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Abstract
In network theory, a complex network represents a system whose evolving structure and dy-

namic behavior contribute to its robustness. The study of complex networks, though young, spans

diverse domains including engineering, science, biology, sociology, psychology, and business, to

name a few. Regardless of the field of interest, robustness defines a network’s survivability in the

advent of classical component failures and at the onset of cryptic malicious attacks.

With increasingly ambitious initiatives such as GENI and FIND that seek to design future

internets, it becomes imperative to define the characteristics of robust topologies, and to build

future networks optimized for robustness. This thesis investigates the characteristics of network

topologies that maintain a high level of throughput in spite of multiple attacks. To this end, we

select network topologies belonging to the main network models and some real world networks.

We consider three types of attacks: removal of random nodes, high degree nodes, and high be-

tweenness nodes. We use elasticity as our robustness measure and, through our analysis, illustrate

that different topologies can have different degrees of robustness. In particular, elasticity can fall

as low as 0.8% of the upper bound based on the attack employed. This result substantiates the

need for optimized network topology design. Furthermore, we implement a tradeoff function that

combines elasticity under the three attack strategies and considers the cost of the network. Our

extensive simulations show that, for a given network density, regular and semi-regular topologies

can have higher degrees of robustness than heterogeneous topologies, and that link redundancy is

a sufficient but not necessary condition for robustness.
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Chapter 1

INTRODUCTION

Why study future network topologies? For one, we have experienced several moderate sized fail-

ures and thus, large failures are inevitable. In particular, the 2006 earthquake in Taiwan disrupted

undersea fiber optic communication lines and as a result, banks from South Korea to Australia suf-

fered massive interruptions [1]. Though this represents a direct network failure, failures can also

occur indirectly. For example Code Red, a computer virus that incapacitated numerous networks,

resulted in a global loss of 2 billion US dollars [2]. Furthermore, in 2004, Sassar virus disruptions

accounted for the halt on maritime operations in the UK, the halt on railway operations in Aus-

tralia, and the interruptions in hospital facilities in Hong Kong [3]. The US General Accounting

Office estimated 250,000 annual attacks on Department of Defense networks [4]. Objectives range

from theft to immobilization of entire networks. Another riveting example stems from a series of

cascading failures in 2003 that resulted in a blackout in the Northeastern states [5]. A similar phe-

nomenon occurred the very same year in Italy and left 56 million residents without power for 9

hours [6]. Our daily routines would cease to exist should network topologies disintegrate. Thus, as

failures and attacks increase, it is imperative to design future topologies robust against unforeseen

catastrophes for future network initiatives.

Amongst other definitions, a network can be robust if disconnecting components is difficult.

However, we define robustness as the ability of a network to maintain its total throughput under

node and link removal. The former definition is based on topological characteristics, while the

latter also considers traffic flow.
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Approaches for determining the robustness of graphs has evolved from simple graph theoretic

concepts that highlight the connectivity of a graph [7] to more recent concepts that consider the

spectrum of a graph [8]. However, these measures are unable to capture our definition of ro-

bustness. For this reason, we use elasticity as our measure of robustness; it meets the functional

requirements of capturing throughput under node and link removal.

The importance of this thesis stems from our objective to extract the characteristics of robust

networks. With these results, we seek to produce future robust network topologies. Thus, to

realize our first goal, we

1. use the metric elasticity as a measure of robustness of a network

2. establish the upper bound for elasticity

3. assess elasticity for diverse network models

4. present correlations between elasticity and selected network metrics

5. develop and implement a function that considers the tradeoff between elasticity and network

cost

6. extract characteristics of networks that make them robust

The rest of this thesis is structured as follows. Chapter 2 gives a brief overview on measures

for robustness while Chapters 3 and 4 provide a more detailed review of metrics and distributions

for characterizing the structure and behavior of a network. Chapter 5 presents the network models

from which networks will be selected to assess their elasticity. In Chapter 6, we review elasticity,

our robustness measure, and provide analytical and numerical approaches to obtain the upper

bound. In Chapter 7, we assess the elasticity of each network, implement a tradeoff function that

considers elasticity under the three removal strategies, and discuss the characteristics which make

a network robust. Finally, we discuss the benefits and shortcomings of elasticity and highlight our

future initiatives to characterize the robustness of complex networks in Chapter 8.
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Chapter 2

DEFINITION OF ROBUSTNESS

What is robustness? In complex networks, robustness can encompass properties ranging from

redundancy and diversity, to concepts such as the ability to operate under perturbation or the

efficiency of feedback control mechanisms. In this work, we define robustness as the ability of

a network to maintain its total throughput under removal of nodes (and links). Our definition

directly considers flows on a network. Properly defined, flows can represent intuitive concepts

such as traffic flow on a road network, or an abstract concept as the flow (or transmission) of a

disease in an epidemic.

Though flows provide an additional perspective in evaluating the behavior of a network, we

cannot overlook the role of structural properties of a network; both are necessary to extract features

of a network. For this reason metrics to measure the robustness can be classified into two key

groups: metrics that consider a network’s structure (the interaction of network components), and

metrics that consider a network’s function (contributing factors to the network’s operation and

behavior). Throughout this thesis, the terms network and graph will be used interchangeably.

However, from a graph theory perspective, a graph is a collection of edges and vertices while a

network contains information relevant to a system (flows, capacities etc.)

2.0.1 Background and Related Work

The classical approach for determining robustness of networks entails the use of basic concepts

from graph theory. For instance, the connectivity of a graph is an important, and probably the

3



earliest, measure of robustness of a network [7]. Node (link) connectivity, defined as the size of

the smallest node (link) cut, determines in a certain sense the robustness of a graph to the deletion

of nodes (links). However, the node or link connectivity only partly reflects the ability of graphs to

retain certain degrees of connectedness after deletion. Other improved measures were introduced

and studied, including super connectivity [9], conditional connectivity [10], restricted connec-

tivity [11], fault diameter [12], toughness [13], scattering number [14], tenacity [15], expansion

parameter [16], and isoperimetric number [17]. In contrast to node (link) connectivity, these new

measures consider both the cost to damage a network and how badly the network is damaged.

Subsequent measures consider the size of the largest connected component as nodes are at-

tacked [18]. Furthermore, percolation models were used to assess the damage incurred by ran-

dom graphs [19]. From spectral analysis, experimentalists consider the second smallest Laplacian

eigenvalue as a measure of how difficult it is to break the network into components [8].

The measures reviewed thus far consider the network structure to assess robustness. However,

more recent efforts have incorporated the behavior of the network [20, 21]. More precisely, the

authors maximized flows in the network while imposing constraints on routers and links.

Other metrics in networking literature include the average node degree [22], betweenness [23],

heterogeneity [24], and characteristic path length [25]. In this thesis, our results show significant

corelations between elasticity and some of these metrics which will be used to characterize the

robustness of networks.

Chapter 3 provides a more thorough analysis of the various metrics to assess the robustness of

a network.

4



Chapter 3

METRICS TO ASSESS ROBUSTNESS

3.1 CHARACTERIZING THE STRUCTURE

Combinatorics, a branch of theoretical mathematics, considers metrics to characterize the net-

work’s structure. Metrics such as edge expansion, node expansion, spectral gap, natural connec-

tivity, and algebraic connectivity, are metrics to measure the robustness of a graph with respect to

its connectivity (for two nodes s and t, connectivity defines the existence of a path between these

nodes. Otherwise, they are disconnected.) In this case, robustness assesses the difficulty of dis-

connecting a network into components (a component is subgraph in which a path exists between

any source-destination node s and t). Applying this definition of robustness, a fully connected

graph, formally known as a mesh or complete graph, is more robust than a star graph. However,

given the extensive costs in implementing a mesh network, combinatorics considers a robust graph

as one, which though sparse, exhibits high connectivity: expander graphs fall in this category. In

the following sections, several metrics will be presented with their respective definitions, and for

some metrics, a discussion on their applicability in certain cases. Table 3.1 highlights the most

frequently used variables throughout this work.
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Variables Definitions
n node
N total number of nodes
m link
M total number of links
kn degree of node n
k̄ average node degree
P (k) Probability given node has degree k
n(k) Number of nodes with degree k

Table 3.1: Definitions of the most common variables used throughout this work

3.1.1 Average Degree

Average node degree k̄, of graphG, whereG = (V,E), is the average number of edges connecting

vertices in G. Equation 3.1 computes the average node degree.

k̄ =
2M

N
=

1

N

N∑
n=1

kn =
kmax∑
k=0

kP (k) (3.1)

where kmax is the maximum node degree.

3.1.2 Diameter

Diameter is the longest shortest path (or the longest graph geodesic), between any source-destination

node in graph G. It can be calculated by finding the shortest path between source node s and des-

tination node t, ∀ (s, t) ∈ V : Diameter then is the longest of all these paths. Several algorithms,

including Breath-first search, Depth-first search, and Floyd-Warshall, can compute this metric

[26]. Radius is another metric related to diameter: unlike diameter, it is the shortest of the set of

all longest shortest paths from (or to) all nodes.

3.1.3 Characteristic Path Length

Average distance, characteristic path length, and average shortest path, all refer to the same metric.

Thus, they all have similar definitions: the expected shortest distance between two nodes. More

specifically, it is the sum of all source-destination shortest paths divided by the number of node

pairs in the network.
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3.1.4 Clustering Coefficient

For an undirected graph, Watts and Strogatz’s clustering coefficient Cn in [27], for a given node

n, is defined as

Cn =
2mij

kn(kn − 1)
n = 1, 2, .., N, ∀ (i, j) εV (3.2)

where mij is the number of links among all neighbors of node n. Thus, the clustering coefficient

of a graph, CG, is given by

CG =
1

N

N∑
n=1

Cn 0 ≤ CG ≤ 1 (3.3)

The clustering coefficient assesses how likely it is for a node and its neighbors to form a mesh.

Intuitively, higher clustering implies higher path diversity and higher interconnection. For the

study of virus propagation in the SIR epidemic model, clustering (that partitions the network)

provides the benefit of reducing the epidemic’s size [28]. However, viruses spread faster in highly

clustered networks. The examples in Figures 3.1 and 3.2 serve as an example to calculate cluster-

ing coefficient of a node

• ForG in Figure 3.1, whereG = (V,E), nodes {2, 3, 4} ∈ V form the neighborhood of node

1. The edges in this neighborhood are {(2, 3)(2, 4)(3, 4)} ∈ E. The Maximum number of

edges possible between these nodes is k1(k1−1)
2

= 3. Thus, C1 = 1

• In Figure 3.2, the set of nodes in the neighborhood of node 1 is the same as in Figure 3.1.

However, there is only one edge in this neighborhood: {(3, 4)} ∈ E. The Maximum number

of edges possible between these nodes is 3. Thus, C1 = 1
3

7



Figure 3.1: Computing clustering coefficient for node 1

Figure 3.2: Computing clustering coefficient for node 1

3.1.5 Network Centralization

Network centralization Cg is a measure of network centrality in social networks [29]. This metric

was motivated by research interests in the impact of centrality on abstract concepts like leadership.

For this reason, highly centralized networks have the highest values of centralization. Centraliza-

tion ranges from 0 to 1 with a value of 1 assigned to a star topology and 0 to a mesh topology.

Network centralization is computed as

8



Cg =
n

n− 2

(
kmax
n− 1

−Density
)

(3.4)

where Density is defined
∑
i,j 2Ai,j

n(n−1)
. For graph G = (V,E), the adjacency matrix Aij = 1 ∀ {i, j}

∈ E, if ∃ an edge between nodes i and i. Otherwise, Aij = 0.

3.1.6 Network Heterogeneity

Network heterogeneity Hg, favors networks with hubs. Hence, networks with an increasingly

hub-like structure have a higher value. Though this metric detects hubs, it is unable to capture

their position. As will be shown in Chapter 7, the location of hubs are crucial to the robustness of

networks under targeted attacks. Heterogeneity for a graph G is computed in [24] as

Hg =

√
variance(k)

k̄
(3.5)

3.1.7 Assortativity Coefficient

Assortativity coefficient r, is defined in [30] as the correlation of node degrees to pairs of nodes.

Positive values indicate a correlation between nodes of similar degree. Conversely, negative values

indicate a correlation between nodes of dissimilar degrees. Assortativity coefficient is defined as

r =

∑
i jiki −M−1

∑
i ji
∑

i′ ki′√[∑
i j

2
i −M−1 (

∑
i ji)

2] [∑
i k

2
i −M−1 (

∑
i ki)

2] − 1 ≤ r ≤ 1 (3.6)

where ji and ki are the degrees of nodes j and k excluding any edge between these two nodes.

3.1.8 Edge Expansion

Edge expansion h(G), also known as the edge expansion coefficient in [31] or the isoperimetric

number of a graph G, is defined in [32, 33] as

h(G) = min
1≤|S|≤n

2

|∂(S)|
|S|

(3.7)
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i ∂ (Si) ∂ |(Si)| |Si| h (Si)
1 {(2, 4) , (1, 3)} 2 2 1
2 {(2, 4) , (3, 4) , (3, 5)} 3 2 1.5
3 {(3, 4)} 1 4 0.25

Table 3.2: Edge Expansion calculation for sets S1, S2, and S3 in Graphs G1 and G2

where the minimum is over all sets S with at most n
2

nodes. ∂(S) is a set of edges with exactly

one endpoint in S. Table 3.2 provides expansion calculations for some components, S, of the

graphs in Figures 3.3 and 3.4. These calculations simply demonstrate the evaluation of edge

expansion.

Figure 3.3: Graph G1 for which edge expansion is calculated for sets S1 and S2

Figure 3.4: Edge expansion decreases in GraphG2, as a network has a more hub-like connectivity
(i.e. nodes are added in a preferential attachment manner)
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i Γ (Si) Γ |(Si)| |Si| gα (Si)
4 {(4)} 1 3 0.33
5 {(4, 5)} 2 3 0.67
6 {(4)} 1 4 0.25

Table 3.3: Vertex Expansion calculation for sets S4, S5, and S6 in Graphs G4, G5, and G6

3.1.9 Vertex Expansion

The α-vertex expansion gα(G) for graph G is defined as

gα(G) = min
1≤|S|≤αn

|Γ(S)|
|S|

(3.8)

where Γ(S) is a set of vertices with at least 1 neighbor in S. Figure 3.5 shows the initial

condition of graph G4, and Figures 3.6 and 3.7 show how edge expansion varies when G4 is

slightly modified to represent a more connected version G5 in 3.6 and a less connected version

G6 in Figure 3.7. For the following graphs, α = 1
2
. Table 3.3 contains vertex edge expansion for

S4, S5, and S6

Figure 3.5: This graph shows the initial condition of graph G4
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Figure 3.6: Edge (1, 5) was added to G4 to produce graph G5

Figure 3.7: Node 8 was added to G4 to produce graph G6
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3.1.10 Spectral Expansion

Given a regular graph (regular implies that all nodes have the same node degree), spectral gap,

referred to as a measure of spectral expansion, is derived from the eigenvalues of the adjacency

matrixA. SinceA is symmetric, it has full rank of n and thus, n-real eigenvalues: λ0 ≥ λ1 ≥ ... ≥

λn−1. For a regular graph where λ0 = k, spectral gap = k−λ1. However, spectral gap is generally

referred to as λ0−λ1. Normalized eigenvalues are obtained by A
k

(The resulting eigenvalues range

from -1 to 1) [34].

When the graph is regular, a higher value of spectral gap is preferred for robustness: This

implies a higher connectivity. For example, in Table 3.4, the spectral gap of the 6-node mesh

graph is higher than that of the cubic 6-node graph and hence, the mesh graph is more robust than

the cubic graph.

Graphs λ0 λ1 spectral gap
6-node mesh 1 0.200 0.800
6-node cubic 1 0.677 0.333

Table 3.4: Analysis of spectral gap for two normalized, regular graphs

3.1.11 Relationship between edge, vertex, and spectral expansion

Edge and vertex expansion are directly related and provide the same general result on the robust-

ness of a graph (if the graph is regular, edge, vertex, and spectral expansion, all provide similar

qualitative results). For any graph G = (V,E), the author of [31] gives the following result

h (G) ≥ g1 (G)− 1

2
(3.9)

Additionally, if G is d-regular, spectral gap sets the bounds for edge expansion as follows:

1

2
(d− λ1) ≤ h (G) ≤

√
2d (d− λ1) (3.10)
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3.1.12 Conductance

Conductance Φ for graph G = V,E provides meaningful information on the connectivity within

a network. Among several applications, conductance can measure the speed at which information

traverses a network (social or telecommunication), the rate of an epidemic propagation (biolog-

ical), and the performance of routing algorithms (Internet) [35]. From a structural perspective,

a high value of conductance inherently signals a highly connected graph. For a cut
(
S, S̄

)
, as

conductance defined in [36], has been reduced to

Φ (S) =

∑
i∈S,j∈S̄ Aij

min
(
A (S) , A

(
S̄
)) (3.11)

where A (S) =
∑

i∈S
∑

j∈V Aij . Therefore, the conductance of the entire graph is given as:

ΦG = min
S⊆V

Φ (S) (3.12)

Additionally, h(G)
k

(h(G) is the edge expansion) gives the conductance for a k-regular graph.

3.1.13 Natural Connectivity

From a spectral analysis approach, researchers in [37] endeavor to use an average of the spectrum

of eigenvalues as a more accurate measure of robustness. This averaged spectrum is called the

natural connectivity, λ̄, is defined as:

λ̄ = ln

(∑N
i=1 expλi

N

)
(3.13)

where λi defines the eigenvalues of the adjacency matrix. As the number of nodes in a graph

increases, finding eigenvalues becomes computationally expensive. Among existing methods to

compute eigenvalues, the Power Iteration method (which is used by Google to calculate the page

rank of documents [38]), provides only the dominant eigenvalue and its corresponding

eigenvector. This method is seldom used due to its limited output. However, matrix theory shows

that shifting properties can be applied to obtain other eigenvalues. The Jacobi method is another
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approach to extract eigenvalues and eigenvectors from a matrix. However, as the size of the

graph grows the convergence time for these algorithms increase. Therefore, finding eigenvalues

of complex networks is a non-trivial task.

3.1.14 Algebraic Connectivity

Experimentalists in [8, 39] consider the second smallest Laplacian eigenvalue µ2, introduced as

the algebraic connectivity [40], as a measure of how difficult it is to break the network into com-

ponents. As µ2 increases, the connectivity of a graph also increases, and it becomes increasingly

difficult to fragment this graph. However, as shown in Figures 3.8 through 3.11, when flows are

introduced in these networks, the results of algebraic connectivity are inconsistent with our defi-

nition of robustness (the ability for a network to maintain its total level of flow under increasing

removal of nodes). More specifically, the comparison in Figures 3.8 and 3.9 shows that alge-

braic connectivity is consistent in discriminating between the robustness of the two topologies.

However, in Figures 3.10 and 3.11, the results are inconsistent.

Figure 3.8: For network 1, µ2=0.677

Based on the values of µ2 shown in Figures 3.8 and 3.9, network 1 is more robust than network

2 (its value of µ2 is higher than that of network 2). Initially, 42 origin-destination O-D (origin-

destination) flows exist in both networks. In network 1, if one node is attacked to effectuate
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Figure 3.9: For network 2, µ2=0.586

maximum damage (node 4), 20 flows will continue to be delivered, which corresponds to 48% of

the initial throughput. In network 2, if the central node is targeted (node 3), 12 flows will continue

to be delivered, which corresponds to 30% of the initial throughput. Thus, the throughput and

consequently the elasticity (described subsequently) of network 1 are greater than that of network

2. Likewise, µ2 for network 1 is greater than that of network 2. In this case, the second smallest

eigenvalue captures our definition of robustness in that a larger µ2 implies a more robust topology.

The networks in Figures 3.10 and 3.11 serve as counterexamples. In network 3, there exist 30

initial O-D flows. If the central node is removed (node 3), you can continue to route 20 flows: 67%

of the initial throughput. In network 4, however, there is no central node and in the case where the

removal of one node inflicts maximum damage on the network (node 1), out of 306 initial flows

240 will be delivered, which corresponds to 78% of the initial throughput. Thus, network 4 is

more robust than the one in network 3.

However µ2 for network 4 is considerably lower than that of network 3. On this premise, µ2

does not consistently capture our definition of robustness. Additionally, should one node become

disconnected, µ2 becomes 0, which according to our definition, is too coarse a measure to capture

a network’s robustness.

Therefore, based on our observations, algebraic connectivity can extract the robustness of
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Figure 3.10: For network 3, µ2=2.382

Figure 3.11: For network 4, µ2=0.890

a graph with respect to its connectivity. However, in considering network behaviors, algebraic

connectivity is unable to produce consistent results. For this reason, there exists a need for metrics

to assess behaviors occurring in a network.

3.2 CHARACTERIZING THE BEHAVIOR

Complex systems are intricate, not only in their structure, but also in their underlying behavior.

For this reason, they require metrics, which consider behaviors in the network to determine their
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robustness. The authors of [41, 20, 25] proved that metrics that determine a network’s structural

properties are insufficient to determine the network’s functional properties. More specifically in

[18], it was concluded that the Internet exhibited this, ”‘Robust yet Fragile,”’ nature (”Robust yet

Fragile” implies that the Internet is robust against random attacks but fragile to targeted attacks).

This conclusion was based on experiments performed using structural metrics. However, authors

in [41, 20, 25] showed that the Internet’s robustness was due to its self-organizational properties

and its fragilities were due to Internet hijackings. Additionally, they proved that though the Inter-

net’s topology indeed was scale-free, as claimed in [18], the high node degree hubs were on the

periphery of the network. Therefore, attacks to highly connected vertices would only affect the

network locally: the core would remain unaffected. In summary, results in [41, 20, 25] proves

that metrics which capture a network’s robustness with respects to its connectivity are insufficient

and generally provide misleading conclusions about a network’s robustness with respect to its

behavior.

3.2.1 Network Performance

Researchers in [20] have introduced two metrics to compare topologies with similar node degree

distributions but different topological structure:

1. Network likelihood evaluates the physical connectivity of system.

2. Network performance evaluates the system’s behavior.

Performance P (G) is a measure the maximum throughput under gravity flows (In the gravity

flow model, the traffic demand x between node i and j is the product of these demands xixj).

P (G) = max
ρ

∑
i,j

Xi,j s.t. RX ≤ B (3.14)

• ρ is a global constant

• xi and xj are the traffic demands at nodes i and j

• Xi,j = ρxixj
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• Xi,j - traffic flow between source node i and destination node j

• R - routing matrix using standard shortest path (Rkl = 1 if flow l passes through router k)

• X is a vector of all Xi,j flows

• B is a vector of all router bandwidth capacities

The above formulation maximizes the total throughput in the network subject to capacity con-

straints on the nodes: this maximized total throughput is achieved by maximizing the constant ρ,

which increases all flows in proportion to each other.

Irrespective of the field of study, networks generally contain constraining components. For

the case where a node is the constraining element, network performance is a suitable metric to

evaluate such topologies. This is the case in [20]. Assuming over provisioned link capacities, it

is logical to define a metric for the constraining component of this network: the router. However,

this constraint may not exist for topologies within different fields of study. Below are a few of

such cases:

Links as constraining factors

In building a network to model epidemic spread in biology, a node could be a member from the

species under investigation (an animal, human etc.) and a link could exist if two nodes interact as

defined by temporal or spatial parameters [42]. The flow can then be modeled as the transmission

of the disease from one node to another, given the epidemic front propagates throughout the region

under investigation. In this scenario, there is no direct constraint on the number of flows through

the node. However, there exists an abstract constraint on the links, which takes the form of a

probability: Prob(i/j)-the probability that node i will be infected given that its neighbor j is

infected. The actual details are more involved and not the focus of this work. This analogy simply

serves the purpose of presenting a case where links rather than nodes are the constraining factors

of a network.

Therefore, when nodes are not the constraining element, a new metric elasticity (introduced

subsequently in Chapter 5, page 26), is more applicable.
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Chapter 4

DISTRIBUTIONS TO ASSESS
ROBUSTNESS

4.1 CHARACTERIZING THE STRUCTURE

Distributions obtained from graphs can provide meaningful information on the connectivity within

the graph. Some of the more frequent distributions are presented in this section.

4.1.1 Node Degree

The degree of a node i is the number of nodes adjacent to i or the number of edges connected to

i. For a directed network, where edges are unidirectional, the indegree of node i is the number

of edges connected to node i, emanating from i’s neighbors. Conversely, the outdegree of node

i is the number of edges from node i to its neighbors. Hence, the node degree distribution P (k)

gives the probability that a randomly selected node has degree k. Given a graph G with size N ,

the degree distribution is a power-law if P (k) ∼ k−γ , where γ > 1 [22]. Furthermore, the power

law distribution cuts-off at the maximum degree, kcut−off = n
1

γ−1 . The node degree distribution

is defined as,

P (k) =
n(k)

N
k = 0, 1, .., kmax (4.1)

The node degree distribution allows comparison between different graphs. For example, from

a binomial distribution, one can potentially deduce that no highly connected nodes exist. This typ-
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ifies randomly generated ER graphs models. On the other hand, power-law distributions (or heavy

tailed distributions) have highly connected hubs. This is true of naturally occurring phenomenon

such as the Pareto income principle (introduced by Vilfredo, from observing that 20 percent of the

people in Italy own 80 percent of the land - ’the 80-20 rule’) in addition to dynamical systems in

physics which exhibit the self-organized critical (SOC) property.

4.1.2 Topological Coefficients

For a given node i, topological coefficient Tn, provides information on the tendency of i to share

its neighbors. This has direct implications to the particular field of interest. For instance, in the

study of epidemics, the more ”‘sharing”’ that occurs between partners and their neighbors, the

higher the likelihood of virus transmission and propagation. In social and media networks, where

information dissemination is of utmost importance, an objective to consider could be to maximize

the topological coefficients of nodes. Topological coefficient is defined in [43] as:

Tn =
avgJ (n,m)

kn
(4.2)

where J (s, t) = 1 if node t shares at least one common neighbor with s. If s and t are also

neighbors, J (s, t) is incremented by 1. Figure 4.1 shows the calculation for Tn where n is node

4: J (4, 2) = 1, J (4, 3) = 2, and J (4, 5) = 2. Hence, T4 = 1.67
3

. If node n has one or no

neighbors, Tn = 0.
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Figure 4.1: Sample calculations for evaluating topological coefficient of node 4

4.1.3 Stress

Stress Sv, is a centrality index which indicates the number of shortest s-t paths traversing node v

and defined as [44]:

Sv =
∑
st

αst(v) (4.3)

where αst(v) is the number of shortest paths between s and t going through v.

4.1.4 Betweenness

The shortest path betweenness for node v Bv, is the number of s-t (source-destinaion) paths

traversing v divided by the total number of s-t paths. Betweenness differentiates between the

importance of nodes in providing connectivity to other nodes in a network. Thus, if only one s-t

path exists such that this path traverses node v, then the betweenness of node v would be high.

However, if there are multiple s-t paths and only one traverses node v, the betweenness of node v

would be low.

Betweenness is defined in [44] as:

Bv =
∑
st

αst(v)

αst
(4.4)
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where αst is the number of shortest paths between nodes s and t and αst(v) is the number of

shortest paths between s and t going through v.

4.1.5 Closeness Centrality

Closeness Cs, is a centrality index that indicates proximity of a node. Among other applications,

it can indicate the speed at which information travels from node s to t in a network. Therefore,

the closeness distribution gives the proximity of nodes with neighbors of degree k. Closeness, in

[45], is defined for node s as:

Cs =
1

avgL (s, t)
(4.5)

where L (s, t) is the shortest distance between nodes s and t.

4.1.6 Average Clustering Coefficient

In this section we refer back to the metric, average clustering coefficient, presented in 3.1.4 on

page 7. For this metric, the average clustering coefficient distribution provides the average clus-

tering coefficient for nodes with k neighbors.

4.1.7 Neighborhood Connectivity

For a given vertex i with k neighbors, neighborhood connectivity Nc defines the average size

of the neighborhood of these k neighbors. Therefore, theneighborhood connectivity distribution

gives the average size of the neighborhood of a node with k neighbors, for all nodes in the network.

In Table 4.1, for each node, its respective neighbor and the size of its neighbor’s neighborhood

is given. Furthermore, the result of network connectivity for each node (for node i with k neigh-

bors, network connectivity is the average size of k) is presented on the row in which this node is

first introduced. Finally, Figure 4.3 shows the distribution for Nc.
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Figure 4.2: Graph for demonstrating the calculation of network connectivity

Node Neighbor Size of Neighborhood Nc

1 4 4 4
1 5 4 –
2 4 4 4
3 4 4 4
4 1 2 2
4 2 1 –
4 3 1 –
4 5 4 –
5 1 2 2
5 4 4 –
5 6 1 –
5 7 1 –
6 5 4 4
7 5 4 4

Table 4.1: Analysis of network connectivity for the graph in Figure 4.2
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Figure 4.3: Network connectivity distribution for the graph in 4.2
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Chapter 5

NETWORK MODELS

This chapter reviews the six models from which 18 topologies were selected. They include net-

works from random models, Watts-Strogatz models, preferential attachment models, near-regular

models, trade-off and optimization models, and real-world models. For each topology, some of

the more common properties are shown in Table A.1.

Table 5.1: Network characteristics where ASP is the average shortest path and Het is heterogene-
ity

Networks ] Nodes ] Links Density Diameter ASP Het
Gi-dense 1000 4505 0.00902 7 3.391 0.331
MySpace 955 10976 0.02409 4 2.013 2.027

Watts-Strogatz 1 1000 3000 0.00601 7 4.14 0.301
PA 2 1000 2964 0.00593 6 3.534 1.109

Gi-sparse 1000 2009 0.00402 12 5.154 0.491
PA 1 1000 1981 0.00397 8 4.177 1.185

Watts-Strogatz 2 1000 2000 0.004 9 5.294 0.37
YouTube 1089 1576 0.00266 12 5.096 1.319

Flickr 967 1515 0.0032 12 4.624 1.394
meshcore 1000 1275 0.00255 3 2.911 3.796

near-regular 2 992 3781 0.00769 31 14.706 0.133
HOT 2 1000 1049 0.0021 12 7.144 1.892

ringcore 1000 1000 0.002 14 8.196 3.122
HOT 1 939 988 0.00224 10 6.812 2.032

PA-sparse 1000 1049 0.0021 14 5.793 1.892
Abilene 886 896 0.00229 10 6.95 2.09

near-regular 1 992 1921 0.00391 61 21 0.089
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5.1 Random models

A random graph is obtained by random addition of links between n vertices. Erdos-Renyi’s (ER)

stochastic model is one of the most studied of these models. In the construction of an ER graph

G(N,E), E edges are connected at random to N nodes [19]. For this model, each of the N(N−1)
2

edges have an equal probability of being selected. However, this thesis considers the Gilbert (Gi)

model G(N, p), a modified version of the ER model where edges are connected to vertices with a

probability of p. Below are a few key properties of random graphs

• The average node degree determines the connectivity of the graph. Therefore, if k̄ < 1, a

disconnected components exist. At k̄ = 1, a phase transition occurs, and a giant component

exists when k̄ > 1 [19].

• The node degree exhibits a binomial distribution and thus, given N nodes and a probability

of p,

P (k) =

(
N−1

k

)
pk (1− p)N−1−k . (5.1)

However, the model in this thesis was based on the Poisson distribution, an approximiation

of the binomial distribution when the limit of N is large and pN = k̄ [19].

P (k) = e−k̄
k̄k

k!
(5.2)

• As k becomes large, the degree distribution decays exponentially

For the Gi-dense and Gi-sparse networks used in this thesis, p = 0.0091 and 0.004094

respectively [46]. Figure 5.1 shows the Gi-sparse network.
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Figure 5.1: The Gi-sparse network with size N = 1000 and average degree k̄ = 4.018

5.2 Watts-Strogatz model

The Watts-Strogatz model is constructed by interpolating between a regular ring lattice and a

random network. The construction begins with a ring of N nodes. Each node is then connected

to its k nearest neighbors. Then in a clockwise manner, node i is selected. The edge that connects

to i’s nearest neighbor is randomly rewired with a probability of p (or left untouched with a

probability of 1 − p ) considering the constraint that no self-loops or duplicate loops can exist.

This procedure is repeated cyclically for each successive node until node i is once again selected.

At this point, the edge that connects to i’s second nearest neighbor undergoes similar rewiring

procedures. This cycle of node selection and rewiring recurs until the edge that connects all nodes

i to their furtherest neighbor is considered [27].

In the Watts-Strogatz model, the parameter p determines the level of randomness in the graph

while maintaining the initial number of nodes and links [19]. For intermediate values of p, Watts-

Strogatz models produces a Small-world network, which captures the high clustering properties of

regular graphs and the small characteristic path length of random graph models. Figure 5.2 shows

three snapshots of graphs obtained for different values of p.
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Figure 5.2: The construction of Watts-Strogatz model. For the regular graph p = 0. The random
graph is obtained at p = 1 and for intermediate values of p, a Small-world network is realized
[27].

For the Watts-Strogatz (W-S) 1 and 2 networks used in this thesis, the rewiring probability was

0.3 and 0.5 [46]. Figure 5.3 shows the W-S 1 network.

Figure 5.3: The W-S 1 network with N = 1000 and k̄ = 4

5.3 Preferential Attachment Model

Preferential Attachment (PA) models changed the norm that complex networks are associated with

complete randomness and highlighted an emerging class of topologies associated with a heavy
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tailed node degree distribution [47]. This distribution, also known as a power-law distribution, can

be reviewed in Subsection 4.1.1 page 20. These networks pervade numerous real world domains.

For example, within the sphere of social networks, an individual with few friends is more likely

to form a new friendship with a more popular person. Likewise, new Internet websites will more

likely establish ties with the most popular websites.

From their origin, preferential attachment (PA) models have been considered vulnerable to

targeted attacks while robust to random failures [47]. This model constitutes popular nodes called

“hubs”, which have a large number of neighbors compared to other nodes with few neighbors.

The rules for construction are governed by the two key principles of growth and preferential at-

tachment. The initial number of nodes at construction must be greater than two and each node

must have at least one neighbor. At each time step, a new node is added to the graph. The proba-

bility of attracting this new node is determined by the node degree of preexisting nodes. Thus, the

higher the node degree of preexisting nodes, the higher the probability of attracting new nodes.

The attachment probability is given in [46] by

P (ki) =
ki∑N
j=0 kj

(5.3)

where P (ki) is the probability that a new node will connect to an existing node iwith degree ki.

For this work, the PA 1, PA 2, and PA-sparse networks were constructed using the Barabasi-Albert

Scale-free model [46, 20]. Figure 5.4 shows the PA-sparse network.
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Figure 5.4: The PA-sparse network with N = 1000 and k̄ = 2.098

5.4 Near-Regular Models

The near-regular (n-r) networks are best visualized in a planar, grid-like fashion. The n-r 1 network

is composed of a 31 by 32 grid where node i is connected to node j if j is a distance d = 1 unit: 1

unit is the regular distance among nodes in the grid. The structure of n-r 2 is similar to that of n-r

1. However, in addition to d = 1 unit, all nodes within a distance of d =
√

2 units are connected.

Figure 5.5 shows the n-r 1 network.

Figure 5.5: The n-r 1 network with N = 992 and k̄ = 3.87
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5.5 Trade-off and Optimization Models

The authors of [48] introduce networks with bimodal degree distributions optimized to minimize

the impact of random attacks. The meshcore and ringcore topologies shown in Figures 5.6 and

5.7 represent this model. The Heuristically Optimized Trade-off (HOT) network presents a simple

model for Internet growth [49, 20]. The HOT 1 and 2 networks represent this model. Figure 5.8

shows the HOT 2 network.

Figure 5.6: The meshcore network with N = 1000 and k̄ = 2.55

Figure 5.7: The ringcore network with N = 1000 and k̄ = 2
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Figure 5.8: The HOT 2 network with N = 1000 and k̄ = 2.098

5.6 Real-World Models

Online social networking connects individuals with common interests. This thesis features the

MySpace, YouTube, and Flickr networks. These networks were obtained via snowball sampling

and have been rescaled [50]. The Abilene network in Figure 5.9 was built using the Abilene core

while customers and peer networks were each replaced with a gateway router [20].

Figure 5.9: The Abilene network with N = 1000 and k̄ = 2.022
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Chapter 6

ELASTICITY: Characterizing the behavior

6.1 MOTIVATION AND CONTRIBUTION

The study of robustness is fundamental to numerous network research problems using approaches

that amplify internal behaviors of a network. To this end, we first define robustness as the ability of

a network to maintain its total level of flow under increasing removal of nodes and consequently

links, and second, we consider flows as the behaviors occuring within a network. These two

components form the foundation of our new metric, elasticity. Inspired by the performance metric

in [20], elasticity considers flows within a giant component as well as flows within fragmented

components. This latter consideration is necessary because depending on the phenomena under

investigation, nodes within segmented components can interact and contribute to the robustness of

a network. For instance, in the event of inter-AS interruptions, intra-AS communications persists

and as such, a level of robustness exists. Similarly, in the epidemic domain, virus propagation

continues within subcomponents even though a “giant component” ceases to exist. In other words,

elasticity considers the contribution of isolated components to the robustness of the network.

The initial level of flow in a network determines its initial robustness. As nodes are removed,

the level of flow can change considerably and as a result, topologies which appear robust at the

onset may potentially disintegrate as few nodes are removed. Conversely, topologies which appear

less robust at the onset can become more robust eventually, as they are better able to maintain the

total level of flow. Thus, elasticity considers the robustness of a network as the aggregation of
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local behaviors resulting from the removal of each node.

Figure 6.1 is a hypothetical case that serves the purpose of demonstrating the evaluation of

elasticity E, which is the area under the curve of throughput vs the fraction of nodes removed.

More importantly, the throughput and fraction of nodes removed are normalized to compare

topologies of varied nodes and links. Hence, G1 and G2 have the same initial throughput. Ini-

tially, G1 has a the higher total throughput. However, when subsequent nodes are removed, G2

has the higher throughput at each iteration. In the complete analysis, G2 has a higher elasticity

thus, it is more robust than G1.

Figure 6.1: The evaluation of elasticity for two generic graphs G1 and G2

In Section 6.2, we propose a new metric elasticity that provides one number to describe the

robustness of a network. Furthermore, we establish the upper bound on elasticity and select the

most appropriate routing algorithm for elasticity.

6.2 Definition of elasticity

For a network G, having no loops or parallel links, elasticity E(G) is a measure of the overall

robustness. As shown in Figure 6.2, elasticity is the area under the curve of throughput versus

the fraction of nodes removed. The throughput is normalized to compare networks of different

magnitudes, and at each iteration, it is recalculated at the removal of each node. Initially, TG (0) =
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Figure 6.2: The evaluation of elasticity

1 which accounts for the normalized throughput. This value decreases as n
N

of nodes are removed,

and therefore, elasticity (E) provides a measure of robustness at any point of node removal.

Therefore, when ζ nodes have been removed, elasticity can be computed as

E

(
ζ

N

)
=

1

2N

ζ∑
n=0

(
TG

( n
N

)
+ TG

(
n+ 1

N

))
(6.1)

where TG( n
N

) is the throughput at each interval when n nodes are removed. N is the total number

of nodes in the network and 0 ≤ (ζ, n) ≤ N . At each iteration, the throughput is computed as

TG (t) =
maxρ

∑
i,j Xi,j (t)

α
s.t. LX ≤ B (t) (6.2)

where t = n
N

and ρ is a constant used to vary the proportion of flows in network. α is the

unnormalized initial throughput and Xi,j (t) is the traffic flow between source node i and

destination node j. L is the routing matrix, X is a vector of all Xi,j (t) flows, and B (t) is a

vector of all link bandwidth capacities.
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6.2.1 Upper bound for Elasticity
Analytical results

In this section, we consider the mesh network as the topology which provides the highest elasticity

under all attack strategies for any given network. We assume homogeneous flows where each flow

has a value of 1. Additionally, each link has a capacity of 1 and Xij (t) can be 1 or 0 depending

on whether or not a flow exists between nodes i and j. With these assumptions, we proceed to

determine the upper bound for elasticity.

Theorem. Given a mesh network with N nodes, and assuming homogeneous flows and link

capacities of 1, then limN→∞E(N) = 1
3
.

Proof. Elasticity can be formulated using both discrete and continuous approaches. At each

iteration when a node is removed, the throughput is given by

TG (t) =
(N − n) (N − n− 1)

N (N − 1)
(6.3)

where t = n
N

.

Discrete Elasticity (trapezoidal integration). For a given network of size N , Equation 6.4

computes elasticity when ζ nodes have been attacked.

E (ζ) =
1

N

(
1

2
+

ζ−1∑
n=1

(N − n) (N − n− 1)

N (N − 1)
+

(N − ζ) (N − ζ − 1)

2N (N − 1)

)
(6.4)

where 1 ≤ ζ ≤ N − 1. Equation 6.5 computes the total elasticity for a network with N nodes

when all N nodes are progressively removed.

E (N) =
1

N

(
1

2
+

N−1∑
n=1

(N − n) (N − n− 1)

N (N − 1)

)
(6.5)
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Continuous Elasticity. Equation 6.6 gives the formulation of elasticity for the continuous case.

Similar to the discrete case, Equation 6.7 computes elasticity for a given mesh network with size

of N where ζ nodes have been removed and Equation 6.8 computes the total elasticity for a mesh

network with N nodes. As the size of the network grows, Equation 6.9 then provides the upper

bound on elasticity when all N nodes are removed.

E (t) =

∫ t

0

TG (τ) dτ , 0 ≤ t ≤ 1 (6.6)

E (ζ) =
N (N − 1) ζ + 1

2
(1− 2ζ) ζ2 + 1

3
ζ3

N2 (N − 1)
(6.7)

E (N) =
1

3
− 1

6N
− 1

6N2
(6.8)

Therefore,

lim
N→∞

E(N) =
1

3
(6.9)

Q.E.D.

Numerical Results

Figure 6.3 compares the convergence rate of the discrete and continuous cases when ζ nodes have

been attacked from a mesh network where N = 20. As depicted, both approaches converge at the

onset of node removal.

Figure 6.4 compares the convergence rate of elasticity for the discrete case in Equation 6.5 to

the continuous case in Equation 6.8. As shown, both cases converge for a mesh network with 10

nodes.
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Figure 6.3: Comparison of the convergence rates of elasticity, from Equations 6.4 and 6.7, where
ζ nodes have been attacked

Figure 6.4: Comparison of the convergence rates of elasticity, from Equations 6.5 and 6.8, for a
network of size N

Given the definition of elasticity, Subsection 6.3 explores models to implement a working

prototype.
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6.3 Model for Elasticity

Algorithm 1 shows the generic model for elasticity. As shown, the results from this model depends

on the routing algorithm selected. For this reason, three routing approaches are explored: 1) Opti-

mization (heterogeneous traffic matrix), 2) Dijkstra’s standard shortest path (heterogeneous traffic

matrix), and 3) Dijkstra’s standard shortest path (homogeneous traffic matrix). In all approaches,

link capacities were homogeneous.

Algorithm 1 Elasticity Model
Adjacency Matrix=[]
while (TG(n) > tolerance)
for i = 1 to N do

Execute routing algorithm
Locate maximum congested link
Calculate TG(n)
Remove node/link

end for
end while
Compute E(G)

Routing Model 1: Optimization (heterogeneous traffic matrix)

The Objective Function (Function 6.10) of the optimization problem maximizes the individual

flow between all pairs of nodes. Equations 6.11-6.13 are the main constraints to the optimization

problem. Equation 6.11 ensures that each node sends δ unit of traffic to every other node, while

Equation 6.12 represents the balance of the incoming and outgoing traffic demands through any

node in the network. Inequality 6.13 represents the capacity constraint on each link, and Equation

6.14 computes the utilization of each link.
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Maximize δ (6.10)

Subject to

∑
j∈N

flows,j,s = δ(N − 1) ∀s (6.11)

∑
i∈N

(flowi,j,s − flowj,i,s) = δ ∀s, j, j 6= s (6.12)

∑
s∈N

flowi,j,s ≤ capacityi,j ∀i, j, i 6= j (6.13)

utilizationi,j =
∑
s∈N

flowi,j,s ∀i, j (6.14)

Algorithm 2 provides elasticity using the optimization approach discussed previously.

Algorithm 2 Optimization
while Connected := True do
capacityi,j := 1
demandi,j := 0
while

∑
i,j capacityi,j 6= 0 do

Solve the optimization problem
Update the demand between nodes that are connected with non-zero capacity links
demandi,j := demandi,j + δ
capacityi,j := capacityi,j − utilizationi,j

end while
Remove one node (or a group of nodes)

end while

Routing Model 2: Dijkstra’s algorithm (heterogeneous traffic matrix)

The second approach realizes Dijkstra’s algorithm. As shown in Algorithm 3, flows traverse the

shortest path from source to destination. This algorithm has a running time O(n2). However,

when the heterogeneous traffic matrix is considered, the running time increases to O(n3).
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Algorithm 3 Dijkstra’s shortest path algorithm [26]
begin
S := 0; S̄ := N
d(i) :=∞ for each node i ∈ N
d(s) := 0 and pred(s) := 0
while |S| < n do
begin
let i ∈ S̄ be a node for which d (i) = min {d (j) : j ∈ s̄}
S := S ∪ {i} ;
S̄ := S̄ − {i} ;
for each (i, j) ∈ A (i) do

if d (j) > d (i) + cij then d (j) := d (j) + cij and pred(j) := i
end for
end

Routing Model 3: Dijkstra’s algorithm (homogeneous traffic matrix)

This approach also revolves around Algorithm 3 and has a running time O(n2). However, a ho-

mogeneous traffic matrix was implemented. Given these three models, Subsection 6.3.1 evaluates

each and selects the most feasible.

6.3.1 Evaluation of Routing Models

Figure 6.5 shows the three networks for which elasticity was computed: Net 1, Net 2, and Net

3. For these three networks, we compare the results of elasticity provided by each routing model.

More precisely, the following steps were taken for each network:

1. Elasticity was computed using model 1 (optimization with a heterogeneous traffic matrix)

2. Elasticity was computed using model 2 (Dijkstra’s approach with a heterogeneous traffic

matrix)

3. Elasticity was computed using model 3 (Dijkstra’s approach with a homogeneous traffic

matrix)

Additionally, each approach targeted, first, nodes with highest degree and, second, nodes with the

highest betweenness.
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Figure 6.5: Three networks for which elasticity was evaluated

Figure 6.6 shows the throughput degradation as nodes with highest degree are attacked in Net 1.

The throughput values were normalized using the total capacity of the network to compare the

three different removal strategies. As depicted, the optimization approach produces the highest

elasticity, followed by Dijkstra’s heterogeneous approach and finally, Dijkstra’s homogeneous

approach. This trend was observed for each network under both attack strategies. However,

under certain circumstances where the network has low connectivity, the elasticity results were

identical for both Dijkstra’s “heterogeneous” and optimization models.

For each of the three routing model, each network was given a rank of 1, 2 or 3, based on its

value for elasticity: 1 as the highest and 3 as the lowest. Table 6.1 displays the rankings for each

network under highest node degree attack. As shown, elasticity was highest for Net 1, followed

by Net 2, and finally, Net 3, for each approach. Though the values were different for the highest

betweenness attack strategy (not shown), the rankings were similar to that of Table 6.1. The

implications of these results are presented at the conclusion of this section.

We then observed that the criteria for node addition to the shortest path could potentially affect

the results of elasticity. More specifically, in Algorithm 3, nodes are added to the shortest path if

the following optimality condition is satisfied:

d (j) > d (i) + cij (6.15)
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Figure 6.6: The throughput degradation as nodes with highest degree are attacked for Net 1

Table 6.1: Elasticity comparison for all networks under highest node degree attack
Approach Rank 1 Rank 2 Rank 3

1 Net 1 Net 2 Net 3
2 Net 1 Net 2 Net 3
3 Net 1 Net 2 Net 3
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where d(j) is the distance label at node j and cij is the cost of moving from node i to j.

However, if there are several nodes j, such that each node equally satisfies this condition, the

next node added to the shortest path is selected sequentially. To investigate the impact of this

constraint on the results of elasticity, we modified Dijkstra’s algorithm to relax the sequential

constraint by randomly selecting the next node j that will be added to the shortest path. The

resulting changes are reflected in Algorithm 4. For each network, the result of Algorithm 4 were

compared to that of Algorithm 3.

Algorithm 4 Dijkstra’s “Modified” shortest path algorithm
begin
S := 0; S̄ := N
d(i) :=∞ for each node i ∈ N
d(s) := 0 and pred(s) := 0
while |S| < n do
begin
let i ∈ S̄ be a node for which d (i) = min {d (j) : j ∈ s̄}
S := S ∪ {i} ;
S̄ := S̄ − {i} ;
for each (i, j) ∈ A (i) do
Xi = j,∀j ∈ N which satisfy the optimality condition
jselected = rand (Xi)
then d (j) := d (j) + cij and pred(j) := i

end for
end

For Algorithm 4, we conducted 100 sample runs and averaged elasticity for each network.

For each run, we observed that the number of flows in the bottleneck link varied. However, the

difference between Algorithm 4 and Algorithm 3 were negligible. Hence, the rankings shown in

Table 6.1 remain the same.

6.3.2 Conclusion

In this section, we introduced a new metric elasticity as a measure of robustness for a given

network.
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Research Method

More importantly, we motivated the need for elasticity and detailed our contributions to the field.

To this end, we 1) defined elasticy, 2) derived its upper bound and 3) presented the model to com-

pute elasticity. Finally, we observed a dependance of elasticity on the selected routing algoriithm.

Thus, we investigated the results of elasticity using three possible routing models:

1. An Optimization algorithm based on a heterogeneous traffic matrix

2. Dijkstra’s algorithm based on a heterogeneous traffic matrix and

3. Dijkstra’s algorithm based on a homogeneous traffic matrix

Each approach was applied to three networks, namely Net 1, Net 2, and Net 3, using the following

node-attack strategies:

• Highest degree and

• Highest betweenness.

Dijkstra’s algorithm was then modified to include randomness in selection of nodes added to

the shortest path.

Results

The following results were obtained:

1. The mesh network provided the upper bound of 1
3

on elasticity

2. The optimization model produced the highest elasticity followed Dijkstra’s “heterogeneous”

model and finally, Dijkstra’s “homogeneous” model.

3. Though the addition of randomness to Dijkstra’s algorithm varied the value of the bottleneck

link, the average value of elasticity was close to that of the non-random version. Thus, the

rankings were identical to that of Table 6.1
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4. Quantitatively, all approaches produced different values for elasticity. However, qualita-

tively, the results were similar in that, all approaches were consistent in ranking the different

networks from highest to least elasticity. Consequently, the least costly method was selected

to implement elasticity: Dijkstra’s algorithm.
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Chapter 7

EXPERIMENTAL RESULTS

In this Section, we evaluate elasticity for a set of selected topologies. A more detailed analysis of

the characteristics of these topologies is provided in Tables A.1 and A.2 found in the Appendix.

First, we compute the elasticity of all networks under each attack strategy and second, we im-

plement a tradeoff function that combines the elasticities obtained for each attack strategy and

penalizes networks for having excess links.

7.1 Elasticity of Networks Under Three Attack Strategies

In the subsequent sections, Elasticity R, Elasticity D, and Elasticity B refer to elasticity under the

following three attack strategies:

1. removal of random nodes (Elasticity R)

2. removal of highest degree nodes (Elasticity D)

3. removal of highest betweenness nodes (Elasticity B)

Table 7.1 ranks all networks in descending order of magnitude based on the number of links

and the scores for elasticity under the three strategies. As shown, the mesh network is the most

robust under all strategies. This is expected, as it sets the upper bound on elasticity. Under random

attacks, the elasticity for the Gi-dense and MySpace networks are in proximity to that of the mesh

network. As cost is a critical factor in network design, it is financially sensible to implement the
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latter two topologies rather than the mesh because Table 7.1 shows that the MySpace and Gi-dense

networks can provide about 94% of the elasticity that the mesh provides while only using about

1% of the links.

Nets. links Nets. Elas. R Nets. Elas. D Nets. Elas. B
mesh 499500 mesh 0.3333 mesh 0.3333 mesh 0.3333

MySpace 10976 MySpace 0.3119 n-r 2 0.2426 Gi-dense 0.2390
Gi-dense 4505 Gi-dense 0.3111 Gi-dense 0.2082 W-S 2 0.1770

n-r 2 3781 PA 2 0.2743 MySpace 0.1721 MySpace 0.1719
W-S 2 3000 W-S 2 0.2703 W-S 2 0.1640 W-S 1 0.1260
PA 2 2964 PA 1 0.2677 n-r 1 0.1342 Gi-sparse 0.1010

Gi-sparse 2009 Gi-sparse 0.2520 W-S 1 0.1170 PA 2 0.0719
W-S 1 2000 W-S 1 0.2490 Gi-sparse 0.1143 PA 1 0.0558
PA 1 1981 n-r 2 0.2316 PA 2 0.0644 YouTube 0.0332
n-r 1 1921 Flickr 0.2211 PA 1 0.0535 Flickr 0.0315

YouTube 1576 YouTube 0.2132 YouTube 0.0371 n-r 2 0.0246
Flickr 1515 meshcore 0.1997 Flickr 0.0285 n-r 1 0.0178

meshcore 1275 HOT 2 0.1623 HOT 1 0.0129 meshcore 0.0083
HOT 2 1049 PA-sparse 0.1537 HOT 2 0.0095 HOT 1 0.0059

PA-sparse 1049 HOT 1 0.1405 Abilene 0.0093 HOT 2 0.0048
ringcore 1000 ringcore 0.1290 meshcore 0.0083 PA-sparse 0.0039
HOT 1 988 Abilene 0.1280 PA-sparse 0.0045 Abilene 0.0031
Abilene 896 n-r 1 0.1016 ringcore 0.0040 ringcore 0.0026

Table 7.1: Networks sorted in descending order for number of links, Elasticity R (Elas. R),
Elasticity D (Elas. D), and Elasticity B (Elas. B)

The subsequent Subsections show correlations for elasticity under the specified attack strategy.

7.1.1 Correlation Between Elasticity and Number of Links

From Table 7.1, it is notable that for all removal strategies the MySpace, Gi, PA, and Watts-

Strogatz networks all vie for the highest elasticity. This phenomenon can be explained by consid-

ering the large number of links of these networks. Figures 7.1, 7.2, and 7.3 confirm this propensity

and depict elasticity under random, targeted, and highest betweenness attacks respectively. The

networks are color-coded to represent two classes of networks: 1) The heterogeneous class with
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varying intensities of blue represents networks with a power-law distribution, and 2) the semi-

regular class, further broken down into deterministic and random networks, has varying shades of

red and is indicative of networks with a poisson degree distribution. This tendency for elasticity to

increase as the number of links increase is not always the case. For instance, in Figure 7.1, though

the n-r 2 network has about 3900 edges with an elasticity of about 0.235, the PA 1 network has

2000 edges and an elasticity of 0.26. Thus, a large number of edges is not necessary even if it is a

sufficient condition for high elasticity.

Figure 7.1: Elasticity R vs number of links for each network in Table A.1

Figure 7.2: Elasticity D vs number of links for each network in Table A.1
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Figure 7.3: Elasticity B vs number of edges for each network in Table A.1

Under financial constraints, meticulous consideration must be given to the architecture of the

network. Table 7.1 shows that under random attack, elasticity can be as low as 30.5% of the upper

bound. This sharply declines to 1.2% for highest degree attacks and 0.8% for highest betweenness

attacks. For this reason, the design of a robust topology is of utmost importance to obtain high

elasticity. For example, the HOT 1 and PA-sparse networks have the same number of links and also

the same number of nodes. Though Figures 7.4 and 7.5 show almost identical degree distributions

for these networks, their response to attack differs [20]. Under random attacks, the PA-sparse

provides 9.76% more than the HOT 1 network. In the PA-sparse network, low degree nodes

outnumber high degree nodes (hubs) and hence, the probability of attacking hubs is lower than

that of attacking other nodes. This is also the case for the HOT 1 network. However, the ratio

of low degree nodes to hubs is higher in the PA-sparse network than in the HOT 1 network. As

a result, Elasticity R for the PA-sparse network is higher than the HOT 1 network. However,

the HOT 1 topology provides three times as much Elasticity D as the PA-sparse network. The

PA-sparse network is more susceptible to this attack because the hubs in this network facilitate

interconnection and are vital to the elasticity of the network. However, the hubs in the HOT 1

network are located on the periphery and are less critical to interconnections [18].
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Figure 7.4: Node degree distribution for the PA-sparse network

Figure 7.5: Node degree distribution for the HOT 1 network

For highest betweenness attack, the elasticity of both networks decreases even more. It is

notable that from highest degree to highest betweenness attack, the elasticity provided by HOT

1 exhibits a 54.3% decrease whereas that provided by PA 1 exhibits a much smaller decrease of

13.3%. This can be interpreted from Figures 7.6 and 7.7 that show the betweenness distribution

for the PA-sparse and HOT 1 networks. From Figure 7.6, nodes with the highest degrees have the

highest betweenness. Thus, damage incurred under highest betweenness attacks is almost similar

to that under highest degree attack. However, for the HOT 1 network there is a large decrease in

elasticity from highest degree attack to highest betweenness attacks. Figure 7.7 shows that nodes
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with the highest betweenness tend to have lower degrees. This nodes facilitate interconnection

within the network. Thus, attacks on these nodes are more detrimental than high degree attacks.

Figure 7.6: Betweenness distribution for the PA-sparse network

Figure 7.7: Betweenness distribution for the HOT 1 network
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7.1.2 Correlation Between Elasticity and Heterogeneity

Figures 7.8 through 7.15 show other notable correlations for robust topologies. More precisely,

Figures 7.8, 7.9, and 7.10 illustrate the effect of heterogeneity on the elasticity of a network.

The interpretation of these Figures is that non-heterogeneous, or rather homogeneous networks,

have a proclivity for higher levels of elasticity. These include the variations of Watts-Strogatz’s

small world models, the random models, and the near-regular models, which Table A.2 gives the

heterogeneity scores from .089 to .491. The implications of these results are far reaching where

network structure is concerned. Although these topologies are sufficiently costly, in addition to the

fact that they may fail to capture the properties of real world networks, their topological structure

offers remarkable resilience to attacks.

Figure 7.8: Elasticity R vs heterogeneity for each network in Table A.1
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Figure 7.9: Elasticity D vs heterogeneity for each network in Table A.1

Figure 7.10: Elasticity B vs heterogeneity for each network in Table A.1

Figures 7.11 and 7.12 compare the degree distribution of the W-S 2 and Abilene networks

respectively. These Figures provide an in-depth understanding of the effects of attacks on the

respective networks. The W-S 2 network is a representative of the random, semi-regular class

of topologies, and as shown in Figure 7.11, the majority of nodes tend to have a degree close

to the average degree. Therefore, the damage incurred under highest node degree and highest

betweenness attacks is comparable. From Table 7.1, W-S 2 has elasticity scores of 0.164 and

0.177 for highest degree and highest betweenness attacks. This is the case for the other networks

within this class.
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Figure 7.11: Node degree distribution of Watts-Strogatz 2 network

Figure 7.12: Node degree distribution of Abilene network

A representative of the deterministic, semi-regular networks, n-r 1 maintains its elasticity un-

der random and high degree attacks: a notable property from networks within the semi-regular

class. This result can be understood by the almost constant node degree. However, as nodes are

removed under highest betweenness attacks, core nodes appear and are destroyed. For n-r 1, elas-

ticity decreases considerably from highest degree attacks to highest betweenness attacks by 35%.

Thus, although homogeneous topologies are sufficiently costly, in addition to the fact that they

may fail to capture the properties of some real world networks, their topological structures offer

remarkable resilience to attacks.
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Figure 7.12 shows the degree distribution for the Abilene network: a representative of the het-

erogeneous class of networks. Based on the “type” of heterogeneous network under investigation,

the impact of highest degree attacks can vary. On the one hand, networks like Abilene avoid cat-

aclysmic damage under high degree attack because the hubs are located on the periphery of the

network and thus, highest degree attack has miminal effect on the overall operation of this net-

work. However, heterogeneous networks like PA-sparse are severely damaged because the hubs

are critical and hold the network together [18]. Thus, the location of hubs in the network affects

its elasticity.

7.1.3 Correlation Between Elasticity and Characteristic Path Length

The characteristic path length tells the expected distance, in number of hops, from a given source

node s to a destination node t. Figures 7.13, 7.14, and 7.15 show that the characteristic path

length tends to be negatively correlated with elasticity. This is not a necessary condition as Figure

7.13 provides instances where a network with high characteristic path length can have a higher

elasticity than a network with a smaller characteristic path length. For example, from Table A.2

the n-r 2 network has a large average distance and from Table 7.1, it has an elasticity of .2316

under random attack. As a counterexample, the Abilene network has small characteristic path

length but an elasticity of .128 under random attack. As discussed previously, elasticity has the

tendency to increase as the number of links in the network increases. If the number of nodes in

a given network is kept constant as the number of links increase, path diversity will eventually

increase. As a result, network congestion decreases which ultimately increases elasticity.
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Figure 7.13: Elasticity R vs characteristic path length for each network in Table A.1

Figure 7.14: Elasticity D vs characteristic path length for each network in Table A.1
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Figure 7.15: Elasticity B vs characteristic path length for each network in Table A.1

7.2 Elasticity of Networks with Tradeoff Function Applied

To compensate for the tradeoff between elasticity and number of links, we introduce a tradeoff

function Re (G) that provides robustness with respect to elasticity. For a given network G, our

robustness measure can be computed as

Re (G) = αElasticityR + βElasticityD + δElasticityB − γdensity′ (7.1)

where 0 ≤ (α, β, δ, γ) ≤ 1, 0 ≤ density′ ≤ 1 and density′ = 1− e− 1
2

(M−(N−1))
N . The 1

2
factor

determines the rate at which density′ changes with respect to the number of excess links. α, β,δ,

and γ are tolerance parameters and, as such, represent the tolerance of a network towards

random, targeted, and highest betweenness attacks. M is the total number of links and

M − (N − 1) represents the number of excess links in a network: these are links which exceed

the threshold necessary to obtain 1 connected component with N nodes.

The implications of this approach are considerable. This function facilitates independence

for constructing networks based on a projected need. Thus, a network engineer who envisions

persistent, random attacks would consider a high value of α. Similarly, β or δ would dominate

where targeted attacks or highest betweenness attacks respectively are predominant. Moreover, γ
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Networks Number of links Re

HOT 2 1049 0.1519
PA-sparse 1049 0.1374
ringcore 1000 0.1351
Abilene 896 0.1342
HOT 1 988 0.1330

Watts-Strogatz 1 2000 0.0982
meshcore 1275 0.0874
YouTube 1576 0.0828
ER sparse 2009 0.0708

Flickr 1515 0.0340
PA 1 1981 -0.0110

Watts-Strogatz 2 3000 -0.0210
ER dense 4505 -0.0684

near-regular 1 1921 -0.1206
PA 2 2964 -0.2150

near-regular 2 3781 -0.2561
MySpace 10976 -0.3388

Table 7.2: Ranking for topologies according to the cost function Re

could be varied based on financial constraints.

For each network, we obtained Re for tolerance values of α, β, δ, and γ = 1; Table 7.2 depicts

the rankings of each topology with their respective number of links and Re scores. The common

tolerance values facilitate an unbiased analysis of robustness by providing equal likelihood of

occurrence to each attack strategy. In addition, these rankings represent the case where networks

are completely penalized for having excess links and as a result, the structure of the network plays

a more significant role to determine the robustness of the network. From Table 7.2, there exists

three distinct groups with respect to the values of Re. Networks from HOT 2 to HOT 1 form

the first group and have the highest Re. The next group contains networks from Watts-Strogatz

1 to Flickr with mid-range values of Re, and the final group includes the networks from PA 1 to

MySpace with the lowest values of Re.

Figure 7.16 shows the “HOT” 2 topology: The highest ranking topology under homogeneous

tolerance parameters. From Table A.1, this network has only 50 excess links and avoids a high

penalty for the existence of excess links. Though “HOT 2” exhibits power-law properties, the
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hubs are located on the periphery. From Table 7.1, “HOT 2” realizes a higher elasticity than the

meshcore network. However, under highest betweenness attacks, the meshcore exhibits a higher

elasticity than the HOT topology. Figure 7.17 shows the betweenness distribution for the “HOT 2”

topology. On the one hand, nodes with the highest betweenness have node degrees ranging from

about 6 to 10. The majority of these nodes are located in the core of the network and facilitate

communication between other nodes. On the other hand, nodes with lowest and highest degrees

are located on the network periphery. In all, though “HOT 2” has an admirable structure for

targeted attacks and is virtually cheap, it is more liable to fail under highest betweenness attacks.

However, considering the values for the tolerance parameters discussed previously, the “HOT 2”

network is the most suitable.

Figure 7.16: ‘HOT 2”, the highest ranking network as shown in Table 7.2
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Figure 7.17: Betweenness distribution for the “HOT 2” network

7.3 Tradeoff Between Characteristic Path Length and Hetero-
geneity

The ideal network to provide elasticity tends to exhibit a low score for heterogeneity and a short

characteristic path length. In all networks, the mesh has the shortest characteristic path and the

lowest score for heterogeneity and hence, it boasts the highest elasticity. However, this high

elasticity comes at a very high cost which network designers are unwilling to consider. For this

reason, it is imperative to consider a tradeoff between a short characteristic path length and a

low score for heterogeneity. Figure 7.18 can be interpreted as a decrease in the characteristic

path length such that the network becomes more heterogeneous decreases elasticity. However, a

decrease in both components results in an increase in elasticity.
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Figure 7.18: Elasticity increases as characteristic path length and network heterogeneity decrease
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Chapter 8

CONCLUSIONS AND OUTLOOK

This thesis endeavors to extract the characteristics of robust complex networks. To this end, we

define robustness as the ability for a network to maintain its total throughput under removal of

nodes and consequently, links. This definition motivates the introduction of a new metric, namely

elasticity, which provides one distinct value as the measure of robustness of a network. In addition,

we theoretically derived an upper bound of 1
3

on elasticity, and illustrated the utility of elasticity

on 18 networks from six different network models under random, highest degree, and highest

betweenness attacks.

For our experimental results, we conducted two experiments to evaluate elasticity. Our first ex-

periment realized elasticity under the aforementioned attack strategies. Under all attack strategies,

the mesh network outperformed all other networks because it sets the upperbound for elasticity.

However, the MySpace and ER dense networks were able to provide 94% of the upper bound with

as few as 2% and 1% respectively, of the number of links in the mesh network. With cost as a deter-

rent to implementing a mesh network, designers would sensibly gravitate towards implementing

the latter two networks.

Networks such as MySpace, Gi, PA, and W-S exhibited high elasticity due to the exceedingly

large number of links compared to the other sparse networks. One reason for this behavior em-

anates from the increased path diversity that results from having a large number of links. This

reduces congestion and, as a result, increases elasticity. However, we showed that increasing the

number of links was not a necessary condition for high elasticity. To this end, we demonstrated
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that though the PA 1 network has half the number of edges as the n-r 2 network, it provides up to

7.5% more elasticity than the n-r 2 network.

Though increased links tend to increase elasticity, under realistic financial constraints, careful

design of the network architecture has far-reaching repurcussions. Under random attack, elasticity

can be as low as 30.5% of the upper bound. This sharply declines to 1.2% for highest degree

attacks and 0.8% for highest betweenness attacks. Thus, designing the network that maximizes

elasticity is of utmost importance. In line with [18, 20], we used elasticity to show that though

two networks have similar number of nodes, links, and degree distribution, the location of the

hubs influences the robustness of a network. In particular, we used the PA sparse network to show

that under random attacks the elasticity is higher than under highest degree attack. This occurs be-

cause the proportion of hubs to less critical nodes is quite low. Thus, the probability of randomly

attacking critical nodes is low and hence, elasticity is high. However, under high degree attack,

the PA is destroyed at an alarming rate because nodes that facilitate interconnection are attacked.

Furthermore, under highest betweenness attacks, the PA network has an elasticity score that is

similar to that under highest degree attack. This can be explained using the betweenness distribu-

tion which shows that the highest degree nodes are also the nodes with the highest betweenness.

Thus, either attack results in a comparative value for elasticity. The HOT 1 network, on the other

hand, remains robust under highest degree attacks. This network has the high degree nodes on the

periphery, and thus, highest degree attack affects this network minimally. However, under highest

betweenness attacks, HOT 1 exhibits a 54% decrease with respect to highest degree in elasticity

compared to the 13.3% experienced by the PA 1 network.

We showed that networks with lower heterogeneity tend to have higher elasticity. To illustrate

this concept, we classified topologies into two classes. The semi-regular class, which includes the

random and deterministric subclasses, exhibits a Poisson node degree distribution. Heterogeneous

networks fall into the second class. The node degree distribution for the random, semi-regular

class shows that most nodes tend to have degrees in proximity to the average node degree. As

a result, random and highest degree attacks gives similar values for elasticity. The deterministic,
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semi-regular class exhibits this same property. However, under highest betweenness attacks, the

core nodes are destroyed, and the network falls apart. The amount of damage incurred by het-

erogeneous networks depends on the structure of the architecture. As discussed previously, the

locations of the hubs influence how robust the network is toward high degree attacks.

We also showed that networks with lower characteristic path length tend to have higher elas-

ticity. As the number of links in the network increase, the characteristic path length decreases

which inevitably increases path diversity. With more paths available, congestion is decreased and

thus elasticity increases.

We then implemented a tradeoff functionRe that provides a measure of robustness with respect

to elasticity. More specifically, this function summed up elasticity under all removal strategies and

penalized networks for having excess links. In addition, the inclusion of tolerance parameters α,

β, δ, and γ in the tradeoff function provides network engineers the liberty to carefully tailor their

networks to best meet their needs. We implemented this tradeoff function for α = β = δ = γ = 1.

Finally, we showed that networks with high elasticity had short characteristic path length and low

heterogeneity.

Elasticity is defined and computed under simple assumptions. As an example, it is dependent

on the routing algorithm used, which can perhaps alter current network rankings. However, elas-

ticity provides benefits which are far-reaching. More precisely, it identifies key characteristics of

robust complex networks: A short characteristic path length, low heterogeneity, and strategically

located links to facilitate a “homogeneous” core such that if hubs should be added, they should be

placed on the periphery of the network to provide added resilience against targeted attacks.

For our future work, we intend to incorporate expander graphs in our evaluation and formulate

a working definition of the core and periphery to include details about the size and characteristics.

Armed with this knowledge, we seek to combine particular graphs to extract the essential compo-

nents to increase elasticity. Finally, we will develop heuristics to build graphs such that elasticity

is maximized.
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Networks ] Nodes ] Links Density Diameter λ2 Spectral Gap
ER dense 1000 4505 0.00902 7 0.7942 0.3688
MySpace 955 10976 0.02409 4 0.709 1.6753

Watts-Strogatz 1 1000 3000 0.00601 7 1.1619 0.2113
PA 2 1000 2964 0.00593 6 1.2514 0.2794

ER sparse 1000 2009 0.00402 12 0.1508 1.9223
PA 1 1000 1981 0.00397 8 0.5443 1.8339

Watts-Strogatz 2 1000 2000 0.004 9 0.5043 0.1427
YouTube 1089 1576 0.00266 12 0.0547 1.9704

Flickr 967 1515 0.0032 12 0.099 1.9413
meshcore 1000 1275 0.00255 3 0.3869 1.7948

near-regular 2 992 3781 0.00769 31 0.0038 0.0038
HOT 2 1000 1049 0.0021 12 0.0062 1.9979

ringcore 1000 1000 0.002 14 0.0016 1.9998
HOT 1 939 988 0.00224 10 0.0079 1.9973

PA sparse 1000 1049 0.0021 14 0.0151 0.0076
Abilene 886 896 0.00229 10 0.0063 1.9975

near-regular 1 992 1921 0.00391 61 0.0096 0.0025

Table A.1: Network characteristics Table A.1

Networks Conductance Average shortest path Clustering coefficient Heterogeneity
ER dense 0.2756 3.391 0.0098192 0.331
MySpace 0.4335 2.013 0.328865 2.027

Watts-Strogatz 1 0.2109 4.14 0.0419 0.301
PA 1 0.2482 3.534 0.02818 1.109

ER sparse 0.1695 5.154 0.00638 0.491
Watts-Strogatz 2 0.1787 4.177 0.02697 1.185

watts1 0.152 5.294 0.003214 0.37
YouTube 0.1251 5.096 0.0083 1.319

Flickr 0.137 4.624 0.015 1.394
meshcore 0.1275 2.911 0.14132 3.796

near-regular 2 0.0241 14.706 0.45127 0.133
HOT 2 0.0392 7.144 0 1.892

ringcore 0.0021 8.196 0 3.122
HOT 1 0.0311 6.812 0 2.032

PA sparse 0.0401 5.793 0.00278 1.892
Abilene 0.0136 6.95 0.007556 2.09

near-regular 1 0.016 21 0 0.089

Table A.2: Network characteristics Table A.2
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