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Abstract— In this paper, we present a novel multiuser detection
(MUD) technique based on ant colony optimization (ACO), for
synchronous multi-carrier code division multiple access (MC-
CDMA) systems. ACO algorithms are based on the cooperative
foraging strategy of real ants. While an optimal MUD design
using an exhaustive search method is prohibitively complex, we
show that the ACO based MUD converges to the optimal MUD
BER performance in relatively few iterations providing 98%
saving in computational complexity.

Index multi-user detection (ML-MUD), ant colony opti-
mization

I. INTRODUCTION

Multi-carrier code division multiple access (MC-CDMA)[1]
has emerged as a powerful alternative to conventional di-
rect sequence CDMA (DS-CDMA)[2] in mobile wireless
communications. In MC-CDMA, each user’s data symbol
is transmitted simultaneously over N narrowband subcarri-
ers, with each subcarrier encoded with one chip of a pre-
assigned spreading code. Multiple users are assigned unique,
orthogonal (or pseudo-orthogonal) code. That is, while DS-
CDMA spreads in the time domain, MC-CDMA applies the
same spreading sequences in the frequency domain. While the
performance of MC and DS-CDMA is identical in an additive
white gaussian noise (AWGN) channel, MC-CDMA has been
shown to outperform DS-CDMA in multipath channels [1],
[3].

In an uplink of a CDMA based system, different users’
signals experience independent random amplitude and phase
distortions, resulting in a loss of orthogonality among users at
the base station. This in turn results in multi-user interference
(MUI) which limits the capacity as well as performance of
the CDMA system. While single-user receivers are optimal
receivers for a CDMA system with orthogonal user signals,
they are not optimal in the presence of MUI. Therefore, multi-
user detection (MUD) techniques were proposed by Verdu
[4] in order to effectively combat MUI in DS-CDMA sys-
tems. Multiuser detectors (MUD) jointly demodulate all users’
symbols and have been proved to be the optimal reception
technique for DS-CDMA systems in fading channels [4].

Optimal and sub-optimal MUDs have also been proposed
for MC-CDMA systems and have been a focus of research
in recent years [5],[6]. The maximum likelihood (ML) MUD
offers the best bit error rate (BER) performance among all
multi-user detectors (and is called the optimal MUD receiver).
The ML-MUD maximizes the joint probability by evaluating

a maximum-likelihood function over the set of all possible
users’ symbol sequences forming an NP-complete optimiza-
tion problem. Thus, the optimal MUD has a computational
complexity that increases exponentially with the number of
users and, hence, is impractical to implement. To overcome
this limitation, several suboptimal techniques have been con-
sidered [6].

Since optimal MUD design can be modelled as an NP-
complete optimization problem, many techniques used to solve
NP-complete problems can be applied to optimal receiver
design. One such approach involves the use of nature-inspired
optimization techniques. Over the past few decades, there have
been numerous optimization algorithms developed based on
theories of evolution and swarm intelligence. These include,
evolutionary algorithms such as the genetic algorithm [7],
evolutionary programming [8], particle swarm optimization
[9], and ant-colony optimization (ACO)[10].

In this paper, we propose a novel low complexity optimal
MUD for synchronous MC-CDMA uplink based on ACO.
To the best of the authors’ knowledge, this is the first ever
attempt in implementing an optimal MUD for MC-CDMA
using particle swarm intelligence. Ant Colony Optimization
is based on the foraging strategy of real ants. In the ACO
approach, several artificial ants perform a sequence of op-
erations iteratively. In each iteration, ants are guided by a
problem-specific greedy heuristic that aid their search for good
solutions. In addition, ants seek solutions using information
gathered previously to perform their search in the vicinity
of good solutions. A strong reason for choosing the ACO
approach is that it has been shown to outperform genetic
algorithm based approaches for some NP-complete problems
(e.g., travelling salesman problem [11]). In fact, in [12],
the authors demonstrate that an ACO based MUD for DS-
CDMA provides optimal bit-error-rate performance with a
lower computational complexity than a GA-based MUD. In
this paper, simulation results demonstrate that our ACO based
MUD for MC-CDMA is able to achieve the optimal BER
bound with 98% lower complexity relative to an exhaustive
search method.

This paper is organized as follows. In Section II, we provide
the MC-CDMA system model and set-up the optimal MUD
optimization problem in a synchronous up-link. In Section IV,
we introduce ACO and present our novel ACO based MUD
algorithm. In Section V, we present our simulation parameters,
results, and an evaluation of the new algorithm. Finally, in
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Section VI, conclusions and future work are presented.

II. MC-CDMA SYSTEM MODEL

In this paper, we consider a synchronous uplink MC-CDMA
system with N carriers and K users where each user is
assigned a unique spreading code βk = [βk

1 , βk
2 , . . . , βk

N ]T .
Figure 1 illustrates the kth transmitter and receiver model.
The input to the IFFT block in Figure 1(a) corresponds to

sk = βk · bk. (1)

Here, sk is a N × 1 vector whose elements are the kth user’s
transmitted components on each carrier, and bk is the data
symbol (±1 for BPSK ) of the kth user.

A. Channel Model

In this work, we assume a slowly varying multipath channel
for all users in the system. Multipath propagation in time
translates into frequency selectivity in the frequency domain.
While there is frequency selectivity over the entire band-
width, each subcarrier experiences a flat fade. This is because
∆f << (∆f)c < BW (where (∆f) is the spacing between
carriers, (∆f)c is the coherence bandwidth of the channel and
BW represents the total transmission bandwidth). Since we
assume an uplink, each user has an independent set of fading
parameters – the ith subcarrier for each user experiences
a Rayleigh-distributed attenuation, αk

i , and a phase offset,
φk

i . The Rayleigh fades for each user are correlated across
subcarriers with the correlation between channel fades αk

i and
αk

j corresponding to [13] [14]

ρi,j =
1

1 + ( ∆fi,j

(∆fc)
)2

(2)

where ∆fi,j is the frequency separation between subcarriers i
and j. Also, we assume that we have L fold frequency diversity
where L is defined as the ratio between the total bandwidth
and the coherence bandwidth.

The net effect of the frequency selective channel on kth

user’s signal can be modelled as

hk = [αk
1ejφk

1 , αk
2ejφk

2 , · · · , αk
Nejφk

N ]. (3)

B. MC-CDMA Receiver

Assuming the MC-CDMA signal is transmitted through a
slowly varying frequency selective fading channel, the kth user
received signal vector at the output of the FFT (in Figure 1(b))
block can be represented as

rk = hk � sk + nk (4)

= hk � βkbk + nk (5)

where, rk is a vector of dimension N × 1; the operator (�)
represents an element wise multiplication of two vectors, and
nk is a N ×1 vector of additive white gaussian noise samples.
Assuming perfect phase synchronization (i.e., the channel
phases are traced and removed perfectly at the receiver), the
received vector can be redefined as

rk = Ck
chbk + nk· (6)

Here, Ck
ch = [αk

1βk
1 , · · · , αk

Nβk
N ]T . Consider all users received

signal simultaneously, the output of the FFT block at the base
station can be represented as

r =
K∑

k=1

rk = CCHb + n (7)

where b is the vector of users’ data defined as
[b1, b2, . . . , bK ]T ; n is a vector of independent additive
white Gaussian noise (AWGN) samples on each carrier, and

CCH =
[
C1

ch · · ·CK
ch

]
.

III. OPTIMAL MC-CDMA MUD

The optimal MUD simultaneously detects all users’ data to
jointly minimize the effects of MUI. The optimal MUD is the
maximum likelihood receiver that yields the optimal estimate
of the transmitted data, b̂.

b̂ = argmax
b̂

{P (b̂ = b|r)} (8)

= argmax
b̂

{P (r = CCHb̂ + n|b)} (9)

= argmax
b̂

{P (n = r − CCHb̂|b)} (10)

The joint pdf of the noise corresponds to

p(n) =
1

(2π)N/2σ
e−

1
2σ2 nH |I|−1n (11)

where σ2 is the variance of the noise and N is the number of
carriers. Combining Eqns. (10) and (11)

b̂ = argmin
b̂

{nH |I|−1n} (12)

= argmin
b̂

{nHn}

= argmin
b̂

{(r − CCHb̂)H(r − CCHb̂)})

= argmin
b̂

{rHr − b̂
H
CCH

Hr − rHCCHb̂

+b̂
H
CCH

HCCHb̂}
Ignoring all terms that are independent of b̂, the optimal MUD
for MC-CDMA systems corresponds to

b̂ = argmax
b̂

{Q(b̂) = 2�e{b̂H
CCH

Hr}

−b̂
H
CCH

HCCHb̂} (13)

Inspecting Eqn. (13), we observe that the optimal MUD
consists of a difference of two terms. Only the first term
depends on the received signal vector. However, it has been
premultiplied by CCH

H and the product is nothing but the
output of the maximum ratio combining receiver (MRC).
Hence, MRC outputs represent sufficient statistics to perform
maximum likelihood detection. Furthermore, it can be seen
that MRC output provides the optimal estimation of the
transmitted data symbol if a single user is considered. Because
MRC receivers are simple to implement and provide optimal
performance for one user, they are often implemented in
systems with multiple users. Since the MRC receiver does
not jointly minimize the affects of MUI from other users, it
is suboptimal and considered a single user receiver.

Similar to optimal DS-CDMA MUD [4], the solution for the
optimal MC-CDMA MUD requires an exhaustive search over
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a set of MK possible solution vectors where M is the number
of points in the signal constellation (e.g., M = 2 for BPSK)
and K is the number of users. The complexity of this receiver
increases exponentially with the number of users. Therefore,
it is impractical to implement.

By noting the similarities between the optimal DS-CDMA
MUD and the optimal MC-CDMA MUD, it can be easily
shown that the optimal MC-CDMA MUD problem belongs
to a large class of combinatorial problems known as NP-
complete optimization problems. NP-complete problems are
optimization problems (e.g., the traveling salesman and integer
programming problems) that cannot be solved in polynomial
time and the best solution technique is to implement an
exhaustive search over all possible solutions. Therefore, in
order to solve an NP-complete problem for any non-trivial
problem size, one of the following approaches is used: (1)
Approximation: An algorithm which quickly finds a subopti-
mal solution which is within a certain range of the optimal
one; (2) Probabilistic: An algorithm which provably yields
good average runtime behavior for a given distribution of
the problem instances; and (3) Heuristic: An algorithm which
works “reasonably well” on many cases, but for which there
is no proof that it is always quickly yields a good solution
(e.g., evolutionary techniques).

In recent years, particle swarm intelligence has inspired
optimization algorithms that have been proposed for NP-
complete optimization problems. Ant colony optimization
(ACO) is one such technique that is discussed in the following
section. In [11], Dorigo showed that ACO is well suited
in solving NP-complete problems (specifically, the traveling
salesman problem). In this paper, we introduce ACO to the
optimal MUD to design a realizable MC-CDMA optimal
MUD receiver.

IV. ANT COLONY OPTIMIZATION FOR MC-CDMA
SYSTEMS

ACO is an attractive technique that is very effective in
solving optimization problems that have discrete and finite
search space. Since the optimal MUD design problem involves
a search process across finite number of possible solutions,
ACO is an ideal candidate to solve this problem.

A. Ant Colony Optimization (ACO)

ACO is based on the behavior of a colony of ants searching
for food. In the ACO approach, several artificial ants perform
a sequence of operations iteratively as shown in Figure 2.

To find a solution employing ACO, several iterations of
artificial ants follows the flowchart shown in Figure 2. Within
each iteration, several ants search in parallel for good solutions
in the solution space. In each iteration of the algorithm, one
or more ants are allowed to execute a move, leaving behind a
pheromone trail for others to follow. An ant traces out a single
path, probabilistically selecting only one element at a time,
until an entire solution vector is obtained. In the following
iterations, the traversal of ants is guided by the pheromone
trails, i.e., the stronger the pheromone concentration along any
path, the more likely an ant is to include that path in defining
a solution. In each iteration, the quality of produced solution
is estimated via a cost function. This estimate of solution
quality is essential in determining whether or not to deposit

pheromones on the traversal path. In addition to the pheromone
values, the ants are also guided by a problem-specific greedy
heuristic (desirability function) to aid in its search for good
solutions.

It is easy to see that, as the search progresses, deposited
pheromone dominates ants’ selectivity, reducing the random-
ness of the algorithm. Therefore, ACO is an exploitive algo-
rithm. It seeks solutions using information gathered previously,
and performs its search in the vicinity of good solutions.
However, since the ant’s movements are stochastic, ACO is
also an exploratory algorithm that samples a wide range of
solutions in the solution space. This exploratory-exploitive
approach is characteristic of many heuristic based optimization
approaches, including GAs, taboo search and particle swarm.
We can easily extend this general optimization technique to our
MC-CDMA MUD problem as detailed in the next subsection.

B. ACO based MUD

The first stage in designing our ACO-based MUD involves
the selection of ACO parameters that fit the optimization
problem in Eqn.(13). In the MC-CDMA MUD problem, the
solution corresponds to bopt which is a vector of length K.
Each element of the solution vector takes one out of M
possible values, where M is the constellation size. In this
paper, we assume BPSK modulation, i.e., M = 2. Therefore,
MK possible solutions exist (2K for BPSK). In our ACO
algorithm, every ant builds a solution vector in each iteration.
This building process is accomplished via K jumps inside
a 2 × K table. The first row in this table represents an
initial solution. The second row is merely the complement
of the first row. Thus, any solution (out of the 2K possible
solutions) can be formed by selecting K elements from
this table, one element from each column. Hence, in each
jump, the ant selects (based on a desirability function and
pheromone concentration) either the initial solution element
or its complement. When employing higher order modulation
schemes, the dimensions of solution table becomes M × K
with the first row containing the initial solution and each
column containing one of the remaining M − 1 possible data
symbols. Similar to the presented case which employs BPSK,
the solution is formed by selecting a set of K elements, one
from each column.

In single-user receivers, a suboptimal solution vector (bsu)
is created by performing hard decisions based on single user
receiver outputs. In this paper, we employ the output of the
MRC based single user receiver as the initial solution vector
(i.e.,bsu = argmax

bsu∈{±1}
{CCHr}) . In the ACO algorithm, all ants

begin their search at a specific position along the (bsu) vector.
The ants cyclically move down the bsu vector, selecting the
best element at each stage. The value of the element chosen
by an ant is derived from the corresponding element values
in either bsu or bsu (bsu = [b

1

sub
2

su · · · bK

su]T where b
l

su = +1
if bl

su = −1 and vice-versa ∀ l). The desirability function
is used to help the ant decide if a particular element value
of the solution vector should come from bsu instead of bsu.
Since the magnitude of the conventional single user receiver
outputs provide a rough estimate of the quality of users’ hard
decisions, it is used in evaluating the desirability function of
the ants. The desirability function for an ant starting at jth
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element in the bsu vector is defined as:

D(j) =
1

2 + |R(j)| (14)

where R(j) = C
(j)
ch r is the soft decision value of the jth

received data symbol. Eqn.(14) reflects the fact that when
R(j) = 0, b

(j)
su and b

(j)

su are equally likely to be chosen. As
the ant moves along the elements of the solution vector, the
desirability function at the (j + i)th stage can be redefined as
follows:

D(j + i) =
1

2 + |R(j+i)| +∑l∈C |R(l)| . (15)

where C is a set of positions where the ant had previously
selected bsu element values. The desirability function defined
in Eqns.(14) and (15) ensure that an ant does not significantly
deviate from the initial solution. For example, if an ant chooses
the element value from bsu at the jth position, its desirability
to select another element value from bsu decreases. Therefore,
ants’ starting positions in a single iteration should be as far as
possible from one another along the solution vector. It is also
important to note that while restricting ants’ movements to the
vicinity of the initial solution is not a necessary operation, but
it is useful when the reliability of initial data estimates is high.

The second challenge in designing ACO based MUD al-
gorithm, is to develop a meaningful pheromone deposition
mechanism. In our algorithm, pheromones are deposited in
a 2×K table where the first row corresponds to the elements
of bsu, and the second row corresponds to the elements of
bsu. At the beginning of the search process, the pheromone
table has equal amounts (unity) of pheromones in all of its
entries. As the search progresses , pheromones are deposited
and evaporated based on the path traversed by the ants.
The deposition rate (DR) and evaporation rate (ER) are
parameters of the ACO. In our algorithm, the DR and ER
are inversely related to the number of iterations, V . At any
stage during the search, the higher the pheromone value in an
entry (in the pheromone table), the probability of selecting the
corresponding element value from bsu or bsu is greater. Since
Q(b) determines the quality of a solution, it is used to control
the amount of pheromone deposition. Furthermore, we use the
elitism philosophy in our pheromone deposition mechanism,
i.e., only the ants that find good paths (“elite ant”) are allowed
to deposit pheromones. Furthermore, if ants find excessively
poor solutions (“weak ant”), pheromones are removed from
those paths.

Our complete ACO based MUD algorithm is summarized
below:

• Create a 2 × K pheromone table, PT ∈ �2×K ;
PT (m,n) = 1 ∀ m,n [pheromone values are initialized]

• Set belite = bsu where belite is the best solution found.
• for iteration = 1 : V , {

1) Decide the starting positions for A ants
(st(1), st(2), · · · st(A)).
for move = 1 : K, {
a) The ith ant selects bsu element values with

probability

p(i)(move) = PT (2, (st(i) + move)modK)
×D((st(i) + move)modK)
∀i = 1, 2, · · ·A

This probability is evaluated for for all ants.
b) Store the selected elements in b(i) ∀ i = 1 · · ·N .
c) The 2-dimensional indices of chosen locations

in PT constitute the trail for each ant. Store
the trail for the ith ant in Tr(i) ∈ I2×K∀ i =
1 · · ·N .

– The 1st row & 2nd row of Tr(i) represents
row and column indexes of selected PT lo-
cations, respectively.

}
2) if Q(b(i)) ≥ SE · Q(belite) [Check for “elite”

ants (note: SE is a scale parameter denoting the
threshold value for elite ants)]

– Deposit pheromones:

PT (Tri(1, k), T r(2, k)) =
PT (Tr(1, k), T r(2, k)) + �PT ,

where �PT = DR × f(b(i))
K

3) if Q(b(i)) ≤ SW · Q(belite) [Check for “weak”
ants (note: SW is a scale parameter denoting the
threshold value for weak ants)]

– Evaporate pheromones:

PT (Tri(1, k), T r(2, k)) =
PT (Tr(1, k), T r(2, k)) −�PT

4) Evaporate pheromones:

PT (m,n) = PT (m, n) × (1 − ER)∀m,n

5) if Q(b(i)) > Q(belite) [Check if new solution is the
elitist solution]

belite = b(i)

}
• The final solution vector b̂ACO =

argmax{Q(belite), Q(bph)} where bph is the trail
with the highest pheromone concentration.

In order to compare complexity of the ACO based MUD with
the optimal MUD, we define the product Υ = A × V as the
order of the computational complexity of our algorithm (e.g.,
an ACO with 8 ants and 100 iterations result in a Υ = 800).

V. PERFORMANCE RESULTS

We evaluate the ACO based MUD performance for a syn-
chronous uplink MC-CDMA system uplink with: (1) N = 16
carriers; (2) K = 16 users; (3) Hadamard Walsh spreading
codes; (4) BPSK modulation, and (5) four-fold frequency
diversity. The following ACO parameters were employed:
number of ants, A = 8; V = 25 (Υ = 200) and V = 100
(Υ = 800). Since the order of the complexity of this optimal
MUD (employing BPSK modulation) is 216 = 65636, the
savings in complexity for V = 25 and V = 100 are 99.7%
and 98.7%, respectively.
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Fig. 1. kth user transmitter and receiver block diagram

Fig. 2. A flowchart depicting the structure of ACO algorithm

Figure 3 presents four signal to noise ratio (SNR) vs. BER
curves. The top most curve represents the maximum ratio
combining (MRC) receiver BER performance. The remaining
three curves show the performance of the optimal MUD and
the performance of the ACO based MUD with V = 25 and
V = 100. From Figure 3, it is evident that the MRC-based
single user receiver has the worst performance. Furthermore,
the ACO based MUDs approach the performance of the opti-
mal MUD. Specifically, the ACO based MUD with V = 100
matches the performance of the optimal MUD. Moreover, it
is possible to decrease the ACO complexity to V = 25 (by
a factor of four versus the V = 100 case) and only suffer a
1 dB loss in performance at a BER of 4 · 10−3. While the
ACO approach significantly outperforms an exhaustive search
technique, it is important to remember that the ACO based
MUD requires additional memory to store pheromone table.

VI. CONCLUSIONS

This paper presents a novel low complexity algorithm that
employs ACO to implement an optimal MUD for MC-CDMA
synchronous up-links. To the best of authors’ knowledge,
this is the first attempt to apply swarm intelligence to MUD
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Fig. 3. Performance of Single User Receiver, Optimal MUD, and ACO-based
MUD

design. Our ACO-based MUD matches the BER performance
of the optimal MUD with more than 98% savings in terms of
computational complexity. Moreover, we demonstrate that we
can decrease the number of iterations in the ACO by a factor
of four and only suffer a 1 dB performance loss relative to the
optimal MUD.
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