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Abstract 

Hotelling’s T2 test is the standard tool for inference about the mean of a 

multivariate normal population. However, this test may perform poorly when used on 

samples from multivariate distributions with highly skewed marginal distributions. The 

goal of our study was to investigate the type I error rate and power properties of 

Hotelling’s one sample 2T  test when sampling from a class of multivariate skew-normal 

(SN) distributions, which includes the multivariate normal distribution and, in addition to 

location and scale parameters, has a shape parameter to regulate skewness.  

Simulation results of tests carried out at nominal type I error rate 0.05 obtained 

from various levels of shape parameters, sample sizes, number of variables and fixed 

correlation matrix showed that Hotelling’s one sample 2T  test provides adequate control 

of type I error rates over the entire range of conditions studied. The test also produces 

suitable power levels for detecting departures from hypothesized values of a multivariate 

mean vector when data result from a random sample from a multivariate SN. The shape 

parameter of the SN family appears not to have much of an effect on the robustness of 

Hotelling’s 2T test. However, surprisingly, it does have a positive impact on power. 

 



 

iii 

 

Table of Contents 

List of Figures ..................................................................................................................... v 

List of Tables ..................................................................................................................... vi 

Acknowledgements ........................................................................................................... vii 

CHAPTER 1 - Introduction ................................................................................................ 1 

CHAPTER 2 - Literature Review ....................................................................................... 3 

CHAPTER 3 - The Skew Normal Distribution .................................................................. 6 

3.1 Univariate Skew-Normal Distribution ...................................................................... 6 

3.1.1 Definition and Basic Properties ......................................................................... 7 

3.1.2 Stochastic Representation .................................................................................. 8 

3.1.3 Cumulative Distribution Function and Moments............................................... 9 

3.2 Multivariate Skew-Normal Distribution ................................................................. 11 

3.2.1 Definition and Basic Properties ....................................................................... 11 

3.2.2 Stochastic Representation ................................................................................ 14 

3.2.3 Cumulative Distribution Function and Moments............................................. 16 

CHAPTER 4 - Simulation Experiment ............................................................................. 18 

4.1 General Remarks ..................................................................................................... 18 

4.2 Steps of Simulation ................................................................................................. 18 

4.3 Simulation Settings ................................................................................................. 20 

CHAPTER 5 - Results and Analysis ................................................................................ 23 

5.1 Type I Error Rates ................................................................................................... 23 

5.2 Power Results ......................................................................................................... 26 

5.2.1 Small Effect Size ( 0.2μ  ) .......................................................................... 26 

5.2.2 Medium Effect Size ( 0.5μ  ) ....................................................................... 29 

5.2.3 Large Effect Size ( 0.8μ  and 1μ  ) ......................................................... 29 

5.2.4 Regression Analysis ......................................................................................... 36 

5.3 Summary ................................................................................................................. 39 

CHAPTER 6 – Discussion ................................................................................................ 41 

References ......................................................................................................................... 42 



 

iv 

Appendix A - R code for Simulation Experiment ............................................................ 44 

Appendix B - R code for Figures ...................................................................................... 46 

Appendix C - SAS code for Logistic Regression Analysis .............................................. 55 

Appendix D - Contour Plots for Multivariate SN ............................................................. 56 



 

v 

 

List of Figures 

Figure 3.1: Graphs of )(1 SN  Densities (  = 0, -2, and 5) .............................................. 7 

Figure 3.2: Contour Plot of the 2SN  Density for 1 = -5, 2 = 10, and  = 0.75 ............ 13 

Figure 3.3: Contour Plot of the 2SN  Density for 1 = 0, 2 = 0, and  = 0.75 ................ 13 

Figure 4.1: Skewness against Beta.................................................................................... 22 

Figure 5.1: Type I Error Rates for Multivariate SN .......................................................... 25 

Figure 5.2: Power as Function of β  for Multivariate SN with 0.2μ   ............................ 28 

Figure 5.3: Power as Function of β  for Multivariate SN with 0.2μ   ......................... 28 

Figure 5.4: Power as Function of β  for Multivariate SN with 0.5μ   ............................ 31 

Figure 5.5: Power as Function of β  for Multivariate SN with 0.5μ   .......................... 31 

Figure 5.6: Power as Function of β  for Multivariate SN with 0.8μ   ............................ 33 

Figure 5.7: Power as Function of β  for Multivariate SN with 0.8μ   ......................... 33 

Figure 5.8: Power as Function of β  for Multivariate SN with 1μ   ............................... 35 

Figure 5.9: Power as Function of β  for Multivariate SN with 1μ   ............................. 35 

Figure 5.10: Power as Function of mu for Multivariate SN with n = 10 .......................... 37 

Figure 5.11: Power as Function of mu for Multivariate SN with n = 20 .......................... 37 

Figure 5.12: Power as Function of mu for Multivariate SN with n = 50 .......................... 38 

Figure 5.13: Contour plot of the SN 2  for 1  = 10, 2  = -5 and   = 0.5 ........................ 56 

Figure 5.14: Contour plot of the SN 2  for 1  = 0, 2  = -5 and   = 0 ............................. 57 

Figure 5.15: Contour plot of the SN 2  for 1  = 2, 2  = 5 and   = 0.2 ........................... 58 

Figure 5.16: Contour plot of the SN 2  for 1  = -2, 2  = -5 and   = 0.2 ......................... 59 



 

vi 

 

List of Tables 

Table 4.1: Skewness for Positive Beta .............................................................................. 21 

Table 4.2: Skewness for Negative Beta ............................................................................ 21 

Table 5.1: Type I Error Rates for Multivariate SN ........................................................... 25 

Table 5.2: Simulated Powers for Multivariate SN with 0.2μ   ....................................... 27 

Table 5.3: Simulated Powers for Multivariate SN with 0.2μ   ................................... 27 

Table 5.4: Simulated Powers for Multivariate SN with 0.5μ   ...................................... 30 

Table 5.5: Simulated Powers for Multivariate SN with 0.5μ   .................................... 30 

Table 5.6: Simulated Powers for Multivariate SN with 0.8μ   ...................................... 32 

Table 5.7: Simulated Powers for Multivariate SN with 0.8μ   .................................... 32 

Table 5.8: Simulated Powers for Multivariate SN with 1μ   .......................................... 34 

Table 5.9: Simulated Powers for Multivariate SN with 1μ   ....................................... 34 

Table 5.10: Results for the Model Fitting with 0β  and 0μ   ...................................... 39 



 

vii 

 

Acknowledgements 

I would like to take this occasion to express of my gratitude to: 

 

Dr. Paul Nelson, my advisor. He provided invaluable guidance, suggestions and 

encouragement that helped me to produce this report. His attitude to the research and 

students inspired me to be a better researcher and person; 

My other committee members Dr. Gary Gadbury and Dr. Weixing Song for their 

constructive suggestions and support; 

Dr. Boyer and Dr. Neill for giving me the opportunity to study in the Department 

of Statistics at KSU; 

All other professors, fellow students and staffs in the Department of Statistics at 

KSU for all their help; 

My parents, brothers and sister for their spiritual support; 

My beloved husband and daughter for their understanding and belief in me. 

 



 

 1

 

CHAPTER 1 - Introduction 

Hotelling’s (1931) well known T2 is the standard statistic for testing hypotheses of 

the form H 0 : μ = μ 0  against H a : μ   μ 0 , where µ is the mean vector of a multivariate 

normal distribution with unknown covariance matrix, based on a random sample. In this 

setting, it is a uniformly most powerful, invariant test. Hotelling’s statistic can also be 

used to construct exact confidence ellipsoids for µ. 

However, in practice, not all data satisfy the multivariate normality assumption. 

The robutsness of Hotelling’s one sample T2 test when the assumption of multivariate 

normality is violated has been a topic of interest for researchers. See, for example, Chase, 

(1971), Mardia (1975), Everitt (1979), and Kariya (1981). These works showed that the 

size of Hotelling’s one sample T2 test is robust against slight departures from multivariate 

normality. But for multivariate distributions with highly skewed marginal distributions, 

such as the exponential and lognormal distributions (Everitt, 1979), Hotelling’s T2 test 

can be adversely affected by a departure from marginal symmetry. 

 

This report studies the performance of Hotelling’s one sample T2 test in terms of 

size and power when sampling from a class of what are termed multivariate skew-normal 

(SN) distributions, developed in Azzalini (1985), Azzalini and Valle (1996), and Azzalini 

and Capitanio (1999). This family includes the multivariate normal distribution and, in 

addition to location and scale parameters, has a shape parameter which regulates 

skewness. The multivariate SN distributions are natural extensions of normal distributions 

and may prove to be more appropriate in practical situations in which marginal 
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distributions maybe skewed. Examples given in Azzalini and Capitanio (1999) show that 

SN distributions can be useful in fitting real data. 

In this report, we assess the effect of skewness on Hotelling’s one sample T2 test 

by conducting a simulation study. A literature review on the robustness of Hotelling’s 

one sample T2 test will be given in Chapter 2. The model and basic properties of skew-

normal distributions will be described in Chapter 3. In Chapter 4, a sampling procedure 

and a simulation design will be presented. Chapter 5 summarizes the simulation results in 

terms of size and power when data are generated from a multivariate skew-normal 

distribution. Chapter 6 makes conclusions about this study and offers suggestions for 

further research. 
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CHAPTER 2 - Literature Review  

Hotelling’s 2T  test plays an important role in inference about the mean vector of 

a p-dimensional distribution. For p > 1, the variables being measured on each unit are 

often correlated and applying a set of separate, one sample t -tests p times, each carried 

out at level  , can make the overall type I error greater than  . However, Hotelling’s 

2T  allows us to test all p means simultaneously with overall type I error rate equal to . 

The validity of this statement is derived under the assumption that the data are a random 

sample from a multivariate normal distribution. 

Studies of the robustness of Hotelling’s one sample 2T test with respect to size 

and power when multivariate normality does not hold have been carried out by several 

researchers, including Arnold (1964), Mardia (1970, 1975), Chase and Bulgren (1971), 

Everitt (1979) and Kariya (1981). Arnold (1964) began the study of bivariate 

distributions with independent marginals. He showed that when sampling from the 

rectangular and the double exponential distributions, with a sample size of 8 and a 

nominal level of   = 0.05, the empirical significance levels were close to 0.05. Chase 

and Bulgren (1971) studied 6 skewed and correlated bivariate distributions: bivariate 

normal (as a check on the procedure) with correlation coefficient  = 0, 0.25, 0.50, 0.75; 

bivariate uniform with   = 0, 0.25; bivariate exponential with  = 0, 0.25, 0.50, 0.75; 

bivariate gamma, bivariate lognormal and bivariate double exponential with   = 0. Most 

of the time, the difference between the empirical type I error rates and the nominal level 

  = 0.05 was under 0.01 for the bivariate uniform distribution. The type I error rates for 
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the gamma and exponential distributions were larger than the nominal level   = 0.05. 

For example, for  = 0 and n = 20, the estimated type I error rates were 0.10 for the 

exponential distribution and 0.068 for the gamma distribution. Again for tests carried out 

at nominal   = 0.05, the lognormal distribution yielded very large actual type I error 

rates even for sample sizes as large as 20. However, the observed type I error rates for the 

double exponential were slightly conservative. This study also showed that the effect of 

the correlation coefficient on Hotelling’s 2T test was not large, especially when the 

sample size was 20. 

Mardia (1975) investigated the robustness of Hotelling’s 2T  by summarizing 

earlier works with the help of the well-known Mardia (1970) measure of multivariate 

skewness. He showed that actual type I error rates of Hotelling’s one sample 2T  test 

were sensitive to departures from multivariate normality in terms of skewness. Some 

values of skewness he examined were zero for the double exponential distribution and 8 

for the exponential distribution when samples were drawn from bivariate distributions of 

independent random variables. A further study, which extended the number of variables p 

from 2 to 10, was conducted by Everitt (1979). He demonstrated that when sampling each 

variable independently from a uniform distribution, Hotelling’s 2T  produced actual type 

I error rates close to nominal levels for   = 0.1, 0.05, 0.01. More specifically, for a 

sample size of 10, p = 6, samples from a distribution with independent uniform marginals 

had empirical type I error rates of 0.118, 0.059, and 0.013, respectively. The exponential 

and lognormal marginal distributions, both skewed, resulted in very high actual type I 

error rates, two to four times higher than the nominal for the exponential and three to 
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sixteen times higher for the lognormal. This study also indicated that large sample sizes 

produced actual type I error rates similar to those attained from small sample sizes.  

The studies described above were carried out using Monte Carlo simulation. 

Kariya (1981) derived the uniform most powerful invariance (UMPI) of Hotelling’s 2T , 

a property that is robust with respect to the following departure from the assumption of 

multivariate normality. UMPI also holds for n > p if the density of ),,( 1 pyy y , a 

random vector, has the form  

))()((C)(
2/

μyΣμyΣΣμ,y 1  
qf

n
,   (2.1) 

where q is a non-increasing, convex function from [ 0, )  into [ 0, ) . This family 

of distributions contains the multivariate t-distribution, the multivariate Cauchy 

distribution, the contaminated normal distribution, etc. But it does not include skew 

normal distributions. 

In view of these previous studies, it seems evident that the one sample Hotelling’s 

2T is fairly robust with respect to symmetric non-normal distributions, for example, the 

double exponential, rectangular and uniform distributions, Arnold(1964) and Chase and 

Bulgren (1971). Meanwhile, this test can result in inflated type I error rates for highly 

skewed marginal distributions, such as the exponential and lognormal distributions, as 

shown by Chase and Bulgren (1971) and Everitt (1979). The connection between the 

skewness and the robutness of Hotelling’s 2T  motivated us to consider how the one 

sample Hotelling’s 2T  test performs for skew normal distributions, which I will further 

describe in the next chapter. 

 



 

 6

CHAPTER 3 - The Skew Normal Distribution 

 The scalar skew-normal (SN) family of distributions, formally introduced by 

Azzalini (1985), attracted a great deal of attention in the literature because of their 

flexibility in modeling skewed data, “mathematical tractability” and inclusion of the 

normal distribution as a special case. Azzalini and Dalla Valle (1996) developed the 

multivariate version of these distributions. These two studies are considered to be the 

pioneering works in this area. Subsequently, there have been numerous further 

developments related to this SN. For example, the closed skew-normal (CSN) was 

presented in González-Farías et al. (2004) and the generalized skew-elliptical (GSE) in 

Genton and Loperfido (2002). Genton (2004) gives an extensive review of the research 

work in this area.  

We chose to use the original SN distribution in this report because it is relatively 

easy to work with and it is the most thoroughly investigated of these distributions. In the 

following sections, I will introduce various properties of the Azzalini’s SN distribution 

and its stochastic representation in both the univariate and mulitivariate cases. 

 

3.1 Univariate Skew-Normal Distribution 

In this section, some important properties and characterizations of the scalar SN 

distribution will be presented. This material can be found in Azzalini (1985) and Henze 

(1986). 
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3.1.1 Definition and Basic Properties 

Definition 3.1: A random variable Z is said to have a scalar SN (  ) distribution if the 

density function is of the form:  

)()(2),( zzzf   ,  ,, RandRz     (3.1) 

where ).( and ).(  denote the standard normal cumulative distribution function and the 

standard normal probability density function, respectively. The parameter   controls the 

shape of the distribution. For instance, when  = 0, ),( zf  corresponds to the standard 

normal distribution. Plots of the univariate density (3.1) for  = 0, -2, 5, given in Figure 

3.1, illustrate the effects of changing   on the shape of the density. 

 

Figure 3.1: Graphs of )(1 SN  Densities (  = 0, -2, and 5) 
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We usually call the density (3.1) a “standard” SN. If we add location and scale 

components,   and , respectively, to this density, the variable 

ZY   ,     R ,   R  

written as SN ( ),,  , has the density function 

)()(
2

),,;(







 





yy

yg . 

Some basic properties that follow from the definition 3.1 are: 

Property 3.1.1: When ,0  Z has a standard normal distribution, i.e., ).1,0()0( NSN   

Property 3.1.2: If )(~ SNZ , then )(~  SNZ . 

Property 3.1.3: As  )(   , the density SN ( ) tends to positive (negative) 

half normal density. 

Property 3.1.4: If )(~ SNZ then .~ 2
1

2 Z  

Properties 3.1.1 - 4 show that the scalar skew-normal density includes the normal 

distribution and shares similar properties to the normal density. 

3.1.2 Stochastic Representation 

The next three properties can be used to generate a random variable Z ~ SN (  ). 

Property 3.1.5: If Y and W are independent N (0, 1) variates, and Z is set equal to Y 

conditionally on WY  , for some real  , then )(~ SNZ . 

Note: An efficient way to use the random variables generated by Property 3.1.5 is 

to set 









.

,

WYifY

WYifY
Z



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Property 3.1.6: If (X, Y) is a bivariate normal random variable with standardized 

marginals and correlation , the conditional distribution of Y given X > 0 is Z ~ SN 

( )( ). 

Note: )(  means   is related to  through the following relationships 

)1(
)(

2




 ,  
)1(

)(
2




 .   (3.2) 

Property 3.1.7: If 0Y  and 1Y  are independent N (0, 1) variables and  (-1, 1), then 

1
2/12

0 )1( YYZ       (3.3) 

is SN ( )( ). 

3.1.3 Cumulative Distribution Function and Moments 

The Cumulative Distribution Function (cdf) of Z, as given in (3.3), denoted by G 

(z, ), is given by 

G (z, ) = 2   

z t
dtduut


 )()( .     (3.4) 

Property 3.1.8: 1 – G (-z;  ) = G (z; - ). 

Property 3.1.9: The cdf of SN (1) is equal to the square of the standard normal cdf, i.e.,  

G (z; 1) = 2))(( z . 

The moment generating function (mgf) of Z, denoted by )(tM z , is given by  

)(tM z  = 2 exp )()
2

(
2

t
t  .    (3.5) 

Taking derivatives and evaluating at t = 0 yields the following: 
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The mean of Z, E (Z) =

2  .       (3.6) 

 The variance of Z, Var (Z) = 1 – (

2  ) 2 .      (3.7) 

The third standardized moment (a measure of skewness) of Z, 

S (Z) = 2/3

2

2

)
)1

2
(

2

()(sign)4(
2

1





 ,  (3.8) 

varies from -0.9953 to 0.9953. 

Note: The third standardized moment, is written as 1 , and defined as 

3
3

1 


  , 

where 3  = ]])[[( 3XEXE   is the third central moment and   is the standard deviation. 

The fourth standardized moment (a measure of kurtosis) of Z, 

K (Z) = 2

2

2

)
)1

2
(

2

()3(2





 ,    (3.9) 

varies from -0.869 to 0.869. 

Note: The fourth standardized moment, is written as 2 , and defined as 

4
4

2 


  , 
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where 4  = ]])[[( 4XEXE   is the fourth central moment and   is the standard 

deviation. 

The computation of higher moments can be obtained by using properties 3.1.14 

and 3.1.15. 

Property 3.1.14: The even moments of Z are the same as the even moments of the 

standard normal distribution. 

Property 3.1.15: The odd moments of Z are given by  

E (z )12 k ) = 







k

t

t
kk

tkt

t
k

0

2
)2/1(2

)!(!)12(

)2(!
)!12(2)1(

2 


  

 

3.2 Multivariate Skew-Normal Distribution 

In this section, we will retain the same notation as given in the above section, 

except changing them into matrix form. Vectors are represented by lower case bold text 

and matrices are represented in upper case bold text. The material in this section can be 

found in Azzalini (1996, 1999, and 2005). 

3.2.1 Definition and Basic Properties 

Definition 3.2: A p-dimensional random vector z is said to has a multivariate skew-

normal distribution, denoted by )(~ βΩ,z pSN , if it is continuous with density function  

  )(zf 2 )()( zβΩz; T
p 

  
,pRz    (3.10) 

where )( Ωz;p is the p-dimensional normal density with zero mean and correlation 

matrixΩ ,  (.) is the standard, univariate N (0,1) distribution function, and β  is a vector 

of shape parameters.  
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Contour plots of the bivariate case of the density (3.10) when 1β  = -5, 2β  = 10, 

and 75.0 (where   is the off-diagonal element of Ω ) are given in Figure 3.2. It is 

clearly different from an ellipse and presents some skewness. If we set the shape 

parameters 1β  = 0, 2β  = 0, and keep 75.0 , the density (3.10) reduce to the 

multivariate normal distribution, as shown in Figure 3.3. More plots for different values 

of β and Ω  are shown in appendix D. 

Similarly as in the univariate case, if we add location parameter T
p ),,( 1  ξ  

and positive scale parameter S = diag ( ),,1 p  to the density (3.10), the random vector 

y = zSξ  , denoted by ),,(~ βSΩSξy pSN , has the density function 

)()(2)( ξ(ySβSΩSξ,y;y 1T  
pg  . 
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Figure 3.2: Contour Plot of the 2SN  Density for 1 = -5, 2 = 10, and  = 0.75 
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Figure 3.3: Contour Plot of the 2SN  Density for 1 = 0, 2 = 0, and  = 0.75 
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Some properties of SN p )( βΩ,  and its quadratic form are given below. 

Property 3.2.1: If z ~ SN p )( βΩ, , then 

),(~ βΩz  pSN  

Property 3.2.2: If z ~ SN p )( βΩ, , and A is a pp non-singular matrix then  

)( 1βAΩA,ASN~zA T
p

T  

Property 3.2.3: If z ~ SN p )( βΩ, , then 

2~ pzΩz 1T  . 

Property 3.2.4: If z ~ SN p )( βΩ, and B is a symmetric positive semi-definite pp matrix 

of rank k such that BΩB = B, then  

2~ kzBz T  

Property 3.2.5: Let ),,(~ βΩ0x pSN , then the distribution of Txx is Wishart with scale 

parameter Ω  and 1 degree of freedom: 

)1,(~ Ωxx WT . 

3.2.2 Stochastic Representation 

There are two ways to generate a random variable having the density given in 

(3.10).  

[1] Transformation method 

Consider a p-dimensional normal random vector y with standardized marginals 

and correlation matrix Ψ , independent of Y 0  ~ N (0, 1), so that 






























0

0
0

y

T

pN
Y 1

,~ 1
0 .     (3.11) 
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With p ,,1   each in the interval (-1, 1), define 

Z jjjj YY 2/12
0 )1(   .  (j =1, . . . , p)    (3.12) 

Then ))((~ jj SNZ  , and after some algebra, the pdf of z = ( T
pZZ ),,1   is given in 

(3.10), where  

,
1/21T

11T
T

λ)Ψλ(1

ΔΨλ
β 




      (3.13) 

,)1(,,)1((diag 2/122/12
1 p  Δ  

Δ)λλΨ(ΔΩ T ,      (3.14) 

T
p ))(,),(( 1  λ . 

[2] Conditioning method 

Let z  = ( T
pZZZ ), 10   be a (p+1)-dimensional multivariate normal random 

vector such that z  ~ ),( *
1 Ω0pN , with standardized marginals and correlation matrix 

*Ω  = 























p

p







Ω



1

11

.     (3.15) 

Using 3.1.6, the vector ( T
pZZ )1  conditionally on 0Z > 0 is a multivariate SN random 

vector. Notice that for *Ω  being positive definite matrix, we have some restrictions on 

the elements of Ω . In the bivariate case, it requires  (where   is the off-diagonal 

element of Ω ) satisfying 

    2/12
2

2
121 11    <  <     2/12

2
2

121 11   . 
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Combining the conditional method and property 3.2.1, we have the following 

property, which we will use in this report for generating random samples from z ~ 

SN p )( βΩ, . 

Property 3.2.6: If X 0  is a scalar random variable and x is p-dimensional such that 

 *
1

0 ,~ Ω0
x 








pN

X
,  










Ωδ

δT1*  

and z is defined by 

z = 0if 0,

otherwise,

X 
 

x

x
 

then z ~ SN p )( βΩ, , where  

1/21T δ)Ωδ(1

δΩ
β 






1

.     (3.16) 

3.2.3 Cumulative Distribution Function and Moments 

The Cumulative Distribution Function (cdf) of z ~ SN p )( βΩ, is  

G (z) = 2 p

z z T
p dzdz

p

 1)()(
1

zβΩz;  
 .  z pR  

The moment generating function (mgf) of z, denoted by M (t), is given by  

M (t) = 2 zzβΩz;zt TT dpR p
)()()exp(    

= 2 exp



















2/1)1(2

1

Ωββ

Ωtβ
tΩt

T

T
T

.
 

Hence, the mean vector and the covariance matrix are 

E (z) = (2/ δ2/1) ,     (3.17) 
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Cov (z) = TδδΩ

2

 ,     (3.18) 

where 

Ωβ
Ωβ)β(1

1
δ

1/2T
 .    (3.19) 

The multivariate indices of skewness and kurtosis are 

S (z) = ,
12

4
3

1

12

















 





z
T
z

z
T
z

μΩμ

μΩμ
   (3.20) 

K (z) = )3(2  ,
1

2

1

1









 



z
T
z

z
T
z

μΩμ

μΩμ    (3.21) 

where S (z) and K (z) range from about 0 to 0.9905, and from 0 to 0.869, respectively. 

The above framework will allow me to use simulation to investigate the 

performance of Hotelling’s T2 test in terms of size and power when sampling from a 

multivariate skew-normal distribution. 
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CHAPTER 4 - Simulation Experiment 

4.1 General Remarks 

Our simulation study was conducted to evaluate the performance of Hotelling’s 

one sample 2T  test when sampling from a multivariate SN distribution in order to answer 

two main questions. Recall that a multivariate SN distribution is a multivariate normal 

distribution when the skewness parameter  is zero. 

1. How well does Hotelling’s one sample T2 test perform in terms of size and 

power when   differs from zero?  

2. Are there combinations of parameters of the SN distribution under which 

Hotelling’s T2 performs particularly poorly?  

My simulations were carried out using the R language, version 2.7.2. In this 

chapter, I describe the procedures I used for generating skew normal data and the 

parameter settings I chose. The notations are the same as in Chapter 3. Vectors are 

represented by lower case bold text and matrices are represented in upper case bold text. 

Moreover, when we write μ  = a, it means i = a, where a is a real number, i = 1, … ,p, 

and a = (a, a, . . . , a) ' . Likewise for β . 

 

4.2 Steps of Simulation 

The algorithm I used for generating multivariate SN random variables having 

specified mean vector μ  is based on property 3.2.6. First, specify a pp positive definite 
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correlation matrixΩ , a p1 vector of constants β  (shape parameter), and a p1 vector 

of constants μ . Then, and define the p1 vector 

βΩβΩβδ T 2/1)1(  , 

and the (p+1)  (p+1) correlation matrix  

Ω  = 























p

p







Ω



1

11

. 

 

[I] The Algorithm 

(1) Generate z  = ( T
pZZZ ),,, 10  ~ Np+1(0, Ω ). 

(2) If Z0 > 0, let z = (Z1, … , Zp)
T , otherwise let z = - (Z1,…, Zp)

T . Then, 

z is an observation from a p-dimensional skew-normal distribution with 

δz 2/1)/2()( E , TCov δδΩz

2

)(  . 

(3) Let x = z + μ  - (2/ δ2/1) . 

As noted in Chapter 3, we then have that x is a multivariate skew-normal vector with 

μx )(E ,  Cov (x) = TδδΩ

2

 . 

 

[II] Generating Multivariate Skew-Normal Data 

(A) Set sample size n, dimension p, μ , β  and Ω . 

(B) Using [I] independently generate multivariate skew-normal observations {xi, i = 1, 

2,…,n}. 
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[III] Hotelling’s T2 Test 

Test H0: 0μμ  vs H1: 0μμ  at nominal type I error rate 0.05 using Hotelling’s T2 based 

on data {xi, i = 1,2,…,n}. Specifically, reject H0 at nominal type I error rate   if  

apnpF
pn

pn
nT 






 1,,
12

)(

)1(
)()( 00 μxSμx   

where x  and S are the sample mean and covariance, respectively and 
21 ,,1 F  is the (1-

 ) quantile of an F distribution with degree of freedom ( 21, ). To carry out my 

simulation study, I independently repeated [II] and [III] N = 10,000 times and recorded 

the proportion of times (denoted by ̂ ) that H0 was rejected. If 0μ μ , this is an 

estimate of type I error rate. Otherwise ̂ estimates power.  

 

4.3 Simulation Settings 

The parameters involved in our study are: sample size n, dimension p, mean 

vector μ , shape parameter β  and correlation matrix Ω . They were varied for the purpose 

of assessing the robustness and power of the test across a range of settings. The 

specifications of the simulation design are described as follows. For simplicity, we took 

Ω  to be the identity matrix. The sample sizes n were set at 10, 20, and 50. We chose the 

number of variables p to be 1, 3 and 7. Without loss of generality, to study the attained 

type I error rate we set the mean vector μ= 0 and for the power part of the study, we 

selected values of the mean vector μ  to be the constant vectors -1, -0.8, -0.5, -0.2, 0.2, 

0.5, 0.8, and 1 to represent increasing departures from H0. Recall that the statement μ  = 1 
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indicates that all of the components of the vector μ  are 1. The skewness parameter β  is 

difficult to interpret in a multidimensional space. Therefore, before choosing the value of 

β , we investigated how this parameter is related to skewness in the univariate case. 

Using equation (3.8) given in the last chapter, we calculated the skewness for various 

values of  . The results are shown in Tables 4.1, 4.2 and Figure 4.1. As can be seen, the 

positive (negative) values of   correspond to positive (negative) skewness. And the 

skewness increases as the value of   goes up. When   is equal to 10 (-10), the 

skewness of the univariate SN approaches its maximum 0.9953 (minimum -0.9953). 

Hence, in the multivariate case, the values of β  were set equal to the constant vectors -8, 

-4, -2, 0, 2, 4, and 8 to represent increasing amounts of skewness.  

 

Table 4.1: Skewness for Positive Beta 

      beta      

 0 1 2 3 4 5 6 7 8 9 10 

skewness 0 0.14 0.45 0.67 0.78 0.85 0.89 0.92 0.93 0.95 0.96 
 

 

Table 4.2: Skewness for Negative Beta 

      beta      

 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 

skewness 0 -0.14 -0.45 -0.67 -0.78 -0.85 -0.89 -0.92 -0.93 -0.95 -0.96
 



 

 22

Figure 4.1: Skewness against Beta 
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In summary, the parameters of study are stated below: 

1. Three levels of sample size n: 10, 20, 50; 

2. Three levels of number of variables p: 1, 3, 7; 

3. Nine levels of the constant mean vetor μ : -1, -0.8, -0.5, -0.2, 0, 0.2, 0.5, 0.8, 1; 

4. Seven levels of the constant vector of shape parameter β : -8, -4, -2, 0, 2, 4, 8; 

5. One level of correlation matrix Ω : I. 

The total number of parameter settings was therefore equal to 33971 = 

567. For each parameter setting N=10,000 independent data sets were simulated. The 

nominal type I error rate   was set equal to 0.05. 
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CHAPTER 5 - Results and Analysis 

This chapter presents the results of my simulation study of estimated type I error 

rates and powers of Hotelling’s one sample 2T  test when data are generated from 

multivariate SN distributions using the parameter combinations discussed in Chapter 4. 

The results are summarized in tables and plots.  The first section of this chapter analyzes 

attained type I error rates. The second section deals with power and the third section 

summarizes my results. Recall that the mean μ  is zero under the null hypothesis.  

 

5.1 Type I Error Rates 

Table 5.1 gives estimated type I error rates, denoted ̂ , organized by the 

dimension of the observations, sample size and skewness parameter β . The values 

colored in green represent results for β = 0, which corresponds to the multivariate normal 

distribution. Values marked with a ‘*’ indicate results that we designate as being non-

robust since they lie outside of the interval N/)1(2   , where   = 0.05 is the 

nominal level and N= 10,000 is the simulation sample size. This interval ranges from 

0.046 to 0.054 and represents the values of the estimate type I error rate that would lead 

to rejection of 0 : 0.05H    in favor of : 0.05aH   using a test whose type I error rate 

is approximately 0.05.  

From the table 5.1, we see that except for β = 0, all the rates are statistically 

significantly different from 0.05 and that none of the entries in the column corresponding 
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to multivariate normal data is starred. Although most of the other entries are starred, type 

I error rates for the skew normal data settings I studied appear to have values close 

enough to 0.05 to be considered as satisfactory from a practical standpoint. For example, 

the largest value of ̂ , 0.068, corresponding to p = 1, n = 10 and   = 8, is only 0.018 

higher than the nominal type I error rate 0.05. Moreover, ̂  becomes stable and close to 

the nominal level 0.05 for the large sample size (n = 50) or large number of variables (p = 

7) across all the levels of β . Thus, overall, I judge that the Hotelling’s one sample 2T  

test satisfactorily holds its nominal type I error rate for most parameter combination 

conditions of the multivariate skew-normal distribution under investigation. The 

multivariate normal case (β  = 0) produces the best results and all the values from this 

situation are in our acceptance interval (0.046, 0.054).  

Figures 5.1 is graphical representation of the values in Table 5.1 and shows plots 

of estimated type I error rate versus shape parameter, β , for p = 1, 3, 7 and n = 10, 20, 

50. Four different profiles were drawn for each graph. The solid red color profile 

represents values for n = 10. The dashed with blue profile represents values for n = 20. 

The dotted green profile represents values for n = 50 and the black dot-dash straight line 

is the nominal value  = 0.05. A very gradual decrease of the type I error rate can be seen 

as the number of variables increases. Moreover, as the sample size increases from 10 to 

50, the estimate type I error rate gets smaller for p = 1 or p = 3. The effect of sample size 

seems not to be important for p = 7. The plot also shows that the estimated type I error 

rates for both negative and positive β  are almost symmetric. 
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Table 5.1: Type I Error Rates for Multivariate SN 

         β        
p n -8 -4 -2 0 2 4 8 

 10 0.067   0.061  0.057   0.045 0.054 0.064   0.068   

1 20 0.067   0.058  0.049 0.047 0.054 0.058   0.057   

  50 0.053 0.055  0.052 0.054 0.048 0.049 0.050 

 10 0.063   0.056  0.053 0.047 0.055   0.056   0.056   

3 20 0.057   0.057  0.056   0.049 0.059   0.059   0.058   

 50 0.056   0.054 0.051 0.056 0.053 0.054 0.051 

 10 0.054 0.053 0.054 0.047 0.052 0.050 0.050 

7 20 0.053 0.055  0.052 0.050 0.053 0.050 0.055   
  50 0.052 0.052 0.052 0.053 0.051 0.050 0.051 

  Indicates that the estimated type I error rate is more than 2{(0.05)(0.95)/10,000} 2/1 from 
the nominal 0.05 level.  

 

Figure 5.1: Type I Error Rates for Multivariate SN 

-5 0 5

0.
04

0
0.

05
0

0.
06

0
0.

07
0

Hotelling's T2 test, p=1

beta

es
tim

at
ed

 ty
pe

 I 
er

ro
r 
ra

te n=10

n=20

n=50

alpha=0.05

-5 0 5

0.
04

0
0.

05
0

0.
06

0
0.

07
0

Hotelling's T2 test, p=3

beta

 e
st

im
at

ed
 ty

pe
 I 

er
ro

r 
ra

te
 

n=10

n=20

n=50

alpha=0.05

-5 0 5

0.
04

0
0.

05
0

0.
06

0
0.

07
0

Hotelling's T2 test, p=7

beta

 e
st

im
at

ed
 ty

pe
 I 

er
ro

r 
ra

te
 

n=10

n=20

n=50

alpha=0.05

 



 

 26

5.2 Power Results 

Results of the powers are analyzed in two ways. One way is to divide the results 

into three parts, corresponding to what I subjectively call a small effect size (μ  =  0.2), 

medium effect size (μ  =  0.5), and large effect sizes (μ  =  0.8 and μ  =  1). In each 

part, a tabular analysis and graphical display is performed on the data to determine the 

effect of the factors under study. Another way to accomplish this is through the 

development of a regression model. 

5.2.1 Small Effect Size ( 0.2μ  ) 

Values of estimated powers in Tables 5.2 -5.9 are organized the same way as in 

Table 5.1 for the estimated type I error rates. The symbols used in the plots given in 

Figures 5.2-5.9 are consistent with the ones in Figure 5.1 has.  

When the degree of departure from the null hypothesis is small (μ  =  0.2), as 

displayed in Tables 5.2-5.3 and Figures 5.2-5.3, Hotelling’s 2T  does not appear to have 

good power to detect the fact that the null hypothesis is false for small and moderate 

sample sizes (n =10 and 20), across all the levels of β . When the sample size increases to 

50 and number of variables increases to 3, changes in the value of β  have a sizeable 

effect on the power of Hotelling’s 2T test in my judgment. Specifically, the larger β  

values correspond to the higher powers. For example, for μ  = 0.2, p = 3 and n = 50, the 

estimated power of Hotelling’s 2T is 0.479 for β  = 0 and 0.911 for β  = 2. However the 

power curves level off when absolute values of β  is larger than 2. We always have the 

lowest power when β = 0 under various conditions. This may be do to the somewhat 
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larger than nominal type I error rates indicated in Table 5.1 when 0β  . The sign of β  

appears to have a slight effect on the power for p = 1 or p = 3. Specifically, the powers 

for negative β  are slightly higher than those for positive β  when the components of the 

mean vector are positive. The situation reverses for a negative mean vector. We have 

almost symmetric results for different signs of β  for p = 7. 

 

Table 5.2: Simulated Powers for Multivariate SN with 0.2μ   

     β     
p n -8 -4 -2 0 2 4 8 

 10 0.221 0.194 0.162 0.087 0.105 0.100 0.097 

1 20 0.323 0.305 0.254 0.136 0.205 0.230 0.234 
 50 0.622 0.590 0.511 0.283 0.504 0.601 0.625 

 10 0.251 0.245 0.219 0.095 0.132 0.135 0.136 

3 20 0.488 0.485 0.445 0.184 0.382 0.420 0.426 

 50 0.886 0.884 0.852 0.479 0.911 0.950 0.954 

 10 0.161 0.162 0.152 0.074 0.111 0.113 0.118 
7 20 0.622 0.590 0.511 0.219 0.550 0.584 0.588 

 50 0.984 0.985 0.983 0.701 0.999 1.000 1.000 

  

 
Table 5.3: Simulated Powers for Multivariate SN with 0.2μ   

          β        

p n -8 -4 -2 0 2 4 8 

 10 0.098 0.098 0.102 0.085 0.155 0.194 0.218 

1 20 0.235 0.231 0.208 0.132 0.254 0.299 0.318 

  50 0.627 0.587 0.504 0.283 0.512 0.591 0.612 

 10 0.140 0.138 0.132 0.096 0.212 0.246 0.258 

3 20 0.423 0.410 0.377 0.191 0.441 0.478 0.491 

  50 0.955 0.947 0.911 0.479 0.851 0.880 0.883 

 10 0.120 0.116 0.114 0.073 0.155 0.162 0.166 

7 20 0.627 0.587 0.504 0.228 0.572 0.588 0.591 

  50 1.000 1.000 0.998 0.709 0.980 0.985 0.988 
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Figure 5.2: Power as Function of β  for Multivariate SN with 0.2μ   
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Figure 5.3: Power as Function of β  for Multivariate SN with 0.2μ   
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5.2.2 Medium Effect Size ( 0.5μ  ) 

Tables 5.4-5.5 and Figures 5.4-5.5 show the results obtained when the effect size 

is medium ( 0.5μ  ). When the sample size is small (n = 10), excellent power is 

observed only for p = 3 and β  is larger than 2 or less than -2. As the sample size 

increases to 20, the increase of β  has a sizeable effect on the power for p = 1, but not for 

p =3 or 7. When p is 7, the Hotelling’s 2T  test attains the highest power, one, no matter 

how β  changes. As the sample size increases to 50, the power curve is almost a straight 

line equal to one. Contrary to the results from the small effect size, the powers for 

negative β  are slightly lower than those of positive β  for a positive mean vector when p 

= 3. The situation reverses for negative mean vector. For p = 1 or 7, we have almost 

symmetric results for different signs of β . 

5.2.3 Large Effect Size ( 0.8μ  and 1μ  ) 

Tables 5.6-5.9 and Figures 5.6-5.9 show the results obtained when the effect sizes 

are what I call large ( 0.8μ  and 1μ  ). By looking Figures 5.6-5.9, the powers vary 

a bit as β  changes for small sample sizes. But, as the sample size increases to 20, we 

have very high powers across all the levels of β and p. The signs of β  here only have 

effect when n = 10 and p = 1.In this case, the powers of negative β  are slightly lower 

than those of positive β for a positive mean vector and situation reverses for negative 

mean vector. 



 

 30

Table 5.4: Simulated Powers for Multivariate SN with 0.5μ   

          β        

p n -8 -4 -2 0 2 4 8 

 10 0.619 0.601 0.524 0.292 0.515 0.620 0.668 

1 20 0.897 0.884 0.840 0.561 0.880 0.958 0.982 

  50 0.999 0.999 0.997 0.934 1.000 1.000 1.000 

 10 0.784 0.770 0.743 0.389 0.832 0.879 0.902 

3 20 0.991 0.991 0.989 0.834 1.000 1.000 1.000 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 10 0.565 0.554 0.532 0.234 0.524 0.547 0.551 

7 20 0.999 0.999 0.997 0.941 1.000 1.000 1.000 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  

 

 

 

 

Table 5.5: Simulated Powers for Multivariate SN with 0.5μ   

          β        

p n -8 -4 -2 0 2 4 8 

 10 0.673 0.622 0.529 0.288 0.531 0.531 0.594 

1 20 0.982 0.957 0.886 0.558 0.837 0.888 0.897 

  50 1.000 1.000 0.999 0.939 0.997 0.999 0.999 

 10 0.898 0.882 0.830 0.391 0.751 0.778 0.788 

3 20 0.999 1.000 1.000 0.840 0.988 0.991 0.993 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 10 0.547 0.543 0.519 0.232 0.533 0.552 0.564 

7 20 1.000 1.000 0.999 0.944 0.999 1.000 1.000 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Figure 5.4: Power as Function of β  for Multivariate SN with 0.5μ   
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Figure 5.5: Power as Function of β  for Multivariate SN with 0.5μ   
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Table 5.6: Simulated Powers for Multivariate SN with 0.8μ   

          β        

p n -8 -4 -2 0 2 4 8 

 10 0.912 0.900 0.912 0.621 0.930 0.986 0.997 

1 20 0.998 0.998 0.994 0.923 0.999 1.000 1.000 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 10 0.982 0.981 0.979 0.802 0.999 1.000 1.000 

3 20 1.000 1.000 1.000 0.998 1.000 1.000 1.000 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 10 0.862 0.865 0.857 0.512 0.889 0.905 0.906 

7 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  

 

 

 

 

Table 5.7: Simulated Powers for Multivariate SN with 0.8μ   

          β        

p n -8 -4 -2 0 2 4 8 

 10 0.997 0.987 0.997 0.614 0.868 0.902 0.909 

1 20 1.000 1.000 1.000 0.926 0.994 0.998 0.998 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 10 1.000 1.000 1.000 0.797 0.975 0.980 0.979 

3 20 1.000 1.000 1.000 0.899 1.000 1.000 1.000 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 10 0.908 0.910 0.891 0.511 0.858 0.862 0.866 

7 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Figure 5.6: Power as Function of β  for Multivariate SN with 0.8μ   
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Figure 5.7: Power as Function of β  for Multivariate SN with 0.8μ   
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Table 5.8: Simulated Powers for Multivariate SN with 1μ   

     β     

p n -8 -4 -2 0 2 4 8 
 10 0.977 0.972 0.960 0.804 0.992 1.000 1.000 

1 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 10 0.997 0.998 0.998 0.942 1.000 1.000 1.000 

3 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 10 0.956 0.958 0.949 0.688 0.972 0.979 0.978 

7 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
 

 

 

 

 

Table 5.9: Simulated Powers for Multivariate SN with 1μ   

          β        

p n -8 -4 -2 0 2 4 8 

 10 1.000 1.000 0.994 0.805 0.958 0.975 0.976 

1 20 1.000 1.000 1.000 0.991 1.000 1.000 1.000 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 10 1.000 1.000 1.000 0.940 0.999 0.999 0.998 

3 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 10 0.980 0.978 0.971 0.688 0.950 0.952 0.957 

7 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Figure 5.8: Power as Function of β  for Multivariate SN with 1μ   
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Figure 5.9: Power as Function of β  for Multivariate SN with 1μ   
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5.2.4 Regression Analysis 

Analyzing power results in tables and figures is not the only approach. A logistic 

regression analysis allows us to quantify the effects of the factors: 1x  = the shape 

parameter (beta), 2x = the number of variables (p), 3x  = the sample size (n), and 4x = the 

common element of the mean vector (mu) on power = )(x , where ),,,( 4321 xxxxx , 

by using estimated power ̂ (x) as a response variable. For ease of interpretation, we only 

fit a model with main effects of the form: 

Logit( )(x ) = a + 1b beta + 2b p + 3b n + 4b mu  (5.1) 

where a and  ib  are constant coefficients, and all the explanatory variables are treated 

as being quantitative. The quantity Logit( )(x ) is the logarithm of the odds 

))(1/()( xx   .  

Recall that the estimated power curves in Figures 5.2-5.9 are close to being 

symmetric in beta especially for moderate and large sample sizes, which implies that the 

effect of the negative beta on power is similar to the effect of the positive beta. 

Moreover, the shape of the estimated power curve reverses from left to right if we change 

the sign of the mu from plus to minus, which indicates the signs of mu don’t have a 

significant impact on power. The almost symmetric graphs, estimated power plotted 

against mu, shown in Figure 5.10 – 5.12, further verify our findings. The symmetric 

effects of the beta and mu on power suggest that we could fit the model (5.1) with data 

which only includes values of non-negative beta and non-negative mu. 
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Figure 5.10: Power as Function of mu for Multivariate SN with n = 10 
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Figure 5.11: Power as Function of mu for Multivariate SN with n = 20 
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Figure 5.12: Power as Function of mu for Multivariate SN with n = 50 
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The logistic procedure in SAS was used to conduct the analysis. Eestimated 

powers ( )(ˆ x ) of 1 were changed to 0.9999 before doing analysis. The estimated 

coefficients, â ,  ib̂ , the quantities )ˆexp( ib  and the goodness-of-fit tests of the model 

are summarized in Table 5.10. Recall that we estimate that a unit increase in ix  while 

holding the other explanatory variables fixed, multiplies the power odds by )ˆexp( ib . 

Thus, for example, we see from Table 5.10 that we estimate for β 0  and 0μ  , 

increasing sample size by 10, the other factors remaining fixed, results in multiplying the 

power odds by 10.76. Although Hosmer and Lemeshow goodness-of-fit test for model 

gives large Chi-Square values, 29501.43 with 8 degrees of freedom, which suggests that 

the model doesn’t fit decently. We still could obtain some information about the 

relationship between power and other factors by looking at the signs and values of the 

coefficients. The positive signs of the coefficients for p and n in the model provide 

evidence that power increases as the number of variables or the sample size increases. 
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These results are consistent with what is seen by looking at the graphs 5.2-5.9. There is 

also evidence that the effect size, mu, which has an estimated odds ratio larger than 

999.99, has an important impact on the power. The positive coefficient of beta in model 

indicates that increasing magnitude of shape parameter would increase the power. 

Specifically, the estimated odds of power multiply by 1.156 for each unit increase in the 

shape parameter. Overall the regression analysis gives similar results to those discussed 

in Section 5.2.1-3. 

 

Table 5.10: Results for the Model Fitting with 0β  and 0μ   

Variable  Estimate  Exp(Est)  Chi-Square  P_Value
intercept  -4.624    172218.758  <.0001 

mu  7.492  >999.99  266591.71  <.0001 
beta  0.145  1.156  20961.517  <.0001 

p  0.045  1.046  1541.215  <.0001 
n  0.074  1.076  184156.475  <.0001 

  Hosmer and Lemeshow Goodness-of-Fit Test   
  Chi-Square  DF   Pr-Chisq  

  29501.43  8   <.0001  
  

 

5.3 Summary 

For nominal type I error rate 0.05, the attained type I error rates under sampling 

from the multivariate skew distribution are slightly high, but satisfactory from a practical 

standpoint. In terms of power, the Hotelling’s 2T test was observed to have high power as 

the sample size and number of variables increase. Increases in the common component of 

β  have a more positive impact on power for small and moderate effect size than those for 

large effect size. As a whole, the one sample Hotellng 2T test performs best in terms of 
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power when the common component of β  increases and surprisingly, worst when β  = 0  

under all conditions. Furthermore, the sign of the common component of β  does not 

appear to play a big role in attained size or power.  
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CHAPTER 6 – Discussion 

The purpose of this study was to investigate the type I error rate and power 

properties of Hotelling’s one sample 2T  test when sampling from multivariate skew-

normal distributions. Simulation results obtained from various levels of shape parameters, 

sample sizes, number of variables and fixed correlation matrix for nominal level 0.05 

were used to determine the performance of the test. 

The results from Chapter 5 indicate that Hotelling’s one sample 2T  test provides 

adequate control of type I error rates over the entire range of conditions studied. The test 

also produces suitable power levels for detecting departures from hypothesized values of 

a multivariate mean vector when data results from a random sample from a multivariate 

SN. Shape parameter appears not affect the robustness of Hotelling’s 2T test. This may be 

due to the range of the skewness for beta is from -0.9953 to 0.9953 in the univariate SN 

distributions. Whereas, as the value of shape parameter increases, Hotelling’s 2T  test 

generally shows increased power under all the situations invested in our study. 

As with any simulation study, the choices of parameter settings may limit the 

generalization of the results. The choice of Ω  be identity matrix, although a 

mathematical convenience, does not cover all the possible situations. The nominal level 

0.05 is also a limited choice. The analysis may have yield different values if we had 

conducted a study of 0.1 or .01 levels and changed the values of Ω . Further studies that 

examine all three alpha levels and other values of Ω  would give a much more complete 

view of Hotelling’s one sample 2T  test performance. 
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Appendix A - R code for Simulation Experiment 

The following R code is for generating multivariate SN random samples and calculating 

type I error rates and powers for simulated data. 

## The following function ‘rsnp’ generates multivariate SN, where n is the sample size; 
mux is the specified mean vector, beta is the shape parameter, Omega is the correlation 
matrix. 

rsnp = function(n=1, mux=rep(0,length(beta)), beta, Omega) 

{ 

p = length(beta) 

p1 = p + 1 

z0 = matrix(rep(0,n),n,1) 

z = matrix(rep(0,p*n),n,p) 

x = matrix(rep(0,p*n),n,p) 

Z = matrix(rep(0,n),n,1) 

mu = rep(0, p1) 

tmp = as.vector(sqrt(1 + t(as.matrix(beta))%*%Omega%*%beta))  

delta = as.vector(Omega %*%beta)/tmp 

delta1 = c(1,delta) 

om = cbind(delta,Omega,deparse.level = 0) 

omega = rbind(delta1,om,deparse.level = 0) 

if(det(omega)< 0) stop("omega must be positive definite matrix") 

for (i in (1:n)) 

{ 

Z = matrix(matrix(rnorm(p1),1,p1) %*% chol(omega),p1,1) 

z0[i,1] = Z[1,1] 

if (z0[i, 1]>0) z[i, 1:p]=Z[2:p1, 1] else z[i, 1:p] = -Z[2:p1, 1] 
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x[i, 1:p] = z[i, 1:p] + mux - sqrt(2/pi)*delta 

} 

return (x) 

} 

## The following function ‘HT2_test’ calculates type I error rates as mux = 0 and 
powers as mux is away from 0, where N is the simulation size; other parameters are the 
same as those in function ‘rsnp’. 

## Note: Function ‘HotellingsT2’ is in the package ‘ICSNP’. 

library(ICSNP) 

HT2_test = function(N, n, mux, beta, Omega) 

{ 

p.value=numeric() 

p.value=0 

for (j in c(1:N)) 

{ 

x1 = rsnp(n,mux,beta,Omega) 

result = HotellingsT2(x1, mu=rep(0,length(beta)),test="f") 

p.value[j] = result[[2]] 

} 

test = length(p.value[p.value<0.05])/N 

return(test) 

} 
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Appendix B - R code for Figures 

All graphs showed in my report are produced by using R language. Figures 3.2 – 3.7 

require downloading package ‘sn’. 

#### Figure 3.1 #### 

sn_01 = function(z, beta=0) 

{ 

y = 2*dnorm(z)*pnorm(z*beta) 

return (y) 

} 

z = seq(-5, 5, 0.1) 

y1 = sn_01(z, beta=5)  

y2 = sn_01(z, beta=-2)  

y3 = sn_01(z, beta=0)  

plot(c(z,z), c(y1,y2), xlim=c(-4,4), ylim=c(0,0.8), xlab="z", ylab="Skew-Normal 

Density",type="n") 

lines(z,y1,lty=1) 

lines(z,y2,lty=2) 

lines(z,y3,lty=3) 

legend(-4,0.8, c("beta=5","beta=-2","beta=0"), lty=c(1,2,3)) 

 

#### Figure 3.2 #### 
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## Figure 3.3 and Figures D.1-D.4 use the same code as Figure 3.2 except changing the 
values of beta(shape parameter) and Omega(correlation matrix) 
 

# Download package ‘sn’ 

library(sn) 

Omega = matrix(c(1,0.75,0.75,1),2) 

beta = c(-5,10) 

tmp = as.vector(sqrt(1 + t(as.matrix(beta))%*%Omega%*%beta))  

delta = as.vector(Omega %*%beta)/tmp 

muZ = delta*sqrt(2/pi) 

omega = Omega-outer(muZ,muZ) 

# Function ‘dsn2.plot’ being used to produce contour plot 

x = y = seq(-3, 3, length=100) 

dsn2.plot(x, y, c(0,0), omega, beta, nlevels = 6, ylim = c(-2,2), xlim = c(-2,2), ylab = 

"z2",xlab = "z1") 

 

#### Figure 4.1 #### 

skewness.sn = function(n, beta) 

{ 

 for (i in n) 

 { 

 gamma_1 = 0.5*(4-pi)*sign(beta)*sqrt((beta^2/(pi/2+(pi/2-1)*beta^2))^3) 

 gamma_1[i] = gamma_1[i] 

 } 
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 return (gamma_1) 

} 

n = 10 

beta = c(-n:n) 

skewness = skewness.sn(n, beta) 

plot(beta, skewness, type = "b") 

 

#### Figure 5.1 #### 

## Note: t.10, t.20 and t.50 are the empirical type I error rates when beta changes from -
8 to 8 and sample sizes are 10, 20 and 50, respectively. 

par(mfrow = c(3,1)) 

# Type I error rate plots for multivariate SN under study: p = 1, n = 10, 20, 50 

beta = c(-8,-4,-2,0,2,4,8) 

t.10 = c(0.0674, 0.0607, 0.057, 0.0454, 0.0541, 0.0642, 0.0675) 

t.20 = c(0.0613, 0.0576, 0.0492, 0.0469, 0.0535, 0.0584, 0.0573) 

t.50 = c(0.0526, 0.0545, 0.0521, 0.054, 0.0483, 0.0489, 0.05) 

p.level = rep(0.05, 7) 

plot(c(beta, beta),c(t.10, t.20),ylim = c(0.04, 0.07), xlab = "beta", ylab = "estimated type I 

error rate", type= "n", main = "Hotelling's T2 test, p=1") 

lines(beta, t.10, lty = 1, col = "red", lwd = 2) 

lines(beta, t.20, lty = 2, col = "blue", lwd = 2) 

lines(beta, t.50, lty = 3, col = "green", lwd = 2) 

lines(beta, p.level, lty = 4,) 

legend(0, 0.07, c("n=10","n=20","n=50"), lty = c(1,2,3), col= c("red", "blue", "green")) 

text(-5,0.05,"alpha=0.05") 

 

# Type I error rate plots for multivariate SN under study: p = 3, n = 10, 20, 50 
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beta = c(-8,-4,-2,0,2,4,8) 

t.10 = c(0.0625, 0.0563, 0.0528, 0.0473, 0.0545, 0.0555, 0.0564) 

t.20 = c(0.0572, 0.0568, 0.0564, 0.0488, 0.0588, 0.0587, 0.0576) 

t.50 = c(0.0564, 0.054, 0.0514, 0.0556, 0.0533, 0.0543, 0.0508) 

p.level = rep(0.05, 7) 

plot(c(beta, beta),c(t.10, t.20),ylim = c(0.04, 0.07), xlab = "beta", ylab = " estimated type 

I error rate ", type= "n", main = "Hotelling's T2 test, p=3") 

lines(beta, t.10, lty = 1, col = "red", lwd = 2) 

lines(beta, t.20, lty = 2, col = "blue", lwd = 2) 

lines(beta, t.50, lty = 3, col = "green", lwd = 2) 

lines(beta, p.level, lty = 4,) 

legend(0, 0.07, c("n=10","n=20","n=50"), lty = c(1,2,3), col= c("red", "blue", "green")) 

text(-5,0.05,"alpha=0.05") 

 

# Type I error rate plots for multivariate SN under study: p = 7, n = 10, 20, 50 

beta = c(-8,-4,-2,0,2,4,8) 

t.10 = c(0.0542, 0.0528, 0.0543, 0.0471, 0.0518, 0.0495, 0.0503) 

t.20 = c(0.0526, 0.0545, 0.0521, 0.0498, 0.053, 0.0504, 0.0551) 

t.50 = c(0.0523, 0.0523, 0.0524, 0.0528, 0.0509, 0.0499, 0.051) 

p.level = rep(0.05, 7) 

plot(c(beta, beta),c(t.10, t.20),ylim = c(0.04, 0.07), xlab = "beta", ylab = "estimated type 

Ierror rate ", type= "n", main = "Hotelling's T2 test, p=7") 

lines(beta, t.10, lty = 1, col = "red", lwd = 2) 

lines(beta, t.20, lty = 2, col = "blue", lwd = 2) 

lines(beta, t.50, lty = 3, col = "green", lwd = 2) 

lines(beta, p.level, lty = 4,) 

legend(2, 0.07, c("n=10","n=20","n=50"), lty = c(1,2,3), col= c("red", "blue", "green")) 

text(-5,0.05,"alpha=0.05") 

 

#### Figure 5.2 #### 
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## Note: p.10, p.20 and p.50 are the empirical powers when beta changes from -8 to 8 
and sample sizes are 10, 20 and 50, respectively. Figures 5.3 – 5.9 basically are 
produced by using the same code below except changing the values of p.10, p.20, p.50 
and some arguments in functions ‘plot’ and ‘legend’. 

# Power plots for multivariate SN under study: mu = 0.2, p = 1, n = 10,20,50 

par(mfrow = c(1,3)) 

beta = c(-8,-4,-2,0,2,4,8) 

p.10 = c(0.2213, 0.1938, 0.1619, 0.0866, 0.1048, 0.1002, 0.0965) 

p.20 = c(0.3231, 0.3053, 0.2542, 0.1355, 0.2049, 0.2302, 0.2338) 

p.50 = c(0.6223, 0.5901, 0.5114, 0.2826, 0.5041, 0.6009, 0.6252) 

plot(c(beta, beta),c(p.10, p.20),ylim = c(0, 1), xlab = "beta", ylab = "power", type= "n", 

main = "5.2(a) Hotelling's T2 test, p=1") 

lines(beta, p.10, lty = 1, col = "red", lwd = 2) 

lines(beta, p.20, lty = 2, col = "blue", lwd = 2) 

lines(beta, p.50, lty = 3, col = "green", lwd = 2) 

legend(0, 1, c("n=10","n=20","n=50"), lty = c(1,2,3), col= c("red", "blue", "green")) 

 

# Power plots for multivariate SN under study: mu=0.2, p=3, n=10,20,50 

beta = c(-8,-4,-2,0,2,4,8) 

p.10 = c(0.2505, 0.2453, 0.2188, 0.0947, 0.1317, 0.1346, 0.1362) 

p.20 = c(0.4883, 0.4846, 0.4446, 0.184, 0.3824, 0.4202, 0.4262) 

p.50 = c(0.8862, 0.8835, 0.8517, 0.4794, 0.911, 0.9496, 0.9543) 

plot(c(beta, beta),c(p.10, p.20),ylim = c(0, 1), xlab = "beta", ylab = "power", type= "n", 

main = "5.2(b) Hotelling's T2 test, p=3") 

lines(beta, p.10, lty = 1, col = "red", lwd = 2) 

lines(beta, p.20, lty = 2, col = "blue", lwd = 2) 

lines(beta, p.50, lty = 3, col = "green", lwd = 2) 
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legend(0.5, 0.8, c("n=10","n=20","n=50"), lty = c(1,2,3), col= c("red", "blue", "green")) 

 

# Power plots for multivariate SN under study:mu=0.2, p=7, n=10,20,50 

beta = c(-8,-4,-2,0,2,4,8) 

p.10 = c(0.1611, 0.162, 0.1522, 0.0744, 0.1105, 0.113, 0.1178) 

p.20 = c(0.6223, 0.5901, 0.5114, 0.2192, 0.5498, 0.5839, 0.5877) 

p.50 = c(0.9844, 0.9851, 0.9828, 0.7007, 0.9989, 0.9997, 1) 

plot(c(beta, beta),c(p.10, p.20),ylim = c(0, 1), xlab = "beta", ylab = "power", type= "n", 

main = "5.2(c) Hotelling's T2 test, p=7") 

lines(beta, p.10, lty = 1, col = "red", lwd = 2) 

lines(beta, p.20, lty = 2, col = "blue", lwd = 2) 

lines(beta, p.50, lty = 3, col = "green", lwd = 2) 

legend(0.5, 0.8, c("n=10","n=20","n=50"), lty = c(1,2,3), col= c("red", "blue", "green")) 

 

#### Figure 5.10 #### 

## Note: beta_8 to beta8 are the empirical powers when mu changes from -1 to 1 and 
beta are -8 to 8, respectively. Figures 5.11 – 5.12 basically are produced by using the 
same code below except changing the values of beta_8 to beta8 and some arguments in 
functions ‘plot’ and ‘legend’. 

 

# Power plot for multivariate SN under study: n=10, p=1,  

par(mfrow = c(1,3)) 

mu = c(-1,-0.8,-0.5,-0.2,0,0.2,0.5,0.8,1) 

beta_8 = c(1.000,0.997,0.673,0.098,0.067,0.221,0.619,0.912,0.977) 

beta_4 = c(1.000,0.987,0.622,0.098,0.061,0.194,0.601,0.900,0.972) 

beta_2 = c(0.994,0.997,0.529,0.102,0.057,0.162,0.524,0.912,0.960) 

beta0 = c(0.805,0.614,0.288,0.085,0.045,0.087,0.292,0.621,0.804) 
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beta2 = c(0.958,0.868,0.531,0.155,0.054,0.105,0.515,0.930,0.992) 

beta4 = c(0.975,0.902,0.531,0.194,0.064,0.100,0.620,0.986,0.986) 

beta8 = c(0.976,0.909,0.594,0.594,0.068,0.097,0.668,0.997,1.000) 

 

plot(c(mu,mu),c(beta_8,beta8),ylim = c(0, 1), xlab = "mu", ylab = "power", type= "n", 

main = "5.10(a) Hotelling's T2 test, p=1") 

lines(mu,beta_8, lty = 1, col = "yellow", lwd = 2) 

lines(mu,beta_4, lty = 2, col = "blue", lwd = 2) 

lines(mu,beta_2, lty = 3, col = "green", lwd = 2) 

lines(mu,beta0, lty = 4, col = "red", lwd = 2) 

lines(mu,beta2, lty = 5, col = "green4", lwd = 2) 

lines(mu,beta4, lty = 6, col = "purple", lwd = 2) 

lines(mu,beta8, lty = 7, col = "orange", lwd = 2) 

legend(-0.5, 1, c("beta= -8","beta= -4","beta= -2","beta= 0","beta= 2", "beta= 4","beta= 

8"), lty = c(1,2,3,4,5,6,7,8), col= c("yellow", "blue", "green","red", "green4", "purple", 

"orange"), bty="n") 

 

# Power plot for multivariate SN under study: n=10, p=3,  

mu = c(-1,-0.8,-0.5,-0.2,0,0.2,0.5,0.8,1) 

beta_8 = c(1.000,1.000,0.898,0.140,0.063,0.251,0.784,0.982,0.997) 

beta_4 = c(1.000,1.000,0.882,0.138,0.056,0.245,0.770,0.981,0.998) 

beta_2 = c(1.000,1.000,0.830,0.132,0.053,0.219,0.743,0.979,0.998) 

beta0 = c(0.940,0.797,0.391,0.096,0.047,0.095,0.389,0.802,0.942) 

beta2 = c(0.999,0.975,0.751,0.212,0.055,0.132,0.832,0.999,1.000) 

beta4 = c(0.999,0.980,0.778,0.246,0.056,0.135,0.879,1.000,1.000) 

beta8 = c(0.998,0.979,0.788,0.258,0.056,0.136,0.902,1.000,1.000) 

 

plot(c(mu,mu),c(beta_8,beta8),ylim = c(0, 1), xlab = "mu", ylab = "power", type= "n", 

main = "5.10(b) Hotelling's T2 test, p=3") 

lines(mu,beta_8, lty = 1, col = "yellow", lwd = 2) 

lines(mu,beta_4, lty = 2, col = "blue", lwd = 2) 
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lines(mu,beta_2, lty = 3, col = "green", lwd = 2) 

lines(mu,beta0, lty = 4, col = "red", lwd = 2) 

lines(mu,beta2, lty = 5, col = "green4", lwd = 2) 

lines(mu,beta4, lty = 6, col = "purple", lwd = 2) 

lines(mu,beta8, lty = 7, col = "orange", lwd = 2) 

legend(-0.5, 1, c("beta= -8","beta= -4","beta= -2","beta= 0","beta= 2", "beta= 4","beta= 

8"), lty = c(1,2,3,4,5,6,7,8), col= c("yellow", "blue", "green", "red", "green4", "purple", 

"orange"), bty="n") 

 

# Power plot for multivariate SN under study: n=10, p=7,  

mu = c(-1,-0.8,-0.5,-0.2,0,0.2,0.5,0.8,1) 

beta_8 = c(0.980,0.908,0.547,0.120,0.054,0.161,0.565,0.862,0.956) 

beta_4 = c(0.978,0.910,0.543,0.116,0.053,0.162,0.554,0.865,0.958) 

beta_2 = c(0.971,0.891,0.519,0.114,0.054,0.152,0.532,0.857,0.949) 

beta0 = c(0.688,0.511,0.232,0.073,0.047,0.074,0.234,0.512,0.688) 

beta2 = c(0.950,0.858,0.533,0.155,0.052,0.111,0.524,0.889,0.972) 

beta4 = c(0.952,0.862,0.552,0.162,0.050,0.113,0.547,0.905,0.979) 

beta8 = c(0.957,0.866,0.564,0.166,0.050,0.118,0.551,0.906,0.978) 

 

plot(c(mu,mu),c(beta_8,beta8),ylim = c(0, 1), xlab = "mu", ylab = "power", type= "n", 

main = "5.10(c) Hotelling's T2 test, p=7") 

lines(mu,beta_8, lty = 1, col = "yellow", lwd = 2) 

lines(mu,beta_4, lty = 2, col = "blue", lwd = 2) 

lines(mu,beta_2, lty = 3, col = "green", lwd = 2) 

lines(mu,beta0, lty = 4, col = "red", lwd = 2) 

lines(mu,beta2, lty = 5, col = "green4", lwd = 2) 

lines(mu,beta4, lty = 6, col = "purple", lwd = 2) 

lines(mu,beta8, lty = 7, col = "orange", lwd = 2) 
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legend(-0.5, 1, c("beta= -8","beta= -4","beta= -2","beta= 0","beta= 2", "beta= 4","beta= 

8"), lty = c(1,2,3,4,5,6,7,8), col= c("yellow", "blue", "green", "red", "green4", "purple", 

"orange"), bty="n") 
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Appendix C - SAS code for Logistic Regression Analysis 

The following SAS code is for power analysis in Section 5.2.4 

 

* Import data from excel file  

 

proc import out=analyze_data_01  

datafile="G:\MS_file\simulation\analyze_data_01.xls"  

DBMS=EXCEL REPLACE; 

run; 

 

* Changing power 1 to 0.9999  

 

data power_data_01; 

set analyze_data_01; 

if accept=10000 then accept=9999; 

run; 

 

* Logistic Regression for beta   0 and mu   0 

 

data pos_beta_mu; 

set power_data_01; 

where beta in (0, 2 ,4, 8) and mu in (0, 0.2, 0.5, 0.8, 1); 

run; 

 

proc logistic data = pos_beta_mu; 

model accept/size = mu beta p n / lackfit; 

run; 
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Appendix D - Contour Plots for Multivariate SN 

Figure 5.13: Contour plot of the SN 2  for 1  = 10, 2  = -5 and   = 0.5 
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Figure 5.14: Contour plot of the SN 2  for 1  = 0, 2  = -5 and   = 0 
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Figure 5.15: Contour plot of the SN 2  for 1  = 2, 2  = 5 and   = 0.2 
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Figure 5.16: Contour plot of the SN 2  for 1  = -2, 2  = -5 and   = 0.2 
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