SOME CONSIDERATICONS OF DIGITAL FILTER
IMPLEMENTATION USING MICROPROCESSORS

by
JAY PURUSHOTHAMAN JAYAPALAN

B.Sc., University of Madras, 1971
B.E., Indian Institute of Science, 1974

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1976

Approved by:

A Ohrad

-Major Professor

LD

ta76

34
C.o2
Document

To the memory of
Dr. Dale E. Kaufman
who developed my interest in microprocessors

and initiated this line of research.

ii

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

iii

ACKNOWLEDGMENT

- I wish to thank Dr. N, Ahmed for his valuable guidance and -
suggestions at various stages of the research reported here and
during the final preparation of this report. Thanks are also due
to Dr. W. W. Koepsel and Dr. D, H. Lenhert for their support dnd
assistance.

[wish also to thank Mrs., Patricia Stewart for typing this

report.

iv

TABLE OF CONTENTS
Chapter | Page
1. INTRODUCTION. + v v 4 v v o o e b e oo o e e e e e b a s 1
2. FUNDAMENTALS OF DIGITAL FILTERS . + + « + o v o s « « 4 4 3
CLASSIFICATION, « v & v v v v o o v b e e v v e n e e u s 3
TRANSFER FUNCTIONS, . » & v v v 4 4 o s o o o o o v 0 o s 3

NUMBER REPRESENTATION . . » « v v v o o v v o o e e e u 7

DATA CONVERTERS . . . + & v v v o v v a v s s v a v s o 10

3. DIGITAL DESIGN CONSIDERATIONS . » » + & v v o o ¢ o o o « . 15
INTRODUCTION. . o O |

BAIR BEREING. v v + s s s s & « s mn s b am e s an OB

WORD LENGTHS. . » . + « « + » « . R €

4. IMPLEMENTATION USING HARDWIRED LOGIC. . . + » o o » o o o . 29
CONVENTIONAL METHODS, + & v & v « ¢ v o o s s v v o s o v 29

A RECENT APPROACH USING ROM'S ., . , - &

5. IMPLEMENTATION USING MICROPROCESSORS. . . +» & « o & « + o . 41
INTRODUCTION, + v v v v v v o o 4 v o v o v o o o s oo 41
CHARACTERISTICS OF INTEL 8008 + « « » v o v v v o o o oo &2

FILTER DESIGN . + + 4 4 v v o o v o o o o o oo o v oo 43
SIMULATION RESULTS. + + & + ¢ « o ¢ « o o s o ¢ o o s oo 48

6. CONCLUSIONS + « & « ¢ o « o o o o s o o e o v o s s o s o+ 52
APPENDIX A: DATA ON INTEL 8008. + + + « o« ¢ ¢« « o o o o s o o s « » 53
APPENDIX B: ALGORITHMS. « « + v « v s o o o o s o o o o s o o o s o 56

RBFEENCESI - - - - L] L] - L - L] L L] [] . - 1] |] - . [} L . L] L] L] L] L] L] 63

CHAPTER 1

INTRODUCTION

Digital filters have been considered for various applications which
include process control, guidance control, and data acquisition. Such
filters are usually implemented via hardwired logic and involve the use of
shift-registers, adders, multipliers and logic gates [1]. However, the
hardware implementation of digital filters is yet a developing field. To
this end, the main objective of the work explained in this report is to
examine some aspects of implementing digital filters using microprocessors.
There are several reasons for considering microprocessors for such implemen-
tations:

i) microprocessors are becoming increasingly powerful and yet their
cost is reducing

.ii) the number of components required is reduced
iii) there is a greater computational capability and flexibility.

A major disadvantage at présent is that they are relatively slow.
However, since the related technology is moving at a rapid pace, it is
reasonable to expect'that this disadvantage will be overcome in the rela-
tively near future.

The effects of limited word length such as round off error and
coefficient inaccuracy will still be present. However, implementation using
microprocessors makes it possible to choose almost any desired word length.
rather than designing the filter to suit the commercially available hard-
ware multipliers and adders with limited word lengths., For example, several

2 bit slices of Intel 3000 type microprocessors can be used to form a system

-of almost any desired word length. Even among fixed word lemgth processors
there is a wide choice of word lengths td choose from,

The approach for implementing digital filters via microprocessors
is introduced by considering a simple first order recursive filter repre-

sented by the transfer function,

Z

H(z)=Z+K

(1.1)

This filter has Been implemented on a micro-computer system using the Intel
8008 microprocessor. Although Intel 8008 is one of the slowest micropro-
cessors, it is considered for this study since hardware and software infor-
mation pertaining to it are readily available. This is because it was one

of the first microprocessors to have been available commercially. This system
has been simulated on an IBM 370 system. Studies pertaining to the filter's
frequency response characteristics using the simulator have been made. Inter-
facing units such as A/D converter have been included in the simulation.

Some of the results obtained via the simulator have been verified on the
actual microcomputer system.

Chapter 2 intrqduces some fundamentals pertaining to digital filter-
ing. In Chapter 3 various factors related to digital design considerations
are summarized. Conventional methods of digital filter implementation are
discussed in Chapter 4, while implementation using microprocessors is con-

sidered in Chapter 5.

CHAPTER 2

FUNDAMENTALS OF DIGITAL FILTERS

2.1. Classification

Digital filters are generally classified into two categories as
follows:
(i) recursive filters
(ii) non-recursive filters
A recursive filter is one which has an impulse response of infinite duration.
For example

H(Z) = 72 (2.1.1)

is a first-order recursive filter since its impulse response is given by

h(nT) = (0.5)" iw 0,12 ¢« s (2.1.2)
In contrast, a digital filter with an impulse response which is finite in
duration is called a non-recursive filter. As an example, we have

H(Z) = (/2 + 27Y, (2.1.3)
-which has an impulse }eéponse given by

| h@T) = (/2L +6 (¢ - D] (2.1.4)
Generally, recursive filters are also known as infinite impulse

response (IIR) filters and non-recursive filters as finite impulse response
(FIR) filters. Non-recursive filters are implemented via the fast fourier
transform (FFT), while recursive filters are implemented using delayed feed-
back which is readily achieved by means of storage registers.

2.2. Transfer Functions

The transfer function H(Z) of a digital filter is defined as the

ratio of the Z-transform of ths output, Y(Z) to the Z-transform of the input,
X(Z); i.e.,

HD) = 3 (2.2.1)

The most general recursive filter is a sampled-data linear system, whose
present output is a linear combination of the past outputs as well as present
and past samples of the input. The following difference equation represents

the input-output characteristics of such a filter.
% ,

N
= . - z ’ . ‘
Yn éﬂ " xn-k k=1 hk Yn-k (2.2.2)
where{Yn} is the output sequence, {Xn} is the input sequence and {a.k}and
{bk} are the filter coefficients. Therefore the transfer function of this

general recursive filter is given by

N X

> Z

Heg) - K20 *

1(2) = . (2.2.3)

1+3 b 2
k=1

A non-recursive filter has outputs depending only on the present and
past inputs. Since such filters do not involve feedback, they are inherently
stable. The input-output characteristics of a gemeral non-recursive filter
is

N
Y, =25 a X | (2.2.4)
and its transfer function is

N

H(Z) = lg, 8 2k (2.2.5)

Implementation of the above types of filters described by Eqs. (3) and (5)

involve widely different techniques. Recursive filters can be realized in

three basic forms. If the output is directly calculated using H(Z) as given
by Eq. (3), then it is said to be realized in canonical or direct form.
Although a canonic form realization requires a minimum number of delay
elements for its realization, it suffers from severe accuracy problems due

to accumulation of round off errors. These problems can be minimized by
realizing higher order filters by either cascade or parallel forms consisting
of first- and second-order sections. To this end, the numerator and denomi-

nator polynomials of Eq. (3) are expressed as

K K
1. 2 a
H(Z) = KT H,,(DTT H,.(2) (2.2.6)
L e 2i
i=1 i=1 _
a Leogy; 27
where H . (2) = —Ti— » is the transfer function of a first-order
l+p,. 2
1i

Fad
section. HZi(Z] represents a second-order section; i.e.,

-1 2
140, 27+, 2

1 +‘61i Z'l +BZJ‘. Z_2

(2.2.7)

R (2 =

alldK1+K2=N

The coefficients X's-and g's are real. The corresponding realization is

as in Fig. 2.1.

A A _ .3 Pl
iy, b, @) ﬁn1(23“’ Hzl(Z)—‘l Hyp(2) "{ﬁzxz(z’

Fig. 2.1. Cascade form realization of recursive filters,

For parallel form realization we take the partial fraction expansion of the

Eq. (3)

K
1
H(Z) = Yo + Z H,, (2)

i=1

+ Hzi(Z) (2.2.8)

H);(2) = — (2.2.9)

and HZi(Z) is a second-order section of the form

%
_ Yoi *¥s
1+@y 27 By

(2.2.10)

b - e o o e em =

X(nT)_|

Fig. 2.2, Parallel form realization of recursive filters.

2.3. Number Representation

The two's complement representation of a binary number is most appro-
priate for digital filters since additions can be performed without any pre-
vious knowledge of signs or magnitudes, and with no corrections later as in
one's complement notation. Two's complement arithmetic is tolerant to minor
scaling errors. At times, even an overflow in the accumulator need not be
catastrophic. The output during overflow will be in error but it recovers
later on. This is due to an important property of two's complement arith-
metic, which is called the cyclic property. For convenience, it will be
assumed the signal has magnitude less than unity, which implies that only
fractional numbers will be involved. |

Now let us study the cyclic property of two's complement arithmetic.
The transfer characteristics of a two's complement arithmetic unit is as

shown in Fig, 2.3,

output
® - &
[3) [
‘o P .‘
L] [J .
. ']
» J.. . i i o
" . Jsinput
. . . q
» . []
L]] [}
] & .
L] L] ™

Fig. 2.3. Transfer characteristics of a two's complement
binary unit.
This transfer characteristics can be explained by considering a two's
complement system with two data bits and one sign bit with respect to a set

of numbers on the real line in the interval -1 X< 1, as shown in Fig. 2.4.

Disallowed
Value

|

Decimal -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00

& b 4 a 4 L il I i
L] ¥ - L] T Ll T Y T

Binary 1.00 1.01 1..10 1.11 0.00 0.01 0.10 0.11 1.0

Fig. 2.4. Binary representation on real line.

Incrementing 0.11 we get 1.00. Hence the real line actually folds over in

the two's complement binary arithmetic. This in essence is the cyclic

property, which is further illustrated in Fig. 2.5.

0.00
1.11 ' 0.01
Allowable
L1.10 Values 0.10
1.01 0.11

1.00

Fig. 2.5. Cyclic property of two's complement binary.

Overflow Considerations. The property that overflow is handled conveniently

in a two's complement arithmetic is best illustrated by a simple example.

Consider the addition of 0.75 and 0.5.
0.10
+ 0.11
1.01 which is -0.75.

This is clearly an error due to overflow. However, suppose the next number

to be added is -0.5. Then we have

which yields 0.75, the result we would expect if 0.75, 0.5, and -0.5 are
added. Thus overflow errors "settle down" as we proceed, In most cases
it is difficult to represent a decimal fraction exactly in binary form.
In such cases, truncation or rounding is necessary since only a finite
number of binary di.gits (bits) are used for the representation. For a
specified accuracy we now determine the number of bits required.

- Determination of word length. Any decimal fraction consisting of

finite digits is represented as
N i :
X=p >d-10 (2.3.1)

n=1

where dnis the nth digit after the decimal point. Such a number has accuracy

limits of

' X -AXSXSX + AX (2.3.2)
-N

vhere X = 1/2-10 (2.3.3)

‘We seek to approximate X by Y such that
Y=X2t AY
where
.. -m
Y = zbmz (2.3.4)
m=1

and AY S AX, (2.3.5)

10

so that the accuracy will at least remain the same. Thus, when M bits are

used, we obtain
Yy=172 .24 (2.3.6)

Using Eqs. (3) and (6) in inequality (5) we obtain

172.27M<172 107N (2.3.7)
or MZ2N leg2 10 (2.3.8)
i.e., M>3.3N (2.3.9)

Therefore we need 3.3 N bits to represent a decimal fraction of N digits

without any loss in accuracy.

To represent a number using a fixed number of bits we have to either

truncate or tound off the number. Thus, if -
; M .
Yu b 2N
m
m=1
is truncated to K bits, where M>K then
§ m
Y, = b_ 27 (2.3.10)
T =1 m
To round ¥ to K bits we first calculate

Ytayez?®*D . 5 4 o0 (2.3.11)
m
m=1
and then truncate to K bits to obtain
+ - =M
YK = YT =) a 2 (2.3.12)
m=1

Rounding as expected gives less error than truncation.

2.4. Data Converters

Since most signals are analog in nature, analog to digital (A/D)

conversion is an important part of digital systems. Using an A/D converter,

11

an analog signal is sampled at regular intervals and then approximated to
obtain a binary number of finite word length. Due to limited resolution
resulting from the finite word length of the binary representation, quanti-
zation of input becomes necessary. This quantization can be represented as
in Fig. 2.6. The function of the A/D converter is to decide on one of the

quantized levels for each sample of input based on some minimum error

criterion.
5 Digital
X2 - Qutput
Sl
31- _—I
2-.
1-
-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 x™
§-1
Analog
L2 Input
I I
La

Fig. 2.6. Quantization in A/D converters.

Next, we calculate the error due to quantization. Consider any

M and 3/227M, This is appro-

value of the input, V which lies between 1/2¢2"
ximated to the quantized level Z'M. Assuming all the quantized levels are

uniformly separated by q = Z'H, we have in general any value that lies between

Vt-qlz to Vy + q/2 approximated to Vy, the Kth quantized level. The

12

corresponding mean square error introduced at level K is
Vg *+ q/2

- / v - v)? pmav (2.4.1)
Vg - q/2

2
where p(v) is the probability density of the signal. Assuming that the

signal is uniformly distributed in the quantization interval, we have

—_— 3
v - VKIZ = %p(VKJ (2.4.2)

The quantization noise power is the sum of the mean square errors introduced

at each level; hence

NG = K (V - v? (2.4.3)
which yields

-.—2.— 2

Ng° = %% P (V) (2.4.4)

where PK(VU is the discrete probability of the input appropriate to the Kth

step and is given by

Vk + qf2
Pe(V) =] P(VI&v = p(Vy)-q (2.4.5)
VK - q/2
Also,
P.(V) =1
o

Thus the final result is

Ng° = L (2.4.6)

13

This result will be used in Sec. 3.3.

We observe that since q = 2‘“, Eq. (6) implies that the larger the
word length M, the less the noise due to quantization.

Analog-to-Digital conversion techniques are well developed and it
is possible to implement A/D conversion in a number of different ways such
as successive approximation, single or dual slope conversion, conversion
using a voltage controlled oscillator (VCO), parallel conversion, etc. Each
method is chosen based on the requirements such as speed, accuracy and cost.
For the purpose of discussion, the successive approximation A/D converters

are considered. The basic structure of these is as shown in Fig. 2.7.

Analog
Input
X
COMPARATOR I
xref CONTROL CIRCUIT
:
]
!
[
OUTPUT REGISTER
. =
A =
! &
DIGITAL 1 =
[] m !
ANALOG i g
CONVERTER i =
a

Fig. 2.7. Successive approximation A/D converter.

14

The successive approximation converter works as follows, At the
start of the conversion, the control circuit places a 'l' in the most signi-
ficant bit (MSB) of the previously cleared output register. This corresponds
exactly to the mid point in the input range of the converter. The D/A in

the feedback converts the 100 . . ., 0 to X /2. If X. 1is greater than
range in

xrangelz the output of the comparator is 'l'. The control circuit reads this
output and decides to keep the 'l' in MSB if the comparator output is 'l'.
Otherwise it resets MSB to a '0'., Now the control circuit places a 'l' in
the next most significant bit and checks the output of the comparator. A
decision on whether to leave the 'l' in that bit of the output register or
to clear it to '0' is taken based on the comparator output. Likewise, the
conversion is done on a bit by bit basis (i.e. serial conversion) until the
least significant bit (LSB) is reached. When the conversion is complete, the
output register has the digital equivalent of the analog input. High pre-
cision and low cost are some of the features of this method. Parallel A/D
conversion is faster but more expensive. For an M-bit conversion we need
ke comparators and hence the high cost,

| Digital-to-Analog cunversioﬁ, on the other hand, is much simpler to
implement. Very often resistor networks are employed in D/A conferters.
Again, there are several methods of realizing D/A conversion and since infor-
mation on these is easily available we will not discuss this at length.

Having reviewed the basic concepts of digital filtering we are now

ready to discuss the related design concepts in the next chapter.

15

CHAPTER 3
DIGITAL DESIGN CONSIDERATIONS

3.1. Introduction

In this chapter we will discuss some details related to the hardware
implementation of digital filters. We shall assume fixed point binary compu-
tations in the implementations. Due to finite word lengths, problems such
as round off accumulation, quantization and overflow arise. The main objec-
tives of this chapter are as follows: (i) explain how a set of design
criteria can be developed to determine the gain scaling factor to avoid
overflow, and (ii) explain how one can choose optimum word lengths to reduce

quantization and round off errors [1].

3.2. Gain Scaling
Fixed point arithmetic calls for constraints on inputs to the filter

such that the computations are within the linear range. These constraints
can be achieved via gain scaling., For example, the input to the adders must
be scaled such that the-out:puts from the adders are always within ¥ 1. As
we discussed in Sec. 2.2, digital filters of higher order can be constructed
using basic blocks of first and second order filters, Thus we need to
analyze only these two classes of filters. For simplicity and as a basic
introduction to the concepts involved in hardware implementation, we will
restrict our attention to the discussion of first order filters only.

A generalized first order recursive filter has a transfer function

of the fomrm,

16

-1.

H(Z) = LA_LL (3.2.1)
(1 - BZ™)

The squared-magnitude frequency response, M of the above transfer functiom is

M lH(Z]]z e

2 (1 - 2A cos wT + A) (3.2.2)
(1 - 2B cos wT + B)

where T is the sampling interval. The maximum and minimum of M occur when

3%) =0 with di’:)z-(0,
and
7o = 0 with %2 >0
respectively.
Differentiating Eq. (2)
ddM Kzﬁ sin wT (A - B)(1 - AB)] (3.2.3)
WD) | (1 - 28 cos wt + 852 |

When we equate the above derivative to zero , we arrive at the following

conditions:
(1) sin wT = 0
which yields w=nnf,
nw
= s
2
That is w = mwy (3.2.4)

Ws is the sampling frequency and WN = 53-, is the Nyquist frequency.

(2) A=B or A= 1/B are the other two conditions for H%%Tﬁ = (.
These are trivial and are not of interest to us.

Setting wT = nW , the second derivative of M becomes

17

2 5 Tl

dM .2 (-1)" 2(A - B) (1 - AB)

dwT 2 K* 2 n+1 Y (3.2.5)
(wT) 1+ (-1) + B]

When (A - B) (1 - AB)<0, Mm occurs atn = 0, i.e., at w = 0. When (A - B)

(1 - AB)>0, me occurs atn =1, i.e., atw = Wy

Let us assume |A| <1 for convenience. Then we require |B]<1 for
stability. Two cases which arise (depending on the relative values of A and

B) are illustrated in Fig. 3.1,

B=<A B>A

—_

(a) (®)

Fig. 3.1. Frequency response curves of first order recursive

filter networks.

If the filter is implemented as in Fig. 3.2, then we should make sure
there is no overflow in each of the adders. This could be controlled by the
scale factor, K, which determines the gain. K must be just low enough that
it avoids overflow, ensuring linearity and at the same time large enough

that the dynamic range is not affected.

Y(Z)

X(Z) —>} K iy
+

Fig. 3.2, A configuration for implementing a first order filter.

18

To avoid overflow in the first adder, we assume A = 0, so that we

have only the first adder in the configuration.

M =K {(—) B>0

Moax = ¥ (35) B0

Then we have

(3.2.6)

(3.2.7)

Our aim is to restrict M to 1 by choosing K appropriately. This results

in
K=1-8B for B>0
K=1+8B for B<0

However in general when A # 0 we have

1 -A
max (1 -8B

for B>A

and

for B<A

(3.2.8)
(3.2.9)

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)

Therefore, we take the minimum of two values to avoid overflow. In other

words,
K= min {U - B), =2}
and K = min {(1+B),}—:%

(3.2.14)

(3.2.15)

which is the desired gain scale factor for first order networks.

3.3. Word Lengths

In general, there are three word lengths which are important in the

digital design of a filter. They are

19

(i) The word length, C of the A/D cénverter. This is the word
length of data input to the filter. This determines, as discussed earlier,
the quantization noise in the A/D converter.

(ii) The word length, M of data when it is processed through the
digital filter. This is generally larger than the input word length, C.
The output of the A/D is appended with (M - C) zeros at the end to decrease
the effects of repeated truncation and/or rounding during the computation.
M is known as the computational word length.

(iii) The word length, N of the filter coefficients. The value of
N depends on how precisely the coefficients have to be represented.

Input data word length, C. Two main considerations determine the

value of C. These are as follows:

(a) accuracy at the input is one of the tﬁo factors to be considered.
Let the minimum detectable level of the signal, which is also known as the
threshold of the signal, be designated by xth’ If the saturation level, which
is the maximum analog input to the converter, is represented by xsat then the
totai number of quantized levels, N, is given by

N = smallest integer greater than (X /xth) {3.3.1)

sat
The number of bits required to represent N levels is

Cy; = log2 N* bits (3.3.2)

1

The input word length C is C1 plus one sign bit. Therefore

X

C=1+C; =1+ log, (xsa") (3.3.3)
th

(b) as explained in Sec. 2.4, the quantization error which when

treated as additive white noise has a hoise power of

*Al1 word lengths are rounded off to the smallest integer greater than the
value obtained on the right hand side of the equations.

20

— 2

2.9
Nq =33 (3.3.4)
Xeh 1 . ‘
where q = T = which is the quantum step. From Eqs. (3) and (4), it
sat ‘
follows that
- (Z'CI 2 -2+ 1)
Nq = —le = 2 '3 (3.3.5)
The noise figure, F, which is the signal to noise power ratio expressed in
db is'given by
s?
F=10 log — £3.5.58)
N2
q
where 82 is the signal power. Thus Eq. (5) yields
—2-2((:1 + 1)
F =10 log,, [3 52] (3.3.7)
solving for C = C1 + 1 we obtain
C_C+1=F=10105_§;f (3.3.8)
B | 20 log10 2 o

It is reasonable to assume the input signal amplitude has a zero-mean

Gaussian distribution with a standard deviation = 1/3. Then we have

s? = 1/9 (3.3.9)

Substitution for S in Eq. (8) results in

F+ 10 logm 3

C=

Thus the desired input word length, C, is taken as the maximum of the values

dictated by Eqs. (2) and (10); i.e.,

C = Max {51 + log2

sat,

21

F+ 10 log10 3

7 ¥ [P
e 20 log,, 2

*} (3.3.11)

For example, if the input signal is limited to ¥ 10 V and the threshold

voltage of 100 mV is assumed, then we have

C =

1+ log2 %91

7.644

Rounded off to the nearest integer, C is 8., If the allowed quantization

error gives a signal to noise ratio of 50 db, Eq. (11) gives

c=350+4.77
§.02
= 9.10
Now C=10
Hence C = Max {8, 10}

10 bits

Computational Word Length. To precisely represent the product of

two N bit numbers, we need 2N bits. However, in practice, we either trum-

cate this or round it off to N bits. Rounding results in less error compared
to truncation. It has been found that rounding is as advantageous as increas-

ing the word length by one bit. The transfer characteristics of both trun-

cation and round off are shown in Fig. 3.3 [1].

Output |, x2™ " Output
* I3
Magnitude {2
truncation jj
— ... -M x2 M
=3-2 -1 112 34 Qy,
: = —"Input - I
= =2 ____Value T-2 —> lnput
T -3 truncation ~3
L _-4 i-“

Fig. 3.3 (a).

Input-output
relation for truncating.

Fig. 3.3 (b).
relation for rounding off,

Input-output

22

These figures illustrate that both rouuding' and truncation are highly non-
linear operations. However, the input-output characteristics resemble that
of an A/D converter (Fig. 2.6) very closely. Hence these can also be treated
as quantization error. It is also found that truncation or round off distor-
1;i0n can be assumed as an additive noise that is uncorrelated with quantiza-
tion noise as well as with the input signal. Non-linearity introduced by the
rounding off might affect the stability of the filter. It is instructive to
first study how round off considerations dictate a particular minimum compu-
tational word length.

For the simple first-order filter H(Z) = the round off

1
-l
1 - Bzt

operation is represented by the quantizer, Q, as shown in Fig. 3.4 (a).

X(n) +@ y(n) X(n)E; y(n)
Q B I J B z-1

Fig. 3.4 (a) Fig. 3.4 (b)

Noise source equivalent of round off error.

The quantizer can be replaced by an equivalent noise source as shown in

Fig. 3.4 (b). The noise input sequence, e(n) is assumed to be independent
from sample to sample. We also assume that it is a zero-mean variable with
a variance of Ge 2. The output due to the noise, Ye (n) is found convolving
the input sequence with the impulse response, h (n) of the filter section

from the noise source to the output.

23

n
Ye(n) B:Eo h(m) e(n-m) (3.3.12)

The variance of the round off noise at the output of the filter can be

computed as

n n
E [Y’(m)] =E [, 5 h(mw-h(Ke(m-me(n-K)] (3.3.13)
m=0 k=0

n n
= Y ¥ h(m)h(KX) E[e(n-m)e(n-K)] (3.3.14)
m=0 k=0

Since the noise sequence is assumed to be uncorrelated from sample to sample,

E [e(n-m)e(n-K)] = ‘J_e-2 m=K
= 0 m# K (3.3.15)

Then Eq. (14) becomes
n
E[Y’()] = X h’(m) Oe ? (3.3.16)
m=0

The steady state variance of the round off noise at the output; fn o is

obtained from Eq. (16) as follows

6n 2= 1inE [Y2(m)]
T = O

<«
=02 ¥ n’m _‘ (3.3.17)
m=0

o |
The quantity 2, hz(m) is called the noise gain of the filter. It can be
m=0

computed using Cauchy's residue theorem as follows
i
Noise Gain, NG = Y. h“(m)
m=0

=3 H(z) Hz™ Yz (3.3.18)
residue inside
the unit circle

24

If M computational data bits are used in the filter mechanization, the

variance of the noise generated by a multiplier round off is

i
m 12
2-2(" + 1)
= 3 (3.3.19)
3 2-2(" + 1)
e) = ——5—— NG (3.3.20)

If we assumed the same signal as in the case of the A/D converter, then the

signal to noise ratio in the case of round off is

? ,22(M + 1)

F=10 log — = 10 log,, [(3.3.21)
— 10 3 . NG
0

Solving for M + 1, the required number of bits is given by
M+1=(0.8+5 +312 105 0 (3.3.22)
’ 6 6 10 e

Example. For the first-order section represented by

H(Z) = _1__1
1 - BZ
s &
Z-B
The impulse response
h(n) = z‘l[H(Z)]
= Bn

Thus noise gain for the filter is obtained as

25

o

2
NG ;, h?(m)
o0
=S g2®

m=0

1
1 -B

F (3.3.23)

If F is specified to be 35 db and B = 0.75, then we have

M+ 1= (0.8+35) + > log ——
1 - (0.75)

= 7.23
Thus M + 1 = 8 meets the requirements.

Another factor that needs to be considered for determining M is the
phenomenon of limit. cycle oscillations. This phenomenon occurs only in
infinite impulse response or recursive networks. This concept is explained
by the following example. Consider the first-order filter

Z
H@) = 7795

whose impulse response is given by

h@T) = (0.5, n=0,1,2 . .. (3.3.24)

The difference equation that represents the output of the filter is

Y(aT) = X(@T) + 0.5 [Y(a-1)T] (3.3.25)
Suppose X(0) = 0.75
and X(@T) = 0 for np 1 (3.3.26)
Then Y(T) = 0.5Y [(a-1)T] for n3.1 (3.3.27)
i.e., Y(T) = 0.5 Y(0)
= 0.5 x 0.75

= 0.375

26

Y(2T) = 0.5 Y(T)
= 0.5 x 0.375
= 0.1875
similarly Y(3T) = 0.09375
Y(4T) = 0.046875
Clearly gigg(nﬂ =0

However, a practical digital filter implemented with input word length 3 and
computational word length of 4 yields the following outputs on rounding.

K=0.5= 0.102

Y(T) = 0.5 x 0.75

= 0.10 x 0.110

= 0.01100

= 0.011 (after rounding)

Y(2T) = 0.10 x 0.011

0.010

Y(3T) = 0,10 x 0.010

= 0.00100
= 0.001

Y(4T) = 0.10 x 0.001
= 0.00010
= 0.001

Y(5T) = 0.10 x 0.001
= 0.00010
= 0.001

27

That is Y(nT) = 0.001, for all n>3. Hence this output never reaches zero
as it should. Similarly,

s HD) - 7355

the output corresponding to an input as described by Eq. (2.6) oscillates
between 0.001 and 1.111. Hence we have output with no input which is a
c¢lear indication of oscillations. fhe amplitude of the oscillations can be
reduced by increasing word length, M,

It has been established [1] that the amplitude of the oscillations

for a filter of the above type is given by

-M
Y l0.5)2

L3ToOR (3.3.28)

Filter Coefficient Word Length, N. The frequency characteristics of

a filter is determined by the filter coefficients. The accuracy with which
these coefficients are represented in binary form determines the quality of
performance of the filter. Each coefficient K is restrained to lie between
a minimum, K . and a maximum, K values, These values depend on the

min max
tolerance of the filter performance dictated by the system in which it is

used. If N bits are used to represent K we must make sure N is large enough

such that

In other words

1
N 2log, T——57— (3.3.29)
2K K.

For a given accuracy Eq. (2.3.9) can also be used to determine N.
In this chapter we have seen how the fixed word length in digital

filters affect the filter and how we can choose these word lengths

28

appropriately. Now we can proceed to look at some of the implementations
using hard-wired logic before considering the problem of implementation

using microprocessors.

CHAPTER 4

IMPLEMENTATION USING HARD-WIRED LOGIC

4,1, Conventional Methods

Once the word lengths, scale factors, etc., have been determined,
the mechanization of first- and second-order filters is quite straightfor-
ward. When hard-wired logic is used, one can think of several configurations
of implementing a filter. A detailed study related to the implementation of
a first-order filter as given by Eq. (3.2.1) is considered next.

In Fig. 4.1 commonly used configuration is shown, where K is the

gain scale factor. It follows that

Y,(2) =K X(2) + B Y, (2) 71 (4.4.1)
Y(2) = Y, () - AY,(2) 271
=(1- Az'lj Y,(2) (4.1.2)

Substituting for Y,(Z) using Eq. (1) we obtain

o
vz) = XL B)y (g (4.1.3)
@ -szh
Thus
A
H(Z) = K1 - Af]_)
Q- Bz (4.1.4)

The term Z - represents a delay of one sampling interval and is implemented
a storage register which stores the outputs and makes it available for

processing when the next input appears. Adders are formed by using a chain
of full adders with as many full adders as the number of bits. Multiplica-

tion can be done in several ways. The most common approach is through

shifting aad adding successivelr in a register. Sometimes a table look up for
multiplication is used when the coefficients are fixed. This speeds up the
processing. The trade off here is between total storage necessary and

~ computational time.

Multi- + (T,I.T] + y(n",[‘)
X(nT) 3 plli(er L > Z.'
+* =

Multiplier | Delay Multiplier
B 2-1 A

Fig. 4.1. A first-order filter implementation.

From Eq. (3.2.14) we have

K= min [(1-8), (5] forB>A (4.1.5)
Now, if 0<A<l then _
K=1-8 (4.1.6)

Hence the above configuration can be changed as shown in Fig. 4.2. Here a

multiplier has been traded off for an adder.

| Yz(nT)

31

Fig. 4.2. An alternate implementation of the first-order filter.

From Fig. 4.2 it follows that

-1,
Y,(2) = Y,(2) 27 - X(2)

Y,(2) = X(2) + BY,(2)
= X(2) + BY,(2)-27" - BX(2)
¥,(2) 1

Xy - ¢ T

Y(2) = Y,(2) - AYZ(Z]-Z-I

= 1-az’h Y, (2)
Substituting for YZ(Z) results in

-1
Y(2) = (1 - B) L2) xz
(1 -BZ™)

(4.1.7)

(4.1.8)

(4.1.9)

(4.1.10)

(4.1.11)

(4.1.12)

32

-1
H(Z) = (1 -8) L =AZ) (4.1.13)

(- 8zh
The transfer function from the input to the output of the new adder is

Hn@ g

(4.1.14)

The maximum of this transfer function occurs at the Nyquist frequency as in

Fig. 3.1 (@) aad its value is

_ 2
M. = TF (4.1.15)

Since|BI <1, Mmax is greater than unity. Therefore to avoid overflow in this

adder we must be certain the input does not exceed 1 ; = .

In the special case when A = 0 the above two configurations become

as shown in Fig. 4.3.

XmT | g

Fig. 4.3. First-order filter configuration with A=0.

33

4.2. A Recent Approach Using Read Only Memories (ROM's)

A recently suggested method involves storage of finite number of
possible outcomes of an intermediate arithmetic operation and performing
certain operations such as shifting and adding on these to obtain the next
output sample. This method is easily explained using the following examples.

When numbers are represented in two's complement notation as
explained in Sec. 2,3, any X, which is bounded by % 1, is given by

M
X=X+ 3 xd 277 (4.2.1)
j=1 '
Here X is represented by M + 1 bits as x° xl xz TP e where {xj }j =0,
1...M=0or 1, Recall that XO is the sign bit which is conventionally
0 for positive values and 1 for negative values of X. For the simple first

order network represented by

H(Z) = i (4.2.2)
1 -
the nth output is given by
Y =(1-B)X +BY (4.2.3)
Substitution of Eq. (1) in Eq. (3) leads to
0, s o,
Y =(1-8) [-.xn+§:‘i X2 277]
+B [-Y0 +'ZM: vl 27dy (4.2.4)
n-1 =1 n-1
M
l.e., Y = ;L:—i 23{a -8 xrj‘ + BY'{_I} I«
_ 0 0
(1-B) X +BY , (4.2.5)

We define a Boolean function, @ (x,y) as
g (x,y) = (1 - B) x+ By (4.2.6)

where x and y are binary variables.' Thenr_Eq. (5) can be written as

M . . s
- =J J y3 o o0
Y= f?i 279 (Y) -8 (X, Y) (4.2.7)

The function ¢ has only four possible values which are 0, 1-B, B and 1 repre-
sented in binary form as explained in Table 4.1. The corresponding 4 bit

representation for @} when B = 0.75 is also included.

Table 4.1. Values of # to be stored in a ROM.

X Y g 4 bit representation of
when B = 0.75

0 0 0 0.000

1 o 1-B 0.010

0 1 B 0.110

1 1 1 1.000

The implementation in this form is best understood by studying the following

example.

let . %gﬁ-xxx

=0 - 1 0 1
Then Yn according to Eq. (3) is given by
Yn = 0.25 X, * 0.75-Y
= (0.010 X 0.010) + (0.110 X 0.101)

35

= 0.000100 + 0.011110
= 0.100010
which when rounded to 4 bits yields
Yn = 0.100

We now calculate Yn according to Eq. (7). From this equation it follows

that
8 O e o 27
sgivl n2t gl) (4.2.8)

for M = 3 as in this example, Substituting the given values of xg and Yg_l

for j = 0,1,2 and 3 we obtain

Y =9 (0,1) 273+ 9 (1,00 272 + 9 (0,1) 27}

-¢9 (0,00 ... (4.2.9)
Using Table 4.1
Yn = 0.11 X 0.001 + 0.01 X 0.01 + 0.11 X 0.1 - 0.000
= 0.00011 + 0.0001 + 0.011
= 0.100010
When rounded, Y, = 0.100 which is the same as above. We remark that the
result has been obtained without any direct multiplication since multipli-
cation by 29 in Eq. (9) is realized by shifting.
As a second example, let Xn = 1,010 and Yn = 1.000. Then Eq. (3)

yields
Yn = (1.010 X 0.010) + (1.000 X 0.110)

= 1.110100 + 1.010000
= 1.000100

Again from Eq. (8) we obtain

s
"

g (1,00 272 -9 (1,1)
0.010 X 0.01 - 1.000

0.00010 + 1.000*

1.00010
To implement the filter via Eq. (7) we use a ROM, with its contents being

as specified in Table 4.2.

Table 4.2. Storage of @ in ROM

ROM address Contents
0 0 g (0,0)
0 1 - . g (0,1)
1 0 ¢ (1,0)
1 1 | g (1,1

We have xn and Yn- in 4 bit shift registers as shown in Fig. 4.4.

1
Xn 0 0|1 0
: Address lines to ROM
Ya-1 o110 |1 —
Right shift
command —

Fig. 4.4. Addressing the ROM.

*Note: 2's complement of 1.000 is 1.000

37

The least significant bits of these registers are used to address the ROM.
We now consider the complete filter implementation as illustrated in Fig.
4.5. The contents of location addressed in ROM is brought out to register
Rd' The first value taken from ROM is to be multiplied by Z'M; see Eq. (7)
for j = M. This is done by shifting the data in Rd,M places to the right
and then adding it to the contents of Ro which is cleared at the start of
the sequence of computations for each Yn. The sum is stored in R . Next,

the registers which hold xn and Yn- are shifted one place to the right. The

1

Sl

n-i) is retrieved from the ROM and placed in Rd' The

corresponding @ (x:‘l

contents of Rd are shifted (M-1) places to the right and subsequently added
to current contents of R, This process is repeated until j=0. For j=0 we
need to subtract the value § (xg s Yg_l] from the contents of Rb' The

resulting contents of R, is the desired output, Yn.

_ Y
B N
Yn-l o
—. ROM [Rd
it
ADDER
X (SUB)
!
R
o
Control
Circuits

Fig. 4.5. First order filter with no multipliers.

38

The advantage of this method may not be obvious for the simple case
considered above. The important implications of this method are apparent
when higher order transfer functions are to be implemented. For example,
consider
a, + 2, Rl a, e

1, -2

1+blz bzz

H(Z) = (4.2.10)

Then
Lot hatn o -b Yy - o
(4.2.11)
From Eq. (11) it follows that there are at least 5 multiplications to be
carried out if this filter is implemented directly. However, using the
method discussed above, we need only to store the Boolean function @ which
is now a function of 5 binary variables and hence can have one of 32 differ-

ent values.

ie., 0(x) xX3757,) =8 X+ 3 X5 +2a;X;-Dby 7,

-by ¥, (4.2.12)
Hence Eq. (11) can be written as
R Ao ol Gd o
Yp = E 270 (x, X-10 %2 Ya-1° Yn-—z)
¢ 0 0 0 0
-0 (X X g0 X 06 Yo g0 Yo o) (4.2.13)

As before the 32 possible values of f are stored in a ROM. The related

implementation is as shown in Fig. 4.6.

\] Yn
i
xn-l e
[45]
g A I_L A
)
™y
o
-2 | &)
7] H
ADDER i
(SUB)
’—\L
Re
I—_. <
E'rf Yn~2

Fig. 4.6. Realization of second order network using the new
approach.

The operation of the realization in Fig. 4.6 is similar to that con-
sidered earlier; see Fig. 4.5. The size of the ROM is larger in this case
since 32 different values need to be stored. Hence five bits for addressing
are required. If it is necessary to change the properties of the filter
all we need to do is to change the contents of the ROM appropriately. This
will lead to the realization of a second order filter with entirely different
coefficients and characteristics.

The advantages of this method over the conventional method are as

follows:

1. Greater speed of calculation
- 2. Hexibility
3. Low cost

4. Low power consumption

41

CHAPTER 5
IMPLEMENTATION USING MICROPROCESSORS

5.1. Introduction

With recent advances in microprocessor technology almost any digital
control or processing system of superior performance can be designed with)
relative ease. Digital filter implementation as discussed in Chapter 4
involves arithmetic and logic units as well as some control circuitry. A
digital filter should also be able to handle input from an A/D converter and
output the result to a D/A converter. Under program control, a microprocessor
can perform arithmetic and logic operations, handle input and output and
interface memory. These capabilities directly match the needs that arise in
realizing a digital filter. The main objective of the work reported here is
to examine some aspects of implementing digital filters using microprocessors.
A recursive low pass filter has been implemented using Intel 8008 micropro-
cessor system. The choice of the processor was limited mainly by the avail-
ability when this study began. However, studies show that flexible and
efficient filters can bé implemented using the present day microprocessors.
The main advantage of using microprocessors compared to hard-wired logic are
as follows:

i) Low cost and complexity

ii) More computational and control capability of microprocessors.

Though the design procedures are at present new and different from

conventional digital design techniques, with a little more familiarity these

sre expected to become simpler. An added advantage in using microprocessors

42

is that a multisection filter can be implemented with very li:tle or no
additional hardware than that required for a single section. For example,
a filter that needs to be realized as a cascade of several second order filter
sections can be implemented by repeatedly running a general second-order
filter program, with necessary changes in the filter coefficients in a micro-
processor. |

In this chapter we will study the important characteristics of the
microprocessor used, the design of the filter mentioned above, and the

corresponding results.

5.2. Characteristics of the Intel 8008 Microprocessor

Intel 8008 is an 8 bit parallel processor. It is a single bus micro-
processor which makes the systems built with this microprocessor relatively
slow. It can execute a set of 48 instructions which includes data movement
and manipulation, binary arithmetic and jump to subroutine. The micro-

processor consists of the registers listed below.

Register Function ~Register Size
A | Accumulator 8 bits
B,C,D and E Data storage registers 8 bits each
H and L Data storage and memory 8 bits each
address registers
PC Program Counter 14 bits

PC is on top of a last-in-first-out (LIFO) memory stack which has a total
of 8 registers with 14 bits each. These 14 bits permit direct addressing
of 16 K words in the memory. The memory stack enables a maximum subroutine

nesting of 7 levels. The flip-flops or flags are denoted as follows:

43

- carry and borrow

0 0

- sign

]
1

parity

Z - zero

Addressing Modes. Four addressing modes are available.

(i) Direct addressing: In this address mode the address of the
operand is given in the instruction. This type of instructions are 3 bytes
long.

(ii) Indirect addressing: Contents of memory registers H and L are
used as the effective address. These are one byte instructions,

(iii) Implied addressing: These are inter-register and intra-register
operations.

(iv) Immediate addressing (or Immediate data): These have the operand
in the second byte of the instruction.

Intel 8008 can be interfaced to 8 input devices and 24 output devices.
The set of instructions and their ﬁperations are explained in Appendix A.
This directly reflects on the capabilities of the microprocessor. As one
can note, arithmetic and logic operations as well as rotate data operation

are possible only in the accumulator (i.e. register A).

5.3. Filter Design
The design process is discussed briefly in what follows,

Step 1. Determination of Coefficients. To design a single pole low

pass filter with cut off frequency atflc = 0.046 where Flc is the cut off
frequency normalized with respect to the sampling frequency.

The general recursive first order filter has a transfer function

| "
H(Z) = K (i_-_:_zf_‘} (5.3.1)

We assume that A = 0; then

K

H(Z) = ————o
1-8z1

(5.3.2)

A steady-state frequency characteristic of the above filter is given by

| 2 K 2
el © = ,——-1 e
. s 2
|(1 ~ D cos wI) - jB sin wT
) @
1+ B2 - 2B cos wT
We have wT = Zﬂflfs = Zﬂq
Thus -
2 -
e |* = 7
1+B" - 2B cos (ZTTQ)

For any K, the cut off frequency (i.e., the 3db point) is at Yl=|’(c
= 0.046 when B is chosen to be equal to 0.75. Thus

H(Z) = g—o—r (5.3.3)

Step 2. Gain scale factor. We now need to determine the gain scale

factor according to Eq. (3.2.14). Since A = 0, we have

K=1-B-=0.25 ' (5.3.4)
Hen - B)Z
- na = G0
252
= oz—‘- 0.75 (5.3.5)

The input-output relation for the filter represented by Eq. 5 is
Y, = 0.25 X + 0.7 Y 4 n=0,1,2. .. (5.3.6)

45

where Yn is the nth output.
In other words, we calculate the outputs respectively, as follows:

Yo = 0.25 Xo
Yl = 0.25 Xl + 0.75 Y0

Y, =0.25 12 + 0.75 YZ' etc. (5.3.7)

2

Step 3. Word lengths. The input word length is determined as

explained in Sec. 3.3. If xsat = 100, for the A/D converter, then at least

Xih

1032(100) bits are needed. Thus the desired input word length is 7 bits.
Since the range of the A/D varies from -xsat to +xsat' we need 8(=7 + 1) bits
to represent all the quantized levels in two's complement for M, If the
tolerable quantization noise at A/D output is specified, then Eq. (3.3.10)
is used to calculate the input bits according to Eq. (3.3.11). For an 8 bit
input word length, the quantization error results in a signal-to-noise ratio
of 43 db which is obtained using Eq. (3.3.10).

A/D converters often use off set binary coding in which case the
input-output relationship of the A/D conversion is as shown in Table (S.i),

where q is the quantization interval.

Table 5.1.
Analog input ' Digital output

xsat 00000000

__________]
+q 01111111
0 10000000
-q 10000001
-xsat 11111111

In such cases, two's complement representation is easily obtained by invert-
~ing the sign bit for all A/D ﬁutputs. However, note the sign change compared
to Eq. (4.2.1). |
Here X is given by
= 2V o 5 x3 273 (5.3.8)
j=1
As explained in Séc. 3.3, the computational word length is deter-
mined according to Eq. (3.3.22), which is

M+1=(0.8+5)+1210g, 0N.0) (5.3.9)

N.G, the noise gain of the filter is represented by Eq. (3.3.23) to be

l1-B 1
NG = = —_ (5.3.10)
1 - B2 1+B

If the round off noise figure allowed is 40 db, then for B = (.75 we obtain

M+ 1 = 8 using Eq. (9).

47

An Intel 8008 microprocessor was chésen for the purposes of this
study. However, fixed word length microprocessors are currently available
for different computational word lengths such as 4 bits, 8 bits, 12 bits and
16 bits. Two bit slices of Intel 3000 type can be used for any word length
one may choose. For example, if a 10 bit computational word length is
required, a machine using five Intel 3000 chips can be constructed.

The coefficient word length is generally determined as explained in

Sec., 3.3. However, in this case it is chosen to be 8 bits.

Step 4. Determining the software and hardware needed.

Software: The microprocessor is programmed to do the computations
needed depending-on the particular configuration that is chosen. The con-
figuration shown in Fig. 4.1.3 (b) has a limitation on the input. In other
words, this configuration limits the input dynamic range as mentioned in
Sec. 4,1. Therefore, the configuration in 4.1.3 (a) was chosen for imple-
menting the filter. The algorithm for filtering is as follows.

(1) Test end of conversion, (EOC) output of the A/D, and if the
conversion is complete, then read in the output of the A/D converter.

(2) Convert this data into two's complement form if it is not already
represented in two's complement notation. |

(3) Multiply each data point, X by (1 - B) = 0.25.

7(4] Add it to the contents of a storage register SR, which holds
B times the previous output, Yn-l'

(5) The result is transferred to the output port where the D/A or
any network that needs to process the output is connected.

(6) The result is also multiplied by B and stored in the storage

48

register SR, mentioned above.

(7) Repeat above steps.

The above algorithm can be flowcharted as in Fig. 5.1.

This algorithm translated into the assembly language of Intel 8008
is given in Appendix B. The filter was tested using the Intel 8008 simulator
which is available on the IBM system of the Computing Center of Kansas State
University. An 8 bit successive approximation A/D convertor and a bipolar
D/A converter, both working with offset binary coding were simulated using
the programs given in Appendix B.

Hardware: While using a microprocessor system, we could use just the
minimum amount of hardware and peripherals needed. For example, to imple-
ment the filter at hand, we need a microprocessor, data converters, inter-
face circuitry necessary to have just one input port and one output port,
and less than a page of memory. In an 8008 system, the chip count may not
be low. But, in the more recent microprocessors, the necessary hardware

can be realized with two or three chips and the related data converters.

5.4, Simulation Results

To test the characteristics of the filter the following input signal

was synthesized:
16
X(mT) = 1+ cos [27 n(m-1) T]
n=1

16 '
+ sin [2T7wn(m-1) T] (5.4.1)

m=1’2’ooc, 64

The spectrum of this signal is as shown in Fig. 5.2,

o /

\ A/D done?

Convert X to Two's Complement Form

\

¥y * 0.25xn + 0.75 Yo 1

Store L in place of Yn-1

|

Conve(t Yy into off set binary form

Z[OQutput ¥y //

Fig.5.1, The Filter Algorithm

48a

49

Power x 64
[]
1795 1 1

897

O 5 30 45 &0 5 00 105 120 135 150 W5 80 195 210 225 240 255 2170
~ Frequency

Fig. 5.2. Spectrum of input signal.

This. signal was sampled at a rate of 980 samples/sec and the sample values
were converted to digital format by the A/D simulator given in Appeﬁdix B.
The "ideal case'" output of the filter for 100 samples of the input, as given
by Eq. (5.3.6), was calculated using IBM 370. By the term '"ideal case" it
is implied that each sampled value is refresented by 32 bits (i.e., one word
in the IBM 370 computer). The first 36 outputs were ignored to eliminate
transients. The spectrum of the remaining 64 output. values was calculated
using discrete fourier transform. This spectrum is considered the ideal
case with which the output spectrum of the Intel 8008 filter is compared.
The output of the 8008 filter which is in digital format was processed |
through the D/A simulator program and then its spectrum was calculated.

This comparisonis shown in Fig. 5.3 and Fig. 5.4. After each multiplication,
the product was trun;ated to 8 bits for the case illustrated in Fig. 5.3,
while the products were rounded to 8 bits for the case illustrated in Fig.

5.4. As it was stressed earlier, rounding off yields better results compared

493

=

FIRST ORDER RECURSIVE FILTER
g-QuUiFLT OF IDERL FILTER
Q-0UTPUT 0OF 80C8 FILTER QUTPUT SPECTRA

6ea

00 g o

00 48.00 95.00 194.00 182.00 240.C0 038.00 336.00 384.00 432.00
FREQUENCY :

Fig. 5.3. Output spectra when products are truncated.

480.00

49b

FIRST ORDER RECURSJVE FILTER

o-OUTPUT OF [DEAL FILTER .
o-QUTPUT OF BOO8 FILTER OUTPUT SPECTAR
R
o]

a 1)

a

8
a
-}
8
e -]
%oy ® oo @

.00 43,00 36.00 194.00 192.00 240.00 283.00 336.00 384.00 432.00 430,00

FREQUENCY

-

Fig. 5.4. Output spectra when products are rounded.

50

to truncation.

These results illustrate the accuracy that can be achieved even with
word lengths limited to 8 bits. The difference in the D.C. level of the
signal in the two cases illustrated above is yet to be explained completely.
The fact that a change in one output recursively affects all the outputs
thereafter hints towards this large difference.

Processing time. On the average the processing time for each input

is approximately 5 m sec. This means that if one seeks real-time filtering
the sampling rate is limited to 200 H . The present-day microprocessors are
5 to 10 times faster than Intel 8008 and hence one can increase the sampling
rate. It is important to note that the processing time will be greater for
second-order filters and hence the use of the configuration explained in
Sec. 4.2 will considerably increase the speed of processing.

Currently available microprocessors with some of their character-
istics are listed in Table 5.2. Cost of the microprocessor chips vary widely
from time to time and the cost is also dependent on the .source. Hence the

cost is not listed in the table.

51

14 A9t | 06 z/9s 8-Sdd TToMYI0Y

Z A ¥9 65 v/S1L 91 dWI TBUOTIEN
UoT1ElUSW
-ordut x837TF
ur [nyesn
@q ued SUOTL
-gxodo spaom
Arowew e31e3l0X
pPue 31yT1ys

STINNTIY Z A o [#4 z/0001 0089N ®BTOIOJON

z X 9) 8L 2/£802 0808 To3ur

MOTS A A 91 87 z/008 1-8008 T@3ug

syIeWway 985 W Aytoede) SUOTIONIISUT uamunm\nmg 105s9201doId TH

ATl sseappy Liowsp Jo Iequmy ¥201)
PPY X035188y : *7°§ o1qe],

52

CHAPTER 6
CONCLUSIONS

Some aspects pertaining to the design and implementation of digital
filters via microprocessors were presented in this report. The simulation
results presented indicate that first-order filter with limited word length
(e.g. 8 bits) realizations using microprocessors perform satisfactorily in
the sense that their performance compares well with that of the correspond-
ing ideal case. It is reasonable to assume that this would be the case for
second order filters also.

Many improvements over the Intel 8008 are included in the micro-
processors that are curfently available, For example, Intel 8080 is ten
times faster, while Motorola M6800 has more arithmetic and data manipulation
capabilities. This means that the same algorifhm can be implemented using
lesser number of instructions as well as each instruction gets executed in
a shorter duration.)

Conventional implementation using hard-wired logic will continue to
be preferred over implementation through microprocessors since hard-wired
logic uses the conventional design techniques. When digital filters are to
be used in large numbers such as in telephony then custom LSI chips will be
preferred over microprocessors. Implementation using microprocessors is
expected to become familiar in fields where complicated transfer functions
are to be realized and where real-time filtering is of secondary importance.
As outlined by S. D. Stearns [3] Butterworth filters can be realized using
a convenient design technique. Such filters can be implemented through

microprocessors with more ease than with conventional techniques.

Appendix.

Appendix A

A. Data Movement

53

The complete instruction set for Intel 8008 is explained in this

No condition flip-flops are affected by these instructionms.

Notations: M stands for Memory location specified by contents of H and L.

T, T T, stand for registers A, B, C, D, E, H and L unless otherwise

specified. C(X) stands for contents of X. BB BBB BBB is 8 Bit binary data.

No. of bytes Instruction Address mode

1
i

MOV Tis T, Inpl.ied
MOV r, M Indirect
MOV M, r Indirect
MVI r

BB BBB EBB Immediate
MVI M Immediate

BB BBB BBB and Indirect

B. Arithmetic and Logic

1

INR T Implied

DCR r Implied

Description of Operation
Load register T, with C('rz)
Load register r with C(M)
Store C(r) in mémory M

Load register r with data
B....B

Load memory location M with
dataB B

Increment C(register r) r # A
S§,Z, and P are affected

Decrement C(register r) Y # A
S, Z, and P are affected

All flag flipflops are affected in the following. These are possible

only with Accumulator (register A).

1

ADD r Implied
ADD M Indirect
AD I Immediate
BB BBB BBB

Add C(r) to C(A) Overflow sets
carry

A«-C(A) + C(M) Overflow sets
carry

A€<C(A) + B. .. .B Overflow
sets carry

54

The above three addressing modes are possibie in the following instructionms.

ADC r

ADC M Addition with carry e.g. ADC T results in

ADI overflow sets carry) A<—C(A) + C(r) + (carry)
BBBBBBBB

SUB r

SUB M Subtraction e.g. SUI BB BBB BBB

SuUl Underflow sets carry (borrow) A< C(A) - BBBBRBBB
‘BBBBBBEB

SBB r -

SBB M }Stﬁ:tract with borrow e.g. SBB M results in

SBI BBBBBBBB j Carry flip flop set by underflow A<—C(A) - C(M) - (carry)

Logic operationsaffect all flipflops; they reset carry to zero,

AND EX-OR OR

ANA T XRA r ORA T

ANA M XRA M ORA M

ANI BBBBBBBB XRI BBBBBBBB ORI BBBBBBEB

eg. XRA M results in A=< C(A) 3D c(™M)

Compare
CMP T Compare C(r) or C(M) or B B with C(A)
oP M C(A) is not changed. All flags are affected
CP1
BBBBBBBB

Zero flipflop set if C(A) = operand
Carry flipflop reset if C(A) < operand
Carry flipflop set if C(A) » operand.

Rotate Acaﬁmlator. (one byte)

RIC (carry)e—Ag, A T Ay

Ao-— A7 Set carry = A., rotate acc. left
RRC (carry)e=—A,, An-s- Ay A7-.A0 Set carry =

Ao rotate acc., Tright

RAL Anﬂ‘- An' (carry)e- AT,AO<——(carry) Rotate acc. left through carry
RAR An-:— An+1 (carry)=—A,, A7<—-(carry) Rotate acc. right through carry

C. Branching and Subroutines (3 bytes)

JMP ADR Unconditional jump to ADDR which is a label or a 14 bit
address.

JC ADDR Jump if carry is true

JZ ADDR Jump if zero is true :

JM ADDR Jump if sign is true (negative or minus result)

JPE ADDR ~ Jump if parity is true (even parity)

S5

JNC, JNZ, JP, and JPO are opcodes for jump if corresponding flag is zero.

CALL ADDR Unconditional call of Subroutine
Starting in Address ADDR Push stack

CC, CZ, CM, CPE, CNC, CNZ, CP, CPO are conditional subroutine calls.
Similar to conditional jumps

RET Unconditional return to main program (one byte)
(i.e. POP Stack)

RC, RZ, RM, RPE are conditional returns if corresponding flag is true.
RNC, RNZ, RP and RPO are conditional returns if corresponding flag is false.
Machine instruction:

HLT causes execution to terminate.

56

Appendix B

B. 1. Two's Complement Multiplication: Multiplication in two's complement

notation is

done according to the following flow chart.

Start

Is
Multiplicand
negative?

Multiplicand «— 2's comp. of Multiplicand

L

S

Tr 1

Is
Multiplier
negative?

Yes

ﬁ‘ Multiplier <€—. 2's comp. of Multiplier

]

S §+1

Product

«— Multiplier X Multiplicand

§=17 \

Yes

Product «—— 2's comp. of Product

§7

B.2. Subroutine for multiplying two 8 bit binary numbers using Intel 8008.
This assumes that the multiplier is in register C and the multiplicand in

Register D. The product is available in registers B and C at the end of

execution.
Flow Chart
E<— 9
Rotate LSB of register C into
carry flag
Decrement E
Is
& yos
z=1 done
no
A<— B
B «— A
F—
carry = 17
Shift A right]p—-
[yes
h A
EA & A+D

58

Subroutine for multiplication (with rounding)

LABEL

MULT

MULT 1

OPCODE

MVI

MOV

MOV

MOV

JNC

ADD
RAR

MOV

OPERANDS
{octal)

B, 000
E,010
A, C

C, A

A, B

MULT 1

B, A
MULT 0

000
ROO

COMMENT

Clear B

Load E with 8

Bring multiplier

Rotate LSB into carry

Move shifted multiplier back to C
Decrement cdntents_of E

If contents of E = 0 multiplication
is done

Move Partial Product into B

Check LSB of multiplier which is
now in carry

Add multiplicand to Partial Product

Rotate Partial Product

Go back to check next bit of
multiplier

To set up sign flag appropriately

Check MSB of least significant byte

ROO

B. 3. Filter Software

INR

RET

The filter is implemented through the following program. Here B

represents filter coefficient.

LABEL

Interrupt

Coo

OPCODE

RST

IN
MVI
XRI

MOV

MVI

INR

MOV
INR
CAL

MOV

JNZ

OPERANDS
(octal)

C,040
200

D, A
coo
L,000

377

D, A

MULT

A, B

A00

59

1

COMMENTS
End of conversion from A/D restarts
the processing by interrupt
Input data, Xn from ‘device 0
Load C with multiplier (1 - Bl)

Change MSB of input to convert
from offset to two's complement

Move Xn into D

Jump to 'multiply' subroutine
Clear L

L is used as a mark register

Complement contents of A,

Now two's complement of xn is in D

Call subroutine MULT. Returns
rounded product in B

Conditional branch depending on if
xn was complemented before

multiplication

ADI

ADD

XRI

out

MOV

INR

INR
CO1 CAL
MOV
DCL
JZ
XRI
ADI

STR MOV

HLT

377
001

H,A

200

D,H

C,140

Co1
177

D,A

L,000

MULT

A, B

STR
377
001

H, A

60

Two's complement of Product

Add Bl Yn-l to [1-31) xn
Store this in H

Convert Yn to offset binary to
suit D/A

Output Y at port 8
Bring C(H) into D

Filter coefficient, B, is moved
into C

Jump if C(H) has MSB = 0

Complement 7 LSB's since MSB is
already complemented.

Completes 2's complement conversion

Clear L

Store Bl Yn in H; to be used as

B in next cycle 1

1 a1

The machine is halted after processing. End of conversion, EOC

‘signal from A/D jams into the microprocessor a restart instruction which

61

starts the processing again. The convert command of A/D is driven by the

clock whose frequency is the sampling rate.

B.4. A/D Simulator. The following is a program written in Fortran which
simulates a successive approximation A/D converter.
READ "100, (X(M), M =1, 100)
100 FORMAT (10F 8.6)

READ 200, (J(I), I =1,J)

c J(I) ARE THE DIGITAL VALUES FOR

c EACH BIT BEING ONE _
c DATA CARD FOR J(I) 100p 40¥ 20p 10p¥ 4p¥ 2pp 1
200 FORMAT (71 35}

DO 50 M=1, 100

c CONVERTS 100 DATA POINTS
R = 5.0
C R IS THE REFERENCE VOLTAGE

IF (X(M))11, 11, 16
L(M) = 200

12 D015 N=1,7
IF (X(M) + R) 14,13,13

13 R=R - (5:/2: **N)
G0 TO 15
14 LM) = LOM) + JQN)

R = (R + 5/2 *N)
15 CONTINUE
GO TO 50

62

16 L(M) =0
XM = X(M) - 10.0
GO TO 12
50 CONTINUE
c L(M)- CONTAINS THE DIGITAL OUTPUT
C IN OCTAL FORM FOR THE 100 INPUTS.

B.5. D/A Simulator. D/A is simulated as follows:

c X IS OUTPUT: M IS INPUT
X=0.0
L=M- 200

IF (L- GE.0) M =1
D02 N=1,7
C J ARRAY IS SAME AS IN A/D CONVERTER
I=M-JQN)
IF (I-GE.0) M =1
IF (I) 2,1,1

1 X=X+ 10/2 * *N

2 CONTINUE
IF (L-LT-0) X = 10 - X
IF (L-GE.0) X = -X

(1]

[2]

[31

(4]

(5]

(6]

63

REI-'E'REN_CES

Current Digital Filter Signal Processing Techniques, National
Engineering Consortium, Inc,, Professional Growth in Engineering
Seminar, 1974, vol, 2.

L. R. Rabiner and B. Gold, Theory and Application of Digital Signal
Processing, Prentice Hall, Inc,, 1975.

S. D. Stearns, Digital Slgnal Analysis, Hyden Book Company, Inc.,
1975.

A. Peled and B, Liu, "A New Hardware Realization of Digital Filters,"
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-22,
PP. 456-461, Dec. 1974.

B. Liu, "Effect of Finite Word Length on the Accuracy of Digital
Pilters - A Review," IEEE Trans, Circuit Theory, vol. CT-18,
pp. 670-677, NOV- 1971.

Microcomputers I: Basic Concepts and Applications, National
Englneerlng Consortium, Inc., Professional Growth in Engineering
Seminar, 1974, vol. 1.

SOME CONSIDERATIONS OF DIGITAL FILTER
IMPLEMENTATION USING MICROPROCESSORS

by

JAY PURUSHOTHAMAN JAYAPALAN

B.Sc., University of Madras, 1971
B.E., Indian Institute of Science, 1974

AN ABSTRACT OF A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENC;
Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1976

Digital filtérs have been considered for various applications which
include process control, guidance control, data acquisition, and digital
signal processing, However, the hardware implementation of digital filters
is yet a developing field. To this end the main objective of this report
is to examine some aspects of implementing digital filters using micro-
processors, The theory and practice of hardware implementation of digital
filters is developed from the fundamentals assuming only the knowledge of
Z transforms on the part of the reader.

Fundamentals pertaining to digital filtering, digital design
considerations, and conventional methods of digital filter implementation
are discussed.

Implementation of a simple first order recursive filter represented
by the transfer function,

Z

H(Z) = Z+K

using Intel 8008 microprocessor has been simulated on IBM 370 system.

Studies pertaining to the filter's frequency response character-
istics using the simulator have beeﬁ.repofted here. Interfacing units
such as A/D converter have been included in the simulation, Some of the
results obtained via the simulator have beén verified on the actual
microcomputer system;

Currently available microprocessors which are characterized by
their low cost, tremendous computing capabilities, and cémpactneSs appear

to be one of the promising means for the implementation of digital filters.

