 is normalized to 2 photons/

2
cm sec (one photon of energy 1.173 and the other of 1.332 Mev). If one

chooses to normalize the spectrum to 1 rad/hr, the values listed must be

multiplied by 2.33xl05 .

Inaccuracies in y (E) S S(E ), z(E ,E) would be inherent inaccuracies^g e o o

in the numerical integration and uncertainties in I . Since changing the

number of integration points from 30 to 50 changed the results beyond the

second place, 50 points were used. One percent error was assumed to be

due to the numerical scheme. The most error one could expect in y (E) is

a 1 percent error superimposed on the error in z(E ,E). This error is

presented in the upper curve in Fig. M.
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Table IV. Differential Cross Section, d o(E)/dE, for the Number

of Electrons with Kinetic Energies Between E and E + dE

Scattered per Electron for Monoenergetic Photon Sources

of 1.17 and 1.33 Mev

d
e
a(E)/dE (cm

2
electron"

1
Mev"

1
)xl0~

25

E(Mev) 1.17 Mev Photon 1.33 Mev Photon

1.858 1.438

0.10 1.791 1.398

0.20 1.731 1.303

0.30 1.682 1.333

0.40 1.650 1.313

0.50 1.648 1.307

0.60 1.703 1.323

0.70 1.871 1.376

0.80 2.306 1.499

0.90 3.502 1.765

0.96 5.359 2.062

1.00 2.376

1.10 4.063

1.116 4.585
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Table V. Electron Energy Spectra Resulting From Co Irradiation Calculated

by the Method of Spencer and Fano y (E) and by the Method of
g

SP
Continuous Slowing-Down Theory y (E) Listed with the Electron

p
Energy E in m c Units

E(m
o
c
2

;)

0.2184E + 01

0.1733E + 01

0.1375E + 01

0.1092E + 01

0.8667E + 00

0.6879E + 00

0.5^60E + 00

0.^333E + 00

0.3439E + 00

0.2730E + 00

0.2166E + 00

0.1719E + 00

0.1365E + 00

0.1083E + 00

0.8599E - 01

0.6825E - 01

0.5^17E - 01

0.4299E - 01

y
g
(E)(cnf

2
sec

1
(m
o
c
2 )"1

) y (E)(cm~ sec" (m
Q
c )~

)

0.0000E

0.1464E

0.2538E

0.3129E

0.3^85E

0.3665E

0.3720E

0.3664E

0.35^1E

0.3368E

0.3178E

0.2983E

0.2801E

0.2640E

0.2505E

0.2397E

0.2318E

0.2265E

99

01

01

01

01

01

01

01

01

01

01

01

01

01

01

01

01

01

0.0000E

0.1432E

0.2497E

0.3082E

0.3417E

0.3562E

0.3552E

0.3^21E

0.3201E

0.2925E

0.2622E

0.2312E

0.2012E

0.1733E

0.1M80E

0.1255E

0.1060E

0.8919E

99

01

01

01

01

01

01

01

01

01

01

01

01

01

01

01

01

02



Table V. (continued)
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E(m
o
c
2

) y (E) (cm~
2
sec

-1
(m c

2 )"1
) y

g

SP
(E)(cm"

2
sec"

1
(m
o
c
2 )~1

)

0.3^12E - 01 0.2237E - 01

0.2708E - 01 0.2232E - 01

0.21^9E - 01 0.2249E - 01

0.1706E - 01 0.2286E - 01

0.135^E - 01 0.23 142E - 01

0.107^E - 01 0.2416E - 01

0.8531E - 02 0.2510E - 01

0.6771E - 02 0.2624E - 01

0.5374E - 02 0.2759E - 01

0.il265E - 02 0.2919E - 01

0.3385E - 02 0.3108E - 01

0.2687E - 02 0.3331E - 01

0.2132E - 02 0.3595E - 01

0.1692E - 02 0.3911E - 01

0.1343E - 02 0.4295E - 01

0.1066E - 02 0.4867E - 01

0.8464E - 03 0.5364E - 01

O.6718E - 03 0.6133E - 01

0.5332E - 03 0.7156E - 01

0.4232E - 03 0.8596E - 01

0.3359E - 03 0.1074E - 01

0.7483E - 02

0.6269E - 02

0.5247E - 02

0.4391E - 02

0.3676E - 02

0.3081E - 02

0.2586E - 02

0.2175E - 02

0.1833E - 02

0.1550E - 02

0.1316E - 02

0.1121E - 02

0.9610E - 03

0.8281E - 03

0.7185E - 03

0.6287E - 03

0.5558E - 03

0.4977E - 03

0.4529E - 03

0.M212E - 03

O.M03^E - 03
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Table VI. Comparison of y(E) Calculated in This Work and y(E) Obtained

by Harder With the Spectra Normalized to a Photon Absorbed

Dose Rate of 1 rad/sec

E(Mev) y(E) - Harder y(E) - This Work

1.00 0.56xl07 0.5xl07

0.20 2.9xl07 3.1xl07

0.30 2.7xl07 2.6xl07

0.02 1.8xl07 1.9xl07

0.01 1.8xl07 1.9xl07



85

3.4 Results, Discussion and Conclusions of the Determination of the

Electron Energy Spectra Resulting From Fast Neutron Irradiation

The electron sources resulting from the slowing down of alpha parti-

cles and protons, as determined from the program described in section 6.4,

are listed in Table VII and plotted in Figs. 7 and 8. The resulting elec-

tron energy spectra, y.(E) and y (E), are listed in Tables VIII and IX and
a p

plotted in Figs. 8 and 10.

The electron energy spectrum resulting from the proton source was not

obtained for electron energies below .000972, but calculations for a paper

by Faw and Miller (7) using a slightly different model suggested that fur-

SP SP
ther calculations were unnecessary. Calculations for y (E) and y (E)

a p

using continuous slowing down theory are listed in Tables VIII and IX.

The results were not plotted since the results were very close to those

obtained by the method of Spencer and Fano (22).

Errors would be only a result of the numerical integrations, added to

the uncertainty in z(E ,E). No appreciable change in the results were

obtained above 30 integration points. Therefore, it was assumed that the

error associated with the numerical integration was approximately 1 percent,

This one percent error, superimposed on the lower curve in Fig. 4 was the

maximum error that could be associated with the spectra y_(E) and y_(E).
a p



86

O CM



87

o
rH
X C

O
>
•HO

o

o

fl?

i

o

HP

c
8
o
a>
rHw

,a
>P

>

CO

W
CO

CO"

CO

a>

o

o
to
-p

N
jj, rH

OJ „ O M-<

o <^ „,
rH rH OJ

•

51
<M (^

° cd

p -So Q<
I I * 2

CL, <

co



83

y
p
(E)
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o
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Table VII. Initial Electron Sources Resulting From

Alpha and Proton Irradiation

E(m
Q
c
2

) S
e

a
(E) E(m

o
c
2

) S P (E)
e

.622E-02 .521E-02 .622E-01 .203E-04

.586E-02 .663E 01 .558E-01 .155E-00

.553E-02 .146E 02 .501E-01 .729E-00

.521E-02 .243E 02 .450E-01 .189E 01

.491E-02 .359E 02 . 404E-01 .385E 01

.463E-02 .WE 02 . 362E-01 .689E 01

.437E-02 .658E 02 .325E-01 .113E 02

.412E-02 .8^9E 02 .292E-01 .176E 02

. 388E-02 .107E 03 .262E-01 .263E 02

. 366E-02 .133E 03 .235E-01 .383E 02

. 3^5E-02 .164E 03 .211E-01 .5^3E 02

.325E-02 .199E 03 .190E-01 .756E 02

. 307E-02 .240E 03 .170E-01 .103E 03

.289E-02 .288E 03 .153E-01 .139E 03

.273E-02 .3^3E 03 .137E-01 .186E 03

.257E-02 .406E 03 .123E-01 .247E 03

.242E-02 .480E 03 .110E-01 .324E 03

.228E-02 .56^E 03 .99^-02 .WE 03

.215E-02 .661E 03 .893E-02 .552E 03

.203E-02 .772E 03 .801E-02 .714E 03

.191E-02 .900E 03 .719E-02 .919E 03



Table VII. (continued)
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E(m
o
c
2

) S
e
a
(E) E(m

o
c
2

) S
e
P (E)

.180E-02 .104E 04 .646E-02 .117E 04

.170E-02 .121E 04 .580E-02 .150E 04

,l60E-02 .140E 04 .520E-02 .192E 04

.151E-02 .162E 04 .467E-02 .245E 04

.142E-02 .187E 04 .419E-02 .311E 04

.134E-02 .216E 04 .376E-02 .394E 04

.127E-02 .248E 04 . 338E-02 .499E 04

.119E-02 .286E 04 .303E-02 .63OE 04

.112E-02 .328E 04 .272E-02 .795E 04

.105E-02 .377E 04 .244E-02 .100E 05

.100E-02 .433E 04 .219E-02 .126E 05

.946E-03 .496E 04 .197E-02 .158E 05

.892E-03 .569E 04 .177E-02 .199E 05

.841E-03 .652E 04 .159E-02 .249E 05

.793E-03 .746E 04 .142E-02 313E 05

,7 i»7E-03 .854E 04 .128E-02 .392E 05

.705E-03 .977E 04 .115E-02 .491E 05

.664E-03 .111E 05 .103E-02 .615E 05

.626E-03 .127E 05 .927E-03 .770E 05

.590E-03 .146E 05 .832E-03 .963E 05

.557E-03 .166E 05 .747E-03 .120E 06
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Table VII. (continued)

E(m
Q
c
2

) S
a
(E)

e
E(m

o
c
2

) S P (E)
e v '

.525E-03 .190E 05 .671E-0-3 .150E 06

.495E-03 .217E 05 .602E-03 .188E 06

.M67E-03 .248E 05 .5^0E-03 .23^E 06

.440E-03 .284E 05 .485E-03 .293E 06

.415E-03 .32^E 05 .^35E-03 .355E 06

.391E-03 .370E 05 .391E-03 .^57E 06
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Table VIII. Energy Spectra of Electrons Resulting from Alpha Irradiation

Calculated by the Method of Spencer and Fano yQ (E), and by
a
SP

the Method of Continuous Slowing-Down Theory yQ (E), Listed
a

p
with the Electron Energy E in m c Units

E(m
o
c
2

) ya
(E)(cm"

2
sec"

1
(m
o
c
2 )"1

) ya
SP

(E)(cm"
2
Bec"

1
(m

(>
c
2 )"1

)

0.6223E - 02 0.0000E - 99 0.000E - 99

(M939E - 02 0.1541E - 03 0.150E - 03

0.3920E - 02 0.5665E - 03 0.556E - 03

0.3111E - 02 0.1190E - 02 0.118E - 02

0.2M69E - 02 0.2018E - 02 0.201E - 02

0.1960E - 02 0.3015E - 02 0.302E - 02

0.1555E - 02 0.il235E - 02 0.*J24E - 02

0.123^E - 02 0.563^E - 02 0.566E - 02

0.9801E - 03 0.7387E - 02 0.736E - 02

0.7779E - 03 0.9451E - 02 0.9^1E - 02

0.6174E - 03 0.1223E - 01 0.119E - 01

0.4900E - 03 0.1556E - 01 0.152E - 01

0.3889E - 03 0.2103E - 01 0.197E - 01
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Table IX. Energy Spectra of Electrons Resulting from Proton Irradiation

Calculated by the Method of Spencer and Fano y„(E), and by the

Method of Continuous Slowing-Down Theory y (E), Listed with

2
the Electron Energy E in m c Units

E(m c
2

) y (E)(cm"
2
sec"

1
(m c

2 )**1
) y

SP
(E)(cm~

2
sec"

1
(m c

2 )"1
)

0.6223E - 01 0.0000E - 99 0.000E - 99

0.4939E - 01 0.1709E - 03 0.170E - 03

0.3920E - 01 0.1045E - 02 O.IO^E - 02

0.3111E - 01 0.3001E - 02 0.303E - 02

0.2469E - 01 0.6183E - 02 0.623E - 02

0.1960E - 01 0.1045E - 01 0.106E - 01

0.1555E - 01 0.1589E - 01 0.161E - 01

0.123^E - 01 0.2206E - 01 0.225E - 01

0.9801E - 02 0.2925E - 01 0.297E - 01

0.7779E - 02 0.3696E - 01 0.377E - 01

0.6l7^E - 02 0.4570E - 01 0.46ME - 01

0.A900E - 02 0.5486E - 01 0.558E - 01

0.3889E - 02 0.6531E - 01 0.660E - 01

0.3087E - 02 0.7637E - 01 0.771E - 01

0.2450E - 02 0.8924E - 01 0.892E - 01

0.19ME - 02 0.1032E - 00 0.102E - 00

0.15^3E - 02 0.1201E - 00 0.117E - 00

0.1225E - 02 0.1390E - 00 0.135E - 00

0.9724E - 03 0.1632E - 00 0.155E - 00
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3.5 Results, Discussion and Conclusions of the Determination of a Low

Energy Cross Section and Low Energy Stopping Power for Water

The parameters AKT, a and b are plotted in Figs. 11, 12 and 13, re-

spectively, for the energy range that k^CEj-r) is valid; a straight line

extrapolation is shown for lower energies. The parameters AKT, a and b

are listed in Table X. It was first attempted to determine the behavior

of a and b at energies below 2 Kev by making a linear extrapolation for

AKT on a log-log plot and calculating a and b, utilizing the program listed

in section 6.5.2. However, a and b diverged. L(E) is not valid below 2

Kev, so those numbers were disregarded.

2
Due to the linear behavior of these parameters between .002mc and

2 2
O.lmc , it is assumed they are linear below O.lmc and the approximation is

reasonably accurate to at least 400 ev. AKT, a and b were approximated by

straight lines over the entire energy range of interest for simplicity of

calculation. The error in fitting the curve resulted in, at most, a 1 per-

cent error.

The stopping power calculated with the sythesized cross section is

compared to the analytic formula (3) in Pig. 15.

In the energy range where the Moller formula is accurate, this syn-

thesized cross section is an improvement on the Moller formula, since the

synthesized cross section takes into account the small energy losses to

within the uncertainty of the experimental data.
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Table X. Results for AKT, a and b at Various Electron Energies

AKT b/a

.320E 01

.253E 01

.201E 01

.160E 01

.126E 01

.100E 01

.800E 00

.634E 00

.503E 00

.400E 00

.317E 00

.251E 00

.200E 00

.158E 00

.125E 00

.100E 00

.793E-01

.629E-01

.500E-01

.396E-01

. 314E-01

.680E 09

.671E 09

.670E 09

.675E 09

.691E 09

.717E 09

.757E 09

.812E 09

.885E 09

.981E 09

.110E 10

.125E 10

.144E 10

.168E 10

.196E 10

.232E 10

.275E 10

.327E 10

.390E 10

.467E 10

.559E 10

.571E-00

.632E-00

.698E-OO

.766E-00

.836E-OO

.906E-00

.975E-00

.104E 01

.110E 01

.116E 01

.121E 01

.125E 01

.129E 01

.132E 01

.135E 01

.138E 01

.140E 01

.14IE 01

.143E 01

.144E 01

.145E 01

..164E-04

..181E-04

-.198E-04

-.215E-04

..233E-04

-.251E-04

-.268E-04

-.284E-04

-.299E-04

-.312E-04

-.323E-04

-.333E-04

-.340E-04

-.346E-04

-.350E-04

-.353E-04

-.355E-04

-.355E-04

-.355E-04

-.353E-04

-.352E-04

-28.7E-04

-28.6E-04

-28.4E-04

-28.05E-04

-27.82E-04

-27.7E-04

-27.5E-04

-27.3E-04

-27.2E-04

-26.8E-04

-26.6E-04

-26.5E-04

-26.4E-04

-26.1E-04

-25.9E-04

-25.6E-04

-25.3E-04

-25.05E-04

-24.8E-04

-24.6E-04

-24.2E-04



Table X. (continued)
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E AKT a b b/a

.250E-01 .670E 10 .1W>E 01 -.349E-04 -23.8E-M

.198E-01 .804E 10 .1^7E 01 -.3^7E-0i» -23.6E-04

.157E-01 .965E 10 .148E 01 -.3WE-04 -23.3&-0H

.125E-01 .115E 11 .149E 01 -.3^2E-0^I -22.9E-04

.992E-02 .139E 11 .150E 01 -.3^0E-0^ -22.7E-04

.787E-02 .166E 11 .151E 01 -.339E-04 -22.5E-04

.625E-02 .200E 11 .153E 01 -.339E-04 -22.2E-04

.496E-02 .2^0E 11 .155E 01 -.3^1E-0^ -21.9E-04

.393E-02 .288E 11 .158E 01 -.3ME-04 -21.78E-0'

.312E-02 ,3^6E 11 .16IE 01 -.350E-04 -21.7E-0*!

.248E-02 .i*15E 11 .165E 01 -.357E-0M -21.5E-04

.196E-02 .493E 11 .168E 01 -.36IE-OH -21.i4E-04
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3.6 Results, Discussion and Conclusions Concerning the Determination

of the Weighted Average Spur Size

According to Magee (18), any reasonable estimate of the average energy

loss for the low energy spectrum should be near 40 ev. Results obtained

herein are 38.4, 43.0 and 44.0 ev for electron spectra with initial energies

of 1.116 Mev, 31.8 Kev and 3.18 Kev for 6 equal to 200. ev, E. = 200. ev

and 6 .^ = 2.0 ev. This would suggest that the average spur size is weakly

dependent on the electron energy. This effect could be investigated but

was not considered important when this work was outlined.

The average spur size was found to be strongly dependent on the maxi-

mum spur size (6 ) and weakly dependent on the rninimum spur size for 6 .

below 12 ev. Neither of these parameters were accurately known. Bruce,

Pearson and Freedhoff (4) suggest 6 could be between 100 ev and 500 ev.

The minimum energy required to create a radical pair is 6.5 ev; however,

7.4 ev (the lowest allowed electronic level) allows the H atom to recoil

one or two molecular diameters from its OH partner, according to Hochanadel

(13).

During the process of testing the program explained in section 6.6,

calculations were made for 6 . equal to 2, 8 and 12 ev. The calculations

were made using the proton spectrum and E . = 2 ev. An expression for

y (E), E<400 ev, was obtained graphically. The absolute values of these

results were not considered to be valid since E . was equal to 2 ev. Even

so, the relative increase of /t\ due to increasing 6 . should be close.

For ranges of 6 of interest, (r/ was raised by 1.5 to 4 ev when 6 . was

increased from 2 to 8 ev. When 6 . was increased from 8 ev to 12 ev, /xS
min \ /

increased between 1 ev to 3 ev. Therefore, it is reasonable to assume that



10-U

6
o h - 0)

100 ev 25 ± 5 ev

200 ev 39 ± 7 ev

500 ev 66 + 12 ev

the results listed and plotted in this work are 1 to 4 ev too low, probably

about 3 ev too low since 6 . should be near 7.4 ev.
min

Since calculations were completed with 6 . = 2 ev before it was noted

that 2 ev was too low for 6 . and the change was not significant when com-

pared to the change incurred by a change in the upper limit 6 , the results

listed were not recomputed. With E . = 200 ev, 6 , = 2 ev, the following

results were obtained for the spectra y (E), y (E), y (E) from Figs. 17, 18
g p a

and 19:

yp-fl ya <E
> - Q

29 ± 5 ev 30 + 6 ev

43 ± 8 ev 44 + 8 ev

74 + 14 ev 67 ± 12 ev

The combination of these results is plotted in Pig. 16. The distribu-

tion of spur sizes, G(t), is plotted in Figs. 20, 21 and 22 for the electron

spectra y (E), y (E) and y (E). The values used in plotting Figs. 17, 18
g p a

and 19 are listed in Tables XI, XII and XIII.

The error estimates for the above numbers were obtained by assuming

10 percent error in the hypothesized cross section and 5 percent error in

the electron flux. A 1 percent error was superimposed on each numerical

integration. As a result, 18.5 percent was estimated to be the uncertainty

associated with (t\ .

Both the uncertainty in the hypothesized cross section and in z(E ,E)

were not accurately known and both functions were somewhat inadequate. How-

ever, it was felt that a reasonable maximum uncertainty incurred by the

hypothesized cross section would be 10 percent and one incurred by the
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uncertainty in the electron spectra would be 5 percent. Errors due to

multiplication and division were obtained by the square root of the sum

of the squared errors, for each integration, and a 1 percent error was

superimposed due to the numerical integration. Uncertainties listed for

the above numbers were obtained by rounding off to the nearest ev.

From the results listed, it appears that the average spur size is

somewhat dependent on the nature of the electron spectra. For the electron

spectra resulting from fast neutron irradiation, a graphical extrapolation

and one performed by subroutine INTER gave different answers with E.

2 ev. This indicates that for very small E . , (y is quite sensitive to

y(E).

According to Burch (5), experimental results from the Fricke dosimeter

indicate e is somewhat less than 21 ev/(radical pair) and theory indicates

it could be greater than 28 ev/( radical pair). If e is taken to be 20

ev/( radical pair) and \y = 45 ev, N = 4.5 —rr—— . An average over the

distribution given by Kupperman (16) results in 4.9 —r——— .

From the above discussion and calculated results, it is concluded that

45 ± 8 ev would be a reasonable value for /x\ for a wide range of LET and

any electron spectra if 6 is considered to be 200 ev.
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100

90 /°
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Fig. 16.

«
c
(ev)

300 400 500 600

Plot of fn (ev) vs. 6 (ev). The dotted lines were obtained

by the maximum or minimum value associated with the three
electron spectra calculated and considering the 18.5 percent
uncertainty associated with each weighted average spur size
(/t\ ). 6 is the effective maximum spur size. The solid
line is an estimate based on the values reported on page 104
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Table XI. Results for the Weighted Average Energy Loss at Various E .

and 6 Considering the Electron Spectrum Resulting from the

Gamma Source

(t) (mc
2

)

<5

c
(mc

2
) E

min - 2 ev
*min = 20 ev ^n = 200 ev

.218E-0H .172E-04 .175E-04 .175E-OM

.218E-03 .H83E-04 .502E-04 .529E-0H

.218E-02 .151E-03 .159E-03 .207E-03

.218E-01 .163E-02 .172E-02 .228E-02

.218E-00 .25^E-01 .264E-01 .326E-01

6
c
(mc ) E . = ^00 ev

min
E , =800 ev
min

E
min

= 160° ev

.218E-04 .175E-04 .175E-04 .175E-0H

.218E-03 .522E-04 .517E-04 .513E-04

.218E-02 .214E-03 .217E-03 .215E-03

.218E-01 .239E-02 .248E-02 .256E-02

.218E-00 . 338E-01 . 3^7E-01 .356E-01



114

Table XII. Results for the Weighted Average Energy Loss at Various E .^

and 6 Considering the Electron Spectrum Resulting from the
%0

Proton Source

§ (mc
2

)

6
c
(mc ) \±n " 2 ev E , = 20 ev

min
E
min = 200 ev

.121E-03 .445E-04 .442E-04 .446E-04

.243E-03 .619E-04 .614E-04 .617E-04

.486E-03 .925E-04 .916E-04 •917E-04

.972E-03 .146E-03 .145E-03 .145E-03

.194E-02 .214E-03 .212E-03 .212E-03

. 388E-02 .405E-03 .401E-03 .401E-03

.777E-02 .215E-02 .214E-02 .214E-02

.155E-01 . 389E-02 . 387E-02 . 307E-02

. 311E-01 .566E-02 .563E-02 .563E-02

6
c
(mc

2
) E , =400 ev

min
E
min " 80° ev

.121E-03 .447E-04 .442E-04

.243E-03 .618E-0H .606E-04

.486E-03 .920E-04 .898E-04

.972E-03 .144E-03 .143E-03

.194E-02 .209E-03 .234E-03

. 388E-02 .390E-03 .505E-03

.777E-02 .208E-02 .264E-02

.155E-02 .378E-02 .460E-02

. 311E-01 .551E-02 .660E-02
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Table XIII. Results for the Weighted Average Energy Loss at Various E .

and 6 Considering the Electron Spectrum Resulting from the

Alpha Source

(x) (mc
2

)

6
c
(mc

2
) ^n s 2 ev ^n = 20 ev E

mln " 200 ev

. 194E-03 .395E-OM .452E-0M .595E-0H

•388E-03 .437E-04 .503E-04 .877E-Oi4

.777E-03 .472E-04 ,548E-0^ .120E-04

.155E-02 .500E-0H .583E-0H .l^E-03

. 311E-02 .517E-04 .603E-OM .158E-03

6
c
(mc

2
) \dn = **> ev E

min " 80° ev E
min " 160° ev

.194E-03 .585E-0M .575E-04 .565E-04

.388E-03 .856E-OH .837E-0M .819E-04

.777E-03 .133E-03 .130E-03 .127E-03

.155E-02 .185E-03 .215E-03 .209E-03

. 311E-02 .214E-03 .294E-03 .HH3E-03
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3.7 Results, Discussion and Conclusions Concerning the

Determination of the Average Spur Separation Distance

A comparison is made between Y™ and Y^d). The weighted average

spur separation distance A\ is related to the parameter i by i = p—-.

/A °
Therefore, I = 4^- . The four methods used in determining A'\ are described

o
in section 2.7 of the theory. Using a 10 point Gaussian quadrature integra-

tion, by hand, Y is found to be 0.92, 0.85 and 0.68 for the electron energy

spectra y (E), y (E) and ya(E). The following reaction parameters are used:

(!) = 45 ev, e = 20
ev

-1
radical pair* Krr -too10 (gi|)"

1

(sec)-
1

k^ = 2.0xl0
10

(jj£§|) "(sec)"
1

, 6
Q

= 200 ev, r
Q

= 1.5xl0"7cm

D = 4.5xl0~5 —, N = 4.5
sec

radical
spur S = 5X10-* (?£§).

Using Y(I), the following results are obtained with E. = 200 ev in

each case (These results were taken from Figs. 25, 26 and 27):

Y(I) " y
g
(E) Y(I) ~ y

p
(E)

i

Y(I) - ya
(E)

Case 1 .92 .88 .72

Case 2 .92 .83 .59

Case 3 .92 .88 .75

Case 4 .92 .82 .56

From the results, it is apparent that substituting a weighted average

spur separation distance into the yield expression is not a satisfactory

method of finding the average chemical yield. The upper curve is obtained

from values listed by Hochanadel (13) and the lower curve is obtained from
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this work by taking (t) = 45 ev.

The spur separation distance as a function of energy is given in Pig.

23. When the spur separation distance is less than or equal to r it is

assumed that the track model is valid. Therefore, the transition of the

curve for Y^C") from the spur model to the track model in Pig. 3^ is begun

at a slightly higher energy than that corresponding to spur separation dis-

tance r .

o

The upper curve in Pig. 24 is obtained by values given by Hochanadel

(13) and the lower curve is given by /x\ /LET. If it is assumed that the

solid line in Fig. 16 is indeed a reasonable estimate of the average spur

size as a function of maximum spur size, a maximum spur size on the order

of 900 ev would be required to match the curves in Fig. 24. A maximum spur

size near 400 ev would match the curves in Fig. 23. However, Hochanadel

(13) does not say how these values for Pigs. 23 or 24 were obtained. There-

fore, the upper curves are probably not very accurate.

Figures 25, 26 and 27 present a weighted average spur separation dis-

tance for the three electron spectra previously described. The following

four cases are considered for each spectra:

'E
max L(E,6 )

f) i
= -T^ US")

X/ l f max L(E,6 )

min

y (E)W^
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4)

max
y(E)L(E,6

c
)il

, (E,6
c
)dE

J
min

rE
max

y(E)L(E,6
c
)dE

E
min

(155)

*>

max
y(E)£'(E,6

c
)dE

"min

E
max

y(E)dE

J
mln

(156)

LET =

max

J
min

L(E,6 )

y (E) T(Ef- L(E > 6c
)dE

max
y(E)

L(E,6
c

)

L(E)
dE

J
min

(157)

«»-
L̂ET

(158)

Since neither the stopping power nor the electron flux is accurately

known for low energy electrons, the weighted average spur separation distance

is plotted as a function of E . in Figs. 25, 26 and 27. These figures are

based on an average energy loss of 43.5 ev.



119



120

o
o

CD O

W

a

CVJ

•H

<w



121



122

oo r-

VO Q
•> f"^

r-t 4->

o
<u
iHw

O <uO ,c
-=T -PA
rH u

o
Cm

.»->.

>
<u
N—

•

Oo 5
c\j

•>

r-K
pf

•

W
>
o
o

O fiO 4-5O CO

W cd
0)

K]

oo

oo

oo
CM

a, o
<U CO
CO

, c

CU
b? 0;

k 4->

O

-I

P•H 4->

0) rH
:2 3

w
CU <U
.c a:

«>-. §o &
+->p o

o Co
r-i Q,
P+C/T

C\J

ft,



123

oo
VD

fk £
rH

sp
o
<u
rHO wO

=r CD
•t X!

rH P

<W
£

f~\
> inO CD •

o ^-^ on
CO q ^=r

0% •3
rH J II

• (GCO s>*
>

x:
CD pO O •Hoo £

:s

«> 4-> a
r-t 10 o

•HQ I
C CO
O
•H cuP rH

OO jL •H

OO >
0) cu 1
f«
w CL.

r
\i 3

W^ cu Qi
co H<
QLo bO CDo
e

x:
VO p

cu

§ g

"8 £

o i IPo jy rH
^r :* 3

to

0) <y
.c PSp B
<w po po p oo o CD

CM rH a
04 CO

CM

sP<.



12*1

3.8 Results, Discussion and Conclusions Concerning the Energy Balance

The dose rate expressions given in section 2.8 are:

Dose 1 =
max

S(E')(E« - E^dE"
J
min

(160)

Dose 2 =

E
max

S(E , )E , dE'

E
min

(161)

ft

Dose 3 =
max

y(E , )L(E l )dE l

s

""min

ft

Dose H =
max

y(E')L(E',6jdE\
s c

"min

(162)

(163)

L (E) and L (E,6 ) are the total and restricted stopping powers obtained
s s c

from the synthesized cross section with 6 = 200 ev. For the electron

spectrum resulting from gamma irradiation, Dose 2 was obtained analytically.

Evaluated with E .<200 ev, Dose 2 represents the total energy re-

leased as kinetic energy of secondary electron delta rays arising from

proton and alpha particle collisions. Energy losses of less than 200 ev

are treated as local losses along the tracks of protons and alpha particles,

According to continuous slowing-down theory,

y(E) =
l^ST

max
S(E')dE' (192)

E
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Substitution of this expression into the equation for Dose 3 shows that,

under the continuous slowing-down approximation, Dose 3 is equal to Dose 1

for all E . >200 ev. As shown in Tables V, VIII and EC, the electron

spectra computed according to the method of Spencer and Fano exceed the

spectra based on continuous slowing-down over the greater part of the

energy range of interest. This is due to the production of secondary elec-

trons. The former method was used to compute the y(E) used in the integra-

tion for Dose 3. Thus, Dose 3 would be expected to slightly exceed Dose 1.

Dose 4 would be expected to be less than Dose 3 simply because of the use

of restricted instead of total stopping power. These effects are exhibited

in Figs. 28, 29 and 30.

Dose 3 and Dose 4 exceed the total input energy, Dp, for small E .^

in Figs. 28 and 30. This means that a linear extrapolation for y(E) on a

log-log plot overestimates the electron flux for low energies. The stop-

ping power obtained from the synthesized cross section may also be over-

estimated but this is doubtful when considered in the light of Fig. 23.

The fact that, in Fig. 30, Dose 3 and Dose 4 far exceed Dose 2 for small

E . explains why the average energy loss /t\ obtained for E .^ = 2 ev is

far too small.

The energy balance results indicate that the electron spectra have

been determined fairly accurately down to 200 ev, and have been over-

estimated in calculations at lower energies. Therefore, the results obtained

for E , <200 ev involving y(E) are overweighted at low energies.
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3.9 Results, Discussion and Conclusions of Prediction of G-Values

The theoretical prediction of absolute G values is very sensitive

to the average energy required to create a radical pair. According to

Burch (5), the energy required to create a radical pair could be slightly

below 20 ev to nearly 30 ev for water. Predictions for G values were

made using several expressions to give an indication of the validity of

the one radical model.

For the case not considering the back reaction,

Pe
+3

+ H + Fe
+2

+ H
+

,

and considering equal production of H
? , H

? ?
and H

?0,
the following table

compares these predictions with experimental values given by Hochanadel

(13).

Initial LET Experimental G Theoretical G

0.01 8.2 9.7

0.1 7.9 9.6

0.3 7.0 9.3

1.0 5.8 8.6

2.0 5.4 7.7

If the fraction of H
?
produced from the radical-radical reaction is

taken to be that suggested by experimental G values in Hochanadel (13)

(namely .115) and the back reaction is not considered, the following results

are obtained:
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Initial LET Experimental G Theoretical G

0.01 8.2 9.3

0.1 7.9 9.1

0.3 7.0 8.6

1.0 5.8 6.7

2.0 5.4 4.7

These experimental and theoretical G values are normalized and plotted

in Fig. 36.

From the third approximation described in section 2.9 the following

results are given:

Experimental G

8.2

7.9

7.0

5.8

5.4

Figure 32 was taken from a paper by Faw and Miller (7) while Figs.

33 and 34 were obtained from results and techniques described in the afore-

mentioned paper. Figure 31 was obtained from results listed in section 3.1

and additional calculations. Figure 35 was obtained using a 10 point

Gaussian quadrature integration (performed by hand) to evaluate the follow-

ing integral

Initial LET

0.01

0.1

0.3

1.0

2.0

Theoretical G

8.2

8.0

7.5

5.9

4.3

fE

Y
RS

(E)il'(E,6
c
)z(E

o
,E)dE

J
min

'RS
f
E
max

Emin

z(E
Q
,E)Jl'(E,6

c
)dE
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to evaluate the average chemical yield as a function of initial LET which

is plotted in Fig. 35.

The yield (Y^E)) obtained in Fig. 3^ for the track model is some-

what uncertain since identical reaction parameters are used for the spur

and the track model. In reality, r should probably be smaller for the

track model.
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3.10 Suggestions for Further Work

Much work has yet to be done in the field of Radiation Chemistry.

Therefore, only those subjects of interest to the author are discussed

here. Before accurate predictions of chemical yield induced by ionizing

radiation for practical conditions can be made, it will be necessary to

predict yields for complex reaction mechanisms. This accomplishment will

require considerably better computing facilities than those presently

available at Kansas State University.

There are a number of parameters associated with the mathematical

model presented in section 2.1, for which the chemical yield is sensitive,

that need to be determined accurately. Much of the limitation of accurate

theoretical predictions is due to the lack of knowledge of the electron- •

electron collision cross sections for low energy electrons and for small

energy losses. This cross section is given fairly accurately by the Moller

cross section for electron energies above 2 Kev and for energy losses above

100 ev. Due to the complexity of this problem, it would be advisable to

solve the problem experimentally. Extended experimental data could be

utilized in the manner described in section 2.5.

Upon solution of the cross section problem, electron energy spectra

could be obtained for low energy electrons. This would require a slight

modification of the theory presented in section 2.2. The spectrum of spur

separation distances would easily be obtained if the cross section problem

were solved.

Determination of the average spur size depends strongly upon the ef-

fective maximum spur size. If this and the electron-electron cross section
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were known accurately, the average spur size could be obtained accurately.

Rather than average the local energy loss over the entire energy spectrum,

it would be more rigorous to find the average energy loss as a function of

electron energy and, in turn, average this spectrum over the fractional

chemical yield. This average energy loss should be essentially independent

of energy down to a few Kev.

The effective maximum spur size could be approximated by considering

the range of the delta ray in conjunction with the localization of the energy

loss as obtained by the uncertainty principle. An energy loss as large as

400 ev is quite well localized. However, the resulting delta ray could lose

its energy in such a manner that the entire 400 ev would result in one spur.

For accurate determination of the effective maximum energy loss, one would

need accurate range-energy information obtained from the low energy cross

section.

For this work, the initial distribution of radicals is assumed to be

Gaussian, it is also assumed that the Gaussian form is maintained as the spur

expands. This assumption can be checked by direct numerical integration of

the diffusion kinetics equation. The initial distribution, according to

Hochanadel (13), is a function of LET and is not exactly Gaussian. It would

be possible to carry out a full parametric study to indicate the importance

of each parameter. Other ramifications of the associated subject matter may

be investigated if the reader desires.
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6.0 EXPLANATION OF THE COMPUTER PROGRAMS USED IN THIS WORK

6.1 Integration of the Chemical Yield Expression

The yield expression

Y
RS (6) "

e"
T
dx

B
1 + A e°/E K( T ,B,n,jO

in which

1^3

(73)

K( T ,B,n,4) =

th + x

B

e * dt"
7^72(t")

L

n-ro
e
-A

2m2B/t"1+ V ™
2 S n

m=l
W)

was not difficult to program for numerical integration. However, the calcu-

lations were rather time-consuming to obtain accurate results if B and i

were small and a large number of spurs were considered for a chain. There-

fore, several integration schemes were employed. The first method utilized

a subroutine "BATES" to generate the weights for integration points chosen

on a logarithmic scale. Consistent results were obtained when more than 10

integration points were used for the main integration and more than 15 for

evaluating the function K(x,B,n,0.

It was found that Gaussian quadrature integration was more efficient

for calculating the yield as a function of the upper limit e, defined in

section 2.1 of the theory.

To evaluate the yield for infinite time, which corresponds to infinite

e, integration utilizing the weights and roots of Laguerre polynomials was

found to be most efficient. Laguerre integration was very useful for this

case since the interval of orthogonality of Laguerre polynomials is zero

to infinity.
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As a result, the yield calculations for the parameters A,B,n,£ and e

were performed using Gaussian quadrature integration and those for e equal

to infinity were performed using Laguerre integration. The program utiliz-

ing the subprogram BATES was used to cross-check the results of each.

A very important point to take into consideration was that the integrand

in the first term on the right-hand side of Eq. (7*0 behaved very badly if

B became small. A Taylor's expansion of the second term about B illustrated

that it was well-behaved for all B of interest. Therefore, it proved quite

benefical to evaluate

A e
B
/B

B + T

B

dt 1

1

-t 1

1

(X^W2 '

analytically in terms of error functions. According to reference (1), error

functions are defined as

erf(x) =

At

X
-t

2

e
6

dt. (193)

One can then integrate the above ill-behaved expression by parts with the

result

:

AeBv^
B + t

B

Mo 1,

dt 11 e

7t^)372
-Ail- y5e"T

/B + T

B
- e JB •*" (erf(^B~TT - erf (/&)} (191)

A polynomial approximation from reference (1) was used to evaluate the error

function for the programs in which Eq. (194) was used.
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6.1.1 Method Using the Subprogram BATES to Generate the

Weight Factors for Numerical Integration

To make possible logarithmic steps of integration, a change of variable

was made for t,

t = t' - n (195)

thus giving the following expression when substituted into Eq. (73):

m + 6

Y
RS<

6 > = e n
-T

«

e
T dT

B
1 + A SB e

D
K( T ' - n,B,n,0

(196)

Since K(x - n>B,n,Ji) was used as a FUNCTION statement, the main program

evaluated the following sum:

-T '

NWT e
x

W,

B
' /B K( T;[

- n,B,n,£)
(197)

The FUNCTION statement for K(t. - n,B,n,0 evaluated the following expres-

sion:

NWT
e

L
j

K(t, - n,B,n,0 =
£1

J-l (tj") 3/2

i
n"1 tr^\ -A m

2
B/t •»

1 + i
in^O e J

2
m=l

n
Wj. (198)

The t ' points are chosen between B and B + i.
% - n with a geometric pro-

gression of NWT points. In terms of the maximum and minimum points on the

interval for NWT points, the ratio between terms was chosen by

'NWT NWT - 1
(199)

The variables (A,B,n,i,e and n) used for this formulation were respec-
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tively given by (A,B,AN,AL,THETA and ADD) in the program listing. Other

program variables should be self-explanatory. Logic diagrams are given for

the main program and also for the subprogram AK in this section.

The subprograms used for this program were:

FUNCTION AK(THETA1,B,N,L)

SUBROUTINE BATES (IWr,NWT,WTAB,WATES)

.

The subprogram BATES was explained in section 6.8.1.
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VION'SS, tXEO FORTRAN
FUNCTION AK( THETA1 , L

;

. »N»L )

D I
'•' E N S I N W T A6 ( 1 00 ) » W A T ES ( 1 )

", \' = N

AL = L

C p CAM T'CT RE Z r RC

p S I = ( R / { B+THE T A

1

) ) #*

(

1 • /

(

FLCA T ( NW T - 1 ) ) )

WTAB( 1 )= r)
. + TH^TAl

r> b JF=2,NWT
*> WTAB(JF)=WTAB( JF-1 )*PSI

JWT = 2

CALL DATES( I WT »NWT »WT AB» WATES

)

13SUM=.l
DC 8 I=1,MWT
Y=WTAB( I

)

BTERM=] ./Y*#1.5
IF(N.LT.2)GC TO 12
y = n

ASUM=.0
?<-, MsM + 1

r = AL*AL*A.M*AM t

I F( N.LT.200) CTERM=EXP ( -R*B/Y ) *< AN-AM) /AN
I F( N.GT.200 ) CTERM=EXP ( -R*B/Y)
ASUM=ASUM+CTERM
IF(CTERM.LT».O0Ol)GC TO 12
IF<M«LT.N-1)GC TO 20

12 CONTINUE
DTERM = B.TERM*EXP(-Y)* ( .5+ASUM)

ro BSUM=85UM+DTER M*WATES( I

)

AK=BSUM
RETURN
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6.1.2 Method Using Gaussian Quadrature

Since Gaussian quadrature integration was found to be a very common

integration scheme, the method of obtaining the associated weights and roots

from the polynomials is not given. When the upper and lower limits were not

+1 and -1, the following change of variable was made:

f(x)dx = b - a
+1

dy g(y) (200)

-1

in which

g(y) = f(x) . (201)

„ _ (a + b) (b - a)
x «

2
+

2 y

The weights and roots listed for Gaussian quadrature integration are defined

such that

+1

-1

NWT
dy g(y) =

I W
1
g(y,)

i=l
J J

(202)

Since the limits on Eqs. (73) and (7*0 do not correspond to the interval

of orthogonality of the polynomials from which the weights and roots were

obtained, the following changes of variable were needed:

t" = B + t/2 (1 + O (203)

and

t = e/2 (1 + Y ).

Making these changes resulted in:

(204)

Y^e) =
£

+1 -§(i + y)
e

c
d

1 + A/B e
B (1

^
Y - K( Y ,B,n,Jl)

(205)
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K( Y ,B,n,0 =

+1

dt'
-t'

.! (t-)3/2
I

n-rru -l
2
m
2
B/t »

»

1 . r /nHTlv
(206)

Written in the form of finite sums, this gave:

NWTL
- | (1 + Y«)2 L VL^

^ " 2 A l + A^eBe^-^K( Yl,B,n,0
(207)

in which

NWTG
K( Y B,n,0 =

I
-

ji
372

-1- ' •

. Ji
n-1

n-m.

^n
v n '

? 2
-rnTB/t

ji

m=l "h

The t '
' points were given by

y = b + 1. (i +
YjL

) + jj- (i +
YjL )Cj

(208)

(209)jj- ^J. x Yi ; t
jj-

where Y . and S. were the roots for the outer and inner sums, respectively.

The Gaussian quadrature weights and roots for the outer sum (indexed by i)

were given respectively by WATESL and WTAEL.

The variables A,B,n,£ and are given by A,B,AN,AL and THETA in the

program listing. Logic diagrams are given in this section for the main pro-

gram and subprogram AK.

The subprograms used were:

FUNCTION AK(TAP,B,N,AL)

FUNCTION ERF(X).

Subprogram ERF(X) is self-explanatory. The left-hand portion of the

inner sum in the denominator was evaluated by error functions.
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LOGIG DIAGRAM f=OK THET COMPUTED PEDfi^AM
PE5C^|&ED /(S SECTION 6>.\.Z.

WAT^e^ Kocrrs
fOZ MAIM INTfiSBJTfli

KBAD
VYATg-^ d 150073

SUNT; A, 0;

AH,AL,
TH£TA

weiTe^i)

Art,AL,

THETA

FUNCTION
AK

*3=?AP

A,£,AN,>U-,
TUfTTA

m.phi

I
NWTL)

Ae<36»Me-NT5
OF FUNCTIONS

I
FiJHCT/OM
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LOG/C DIAGRAM FOR- THE FZJMCTION STATGMBtHT
PESCKIBE-D IN SECTION & • • - .2

FUNCTION
AK AN =N

fokm:
SUMG,
AK

(Q)^-

fokm;

SUMC = .0

M=.0

I
M =M +

| }

5UMC
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'

I L L E R N.E.'"""• COMT 25 V,
I MUTF.S,2PAGFS L«F«

f/«MJF T ASGN M J n
» 1 ?

MC«$S ASGM >'G0»16
"^"T' T VCDE GO » TEST
MCN1S EXEO FORTRAN* > »12» »» *COMB
COMMON WTA6H20) tWATESL(20) »WTABG(2u) »WATESG(20) »NWTG

1 FORMAT ( 1HK»6E14.6)
2 FORMAT! I5/(2F20.16) )

3 FORMAT (6E14. 6)

6 1 FORMAT (6E1 0.4)
7 FORMAT (5F1 0,5)

RFAD( 1»2) NWTL» (WTABUK ) ,WATFSL(K) »K=1,NWTL)
R FA D ( ] , 2 ) NW TG ,• ( WTABG ( N ) » WA TFSG ( N ) » N = ] , NWT G )

2 5 RFAD( 1 »70 )A »B»AN>AL »THFTA
\t = A N
PHI =A*SQRT (B ) *EXP( B)

SUMl=.u
DO 2 I=1,NWTL
."G=TH ETA/2.-" ( l.+WTABU I ) )

"I AP = XG/2.
AIGNE=A*< l.-EXP(-XG)*SQRT( B/(B+XG) )-EXP(B )*SQRT ( B*3. 14 16 ) *

(

ERF
1 ( SORT ( B+XG )

)

-ERF ( SORT (B ) ) )

)

TERM1=EXP(-XG)*WATESL( I )/( ] .+PHI*AK( TAP »B ,N, AL

)

+AIONF )

SUM1=TERM1+SUM1
?n CON'TINUF

SU-Ml=SUMl*THETA/2.
WPI TF( 3 , 1 ) SUM]

,

A»B»AN,AL»THFTA
WR I T E ( 2 , 3 ) SU M 1 » A » B > A N » AL » THET A

GO TO 2 5

E ND
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E XFO FORTRAN. *12
1 " K-'CTI?v A'-' ( TM »l • " • M !

c?y i
i ,

= |U

i j = ] , NWTG
Z = I . + W 1

-'
. G ( J ) ) +

1 ER !=E <P( -Z) / (Z*SQRT (Z ) )

•' c =

.

IF(N.LT.2)GC TO 12

M =

it • -

,,_.,, ., ,
|

.. . .

x
., .

T FR viC= ( A N - A w ) / A m# p XP ( -R * R / Z )

- - mc+TERMC
I F{ TERMC.LT- .0001 )GC TC ]

2

IF(M.LT.N-l) GO TC ] 1

12 CCNTINUF
TF.RMG = T.FRM*SUMC*l\, A

l

TF .G( J)
If SUr-'G =5UMG+TFR

AK=SUMG*TAP
RFTURf
•V

; .,( ; : ) ,wA ri ( 2 o ) ,
f

i
i

L = .2
= -.

A 3 = 1.
A 6 = - 1

P-.32
T = ] ./

E R F = 1

r FTUR
MD

:XEO FORTRAN, , ,12 » » »YTAB
:RF(X)
392
'67 2

3741
?7

54 2 C

I CI* I

42141
. 4 5 3 1

n 6 1

4

n i

( 1 .+P*X )

.-( A1*T+A2*T*T+A3*T*T*T+A4*T#7*T*T+A5*T*T*T*T*T)*EXP(-X-
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6.1.3 Method Using a Combination of Laguerre and

Gaussian Quadrature Integration

The weights and roots of Laguerre polynomials were defined in such a

way that the following expression was true:

e"
x
f(x)dx

NWT

I W
1
f(x

j=l J J
(210)

To use Laguerre integration for finite limits, a change of variable was

made. The following equation illustrates this point:

e

e"
x
f(x)dx =

,00

e"
x
f(x)dx -e~

8
e~

x
f(x + e)dx, (211)

Beginning with the chemical yield expression for the RS species, Eqs. (73)

and (7*0, let t" = B + J (1 + y) and consider 6 as infinite.

,oo

W> e~
T
dt
B

1 + A/B e
D

K(x,B,n,Jl)

(212)

and

K( T ,B,n,0 =
J

r+1 -(B + J (1 +
y))

dy e

-l[-l B + \ (1 +
y)]

372"

n-1
,2 2r.5+1 ^exp {-lV3/(B + £ (1 + y)}

m=l

(213)

The rewriting of Eq. (212) with finite sums gives
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NYJTL

y
rs<->" I

W\

B
1=1 1 + A^3 e K(T

±
,B,n,Jl)

(21'0

in which NWTL was the number of points for the Laguerre integration and t.

were the roots of the Laguerre polynomials. The function K(T.,B,n,fc) v;as

calculated by Gaussian quadrature integration,

t. NWTG
K( Ti ,B,n,0 =

f- I

w,

T
i

G (J) exp (- (B +
-f-

(1 +
yj )}

3/2
X

t + ^a + yj)]

•5+1 (^) exp -A
2
m
2B/(B+^(l +y,))

m=l
n d J

(215)

However, the first section was evaluated with error function called AIONE

in the program. Therefore, the subprogram for K(x.,B,n,Jl) evaluated the

(216)

following expression:

-t '

'

t, NWTGw
r (j)e

y n-1
njTi

-A
2
m
2
B/t, .

"

K( Ti ,B,n,0 = ^ I ~ W— I ^ e •

J-l (t
aj

,,
)
V m=l

n

In the above Eq. (216), t .
. '

' = B + p- (1 + y,), and the y 's were used

as the roots for the Gaussian quadrature.

The Laguerre weights and roots were given by WATESL and WTABL, respec-

tively in the program listing. The Gaussian quadrature weights and roots

were given by WATESG and WTABG, respectively. Logic diagrams for the main

program and subprogram AK are given in this section. The subprograms used

were:

FUNCTION M(THETA1,B,N,AL)

FUNCTION ERF(X)

.
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Subprogram ERF(X) is considered self-explanatory. The parameters

A,B,n and l were given by A,B,AN and AL in the program listing.
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LOGIC DIAGRAM FOf? TU£ CZOMF*UT&K RRt*3FTAM
OE5C(?!BED IIS SECTION 6>. i . 3

KEAC> WATES ^

uauecce int.
ko0T*> for'

WKITe^l)

AL, H

X
fortm:
N, PHI
SUM! = .O

K I
r= I.MWTL

I
)

fo/^M
ARGUMENTS
OF F<JNCTf0rt3
ei^F 4 ak

I
RJNCTIOH
e^F

I
FUNCTION
AK
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LOGIC PlA^rf^AM POK THE?- p^JNCTIOM STATEM&ttT
pkcr'ibed im *5e-oxiori G>. 1-9

EtSTEr
FUMCTION
AK

I
AK-THET4I

FOPTM
SUMG

-EV
5L/M<S*.0

-^-(MOJ

-(y£s)<-

^
V J = I, MWTG y

FOBTM: S,
TepM
SUMC = .0

M=*0

I

FOI?M
5UMC

>Tm«Mv| J
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1

2

61
7

25

1

2
r

.

CNS$
C N 1

S

0NS3
0N$$
ONI' 1

N $ $

COMMON
FORMAT
3HN =»

FORMAT
r OR MAT
I- OR MAT
READ( 1

RFAD( 1

RFAD( 1

M=AN
P H I = A *

SUM1=.
2

XG=WTA
AICNE=
(SGRT(
TERM1=
S'UM1=T
CONTIN
WRI TF(
GO TO
END

JOB
COM
ASG
ASG
MOD
EXF

WTABL
( ]HK,7
1.5)

(15/(2
(6E10
( 5 F 1 .

»2 ) NWT
»2)NWT
»,70 ) A,

T 25MIMUTF5»2PAGFS L.F. MILLER N.E.
M MJB»12
,N MG0»16
iE GO » TEST
Q FORTRAN, , ,12 ,, , »CCMB ;

(20) >WATESL(20 ) ,WTABG( 20) »WAJTESG( 20) ,NW
'HYIELD =,F10»5,3HA =,Fl0.5,3HB =

f FlO«5»'-

!F20.16)

)

4)
5)

L.» (WTABL (K) »WATtSL(K> »K=1 ,NW-TL)

G, (WTARG(N) iWATESGIN) »N=1 »NW7G)
B , A N , A L

•ITG

4HA L =,Fln • -j

S.QRT(B) *FXP(B)
*.,

I=1,NWTL
B.L( I ) .

A * ( 1 .

-

E XP ( -XG ) *SQR T < B/

(

B + XG ) ) -L XP ( B ) *SQR T ( B*3 . 14 1

6

) *

(

ER F

B+XG) )-ERF(SGRT(B) ) )

)

WATEf L< I ) /( 1 .+PHI*AK ( XG ,B ,N , AL ) +A I ONE

)

ERMl-rSUMl
UE
3, 1 )SUM1 ,A,B ,AL,N
25
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C Of-' MCN • TA BL ( 2 ) » W A T E 5 L ( 2 ) * W T A BG ( 2 C ) , W AT ESG ( 2 ) * N W T

G

M4-N
DC 10 J=1,MWTG
7 =T HETA 1 /2 . * ( 1 .+WT

A

BG ( J ) ) + :

j

TERM = EXP( -Z) /(Z*SQRT (Z ) )

SUMO.*.
IF(N.LT.2)GC TC 12

11 M=M + 1

A M =
i

v
i

R=AL#AL*AM*AM
TERMC= (AN-AM) /AN*EXP (-R*B/Z

)

SUMC=SUMC+TERMC
IF(T-FRMC.LT«.C'001)GC TC 12

I F(M.LT.N-1 ) GC TC ]

1

12 CONTINUE
- FR MG=T E P.:' * SUMC* WA TE5G ( J )

If) ^UMG =5UMG+TERMG
AK=SUMG*THETAl/2.
RETURN
END

' C N i I

FUNCT
Al=.2
A2 = -.

A 3 = 1 •

A 4 = -

1

A 5=1.
f
J = . 3 2

T = l ./

F R F = 1

RFTUR
END

E

ION E

54829
2b449
42 141
.4531
614

759] 1

( 1 . + P
.-( Al
N

XEQ FORTRAN* , . 12 »

RF(X )

592
67 36
f 741
52027

YTAb

*x )

*T+A2#T*T+A3*T- T*T+A4*T*T*T*T+A5*T*T*T*T*T)*rxP(-X*X)
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6.2 Explanation of the Computer Program Which Calculates the Electron

Spectrum Resulting from a Monoenergetlc Electron Source

It was shown in section 2.2 that the following expression represents

the differential electron flux at energy E resulting from a monoenergetic

source of electrons at energy E :

z(E
Q
,E
n ) -

+ T WjZCE^E^CE^) -

J,
w
1
z(E

o
,E
i
)K

c
(E
1
,E
n )

p*C(E + l)w n-1 _ -,

F(E ,E )
-

2
. *n

[E
n
(E
n

+ 2)
2

i-n-p

(116)

in which

tyE V 2C

(•jV

r2 +
i_

E
n

1
(e + iv

In
1% - En

n

E./2 - E
+ J £L

(E
j

+ 1)2
(94)

WV -VW (217)

VW " 2C

(V

r2 + i-
E
n

Ei" E
n

E
n L(En

+ i)M
in

n
E

i ~ K
. i n

(E.
n

E
±
/2)

(E
n
+ 1)<

(98)

and
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F(E E ) = -i^. l + m (4) -
| 2_^ A(1 + to (

J1)

(8
n>

2

L
'

E
" E

n<
E
n

+ 1 >

i
(2E„ - A)

+ x- A p

(E
n

+ 1}

(102)

in which

rE for 2E <E
A -{ Q, C and B are defined in section 2.2.

E^ - E for 2E>E^
O

This program evaluated the electron slowing down spectrum resulting from

a unit monoenergetic source. Results are listed in section 3.2. The only

required input data were: p, the number of points chosen to reduce the

energy by 1/2 on a logrithmic scale; I , the mean ionization potential;

Z/A, the ratio of atomic number to atomic weight; and E , the source energy.

The entire program except subprogram BATES is listed in this section but a

logic diagram is given only for the main program since the FUNCTION subpro-

grams are considered self-explanatory and subroutine BATES is explained in sec-

tion 6.8.1.

The functions K
s
(E,,E

n ), K^^), K^E^E^ and F(E
Q
,E
n ) were given

in the program by:

FUNCTION XKS(E1,E)

FUNCTION XKC(E1,E)

FUNCTION XKCB(E1,E)

FUNCTION XFC(E)

Several program variables are defined in Tible XIV.
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Table XIV. Input Data and Selected Variables

Symbol Explanation

C 1/2 the Moller Formula Coefficient

QB Q, defined in section 2.2

BETA 6, ratio of the velocity of the electron to the

velocity of light

MP p, defined in section 2.2 (input data)

PSI Ratio for the geometric progression

EZERO Source energy, E (input data)

NMAX Number of points needed for the iteration
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LOGIC PlAGKAM f=Of: THE COKPUTEI^ FROGKktA V&SCKX&ErO
IN 5ECTIOH &..Z

CALCD LATE
AO,C, P5\)
EMIN

CALCULATE
SUM CM)

CALCULATE
NMAX
WTA^(J)
J = |,MMAX

I

JWT*I

CALCULATE
F'riMA
PRIM £>

I
r^JWTyN-MP/^

RJNCTIOfA
fCe ,e) 7

I
CALCULATE

CALL RATE'S

I
WKTITE
Zif£1| .e5Eb)

)

.95Eo

FOF?M
FaiWtETElfS
TO CALL
&ATE5

CALCULATE

CALCULATE/
JWT, E, 5ETA

-(S)^-

WT CALL 0ATES CALCULATE
JWT, MVV
5EO?H^O
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N3

M'j

M1

CN35

D I M

MC

MC
MC
MO
Mi

C

1 F

2 F

3 F

] 4 F

21

OR
OR

v i\

RFA
ac=
— •

si

MI

FA
ZE
MA
RI

TA
UM

UM
TA
= •

FT
B =

FC
= ]

UM
RI

WT
= W

El

B =

F(

FC
WT
WT
AL

'j

1

$

$

$

J

FN5
MCN
MAT
MAT
MAT
MAT
D(l
AC/
15*
= .5

M=.
D< 1

RO=
X = A

TE(
tit 1

( l )

8 I

( IK

8< I

95*
A = S

AC*
= XF
./A
( 1 )

TE(

7 N

=N-
TA8
A=S
AC*
JK'T

CN =

JC
CC
AS
AS
MC
EX

I ON S

CQ6
(15,2
( F12.
(INK,
( IMS,
» 1 ) MP
. 5 1 1. 9

ZOVFP

MT 15MI MUTES'* 5PAGES
GN MJB»12
GN MGCJ6
OF GC»TFST,
EC FORTRAN, , ,,, , .SPECTRUM
UM( 100) »WTAB( 100) »WATES( 100)
,BETA,EZERC

4.8)

LARRY MILLER

LI
6 )

2 E 1 4 . 8 )

15)

ACZCVERA
7

A

**(

1

./FLCAT (MP )

)

U002/.51097
,2) FZERC
E.ZERC/ . 51097
LCG( EMIN/EZERC )/ALCG(PS I )+l •

3,14 )NMAX
)=EZERC
= •

K = 2 ,NMAX
)
= .

K )=WTAB( IK-] )*PSI
FZFRC
GRT( P *( E+2. ) )/ (E+l.

)

AC*FXP( f'FTA-HFT/M/ (

CJ'M f +2. ) ) -.5
C (E )

FC
= A*( l.-( 3. 14 159**2/6. )/( ( AFC*BLTA*BETA/ ( 2 .*C ) )**2) )

3,3 )SUM( 1) ,E

-2 ,NMAX
MP
(N)

QRT(E*( E+2. ) > /(E+l.

)

AC*F;P{BETA*RETA) /(E*(F+2. ) )*.5
•LT.2)GC TC 5

= 2

= J ,J T

L BATES( IWTtNWT »WTAB»WATES

)
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DC 4 J = 1 » J W

T

TFRM = WAT!:S( J >* C UM( J) « XKS

(

WTAP ( J ) ,E

)

k i FC.ON =SrCCN + Tl RM
1 CONTTNUl

•".• T=f!

I V.'T = 2

'"ALL BATES ( I WT »NWT »W 1 AB» .'.'ATES )

IWT=N-1
PR I MA=»U
I RI KB=.0
I F

(

JWT-LT. 1 ) JWT=1
DO 6 I=JWT»IWT
1 ERM=WATES ( I ) *SUM ( I ) *XKC ( WTAB ( I ) »E )

pp i MA=PR IMA+TERM
TFRM = V.'ATES( I )*XKC» (WTAB( I ) ,F )

6 pr i MB = PR IMB + TERM
TERM=XFC( E )-C*A.* ( ! +!.)/( E*F* (E + 2. )*( F+2. ) ) *WATES(NWT ) -PR I MR
SUM (N) = ( 1 .+SECCN-PR I MA

)

/TERM
WRI TE(3»3 )fUM(N) »WTAB(N)

7 CONTINUE
I F( EZERO.GT. .1 )GO TO 21

STOP
END

MCNS3 EXEQ FORTRAN
FUNCTION XFC(E)
C CMMCN C »Q B » BET A » EZERC
CCFC=2.*C/(bETA*BETA)
DELTA=E
I F ( E.GT.EZf RO/2. ) DELTA=EZERO-E
TMFC=(1 .+A LOG (DELTA/08 ) -DELTA /E-{ (2.+ l./E)/ (E+l. )**2)*

1DFLTA*< l.+ALOG(E/ DELTA) )+l./(E+l# )**2*( DELTA /2. ) * ( E-DFLTA/2 . )

)

XFC=COI" OTMFC
RETURN
FMD

MCNS4 EXEQ FORTRAN
FUNCTION XKC(E1,E)
CCI-'.J- ON C »QB» BETA* EZERC
T 1 -LI
IF(E1.GE.2«*E)XKC=.0
IF(E1.GE.2.*E)GC TO 913
I F( E 1 .LE.E+QB)T1=E+Q8
BET AT=SORT ( T 1* ( T

1

+2 • ) ) / ( T 1+1 •

)

C cr. C = ? . *C / ( RET A ] * B F T A 1 )

T MK C= < ( T 1 -E ) *# ( -1 ) -E** ( -1 ) - ( ( 2 .+T 1** ( -1 ) ) / ( T 1 + 1 • ) *#2 )

*

1/ LCG { F/ < Tl-F ) ) + ( ( T 1 + 1 • ) ** < -2 ) ) * < E-T 1/2 . ))

XKC=CCKC*TMKC
913 RETURN

END
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MwNS 1

F- l.T-CT I C

COMMON
T 1 = E

1

! F ( E 1 . G

i F ( E 1 . G

I F ( E 1 • L

COKCR=2
TN\<CB=(
1AL0G(E/
XKCB=CC

914 RETURN
FMD

EXEQ FORTRAN
i\ X;<CB(E1*E)
C ,QB,BETA»EZERC

E.2.*E )XKCD=«0
E.2.*E)GC TO 914
EiE+QB )Tl = f

: + QB
• *C/( BETA*BETA)
(Tl-E )**(-! )-E*.*(-l ).-( (2. +E**(-D )/(E+l. )

( T 1 -E ) ) + ( ( F + 1 . ) * * ( - 2 ) ) * ( E- T 1 / 2 . ) )

KC3.*TMKCB

* 2 > *

MCN$$
FUNCT
c rs V V ^

T = F

T1 = E]

I F( El

XKS =

GO TC
11 BETA1

COKS =

TMKS =

1ALCG(
X K S = T

9 5 RFTUR
END

EXEQ FORTRAN
ION X K S ( E 1 » E

)

N COP, BETA, FZER:

.GT.2.*E)GC TO 111
• --

9 3

=SQRT( Tl*(Tl+2. ) )/(Tl+l.

)

2.*C/< BETA1#BETA1

)

( 1.0/T-1./(T1-T )-((2.+l./Tl)/(Tl+l. )**2)*
( T 1 - T ) / T ) + ( T 1 + 1 . ) ** ( - ? ) * ( T 1 / 2 . -T ) )

MKS*CCKS
N
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6.3 Program to Calculate the Electron Spectrum Resulting

from Co Irradiation of Water

This program calculated the electron energy spectrum resulting from

Co irradiation of water. To find the resulting spectrum, the following

integral was evaluated:

rQ

z(E
o
,E)S

e
g(E

o
)dE

Q
. (122)

For input data, the spectra z(E ,E) resulting from a number of monoenergetic

sources were needed and were obtained from the program described in section

6.2.

The subprograms required for this code were:

FUNCTION SPECT(TI)

SUBROUTINE INTER(N,M,X,Y, CHECK)

SUBROUTINE BATES(IWT,NWT,WTAB,WATES)

FUNCTION Y(T)

FUNCTION ZEE(TI,T)

Logic diagrams for the main program and the subprogram SPECT were given

in this section. An explanation of input data and variables of interest is

given in Table XV.

FUNCTION SPECT(TI) utilized Eq. (123) to determine the initial electron

fin
source from Co irradiation. The electron source resulting from the two

gamma rays were obtained by superposition of the individual source terms.

The index for the DO loop was obtained by comparing the electron energy under

consideration to the maximum energy electron produced by the lower energy

gamma ray.
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Table XV. Explanation of Computer Program Variables

Symbol Explanation

Ncom

EZ(K)

Q2

ANECC

COB

PSI

60

Number of z(E ,E) spectra

Source Energy E

Point of discontinuity in the initial electron

spectra

Maximum energy electron resulting from Co"

irradiation

-3 _25
(Electrons per cnr)*10

( r ) x 10

Geometric progression ratio
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Logic fc>lAG£AM Y=OK TVtE COrtFUT&K pjtogftAM pescKigep
IN 5£CTIO/S £"3

I Staitt V
^£"AO Q

-^Egw.KP &^ ^:^colm) 1

WCTITE

XXX
;
T

(3,4)
XXX

WfriTE

A,r
FROM
coHTiriuoue>
-3LOWIN3
POWIS THEORY

W^ITE

T=T*FSI

NWT, E£ (K)
XUST.Y/-/ST

FOffM : COB,
AMECCjYEMltt;
PS I . & 1

1 , Q2 ,

XXJ, XXI, X/Z

I
FUNCTION
Y(XXT),YO«l)/
Y(AX2)

W^ITE
XYH,
XY2F;
XY?M
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LOGIC PlACVKAM FOf^ THE FUNCTION
DESCI^ieED IN "SECTION &-3

srecT(Tx)

EhTEK
FUNCTION
SFECT(TI)

L = l ,

&,(l)= '• |7/.5I097

ALPHA = <Sr2

CALCULATE
C?IFF^^ENTIAL
X - SECTtOtA
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Mcr:
'"--'"•

T.

JC'J

CC IT

ASGN
A SON

'
"

X E

1 5 » 1 »

:'J'
:

» 1 2

''GC16
G

LAURENC F. v,ilLL;.R DEPT OF NUCLEAR b'NG

, t r S T

._•• rRAN» » » » » » »ANS'.

X L I S T ( 4 CM , Y L I S T (
t

I OFT • NCOl M»"̂,z.i-irr< ,o? >xyz»xspfc i^o »yspfc(4o) ,n.pt c
.

1H<» I5*F12.6/ ( 1X»2F12.6) )

1 UK » I 5 F 1 2 . 6 » I 5 / ( 1 X , 2 F 1 2 . 6 ) )

1HK,6HY(T) =»K12.6»5X»3HT =»F12.
2 E 1 A . 8 )

6)

XL I ST ( 4 CM ,YLI ST ( k 9 ) »HELY( 3 ) , FZ ( 2 3 ) »R0W ( 2? ) »CCP»WTAR ( 50) ,

] FORMAT ( 1HK » 15

)

? ^ r;M
" T ( ] HK * I 5 * F 12 . 6 / ( 3 X » 2 F 1 2 . 6 >

•a p <~>p j
,/| A T ( 1

4 FORMAT (

_

5 FORMAT (2E 14. 8 )

8 FCF V-AT( I5/(2F10.5) )

9 FORMAT ( 1 i

J '<
»
L~ 14.8 )

2 8 F0(- MAT ( 1HK,3E14.8)
REV I NO 6

RFAD( ] »! ) NCOL
DO 10 K = 1,NCCL-'"

I CO , (XL 1ST ( J ) »YIP 7RFADI ] ,2) ( NWTj
1 h'RI TF(6 ) ( NWT ,FZ(<)

J5T(J),J = 1 ,NWT) )

( XL I .? T ( J ) * YL I S T ( J ) » J = l » NWT ) )

i. •
1/ J

. -.1 ' Q

COB=.314 3 5*2.81 7 8*2.5178
AWECC=. 6023* -9/ lb.

"EM. IN-2; ..'.*! 0. ** (-6 ) /.5] 097
PS1 =.5**(

]

. /3. )

Q=1.3 16/. 5 10 97
Gil =1.1 7/. 51 097
Q2=2.*G11 »G1 1. /( 1 . + 2.*G1] )

X XT =02+ ••';•.;
i 1

v X 1 = X X T f . '

]

XX2=XXT-. 1

XYZ=Y(XXT)
XYZP=Y (XXI)
XYZM, = Y ( XX 2 )

l-.R ITF(3»28)XYZ»XYZP»XY?M
T=Q/P5I
coi rn i

'f ;

T=T*PSI
A=Y ( T ) *ANECC
WRI rF ( 2 »3 ) A ,T

>a'PITF(3»4 ) A»T
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I : F

r =

co
Z I

TT
rsT

TS
IP

XX
WR
WR
I F

ST
FN!

.15*.-5

TA=SOR
F = 2 .•* C

= .OCv C

F.RM=1 .

rr-v-.A
|_

P = C F *

R I = T * .

I T E ( 3 »

X=ZHEC
I T F ( 3 *

I T E ( 2 ,

( T.GT.
CP
D

5 3b

T( T

/( p

651

0G(
( TT
51»

5 ) i

K/T
9)X
5 )X

Y t M

* ( T

E fA

/.5
TA*
T*T
r P"
9 7

SP,
SP*
XX
XX,
IN)

+2.))/(T+l.)
*RFTA)
1 Q 9 7

RFTA+(T*T/8.-(2.*T+l. )*ALCG(2. ) )/( (T+1.)*(T + 1. ) )

* ( T +?.)/( ? • * Z I * Z I ) )

+RTERM-DFL

)

TPRI
ANFCC

T

GO T 11

MCMSS EX EG FORTRAN!
!CTION SP£CT( TI

)

'.ENSIGN G( 2 )

: MCN XL I S T ( 49 ) , <L I ST ( 49 ) » DEL Y ( 1 uU ) » EZ (
2
'5 ) ? R iW( 25) ,CCB»'wTAB( 50)

FUN<
D I V

C:

1WATES(50) , I0FT»NC0LM,Q,ZHECK,Q2 »X YZ »XSPEC( 40 ) »YSPEC(4^) »NPTS
L=]
G ( ] ) = 1

G(2
A LP!

IF(

I F(

IF(

32

1 4

SUM
DO
ALP
XOZ
SIG
r um
SPE
P^T
END

) = ] •

HA = G

T I . G

TI .G
T I . G
= .(

32 K

HA = G

= ( A L

C = CO
= c.l!,V

CT = S

URN

1 7 / . 5 1 f.
c

> 7

33/. 5] f'9.7

(2 )

T«2.*ALPHA*
T. 2.* ALPHA *

2/ ( 1 . + 2. *A|_PHA ) )SPFCT = .0

2/(1 . + 2'.*ALPHA ) )GO TO 14
T.2.*G( 1 )**2/

(

l.+2.*G< 1 ) ) ) L = 2

J = L,2
(KJ)
PHA*ALPHA-At PHA*TI-T I ) /( ALPHA*ALPHA-T I * ALPHA

)

B* ( 1 ./ ( ALPHA x-ALPHA) ) * ( 1 .
+'T H XQZ*XQZ-T I *XQZ )/.51

+SIGC
UM
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6.4 Explanation of the Computer Programs Which Calculate the

Electron Spectra Resulting From Fast Neutron Irradiation

The electron spectra resulting from given alpha and proton particle

fluxes were determined by the programs described in this section. This

required that the electron sources resulting directly from alpha and proton

fluxes be determined first. The slowing down spectra were then calculated

from the initial spectra.

Since several parameters associated with the determination of the

electron sources required changing of a few Fortran statements, both of the

main programs are listed. In each case, input data on the proton and alpha

particle fluxes were required. These data were the proton and alpha parti-

cle fluxes, divided by their energy, corresponding to equally-spaced

logarithmic intervals generated by the program. These data were plotted

in Figs. 37 and 38, and listed in Table XVII. Twenty-two sets of z(E
Q
,E)

data were also required.

Eqs. (136) and (137), given in section 2.4 of the theory, reduced to:

s/CE) - 32^28 (1 .
|)

E

and

s
a

(E ) - mi a . |
E

m. 6/. 51047

dE'Q(E') (218)

459. IE

5. 8/. 51047

dE'V(E') (219)

1824.E

in which

D
(E')

Q(E') = -J^r- (220)
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and

V(E') = +a
(E '>

E !
(221)

Since the programs were very similar, one logic diagram was considered

sufficient. The subprograms used were:

FUNCTION ZEE(TI,T)

SUBROUTINE BATES(IWT,NWT,WTAB,WATES)

SUBROUTINE INTER(N,M,X,Y, CHECK)

FUNCTION Y(T)

FUNCTION SPECT(TI)

All of the above subprograms except SPECT(TI) are given in section 6.8.

Table XVI explains several computer program variables associated with the

main program.

Table XVI. Explanation of Computer Program Variables

Symbol Explanation

PIT

NPTS

COB

YEMIN

ANN

Q

Geometric progression ratio to generate the abcissa

points associated with the input data of alpha or

proton flux

Number of data points chosen for alpha or proton flux

, - 2 N -, n+25(nr ) xlO

200 ev, lowest electron energy considered

Geometric progression ratio to obtain initial electron

spectrum

Maximum energy of electrons in the spectrum
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.1x10'

V(E)

.1x10 " -

.1x10

.1 1.0 10.0

E(Mev)
Fig. 37. Plot of V(E) vs. E
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.1x10

.1x10

Q(E)

.1x10

.lxl0"H

1.0
E(Mev)

10.0 20.0

Fig. 38. Plot of Q(E) vs. E
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Table XVII. Listing of Q(E) and V(E) Chosen at Equally Spaced

Logarithmic Intervals of Energy E in Figs. 37 and 38

Q(E) V(E)

.100E-09 .768E-0H

.450E-02 .540E-04

.5^0E-02 .400E-0H

.460E-02 .3^0E-0^

.370E-02 .275E-0H

.280E-02 .260E-04

.220E-02 .260E-04

.160E-02 .310E-0H

.120E-02 .W2E-04

.100E-02 .550E-04

.840E-03 .700E-04

.780E-03 .900E-0M

.860E-03 .110E-03

.110E-02 .140E-03

.150E-02 .180E-03

.190E-02 .230E-03

.230E-02 .280E-03

•300E-02 .350E-03

.380E-02 .WOE-03

•WE-02 .560E-03
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Table XVII. (continued)

Q(E) V(E)

.600E-02 .700E-03

.7^0E-02 .875E-03

.960E-02

. 120E-01

.150E-01

.190E-01

.234E-01
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LOGIC DIAGRAM FORT THE COMPUTBI? r^OGfTAH PESCKWSO
IN SE7STION <*>-^

(STA^T V
?EAP P-ATA

v<fe)

CAZP
YCT),T

-£>

FOK"M

FffOM 57&FPIN6
POVVE^

WfTlTE on
FRWTElC
rCT)jT

RJHCT/OH>
yct)

i

±
(res

REWIND 6>

T= <Vf»5l

ZB.WIHD 6>

GENERATE
A-&5>CissA
POINTS

STOP

i

"PIMEH'SlOtiED
VAZIA&LSS"

-t*\No\

e'ETAC? 22. 'SETS
OF *f(£? ,E)
DATA

FOKM SUtA
FO^- 1/STEaiTAL
OVEZ QO(?V

CO& ;
rEMlM

;

P*Slj Q

I
SET

YL/5T<tt-J*(Y>
*C— I

v
IS PTS

I
FOFTM
AMN , TI

I
KJAY- JAY-J- I \

rrr
Ae^c/ssA rrs.
FOf^ itn&zrAjioti
ovez

x QO ) o^
vCe)

CALL IhTEt^
AKGUMEMTS
FO^ INTei^
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LOGIC DIAGRAM FOf? THE FUNCTION SPECTfTX) PH^oriBEp
IN SECTION 6-^

FUNCTION
SPeCTCTt)

se-T
XLlST(K)=)(SrEc(XK\

YLI5TfK>YSFEc:(XK)
FORT^
ACUMENTS
FOR- IHTEF?

CALL INTE-f^

srecr

I
SPE-CT =

E-XPfY)
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This program calculates the electron spectrum resulting from the proton
source

\'C,l JO: M cfjp^M >.'myj-;iii'

'

'

: Cf 'I 1
f T

; .
K P< LA'' Y ' I LL i-.p !)

;-T'T OF ' I

'" • :

I

-• C' 1 "J' :

, ] 2
'"

; : '

•' "GO, ] 6

Of DE GO

>

TEST
' N ;

). EXE< FORTRAiX, » , , , , »£ '

C CI MO.' X L I S T ( 49 ) . Y L I 3 T ( 49 ) , DE L Y ( 2 ) » L/. ( 2 5 ) , R0,\ ( 2 5 ) > CCu . '.-•' 1 A i ( 5 ) >

l'.'MTE (. )»ICFT»NCCl '• »Z! iir.CK »Q2 « X Yzi » XSPEC ( 5C ) » YSPFC { 50 ) >NPT3 »MPZ
1 FORMAT (1 HK> 15 )

9 p 0!? ^AT ( 1 HK » I 5 , F 17 • 6 / ( 1 X * 2 F 1 ? . 6 ) )

* FORMAT ( 1 H'< > I 5 , F 1 2 . 6 , I 5 / ( 1 X . ? II?. 6 ) )

A FORMAT ( HIK»6HY( T ) = » Fl 2 . 6

,

^X , 3HT =»F12.6)
c FORf/AT ( 2^1 4.8 )

5 F OR MAT

(

I5/(E14.8 )

)

7 FORMAT ( 1H<»] HINTEGRAL = » F 14 . 8 , 1 7HELECTR0N SOURCE =»E14.8,
l-'HEMFRGY =»E L4.8 )

8 I- OF :
- M ( I5/'(2F10.5 ) )

9 r OR MAI ( 1 H:<»E 14.8 )

I : f A D ( 1 » 6 ) NP T S » ( YSP E

C

( J ) , J= 1 , NP T S )

P I T = <
.

' 9 1 8 2/ ] 4 . b ) **

(

1 . /F LOA

T

( NP T:
- 1 ) )

y c p p C ( ] ) = ] 4 . 5 / . 5 1 9 7

fj£ \2 I T = 2 »'"MP ' T
r

12 XSPEC ( I T ) =X.'"
'">' r ^

( I
t-1 )#P| T

r r:
a

.
= • 31 4 1 5*2 .8 ] 7R*? . ;

i
;

YE'v'lN = 20 . » 1
>.** (-6 )

/.' !i 7

PSI=.5**{ 1./3. )

Q = 3 1 . 8 * 1 ." : ; (-:)/. l

] 97
00 15 JF=] . NPTS
XL I ST ( JF ) =ALOG ( XSPEC (JF ) )

15 YLIST ( JF) =ALOG( YSPh C ( Jl ) )

ANN = (Ye '' I M/Q) ** ( 1 . /47. )

T I -
. / •

70 JAY=] »4£
T I---T I*ANN
fMT =30
P S J = ( T I

*-4 59 . 1 / ( ]A . 6 / . 5 1 097 ) ) #* ( 1 • / F LC AT < NWT - 1 ) )

•"'TAB( ] )=]4.6/.51' 9 7

no 16 JQ=2»NWT
1 6 ' 'TAB (JO )=V/TAr ( J0-] ) *PSJ

IWT = 2

C A L L E- A T E S ( I V- T , N -.-. \ )

M=NPTS
-2

SUM=.0
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1 7

OC 17 JZ=1 »MWT
X=ALOG( -,.T ( JZ ) )

CALL 1 N T E R ( M * » X » Y > C hi E C < )

a r

=

f; X P ( Y

)

*v\'ATES( JZ)
IF( JZ.EQ.l ) TFRV=.0

X XX XX = S UM* ( 1 . -T I / 2 • )
. *3 9 . 9 8/ ( T I * T I )

WRI Tr7 (
'' * 7

) SU V »XXXXX »TI

XSPEC ( JAY ) =T

I

YSPEC ( JAY )=XXXXX
WR I TF ( 2 »5 ) ( XSPF C ( < ) , Y5PEC ( K ) » K=l »'+b )

T( J) »YLIST( J) ,J=ltNWT) )

( J) ,Yl I
r

-. T ( J) »J = 1 iNWT) )

1F(XSPEC( JK.Y ) .EO..0)GG TO 72

1F( YSPEC (JK.Y) .FQ..O)GG TO 72

X SP EC ( J !< Y ) = A LOG ( XS P E C ( JK Y ) )

YSPEC ( JK Y ) = A LOG

(

YSPEC ( JK Y ) )

7 2 CONTINUE
RFWIND 6

R P A D ( 1 » 1 ) N C L ''

P^ jo K=] »NCOL^
RFAD( 1.2) (NWT.FZ (<) » (XL T

1 WRI TE(6) ( NWT ,EZ(K )

»

(XL I 5

PFWIND 6

"='Q/PSI
1] CONTINUE

T=T*PSI
A = Y ( T )

WRI TE(2 »5 )A,T
WRI TE(3,4)A, T

DFL = .I

0«15*»5 555
RFTA = SQRT( T*(T+2. ) )./ (T'+l. )

C0F=2.*C/ ( F>FTA*RETA

)

Z.I = .0ft< 651/.

5

1^97
T TFRM=I .-8ETA*RETA+( T*T/8 .-

(

2 . *T+1 • )*ALCG(2. ) ) /( ( T + l. )

BTFRM = ALCG( T*T* ( T + 2i ) / ( 2-.*Zl*ZI )
')

TSP=CCF* ( T"i ERM +BTERM-DEL)
TPR I=T*. 51097
WRI TE( 3 ,5 ) TSP»TPRI
XXX=ZHECK/TSP
WRI TF( 3,9 )XXX
JF(T.GT.YE.MIN)GC TO 1 1

c
- T °

F WD

* (' T + 1 • )
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This program calculates the electron spectrum resulting from the alpha
source

.

"' : JO- EL TC T ROM SPECTRUM
'ONT'F CC'*T 15VIWUTt.S»5PAGFS LARRY FILLER O^rj OF M F
''wN ASGN ••JP , ] 2
"~f

•

"• ASGN f'GO»16
f
OW'! T woDE G0»TEST

' Or '

:

J E: Er FORTRAN, , , ,, , »ANSto
CC 'iMCN XL I ST ( 49) ,YLIST(49) ,DELY(2J) »FIZ(25) ,ROw(25 ) »COB,WTAB( 50) »

lWATES(bO) , ICFTt.NCCLM.QtZHECK ,Q2 »XYZ,XSPEC ( 50) ,YSPEC( 50) ,NPTS,NPZ
1 F CRiVAT ( -

1 HK » 15 )

2 FORMAT ( 1 HK , I 5 , F 12 . 6/ ( IX »2F 12 . 6 ) )

3 F OR MA T ( 1 HK I 5 , F 1 2 . 6 , I 5 / ( 1 X , 2 F ] 2 . 6 ) )

4 FORMAT ( 1HK,6HY(T) = , F 1 2 . 6 , 5X , 3HT =»F12.6)
5 FORMAT (2E1 4. 8 )

6 FORM/i T ( I
rV (

r
! a . P ) 1

7 FORMAT( 1HK,1CHIMTFGRAL - , E ] 4 . 8 , ] 7HELECTR0N SOURCE =»E14.8,
18HENFRGY =»E14.8)

8 FORMAT ( I5/(2F10.5)

)

9 FORMAT ( 1HK,E14.8)
READ( 1 »6) MPTS» ( YSPFC (J) ,J=] ,NPTS)
PIT=( .37/5.8 )*#( 1

.

/FLOAT ( NPTS-1 ) )

XSPEC( ] )=5.8/.5109 7

t-'O 12 IT=2,NPTS
3 2 XSP EC ( I T ) =XSPEC ( I T- 1 ) *P I

T

C0B=.31415*2.8] 78*2,8] 78
Y FM I N = 2

' 3 . * 1 . ** ( -6 ) / . 5 ] 09 7
PSI=.5**< 1./3.

)

= 3 • ]. 8 * 1
~

. * * ( -
'
5

) / •
r

- 1 < 9 7
n ^

1
r

- JF= 1 »N' PT^
X L I ST ( J F ) = A LOG ( XSPE C ( J F ) )

1 5 YLIST(JF) =ALOG< YS D FC( JF )

)

ANM= (YEVIN/Q) ** ( ] . /4 7. )

T I =Q/ANN
f 7 JAY=1 »48
i I=TI*ANN

1 WT=30
PSJ=(TI -18 24./ (5.8/. 51097) )**{] ./FLOAT (NWT-1)

)

WTAB( 1 )=5.8/. 5] 097
HO 1ft JQ=2»M ,

\
, T

lft WTABf JQ)=WTAP( JO-1 )*P C J

1 U'T = ?

CALL PATFS( IWT »NWT

)

fv = MPTS
f ' = 2

SUM=.0
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] 7

72

3 1

/ ( T I * 1 I )

( <) , < = i ,48)

7?

7?

p~
3 7 j z = i , \i .,

i

XsALCG '
' T *'

( J? ) )

CAL L T'T-'- ( M »",X,Y .CuFf'K )

A F = C X P ( Y )

TFRM = AF.*WATf:S( J'Z )

I F( JZ.fc'J.NWT ) 7
;

.

^'iv = , 1311* in. • (-A ) » ..AT Cot J I)

SUM S! SUM+ I F

:'XXXX = SU •-
( 1 .-T 1/2.1*3 5<3 .

.vRITFO >7) £UM»XXXXX -. I I

XSPFC(JAY)=TI
Y 5 P FC ( J A Y ) = X XX X

X

wo
I TF( ? . s

) ( X^prr C ) , YSP r r

p c 7 p j « y = i , l p

] F ( XSPF.C ( JKY ) . ro . .^ ) C TC
I F ( YSPFC (J* Y ) .EQ. .n ) GC TC
X5PEC ( JKY ) =ALCG

(

XSPEC ( JK r )

)

YSPEC ( JKY ) =ALCG ( YSPFC. ( JKY ) )

CCNT IN

REWIND 6

RFAD( 1 .1 >N< OL'-'

DC 10 K=1»NCCLM
R.EAD( 1»2) (MWT»FZ ( K ) » ( XL I'.: T (. J ) » YL I S 1 ( J ) J= 1 »NWT ) )

WR I T F ( 6 ) ( NW T • E 2 ( < J * ( X L I
r

- T ( J ) » YL I
::

'I ( J ) » J« 1 • NW T ) )

T = / P c
j

CC^'T I
r '

ir

T = T » P c
-

1

A = Y ( T )

WRI TE(2 ,
u
j )/ ,1

WRI TE( 3 »4 ) A ,7

D FL = • :

C = . 1 5 * . b b b b

BE7A = SOI<7 ( 7*-( 7+2. ) ) /.( T+1 . )

CCF=?.*C/ (F ETA*Rh TA )

7 I = .00 'V6'M/.5 7
t)7

TTF R^= i . - r< r
T AtfRFT '•-»-

( I *T/R
R7ERM-A1.CG (TH1MT + ?. )/ (2.
TSP=C0F* ( TTEP.v. + BTFpv'-P-L j

TPF I =T*. 5 1 f c^7

WRI TF( 3 ,5 ) TSP* TRR

I

XXX = ZHEC,</ 1 : !

J

WRI 7F( 3,'MXXX
IF(T.GT.YEM. IN'JGC TC 11

STOP
END

- ( ? . * T + 1

7 I
-:• I I ) )

)*ALCG<2. ) ) /( (T+l. )*(T+1. )

)
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1 II C T I

CCMMCN
L WAT ESI

I F ( TI .

I F ( T I .

no 28
X L I S T (

2 8 YI.I ST(
•• = 48
M = 2

X=ALCG
CALL I

SPECT=
61 RETURN

END

FXEC FORTRAN
''' SPECT ( T I )in brcLl ill)
XLIST(49) »YL IST<49) »DELY<2'~ ) »£Z<25 ) »RCW(25

50) , ICFT »NCCLM,C,',ZHECK,Q2»XYZ»X5PEC( 50) .YSP
GE.O)SPECT=.0
GE.QIGC TC 61

j d s = ] » a a

JDS)=XSPFC( JHS)
jHS) =YSPFC( JDS

)

( T I )

NTER (N,M,X.Y» CHECK)
LXP( Y)

) »COB»W
EC( 50) ,

TAd(50) *

NPTS»NPZ
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6.5 Explanation of Programs Used to Synthesize an Electron-Electron

Cross Section and a Program to Calculate the Stopping Power of

Water Using the Synthesized Cross Section

6.5.1 Program for Evaluating the Parameters a, b and AKT in the Energy

Region Where the Moller Formula is Valid

Evaluation of the parameters a, b and AKT, as associated with the

hypothesized cross section developed in section 2.4 of the theory, was ac-

complished by an iterative procedure. From the boundary conditions given

in section 2.4, the following expressions for a and b were obtained:

a = ± *jB? -/^SvlA2
"

Si) (W5)

b = + 6
2 /AKTfrw-^

Note that 6~ is the value of t at which one chooses to match the hypothe-

sized cross section to the Moller cross section, that 6, is the largest energy

loss for which inelastic collision cross section data are available and that

tv\ 2C
<(E) = g- .

The subprograms used for this code were:

FUNCTION PROBT(T,TAU)

FUNCTION SMALL(TAU)

FUNCTION AM0LIN(T, DELTA)

FUNCTION AINEX(DELTA)

SUBROUTINE BATES(IWT,NWT,WTAB,WATES)
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All of these subprograms are explained in section 6.8. A logic dia-

gram is given for the main program in this section.
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LOGIC DtAGKAMs FOP? Ttf^ OoM^UTBfZ PRTOGKTAM P^CITIPEP
IN SECTION &>.&. \

( 5TAKT ) O
<5, = 2le^

STOP

c L = L-h

CALCULKTE
<5Z, A , T£f?MZ,

6TE?M
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ICM "J I!

mct : \

[ i

cc;-'t 2 i n :;,

:

a: .'
' i. .

.

• ' f - f , T ^

"•:
I

: . ; - i

B> •,..,
(

' r"
1 Af (1 )

. Mi ( 1

'

7 i '
~

!

• ' ••

7 ( 1 I 1 v , 1 r
|

-

1 ?. . , .
-

' i '•-• •'
| i

i M'< , ?r i/, . »
)

q p.
:
-r." 71(iH !/ ,'.i i .', .

•••
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6.5.2 Explanation of the Program Used to Investigate the Behavior

of a and b by Assuming AKT to be Proportional to a Constant

Power of E

This program was written mostly for the sake of curiosity. If AKT

were assumed to be known, a and b could be evaluated directly in terms of

AKT. One would need only to match the synthesized and experimental cross

sections. If the stopping power of water for low energy electrons were

known, one might extract some useful information from the procedure. Since

the stopping power was under estimated by an integral over the Moller cross

section or by conventional stopping power formulas, the parameters a and b

were, as a result, too large. Therefore, meaningful results were not ob-

tained. The program listing and logic diagram for the program explained in

section 6.5.1 was considered sufficient for the interpretation of the pro-

gram listed in this section. The subprograms required were:

FUNCTION AKTG(E)

FUNCTION SMALL(TAU)

FUNCTION AMOLIN(T,DELTA)

FUNCTION AINEX(DELTA)

SUBROUTINE BATES(IWT,NwT,WTAB,WATES)

Subprogram AKTG(E) is a straight line fit of Fig. 11. The other sub-

programs are explained in section 6.8.
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1 ?

'

i ;

'CN:r.3

iO-N .

-> N |

:on:i x

CCi/MC
V C R M A

F0RN7
FORMA
FOR MA
' EL = .

L=.15
DFLTA
DFLTA
P S I = .

T s 2 . *
•| =t-P
DFI TA

TAP PA
d F T A =

COF = 2

X Y = A

I

T f

: R M

1

AKT=A
TERM2
L = ]

A = 1- . A

AOD =

CONT [

I F ( L .

I F( L.
B = - A *

XGZ=S
TERM=
./XGZ )

GTERM
I F(GT
I F ( L .

I F( L.

I F ( L .

I F( L.

L = L + ]

I F( L.

WRI TE

I F( T.

STOP
END

J C t i

• r A F I T MILL E R

CC-v,T 25MINUTE6,10PAGES L.F. MILLER N.E.
ASGM MJR»12
ASGM MGO*16
'"VODE GO»TF5T
F XFQ FORT R A

N

,,,.,,, n A T A F I

T

' WTAFi( 1 ) »WATF 5 ( 100 ) » DEL » BETA,COF , AKT »DELTA1 ,DFL T A2 »0B
7 (1HK,UM 2.6)
7 ( 1HK»2E] 4.8 )

T ( 1 HK >4E14.8)
T ( 1HK»5E14.8 )

1 =

2 =

5-;;
-

DF
SI

2 =

-2

so
• *

NL
= A

KT
=A

5 5 5 5

2 J •* 10.** (-6

)

/.51097
3 : ,*10.** (-6 ) /• 51097
*

( 1 . / 3 . )

LT A 2 / P S I

T/2.
• *C/T
RT( T* (T+2. ) ) /

(

T+l .

)

C/

(

BE'TA*BFTA )

X( DELTA1 )

mol:n(t»delta2 )

G ( T ,

KT*XY

.1

MUF
p-Q. i ) AaA + ADD
GT . 1 ) A = A+ A INC
DE L T A 1 + SQR T ( T A P P A / ( A ,< T * SMA LL < DELT A 1 ) ) )

QRT

(

TAPPA/ (AKT*SMALL( DELTA1 ) )

)

TAPPA/( A*A)*(B/ (A*DELTA2+B

)

-b/ ( A#DELTA1+I
)

= TER<M2 + TERM
ERM.GE.TERM1 ) GO TO 12

EQ. 1 ) A = A-ADD
EQ. ] )AINC=ADD/10.
GT. 1 ) A = A-A I NC
GT.l ) A rNC = A IMC/10.

LE.3JGG TO 1?
(3 »6

)

T»AKT»A»B , TERM1
GT.3.*DELTA1 ) GO TO 10

)+ALOG( ( A*DELTA2+h)
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MCNSS EXEG FORTRAN
FUNCTION &KTG(E)
I F( E.LT. .05) AKTG=3.8*ln.** (8)*E**( -ALOG( 12,61 } /ALOG (25. )

)

!F( E.LT..05) GO TO 76

J F ( E.LT..3 )AKTG=4.8*10.#*8*E**(-ALOG( 3. 8/ 1 • 1 ) / ALOG ( 6. ) )

fF{ E.LT..3 )GC TO 2 6

IF(E.LT.l. )AKTG = 7. 1*10.**8*E** ( -ALOG ( 1.1/. 717) /ALOG( 1./.3 ) )

IF(E.LT.l. )GC TO 2 6
T F ( E.LT .5 . ) AKTG = 7. 1*10.**8*E** ( -ALOG ( 7. 17/6. 32 ) /ALOG( 3-2/1. 008 )

2 6 RETURN
END
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6.5.3 Explanation of the Program Used to Calculate the Stopping

Power of Water From the Synthesized Cross Section

This program calculated the stopping power using the synthesized cross

section and for comparison, using an analytic expression obtained from

Berger and Seltzer (3). The subprograms TSP and RSP were the total and

restricted stopping power formulas. The subprogram SPRS calculated the

stopping power using the synthesized cross section. The subprograms used

for this program were:

FUNCTION TSP(T)

FUNCTION RSP(T)

FUNCTION SMALL(TAU)

FUNCTION SPRS(E,DELTA2)

SUBROUTINE BATES(IWT,NWT,WTAB,WATES)

FUNCTION AINEXD(E,0,DELTA1)

FUNCTION AINGS(E,DELTA1,DELTA2)

The subprograms not listed in this section are given in section 6.8.

The program was quite simple so the listing was considered sufficient for

understanding the program.
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. ..- -

13

14

JO\i LC V
! Nf RGY STOPPING POWER

CCMT 15MINUTE?i10PAGES L.F. MILLER N.E
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I M
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A
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14 JJ=1 .6

AU=TAU*2.
JM = ]

= 2.
=T/.bl097
= T * . b

APPA=2.*C/T
ETA=SQKT (

T* ( T+2
0F=2.*C/ ( l<ETA*bt I

'

)

jn;= IJM + 1

TSP=TSP( T )

F'{ IJM.E0.2 ) WR I T r
(

Q
i

RSP = RSP ( T »TAU )

TEST=TR^P/TT r P

RSP?/= # 51' °7" T
f;
:S'

T S P '•' =.51097 * T T S P

v,FV = T*.5l09 7

A U E V = T A U * . 5 10 9 7 * 1 .

RI TE( 3»6 ) 1 AU» T AUEV» I »l MLV »1 RSP» rRbPM, I rsp » TTSPM

»

IT EST
T=T/2.
T'SP = SPRS( T • T 1 )

R S P = SP R S ( T 9 TAU

)

TEST=TRSP/TTSP
RSPN=.51 97*TRSP
TSPM=.5] 097*TTSP
MEV-T* .511 97
AUEV=TAU*.51< 97*1 0.**6
R I TE ( 3 » 6 ) TAU »

T

AUE V » T »
' Mi V , T R SP » T RSPM , T TSP » T T SPM » T TEST

F( T*.b.GT. TAU )G0 TO 13
ONT INUt
TOP
NO

(MEV)
) »7X»
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I UNCTJ
EXEC F: •Ai

SP( T »DELTA2 )

10N w I'AE ( 1L0 ) fWATbS ( 100 ) »BETA»COF ,DEL
06 51/. 5109 7

LOG{ < 2.*(T<-2. ) )/(ZI*ZI ) )

1 . -BE TA*afc rA+ALOG ( ( T-DELTA2 ) *DELTA2 )+T/ ( T-DELTA2 ) + ( DELTA2
?.+(2.*T+l. ) *ALCG(1.-DELTA2/T) )/(

(

T+l. )*(T+1. ).J

ERM+FTERM-DEL )*CGF

Z I = . (

ATERM=A

luFLTA?/
' SP= (AT

RTTURN
f- MD

mcn^i exec; Fortran
FUNCTION TSP(T)
COMMON WTAR( 1( 0) ,WATFS( 100 ) »BET A » COF ,DEL
ZI = .CC 6 r

)l /. c

^l 097
TTER^=1.-Br TA*BETA+( T*T/8.- ( 2 .*T+1 • )*AL0G(2. > ) / ( ( T+l • ) * ( T+l • )

)

I TERM=ALOG iT*T*(T+2. )/(2.*Zl*ZI )

)

TSP = CCF »-( TTERM+BTE RM-DEL)
RETURN
END
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6.6 Explanation of the Program Used to Calculate the

Weighted Average Spur Size

This program calculated the average spur size from a known electron

energy spectrum. From section 2.6 of the theory, it was evident that the

following integrals needed to be evaluated:

G(t) dx = rdi
max

y(E) kj^E.t) dE

"min

r<5

<V
=

TG(l)dT

min

G(i)dT

min

(150)

(151)

The subprograms used for this code were:

FUNCTION VALUE (T,TAU)

FUNCTION SMALL(TAU)

FUNCTION G(TAU)

FUNCTION SPECY(E)

SUBROUTINE BATES ( IWT ,NWT ,WTAB ,WATES

)

SUBROUTINE INTER(N,M,X,Y,CHECK)

FUNCTION PROBT(T,TAU)

Subprograms BATES, INTER, SMALL and PROBT were explained in section

6.8. The subprogram VALUE(T,TAU) evaluated KXE t r) for any given energy

and energy loss; G(TAU) evaluated G(t); SPECY(E) interpolated for the elec-

tron flux from data read in as XLIST and YLIST.
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Table XVIII describes variables and input data associated with this

computer program.

Table XVIII. Explanation of Computer Program Variables

Symbol Explanation

JWT

DELTA1

EMAX

BVIIN

TAUMIN

NSPEC

ZETA

Number of points at which G(t) is evaluated

6 (input data)

E (input data)
max ^

E
min

6 .

min

Number of data points of the electron spectrum

(input data)

Geometric progression ratio
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LOQ/C D/AGKAM *~OK THE COMPZJTEf^ PTOQPAM ^E^CPIBED
IN SecT/ON <o-(0

STArr
*TETAC?
DEtTAj , £MAX

TAKE LOGS OF

A&5Cf£tSA PTS.

INTERPOLATION

CALL
<sue>&yjTiNE

tNTEK

I
AV&LirieHTS

^MH- MH+-1
MN= I, NWT

TA«C£ log.? OF
Of^p/JSAT^ 4"

A&ec^^h rvs.
TO SIMPLIFY
/HTE^IF&LATIOH

I
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,
1r j=jfi \

FXJNCT'O/H
<5 (^TA6J)

-r-S FOgtA £ETA, fA TAiJ= 7 (p>£
L TAUtMH/.iz, ^-VeewiHD

*3
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PUNCT/OH
VALUE (T, TAU)

VALUE=.o

^£TU^H
vauj&Ct, TAU)

VALUED
rro&T

fAl^AMETei?

A ^3 SOLVE
\=OfZ VALUE

L-o&tc PiAORAri f'ok -rwe- FurncTioN 5pecy(e)
pe-sc^ee-p /N section 63.6?

FZJISCTION Ai?«5^MeyNT,3
Foe IMT&J^

c*u_ y^/repr

I spEcYCe)
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LOGIC "P|AGfTAM RO*T THE: FUNCTION Q (TAU)

FUHCTIOri
G (*TAL/)

<3

FO^K)

•(CALL aATE^

^/ J«J-H \^V J = I , HWT7

FZJHCTIOM
VAL-ue .

(WTA3CJ)>TAU))

I
FUNCTION
«5pgcr(WT>ABCt)V
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J:

COMT
ft

. 5GN
ASGM
MODE
EXEC

SPUR SIZ r DISTRIBUTION
1 5^INUTFS*10PAGES L.F. ILLE'R N.F
N'J^»1 2

'GO, 16

GO » TEST
FORTRAN, , , , , , , SPURS IZE

),YLIuT(50)»DELY(10) »EMAX»
1

28

* -::-

1 1

CNI7 JOB SPUR SIZF DISTRIBUTION
ON3 3

ON J 1

ONT'l

ON 5 S

COMMON WTABI 5C) »WATES( 50) »XLIST (5

D EL T Al » DE L TA2 » NSPEC * EM I N > J

FORMAT ( 15 )

FORMAT (2E14.8

)

FORMAT ( 1HK ,2 FT 4. 8

)

FORMAT ( ] HK »20X»E14.8)
FORMAT( 1HK»8HTAUBAR = ,E14. 8 » 1 OX »8HTAUI NT = »E] 4. 8. 10X »6HEMIN =,El4.
P )

JWT=40
RFAD( 1*3^ DELTA 1 »FMAX
READ( 1,1) NSPEC
READ (1*3)

(

YLIST(K) »XLIST(K) »K=1> NSPEC)
XLISTU )=ALC:G(XLIST( 1 ) )

YLISTd )=-10.
DO 28 JN=2. NSPEC
: LIST UN) =ALOG( XL 1ST (JN) )

YLIST(JN) =ALOG(YLlST( JN)

)

REWIND 4

WRITE (4 ) ( XL I ST (KM) »YLIST(KM) »KM = 1 » NSPEC)
RFWIND 4

P F w I N n 6

EMAX=EMAX/,51097
TAUMIN=2.*T0.**( -6 )/ .5109 7

DFLTA1 = DELTA1/.51 097
TAPE 4 STORES LOG OF ELECTRON SPECTRUM

TAUMAX=EMAX
F>C 77 JKJ=1 ,6

I F ( JKJ.EQ. : ) EMI N= 1" A U ,-1 1 N

I F( JK J.EQ.k) EMIN=TAUMIN*10.
J F ( JKJ.EQ. 3 ) EMIN = TAUMIN*100.
I F ( JK J.GT . 3

)

EMIN=FM I N*2

.

RFAD(4) (XLIST(KJ)

»

YLIST(KJ) ,KJ=1 »NSPEC)
RFWIND 4

ZFTA=( TAUMIN/TAUMAX ) **(

1

./FLOAT ( JWT-1 )

)

TAU=TAUMAX/ZETA
DO 11 J=l , JWT
I AU=TAU#ZE TA
SPURS=G( TAU)
WRI TE ( 3 »5 ) SPURS* TAU
WR 1 TE(6 ) SPURS, TAU
CONTINUF



206

1 5

29

12

] 4

77

TA
REWI
READ
R E W I

IF(Y
I F( Y

XL IS
PC 1

Y L I S

XL IS
N-WT =

TAUI
TAU1
PS1 =

'.'.'TAB

no i

WTAB
i v r =

CALL
M =JW
N = 2

SUMN
SUM 2

DC 1

X=AL
CALL
TERM
TERM
'•MM 2

bUMN
TAUB
WRI T

WRI T

TF( T

LCMT
STCP
END

E

D

6)

D

IS

IS

(

1

(M

(

M

T =

T =

TA

1 )

N

N)

6 STCRLS THE SPUR SIZE DISTKI L3UT ICN
6

lYLiST(K) tXLIST (K) tK=l •JWT)
6

T( 1 ).EQ. .OJYLIST (1)=-10.
T( 1 ).GT..0)YLIST(1) =ALCG(YLIST< 1 )

)

)=.ALCG(XLIST< 1 )

)

Q=2»JWT
0) =ALCG(YLI C.T(MC) )

Q) =ALCG(XLIST(MQ) )

EMAX/.5
TAUIiMT^.3
UMIN/TAUINT)**( 1 •/FLOAT ( NWT-1 ) )

= TAUI NT
=2»NWT
=WTAB(M-1 )*PSI

RATES ( IWT»MWT)

= •<..

— • i '

4 M
CG(
IN

= EX
2 = T

=SU
=SU
AR =

E( 3

F(3
AUI
INU

N=1»NWT
WTABI MN)

)

TER(N*M*X»Y »CHECK)
P( Y)*WATES(MN )

ERM*WTAB(M.N)
M2+TERM2
MN+TERM
SUM 2 /.SUMN
»9

)

TAUBAR»TAUINT»EMIN
»7 ) SUMN
NT.GT.50.0*TAUMIN)GC TO 29
F



207

MONSS EXEQ FORTRAN
EUNCTION VALUE (T»TAU)
COMMON WTAB( 5C ) ,WATES( 50 ) » XL I ST ( 5 j )

»

YLIST ( 50 ) »DELy ( 10 ) »EMAX»
1 DEL TA1 DELTA2 » NSPEC , EM I N ,

J

IFtT.LE .TAU) VALUE=.0
IF(T.LE.TAU)GO TO 21
E = T

IF( T.LT..CH 4)GC TO 22
IF( TAU.LE..0 0' 3) GO TO 2 2

VALUF=PROBT( T»TAU)
GO TO 21

2 2 CONTINUE
IF(TAU.LE.DELTA1)G0 TO 25
IF( E.LT..1 )A=1.29*E**(-ALGG{ 1 . 8b/ 1 . 29 ) /ALOG ( 10000 . )

)

IF( E.LT..1 )G0 TO 16 ,

IF( E.LT..32) A=1.1*E*#(~AL0G( 1.4/1 . 1 ) /ALOG ( 10. )

)

IF( E.LT..32JGO TO 16

IF(E.LT.l. )A=.94*E**(-AL0G(1.7/.94 )/ALOG( 10. )

)

IF(E.LT.1.)G0 TO 16
A = . 94*E** { -ALOG ( . 94/ . 33 5 ) / ALOG ( 1 • )

)

16 CONTINUE
I F ( E • L T • • 2 ) B = - • 3 5 * 1 • ** ( -4

)

IF(E.LT..2)G0 TO 17
I F( E.LT.l. >B=-.255*10.**(-4)*E*#(-ALOG< . 398/ . 25 5 ) / A LOG ( 1 . ) )

IF( E.LT.l. )G0 TO 17
b=-.255*10.**(-4)*E**(-ALCG( .25 5/. 1) /ALOG( 10. )

)

17 CONTINUE
C=. 15*. 55 5

TAPPA=2.*C/T
VALUE=TAPPA/ ( ( TAU*A+B )*( TAU*A+B )

)

IF( TAU.GT.DELTA1 )G0 TO 27
2 5 CONTTMUE

IF(T.LE.,15) AKT=3.8*10.**8*E**<-ALOG(210.6)/ALOG( 1000. )

)

IF(T.LE..15)G0 TO 24
*F( T.LE..5 )AKT=6.*] .**8*E** ( -ALOG ( 1 1.65 )/ALOG( 100. )

)

i F( T.LE..5 )G0 TO 2 A

I F ( T.LE.1.3) AKT=7.2#10.**8*E*« (-ALOG( 3.61 )/ALOG( 100. ) )

IF( T.LL.1.3)G0 TO 24
AKT=6. 75*10. *#8

2 4 CONTINUE
VALUE=AKT*SMALL( TAU)

2 7 RETURN
F ND
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MCf I i EXEQ FORTRAN
FUNCTION G( TAU)
COMMON WTAB( 5 . ) ,WATES( 50) , XL I ST ( 50 ) »YL I S I ( 50

)

>DELY ( 10 ) >EMAX,
1DELTA1 »DELTA2 » NSPEC » EM I N

NWT=50
I F( EMIM.GE,TAU)PSI = ( EM IN /EM AX )**( 1./ FLO AT (NWT-1 ) )

I F( EMIN.LT.TAU) P c
. 1 = ( TAU/EMAX)**( 1 . /FLOAT (NWT-1 ) )

WTAB( 1 ) =r"'A
. X

DO 81 J=2»NWT
8 1 WTAB(J)=WTAB( J-l )*PSI

IWT = 2

CALL BATES ( IWT »NWT )

SUM=.0
DC 87 K=1»NWT
X TEST = VALUE ( WTAB (.<)» TAU )

T E:RM=SPECY ( w'TAB ( K ) ) *XT EST* TAU*WATE£> ( K )

P. 2 .

r UM-SUM + TERM
la = SUM
R C TURN
END

MCN$$ EXEQ FORTRAN
FUNCTION SPECY ( F )

COMMON WTAB<5 ) »WATE8 ( 50 )

»

XL I ST ( 5 :

) » YLI ST ( 50 ) »DEL

Y

( 10 ) » EMAX »

1DFL.TA] »DELTA2»MSPFC
2 2 CONTINUE

X=ALOG(E)
M=NSPEC
N = 2

I F ( E . L T • • 1 ) N = 1

CALL I N T E R ( N » M » X » Y » C H E C K

)

SPECY=EXP(Y)
2 3 RETURN

END
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6.7 Explanation of the Program Used to Calculate the Weighted

Average Spur Separation Distance

The spur separation distance, i'(E,6 ) was given in terms of the elemen-

tary cross section kH(E,T), as follows:
If

l'(E,6j = <;>
(159)

kjjCE.t) idx

The maximum spur size was 6 and the weighted average spur size was (y .

Four forms were chosen to investigate the possibility of determining

a weighted average spur separation distance. The forms were:

Case 1: (weighting by the electron spectrum and the relative local energy

loss)

C*i-

E
max L(E,6j

y (E) -w- A,(E » 6c
)dE

J
min

rE
max L(E,6 )

(151)

y(E)
lcet

dE

Inln

Case 2: (weighting by the local energy loss)

Kmax
y(E)L(E,6

c
)a«(E,6

c
)dE

^)2-
J
min

ma)
(155)

y(E)L(E,6
c
)dE

"min

Case 3: (weighting by the electron spectrum)
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rE

<<»3
=

max
y(E)fc'(E,6JdE

J
min

fE
(156)

max
y(E)dE

J
min

Case 4: (The definition of the average linear energy transfer (LET) is taken

from a paper by Burch (6))

ft'max L(E,6 )

y(E)
L(£^

L(E,6jdE

LET =
J
min

"max L(E,6 )

(157)

y(E)
l(eT

dE

J
min

*>«-& (158)
LET

L(E) and L(E,6 ) were the total the restricted stopping powers.

To check the accuracy of the numerical scheme and to estimate the

accuracy of a linear extrapolation for y(E)
)
(E<400 ev), several dose rates

were calculated. They were:

Dose 1

max
S(E')(E« -E^dE" (160)

J
min

fE

Dose 2 =
max

S(E , )E l dE' (161)

Smin
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max
Dose 3 = y(E')L(E')dE'

'E
mln

max
Dose *J

= y(E')L(E»,6
c
)dE».

.

min

(162)

(163)

The subprograms used by this code were:

FUNCTION SOURCE(T)

FUNCTION SPECY(E)

FUNCTION SPRS(E,DELTA2)

FUNCTION AINEXD(T,BLIMIT,TAU)

FUNCTION SMALL(TAU)

FUNCTION AINGS(T,DELTA1,TAU)

SUBROUTINE BATES (IWr,NWT,WrAB,WATES)

SUBROUTINE INTER(N,M,X, Y,CHECK)

.

Only SPECY(E) and SOURCE (T) are listed in this section since the rest

are used in other programs and explained in section 6.8. Subprogram SOURCE(T)

evaluated S(E) and subprogram SPECY(E) evaluated the electron spectrum.

Dose 1 and Dose 2 were not obtained numerically for Co irradiation since

they could be obtained analytically. Only Dose 2 was calculated.

Table XIX gives an explanation of variables associated with the code.
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Table XIX. Explanation of Computer Program Variables

Symbol Explanation

CUTOFF

EMAX

TAUBAR

NSPEC

NSOUR

BLMET

6 , maximum spur size

E , maximum energy of electrons in the given

spectrum

(tV weighted average spur size

Number of data cards for the electron spectrum

Number of data cards for the initial electron

spectrum

E
min



213

LOGIC DIAGRAM F=OI? Tt4E COMPUTER PiTO^^AM t?ESC^I&EP

ZBTAP : CUTOFF* OZOtNATB ^
A02£/^A PrtS.
TO SIMPLIFY
INT^^rO-AT/Ort

WfTlT£

^TOP

ALL T£KM5

CA-5^/ , GI&&-Z.
CA5&2>><Zte&4

I

FO^-CASEI,

CAZ&4

CALL
f=UMCHoH

<za TOF=F=)

CALL
FdHCTIoH

c^KLL-
FUHcTlort

<MrKMf|
kTM= 1/ PtWT>-

-^sT; &QUAL.0
votes posaz,
vo<s&?>l vo5e4
5urA \-4
SLID I -4

6ALL
^aezouTirtE

I

<ZB\M\HV A

AK6UM&HT^
FOf? &ATB5

\NTA& \
WATe^ )—

'

£&A<P: soatzce.
SP&cTgurt

1
TAfC0 log OF
SOURCE

KAT= KAT
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LOGIC PIAa^AM FOK THF FUNCTION 5f=EcY(E) P£-5Cf?ie>IEFP>

/N 5ECflOH 6>. 7

(ENT
specV(e} r^nspEcTKtJMr^l

(?EW|NP 7
FOICM
AC(3^JrlEMTe
FOR- IhTE^

K.ETU^H FO<M
%

I
CAL-U
sue^ou-riise
imtek

LO^/C PIAGP?AM FOfC THe FUNCTION <50Uf?C£ (&) P&5CK\&&0
\H <5&CT\OH 6.7

RJNGTION
FOPM

fop: fNTEK.

I
CAL.L
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CNx-S

'.CM 4

iCN I i

,q N3

10 MSI

1

3

2

5

14

88

89

qn

]r<-p

FOR
FOR
FOR
FOR
FOR
REA
bLI
CUT
RFA
RFA
YLI
XL I

r\ /-.

U v_

XLI
YLI
REW
WRI
REW
REA
REA
fA r\U w

XLI
YLI
REW
WR I

R F W

DC
IF(

IF(

IF(

IFi

N'VT

I \'T

PS I

'/.' T A

DC
WTA
C A L

REW
DC
XKE
YKE

'MCN
EC
MA

MA
MA
MA
toA
D(

M I

JCo SPUK SEPARATION DISTANCE MILLER
CCMT l'o MINUTES* 5 PACES L.F. MILLER
ASGN MJB»12
ASGN MGC»16
MODE GC»TEST
EXEQ FORTRAN, , ,, * , »SSD

WTAB(5'-'
)
»WATES(50) »XLIST(5'j) »YLIST(50) ,DELY( 10) ,JK»NSCURi

OF
D(

D(

ST
ST
88
ST
ST
IN
TE

IN
D(

D(

8 9

ST
ST
IN
TF
IN
9 3

KA
KA
KA
KA

= 2

= (

B(

9C
B(

L

IN

99
= W

=w

T (

T (

T(

T (

T (

1 »

T =

F =

1 ,

] »

(1

( 1

K

(K

(K

D
( /

D

1»

1 »

K

(K

(K

D

( b

D

K

T.

T.

T.

T.

15 )

2E14.
5 E 1 4 .

1HK.5
1H ,1

2 ) AO,
BLIMI
CUTOF
1 ) NSP
3 ) ( Y L

)=-10
)=ALC
K K = 2 »

KK)=A
KK ) =A
7

) ( X L I

7

1 ) NSC
3) (XL
0=1 ,N

Q ) = A L
Q ) = A L

5

) ( X L I

5

AT=1»
EQ. 1 )

E . 2 )

E0.3 )

G T . 3 )

8)

8)

E14.8)
4 E 9 . 3 )

CUTOFF t.BLIMl T , EMAX»TAUbAR
T / . 5 1 9 7

F/. 51097
EC
1ST ( KK) »XLIST( KK) >KK=1 »NSPEC)
•

G ( X L I 5 T ( 1 ) )

MSP EC
LOG (XL 1ST (KKK) )

LOG( YL 1ST ( KKK) )

ST ( K) , YL 1ST (K) ,K=1 >NSPEC)

UR
1ST ( KK ) , YLI ST ( KK ) , KK=1 »NSGUR )

SOUR
OG(XL I ST (KQ) )

OG ( YLI ST (KO) )

ST ( K

)

»YLIST(K) »K=1 ,MSOUR)

BLltolT=2.*10.**(-6)/.5l097
BL I to I T = BLIMIT*10.
bLItolT=BLIMI T*10.
BLIMIT=BLIMI T*2.

BLIMI T/EMAX)#*( 1. /FLOAT (NWT-1 ) )

1 )=EMAX
LCD=2»NWT

LCD) =WTAB(LCD-1 )#PSl
RATES ( IWT »NWT

)

D A

KF=1 ,NWT
TAB(KE)
A T E S ( K E )
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V RI TEU )XKE *YKF
REWIND 4

DCSE] =»C
DCSt2 = ?'J

DCSfcL3=«u

DCSE4=. .

S'JD1 = .-

SUD2=.
SUD3 = .<

SUDA = «

'

SUM! =.

SUNi2-.-
r.nv3 = . .

SUM4 = «l;

DC 91 KM=1.NWT
READ (4

)

XKE»YKE
TR1=SCURCE(XKE)
TR2=SPECY(XKE)
TR3=SPRS( XKE»XKE/2. )

TR4=SPRS (XKE ,CUT0FF )

TERM1 = TR1* (XKE-BLIMIT)*YKE
TFRM?=TR1 *XKF*YKF
rr c

; fi =Dcsf r ]+TrP''i

DOSE2 =DCSE2 + TtRf'2
TFRM3=TR2*TR3*YKE

DCSE3=DCSE3+TERM3
DCSE4-=DCSE4 + TERM4
RAT IC=TR4/TR3
TNUr<il = TR2*YKE/TR3
TDEM1=TR2*RATIC*YKE
TNUM2=TR2*YKE
TDEM2=TR2*TR4*YKE
TNUM3=TR2/TR4*YKF
TDEN!3 = TR2#YKF
T NUM4 = T R 2 * TR4*TR4/TR3 * Y < F

T D E M4 = T R 2 * T R4 / T R 3 * Y K E

SUM1=SUM1+TNUM1
SUD1=SUD1+TDEM1
SUM2=SUM2+TMUM2
3UD2=SUD2+TDEM2
SUK3 =SUM3 + TiNUM3
SUD3=SUD3+TDEM3
SUM4=SUM4+TNUM4
SUD4=SUD4+TDEM4
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I r ( <AT.LQ. 1 U'RITE( 3>14)TR1 »TR2>TR3»TI<4»RA1 I0,SUM1 »SUi ,2 » SUf- 3 »SU 14 »

1SUD1 >SUD2 :: L-D3 »SUD4,XKE
I F ( KAT» -C 1 )'.vR I Th (3,5 )DCSE1 »DC5E2 »DOSE3,DOSE4 »XKE

91 CONTINUE
CASE 1=5 UM1 /S'JDl *T MJD/s r
' \SE? = SU:V2/SUD?#TAUQAR
CASE 2 =SU V13 /SUD3*TAUBAR
CASE4=SUM4/SUD4
SFD=TAUBAR/CASE4
(RITE(3»14 >CASE1>CASE2 .CASE3 »CASE4 »StD>DOSEl » DOSE 2 » DOSE 3 jO^^L^*

1I3LIMIT »E 'IAX»TAUBAR»CUTCFF ,AC
3 CONTINUE

STOP
END

M0N3>$ EXEQ FORTRAN
FUNCTION SPECY(L)
COMMON WTAb( 5U) >WATE5( 50 ) » XL I ST ( 5u ) » YLIST ( 50 ) »DELY ( 10) » JK»i\iSCUR>

IN SPEC
READ(7) (XLIST(K) »YLIST(K) >K=1 »NSPEC)
REWIND 7

2? CONTINUE
X ~ALOG( E)

M-NSPEC
N = 2

I F( E.LT . . 001 )N = 1

CALL INTER(N,M.X»Y»CHECK)
SPECY=EXP ( Y)

2? RETURN
END

MCN1 1 EXEQ FORTRAN
FUNCTION SOURCE (T)

COMMON WTAri(5u) »WATES(50) »XLIST(5j ) »YLIST( 50) »DELY( 10) »JK»NSOUR»
LNSPEC
READ( 5 ) (XLIST(K) »YLIST(K) »K=1 »NSOUK)
REWIND 5

X=ALOG(T

)

M=NSOUR
m-2
IF(T.LT..001 )N=1
CALL INTER (NfMtX»Y » CHECK)
c OURCF=FXP( Y

)

RETURN
I ND
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6.8 Explanation of Subprograms Used in More Than One Code

6.8.1 Explanation of SUBROUTINE BATES

To use SUBROUTINE BATES, one needs to define the arguments IWT, NWT

and WTAB. WTAB is a dimensioned variable and locates the abscissa points

for the integration. NWT is the number of points and the value of IWT de-

pends on the scale chosen for the integration points. If a linear scale is

used, IWT must be defined as IWT 1; if logrithmic, IWT must be set equal to

a number larger than 1.

The following statement-by-statement description of this subroutine

was written by L. V. Spencer:

819 WTA = NWT

This order makes a floating point number equal to NWT, the number

of points in the abscissa list.

IF(NWT-2GE.0)GO TO 39

19 WATES(l) = .0

GO TO 259

These orders take care of the case in which the list consists of

only a single value. The integral in this case is zero, and con-

trol goes to 259, which will return control to the main program.

39 IF(IWT-2GE.0)GO TO 79

59 WTDEL = (WTAB(1)-WTAB(NWT))/(WTA-1.)

GO TO 99

The first order determines whether the list progression is linear

or geometric. The second calculates the interval between points

of the list for the linear case. This is only one of many ways

for doing this.
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79 WTDEL = LX)G(OTAB(1)/OTAB(NWT))/WTA-1.)

99 IF(WTDEL.GE.0.)GO TO 990

119 WTDEL = -WTDEL

The first order calculates the factor between points if the in-

terval changes geometrically. The last two orders make the

interval size positive in all cases. This may or may not be

desirable.

990 IF(NWT-2) 259,1190,139

1190 WATES(l) = .5*WTDEL

WATES(2) = WATES(l)

GO TO 199

This takes care of the case in which only two points are involved

in the integration, which is then trapezoidal. The transfer to

199 permits either linear or geometric progression to be assumed.

The two cases are not quite the same for two point integration,

even though at first thought it would seem they should be.

139 NWTA = (WTA/2.+.1)

NWTB = (WTA/2.-.1)

NWTC = (WTA/4.+.1)

NWTD = (WTA/4.-.1)

These four orders generate parameters to be used in determining

whether the number of weights is odd, divisible by l\ i or even.

WTA is numerically almost identical with NWT, differing at most

in the 8'th significant figure. The orders are to construct

integers from the number in paranthesis. The important thing is

that the integer is always the smaller of the two numbers bracket-
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ing the floating point value. Thus, a number divisible by 2 will

yield NWTA larger by unity than NWTB. A number not divisible by

2 will yield NWTA = NWTB. The same trick is used also for divisi-

bility by 4.

WATES(l) = WTDEL/3.

WTC = WATES(l)

WATES(NWT) = WATES(l)

The first and last weights are given their proper value, and WTC,

to be used later, is assigned its value.

DO 159 1=1, NWTB

WATES(I+1) = WTDEL + WTC

INDX = NWT-I

WATES(INDX) = WTDEL + WTC

159 WTC = -WTC

This group of orders assigns the bulk of the weights their

1,4,2,4,.... structure. Notice the symmetry between WATES(I+1)

and WATES(NWT-I). NWTB will be a value such that NWTB = 1 is

either the middle value or the lower of two middle values. In

the latter case, after this set of orders, the two middle values

are either 2*WTDEL/3, so that the middle interval is given in-

correctly, or on the low side, or they are 4*WTDEL/3 5 so that the

middle values are weighted too heavily. We must either subtract

or add WTDEL/3 to establish weights which either neglect or add

in twice the middle interval. Then we must add or subtract

weights for the middle interval, which are WTDEL* (-1/24, 13/24,

13/24, -1/2*1), corresponding to approximating by a cubic, with
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integration only over the middle interval.

WTD = 1./24.

IF(NWTC-NWTD.2E.0)GO TO 1790

1590 WTD=- WTD

The first order establishes the divisor for the correction. The

other two orders determine the sign of the correction for the

middle interval, which depends on divisibility of NWT by **.

1790 IF(NWTA-NWTB.LE.0)GO TO 194

179 WATES(NWTB) = WATES(NWTB)-wTD*WTDEL

WATES(NWTB+1) - WATES(NWTB+5.*WTD*WTDEL

WATES(NWTD+3) = WATES(NWTB)

WATES(NWTB+2) = WATES(NWTB+1)

These orders make the correction, which involves four middle

values, when the number of points of integration is even (i.e.,

divisible by 2). When NWT is odd, the correction is bypassed.

199 IF(IWT-2.LT.0)GO TO 259

219 DO 239 1=1, NWT

239 WATES(I) WATES(I)*WTAB(I)

259 RETURN

These orders complete the subroutine proper. The final modifica-

tion which they make is multiplication by values of the abscissa

for the case in which the mesh is geometric.
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I X.J: FORTRAN, . , , , , » BATES
,UI 'CUTINi \TFSUVvT »NWT)

C O.'-'MCN '/'TAP ( 5 ) , W UFS ( 50 ) , XL I ST ( 5 j ) , YLI SI ( 5< ) vDELY ( 10

)

819 TA=M • r

IF(NV'T-2.GE.0 )G0 TO 39

1
'

1 V A T L
r

( 1 ) = .

GO TO 2 59
3 9 I F( IWT-2.GE.0)GG TO 7 9

9 9 :. TDEL=< .' i A: ( 1 >-wTAB( NfcT) )/ (WTA-1. )

TO 99
79 V T,:lL = ALOG( .-. TAB( 1 ) /WTAEKNW 1 ) ) / ( toTA-1. )

9 9 I F ( WTDEL.GL. 0. ) GO TO 9 90

119 WTDEL = -V.'TDFL

1 T( NWT-2 )259 , 1 ] 9C >• 139
l 19< WATES( 1 >=.5*WTDEL

'V ATE? (? )
='•'-' Tf :

"

( 1 )

GO TO 1 9 9

139 NWTA=('v\'TA/2. + . 1 )

NV.'TB=(WTA/2.-.l )

i

' l\ T C = ( W T A / 4 • + • 1 )

NWTD= (WTAM.-. 1

)

W A T E S ( 1 ) = W T J L L / 3 .

WTC=;'ATES( 1 )

WATESdNWT )=WATES( 1 )

DO 159 I=1,NWTB
WATES( 1+1 )=WTDEL+WTC
INDX = NV'T-I

WATES( I NDX)=WTDFL+WTC
159 WTC=-WTC

WTD=l./24.
I F ( NW T C - N W T D . L E . ) GO TO 1 7 9

C

15 9 W T D = -W T

D

1790 IF (NWTA-NWTb.LE.O ) GO TO 199
179 WAT :S(NWTb) = WAT£S(Nwi 1 )-WTD*WTDEL

. ATES(Nv:Ta + ] )=l;'ATES( NWTB+1 )+5.*WTD*toTDEL
/;ATES(NWT6 + 3 ) = 'wATES ( NwTB)
,>:ates(nv tb+2 ) =v:atk s< nwtb+] )

199 if( i wt-2.lt..0)60 tc 2 50

2 1 9 DO 239 1 = 1 ,MWT
2^' l-.'AT'ES( 1 ) =WATES( I )*V.'TAB ( I )

2 9 POT 1

'

I
wd
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6.8.2 Explanation of Subprogram Y(T)

This subprogram evaluated the following integral:

y(E) =

rE
max

z(E
o
,E)S(E

o
)dE

o
(222)

The arguments of the integrand were obtained from FUNCTION subprograms.

Table XX gives an explanation of several subprogram variables.

Table XX. Explanation of Subprogram Variables

Symbol Explanation

PSI Geometric progression ratio

Q2 Point of discontinuity in the initial electron

spectrum from Co irradiation

Q Maximum electron source energy

XYZ Electron energy spectrum at Q2 divided by ANECC

DX Integral over the initial electron spectrum above QZ

IOFT Index to prevent duplication when calling ZEE
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LOGIC DIA6CAM l=OK THE FLirtCTJO/H Y(t) PBSCft&ZP
IN SBCTJOH &>.B. 2.

FUNCTION

GENEfZATg
dEOMBTfZlC

POINT5

CALL I5AT£»

I
€>UM -

- O

TOf=l ** I

I
LM = I.NWT J

FORM
AZC/UHEHT*

i

r
FUNCTION
zeeCTt

t T)

i
FUNCTION
SPecT Crf)

I
FOt^M
SL/M 4
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?9

MCNS i EXEG FORTRAN
FUNCTION Y( T )

CCMKCN XL 1ST ( 49 )

»

YL I ST ( 49 ) »DELY (lou) »EZ(25) »ROW ( 2 5 ) »CC8»WTAb( 50)

»

l'/.AThS(5>(;J » I OFT >NCCLM»G »ZhECK >Q2 >XYZ»XSPEC ( 4C > >YSPEC(40) »NPTS
NWT=50
1 F( T.Gl.u2 )PSI = ( T / ) * * ( 1./ FLOAT (NWT-1 J )

IF(T.LT.Q2)PSI = (T/Q2)**(l./FLCAT(N'wT-l) )

I F( T.GE.Q2 )WTAB( 1 )=Q
IF(T.LT.Q2 )WTAB( ] )=Q2
DC 29 JM=2.NWT
WTAB( JM)=WTAB( JM-] )*PSl
IWT = 2

CALL BATES

(

IWT»NWT )

SUM=.U
SUivi8 = . u

ICFT=1
DC 30 LM=1»NWT
TI=WTAB(LM)
AbC=ZEE(TI »T)
'\BC )=SPECT (TI

)

T FR M=ABC* ABC D*li ATT S ( L M )

TFRM8=ABCD*WATES(LM)
5Uf-'8 = TER r'/8 + SU^8
SUM=SUM+TERM
I

F

( T . EQ . Q2 + . GOO 1 ) DZ = SUN'

8

I F( T.GE.C2 )ZhECK=SUM8
I F( T.LT.C2 )ZHECK=SUM8+DZ
IFIT.GT.Q2) Y=SUM
I F (T.LL.02 )Y = SUM + XYZ
RETURN
END
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6.8.3 Explanation of Subprogram ZEE(TI,T)

This subprogram performed a double interpolation using a single inter-

polation subroutine. The data for z(E ,E) were equally spaced on a logrith-

mic scale; therefore, it was necessary that the interpolation subprogram

INTER use a logarithmic argument for z(E ,E). Due to the large number of

data points, the data for z(E ,E) were stored on magnetic tape. Table XXI

describes several subprogram variables.

Table XXI. Explanation of Subprogram Variables

Symbol Explanation

ICOL

NCOLM

NWT

ROW

TI

T

Used as an index to determine the required number of

the 22 sets of input, z(E ,E) data needed for the

interpolation

Equals 22 and represents the total number of z(E ,E)

data sets

Takes on the value of the length of the list of each

spectrum

z(E ,T) data generated to perform double interpolation

Source energy

Electron energy
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LjOGIC t?IA6J?AM F=Of? TUB FUNCTIori FB(n,i) pm<scz\&&p

ZBGCtt,T)

( ZETUfZH

FOJTM
zee

I

i
FCCM

of xmez:

ZOFX = Z

call srtjez:

«^-( ZBVJIHD

<z>&7 &GUAL TO
^OOL.

*C
I

)

TA<£ Lots? op

AK&UME=tHT
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16

] 7

;'::;.' fxeo fcrtran
function zee(ti»t )

C C.VMCN XLIST (49) »YLIST (49) »DFLY( lou) ,FZ(25) iRGW( 2 5 ) »COF «V,

1WAT ES( b; ) » IOF1 »NCOLM»Q»ZHE CK »Q2 »XY<L>X6PEC ( 4L ) » rGPF C ( 40 ) >N

I r ( T I . L T . T ) L E L = . <

N

IF(TT.LT.T)GG TO 30
1 f- ( I-jF T.E0.2 )bO TO 29
ICCL=1
[F(T.LT.EZ( I COL)

)

1C0L=ICGL+1
IF( ICOL.EQ.NCGLM )GC TO 17

I r(T.LT.:Z( ICCL) )GC TO 16
IF(T.GT.EZ( ICGL)

)

ICOL=ICOL-]
2 7 KB=1»ICCL

READ(6) (NWT»EZ( KR ) > ( XL 1 ST ( J ) , YL I
r

. T ( J ) , J= 1 ,NWT) )

T A B ( 5 ) «

P 1

'

XL I ST ( 1 )=ALOG(EZ(KR) )

DO 2 5 J=2»MWT
25 XL I.ST (

J

)=AL0G(XLIST( J) )

X=ALOG( T

)

M = NWT
N = 2

CALL INTER(N»Im>X>Y »CHtCK)
2 7 ROW(KB)=Y

PF>- IND 6

IOFT=?
2 9 X=ALOG( TI

)

DO 2 8 JK=1, I COL
YLI5T ( JK) =RCW( JK

)

20 XLIST( JK)=ALOG(FZ( JK)

)

M=ICCL
N = 2

I F ( N . EG . ) N = 1

CALL INTER ( IM » T'l 9 X , r »CHECK)
Z E E = Y

3' RETURN
END
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S.SA Explanation of Subprogram INTER(M,N,X,Y,CHECK)

This subroutine was written by Merwin Brown under the supervision of

Dr.- J. 0. Mingle. Only one statement in the program was changed for this

work, but the arguments in the subroutine are different.

NAME : INTER

TYPE : PR-155 FORTRAN IV SUBROUTINE

PURPOSE : To interpolate values from a table of x and f(x) values

using a Bessel's interpolation formula.

COMMONED VARIABLES : Dimensioned in common are:

XLIST(M), YLIST(M), DELY(N+1),

where XLIST(M) and YLIST(M) are x^s and f(x
i
)'s of a table

of given values where i=l, M, M being the length of the

table. DELY(N+1) is the central difference table variable

and is required to dimension core storage area, where N

is the order of fit. DELY(N+1) has no 'answer' value to

the user.

ARGUMENTS : are N,M,X,Y

N is the desired order of the fitted polynomial - entered.

M is the length of the given table, e.g., z., f(x.), x
2 ,

f(x
2
),...,x

M , f^) - entered.

X is the arbitrary value at which interpolation is desired

entered.

Y is the corresponding interpolated f(x), i.e., the answer -

returned.

OTHER SUBPROGRAMS: None
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WORK TAPES : None

STORAGE ; 3536 excluding common area.

TIME : Roughly, 4 to 5 seconds for second order interpolation, less

than half a minute for fifth order, for example.

THEORY : Uses a central divided difference Bessel interpolation

formula (see NUMERICAL METHODS FOR SCIENCE AND ENGINEERING,

Stanton, Ralph G., Prentice - Hall, Englewood Cliffs, New

Jersey, 1961, pp. 39-41).

REMARKS : (1) Evenly spaced values of x should be used.

(2) If the order of fit specified by the user is too large

for the table of values given, N is automatically set

equal to the largest possible value for the given data

and a message concerning this change is printed.

(3) If a value requires extrapolation, a message is printed

warning the user. Extrapolated values should be used

with scrutiny.

(4) The closer spaced the data and smoother the curve, the

better the interpolation will be.

PROGRAMMER : Merwin Brown

DEPARTMENT : Nuclear Engineering

DATE: 7/2/65
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',0iv:i : EXEC FORTRAN, ,,,,,, INTER
SUI ROUT INC INTI ?, (N,M,,X ,Y,CHf CK )

CC'-'MON 'TAP(5 ) ,K"TF<>( f;0) ,XL I 5>T
y
( ia ) » YL I ST ( 50 ) , DELY ( 10

)

3 FORMAT (27H N TOG 'U G - CHANGED TO KAX//)
•'i FORMAT ( 1 ^M -XT F M "I AT I MG/ )

M=CRDFR OF FIT, Y = LT.NGTH OF TAMLE, XLIST1 IS THF FIRST X-VALUFt
FLX M THE STFP INCREMENT Of THF X-VALUES, X IS THE VALUE AT WHIG

M INTLrtPOLATICf* IS DESIRED, V IS rub INTERPOLATED ANSWER, CHECK IS
itTh ;- FRACTIONAL CHAKGI IN

CALCUL \T ION, i'LISI (:•!) IS

SAVh D FOR DIFFE Rl " '.. L TAbL -

XLIST1=XLIST(1)
i FLX=XLIST(2)-XL1 Til)
NA=(N/2)*2
M = M-1
IF(NA.LT.M^)GC T~ 11

MF = (f,'/2 )'*2

IFOMF.f O.M)N*.M = w

MA= (N/2 )•"?

] 1 IA = 1.+ ( X-XLI ST 1 ) /Of LA
XE=(XLI ST1+FLGAT ( -1 ) *l ELX-X ) / .. EL X

NH = (N+2 ) /2
I F (Xu.GE.G.u )SO I:. 1 .

I A = M.-Nh

GC TO 2 2

1 o I F ( I A • GT . ('
) G C TO ?

r

IA = NH
WRI TL( 3 ,4 )

GO TO 2 2

2 I E = 1 • + X F

I F( IA.LT.NH) IA = Mh
1 F ( MH.LL. IF ) IA = c-'-Nl-!

2 2 M.l=TA-N/2
M2= JA+1
DC 2 6 1=1 »M2
<=N1+I

2 6 DELY(I)=YLIST(K)-YLIST(K-3 )

X I AL = XL I ST ] +FLOAT ( I A — 1 ) * OE L

X

H= ( X-XI A.L) /DFLX
B=H-0.5
ASU= ( YL 1ST ( IA+] )+YL 1ST ( I A) )

"
. 5 H^DCLY ( Nh )

IF(NA.FQ.0)GO TG 56
I F

(

N.EQ.NA )NA=NA-1
SU,Vi = 0,;

D = 1 .. C

C = 1 .

IAOL oY THE LAST ADDITIONAL
F(X) ARRAY, DELY(N+1) IS CORE SPACE
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DC r -<6 1=1 »NA

3 b DELY( J ) = Dcl_Y ( J + l )
-

1 J L L i ( J )

IH= 1/2

K = ( I + ] ) / 2

F = 2. r>*
( FLOAT (!<)-! ,C )

C= (2,0 + F)*( l.(, + E)*C
D=(H+E/2. ) « (H-FLCAT (K )

) *D
CCF=D/C
NN=NH-K
EVEN=(DELY(NN+1 )+DFLY ( NN ) ) * . 5

ODD =0,0
GC TO 56

51 Q = l .0/ ( 1.0+FLCAK I ) )

NR=NH-IH
CDD=G*B*DELY( MR)
EVEN=0.0

56 SUM-(EVEN+CDD)*CCF+SUM
GC TO 5 9

5 8 SUM=0.
r-Q Y =ASU+SUM

CHECK= ( EVEN+CDD)*CCF/Y
R FT URN
END
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6.8.5 Explanation of Subprogram AINEXD(T,BLIMIT,TAU)

This subprogram performed the following integration:

rTAU

AINEXDCTjBLIMITjTAU) = AKT k
ex ( T )TdT. (223)

BLIMIT

AKT was a function of the electron energy T, and k (x) represented the
wA

inelastic collision cross section given by FUNCTION SMALL(TAU).

M0N1 T FXEO F OPT PAN
FUNC T

I C M A I N EXD ( T t BL I M I T » TA U

)

COMMON WTAb(-5i
) iWATES( 50J.»XLIST(50)»YLIST(bO) »DELY( 10) »JK

IF(JK.GT.1)GC TC 2 5

L" = T

N W T = 3

bEL= ( TAU-bLIMl T ) /h LCAT ( N'/. F-I )

DC 21 L=1,NWT
2 1 WTAd ( L ) =BEL*FLCAT ( L-l ) +BLIMI T

IWT = ]

CALL RATES! IWT »NwT )

SUN-.C
DO 77 K VI = 1 , N W

T

TFR l =SPALLU'TAP (KM) ) *WATCS ( KM ) *&'TAb ( ,<m )

2? SUM = SUiV; + TERM
2 5 CONTINUE

I F ( T.LL. • 15 ) AKT=3.8*10. **8 * E ;; * ( -A LOG ( 210 .6 ) /A LOG { 1000. ) )

IF(T.LE..15)GC TO 24
I F( T.LL. .5 ) AKT=6-*10.**8*E** ( -A LOG ( 11 .65 ) /ALCG ( 100. ) )

IF(T.LE..5)G0 TO 2 4

I F ( T . LE . 1 . 3 ) AKT = 7 . 2*10 .** 8 *E* * ( -A LOG ( 3 . 6 1 ) / ALOG (100.))
I F( T.LL. 1.3) GO TO 24
A K T = 6 . 7 5 * 1 . * * 8

24 CCMTINUF
A TNEXD=5UM*AKT
RETURN
END
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6.8.6 Explanation of Subprogram SMALL(TAU)

This subprogram evaluated the inelastic cross section data by a series

of straight line approximations. Figure 28 illustrates the accuracy of the

straight line fit.

wCNS'fi EXEC FORTRAN
FUNCTION SMALL ' TAU)
r = i .

TAU CORRECTED TO UNITS OF FLFCTRON VOLTS
ATAU=TAU*1C. **6*.51
IF( ATAU.LT. 4. )SMALL=-F* (ATAU/36. )

I F (ATAU.L 1.4. )G0 TO 199
1 F

(

ATAU.L I .6. )SMALL=F*( •3 3*ATAU-1 .21)
I F

(

ATAU.L T. 6. )G0 TO 199
IF(ATAU.LT.7..48)SMALL = F* ( 1 .482*AT AU-7 .762 )

I F( ATAU.L T. 7.48 ) GO TO 199
I F( ATAU.LT.8.9 ) SMALL =F* (-] . 1 5*AT AU+ 1 .49

)

I F( ATAU.L T. 8. 9) GO TO 199
I F ( ATAU.LT. 10.13 ) SMALL=F* ( 1 . 28* AT AU-9 .98

)

1 F( ATAU.LT . 10.] 3 )G0 TO 1 99
IF( ATAU.LT. 12. ) SMALL=F* (-0,. 1 92 5*ATAU+4.97 )

I F( ATAU.LT. 12. ) GO TO ]^o
I F ( ATAU. LT . 14 . ) SiYA LL = F* ( 0, 6 7 * AT AU- b . 37 )

I F( ATAU.LT. 14. ) GO TO 199
I Ft ATAU.LT. 16. ) SMALL=F* ( -. 722*ATAU+14 . 1

)

1 Ft ATAU.LT. 16. ) GO TO 199
I F ( AT AU . LT . 24 . ) SUA LL = F * (-0.2 * AT AU+ b . 756

)

199 RETURN
END
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Pig. 39. Plot of the Straight Line Approximation for the Inelastic
Collision Cross Section Data (Intensity vs. Energy Loss)



6.8.7 Explanation of the Subprogram AINGS(T,DELTA1,TAU)

This subprogram evaluated the following integral:

236

AINGS(T,DELTA1,TAU)

TAU

^(TjOtcIt,

DELTA1

(224)

Recall that

k^E,!) » ^(E,!), t>150 ev and E>2 Kev , (lll)a

ME,t) * (E)
, 6 n <r<150 ev and E>0

11
(at + br 1

(l^l)b

^(E,!) = AKT k
ex

(x), 0<t<6
1

and E>0 (l^l)c

in which a and b are given by A and B in this subprogram and C is defined

in section 2.2.

MCNSS EXEQ FORTRAN
FUNCTION AINGS(T»DELTAlfTAU)
E = T

IF(TAU.GE.T/2. )TAU=T/2.
IF( E.LT..1 }A=1.29*E**(-AL0G( 1 . 86/ 1 .29 ) /ALOG ( 10000. J ) .

I F( E.LT..1 )G0 TO 16
IF(F..LT..32)A=l.l*F**(-ALOG( 1 . 4/1 . 1 ) /ALOG ( 10. ) )

IF(E.LT..32)GC TO 16
IF(E.LT.l. )A=.94*E*« (-AL0G( 1 .7/. 94 )/AL0G( 1^. ) )

IF( F.LT.l. )G0 TO 16
A = .94*E#*(-/>LCG< .9'*/.335)/ALCG( 10. ) )

16 CONTINUE
IF(E.LT..2 )B=-.35*10.**(-4)
IF(E.LT..2 )G0 TO 17
IF(E.LT.l. )B=-«255*10«**(-4)*E**(-ALCG(«398/«255)/ALCG< 10. )

)

IF(E.LT.l. )G0 TO 17
b=-.255*10.**(-4)*E**(-ALCG( • 2 5 5/ . 1 ) / ALOG ( 1 • ) )

17 CONTINUE
C = . IS*. 5555
TAPPA=2.*C/T
AINGS=TAPPA/( A*A)*< B/(A*TAU+B)-B/( A*DFLT A 1+B ) +AL0G

(

(A*TAU+B)/
1 ( A*DFLTA1+B) ) )

RETURN
END
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6.8.8 Explanation of FUNCTION PROBT(T,TAU)

The FUNCTION statement "PROBT(T,TAU) n evaluated the Moller formula,

explicitly:

PROBT(T,TAU) = VT,t) * (225)

MCNJ.3 EXEC. FORTRAN
FUNCTION PROBT( T»TAU )

CCMM 5N WTAb( loC ) j /MThS ( 100

)

»DEL »bh 1 A, COP ,AKT »DELTA1,DE LTA2
TE'Rh = TAU**(-2) + (T-TAU)**{-2)-( (2»+l**(-l ) )/< ( T + l . ) **2 ) )*( TAIH ;;

(

H (T-TAJ) "M-l ) ) + (T + l. )**<-2)
PRCl3T =CCF*TERM

61 RFTURN
END
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6.8.9 Explanation of FUNCTION AMOLIN(T,DELTA)

The FUNCTION statement AM0LIN(T,DELTA) evaluated the following

integral

:

AMOLIN(T,DELTA) =

DELTA

Q

TdtyT,!) (226)

MCNli EXcG FORTRAN
FUNCTION AMCLlN(TtDELTA)
CCMMCN WTAb( KjO) ,WATL5

(

IOC ) »Dfc

Z I = .00; f)651/.51097
QB=ZI*ZI*EXP(t ETA*RETA)
CTERM=(2.+l./T)/( (T+l.

)

DTERM=] ./( (T + l. )*( T+l. )

FTERM=ALCG( DELTA/OP ) + T-"

1 ( T-QB) )*( 1 .+CTERM*T )

+

AMCLIN = eCF*FTER,V
RETUR
END

/(T
* ( T

)

(1 .

ERM

* ( T +

+ 1 .

)

/( T-
*(DE

L>bc Im»CCP- »AKT» DELTA 1 ,DELTA2 •(;•«

2. ) )

DELT
L T A -

• 'j

A )
-

1

DELT
./( T-QB) )+ALCC( ( T-DELTA )

/

A-Qd*Q|j) /2.
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6.8.10 Explanation of FUNCTION AINEX( DELTA)

This FUNCTION may be represented by

AINEX(DELTA) =

DELTA

k
ex

(x)xdT (227)

in which the inelastic collisions cross section data were given by FUNCTION

SMALL(TAU)

.

MCN$$ EX EG FORTRAN
FUNCTION AINEX(DF'LTA )

COMMON WTA61 luOJ .WATfcS < 100 ) , DEL »btl TAtCCF, AKT ,OELTAl ,DFLTA2
NWT=50
A I N C = DL L TA/FLOA T ( N n T - 1 )

DO 21. J = 1 , N i/>'

T

AJ=J-1
2 1 UTAB(J)=AINC*AJ

I WT = 1

CALL BATES ( 11.7 ,NW1 )

SUM=.C
DC >.2 '< = } f NWT
XBY=SMALL(WTAHlK )

)

TFRM=XBY*WATE5< K ) *'.\'TAB{K )

2 2 SUM=SUM+TERM
AIN.EX =SUM
RETURN
END
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6.8.11 Explanation of FUNCTION SPRS(E,DELTA2)

This subprogram only called FUNCTION AINEXD(T,BLIMIT,TAU) and

FUNCTION AINGS(T,DELTA1,TAU) for the appropriate arguments.

EXEQ FORTRAN
FUNCTION SPRS(E»DELTA2 )

1 r ( DEL T A2 . G c . L / 2 . ) D E L T A 2 = E / 2 •

DELTAl=21.*lU, » « ( -6 ) / . 5 1
r
< 7

J f
( DELTAl.6E.uELT \2 )SPRS = A INI.: XIJ(E ».GYQtLTA2 )

IHDELTA1.LT.l;ELT/\2)3PR5 =AINEXD([ , .0 tDilLT Al ) +AI NGS ( E ,DE LTA1.DEL

14 RFf-JRN
END
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ABSTRACT

The objective of this work was the theoretical investigation of

certain problems associated with the prediction of chemical reaction rates

and yields of radiation-induced chemical reactions. All the problems con-

sidered were related to the assessment of the effects of radiation quality,

that is, the effects of the energy and type of radiation. Particular em-

phasis was given to the determination of the energy spectra of electrons

resulting from the irradiation of water by 1*1.6 Mev neutrons and by ganma

rays of cobalt-60.

Slowing-down spectra for charged particles produced in radiolysis were

computed. These spectra were used as a basis for models for the "spur"

and "track" structure in irradiated water. Also involved in the establish-

ment of the models were predictions of mean energy loss per spur and mean

distance between spurs. These predictions, in turn, were based on empiri-

cal estimates of electron-scattering cross sections for low energy electrons

and for small energy losses. Estimates of the yields of chemical reactions

were based on approximate solutions of the partial differential equations

describing simultaneous diffusion and chemical reaction along the tracks of

charged particles. Yields were predicted for a simple chemical reaction

and compared with experimental results taken from the literature.




