A COMPARISON OF RELATIONAL AND NETWORK DATA BASE
REPRESENTATIONS OF A MEDICAL HREPOSITORY SYSTEM

BY
PAULA S. BOSWELL
B.S., NORTHWEST MISSOURI STATE UNIVERSITY

MARYVILLE, MISSOURI
1976

A MASTER'S REPORT
submitted in partiai fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1978

Decorment
LD

2067

. R

197¥
BLY

.2

TABLE OF CONTENTS

mSTmT IONS - L] - * . - . L) - L] L3 L] [] L d . L] - L] L] - - a L] L] . L] L

CHAPTER
mmDUWION L L * - L] . L L - - L L L] - - - . - [] L] [] . - . a

1

2

THE CURRENT SYSTEM + & o ¢ ¢ ¢ 4 o o o o o o & o o s o o o o

2-1 Evolution and Use of the Current System
2-2 Repository Definitions. . « + & ¢ ¢« ¢« ¢ ¢ s ¢« ¢ ¢« & 4 o &
Clinical Repository Information Filing

2=-2-1

2-2-2
2=2=3
2=2=4
2=2-5
2-2-6

DBL DATA BASE DESCRIPTION. .

3-10vel'ﬁew..-...--.....-....
3-1-1 The Relational Data Base ,
3-1-2 Data Set Selection

System (CRIFS) . .
Electrocardiogram Repository (ECG) o« v
Treadmill Exercise Tolerance Test {TDM). .
Clinical Laboratory Determinations (LAB) .

Aeromedical Evaluation Summary Cover Sheet.
Cardiac Catheterization Repository (CAT) .
2-3 Foreseeable Developments.

3-2 Justification

RuiDa]
320
3-2-3
YDl
3-2-5
3-2-6

CRIFS.
ECG.
TDM.
LAB.
CS .
CAT.

DMS 1100 DATA BASE

ll-'}- O‘TEMEW. . 8 v @

DESCRIPTION .

4=1-1 A Network Data Base,

L=1=2 Data Set Selection

of the Chosen Definit.ion. . e .

« @ & ® & e
*« % s & & * =

& 8 SNe s B =
(¢}

e o 0Ne o o =
S

* L] L * L] L] L] - [] L] -

=2 Justification of the Chosen Definition.

L=-2-1 Area Definitions
L=-2=-2 Record Definitions
L}-2-3 Set Defi!‘itions. & & = @

¢ = o 2 . - . & e & e .

L=2=l, QLP Information. . « + ¢« &+ ¢« &+ ¢« ¢ o o = = o « = .

-1i =

iv

5 COMPARISONSooa-qcnocno

5-1 Basis of General Queries.
5-2 Queries . « + ¢ &« « ¢« - .
5=3 Storage Requirements. . .
5-l, System Overhead
5-5 Data Base Integrity . . .
5-6 Flexibility

- - L] L] L] -

6 CONCUJSIONSI L - L] - . L] L] L] - L
APPENDIX A - DBL DATA BASE DEFINITION

* = » @ & @

APPENDIX B - DMS 1100 DATA BASE DEFINITION.

APPENDIX C - DERIVATION OF SIZE REQUIREMENTS. .

BBHOGMPHY L [] * Ll L] - - - L] L] L Ll .

-iji-

. . L] .
L L - L] » .
- L L L L] .
- - - L] .

L] . L]

s & s @ L]

56

27
58
66
68
69
72

75

B-1

C-1

Ll L] . L] L] L] - L[] L]

s @

so‘ml—‘ '
el O N0 0O =3 OV F- WD N

ILLUSTRATIONS

Clinical Repository Information Filing System (CRIFS).
Electrocardiogram File Structure (ECG) . . « . . .
Treadmill File Structure (TDM)+ + « « « .
Clinical Laboratory Determinations (LAB)
Aeromedical Evaluation Summary Cover Sheet (CS). .
Cardiac Catheterization Repository (CAT)

set Relatimhips . - . L] - L] . L] . L] L] 4 = & 8 @ » . . L] L]

Example of a Record Definition

Use of Calc=chain Pointers and Overflow Pages. . . « . .

Example of a Set Definition. . . « ¢ ¢ o o o o ..
Singly Linked Set Occurrence . « ¢ « « « « « o « o o &
Doubly Linked Set Occurrence . « « « « « « ¢ « « « =
Set Occurrence Using POINTER Array « + « . .« . § & e

-iy -

10
10
11
13
14
30
31
22
34
34
34
a5

CHAPTER 1

INTRODUCTION

This report deals with the computerized processing of medical
repository data by the United States Air Force School of Aerospace
Medicine (USAFSAM). Currently the USAFSAM is using the MARK IV file
management system for its information storage and retrieval. The case
records on file are in sufficiently large numbers such that clinical
studies employing their use are able to gain statistical validity. Yet
it has been found that these data are not being fully utilized due to
the difficulty of retrieval of the desired information. The goal of
this report is to define the current system in two different data base
management systems, namely the UCC Data Management System, hereafter
to be referred to as DBL, and the Data Management System 1100 (DMS 1100),
and to demonstrate how these definitions and their subsequent use could
help to alleviate both the present and possible future problems arising
from the use of the data base.

The problems to be dealt with are many and varied. It is of prime
concern to keep the logical structure simple for two basic classes of
users: first, for those attempting to retrieve information for clinical
studies, whom the author does not assume to be well versed in the tech-
nical aspects of information retrieval, and second, for those who, in
the future, will find it necessary to modify the currently existing
definition in order to meet changing information needs. Many of the
systems currently in use have ignored this second consideration, causing
subsequent modifications to be both costly and time consuming, if not
impossible. Other problems include recovery from failure, redundancy
in stored data, storage requirements, future growth of the system, and

tunability as specific needs become known.

Initially one must understand the system currently in use. Chapter 2
describes the evolution of the system, its present file structure, and
what is expected of the system in the future, in terms of growth and
expansion.

The resolution of the problem is divided into three chapters.
Chapters 3 and 4 explain the DBL and DMS 1100 systems, respectively.

Both these chapters assume the same format. First, the basic character-
istics of each system are explained, including such factors as the
organization of the data within the system, terminology peculiar to the
system, and methods of data retrieval. Next, a justification of the

data base definition derived by the author is given. Frecuent references
to the appendices, which contain the detailed file descriptions, will be
necessary during the reading of these sections. Chapter 5 is the final
chapter in the problem resolution. Here direct comparisons of the two
systems are made, taking into consideration such factors as storage
recuirements, system overhead, flexibility, recovery, and integrity.

Here one will also find specific queries that could be used in each sys-
tem, based on the type of queries that are now used in the current system.

Chapter 6 states the conclusions of the author.

CHAPTER 2

THE CURHENT SYSTEM

2-1 Evolution and Use of the Current System

Until the implementation of the current system, individual c¢linical
repositories were maintained independently of each other with little or
no cross-referencing between files. Due to the advent of file management
systems, in this case MARK IV, it was found feasible to redesign the
repositories in order to facilitate the cross-referencing desired in data
retrievals for statistical analyses. The following information and file
structures were derived from the report SAM-TR-77-21 as noted in refer-
ence [1].

The initial conversion effort revealed that many discrepancies already
existed in the currently existing files with respect to serial numbers,
social security account numbers (SSAN), names (NAME), dates of birth (DOB),
sex and race. In order to maintain the integrity of the keys to be used
throughout the system a master file, the Clinical Repository Information
Filing System (CHIFS), was created. Input transactions are checked against
this file, which is assumed to be correct, in order to verify the validity
of the patient identifiers before any update to the large repositories
occurs. This check includes the automatic correction of errors in the
input data in the event of a keypunch error. For example, if the NAME
field matches an existing name in the CRIFS file but the SSAN's do
not agree, the input SSAN is checked for the possible inversion of two
numbers or the mispunch of a single number. If this is found to be the
case and the date of birth matches, the input transaction SSAN is modi-
fied to match the CRIFS file, the transaction is allowed to continue
being processed, and a message is sent to the printer for human valida-
tion of the modification.

An individual's SSAN 1is used as the primary key, intercomnecting
the repositories, but military dependents have their sponsor's SSAN as
part of their identification. Thus, one's name is used as a secondary
key, with total identification employing the use of DOB, sex and race.

The current configuration allows the individual files to be used
either concurrently or individually, dependent upon the particular appli-
cation. Also, redundancy of data fields among the repositories is elimi-
nated. _ |

After CRIFS was established the other repositories were gradually
added to the system. The first to be incorporated was the Electrocardio-
gram Repository (ECG). Following the resolution of any key incompatibi-
lities, the ECG transaction data values are validated for correct range.
In the event of an error, the entire record is printed and further pro-
cessing bypassed. After the necessary corrections are made the record
will be reprocessed in the next update cycle, whichlgenerally occurs
every six to eight weeks. Any abnormal ECG code in a valid record
causes a flag to be set in both CRIFS and the ECG record for that
individual.

Next to be added was the Treadmill Exercise Tolerance Test (TDM).
The necessity of weekly output requirements causes the data field vali-
dation to be done during the weekly runs. Master file updating and
error corrections occur either when sufficient data have been gathered
or when special retrieval is requested.

The third file added to the system was the Clinical Laboratory
Determinations (LAB). In this case, daily input and output are recuired
for those currently undergoing physical examinations. A subfile for

these individuals is maintained, with reports produced for verification

of test resuits each day that a laboratory result is reported. These
intermediate reports carry the data fileld validation process one step
beyond the process used in the other repositories. Both unhealthy values
and values outside the permissible range are denocted by special indivi-
dual flags on the report printout. 1In addition to this comments are
allowed, with the test to which the comment pertains being marked with
its own flag. Master file updating occurs approximately every two months.

The Aeromedical Evaluation Summary Cover Sheet (CS) was the next
repository converted. The input for this file is recorded on IBM MAG
CARD II typewriters. Then, after completion, the data are sent via
terminal to the IBM 360-65 for editing and validation before storing
them in a temporary working subfile. After the accumulation of several
hundred cases, a listing sequenced by the diagnostic codes, with any
accompanying text, is printed for validation by the medical librarian.
The master file is updated about once every three months.

The last file added was the Cardiac Catheterization Repository (CAT).
As with the other repositories, keys are compared to the CRITFS file,
data fields are validated, then the master file is updated. Corrections

are included in the next update cycle.

2-2 Repository Definitions
2-2=-1 Clinical Repository Information Filing System (CRIFS)

CRIFS 4is a small file used to validate the keys contained in trans-
action data. The file is considered to be definitive and, as such, its
data must be accurate and current. It has no repeating groups and includes
data fields, in addition to the keys, which are needed in obtaining quick
look "query" type information. The repository activity status is incorpo-
rated in CRIFS through the inclusion of the following data fields: date
of last examination, source of last entry, and flags indicating the exis-
tence of data in the individual repositories.

Figure 1 [1] describes this file structure.

DATE FLYING DEATH soor-'
SSAN | NAME | OF | SEX | RACE | roiThe | crass | DoaT| OF

BIRTH

CODE

D URCE REPOS
or | Cor - Lo TTomEL VS omms
1AST | 1aST | cs | Ecc | Tom | 1aB | car e
EXAM | ENTRY

Figure 1: Clinical Repository Information Filing System (CRIFS)

2-2-2 Electrocardiogram Repository (ECG)

The ECG repository is represented in a record structure containing
two repeating groups. The highest level of the structure consists of the
two keys, SSAN and NAME, as well as a field for the vectorcardiogram
(VCG) status. If the VCG status contains a "1" then a VCG for this
individual is on file in the CONSULTATION SERVICE repository. Otherwise
the field is a blank. Also on this level is a field, ABN-FLAG, which
is set with a "1" wvalue if this individual has ever had an abnormal ECG
diagnostic code.

The first repeating group contains data pertaining to each ECG
examination, with each occurrence keyed by the date of the examination.
Other data obtained in the examination are recorded on this level.

The second repeating group contains the diagnostic codes as deter-
mined by the examination.

Figure 2 [1] depicts the structure of the ECG file.

2-2-3 Treadmill Exercise Tolerance Test (TDM)

The TDM repository is also represented in a file structure having
two repeating groups. The highest level consists only of the keys SSAN
and NAME with a third field indicating the number of tests for which
this individual has data stored.

The first repeating group includes the individual's CASE number,
examination date, and other information collected during the test.

The second repeating group contains an entry for each minute of the
test completed by the patient. Up to 24 minutes of data per examination
are possible, with the blood pressure and heart rate recorded for each
minute, as shown in Figure 3 [1].

s 5

- 10 -

ABNORMAL | CNT FIELD
VCG ECG
SSAN | NAME | omatys | DIAGNOSTIC
CODE 2nd SEGMENT
BLOOD
DATE | ECG PRESSURE | CNT FIELD
OF | FOE | AGE | HEIGHT | weIGHT
EXAM | NUMBER sYs | pIA | 3rd SEQMENT
DIAGNOSTIC
CODES
Figure 2: Electrocardiogram File Structure (ECG)
CNT FIELD
SSAN | NAME
ond SEGMENT
i Dgf‘ RUN | OTHER TREADMILL DETERMINATIONS | ON: FIELD
oy | NUMBER AS MEASURED ON THIS RUN P
(walldng 3.3 MPH)
HEART
MINUTE | SYSTOLIC | DIASTOLIC | Tard
Figure 3: Treadmill File Structure (TDM)

2-2-4 Clinical Laboratory Determinations (LAB)

The LAB file structure is represented in two levels. The highest
level again contains the identifying keys SSAN and NAME as well as a
case number. The date of the examination with the resultant laboratory
determinations and messages are recorded in a repeating group. It should
be noted that the laboratory determinations constitute a significant
quantity of data, as these data are recorded on 12 pages of laboratory
report forms.

The file structure for LAB is shown in Figure 4 [1].

CNT FIELD
SSAN | NAME m?ﬁgga
2nd SEGMENT
DATE
OF | LAB DETERMINATIONS | MESSAGES
EXAM

Figure 4: Clinical Laboratory Determinations (LAB)

2-2-5 Aeromedical Evaluation Summary Cover Sheet (CS)

The CS file structure has three repeating groups. The record
occurrence for each individual is determined by the SSAN, NAME, DOB,
SEX and RACE.

The first repeating group is identified by case number and the date
of the examination. A variety of other information pertaining to the

individual at the time of the examination is included as shown in Figure 5.

s 1T i

Codes indicating the diagnosis and any accompanying text constitute
the second repeating group. The physicians involved in the individual's
case, as well as the physicians' particular departments, are specified
in the last repeating group.

Figure 5 [1] displays the CS file structure.

2-2-6 Cardiac Catheterization Repository (CAT)

The CAT file structure has, at its top level, the individual's
S5SSAN, NAME, case number, DCE, and other data pertinent to the person's
coronary risk profile.

The single repeating group is determined by the assigned sequence
number and contains information from the remaining six sections of the
cardiac catheterization report form.

Figure 6 [1] indicates the CAT file structure.

-12 -

(s0) 30°9yg J0A0) ArBUMMS UOTIBNTRAY TEOTPOWOIdY :¢ SaMITY
SE002 NVIOISXHd IXHL 30092
aNV INSWIMVJEd OILLSONDYVIQ | SISONDVId
I
ssmiaqy | ssmiaqy | %8 "7 | 935 P | sroonpviq | Norazsodsza | oo o o
JHVLITIN JWOH SOTHIA IND TVHHEA T TVOLQENOYHEY
aa0d NOLLVOO1 SUNOH JJIVHD | ONILVY
TVHU I I RVXH ONIXId | -dIV ouayv
INIWDES PUZ HIMId
3oV | XES J0 ¥WVN | NVSS
aTILd IND q1va

D

2&3 £109F80doY UOTIRZTISGOYIR) ORTPIRY 19 8andTy
SNOLLVNIWMALIAQ | SNOILVYNIWMELIA
H NOILOHES D NOLLO™S

SNOLIVNIWMALAG | SNOLIVNIWHWLMQ | SNOLLYNIMNHELHA | SNOLLVNIMMALAA | SNOLLVNIWNMHLHG YAGHAN
Jd NOLLOAS d NOILOFS d NOXLLOHIS O NOILOWUS g NOILLDWS FONANDAS

LTHNDES pug SNOLILVNIRMAILHIA WVXd TRARNN
NOLIVZIMEILTHIVO d0 qSYD HWVN | NVSS

JI8Td IND YHIHIO qIva

2-3 Foreseeable Developments

Five repositories remain to be converted and incorporated into the
current system, namely, the Vectorcardiogram (VCG), Routine Pulmonary
Function Test (PULMONARY), Dental Determinations (DENTAL), Double Masters
Exercise Tolerance Test (DOUBLE MASTERS), and the Tilt Table Study (TILT
TABIE). In addition to these, the Hearing Conservation Registry and
Waiver File, currently maintained under MARK IV, will become part of
the integrated, cross-referenced system.

Future work will also include the periodic computerized walidation
of the CRIFS data file with the Military Persommel Center files.

In dealing with this system and its growth, one must keep in mind
the magnitude of the volume of data involved. For example, the Hearing
Repository currently has approximately 500,000 records on file, each
one 270 bytes in length, and an estimated growth rate of 15,000
records per month. On the other hand, very few records are in existence
in the Dental Repository at the present time, with each record being 1,520
bytes in length and an estimated growth rate of 4O records per month.

The overwhelming size of both the current and future repositories
was considered to be a matter of great importance in the design of the
data base definitions stated in the next twe chapters. This problem will
be dealt with explicitly in Chapter 5.

e T

CHAPTER 3

DB4 DATA BASE DESCRIPTION

~ T

3-1 Qverview
3=1-1 The Relational Data Base

To a person inexperienced in the techniques of data representation,
the simplest form in which to conceive data is a table, such as a multi-
plication table. In this two-dimensional form it is easy for one to
visualize and understand the relationships existing between the data;
that is, the relationships signified by the division of the data into
rows and columns. The table itself represents some type of relation.
DB4 is designed to manipulate the data and relationships defined in a

tabular form, and, as such, is referred to as a relational data base

management system.
These tables can be described mathematically and have the following
properties [2]:

1. Each entry in a table represents one data item; there
are no repeating groups.

2. They are columm-homogeneous; that is, in any column
all items are of the same kind.

3. Each colum is assigned a distinct name.
L. All rows are distinct; duplicate rows are not allowed.
5. Both the rows and the columns can be viewed in any
sequence at any time without affecting either the
information content or the semantics of any function
using the table.
Many files in current applications incorporate the use, either
logically and/or physically, of repeating groups, which, from the first
property above, is not allowed if the data involved are to be represented

in a relational data base. Thus, the files must be converted intoc "flat",

two—dimensional files through a process referred to as normalization.

In normalization, the advantages of which are discussed in Chapter 5,

i

a repeating group is separated into an individual file, necessitating
some data items, referred to as signatures in DBL4, to appear in more
than a single file for the purpose of record identification. Due to the
storage techniques used in DBL, this repetition of data in the user's
logical view does not imply an increase in storage requirements. Keyed
items are stored separately from the data to which they belong. This
separation is hidden from the user, being handled entirely by the DBL
system. The strength of retrieval techniques in DB4 is dependent upon
this separation.

The DBL data base consists of three logical spaces—control space,

data space, and structure space [3]. The control space is comprised of

information pertinent to the running of the system and is produced by
the system. The data space is a software simulated virtual memory sys-—
tem composed of two parts, the data itself and a virtual directory that
controls addressing to the data. Mass storage for this space is set up
during the establishment of the data base definition via the execution
of the Data Base Definition (DBD) processor, and both of its constituent
parts will reside on the same mass storage device. Data space and control
space are intercomnected through the inclusion of the virtual directory
as one of the segments of control space. This directory is paged in and
out of core through a double buffering technigue such that the number of
physical accesses to the virtual directory during record retrieval is
minimized,

Structure space constitutes what could be considered the lifeblood

of the DB4 system due to the fact that any and all gqueries are dependent
upon the existence of this space. Before a data base may be cueried two

operations, occcurring independently, must be performed. First, the data

-8 -

must be loaded, via the LOAD command, into an area of the data space.
Then the relationships existing between the new data and any previously
loaded data must be established through the use of the CONSTRUCT com-
mand. Thls command creates the entire|contents of the structure space,
which consists of storage, reserved by the DBD processor, for all values
possible for all uniquely named keyed items throughout the data base, as
well as an indication of the record occurrences in the data base that
employ ﬁhe use of these keyed fields.

Retrieval of records in a DBL data base involves the use of a
collection, which is a software simulated associative memory that contains
pointers to records requested by a FIND command, Several collection
names may be used by a single user, with these names specified in a person's
User Interface Description (UID). The UID provides an individual user's
view of the data base and also allows the user to communicate with the
Data Base Monitor (DBM), which is the command language module used to
load, maintain and access the data base. Through the DBM a data lan-
guage is also provided wherin a non-programmer can interact directly with
the data base.

A1l the records in the data base that fit a particular description

constitute a2 logical file which is referred to as a data group or area.

Keyed signatures which are contained in more than one data group provide
the means of cross-referencing the files during queries. Data set selec-

tion through queries is now described in the following section.

3-1-2 Data Set Selection

Retrieval of data is totally dependent upon keyed fields, with these

fields forming the logical and physical basis of relating a record from

= T

one data group to existing records of another area.
The standard processing command used to isolate a requested data
set is the FIND command. It has the following general form:

FIND collection-name Boolean expression

The collection name is one which is defined to be in the user's UID,
and the Boolean expression must contain only keyed signatures or other
previously established collections.

Execution of this command does not access the data space. Only the
structure space is affected. After the execution of a FIND command,
the named collection will contain pointers to all records which satisfied
the query, or more specifically, all records throughout the data base to
which the user is allowed access, via the individual's UID, that satis-
fied the query.

As an example, suppose AGE 1is a keyed signature and DATA a valid

collection name. Then
FIND DATA WHERE AGE GE 16 THRU 65

will isolate all records whose AGE field contains a value from 16
through 65. [TO is exclusive and THRU is inclusive.] Had the follow-

ing form been used
FIND DATA WHERE AGE EQ 16 THRU 65

then at least one record occurrence must have had a value of 16 in AGE
or else a null set would have been returned.
Once a data set is isolated it may undergo additional processing to

further refine the data set. If the above query were to be followed by

FIND PEOPLE WHERE OCCUPATICN EQ 'STUDENT'

-20 -

and then
FIND STUDENTS WHERE DATA AND PEOFLE

all students from 16 through 65 would be isolated in STUDENTS.
Other command sequences could have been used instead. The following two
command series would leave the same data set as above in STUDENTS.

FIND STUDENTS WHERE AGE GE 16 THRU 65
AND OCCUPATION EQ 'STUDENT'

FIND DATA WHERE AGE GE 16 THRU 65
FIND STUDENTS WHERE OCCUPATION EQ 'STUDENT'
FIND STUDENTS AND DATA

This last statement would leave the results in the first collection
name while the second collection remains unchanged.

If the records containing the AGE and OCCUPATION fields were in
different data groups, then in order to find those people belonging to
both groups there must have been some way of relating the different record
types to each other. This was done by the system, but it was dependent
on the fact that the different data groups contained some shared keyed
field, such as ID-NUMBER.

In some applications data may be considered to be stored in bit form.
Keyed signatures which are bit-defined may also be queried by using the
logical operator MV, which stands for "mask value."” The general form
would be

signature MV value

where "value" supplies the mask. For example, if JOB-CODE is a six bit

field included in a record describing parts information, and the setting

-21-

of the low-order bit signifies that this part is used for JOB1, it is

possible to retrieve all parts used in JOBl with the following command:
FIND DATA WHERE JOB-CODE MV '0Q00CO1!

with the results left, as before, in DATA. Any data sets previously
isolated in DATA would have been destroyed by this command.

The above examples allowed the system to optimize the retrieval
process, with the user not even having to specify the data groups from
which the data were to be selected. As mentioned previcusly, if the
data were from different areas, then the system would have looked for
a shared keyed signature in the two or more areas involved.

Suppose, though, that the user does have knowledge of the data
groups and wishes to confine the query to particular data groups within
the data base. Taking the first example, if AGE is in the PERSON
data group, OCCUPATION in the JOB data group, and both PERSON and
JOB contain the keyed signature ID-NUMBER, the following sequence

FIND DATA WHERE AGE GE 16 THRU 65

PROJECT DATA FROM PERSON THRU ID-NUMEER INTO JOB
will isolate in DATA all people from 16 through 65 along with the
JOB information pertaining to each of these persons. This is equivalent,
in the context of the tabular display of information, to pulling all the
rows from PERSON where the desired age range exists, and adding to this
table all the columns of JOB which are unique with respect to FERSON
(that is, shared keyed fields will not be repeated), with the resulting

table in DATA.

=D

3-2 Justification of the Chosen Definition

The first step in converting the MARK IV <files to a DB4 represen~
tation involved the isolation of the repeating groups, necessary due to
the first property stated in Sectiﬁn 3=1-1. The method of normalization
used for each repeating group was similar. To avoid redundancy in the
following text, a synoptic discussicn of the method used is now given.

Each occurrence of a repeating group in a MARK IV file was sepa-
rated from the main record descriptiocn and placed in its own data group.
Within the newly created data groups, record occurrences for an indivi-
dual were differentiated by the same data items employed in the MARK IV
repeating groups, which, in most cases, was the date of the examination.

Positive record identification for data pertaining to an individual
is dependent upon both the SSAN and NAME fields. Therefore, these
fields occur in each data gro&p, making the projection of one data group
into another very easy throughout the entire data base.

Exceptions to these generalities will be noted as they are encoun-
tered. Appendix A 1l1ists the DBL data group definitions, to which
frecquent references will be necessary throughout the remainder of this

chapter.

3-2-1 CRIFS

A1l the CRIFS information is contained in a single data group.
(See Figure 1 and A-2.) Since this file is used for validation of input
transactions and also for "quick-look" query information, its record size
remains small but contains a variety of information. The fields included
with the FLAGS field allow one to quickly determine which repositories
within the data base contain at least one record occurrence for an

=08 .

individual. This field could have been omitted, but then to obtain the
same information, a query of the desired data group would have to have
been performed and then the collection inspected to determine whether or
not it was null. The inclusion of FLAGS enhances the simplicity of
the query.

Space for flags to repositories to be added at a later date was not
reserved. This is because the addition of data groups describing other
repositories will necessitate the dumping and re—establishment of the
data base via the DBD processor. At the time this becomes necessary
the required flag space may be added.

The VCG field was added to eliminate the need for an additional

data group in the resolution of the ECG repository, as will now be seen.

3=2=2 ECG

A data group for the highest level of this file was not developed.
(See Figure 2 and AQ- 3.) The VCG status information was included in
CRIFS through the addition of the VCG field, and, also with CRIFS,
an abnormal diagnostic code for this repository was indicated in the ECG
field by a '2' wvalue, with normal codes indicated by a '1'. This
special field designation for abnormal values is currently in use in the
MARK IV system. The ECG-DX-CODES data group records each diagnosis

determined in the course of this particular examination.

s Bl

3=-2-3 TDM

The entire TDM file was represented as a single record in the TDM
data group. (See Figure 3 and A-3 through A-4.) The SSAN and NAME
fields in the highest level of the MARK IV file structure had, for pur-
poses of record identification, to be included in the recording of the
treadmill results, and as such, a separate data group for these fields
would serve no function in a relational representation of the file.

A data group to record data obtained for each of the 24 possible
minutes of the test would have had to include as keys the GSSAN, NAME,
CASE-NO, and DQE fields, as well as a field to indicate the minute,
each needed to uniquely identify each record occurrence. Though this
would not have increased the storage required for the keys, it would
have greatly increased the structure space needed to relate all the
records. Based on the assumption that most patients will complete most
or all of the test, space is reserved in each record for the recording
of all 24 minutes of results, rather than creating a separate data
group. When the test is not completed, null values will be registered
in the incompleted minute fields.

3-2-4 LAB

As with the TDM file, all information included in the highest
level of the record structure was required for identification of all
laboratory results, (See Figure L and A -4 through A-5.) A single
data group, LAB, records all the laboratory determinations obtained
during a single examination period. Twelve pages of laboratory results

are contained in a single record, with these resulis received over the

D

course of a week., Since a single DOE field is indicated, it will
contain the date on which the examination was started.

Messages pertaining to an individual test are possible, with the
number of these messages expected to be quite low. These are recorded
in the LAB-MESSAGES data group, with a message identified by SSAN,
NAME, CASE-NO, DOE and TEST, indicating to which test the message

pertains.

3=2=5 CS

This file is quite important since it contains a summary of an
individual's evaluations. (See Figure 5 and A-5 through A-6.) To
make absolutely certain that a record retrieved from the CS data group
is applied to a positively identified person, DOB, SEX and RACE are
included for this person's identification. _

The CS-DIAG (cover sheet diagnostic codes and related text) data
group was developed for the purpose of query requirements. A large num-
ber of currently used queries are dependent on the DX-CODE. To have
this diagnostic information occur more than once in a single data group
record occurrence would necessitate the use of more than one signature
in an array-like representation. Thus, regardless of how many or how
few diagnostic codes may be recorded in a single evaluation, each cne
must be recorded separately.

A separate data group, CS-PHYSICIANS, was also created to record
which physicians were involved in the evaluation, but rather than being
for query purposes, it was necessary ir order to keep the data base

representation in a normalized form.

-26 =

3-2-6 CAT

The CAT data group contains information which is associated perma-
nently with an individual, and, as such needs to be recorded only once.
(See Figure 6 and A-6 through A-7.) The determinations recorded for
each examination are recorded in the CAT-DET data group, with indivi-
dual record occurrences determined by both the catherization sequence
number and the case number.

The types of aqueries encountered have made the recording of some
data to be made in bit form. For example, under the section C-11,
which pertains to the anglography completed, anywhere from zero to nine
results could be recorded. On the catherization form these are recorded
by writing 01, 02, ..., 09, but a query may want to retrieve infor-
mation pertaining to individuals with either a 02 or 09 recorded.

As with DX-CODE, a separate data group could have been created, but
the use of bits and a mask value in the query greatlr simplifies both
the query and storage. With six bit bytes, if the recording of
'010000001000' shows that 02 and 09 were recorded for C-11, then

FIND DATA WHERE C-11 MV '010000001000*

would isolate all records with at least these two results. The user of

the data base would have to be aware of this special recording of the data.

Several facts mentioned in this chapter will factor heavily in the
comparisons to be made in Chapter 5. The separation of keys from their
associated data is very important, affecting every concern to be inves-
tigated, namely storage requirements, recovery, expansion, the ease of
query and data base definition, future redefinition of the data base, and
tunability. One should also be sure to understand the physical represen-—

tation of the data base in terms of the data, structure and control spaces.
g

CHAPTER &4

DMS 1100 DATA BASE DESCRIPTION

O

L=1 Overview

4=1-1 A Network Data Base

Another way of relating data items or records to each other, besides
the tabular representation of the relational data base DB4L, 1is to have
one or more record cccurrences dependent on another record for their
identification and selection. This type of representation would resemble
a directed graph, where edges between nodes indicate logical relationships.
A data base dependent on this type of logical structuring is referred to

as a network data base, and the following information describes, in par-

ticular, the data base referred to as DMS 1100 [4].
Inherent to the understanding of data manipulation in a network data

base is the concept of a set and set relationships. A set is a named

collection of record types. These record types have a hierarchical rela-
tionship to each other, since one must be defined as the "owner" and the
others as "members". For example, a record type such as CUSTOMER could
be considered to be the parent or owner of one or more occurrences of the
record type TRANSACTION (see Figure 7). At the same time, in another
set type, it would be possible to designate TRANSACTION as the owner of
each CUSTCMER having made a given type of transaction. More informa-
tion about sets, such as their definition and implementation, will be
given later.

An area is a named subdivision of a data base. There are three
basic types of areas. A data area contains record occurrences of one or
more record types. All data stored within the data base must be contained
within a data area. This is the only area type whose existence is manda-

tory.

(set type)

momEer TRANSACTION-TYPES OWRer
CUSTOMER LL TRANSACTION
(record type) > (record type)
CUSTOMER-TRANSACTIONS
owner (set type) member

Figure 7: Set Relationships

An index area 1s used in conjunction with a record type whose storage
and retrieval is considered to be through index sequential access. The
area will contain two items: first, a list of indices, determined by the
values of data items within a record occurrence which will be used to
uniquely identify that record occurrence; and second, with each index is
the page number on which the record occurrence that the index identifies
is stored. Thus, when seeking a particular record, only the indices need
to be searched to determine the record's location, rather than searching
the data area in which the record is stored.

The third type of area is a pointer area. Rather than being associated

with a record type, a2 pointer area is related to a given set type. The
area will contain a number of arrays, each one associated with the owner
of a set occurrence, and consisting of pointers to each member record.

The storage space for each area is divided into pages, which function
as the basic unit for input/output transfers between mass storage and
internal core. Once defined, the page size for each area is fixed; thus,
care must be taken when cdetermining the page size. Derivation of the
page sizes will be explained later in Section L4-2.

Record placement is handled in one of four ways, dependent on the

location mode specified in the record type's definition. (See Figure 8

-30-

for an example of a record definition.) First, a record type could have
a location mode of DIRECT. In this case, the user must supply the area
name as well as both the page number in which this record occurrence will
be stored and the record's relative record number within the page.

RECORD NAME IS FIRST-RECORD RECORD CODE IS 1
LOCATION MODE IS VIA FIRST-SET SET
WITHIN FIRST-AREA
02 NAME PIC x(18)
02 AGE PIC 9(3)

Figure 8: Example of a record definition

If the location mode of CALC is specified, the record's location
will be determined by a procedure, either system or user defined. One
item calculated by this procedure is a page number. Each page header

has one word reserved for a calc—chain pointer. If a record is to be

placed on a page through CALC, (see Figure §), this pointer is inspected
to determine if it is mull. If so, the record becomes the first record
on the page, with the header pointer containing its address, and the
record itself containing a pointer back to the header. Subsequent addi-
tions will be linked into the chain, with the header peinting to the
newest record, the newest record pointing to the next newest record, and
so forth, with the first record stored pointing to the head of the chain.
When a page becomes full and a new record, with the same calculated page
number, needs to be added, the new record will be pleced on an overflow
page, with its chain pointer indicating the last previously stored rec-
ord on the original page, and the head of the chain, on the original page,

pointing to the new record occurrence. This allows a new record occurrence

-3

PAGE1 PAGEL

HRRTEE. (calc—chain pointer) HEADER
(pointer to REC-1
previous record)
(a) empty page (b) after 1 record stored
PAGE1 PAGE1 PAGE2 (overflow page)
HEADER o HEADER
=—
REC-1 L REC-3
REC=2
(¢) after 2 records (d) after 3 records stored [use of
stored overflow page becomes necessary]

Figure 9: Use of calc-chain pointers and overflow pages

to be stored quickly, since if the header points to a record on an over-
flow page, new records will also go to the overflow page, rather than
futilely searching for a position on the original page.

With this technique it is possible to have to follow a chain from
page to page during a search to retrieve a record calculated to be on a
particular page, which could become quite time consuming. To help alle-
viate this problem, it is possible to specify that more than one calc—chain
be used per page. The CALC procedure will then determine both the page
and the calc—chain number. These multiple chains shorten the chain length
which would need to be traversed to retrieve a record.

A third possible location mode is ITNDEX SEQUENTIAL. As seen earlier,
record types stored in this fashion comtain data items which are to be

used as indices for their retrieval. Before loading a data base, records

-3 -

using this method must be sorted by their identifying data values. Then,
in physical storage, they will be stored in sequence, with later additions
handled by the system, and the indices stored in an INDEX area.

The last location mode is VIA set. In this instance a record is
expected to be retrieved only with respect to its owner record occurrence,
so when it is stored, it is placed as near to its owner as possible.
Therefore, an owner will contain a pointer to its first member, with the
members chained together and the last member pointing back to the owner,
thus forming a ring.

The location mode for a record type is made known to the system in
the record's definition at the time the data base is created. Another
entry which is possible within this record definition is the OCCURS
clause. This allows a data item or group of items to be subscripted and
eliminates the need for separate entries within the record. In effect,
it allows variable length records to be‘manipulated, thus producing a
savings in storage. Some system overhead will be incurred when the record
is compacted for storage and then expanded to its full size when retrisved
for inspection or update. |

From the preceeding discussion of pointer areas and the VIA set
location mode, one can now better understand the implementation of sets.
(See Figure 10 for an example of a set definition.) The DMS 1100 has
two means of implementing sets. One method is by the CHAIN mode. In
this case the owner is linked to its members through a chain ring and is
considered to be "forward linked" (see Figure 11[a]). Yhen using the
set occurrence, it may be desirable to traverse the member records in
reverse order, or even to traverse it in one order and then want the pre-

viously processed record. This requirement is made possible by including

-

SET NAME IS FIRST-SET SET CODE IS 1
MODE IS CHAIN
CORDER IS SORTED
OWNER IS SCME-RECORD
MEMBER IS FIRST-RECORD AUTOMATIC

ASCENDING KEY IS SOME-FIELD DUPLICATES ARE NOT

ALLOWED

SET OCCURRENCE SELECTION IS THRU LOCATION MODE

OF OWNER

Figure 10: An example of a set definition

OWNER L__ I OWNER L_
RECORD e RECORD
OCCURRENCE Ly OCCURRENCE
| |
o
i1
RECORD fe— ' Ll moom e
OCCURRENGCE y r 2 OCCURRENCE
n
by
Iy
RECORD L_ | -t FECORD
OCCURRENCE ===| OCCURRENCE
Figure 11[a]: Singly linked Figure 11[b]: Doubly linked
set occurrence set occurrence

(broken lines indicate PRIOR links)

the LINKED PRIQOR clause, causing each member record to contain two

pointers, one to the record preceedinz it in the chain, and one to the

record following it in the chain (see Figure 11[b]).

-5l =

OWNER

HECOmD r_/
OCCURHENCE

RECORD < } POINTER
OCCURRENCE ARRAY
HECORD |
OCCURRENCE —\/
(in data area) (in pointer area)

Figure 12: Set occurrence using POINTER array

The second method of implementing a set is through a POINTER
array (see Figure 12), Each member occurrence of the set will have its
location in a pointer array within a named pointer area. The owner of
these records contains a pointer to the pointer array. Therefore, the
owner's link to its members is only through its pointer array. In addi-
tion, each member will contain, in its physical storage location, a
pointer to its owner.

It is usually advantageous to keep the member records of a set
occurrence in some sort of order. For example, one may want new records
to be placed at the front or at the end of the set, or possibly to be
stored either before or after a member record occurrence which is currently
being inspected. Alternately, rather than the user determining the point

of insertion, the system could perform this function, placing records

o B

according to the values of data items within the records, with candidate
items possibly being a customer number or date. The set order is speci-
fied at the time the data base is initiated, within the OSET definition.

This SET definition also specifies which record type is to be the
owner and which record type or types will be members. The MEMBER entry
indicates when an occurrence of this entry's record type is to be added
to the set. Two possibilities exist. When the record is created its
inclusion could be AUTOMATIC, meaning that as soon as it is created
its owner is found, and the member is linked into the set. On the other
hand, the creation of a record may not warrant its automatic ineclusion
in a set. For example, the creation of a CUSTOMER record does not
mean that it should be inserted into a DELINQUENT-ACCOUNTS set. If,
at a later date, this is found to be necessary, the insertion will be
MANUAL, through some programmed procedure.

The MEMBER entry also determines if each member should contain
a pointer to its owner, alleviating the need to traverse the rest of
the set in order to return to the owner. If the set is to be sorted,
the ASCENDING (DESCENDING) identifying data fields are specified, as
well as an indication of what should be done with records having dupli-
cate field values.

Following the MEMBER entries for each set is the SET OCCURRENCE
SELECTION clause, which defines how the appropriate occurrence of a set
will be selected. If it is known that the set relationships will be used
only after an owner has been procedurally preselected, then the CURRENT
OF SET will yield the proper set occurrence. If the owner must be deter-
mined and then the set accessed, both in the same query, then LOCATION

MODE OF OWNER 1is specified. The owner will then be found, either directly

-136 -

through its own identifying data values or else through its participation
as a member in another set type.

In any set type, an owner record occurrence may appear only once.
Otherwise, the selection of a set occurrence would not be guaranteed to
be unique. Alsc, any record type may participate in several sets, either
as an owner or a member but not both within the same set type.

Everything discussed so far is brought together to define the data
base in what is called the source schema. This schema is used as input
for the Data Definition Language (DDL) Translator, which produces a

series of interpretative tables kmown as an object or absolutse schema,

to be used by octher DMS 1100 programs, such as the Data Management
Routine (DMR) and the Data Manipulation Language (DML) Preprocessor.

The DMR consists of a set of routines which access and update the
data base through DML commands, based upon the schema from the DIL
translator. Data base keys used by the DMR are 36 bit words, indi-
cating an area code, a page number, and a relative record number. These
keys are either provided by the user, in the event of a DIRECT location
mode, or derived by the system through information provided by the user,
such as an area name and values for selected data items.

The SPERRY UNIVAC 1100 Series GQuery Language Processor (QLP 1100)
provides a means of interacting with a DMS 1100 data base, either
conversationally or in a batch production mode [5]. Before using the
QLP 1100, a user must COPY from the schema the areas, records, and sets
required for processing, thus creating a subschema, which may be a subset
of the absolute schema or the whole schema. In either case, the subschema
is referenced by a user supplied name and may be saved for use in a later

session.

-37 =

Integrity of a DMS 1100 data base is accomplished through the
combination of dump tapes and audit tapes [6]. The data base adminis-
trator determines the contents of the audit tape at the time the data
base is established. One option could be to incorporate the use of a

checkpoint.and after looks. Each time a user modifies a page and returns

it to the data base, an after look of the page, that is, its contents
after modifications, will be copied to the audit tape. A checkpeint
written to the tape indicates a point in time and must be written when
the data base is not in use. Thus, when an area or the entire data base
need to be recovered, the selected area(s) are restored from dump tapes,
and after looks are applied, which were recorded from the time of the
dump to the desired checkpoint time.

A second option involved the use of a recovery point, before looks,

and after looks. A recovery point also indicates a point in time, but
it may be written to the audit tape while the data base is being used.
After looks are the same as before, and before loocks are images of a
page written to the audit tape just prior to the page being altered.
Recovery would proceed as before, with after looks being applied up to
the recovery point. Then, if the data base was in use at the time the
recovery point was written, the effect ¢f any user active at that time
is reversed by applying the before looks recorded during that session
and before the recovery point was written, thus "backing out" any active
users.

In the event of a DMR internal error or if a system failure is

encountered, a quick recovery process may be initlated to reverse the

effects of any active users on the data hase. In this process cuick-

befcre~looks are applied to back out the active users. These looks are

the same as before looks, with the difference being that they are recorded
on a fast random access device, exist only while a user is active, and

are used only in quick recovery. Any area not employing the use of quick-
before-looks could be unstable or inaccurate in the event of a gquick

recovery being initiated during an update procedure.

L,=1-2 Data Set Selection

The retrieval of a record occurrence in a DMS 1100 data base is
dependent on the schema designed by the user; more specifically, it is
dependent on the location mode specified for a record type. A record
may be selected upon the basis of user supplied data, from which a data
base key is derived by the DMR to determine a record's location in the
data base. Another selection process is possible through the set rela-
tionships established between record types.

The most straightforward method of retrieving a record is through
the location mode of DIRECT. The user is, in effect, responsible for
knowing where the record is located, with respect to which area the
record is in, what page number it is on, and what the record's relative
position is from the top of the page. The DMR will use this information
to form a 36 bit data base key which is then used to locate and retrieve
the record.

If the location mode is CALC, the only thing the user needs to
know about the record's physical placement is the area in which it resides.
When the record was originally stored, its location was computed by a
routine, based upon the values of data items within the record which
would unicuely identify it. To retrieve the record these same data item

values, as well as the area name, need to be available to the routine,

-3 -

which will then determine the page number and calc—chain number used to
store the record, The DMR will then locate the page and follow the
cale=chain until it finds the record having the same data item values as
those being sought. -This is necessary because the same page and calc-
chain numbers could be derived for different records with similar data
item values.

The INDEX SEQUENTIAL mode requires the same information as in the
CALC mode, but the method of retrieval is different. In this case the
data values are combined to form an index. Then, in the index area
associated with the record's data area, a quick search is made among the
sequentially stored indices for one matching the index formed from the
user provided information. The page number associated with the index is
located, and the record is retrieved as before.

Retrieval VIA set relationships is more interesting. First the
owner must be determined, and then the members may be located and retrieved.
The following examples will deal with queries one could use with the
QLP 1100, but first an introductory note to the QLP 1100 technigues.

When establishing a subschema for the QLP 1100 the user must also
specify the "paths" which may be used to traverse the data base; that is,
the user must supply a list which describes through what record types
entry to the data base will be made, and then, from these entry points,
what sets and other record types will be used [5]. For example, if
CUSTOMER 1is a record typs, stored by CALC using ID-NO, and it is
the owner of HOME using the LOCATION set, then the following path
declaration would allow one to use the set.

PATH NAME IS LOCATION-PATH

ROOT IS CUSTOMER
THRU LOCATION TO HOME

- L0 -

Thus, to use the ILOCATION-PATH path, the user must provide the data
required for the location of CUSTOMER. A cuery to print the NAME
within CUSTOMER along with that person's STATE which is in HOME

would look like
LIST NAME STATE VHERE ID-NO = '4JAL' VIA LOCATION-PATH
One could also have used
LIST NAME STATE WHERE ID-NO = ‘'L4LL°

In this case, the QLP 1100 would first have formed a list of the needed
record types to obtain the NAME and STATE ditems. Then the path
declarations would be insepcted to find a path containing the records
which could be entered and traversed using the data values given. It
is possible that more than one path may satisfy the query, in which case
the first path found will be used. The order of the paths is determined
by the location mode of the roo£ record, with DIRECT being first, fol-
lowed by CALC, INDEX SEQUENTIAL, DIRECT CURRENCY ASSUMED, and finally,
FETCH NEXT CURRENCY ALIOWED. An example will clarify this. In addition
to the above information, the data base will be considered to contain the
EMPLOYEE record type, which has a location mode of INDEX SEQUENTTIAL
using ID-NO. Through the JOB-LOCATICN set this record is the owmer
of the WORK-SITE record type. Thus, the following path would be valid.
PATH NAME IS JOB-SITE-PATH

ROOT IS EMPLOYEE

THRU JOB-LOCATION TO WORK-SITE
Provided EMPLOYEE contains a HNAME field and WWORK-SITE contains a

STATE field, the query

LIST NAME STATE WHERE ID-NO = 'LLLL!

b

could be satisfied by either IOCATION-PATH or JOB-SITE-PATH, assum-
ing a person with an ID-NO = 'LL4A' is included in both. From the
information concerning path orders, one can see that IOCATION-PATH, in
which CUSTOMER is chosen by a CALC procedure, will be selected.
Further qualification of the selection criteria would involve the
addition of more data item values to the WHERE clause. To return to
- the sbove example, WORK-SITE could be the owner of the EMPLOYEE
records which describe those persons assigned to the particular work
location. The path
PATH NAME IS EMPLOYEE-DISTRIBUTION

ROOT IS WORK-SITE

THRU SITE-EMPLOYEES TO EMPLOYEE
would use the SITE-EMPLOYEES set to retrieve EMPLOYEE records owned
by the selected WORK-SITE record occurrence. If WORK-SITE has a
location mode of CALC wusing CITY and STATE data item values, and

EMPIQYEE also contains AGE and WEIGHT fields, then the cuery

LIST NAME WHERE CITY = 'HAMPDEN' AND ;

STATE = 'MAINE' AND ;

AGE ¢ '30' AND WEIGHT < '143' ;

VIA EMPIOYEE-DISTRIBUTION
would first determine the location of a HWORK-SITE record, using the
CITY and STATE data values. If a record occurrence is found, then
the other fields are sought, causing the SITE-EMPLOTEES set to be
traversed to locate the NAME, AGE and WEIGHT fields. In each
EMPLOYEE record owned by the isolated WORK-SITE record occurrence in
the SITE-EMPLOYEES set, the data fields AGE and WEIGHT are checked
against the values specified in the cuery. Then the name of each employee,

if any, satisfying the query is printed.
- 5P

Entry to the data base without the use of a key is possible with
the QLP 1100. A qguery necessitating this would be of a more general

nature, such as
LIST NAME AGE WHERE OCCUPATION = 'DOCTOR!

where OCCUPATION is not a keyed data field. NAME could be a field in
a PERSONNEL record which owns, through the set INFORMATION the DATA
record, which contains the AGE and OCCUPATION fields. In addition,
the PERSONNEL record type has a location mode VIA another set. A
possible path could be
PATH NAME IS PERSONAL-INFO

ROCT IS PERSONNEL

FETCH NEXT CURRENCY ALLOWED

THRU INFORMATION TO DATA
which would cause retrieval of the root records to be through a DMR
FETCH FIRST/NEXT PERSONNEL OF AREA command., Thus all the root record
occurrences and their members would be inspected to find the desired
information.

Cne can see that this could be a very time consuming operation,
dependent on the number of PERSONNEL records contained in the data base.
Another important fact the user must remember when developing queries is
that when processing a single query, the QLP 1100 may use a record type
and set type only once. That is, if HREC~1 owns EREC~2 through SET1,
and REC-2 owns REC-1 through SET2, a query could not traverse both
SET1 and SET2 since this would cause one of the record types to be

accessed twice in a single path.

-

4=2 Justification of the Chosen Definition

A network DBMS such as DMS 1100 is noted for its capacity to
interrelate different record types through the use of sets. The user
is afforded a degree of control over the physical placement of records,
as well as being given the capability to assist the system in its efii-
ciency of data manipulation, through the creation of a schema which will
serve as a definition for the entire data base. All the activities of
DMS 1100 are dependent on this schema, using it as a type of road map
to determine record locations. The user does not need to be concerned
with the physical aspects of a record's location, such as what track or
c¢ylinder it resides on, because the system will perform all the 1/0
that is necessary. Instead, the user needs to provide only that informa-
tion upon which a record's placement is dependent, such as wvalues of
particular fields. Then the location of a record for retrieval will be
determined by the same method that was used to store it initially.
Alternately, it can also be located through its participation in one or
more sets.

Rather than approaching each repository individually, as was done
in Chapter 3 with DBL4, the DMS 1100 better lends itself to a dis-
cussion based on the three sections which form the schema definition,
that is, the AREA, HRECORD and SET sections, followed by the special
considerations involved in the use of the QLP 1100.

To assist the reader, a logical diagram of the DMS 1100 data base
definition is included at the end of Appendix B (see B-10). From this
diagram one can see how record types are related by sets, with a legend

ineluded to explain the set characteristies.

L=2=1 Area Definitions

Preceeding the actual area entries (see B -2 through B=3) are two
statements important to subsequent use of the data base. The AREA CONTROL
statement indicates the maximum number of areas that are expected to be
used. Its purpose is to indicate the number of bits to be used to indi-
cate an area in the data base keys formed by the DMR., If omitted, 12
bits will automatically be assumed. In this schema the minimum allowable
number of areas is specified, 127, reserving 7 of the 36 data base
key bits for the area code, since the number of areas to be used should
not exceed 127. A benefit of this is the fact that more bits may be
used for page and record numbers, in the event that an exceptional num-
ber of either of these is required.

The next statement in the schema specifies what AREA LOOKS are
-to be taken. Updates to the data base are expected to be in a batch mo&e
and from data stored on tape. Therefore, rather than have a recovery
point written to the audit tape automatically at predefined intervals,
the use of checkpoints, written only upon request, were considered to be
sufficient. A large number of updates could be made at one time and then
a dump tape made. Then, during a relatively low period of updates, the
AFTER looks and checkpoints would be sufficient to maintain data base
integrity. Another advantage of checkpoints is that only AFTER looks
are reouired, rather than both BEFORE and AFTER looks, as with recov-
ery points. QUICK-BEFORE-LOOKS are included in the event of a system
error during an update procedure, so that QUICK RECOVERY could be initi-
ated and the data base returned to a stable state. If the data base is
being used only for queries, no looks need to be taken since there will

be no changes made to the data base during a query session.

s P

Each area definition must contain an area NAME, for user reference,
and an area CODE, for use only by the system. This area CODE allows
the system to reference an area by number, thus each area CODE must be
unique.

The number of pages allocated to an area is very important, and is
determined by the user based upon record sizes and record volume. In
determining record size, a word must be reserved for each pointer that
will be used in set relationships involving the record type. For example,
a record which is designated as an owner must contain a pointer to its
first member record, as well as a pointer to its last member record if
the set is doubly linked. Chain links for CALC or INDEX SEQUENTIAL
location modes, pointers for sets in which the record is a member, and
storage for a one word record header must be included, as well as any
data contained in the record.

The following figures show how the record size for the CRIFS-REC
was determined. This record type is the most involved record used in
the data base. Its record size determination is included at this point
merely for exemplary purposes. Its full meaning should be understood by
the reader upon completion of this chapter, and it is suggested that it

be reviewed at that time.

Record header (fixed) 1 word
Owner of 5 sets with next links 5
Chain links — index sequential location mode 1
User data (59 bytes) 10

Total record size requirements for CRIFS-REC 17 words

Thus, each CRIFS-REC record type will require 17 words of mass stor-

age space.

il

The numbers derived in each AREA definition were based on the
assumption that there would be approximately 300,000 records of each
type stored. Vhen determining the amount of storage, the user should
consider both the nmumber of records involved in the initialization of
the data base as well as the number of records expected to be added dur-
ing the life of the data base.

The page size establishes the number of records that may be trans-—
ferred in a single I/b operation. Again, the figures in the schema
definition could prove to be totally undesirable, based upon how the
data will be used.

In computing page size, 10 words are reserved for a page header.
If 40O CRIFS-REC records are to be stored per page, this would amount
to 6800 words. Then, for CRIFS-AREA, there is one additional consid-
eration. Since this record type is stored by an index seqqential location
mode, one word for each record on the page must be reserved for an index
slot. This brings the total number of words to 721C. Page sizes must
be in multiples of 28 words due to system recuirements, so the final
page size for CRIFS-AREA would be 7224 words. To store 300,000
records would recuire 750 pages, with 400 records per page.

Specifying PRE-INITIALIZED pages will cause each page to be brought
into core during the initialization of the data base. The page header
will be formed and the remainder of the page cleared before returning it
to storage. If this is not done during initialization, the same process
will occur when a page is first referenced for record storage. Due to
the size of the data base, it was considered best to have the pages
initialized as they are needed.

If a record needs to be stored on a page which is already full,

-

an alternate location must be found. By allowing for CVERFLOW pages,
the user recognizes the possibility of future additions to the data base.
As the data base becomes full, the probability of finding room on a page
for a new record decreases. If overflow pages are not reserved, record
placement could become difficult, causing several nearby pages to be
inspected before a location is found. As seen earlier, the calec—chain
pointer in a page header will point to the most recently added record.

If this record is on an overflow page, then subsequent additions to the
original page would begin the search for storage space on the overflow
page, where room would more likely be found.

Another way to allow for data base growth is to include the EXPAND-
ABLE clause in the area definition. This clause states the number of
pages to which the area could later be expanded without necessitating the
reloading of the enlarged area.

The areas defined in the schema are all data areas (the default
specification) with the exception of one index area, named INDEX-AREA.
This area is associated with the CRIFS-REC record type whose location
mode is INDEX SEQUENTIAL. This mode facilitates the rapid retrieval of
a record from a large number of record occurrences, based upon selected
data values. lhen retrieval of a record is required, the user supplied
values for the record's selection are combined to form an index. Then a
rapid search, such as a binary search, is made of the index area to locate
the index. With each index is the page number in the record's data area
on which the rescord is stored.

Before the data base is initially loaded the records must be sorted
by the data values upon which their selection is dependent. Then both

the record's data and index areas are sequentially loaded. After this

no further additions to the index area are possible. New records will
be stored by having the index area searched as before. Since this area
was stored in sequential order, the page number of where the record would
be logically stored can be determined from the existing indices. If this
page has room for the new record, it is inserted in its proper sequential
position, with other records moved down the page if necessary. If space
does not exist, the record is placed on an overflow page and linked by

a sequentially ordered chain to its proper position.

For a new record to be added to an already existing group of INDEX
SEQUENTIAL records, either space on each page must have been saved during
the initial loading, or overflow pages must be allowed, with the record's
definition specifying that LINKS are included to associate a new record
with its logical position. In either case, as mentioned before, the
index cannot be added to the INDEX area. For a new data base with few
record occurrences and a large potential for growth, this method would
not be practical. Better results would be achieved using CALC or DIRECT.

Each record type was placed in a separate area so that the area size
and expansion factors could be tailored to each record type's expected
growth and volume. It is entirely possible to place different record
types in the same area in order to aid the efficiency of retrieval opera-
tions. Another reason for the individual areas was the type of queries

that are expected, as will be seen later.

L=2-2 Record Definitions

Each record definition (see B -3 through B=-6) contains the same
data fields that were used in the DB4 files. This section deals only

with exceptions to the DBL4 definitions and with the statements recuired

oy

for the schema. Additionally, the DUMMY-REC record type, as well as
the DUMMY-AREA and the two sets, DUMMY-ECG and DUMMY-LAB, will be
explained later in Chapter 5, where the reasons for their creation will
be better understood.

Every record type definition describes the characteristics of a
record, providing both information required by the system for physical
access, and a complete description of the data fields used to reference
data.

Each record type must be named and assigned a HECCRED CODE by the
user. The name will be used by the user in referencing the data base,
and the RECORD CODE is used by the system to numerically reference a
record type.

The LOCATION MODE indicates how a record will be stored. Since
CRIFS-REC wuses INDEX SEQUENTIAL, the data items identifying each
record occurrence are indicated, which must be data fields contained in
the record's description. The records will be stored in ASCENDING
order and will be indexed by the combination of a person's SSAN and
NAME. These are both used because part of a sponsor's SSAN is used
for a dependent's identification. The index area to be used must be
specified, along with the LINKS clause if later additions using over-
flow pages are to be used. Without both LINKS in the record descrip-
tion and OVERFILOW pages in the associated data area, future records
for which no space is available on their logical page could not be stored.
As in all cases where a record is stored and sorted by some data value,
the system must be told what to do if storage procedures are attempted
for records with duplicate identifying data values. The usage of a

person's SSAN and NAME will uniquely identify a CRIFS-REC record,

-50 -

so DUPLICATES ARE NOT ALLOWED. The last item recuired for system use
indicates in what area or areas the record will be stored. The associa-
tion of the area name with its area code is done by the system and is of
no concern to the user.

The ECG-REC record type will be stored in its own area. ZEach
record occurrence is considered to be a member of a CRIFS-REC record
occurrence associated with the same person. Thus, the SSAN and NAME
fields are not included in the record description but are implied by
membership in the CRIFS-ECG set. The ECG-DX-CODEs are included in
the description through the use of an OCCURS clause, causing this
record to be a variable length record. When the record size and subse-
quent page size were derived for the ECG-REC record type, an average
for the number of expected ECGDX-CODEs was used. This same averaging
consideration was applied to all other record types containing the OCCURS
clause.

The remaining record types ——TDM-REC, LAB-REC, CS-REC, CAT-HEC —
all involved the same considerations menticned previously, with respect
to their ownership by CRIFS-REC, storage within their own area, and
the use of the OCCURS clause. Data field representations were not
changed from those used in the DB4 files except for the exclusion of

identifying data values due to the use of set relationships.

L=-2-3 Set Definitions

A set provides a means of relating record types to each other,
allowing a group of records to be selected by the location of a single
record and the existence of a set relationship. When a record is stored

VIA its membership in a set, its record placement will be as near to

o FT

its owner as possible. An exception to this is when the record type's
definition in the schema indicates that the record is to be placed in an
area different from that of the owner. If the set has several different
record types, with each one in its own area, and the set members are
connected by a chain, retrieval of the record occurrences in a single
set occurrence could be quite time consuming, requiring several accesses
to retrieve the records from the several areas.

Five sets are used in the DMS 1100 schema described in Appendix B
(see B-6 through B=7), with the CRIFS-REC record owning each of the
other five record types in the schema through five individual set types.
In each set CRIFS-REC is the owner and a single record type the only
member.,

The main purpose of the data base is to store medical information.
Thus, it is important for each record stored to be accurately associated
with the person to whom it pertains. During update procedures, the
proper CRIFS-REC record must be chosen, with its selection made by an
individual's SSAN and NAME. If a more positive icdentification is
desired, any other information known about the person whose new record
is to be stored can be compared to the data in CRIFS-REC, such as date
of birth, SEX or RACE. The new record would be stored only after the
proper criteria, as required by the particular programming procedure being
used, have been met. The strictness of these criteria is dependent on
the installation, and it is the responsibility of the update procedure
to positively identify a person's CRIFS-REC before storing a new record.

An example of this can be seen in the CS-REC and the CS report
form from which the record's data is obtained. This form contains SSAN

and NAME fields, which will be used to find the CRIFS-REC to which

-52 -

this new CS-REC will be related through the CRIFS-CS set. The form
also contains DOB, SEX and RACE fields, which, due to their existence
in the CRIFS-REC, will not be redundantly stored in the CS-REC. Even
though these three fields are not used to select a CRIFS-REC, once an
occurrence of CRIFS-REC is chosen using the SSAN and NAME, the values
of these three fields can be procedurally compared to the same fields in
CRIFS-REC, with any discrepancies causing the new CS-REC to be rejected
until corrected.

As with both areas and records, each set type must have a NAME for
user reference and a SET CODE for use only by the system. The MODE
by which the set is implemented may be either POINTER or CHAIN.

Record retrieval using POINTER would require a POINTER array to be
referenced each time a member record occurrence is to be located, whereas
with the CHAIN mode, each member contains a pointer to the next occur-
rence. For simplicity the CHAIN mode is used, with a record's place-
ment in the chain dependent on the data value of a field which uniquely
identifies it with respect to the other record occurrences in the set,
such as the date of the examination (DOE).

Each time a new record is added to the data base, it will be imme-
diately linked into the chain of the set occurrence to which it belongs,
since AUTOMATIC is indicated in all sets in the schema. Due to the
implementation of record retrieval for queries, each member of a set will
also be LINKED TO OWNER. The reason for this will now be seen in the

next section.

-53 -

L=2-4 QLP Information

The QLP 1100 allows a user to be given access to only part of an
existing data base. For example, if a number of LAB-REC records are
to be added, the subset of the data base which would be needed would con-
sist of the CRIFS-AREA, INDEX-AREA and LAB-AREA areas, the CRIFS-REC
and LAB-REC record types, and the CRIFS-LAB set type. This config-
uration of a data base subset is called a subschema. Several subschemas
may exist at the same time, whereas only a single schema may exist at
any point in time. The subschema used in this report (see B-9) is
actually the entire absolute schema, as can be seen by the COPY ... ALL
statements. If a proper subset is to be used, one must be careful to
include all required parts of the absolute schema. For instance, in the
above example, INDEX-AREA had to be included in order to access the
CRIFS-REC records.

The subschema also specifies several paths which may be traversed.
These paths will be used in the cueries demonstrated in Chapter 5. The
CAT-LAB path indicates that a search will begin with the CAT-REC record
type. A particular value of a data field will be the object of the initial
part of the cuery. As seen in a previous section, each record occurrence
of the CAT-REC type will have to be inspected, with the FETCH NEXT
CURRENCY ALIOWED statement permitting a FETCH FIRST/NEXT CAT-REC OF AREA
command to be initiated by the DMR. Through the OWNER 1links, a
CAT-REC record containing the desired cqueried data values can be traced
to its owner, and from there, through CRIFS-LAB, it can be associated

with the LAB-REC records belonging to the same person.

-5l =

The many details inveolved in the definition of a DMS 1100 data
base and the impact of these details on its subsequent use, tend to make
this a more difficult system to understand as compared to the DB4

relational data base. In the next chapter the implications of this will

be seen.

-55 -

CHAPTER 5

COMPARISONS

A1l data base management systems strive to achieve a set of common
goals — to assist a user with information storage and retrieval needs,
and to allow a user to manipulate the data in order to gain knowledge
from it that would otherwise be difficult to realize without an automated
means such as a DBMS. 1In the case of this report, this "buried knowledge"
pertains to a statistical analysis of the data for research purposes, and
is one of the main considerations in the following comparisons.

Relational and network data bases, though they share the same pur-
pose, are completely different in implementation and use. Thus, a com-
plete discussion of them would be too lengthy for this report, which
considered only those factors which were of the greatest concern for
this specific application. A more general comparison may be found in
current publications, such as [7].

As stated in Chapter 1, simplicity of the data base is essential.
Factors affecting this will be brought ou£ throughout the rest of this
chapter. Also, the reader will notice the absence of detailed explana-
tions concerning some of the points made in the following sections.

This is not meant to make the discussions ambiguous, but rather to assist
the reader by making it known that the data base possesses a particular
capability, for which a detailed explanation may be found in the reference
cited. Inclusion within the text of these explanations would not aid

the understanding of the comparisons, but instead would divert the atten-

tion from the point which is being made.

5-1 Basis of General GQueries

In the DB4 relational data base, all queries are based upon keyed

signatures. As previously stated in Chapter 3, the keyed simatures

-57 -

are stored in the structure space, separated from the data to which they
are a part of. When isolating a2 data set through the use of queries,
only the structure space, consisting of pointers, is affected, with
access to the data space made when output is requested.

The term "data base key" in DMS 1100 has a different connotation.
In this case the key is a 36 bit word with three parts — an area code,
a page number and a relative record number. Therefore, it has a more
physical meaning. Only in the case of a DIRECT location mode can a
record contain a field labelled as a data base key. Instead, specified
fields within the record description will be defined to be used as the
basis from which a record location may be calculated. In the case of a
general query, such as isolating all records with a particular value for
a named data field, each record must be inspected which, if a large num-
ber of record occurrences are present, can be a very time consuming pro-

cedure.

5=2 Queries

In this section examples of current cueries used in the MARK IV
system are given, followed by the DB4L and DMS 1100 cueries needed
to isolate the same data set. It should be noted that both systems sup-
port a REPORT feature for output formatting [3,5].

It has been found that $0% of the current queries deal with a
single repository. An example of this concerns the CS repository,
where a person's complete CS record is to be printed if keywords, such
as HEADACHE or MIGRAINE, are contained in the diagnostic text. In

DBY one could use:

-58 =

FIND DATA WHERE KEYWORD EQ 'HEADACHE' OR
KEYWORD EQ 'MIGRAINE'

PROJECT DATA FROM CS~DIAG THRU SSAN,NAME INTO CS

REPORT DATA REPORT-AAA
This would cause the desired data set to be isolated in the collection
name DATA and then printed. The PROJECT takes all cases where the
keyword exists and locates the rest of the CS report belonging to that
person.

With DMS 1100 the query could take the form:

LIST USING FORMAT FORMAT-CNE WHERE KEYWORD EQ 'HEADACHE' ;
OR KEY'ORD EQ 'MIGRAINE' VIA CS~CRIFS PATH
Using the data base description in Appendix B, the above cuery would
isolate the same data set as the previous cuery, with FORMAT-ONE being
a previously defined formatting specification [5].

If desired, any data set isolated by a cuery may be sorted by any
field or fields before printing. Both data base management systems pro-
vide this feature.

A more interesting cuery arises when a single query involves two
repositories. This is a case where the user is given power, through the
DBMS, which is not available in conventional secuential file manazement
systems. The following query is in two parts. First, secuence by NAME
and print the full cover sheet for those people having a DX-CODE of
994 after 1 January 1971. Then, using the SSAN, find each person's
WAIVER record, sequence again by NAME, and print the WAIVER file.
The VWAIVER file is not currently incorporated into the cross-referenced
repository system, but for the purposes of this query, one will assume

that it is. In DB4L it will be considered to be a data group with both

B s

SSAN and NAME as keyed fields. The DMS 1100 representation will
be the same as the other five repository record types, with WAIVER-REC
owned by CRIFS-REC through the CRIFS-WAIVER set. When the WAIVER
repository is brought into the rest of the repository system, its repre-
sentation would be like those stated above, to conform with the data base
definitions.
The DBL query could be as follows.

FIND DATA WHERE DX-CODE EQ 994 AND DOE GT 710101

PROJECT DATA FROM CS-DIAG THRU SSAN, NAME INTO CS

ORDER DATA O NAME

REPORT DATA REPORT-BBB

PROJECT DATA FRCM CS THRU SSAN INTO WAIVER

ORDER DATA O NAME

REPORT DATA REPCRT-CCC
The DOE in the FIND statement takes the form YYMMDD, making compari-
sons using the data field quite easy. The ORDER statement is to order
all data records from all areas that are isolated in DATA, as can be
seen from the use of the universal area name (0). After the first
printing, the DATA collection name is still intact, and can undergo
further processing. It is projected into the WAIVER file throuzh the
SSAN data field. The second ordering is not really necessary since
the records in DATA are still ordered. Instead, one could have gone
directly from the second PROJECT to the second REPORT with the same
results.

To retrieve the above data set in DMS 1100 will recuire two separate

queries which, due to the implementation of DMS 1100, must be totally
independent cf each other. The impact of this is that a previously iso-

lated data set may not be used in a subsequent cuery unless it is

-60 -

regenerated and used as an intermediate result.
The basic form of a call to a previously defined REPORT definition

in DMS 1100 is
GENERATE REPORT-NAME WHERE ...

in which REPORT-NAME is the report's name and the 'HERE clause is
the same as for any other cuery, except that a VIA clause may not be
specified. The generated report will be returned to the user unless
statements are inserted before the VHERE clause specifying some other
output device. Thus, the DMS 1100 cuery could read
GENERATE REPORT-DDD WHERE DX-CCDE EQ 'GCL' ;
AND DOE GT '710101!
Neither of the two data fields provide an immediate means of entering
the data base, sc a path with FETCH NEXT CURRENCY ALLO'ED will be
sought which will contain both the above two fields as well as those
fields contained in the REPORT-DDD report definition. From the
SUBSCHEMA definition in Appendix B, the CS-CRIFS path will be chosen
and the query satisfied.
The second part of the query, retrieving the WAIVER file, would
require the following PATH definition:
PATH NAME IS CS-WAIVER

ROOT IS CS-REC

FETCH NEXT CURRENCY ALLOWED

THRU CRIFS-CS TO CRIFS-REC

THRU CRIFS-VAIVER TO WAIVER-REC
With REPCRT-EEE containing data fields from the WAIVER file that are

not present in the other repositories, the query

GENERATE HREPORT-EEE VHERE DX-CODE EQ 'GS4' ;
AND DOE GT '710101!

will cause the CS-WAIVER path to be traversed and the query executed.
As noted before, the use of the two queries in DMS 1100 to generate
the desired CS and WAIVER reports necessitates the data records to
be isolated twice, since a previous query's results may not be processed
in another statement. The ordering of the above reports by NAME may
be specified in the REPORT definition [3,5]. —

The previous two queries discussed, involving first one and then
two repositories, were fairly easy to isolate in both the DBL and
DMS 1100 data bases. The next query is the most involved to be consid-
ered. It begins in the CAT repository where patients with a DX-CODE
of 06 or 09 and an ECG-REASON of 05 (contained in section B-9
of the report form) are to be isolated. After printing a report contain-
ing information from the CAT repository, the ECG repository is to be
checked for a DX-CODE of 720. If this is the case, another report
of the isolated records is made, again containing information from the
CAT fepository. The final recuest in the query involves the generation
of seven lists of the isolated record occurrences secuenced in different
orders. The main problem with this cuery is that for the individuals
isolated a LAB record for them is to be retrieved and one of the seven
lists is to be secuenced by the sum of several values within the LAB
record. Both data bases will compute and print subtotals in a report [3,5],
but neither can sequence the records by the subtotalled values. If this
is desired it must be done through a programmed procedure and not throuch
the DBMS cuery lanzuage.

In the following DBL4 cuery two collections are used, DATAl and

62~

DATA2, in order to retrieve the data sets.

FIND DATAl WHERE (DX-CODE EQ 01 OR DX-CODE EQ 09)
AND B -9 MV '000000000000010000"
REPORT DATAl REPORT-FFF
FIND DATA2 WHERE DX-CODE EQ 720
PROJECT DATA2 FROM ECG-DX-CODES THRU SSAN, NAME INTO ECG—EX
FIND DATAl AND DATA2
REPORT DATAl REPORT-GGG
PROJECT DATAl FROM CAT THRU SSAN, NAME INTO LAB

reports generated

As before, the sequencing may be specified within the report.

Since section B-9 is stored in bit form, the mask value used
must correspond to the way in which the data values are represented.
Rather than the user projecting a collection from one area to another,
the DBL system can provide this function, based upon shared keyed
signatures. The rest of the statements function as previously described,
with DATAl being reused each time a report is generated.

In DMS 1100 a new query must be generated for each desired report.
For the first part of the cuery, the following could be used:

GENERATE REPORT-HHH WHERE (DX~-CODE EQ 'O1' OR DX-CCDE EQ '09') ;

AND B=9(5) EQ '1
From the paths in the schema in Appendix B one can see that the CAT-ECG
path would be selected since data fields in both the CAT-REC and ECG-REC
record types are recuired.

Subsequent reports recuiring the above isolated data set may be gzen-
erated by resubmitting the command with different report names. As men-

tioned previously, reports secuenced by subtotals from a LAB-REC record

b3 =

must be handled by a programmed procedure, but it can be shown how one
could traverse the DMS 1100 data base to isclate both the above data
set as well as the LAB-REC records which would be included.

From the diagram in Appendix B, one can see how the above data were
retrieved. The search originated in CAT-REC, and through the owner
pointer of the CRIFS-CAT set, moved to CRIFS-HEC. Then using the
CRIFS-ECG set, the ECG-REC records were reached. If from this point
in the query the LAB-REC record type also needs to be accessed, the
owner pointer of the CRIFS-ECG set cannot be followed back to CRIFS-HEC
in order to use the CRIFS-LAB set, since each record or set type may
be traversed only once in a single path. Thus a somewhat artificial means
was devised to zo from the ECG-REC record type to the LAB-REC record
type in this kind of situation. A DUMMY-REC record type was created
which owns, through two different sets, the ECG-REC and LAB-REC record
types. From its record definition in the schema one can see that its only
data fields are SSAN and NAME., %When a CRIFS-REC record is created
for a person, a DUMMY-REC record must also be created. Then, whenever
a new ECG-REC or LAB-REC record is introduced to the data base, it
will be automatically added tec the DUMMY-ECG or DUMMYI-LAB set, respec-
tively. Through this method, more than three records connected through
sets involving the CRIFS-REC record type may be traversed in a single
path, but, obviously, it complicates the representation of the data base
and increases the amount of storage which must be used to store the
additional record as well as to record the set relationships. Also,
unexpected cueries in the future which are as involved as this one may
not be answerable with the DMS 1100 system, unless the schema is changed

and the whole data base reprocessed to reflect the changes necessary to

T

retrieve the information. This is a case where the effort and cost
required to satisfy a query may not be justified by the information
finally retrieved.

In contrast to the above considerations with DMS 1100, the DBA4
system bases its queries only upon keyed signatures, with no restrictions
on the order in which data groups must be accessed. Also, the results
of a previous query may be used, whereas in DMS 1100 no intermediate
data sets may be saved to undergo further processing in a separate query.
This can be a very costly factor, causing a great deal of computer time
to be spent retrieving the same data set several times when, for example,
different report forms of the same data are desired.

The same hierarchical structure possible in the DMS 1100 system
may be achieved in DBL <through the use of a single command. An example
of the power of this would be better illustrated using an example unrelated
to the repository data. Instead, assume the existence of a data base
containing CUSTOMER and PURCHASE data groups. CUSTOMER is identified
by an ACCOUNT nuﬁber, and each PURCHASE is identified by the ACCOUNT
number of the person to which it applies as well as an ITEM number,
indicating what was purchased. Using the collection name DATA, further
assume that it already contains the CUSTOMER and PURCHASE records
for one dey of activity in a store. Now a report is to be printed show-
ing the day's activity. The followinz commands

SETHI DATA CUSTOMER PURCHASE
REPORT DATA REPORT-III
allow this tc be done. The SETHI statement will group CUSTOMER and

PURCHASE records together that both have the same value in a shared

55

signature, in this case ACCOUNT. After this command, DATA logically
contains CUSTOMER-PURCHASE groups of records, each group pertaining to
a single customer. In DMS 1100 this same hierarchy would be represented

by the CUSTCMER record type owning the PURCHASE record type.

5-3 Storage Requirements

The figures in this section were derived from the data base descrip-
tions in Appendices A and B. Appendix C displays these figures for each
data base, assuming an average of 400,000 record occurrences for each
record type. In cases where a DMS 1100 OCCURS clause was used to
store data which was represented in a data group in DBA4, storage for
an ecual amount of the data in both data bases was computed. The figures
are not truly representative of the actual number of records to be stored
in the data base since they assume a fully loaded data base, but they do
accurately state the record sizes and can act as a basis for comparing
the two data base representations, taking into consideration such system
recuirements as pointers.

The DBL data space is used to store the actual data of the data
base. One will note that two of the data groups have a record size of
0 (see C-2). This is because every field of these groups is keyed, and
keyed signatures are stored in the structure space.

The DBD processor will reserve space in the structure space for
every possible value of a keyed signature. This can be overridden by
the UNIQUE OCCURRENCES clause if it is known aporoximately how many
unicue values are to be expected for a signature. For example, every

data zroup contains an SSAN field and, without the UNICUE CCCURRENCES

= BB

clause, storage would have been reserved for each SSAN field in each
data group, when obviously no more than 400,000 values, one for each
person, can be expected.

Associated with each signature in the structure space will be pointers
indicating in which records that signature value occurs. Without an
actual implementation, the space for these pointers, as well as the space
recuired for the control space, cannot be determined, but the following
point can be made. If all the signatures in the data base were keyed,
then the amount of space required to store the keyed siznatures and the
overhead structure would be considerably sreater than simply storing the
data. This data explosion would be on the order of a factor of three [3].
The fisures show the data space to be 7.47 108 bytes in size, while
in comparison, the signature storage recuires 1.76 = 107 bytes. Clearly,
no data explosion will take place, and the space reocuired for the struc-
ture space can be expected to be small in proportion to the data space.

The record and page sizes for the DMS 1100 definition are displayed
on pages C=-4 through C-6. The figures are in six byte words and, for
comparison's sake, the totals (see C-7) are in bytes. The following
figures are the result of Appendix C.

DBL4 size requirements 7.65 % 108 bytes

DMS 1100 size recuirements Q.49 » 108 bytes
As stated above, the DBL size recuirement includes neither the structure
space pointers nor the control space. Allowing for these, the method of
DB4 implementation will recuire about the same amount of storage as in
DMS 1100. Though' DB4 will require less storage for the data space, the

advantage is offset by the structure and control spaces. The DMS 1100

-67 -

computations are based on the size of the data base after it is fully

expanded. Its initial size is about 25% smaller.

5=k System Overhead

Due to the different implementation of each DBMS, the system costs
incurred during processing will vary from system to system. This section
reiterates some previously mentioned factors affecting each system.

The DBL ogquery deals entirely with the structure space until the
isolated record occurrences are to be output. This allows the DBL4 sys-
tem to work with a fairly concise representation of the entire data base.
Also, previously isoclated data sets may be used in later cueries, alleviat-
ing the need to repeat an identical command.

New data must first be loaded into the data base, and then constructed
to generate the structure space. The amount of time recuired for this
generation is dependent on the number of new records, the number of keyed
signatures, and the distribution of the siznatures throughout the data
base. If a time limit is exceeded during the execution of a CONSTRUCT
command, an orderly shutdown takes place. Completion of the structuring
merely requires that the command be resubmitted [3].

In using a2 DBL4 data base the large core option may be specified.
This will cause the DBM to extend its buffer pool significantly, thus
improving the efficiency and turnaround time as well as reducing process-
ing costs [31.

Record retrieval in DMS 1100 depends upon locating a record and
then, if desired, following pointers to find member record occurrences.

For standard record processing this is cuite satisfactory, but it causes

-68 -

cueries to have the potential to be very time consuming. As seen before,
the general cueries that are expected to be asked of the data base will
recuire each record of an area to be inspected. Upon finding a record
from which the rest of the data base may be traversed, a path may be
followed through several set and record types unless a data value in one
of the records causes the path occurrence to be disgualified from ineclu-
sion in the data set being sought. Thus, a great deal of false path logic
is very likely to be incurred during the execution of a cuery command.

The OCCURS clause results in a storage savings, with some overhead
involved in compacting the record for storage and expanding it during
retrieval. Also, as the data base begins to fill, the likelihood of
having to find alternate record locations on overflow pacges increases,
causing the system to spend more time to locate records.

The DMS 1100 system is responsible for maintaining the integrity
of the data base through the writing of ILOOKS to an audit tape. Also,
QUICK-BEFORE~LOOKS must be saved during a session using the data base.

The effect of these disadvantages can be controlled by carefully
desizning the schema, especially in the case of the addition of new
record occurrences. If those designing the schema have a detailed know—
ledze of how the data will be used and the expected growth rate of the
data base, then the schema can be tailored to their needs, resulting in

a hizher degree of efficiency.

5-5 Data Base Intecrity

Data base integrity may be defined to be the protection of the data

and its relationships from system failures and could include the recuirement

-69 -

that data values be verified, assuring that they are within a reasonable
range [2]. An installation's data may be its most valuable and important
asset, thus it is paramount that it be accurate and protected.

The current procedures used with the MARK IV system included in-
depth verification processes. These processes should be retained and
modified for use with any new DBMS, especially since neither DBL
nor DMS 1100 provide a means of doing this automatically.

Updates to the data base are expected to be in a batch mode from
data on tapes. Dumps of the data base to tape are necessary in case the
data become severely damaged or destroyed. With DBL, a data base may
be restored by keeping dump tapes and also the update tapes which were
incorporated into the data base after the most recent dump. 1In the
event that the data base would need to be reloaded, the dump tapes would
restore the data base to a stable condition. Then any subsequent update
tapes would be reprocessed to bring the data base up-to—date. The
frequency of making dump tapes depends on the desires of the user, but
it can be seen that dumps should be made after large updates to avoid
having to reprocess large amounts of data in the event of a subseauent
data base failure.

Errors in the structure space usually are localized to the structure
space for a single keyed signature [3]. The query facility may be used
to locate the malfunctioning signature. Then a DESTRUCT command issued
for the bad signature will destroy its structure but preserve the data,
This would be followed by a CONSTRUCT to regenerate the structure space
for the signature.

If errors are found throughout the structure space, an S option

DBD run may be executed which will destroy the structure space for the

-70 -

entire data base. This, followed by a CONSTRUCT command, would reset
the entire structure space. If this still does not solve the problem,
then the data base must be restored from the most recent dump tapes.

An error in the data space could be due either to irregularities
in the data records themselves or damaged areas in the virtual directory
that controls access to the data space. In the first case, the errors
could be corrected by locating the bad records and updating them. If
the damage islmore widespread but is known to occur above a particular
relative record number within an area, the TRUNCATE command would
remove all records from the named area above and including the relative
record number [3]. The removed records would then have to be restored
from their original tapes and constructed.

If the virtual directory is damaged, or if errors are widespread
.ﬁhroughout a data area, the VBUILD command will regenerate the virtual
&irectory for the named area. If the problem still is not solved, the
bad area can be completely wiped out (through the RAZE command), reloaded
from a data tape and then constructed. At this point, if the problem is
still present, the whole data base must be restored from dump tapes.

Errors in the control space could be due either to a damaged virtual
directory (discussed above) or to a problem in the data base definition.
For the latter case, an S option DBD run should be done, followed by
the VCORE command, which will repair portiocns of the DBD associated
with virtual processing that are not repairable with the S option DBD
run. Then the CONSTRUCT command should be run. If the above secuence
does not correct the problem, then dump tapes must be restored.

DMS 1100 recovery procedures involving the use of IOOKS were

extensively discussed in Chapter 4. These prccedures have an advantace

H] -

over DB4 1in that a complete reload of the data base is not as likely to
be necessary. Also, calc—chains and sets may be verified by a system-
provided procedure [7]. If errors are found, such as bad pointers or
loops, an error message is printed describing the error and its locatioen.
The user must then determine the necessary correction and use the

PATCH utility to make the correction.

5-6 Flexibility

A data base which is rigid and unchanseable would not prove to be
very useful, since, almost without exception, the information and data
needs of an installation will change over a period of time.

The most prominent concern in this area could be allowing for the
growth of the data base. In DB4 the DBD must indicate the maximum
size which is expected. If this is grossly underestimated or overestimated,
each area needs to be dumped to tape, which may be done through a utility
function. A new DBD, indicating the changes in size, must be processed,
then the data reloaded and constructed. Data independence will be pre=-
served, but all the UIDs must be reprocessed to reflect the changes.

With DMS 1100 the EXPANDABLE clause allows the data base size
to be inecreased after it is initially created. The source schema will
need to be changed and processed, as well as any existing subschemas.
Careful consideration of the original schema must be made if it is to be
expanded, to make sure the new object schema will be compatible [41. If
the data base growth necessitates an increase beyond that which is stated
in the EXPANDABLE clauses, then major reprocessing must occur, causing

all the keys to be changed.

Lo

Statistics concerning storage utilization within the data base are
available in both DB4 and DMS 1100. In DB4, the DECAL command
will provide a numerical analysis of each area or selective areas. From
these data one can determine how full the data base is becoming, as well
as the number of unicue occurrences for each keyed signature. This latter
information may indicate that an S option DBD run should be executed
to change the UNIQUE OCCURRENCES clauses. A considerable storage savings
could be realized if the original UNIQUE OCCURRENCES numbers were not
well estimated. This same kind of run may be used to change data zroup-
ings within a record deseription, to change a keyed signature to an
unkeyed signature (or vice versa), or to change the choice of signature
names [3].

A more extensive set of statistics on storage utilization is avail-
able in DMS 1100, which includes the average number of used and unused
words per page within each area. A'more detailed description, listing
these figures for each page is also available upon user recuest. This
kind of information would be very helpful to determine if and when the
data base should be expanded. It is produced after page compaction is
recuested, during which deleted records will be removed from the data
base and the remaining records on each page compacted, leaving all avail-
able space in a page in a single block. Page compaction may be specified
for 2 single area, several areas, or the entire data base. It can be a
very time consuming operation and should be done only when recuired.

A DBMS allows several users to view the same data in different
logical organizations. This is due to the fact that a DEMS is able to
take a logical description, known to the user, and map it into a physical

description, known to the DBMS. From this physical description a record's

-73 =

physical location may be determined, based upon user supplied data values.
This separation of logical and physical views through a DBMS is
what gives a data base the capacity to be modified and changed as the needs
of those using the data base change. \hen the need arise§ for a data base
to be changed in some way, it will be either the DBD (DBL) or the
schema definition (DMS 1100) which must be inspected and modified.
| In DMS 1100 a large number of sets may exist, causing the rela=-
tionships between record types to potentially be quite complex. Any
changes to the data base must be carefully considered, both to avoid any
disruption in the existing data base, as well as to assure that any new
additions will be properly incorporated to allow paths to exist for gquery
purposes. ‘ -
The normalized form of data representation in DBL provides protec-
tion i‘ron; future changes in the data base [2]. No physical relationships
between the data groups are assumed to exist, with logical relationshipﬁ
established dynamiéally upon the execution of a query. This allows the
normalized data base to have a conceptually cleanef logical representa-
tion than that which is possible in a network data base, éiving it an
éesthetic simplicity. The lack of user control over record placement
does not degrade the system's performance in querj procedures due to
the fact that only a subset of the dat# base, namely the structure space,
is involved in the selection of a data set. Records are not physicaily J
accessed until required for output. Thus, the user wishing to initiate
changes to the data base needs to focus mainly on only the new data and
its normalized fepresentation.

The conclusions drawn by the author may be found in Chapter 84

=T)

CHAPTER 6

CONCLUSIONS

=75~

The choice of a data base is dependent upon a user's needs for
information management. The factors considered in this report are by
no means exhaustive, but it treated what were considered to be the most
important aspects affecting the representation and cuery use of the
USAFSAM medical repository data files.

The two data base management systems investigated in this report
were found to be comparable in most respects. As seen in Chapter 5 and
Appendix C, their size requirements were similar. The fact that the
information required for data access and manipulation is stored separately
from the data in DBL4 was seen to be an advantage. Rather than the
necessary pointers being embedded within the records themselves, they
are contained in the structure space, causing cueries encompassing a wide
range of the data base to have accesses to the mass storage devices
restricted to only those areas where the structure space resides. Retrie-
val of the actual data is not necessary until the data are desired for
output. %ith DMS 1100, ocuerdies involving a large portion of the data
base result in a sizeable number of accesses to occur in order to trace
the logical relationships between records.

The integrity facilities available in DB4 were seen to be more
appropriate for this application. Since updates are to be in a batch
mode from data recorded on tapes, a dump tape of an updated area could
be made immediately after an update session in DBL. As seen in Chapter 5,
errors in the virtual directories or the structure space can be corrected
by the DBMS through the execution of specific commands. Only errors
occurring in the data space must be corrected by the user. If updates
to the data base were to be made by individual users, the ILCCKS in

DMS 1100 would ensure data base integrity, makinz it possible to reverse

76 -

the actions of a single user, which is not automatically possible in DB4.
Another major drawback to recovery in DBL is the fact that a total
reloading and reconstructing of the data base is required for cuite a
number of errors, which in a data base for these repositories would be
very time consuming, considering its size.

The major difference found between the relational and network data
bases was the method of querying. 'ere cueries to be based on retriev-
ing information about a particular individual, both data base types would
be appropriate, but instead, they involve the inspection of data fields
to try to determine, for research purposes, if any correlations exist
between the fields. Vhile DBL can handle these types of cueries quite
easily, DMS 1100 must inspect each record individually during the search,
which would be a very lengthy operation in most cases, involving a great
deal of false path logic.

Therefore, in the author's opinion, the utilization of the contents
of a medical data base for researchers would best be accomplished throuzh
the implementation of a relational data base system. 'ith properly main-
tained integrity procedures and rizorous verification procedures to ensure
the correctness of the data upon entry to the data base, the data base
would be found to be a very powerful tool, possessing both the capacity
to meet the current information management needs as well as the ability

to adapt to future modifications and enhancements to the system.

-77 -

APPENDIX A

DB4 DATA BASE DEFINITION

DATA BASE NAME IS REPOSITORIES
UNIQUE OCCURRENCES ARE SSAN,

02
02
02
02

02
02
02
02
02
02
02

CRIFS,

SSAN

DCB

SEX

RACE
FLY-PHYS

DTH-CODE
SQDC
DOLE
SOLE
FLAGS
03 CS
03 ECG
03 TDM
03 LAB
03 CAT
03 VCG

L0000

x(9)
x(27)
x(6)
x(1)
X(1)
x(1)
x(1)
X(1)
x(1)
x(4)
x(1)

x(1)
X(1)
X(1)
x(1)
X(1)
X(1)

NAME,
CASE-NO,
B-9,

DOB,

DOE,
DX~CODE,
c-11,
TEST,
KEYWORD,
CTH-SEQN,
RACE,
RUN-YO,
SEX,

KEY
KEY

400000
LOO000
400000
26211,
36525
36525
1000
512
237
200

10

[keyed signatures having a
restricted number of values]

[examination classification]
[service classification]
(death codes]

[source of death code]

[date of last exam]

[source of last entry]

DG ECG-EX, 395000 [ECG examinations]

02 SSAN x(9) KEY

02 NAME x(18) EKEY

02 DOE X(6) EKEY

02 FILE-NO X(6) (ECG file number]

02 AGE 9(2) [age at time of examination]

02 HT 9(2) [height at time of examination]

02 WI 9(3) [weight at time of examination]

02 BP x(6) [blood pressure]

DG ECG-DX-CODES, 2000000 [diagnostic codes resulting from
ECG examination]

02 SSAN x(9) KBY

02 HNAME Xx(18) KEY

02 DOE X(6) K=Y

02 DX-CODE X(3) KEY [identifying diagnostic code]

DG TDM, 400000

02 SSAN X(9) KeY

02 NAME X(18) K=Y

02 CASE-NO 9(5) KEY [case number]

02 DOE x(6) KEY

02 GRADE x(2)

02 RUN-NO 9(1) [test run number]

02 PR-TDM o(1) [indicates a prior TDM test]
02 AGE o(2)

02 ACT-STUS 9(1) (indicates activity status]

[environmental conditions at
time of examinationl™

* In cases where a large number of data fields within the repositories
are not essential to the understanding of the data base definition,
the field descriptions have been omitted, with a bracketted note des-
cribing their contents.

A3

TDM DATA GROUP — CONT.

02 WALKING-RESULTS [3.3 MPH]
03 A [first minute]
o, BP X(6) [blood pressure]
oh HR 9(3) [heart rate]
03 B [second minute]
04 BP X(6)
oL HR 9(3)
: [results of minutes 3 = 24]
: [recovery data]
: [findings]
DG LAB, 4L00Q0O
02 SSAN X(9) EKeY
02 NAME x(18) KEY
02 CASE-NO 9(5) KEY
02 DOE x(6) KeY
02 HEMOGRAM [remaining contents of record
03 AA g(2) consists of test results for
03 4B 9(2)v(1) 237 tests]
02 GLUC~TOL-URINE [glucose tolerance - urine results]
03 K
oL A 9(k)
o, B 9(4)
03 R
oy A 9(3)
oL B 9(3)

8 8R8

02
02

DG

SRBRRBRBRBRVS

3

02
02
02
02
02
02
c2
02

LAB-MESSAGES, 2000000

SSAN x(9)
NAME X(18)
CASE-NO 9(5)
DOE x(6)
TEST x(2)

MESSAGE X(20)

€S, 396000
SSAN x(9)
NAME x(18)
DOB x(6)
SEX x(1)
RACE x(1)
CASE-NO 9(5)
DOE x(6)
CS=PHYSICIANS,
SSAN x(9)
NAME x(18)
DOB x(6)
SEX x(1)
RACE X(1)
CASE-NO 9(5)
DOE X(6)
PHYSICIAN

KEY
KEY
KEY
KEY
KEY

KEY

800000

KEY
KEY

03 PHYS-CODE X(3)
03 DEPT-CODE X(3)

[messages associated with tests]

[other data from CS report form]

(physicians involved with CS report]

[physician's identification code]
[department code of physician]

SBRBB8RBR/8S

02
02

SRBR8R

02
02
02
02

CS-DIAG, 2000000
SSAN X(9)
NAME x(18)
DOB x(6)
SEX x(1)
RACE x(1)
CASE-NO 9(5)
DOE X(6)
DX-CODE X(3)
DX~TEXT

03 KEYWORD X(10) KEY
03 TEXT x(20)
CAT, 402000

SSAN x(9)
NAME X(18)
CASE-NO 9(5)
DCE X(6)
GRADE x(2)
HT 9(2)
WT 9(3)
CTH-SEQN 9(5)

[diagnostic codes from cover sheet]

[identifying diagnostic keyword
for queries]

[catheterization sequence number]

[data pertaining to catheterization]

[data pertaining to coronary risk
profile of patient]

RRBRRIBLSN

DG

02
02
02
02

02

CAT-DET,

NAME
CASE-NO

CTH-SEQN
SEC-B

03 B=7

03 B-8

03 B-9

SEC-C

03 C-=10
03 C-11

CAT-DIAG,

SSAN
NAME
CASE-NO
DOE
CTH-SEQN
DX-CODE

800000

X(9) KeY
x(18) KeY
9(5) KeY
X(6) KeY
9(5) KBY
I(1)

1(2)

1(3) KEY
1(2)

I(2) KEY
2000000
x(9) EEY
1(18) KBY
9(5) KBy
X(6) KBY
9(5) KeY
X(2) KEY

[determinations from catheterization]

[results from section B of
report form]

[*]
(results from section C of
report form]

[remaining test results]

[diagnostic codes from cateterization]

* Data in these fields are stored in bit form for query purposes.

APPENDIX B

DMS 1100 DATA BASE DEFINITION

IDENTIFICATION DIVISION

SCHEMA NAME IS REPOSITORIES

DATA DIVISION

ABEA SECTION

AREA CONTROL IS 127 AREAS

AREA LOCKS INCLUDE QUICK-BEFORE-LOOKS, AFTER-LOOKS

AREA NAME IS CRIFS-AREA AREA CODE IS 1
ALLOCATE 750 PAGES
1 OVERFLOW PAGE EVERY 2/ DATA PAGES
EXPANDABLE TO 1000 PAGES
PAGES ARE 7224 WOHDS

AREA NAME IS TNDEX-AREA AHEA CODE IS 2
MODE IS INDEX AREA
ALLOCATE 300 PAGES
EXPANDABLE TO 400 PAGES
PAGES ARE 6524 VORDS

AREA NAME IS ECG-AREA AREA CODE IS 3
ALTOCATE 430 PAGES
1 OVERFLOW PAGE EVERY 24 DATA PAGES
EXPANDABLE TO 570 PAGES
PAGES ARE 8428 WORDS

AREA NAME IS TDM-AREA AREA CODE IS 4
ALIQCATE 3000 PAGES
1 OQVERFLOW PAGE EVERY 24 DATA PAGES
EXPANDABLE TO 4000 PAGES
PAGES ARE 7728 WORDS

AREA NAME IS LAB-AREA AREA CODE IS 5
ALIOCATE 6000 PAGES
1 OVERFLOW PAGE EVERY 24 DATA PAGES
EXPANDABLE TO 8000 PAGES
PAGES ARE 6860 WORDS

AREA NAME IS CS-AREA AREA CODE IS 6
ALIOCATE 2500 PAGES
3 OVERFLOW PAGES EVERY 4O DATA PAGES
EXPANDABLE TO 3300 PAGES
PAGES ARE 6972 WORDS

AREA NAME IS CAT-AREA AREA CODE IS 7
ALLOCATE 2500 PAGES
1 OVERFLOW PAGE EVERY 24 DATA PAGES
EXPANDABLE TO 3350 PAGES
PAGES ARE 9156 WORDS
AREA NAME IS DUMMY-AREA AREA CCDE IS 8
ALIOCATE 430 PAGES
1 OVERFLOW PAGE EVERY 24 DATA PAGES
EXPANDABLE TO 570 PAGES
PAGES ARE 6328 WORDS
RECORD SECTION
RECORD NAME IS CRIFS-REC HECORD CODE IS 1
LOCATION MODE IS INDEX SEGQUENTIAL
USING ASCENDING KEY IS SSAN, NAME
INDEX AREA IS INDEX-AREA
LINKS ARE NEXT
DUPLICATES ARE NOT ALLOWED
WITHIN CRIFS—AREA

02 SSAN PIC X(9)
02 NAME PIC x(27)
02 DOB PIC X(6)
02 SEX PIC X(1)
02 RACE PIC X(1)
: [other data fields identical

to those used in DB4]
RECORD NAME IS ECG-REC RECORD CODE IS 2

LOCATION MODE IS VIA CRIFS-ECG SET
WITHIN ECG-AREA

02 DOE PIC 9(6)
02 FILE-NO PIC X(6)
02 AGE PIC 99
02 HT PIC §9
02 WT PIC 99
02 BP PIC 9(6)

02 DX=-CNT PIC 9(2) USAGE IS COMP
02 DX-CODE OCCURS O TO 10 TIMES DEPENDING ON DX—CNT
03 ECG=DX-CODE PIC X(3)

B-3

RECORD NAME IS TDM-REC RECORD CODE IS 3
LOCATION MODE IS VIA CRIFS-TDM SET
WITHIN TDM-AREA
02 CASE-NO PIC 9(5)

02 DOE PIC 9(6)
02 GRADE PIC X(2)
02 RUN-NO PIC 9(1)
02 PR-TDM PIC X(1)
02 AGE PIC 9(2)
02 ACT-STUS PIC 9(1)

: [environment conditions at time
of examination]
02 TDM-CNT PIC 9(2) USAGE IS COMP
02 TDM-RESULTS OCCURS 1 TO 24 TIMES DEPENDING ON TDM—CNT
03 BP PIC 9(6)
03 HR PIC 9(3)

. [recovery data]

[findings]

RECORD NAME IS LAB-REC RECORD CODE IS 4
LOCATION MODE IS VIA CRIFS-LAB SET
WITHIN LAB-AREA
02 CASE-NO PIC 9(5)

02 DOE PIC 9(6)

: [test results]

02 MES-CNT PIC 9(2) USAGE IS CCMP

02 LAB-MESSAGES OCCURS O TO 20 TIMES DEPENDING ON MES-CNT
03 TEST PIC X(2)
03 MESSAGE PIC X(10)

FECORD NAME IS CS-REC RECORD CODE IS 5
LOCATION MODE IS VIA CRIFS-CS SET
WITHIN CS-AREA '

02 DOE PIC 9(6)

02

02

02

CASE-NO PIC 9(5)

[other data from CS report form]

DIAG-CNT PIC 9(2) USAGE IS COMP

CS-DIAG OCCURS O TO 10 TIMES DEPENDING ON DIAG-CNT
03 DX-CODE PIC X(3)

03 DX-TEXT
04 KEYWORD PIC X(10)
0L TEXT PIC X(15)

PHYS-CNT PIC 9(2) USAGE IS COMP

PHYSICIANS OCCURS 1 TO 5 TIMES DEPENDING ON PHYS-CNT
Q3 PHYS—CODE PIC X(3)
03 DEPT-CODE PIC X(3)

RECORD NAME IS CAT-REC RECORD CODE IS 6
LOCATION MODE IS VIA CRIFS-CAT SET
WITHIN CAT-AREA

02
02
02
02
02

02
02

CASE-NO PIC 9(5)

DOE PIC 9(6)

CRADE PIC x(2)

HT PIC 9(2)

WT PIC 9(3)
[data pertaining to catheterization]
[data pertaining to coronary risk
profile of patient]

CTH-SEQN PIC 9(5) USAGE IS COMP

CAT-DET OCCURS O TO 10 TIMES DEPENDING ON CTH-SECN
03 SEC-B
O4 SAM-REFERRAL OCCURS 6 TIMES
05 B-7 PIC X(1)

04 CLINICAL-REASONS OCCURS 10 TIMES
05 B-8 PIC X(1)
04 ECG-REASONS OCCURS 18 TIMES
05 B-9 PIC X(1)
03 SEC-C
OL CAT-PROCEDURES OCCURS 12 TIMES
05 C=10 PIC X(1)
O4 ANGIOGRAPHY~COMPLETED OCCURS 9 TIMES
05 C-11 PIC X(1)

: [remaining test results]

03 DIAG-CNT PIC 9(2) USAGE IS COMP
03 SEC-H
0L DIAG OCCURS O TO 20 TIMES DEPENDING ON DIAG-CNT
05 DX-CODE PIC $9

RECORD NAME IS DUMMY-REC RECORD CODE IS 7
IOCATION MODE IS CALC DMSCALC
IN AREA-NAME
USING SSAN, NAME
DUPLICATES ARE NOT ALLOVED
WITHIN DUMMY-AREA

02 SSAN PIC X(9)
02 NAME PIC X(27)
SET SECTION

SET NAME IS CRIFS-ECG
SET CODE IS 1
MODE IS CHAIN
ORDER IS SORTED
OWNER IS CRIFS-REC
MEMBER IS ECG-REC AUTOMATIC LINKED TO OWNER
ASCENDING KEY IS DOE
DUPLICATES ARE NOT ALLOWED
SET OCCURRENCE SELECTICN IS THRU LOCATION MODE OF OWNER

SET NAME IS CRIFS-TDM
SET CODE IS 2
MODE IS CHAIN
ORDER IS SORTED
OWNER IS CRIFS-REC
MEMBER TS TDM—REC AUTOMATIC LINKED TO OWNER
ASCENDING KEY IS CASE-NO, DOE
DUPLICATES ARE NOT ALLOWED
SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER
SET NAME IS CRIFS-LAB
SET CODE IS 3
MODE IS CHAIN
ORDER IS SORTED
OWNER IS CRIFS-REC
MEMBER TS LAB-REC AUTOMATIC LINKED TO OWNER
ASCENDING KEY IS DOE
DUPLICATES ARE NOT ALLOYED
SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER
SET NAME IS CRIFS—CS
SET CODE IS &4
MODE IS CHAIN
ORDER IS SORTED
OWNER IS CRIFS-REC
MEMBER IS CS-REC AUTOMATIC LINKED TO OWNER
ASCENDING KEY IS CASE-NO, DOE
DUPLICATES ARE NOT ALLOWED
SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER
SET NAME IS CRIFS—CAT
SET CODE IS 5
MODE IS CHAIN
ORDER IS SORTED
OWNER IS CRIFS-REC
MEMBER IS CAT-REC AUTOMATIC LINKED TO ONER
ASCENDING KEY IS DOE
DUPLICATES ARE NOT ALLOWED
SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OLNER

B~7

SET NAME IS DUMMY-ECG
SET CQDE IS 6
MODE IS CHAIN
ORDER IS SORTED
OWNER IS DUMMY-REC
MEMBER IS ECG-REC AUTOMATIC LINKED TO OWNER
ASCENDING KEY IS DOE
DUPLICATES AHE NOT ALLOWED
SET OCCURHENCE SELECTION IS THRU LOCATICON MODE OF OWNER
SET NAME IS DUMMY-LAB
SET CODE IS 7
MODE IS CHAIN
ORDER IS SORTED
OWNER IS DUMMY-REC
MEMBER IS LAB-REC AUTOMATIC LINKED TO OWNER
ASCENDING KEY IS DOE
DUPLICATES ARE NOT ALLOWED
SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER

SUBSCHEMA NAME IS QUERY-USE OF SCHEMA REPOSTITORIES FOR COBOL QLP
COPY AREA ALL
COPY RECORD ALL
COPY SET ALL
PATH NAME IS CS-CRIFS
ROOT IS CS-REC
FETCH NEXT CURHENCY ALLOWED
THRU CRIFS-CS TO CRIFS-REC
PATH NAME IS CAT-ECG
ROOT IS CAT-REC
FETCH NEXT CURRENCY ALLOWED
THRU CRIFS-CAT TO CRIFS-REC
THRU CRIFS-ECG TO ECG-REC
PATH NAME IS CAT-CRIFS
ROOT IS CAT-REC
FETCH NEXT CURRENCY ALLOWED
THRU CRIFS-CAT TO CRIFS-REC
PATH NAME IS CAT-LAB
ROOT IS CAT-REC
FETCH NEXT CURRENCY ALLOVED
THRU CRIFS~CAT TO CRIFS-HEC
THRU CRIFS-ECG TO ECG-REC
THRU DUMMYI-ECG TO DUMMY-REC
THRU DUMMY-LAB TO LAB-REC

LOGICAL DMS 1100 SCHEMA CONFIGURATION

TDM-REC ECG-REC
A A *® A
DUMMY-ECG
CRIFS-TDM

CRIFS-ECG DUMMY-REC
. DUMMY-LAB

Y A
CRIFS-LAB A
CRIFS-REC < »» LAB-HEC
CRIFS-CAT CRIFS-CS
A A
CAT-REC CS-REC
LEGEND
record type

set relationship
CRIFS-=XX set name

A automatic member

OWNER ——*{MEMBE multiple member record occurrences possible

OWNER MEMBER owner pointer in each member

APPENDIX C

DERIVATION OF SIZE REQUIREMENTS

DBL DATA SPACE — MASS STORAGE REQUIREMENTS

DATA GROUP RECORD SIZE NUMBER OF BYTES REGUIRED (x 106)

LAB 728 291.200
TDM L03 _ 161.200
CAT-DET 146 116.800
csS 156 61,776
LAB-MESSAGES 20 40.000
CS-DIAG 20 40.000
CAT L3 17.286
ECG-EX 19 7.581
CRIFS 15 6.000
CS-PHYSICIANS 6 4.800
ECG-DX~-CCDES 0] 0.000
CAT-DIAG 0 0.000

Total data space requirements T4T » I.O8 bytes

DB4 STRUCTURE SPACE — SIGNATURE SPACE REQUIREMENTS

SIGNATURE NUMBER OF UNIQUE OCCURRENCES NUMBER OF BYTES REQUIRED

NAME 400,000 10,800,000
SSAN 400,000 3,600,000
CASE-NO 400,000 2,000,000
B=9 262,14, 786,432
DOB 36,525 219,150
DOE 36,525 215,150
DX-CODE 1,000 3,000
KEY-WORD 200 2,000
c-11 512 1,024

TEST 237 L7L

Total keyed signature recuirements 1.76 « 107

DMS 1100 RECORD AND PAGE SIZES (IN WORDS)

RECORD SIZE
CRIFS - HEC
Header 1

Owner pointers
of 5 sets 5
Index sequential
pointer 1

" Data (59 bytes) 10

17

ECG - FEC
Header 1
Next set pointers 2
Owner pointers 2
Data (442 bytes) v
12

TDM - REC
Header 1
Next set pointer 1
Owner pointer 1

Data (442 bytes) 74

77

PAGE SIZE
CRIFS — AREA
Page header 10
400 recs/page 6800
Index slots LOO
7210
Page size 7724
ECG - AREA
Page header 10

700 recs/page 8400

8410

Page size 8L28
TDM - AREA

Page header 10

100 recs/page 7700

7710

Page size 7728

DMS 1100 RECORD AND PAGE SIZES (CONT.)

RECORD SIZE

LAB - REC

Header 1
Next set pointers 2
Owner pointers 2
Data (790 bytes) 132

137
CS = REC
Header 1
Next set pointer 1
Owner pointer

Data (326 bytes) 55

58

CAT - REC
Header 1
Next set pointer 1
Owner pointer 1

Data (435 bytes) 73

76

PAGE SIZE

LAB —- AREA

Page header 10
50 recs/page 6850

6860
Page size 6860

CS — AREA

Page header 10
120 recs/page 6960

6970
Page size 6972

CAT - ARFA

Page header 10
120 recs/page 9120

9130

Page size 9156

DMS 1100 RECORD AND PAGE SIZES (CONT.)

RECORD SIZE

DUMMY - REC

Header

Owner pointers
of 2 sets

Data (36 bytes)

\OIO\N

PAGE SIZE

DUMMY - AREA

Page header 10
700 recs/page 6300

6310
Page size 6328
INDEX = AREA

Page header 10
1000 entries

per page 6500

6510

Page size 6524

AREA NAME

CRIFS—-AREA
ECG-AREA
TDM-AREA
LAB-AREA
CS—-AREA
CAT-AREA
DUMMY-AREA

INDEX-AREA

DMS 1100 STORAGE REQUIREMENTS (IN BYTES)

NUMBER OF PAGES
(MAXTMUY)
1000
570
4000
8000
3300
3350
570
400

PAGE SIZE

7724
8128
7728
6860
6972
9156
6328
6524

NUMEER OF BYTES
REQUIRED (» 107)

L.634
2.882
18.55
32.93
13.80
18.40
2.164
1.566

Total mass storage requirements 9.49 % 10

8

BIBLIOGRAPHY

L.

BIBLIOGRAPHY

"A Computerized System for Processing Medical Repository Data".
Report SAM-TR-77-21. Brooks Air Force Base, Texas, August 1977.

Martin, James. Computer Data-Base Organization. Englewocod Cliffs,
N.J.: Prentice-Hall, Inc., 1975.

UCC Data Management System. University Computing Company, Dallas,
Texas, 1976.

Data Management System (DMS 1100) Schema Definition. Sperry Rand
Corporation, Revision 2, 1975.

Query Language Processor (QLP 1100). Sperry Rand Corporation,
Revision 1, 1977.

Data Management System (DMS 1100) System Support Functions. Sperry
Rand Corporation, Revision 2, 1974.

Michaels, Ann S.; Mittman, Benjamin; and Carlson, C. Robert. "A
Comparison of the Relational and CODASYL Approaches to Data-
Base Management." Computing Surveys 8 (March 1976): 125-151,

A COMPARISON OF RELATIONAL AND NETWORK DATA BASE
REPRESENTATIONS OF A MEDICAL REPOSITORY SYSTEM

BY
PAULA 5. BOSHWELL
B.S., NORTHWEST MISSOURI STATE UNIVERSITY

MARYVILLE, MISSOURI
1976

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1978

ABSTRACT

The United States Air Force School of Aerospace Medicine (USAFSAM)
is currently using the MARK IV file management system for the storage
and retrieval of medical repository data. The number of records existing
in these repositories allows their use in clinical studies to gain sta-
tistical validity, but the present system is not being fully utilized due
to the difficulty of information retrieval methods. This report involves
the representation of the existing medical repositories in two different
types of data bases, namely a relational data base (the UCC Data Manage-
ment System) and a network data base (the Data Management System 1100).
The comparison of advantages and disadvantages of each system focused
mainly upon the query facilities available, with additional consideration
given to storage fequirements, procedures available to ensure data base
integrity, system overhead incurred, and the ability of the data base to

adapt to the changing information needs of the user.

