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I. INTRODUCTION

Consider the situation in which we have two variables, X and Y, whose
relationship is known to be linear over a certain range. Suppose further
than Y is something relatively easy to measure, while X can only be
measured with some difficulty. Equivalently, we could assume that the
measurement of Y is nondestructive and measurement of X is destructive.
Assuming that X represents the quantity which is of interest, the problem
is to predict the value of X which generated some observed value Y. This
problem is referred to as "inverse prediction" or the “calibration problem"
in the literature. Before examining the statistical problem, let us con-
sider two specific situations in which the problem arises.

In biology and chemistry many compounds of interest to the experimenter
absorb specific 1ight wavelengths strongly. By using a spectrophotometer,
the amount of absorption can be determined quite easily. An effect referred
to as Beer's law which relates the concentration of solute to the trans-
mittance can be easily derived from physical considerations. Beer's law

states that

T = 107¢C]
where T = fractional transmittance
(1.1) e = molar extinction coefficient
¢ = molar coﬁcentration of solute
1 = length of light path in cm

Rather than working with transmittance, researchers prefer to use the optical

density Y, defined as

Y = -logioT.



In terms of optical density, Beer's law becomes

(1.2) Y = ge

{3

if we let 8 = el. We now have a linear model in the variable of interest,
that is solute concentration, which places us in the framework described

above.

As a second example, suppose we have a spring, a ruler, and a set of

known masses. According to Hook's law
Y = km

(1.3) where Y

displacement of spring

weight of ith mass

m

k

spring constant

Again we have a linear model in the weight of the object, and given an
object of unknown mass, we want to "predict" the mass on the basis of the

spring displacement.



IT. POINT ESTIMATION OF X

There have been four point estimators proposed in the literature. All
four estimators assume a fixed X type model with E[Y] = a + gX. If « and

B were known it would be reasonable to use
(11.1) X = (Y-a)/g .

If we assume a normal error distribution it is easy to show that X is the
maximum likelihood estimator (MLE) in this case.
Retaining the normality assumption, but assuming the parameters are to

be estimated by an experiment, we find the MLE is
(11.2) K= (Y-a)/e

where = and é are the ML estimates of « and B. X is then a MLE by the
invariance property of MLE's. X is referred to as the "Classical Estimator."

It is consistent, in the sense that under fairly broad conditions

[=]
XEN(K,UZ/BZ), which is the distribution of X. We state the conditions and

results more precisely as a theorem.

Thaorem:  Suppose that a sequence of standards (Xj,Yj) Jj=1,...,n are used

to establish a sequence of calibration lines ?n = & + énx,
further, assume Yj ind N{a + ij,az)

n
» J=1,...,n. Let Vi i=1,...,m

be a set of unknowns whose corresponding X's are to be estimated.
Assume that Vi 1Qd N{a + sxi,cz), the Yj and Vi are independent

and that the sequence of standards satisfies the regularity

s o 2 2 _ :
-condition Timit supjxj/zi(xi—X) = 0. Then the following hold



1) g 5
2) & ba
3) 287
4) XK= (v, - a8 5 N(X,07/E)

Before proving the theorem we will examine the assumptions for reason-
ableness. The bulk of the assumptions are those of the simple linear
regression model with normal error. If this model is deemed unreasonable
we should probably discard all Normal Theory as being equaily unreasonable.
This leaves the assumptions of independence between the standards and the
unknowns, and the regularity condition. We feel that the independence
assumption is reasonable since the standards are generally prepared in the
laboratory while the observations stem from some population or process being
observed. The regularity condition requires that we not observe Y at any
single value of Xi infinitely often, which does not seem too restrictive.

We will not prove the theorem.
Proof: 1) From Tinear model theory we know that

n & N(8,0%/;(%; - 1)),

' ' ~ 2 _ ~ oy 2 2 . 2
hence E(sn-s) = VAR(sn) = g /zi(xi-x) . Now, Timit | o°/
o2 2 supX? 5
2 (%-K)¢ = Vimit T - l— =0, if sup X = 0, which
supxj £;(X;-X) .

is reasonable, since if suij§ = 0, « and B are not estimable.
Thus B, is converges in mean square, and hence it also converges

in probability.

2) Again, from linear model theory



3)

E(a - a)? = (2x¢/nz. (X, - X262,
ol R
Hence,

Timitn+mE(an-a)2

| A

- 2 oy2y 2
11m1tn+w(n sup Xj/nzi(xi-x) o

Cru s 2 2
o 11m1tn+msup Xj/zi(xi-X)

i

= 0.

S0 a converges in mean square to a.

2 _ 1 G owe 1 -
§° = Z(Yi'Yi) "HE(Yi'BXi

2
= )

(For the sake of clarity we assume the data has been centered.)

. . ZXiYi ZXi(XiB+si)
Now by using the fact that g = = 5

5 =
in X3

1

it is easy to show that
2 1.2  (3-8) 2

By Kolmogorov's Strong Law of large numbers %ﬂaf A.g8 02,

since e i3u N(O,cz}. Thus we need only show that Lﬁﬁﬁlfxief Eo.
But
(8-8) 2 (mx5e)°

X = in :

n 1 n(zxzi)z

2P

Now X~ = 0 if and only if % 3 0, so we will consider the square

root of this quantity



i R
s 5, N(O,UZ/H) so by Chebyshev's inequality Lﬁﬁélixﬁ Lo,

/ﬁfzi’;“

and hence 52 3 cz.

4) Finally we want to show that iﬁ k N(Xk,ozfsz). Now since
;Ea and é#s we can replace o and é by « and 38 without changing

the IiTiting distribution of i, hence the limiting distribution

Vo ° o 2, 2
of —— is the same as that of (Vk-a)/s = X, and XN{X,c%/8%).
3]
ged.

As a corollary to this theorem, if we have a sequence of m independent

observations of V at a single value of X, and the conditions of the thegrem

hold, &K 5 (X, ,o%/ma?) and € & x where % = (V -a )78 . This follows
because the sequence Vm+a+s Xk almost surely, by Kolmogorov's Strong Law of
Large Numbers.

This theorem can be used to obtain large sample confidence intervals
of X given an observation of Y. This will be discussed further in the
chapter on interval estimation.

Eisenhart (1939) noted that a regression could be found for X or Y,
then this would yield a direct estimate of X from Y. He discarded this
estimator because the partition of the Total Sum of Squares in the ANQOVA
table failed to make sense. Krutchkoff (1967) pointed out that the linear

mode]

(11.3) Vo=t 8K+ e ¢ 19y, 9

could be reparameterized as

(11.4) Kio= oy SY, b, ng A N(0,0%/82)
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E.
where v =-2, § = 1/8, uF ="—%n His proposal was to estimate the parameters

of this "“inverse" regression model, then use the "inverse estimator"

v A -
(11.5) X =y + &Y,

where ; and 3 are the Teast squares estimates of y and § respectively.
Krutchkoff (1967) then proceeded to do a mammoth simulation study
v -
comparing X and X. Using the estimated Mean Squared Error (MSE) as his
goadness criterion Krutchkoff claimed
v ~
"Method B (X) has a smaller MSE than method A (X) for all X
(author's emphasis). This being the case, any criterion based

on the MSE with favor the Inverse Method B over the Classical
approach, Method A." (Krutchkoff 1967)

Unfortunately, his simulation study fails to back his claim. Using design

parameters of « = 0, 8 = .5, 02 = .1, 10 observations at X = 0, 10 observa-

tions at X = 1, predicting the value X = 2 Krutchkoff estimated the MSE of
X to be .077, and the estimated MSE of X was .064. The estimafed standard
error was .001 for both estimators. So clearly X does not have a uniformly
smaller MSE than X.

[t can be shown that & has finite variance for n > 6. If we write the
classical estimator as X = X + (Y - ?)/é, clearly then VAR(X) =
VAR[(Y - ¥)/8]. But Y - Y and 8 are independent normal random variables,
hence their ratio has a Cauchy distribution, and the variance and hence the
MSE of f must be infinite for any finite n.

So as we have seen, the Inverse estimator has a finite variance and
hence finite MSE, while the Classical estimator has infinite MSE. In fact,
it has been shown by Williams (1969) that a UMVU (Uniform Minimum Variance

Unbiased) estimator exists based on the sufficient statistics Y, ¥, and

B, and is



(1L6) X = X+ (Y - Ng(f)

.\ ox lexe(8%/267)101-0(870)] % 8 > 0
where g(B) =

-—%—[exp(62/2¢2)]¢(§/¢) ifg<0
¢

where ¢(-) is the distribution function of the standard normal
distribution, and ¢ = o?/z.(X; - R)%.
But the variance of ;mv is also infinite. Thus using the MSE as the criterion
we would find the inverse estimator preferable to either the UMVUE or the
Classical estimator. But at the same time we would also find any arbitrary
constant, say 0, to be a better estimate than X. Williams (1969a) says that
this Tine of argument shows that the MSE is not an appropriate criterion in
this type of problem.

If the MSE is not an appropriate criterion, the question is then what
is appropriate? Brown (1979) suggests that Integrated Mean Square Error
(IMSE) is more appropriate. We agree, since the IMSE is in a sense averaging
the MSE over all relevant values of X. That is, the IMSE of an estimator is

defined to be
ny Y 2
IMSE (X) = fAE{(X - x)°) dW(x)

where the expectation is with respect to Y at X = x, and W{x) is a weighting
function. Without Toss of generality we may assume that W(-) is a distribu-
tion function over A, where A is the region we wish to calibrate.

Given this new criterion we can develop a linear predictor ; = Ag T AYS

v
which minimizes the IMSE. The MSE of X is defined to be



(11.7)  E(X - X) E(3g + AY - 1)°

2

AcT o+ (AO + Ao 22

)2 + 2(10 + xa){28 - 1)X + {xg - 1)°%X°.

it

Y
Thus, the IMSE of X is

(11.8)  IMSE(X) [LE(X - %)% d H(x)

= 2% + (A + xa)2 + Z(AO + aa) (A8 - 1)w1 + (A - 1)2 Wy

0

where Wy = l&xde(x), j=0,1,2.

Now if we take the partial derivatives of the IMSE with respect to AO and

A we find

s
(11.9) 2;&%%&5).: 210 + 2x(a + BW1) = W
0

¥
BIM§§£51.= (02 + o2+ Wiag + BZWE)A
0

+ 2(4 + w]B)AO - 2(aw] + sz).

Setting both partial derivatives equal to zero and solving the resulting

linear system of equations we find that
(I1.10) 25 = wy = Ala + wyB)

» = Blwy - WA/ + (uy - wP)a?]

If we let M Wy, the mean of the weighting distribution, and V = Wy - w%,

the variance of the weighting distribution we can write

A

(I1.11) Ag = M- ala + Mg)

A~

A= Vs/(02 + Vaz).
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Note that iO and A are not statistics, since they still depend upon the
unknown parameters o, B and 02. Brown suggests that the Least Squares
estimates of o, B8, c2 be used in place of the parameters. The IMSE optimal

estimator is

~

v} -~ ~ -~ ~ ~ -~
(11.12) X = &g+ Ay = M2 + BV(y - a)} /(a2 + va%).

An interesting result occurs when the first two moments of W(x) are
equal to the first two moments of the fixed X's, that is, when M = X and

V= n'Iz(Xi - 2)2. Then, since the LS estimates are

(11.13) 8= n2(X, - 0)(Y. - X)/n"Va(x, - %)% = Sy S say

1 1 1

2 -1 2 22 -1 2 _ C el
o nE(Y_i-7)"Bn E(Xi-X)—Syy-Sxy.

r\J ry -~ ~ -~
From (11.12) Xy = Mo” + AV(Y - D (% + vgd)

but V = -_e Sxy/sxx’ and a = Y-8X so that
v Q2 )
(I1.14) X = R(Syy Sxy/sxx) + (Sxy/Sxx)(Sxx)Y Y+ (Sxy/sxx)ﬁ

2 2 el
Syy " Sxy/sxx ® Sxx(sxylsxx)

g Yy me oGP
=R K RS S r S, (- RS /S,
5

yy

R - (5,,/8,)(Y - V) = X.

So, if we are willing to regard the sampie distribution of the X's as a
“prior distribution" of the values we expect X to take on, then the inverse
estimator is the optimal Tinear estimator of X, in terms of IMSE.

Brown then presents some limiting results, in terms of Q = 82/02 and

n ~ v
¥, for the optimal (XO), classical (X) and inverse (X) estimators. He first
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considers the case where (»«, and all estimators have an IMSE = 0. He then
considers the case of (-0, that is, either 82+0 or 02+m. In either case, (
represents in some sense the signal to noise ratio, and one must question
the utility of any technique when the signal, that is the calibration line,
is buried by the noise level. For this reason we consider his limiting
results of IMSE(R) = =, IMSE(X,) =V, and IMSE(X) = Vv + (X - M) to be of

limited significance at best. As Vo=, IMSE(X) = Q! N

, IMSE(;O) = Q' and
IMSE(%) = ». This result bears out Berkson's (1969) conclusion that although
; may "beat" X over any finite interval, as the interval to be calibrated
grows larger, X tends to do better over the whole range of values than X

a "

. Y . )
does. Finally, when X = XO he notes that 1]m]tv-+5xx,M+X IMSE(XO) =

V/(1+VQ) < Hnity,s et IMSE(X) = 1/Q.

The final point estimator we will consider was developed independently
by Winslow (1976) and Naszodi (1978). Winslow developed the estimator under
the assumption that the distribution of é is a truncated normal distribution.
We will follow Naszodi's development, which makes milder assumptions about
the distribution of a and 8.

The derivation begins by expanding the classical estimator X in a

Taylor series o, B and y. Assuming that the error distribution is symmetric

it can be shown that
(I1.15) By = X+ (x - 02/ (e8a(xy - ) + R

where R is a remainder term. Naszodi shows that this remainder is infinite
in the case of a finite sample from a normal distribution, however, as seen
in the section on the classical estimator the estimate converges and the

bias tends to zero as n tends to infinity. Naszodi then avoids the conver-

gence problem by truncating the error distribution. Then we can estimate
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the bias in X and remove it to obtain a "practically unbiased estimator."

We define the estimator as

+

(11.16) X" = X - B(X)

where é(ﬁ) estimates the bias in ﬁ, that is ﬁ(i)
= (X - R/ (8%(x; - )9,
Upon substitution and simplification we obtain the result
+

(11.17) X = R+ (Y- V)8 +82/(é + (X5 - K)ZJ.

If we rewrite (II.17) so that the regression function is in terms of Y we
find that
(11.18) ¥ = (8 + o¥/(8%(X; - 1)F) (X - X) + 3

which, like the inverse estimator, is a case of fitting a so-called wrong

regression line to the data.
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ITI. CONFIDENCE INTERVALS FOR X

In this chapter we will develop several interval estimates for X. Two
of them have confidence levels which hold for each individual interval, the
other three have confidence Tevels which hold simultaneously for all X in
some interval. The choice of the type of interval to use lies with the user.

In Chapter II we found a limiting distribution for X. This leads us to

use
(111.1) (X - X)/(c%/8%) S n(o,1)

as a pivot, to form the 100(1 - a)% asymptotic confidence interval

*2)1/2'

Ll : -
1658 < X < X+ 7 5(0% /8

(111.2) X - Za/E(G

This is the interval often given in applied statistics texts (e.g., Bennett
and Franklin (1963)). The user should be cautious of applying this interval
to small samples, since it is an asymptotic result.

Fieller (1954) derived the following result which can be used in some
instances to obtain a conservative 100(1 - a)% confidence interval for X.

The interval is conservative in that the true confidence coefficient is not

less than 1 - q.

Theorem (Fieller's Theorem)

ViqV
11 ]2)].

oy A conservative 100(1 - «)%
12722

Let (a,b)' ~ NZ[(E),sz

confidence interval for a parameter p = E{a)/E(b) estimated by

m=a/b is
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2
(I11.3) (M = kPvyy + K[vqq - 2mv + m2v22 - KB {vqqvyy - vfz)]‘/z/u-kzvzz)

2 is an estimate of 02 independent of {a,b)'

where k = st/b, s
based on v degrees of freedom, and t is the 100(1 - «/2) percentile

of the t distribution with v degrees of freedom.

This method will only yield finite intervals when 1 - k2v22 > 0 and the
d _ 2 bl e s B
discriminant d = (vH - 2mv12 MV, k (v”v22 V]Z)) > 0. This is
because the confidence interval yielded by this technique is actually the
region of the real 1ine over which a quadratic function is negative. When

1 - K2

Voo > 0 and d > 0 the quadratic is negative over a finite interval.

In order to insure that we obtain only useful intervals Graybill (1976)
recommends the following procedure. Obtain ﬁ, then test HO:B =0 vs

Ha:s # 0 with size a«. If H0 is rejected, then this method will yield a use-
ful interval. If H0 is not rejected, then no useful interval exists.

To apply Fieller's Theorem we obtain estimates of « and g from a
calibration experiment. We know that (&,é)' is independent of our future
observation, Y, and

G g, —E— 55

’ 2-g’? nz(xi-X)Z -nX n /4"
We recall that Y ~ N(a*ﬁsx,cz), hence the vector (Y- &,é) must have a

normal distribution, so

2
- 2 1+2X5 nR
(Y - ,8) » N,[(8Y), —2 ‘

S S V1.
B nz(XiX)z ( nX n ]

In the framework of Fieller's Theorem p = X, p is estimated by X = (Y - &)/é
_ 2 2 3 i} 2
and Vip = 1 + in/nz(Xi - X5, Vip = +nX, Voo T/z(Xi )
Scheffé (1973) showed that for quite general linear models y = f(x) + e

it is possible to obtain simultaneous 100(1 - o)% confidence intervals
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for X given an observation of Y. His method is based on two assumptions

(I11.4) Y = [G(x)]8 + &

rg1(x1) gp(xﬂ
where G(X) =

gi(-) are known functions with continuous derivatives over the
calibration interval. ¢ ~ N(O,czllvazfcz ~ xz(v), and 32 is

independent of é:

Scheffé further assumes that é.and ;2 will be estimated by least squares.
The method in its general form is a graphic procedure. After the
parameters have been estimated the calibration curve = gf(x)é_is drawn,
then the tables supplied by Scheffe (1973) are used to draw confidence bands
for the regression. One then obtains the confidence interval for X given
Y = y by projecting the intersections of the line Y = y and thé confidence
bands onto the X-axis. It is not necessary to be able to analytically in-
vert either the calibration curve or the confidence bands. In fact, ob-
taining an inversion may be difficult and time consuming$§ this method
renders it unnecessary. However, in the case of simple linear regression
(i.e., g(X) = [1,X]') the inversion is possible and not too difficult. The

intervals are based on the probability statement
(111.5) PV, - Yol < (222 (xR0 %/ 2(x, -0 /8 = 1 -
where F is 1 - a quantile of the F(Z ) distribution.

This leads to the confidence interval for Y given X = x
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A

(111.6) ¥y - (201301 + 07l 4 (g - Rk, - 0EVE <y

0 0

<o+ (20200 + 07w (xg - 2T - A2

Now given an observation Y_, if we recall that E{YO} = o + BXO and

O -~
YO =Y + B(X0 - X) we can substitute these for YO and YO into (III.6) and

rearrange the terms to solve for XO obtaining

(IIL.7) [+ &Yy - 1)/a0 = [ERY2500( + n7h) +(yg - 9/
2k - D2V8 < xy < R, + B(Yy - DD+ [(2F) /53]
A1+ 01 + (v, - DEzx; - B2VE,

- a2
where % = g° - EEE~:—§.
£{X-X)

The interval above is an algebraic representation of the projection method
used for more complex models. The interval width is the horizontal dis-
tance between the hyperbolic confidence bands at Y = YO‘ Clearly then,
the interval width is an increasing function of [YO - Y.

Scheffe's (1973) procedure is based on a graphic application of his
simultaneous confidence interval procedure, which uses the F - distribution
to form the probability statements. An alternative method uses the bivariate
t distribution (see Graybill (1976), Trout and Swaliow (1979)). This method
yields intervals which hold simultaneously with confidence level 1 - o for
all X in a predetermined interval. Unlike Scheffé's intervals, these
intervals have a constant width. The drawback te this "Uniform confidence
band" method is its requirement of tables of the quantity

D AD 2 2 -n/2

(1.8)  f [ (2o 1(-ph) Ve 4 L2V AV g dudv = 1-a
-0 -AD (n=2){1-p%)

for various values of n, p, A and a«. These are available in Bowden and

Graybill (1966) and Trout and Swallow (1979).
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To find the uniform confidence bands we define

(111.9)  g=[1+n"'+ (x_ - R)Z/E(Xi - %211/
n= 00+ (x, - DFa(x, - K22
p = [T+ 0+ (X - (%, - R/ - 1)2/gh
A= g/h

where [XL,Xu] is the interval over which confidence intervals

are wanted.

Then a set of 100(1 - o)% confidence intervals can be based on the probability

statement
(111.10)  P{|Yy = Yg| 2 SolXqelX X 13 =1 - @
where § = gD.

Table 1 from Trout and Swallow (1979) gives D for various values of A,
n-2, o and |p|. Now we can invert the interval by using the same method

used to invert Scheffé's interval. This yields the confidence interval
(IIL11) (Y - a)/B - 08/8 < Xy < (Y - a)/8 + a8/
for all X in the range [XL,Xu].

The final interval estimate of X is also a simultaneous procedure,
making use of the Bonferroni inequality and the Fieller's theorem interval
developed earlier. Like the uniform bands, it holds for all Y in a pre-

determined interval. We will show this in the following theorem.
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Theorem: A set of 100(1 - a)% simultaneous confidence intervals for the

calibration of X over the range of measurement [YL,Yu] is

L < XO < U,

(II1.12) L= (b1 - a])YO/(Yu - YL) + (Yua] - YLbT)/(Yu - YL)
U= (b2 - aZ)YO/(Yu - YL) + (Yua2 - YLbZ)/(Yu - YL)
where a; < XL < a, is 100(1 - a)% confidence interval for X at
YL and b1 < Xu < b2 is a 100(1 - au)% confidence interval for
X at Yu, and o + a, = o The intervals at YL and Yu are found
by the Fieller's theorem method.

Proof: By the premises (al,az) and (bl’bz) are confidence intervals for

XL and Xu at confidence levels 1 - o and 1 - @, respectively.
By the Bonferroni inequality then, both statements hold simul-
taneously with confidence level 1 - o - a, = 1 - a. Now,
suppose that (L,U) is not a confidence interval for Xo with con-
fidence level at least (1 - «). Then the true 100(1 - «)% con-
fidence interval is (C,D}, C < L, D > U. Now suppose YO = YL.
Then (a],az) is not a 100{1 - «)% confidence interval for X, -
But by the premise (a1,a2) has confidence level 1 - @ > 1 - a,
which is a contradiction. Hence (L,U) must have confidence
level (1 - o), and the statement holds for all Y0 in the interval
[YL,Yu] simultaneously.

qed.

Graphically, this method is finding a calibration line for X, then
putting confidence intervals for X at the boundaries of a region of interest.

Now the points (ai’YL)’ (az,YL), (b1,Yu) and (bZ’Yu) are added, and the
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trapezoid connecting those four points is drawn in. To find the confidence
interval at some specified y in [YL,Yu], the 1ine Y = y is drawn and the
intersection of this line and the trapezoid is projected on the X-axis.
These last methods (the Uniform Band and the Bonferroni) are of
particular use when confidence intervals are wanted only if X falls in a
particular region. For example, in a medical lab, if the test results
indicate that nothing abnormal is happening we may not want confidence
intervals. On the other hand, if extreme values are indicated, a confidence
interval may be desirable. These methods allow us to tailor the interval for
the region of interest, while Scheffe's method fits intervals for all values
of Y. It is for this reason that we can obtain'sharper intervals than
Scheffé, when we are willing to restrict our interest to a subset of the

real line.
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IV. A PRACTICAL EXAMPLE

As a humeric example of the preceeding techniques, we will use the
following data given by Afifi and Azen (1972). The data are lactic acid
concentration in millimoles/1liter of solution (mM) in a known solution (X),
and lactic acid concentration (mM) of the solution as determined by a meter
(Y). Each reading of Y represents an independently prepared standard solu-

tion of concentration X.

(1V.1) X Y
1mM (4) 1.1mM, ©.7mM, 1.8mM, 0.4mM
3nM (5) 3.0mM. 1.4mM. 4.9mM. 4.4mM, 4.5mM
5mM (3} 7.3mM, 8.20M, 6.2mM
10mM (4) 12.0mM, 13.1mM, 12.6mM, 13.2mM
15mM (4) 18.7mM, 19.7mM, 17.4mM, 17.1mM
IXY. = 1769.6 %= 6.7
zx? = 1424 Y= 8.385
zY? = 2220.21 nh =20

The least squares estimators of a and g8 are

(Iv.2) a = 0.1595
8 = 1.2277
5% = 1.07874.

Hence the classical estimator is
(1v.3) X = (Y - a)/8 = (Y - 0.1595)/1.2277.

The inverse parameter estimates are
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(Iv.4) & )2 = 0.0458

il

z(xi - X)(Yi - 7]/E(Yi - ¥
¥ - &Y = 0.7936

>
1

=2

and the inverse estimate is
v ~ ~
(IV.5) X =+ + 68Y = 0.7936 + 0.0458Y.

The inverse estimator is also the minimum IMSE estimator if we choose the
weighting function to have mean 6.7 and variance 26.31. If we choose some

other weighting function, say a uniform distribution over (1,15), then we

have a mean M = 7.5 and varijance V = 16.33. In this case, the optimal

estimator is

~

n, ~
(1V.6) XO Ay * AY

MaZ + BV(Y - )3/ (6% + Vo)

{8.091 + 20.048(Y - 0.1595)1}/25.6921 .
The asymptotic 95% confidence interval is

(IV.7) £ s 1.96/52/é2 <X <X+ 1.96/82/62 or
X - 1.658 < X < X + 1.658.

Fieller's interval is based on the distribution of (a,b)' = (Y- &,é)‘ "
N,L(8K,8) "ol (X' X))

(X'X)"1 - [1.13530977 0.01273280]
0.01273280 0.00190042

1.13530977, v

So i1 = 0.01273280, Voo = 0.0190042

12
st/b = (1.07878)/2(2.101)/1. 2277

)

K 1.7774.

The interval then is
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. 2

v v
(1v.8) {X -k Vio i_k[vH - 2Xv12 + X

2 2 21/2 2
Vop = KT {VqqVgp = Vi) 1 TW/(1-K0v,,)

= (X - .0402 + 1.7774[1.0972 - 0.255X + .019%%]}/.9400.

Suppose that X = %. Then the asymptotic interval is 5.04 < X < 8.36. The
interval based on Fieller's theorem is 4.56 < X < 9.16. If X = 12, then the
asymptotic interval is 10.34 < X < 13.66. The Fieller's theorem interval
is 9.17 < X < 16.27.

We will calculate the Scheffé and Uniform width intervals. The calculation

of Scheffe's interval requires F(.05,2,18) = 3-550

A = g° - (2F(2’15)32/2(Xi - 2)2) = 1.4927.

and the interval is

(1v.9)  [X+ 8(Y - I/A] + [2R)VY2:0000 + 07y + (v, - Y

0

z(xi _ 2)2}1/2
= [6.7 + 1.2277(Y - 8.385)/1.4927] + 1.8883{1.5668 + (Y - 8.385)2/

526.2}1/2

Again, if Y0 = ¥ then X = X, and this will be the narrowest point in this
interval, which will be 4.3364 < X < 9.0636. If X = 12, then Y = 14.8919,
and the confidence interval will be 7.29 < X < 12.05. We note that this
interval, Tike the Fieller's theorem interval is not symmetric about X.

To calculate the uniform width intervals we must find

2
(X, - X)
g* = [1+n7l 4 - 11/2 < 1.0544
Z(xi - X)
h = (3 +n0 + (X - X)X, - 0)2] = 1.0867
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A*

g*/h* = .9703
Vo (x, - Rx, - Q720 - R2)/g+> = 9144

p* = (1 +n”

when we take (XL,XU) = (1,15). Now, from Bowden and Graybill's (1963)
Table 3, D(.95,10,]) = .9144, so &* = g*D = 2.5306, and the confidence

interval is
(IV.10) X + o6%/g = X + 2.1409.

The interval for i = 6,7 is 4.5591 < X < 8.8409. For %X = 12, the interval
is 9.853971 < X < 14.1409.
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V. SUMMARY AND CONCLUSIONS

In this report we have considered the solutions currently available to
the seemingly simple problem of establishing and using a calibration 1ine.
Most practitioners use either the MLE of X, X or the inverse estimator f.
Neither group seems to be aware of the theoretical background of their
estimator. Some instrumentation systems have a calibration feature built
into their mocroprocessor unit, although they sometimes fail to tell the
user what calibration technique is being used. Each of the available esti-
mators is in some sense optimal. The MLE has been shown to be a Consistent
Asymptotic Normal Estimator, while the Inverse estimator minimizes the IMSE
when the weighting function is chosen properly. Perhaps now the pejorative
term "wrong regression" for the inverse estimator will be allowed to die.
The "practically unbiased estimator" has the appealing property of removing
the bias from the MLE in small samples. Work remaining to be done in point
estimation includes the derivation of either the exact distribution of X or
of an asymptotic distribution so that confidence intervals can be developed
for this estimator.

The results in the area of interval estimation are more extensive than
those in point estimation, in the sense that more interval estimates are
available. It is not known how far back the asymptotic interval dates,
although the author is unaware of any published proof prior to this date.
The oldest proven interval estimate of X is due to Fieller (1954). Scheffé's
method of calibration appeared in 1973 and is the first set of simultaneous
confidence intervals. Trout and Swallow (1979) added the Uniform Interval
approach, while the Bonferroni Method has been modified from a technique

used by Khorasani and Milliken (1980).
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A1l the currently available interval estimates are based on the

classical estimate, since they involve fitting the model

(V.1) Vo= o+ B+, e, 1 N(0,07)

If the asymptotic distributions can be found for the other point estimators
it may be possible to develop interval estimates based on these estimators.
Until then, an experimenter who wants confidence intervals is restricted to
using X.

For practical use it is the author's opinion that for one at a time
confidence intervals the practitioner should use the Fieller's theorem
interval. This is recommended for two reasons, first because the interval
is conservative in that the confidence level is not less than 1 - «. Despite
its conservativity it manages to do quite well nonetheless {see Chapter IV)
in most reasonable situations. Secondly, the only competing interval at
this time is the asymptotic interval, and its behavior for small samples is
not known.

If a set of simultaneous intervals are desired there are now three
methods available. For some problems, Scheffé's method may yield totally
useless results. If the user wants intervals for any possible value of X
he has no choice but to use Scheffé intervals. However, if he needs inter-
vals only over a particular range of values he will be better off with either
the Bonferroni or Uniform techniques. In using the Bonferroni and Uniform
techniques the practitioner should calculate both regions, and then choose
the better region for that problem. Since the expected widths are unknown
for both intervals there is currently no theoretical reason to prefer one
technique over the other.

As is always the case when several competing techniques are available

for use, the final decision on the methods to use lie with the practitioner.



The choice should not be made blindly, in ignorance of the properties of
the other tools available. Hopefully the reader now has some reasons for

using the methods he chooses to use.
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The problem of predicting the value of a carrier variable (X)
which generated an observation (Y) is discussed. The problem is
motivated by two hypothetical examples which illustrate the probiem.

Four point estimators are given; the Classical estimator (i), the
Inverse estimator (%), the Linear Minimum Integrated Mean Square Error
estimator (%0) and a "Practically Unbiased Estimation" (x*). Conditions
are given so that?(c = X, ; is shown to be a maximum Tikelihood
estimate and an asymptotic distr‘i_‘oution is given for ?(

Five confidence intervals are given. The first is based upon the
asymptotic distribution of ?, the second relies on an application of
Fieller's (1954) theorem. These two intervals have confidence levels
which hold for the individual interval. The remaining intervals have
confidence levels which hold for all k in a specified interval. These
are based on Scheffe's (1973) prediction bands, the Uniform Confidence
bands of Bowden and Graybill (1966), and a new interval using the
Bonferroni inequality. Comparisons are made among these methods.

Also, a numerical example is given.



