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Introductinn

Our main concern is problems in and related to compactifications of com=-
pletelf regular spaces. UHowaver, we find that,in general, ccmpactifications
are characterized "externally." For example, see the characterization of ths
Stone-fech compactification in ([1], XI, Theorem 8.2 1)). It would be profit-
able to find some "inte?nal" characterization, or at least a (simple) charac-
terization in terms of the toprlozy on the space to be compactified.

We proceed to find a "reprasentation" of cowpactifications, and therefore
of their problems, in a cetting where the problems are, hopefully, more
accessible. For this purpose we chose the class of preximity spaces, a strong
motivation for thie choice being the existence of an isowmorphism batween the
set of compactifications of a giﬁen completely regular space and the set of
proximity relations comsistent with the space (see theorem %.5).

In chapter I of this paper, we present some of the topological prerequisites
for a detailed study of proximityv spaces and their application to other aspects
of mathematics, in particular, to compactifications of topological spaces.
After which, in chapter II, we define and prove scme basic properties of
proximity spaces. We then go to chapter III and prove that the category of
oroximity spaces coincides exactly with the category of cowpletely regular
spaces. This enables us in chapter IV to establish a 1l-1 correspondence be-
tween the compactifications of a completely regular space and the proximity
relations dafiasad on that space. In fact, we establish an isomorphism between
the compactifications of, and the proximity relations associated with, a given
completely regular space (cf. 4.5). We then apply the theory of proximity
spaces to the study of ccmpactifications of completely regular spaces. We

submit that the use of the theory of proximity spaces in chapter V -- to prove



an extension theorem for homecmorphisms, and an important result of Freudenthal-
Morita on the existence of a compactification, with zero-dimensional annex,

for every peripherally compact space -- demcnstrates the usefulness of the
theory. The result in chapter V, in addition to their intrinsic value, give
risa to renewed lLope of solving some old problems in the theory cf compact-

ifications.



I. Preliminaries

This report subsumes a basic knowledge of generél topolegy; nevertheless,
we reserve the first chapter, in part, for recalling some of the results in
general topology which will be useful in the sequel. We also introduce notation
which will be followed throughout this paper. In addition, we provide proofs
of several useful theorgms of a general nature, but which are not usually
included in a book on general topology. Proofs which can be found in [1] shall
be omitted.

1.1 Notation. 1In a topological space (X,9D) we use the following notation:
1 Ifﬁﬁ&s to remain fixed in a particular discussion, we denote the

space by X, where there is understood to be a topology defined on X.

2) If A - X, then IntxA denotes the interior of the set A in X. When
no confusion can arise we denote £ IntxA.

3) If A - X, then ch(A) denotes the closure of the set A in X.

4) 1f A c X, then FrXA denctes the frontier (boundary) of the set A in

X.

5) (X)) denotes the power set of X.

We will be concerned, in the sequel, with determining when a topological

space is compact. We find the follcwing characterization most useful.

1.2 Theorem. A topological space X is compact if and only if it has the finite

intersection property: For each family {Fdia € Jif} of closed sets in Y

satisfving [ F. = @, there is a finite subfamily ¥, , «-+ ,F_ with
’ 04 (07 a
Ced# 1 n
F. = @.
i=1 O!:i.

We recall that every compact space is, in particular, normal; and that

every subspace of a normal space is completely regular,



1.3 Definition. A topological space X is a continuum if X is compact and
connected.

1.4 Defirition. A map f: § 7 T is said to be monotone if f-l(t) is connected
for every t € T.

It is obvious that a continuous map f: X + Y, where X is a compact topo-
logical space and Y is Hausdorff, is monotone if and only if f-l(y) is a
continuum for each y € f.

1.5 Theorem. Every completely regular space X has at least one compactifi-
cation, In particular, X has a Stone-Cech compactification, which we

denote BX.

We now define an ordering on the set of all compactifications of a given
completely regular space X.
1.6 Definition, If Y and Z are compactifications of the space X, we say

Y precedes Z, and write Y < Z or Z = Y, if there is a continuous sur-

jection o: Z =+ Y such that mlx =1 In this case, we call the map ¢

Kl

the natural surjection from Z onto Y.

The ordering "=" in 1.6 is, in fact, a partial ordering for the set of all
compactifications of X, It is a well-known fact that the Stone-Cech compac-
tification gX, mentioned in 1.5, is the maximal (with respect to the partial
ordering defined in 1.6) compactification of the space X.

1.7 Theoren. Every locally compact space X has a winimal compactification;

namely, it has a one-point compactification, which we denote by §X.

1.8 Theorem. If X and Y are topological spaces and A © X € Y, then we have
the following:

1) clx(AJ = clY(A},



2) cl (&) = cl (&) N X, and

3) el (&) = el (el (&)).

Since we will be concerned with complecely regular spaces and their compac-
tificatiens, it is important to have several criteria for the extendability
of functions.
1.9 Theorem. Let X be a dense subset in 2zch of the two Hausdorff spaces Y

and Z, and let the identity map

be extendable to a continuous f : Y + Z and also to a continuous g : Z 4 Y.

Then f and g are homeomorphisms, and £ = g-l.

&

Proof., Since the two continuous functions g e f: ¥ + Y and IY: Y+ Y agree
on the dense set X of the Hausdorff space Y, it follows from theorem 1.2,2) of

([1], VII), that go £ = lY. Similarly, we have f o g =1 The conclusion

7"
follows from thecrem 12.3 of ([1], LIT)is

We recall the following useful theorem, and apply it to prove a theorem of

Taimanove.

1.10 Theorem. Let D be a dense subset of X, let Y be a regular space, and
f: D -+ Y be continuous. Then f has a continuous extension F: X » Y if

and only if the filterbase

£(D 1 =)

converges for each x ¢ X. If F exists, then F is unique.

1.11 Theorem. (Taimanov) Let X be dense in Z. Then a necessary and sufficient



condition that a continucus function £ from X into the compact Hausdorff
gpace ¥ have a continuous extension F from Z inte Y is that for each

tws disjoint closed sets A and B in ¥, c1 (£ rA]) and clz(ful[B]} be dis-

Proof, Necassity is cobvious.

Sufficiency: Suppose f: X » Y is a centinuous map. If z e Z let z) be
et i e ¥ ’

the open aeiztborhocd filterbase at z. Then €z) N X is a filterbase in X,

and

DN(z)

is therefore a filterbase in Y. Since Y is compaect, and since the intersection

£ any finite subfamily of ?7((z) 'is non-empty, then by 1.2, we have:

p]
;

Moo= (3 {el ([T N XD o e Ul # 8.

We show that Mz ie a singleton. Suppose s and t are distinct points in Hz. By
the regularity of Y, we can find disjoint closed neighborhoeds A and B of s

and t, respectively., By the condition of the theorem, we have:

s o
(1) cl, (f {A]} N el (£ sl = g,

Cn the other hand, if x € ¥ and K is 2uy neighborhocd (rot nscessarily cpen)
- . - . R s
of <. then for everv i ¢ (), FUNKX) NK # 3, and hence U N £ "[K] # §.

Thuz every gpen neishhorhoad of z intersects f ¥, so that
¥ Op 44 )

for every neigzbborhood (aot nacessarily cpan) of any point x € Mz. Hence it



(2) z e [clz(f'lga]) n clz(f"]“[is})].

Since (2) is contrary to (1), then Mz must be a singleton, Thus 9%/(z), and

therefore £(%(z) N X), coaverges. The conclusion now follows from 1.10.

1.12 Theorem. If Y and Z are distinct (i.e., non-homecmerphic) Hausdorff
compactifications of the space X, then there are sets A, B C X with
clY(A) N ClY(B) = '@ whereas cly(A) N clz(B) # @, or with ch(A) n clz(B)=
¢ whereaas clY(A) n clY(B) # @.

Proof. This follows directly from 1.9 and 1,11.

As we are applying the theory of proximity spaces to the study of com-

pactifications (see Chapter V), we shall have need of some basic dimension

theory.

1.13 Definition. A space X is zero-dimensional, ind X = 0, if for every

point p € X, and every open neighborhcod U(p) there is an open set v
with p € V < U(p) and with IntXY =P

1.14 Definition. The weight of a topological space is the least cardinal of
a basis of the topology on X.

1.15 Definition. A mapping f: S -» T is said to be zero-dimensional (Light) if

for every point t € T, f-l(t) is a totally disconnected subset of S.



II. Ffrozimity Spaces

The notion of proximity spaces was introduced by V. A, Efrimove and had
been shown useful by mathematricians including: Efrimovié Yu M. Smirnov, and
E. G. Skljarenko. 1In the present chapter we limit ourselves to the task of
formulating a proximity theory similar to that of Efrimovic, and to deriving

the various inherent properties of proximities.

2.1 Definition. A proximity svace consists of a pair (P,§), where P is a

non-empty set, and § is a relation on ¢*P), called a proximity relationm,

and such that the folleowing properties are satisfied:
i) A8 B iff B § A.
2) (AUB) 8 Ciff A§Cor B § C.
3) For any points X,y € P: {x} & {y} iff x = y.
4) A § @ holds for all A ¢ P, where § denotes the negation of §.

P, A§C,

i

5) If A ¢ B, then there exist sets C, D ¢ P such that C U D

and B § D,

Remarks. We shall say that A is close to (far from) B if A § B(A 3 B;resp.).
Moreover, when no confusion can arise, we shall say that P is a §-space, where
% is understood to be the proximity relation on the set 6’(1&’). Finally, for
convenience, we shall consider the relation § as a function from the set
® (?) x @(P) into the subset {0,1] of the reals. The function is defined as

follows:

1 if A § B, and

on
~
g
v
43}
S
[

0 if A § B,



In this notation, property 2) is eaguivalent to:
2') §(A U B,C) = nin{§(A,C), §(8,0)}.
In fact, we can do even better than 2').

" :
2.2 Proposition. §( LJAi,B) = min {5(Ai,B)}.

i=1 i=l,***,n
Proof. We prove that 2') is equivalent to 2), so that 2.2 follows from 2') by
induction of the natural number n. Suppose a proximity relation § satisfies
property 2). If §(A U B,C) = 1, then 2) shows that §(A,C) =1 and §(8,C) = 1,
so min {(A,C),(B,C)} =1, If §(A U B,C) =0, then from 2) it follows that
either §(A,C) = 0 or §(8,C) = 0, so that min {§(A,C),8(B,C)} = 0. Hence 2')
follows from 2). Suppose 2') holds. From 2') we have that §(A U B,C) =0
iff min {§(4,C),6(B,C)} = 0. But min {§(A,C), §(B,C)} = 0 iff §(A,C) =0 or

§(B,C) = 0. Thus 2) is satisfied. The propesition is proved.

With the definitions and notation just developed, we will prove three use-
ful properties of any §-space P,
2,3 Proposition. If A, B c P and A c B, then for any C C P, we have

6(a,C) = 5(8,0).

Proof, The prceof conveniently divides into the cases where C is close to B

and where C is far from B. In case §(B,C) = 0, then §(A,C) =0 or 1, so

§(A,C) = 5(B,C). If 8(B,C) =1, then §(B,C) = (A U B,C) = min {§(A,C),5(B,C)} =
1; so that §(A,C) = 1, and §(A,C) = §(B,C). The proposition is proved.
2.4 Proposition. Any sets which intersect are close.

proof., Let A, B c P such that A1 B # ¢§. Then there is a point x ¢ AN B, and
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by 3) 4(x,x) = 0. Since {x} — A, then 2.3 gives SCK,AJ = 0, Since {x} c B,
then 2.3 gives §(B,A) = 0.

2.5 Proposition. No set is close to the cupty set.

Proof. This is precisely the contrapositive of 4) in definition 2.1

Now that the notion of a proximity space has been defined, it is reasonable
to try finding the relationship between this new type of space and those al-
ready known. For instance, ome should lock for structures in the §-spaces.
Perhaps there is a natural topological structure lurking in the background. If
so, it would be helpful to discover what kind of topologies can be induced by
proximity relations.

A very natural way of inducing a torology in a §-space P is to call a set
A C P closed iff it contains alljboints of P which are close to it under the
given proximity relation §. Having determined the closed sets in the space P,
we also know which sets are open; of course we don't know, as yet, whether or
not this collection of open sets forms a topology for the set P. In the sequal,
we shall denote the above mentioned collection of open seis by T(§); that is,

T(s) = {UcP|U =P - A, and A is closad}.
2,6 Proposition. T(§) forms a topology for the §-space P.

Proof. Since P contains all the points, then P is closed; so that, P - P =

@ ¢ T(§). No point is close to @, so ¥ is closed; and P - @ =Pe T(§). To
conciude the proof of 2.6, we show that all finite unions and arbitrary inter-
sections of closed sets in P are also closed inm F. Suppose [Ai|i=1,---,n} is

n
a collection of closed sets in P. If x € P such that §(x, L}Ai) = 0, then it
i=1

follows from 2') of definition 2.1, that min {5(X,Ai)} = 0; hence 5(x,Aj)=0,
i=l,s+-,n

for some j € [l, ol ,n}. Since Aj is closed, then x € Aj; and hence
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11 -
xe U Ai. Thus, EJAi ig a closed subset of P. 1f f/is an arbitrary
i=1 i=1

indexing set, let {%Ikl e;ér} dencte a collection of closed subsets of P. If

x € Pwith 5(x, [ A) =0, then 3(x,A ) =0 for each p ¢ S, since
aze @ B

N A, c AB for each B e, Since A6 is closed for each B ¢ A, then x € AB

for each g 554'; hence x € | %1. Thus %a ig also a closed set in P.
Ctesf e &

Note, To distinguish T(4) from other topologies which may be defined on
the set P, we shall call T(§) the topology on P induced by the proximity rela-
tion §. Since T(8) is a topology, it has a closure operation associated with
it; and we denote this operation by CIB( ¥

in an attempt to find relationships between proximity spaces and topological
spaces, we now prove two lemmas relating the proximity relation § to the closure

.

operation cl

8

2,7 Termma., If P is a §-space and A C P, then cIS(A) ={x ¢ Pla(x,A) = 0.

Proof. Denote A* = {x e Pl&(x,AD = 0}. We wish to prove that CIB(A) = A%,
If x ¢ A%, then §(x,A) = 0. Since A c:clé(A), then we have ﬁ(x,clg(A)) =0,
But clé(A) is closed, so that x ¢ cla(AJ. Thus, we have ¥ c:cla(A). In any
topological space, clx(A) = f]{%xlgx oA, %1 is clpsed}. We show clB(A) c A*
by proving A* to be one of the sets in the intersection which forms clé(A).
Clearly, A# o A, so we show A%is closed. Take any x ¢ A*, then §(x,A) = 1.
§o there zre sets C, Dc PwithCcyUD =7P, and 5(x,D) = 1 = §(A,C). Every
point of C is far from A, so that A% P -CcD. Since §{(x,D) =1, and

*

A & D, then 5(x,A?) = 1. We have shown that every point close to A* is

contained in A*, so that A is indeed closed in P. Thus, cla(A) = A#; and the

lemma is proven.
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2.8 lemma. If A, B C P, then 8(4,B) = 5(c15(A), c15"(3)).

Proof. 1If 3(A,B) =0, then A;c;cls(A) and B < clé(B); so that by 2.3, we also
have 5(c16(A), clé(B)) = 0, 1In the case where §(A,8) = 1, then we have sets

C,DcPwith CUD =P and §(A,C) = 1 = §(B,D). Since §(A,C)

1, then no

point close tec A is in C; so that ¢l (A) « P - Cc D. §(B,D) =1, so by 2.3

8
we have §(B, claiA)) = 1. Repsating the above process, we get
6(C16(B)’ CI6(A)) = 1. Thus we always have §{(A,B) = 8(c16(A), CIG(B))' and
2.8 is proven.

It now becomes necessary to intreduce a concept of "neighborhoods" in

§-spaces. This concept will turn out to be an important link in connecting

proximity spaces with topclogical spaces.

2.9 Definition. If A, B c P, then B is called a §-neighborhood of A in the

§-space P if A is far from P - B, and we write B DJA.

It will be useful to restate property 3) of definition 2.1 in terms of
§-neighborhoods:
5') Any two sets A, B < P which are far from one another, have

disjoint §-neighborhoods.

2.10 Proposition. 1In the presence of the first four properties of definition

z.1, 53') is equivalent to 5) of 2.l.

Procf. Suppose P is a §-space as defined in 2,1, and A, B — P with §(A,B) = 1.

By 5) of 2.1, we have subsets £ and D of P such that C U D = P and §(A,C) =1 =
£(B,D). Clearly C - D and D - C are disjoint §-neighborhoeds of the sets
A and B, respectively, so that 5') is satisfied. 1If, con the other hand, pro-

perties 1) - 4) of 2.1 are satisfied and 5') is satisfied, then for any sets

A, B ¢ P which are far apart, there exist disjoint §-neighborhoods A?,B* =P



Pt
W

s - - *
of the sets A and B, respectively, Let C =3" and D'= P - B . By definition

of a f-neighborhood,

(1) 5(D,B 1.

x & * X
jnca P - A" o B and §(P - A, A) =1, then §(3°, A) = 1; so that

v

* *
fince CY D =3B iy P -B", then
(3) ) CyUD=P.

(1), {2), and (3) clearly demonstrate that property 5) is satisfied.

Thus the proof cof the proposition is cowpliere.

©.11 Proposition. 1In a given §-space P, the following properties cf §-
neighborhoods always hold:
1) If A, B c P and B D)A, then P ~ AD)P - B.
2y 1f A, B c P and B 2DA, then B = A,
3) I£ A, B, CcPand 1) C)B o A or ii) C = B DA, then C DA
4) 1f B, DA, where 1 - 1, *** , k; then both &}B ) E] A, and
i i . 1 i
i=1 i=1
k .k
{1519?51.

1

-

5) 1f A, C, ¢ F and € A, then there is a set B < P such that
¢ 2B DA,
Troof of 1). 1If B TJA, then §(F - B,A) = 1. But A=P - (P - A),
so §(P ~ B, ? - (P - A)) = 1; which preves that P - A 3P - B.
Frcof of 2). Suppcse B i}ﬁ. If x € A, then x § P - B, because

(P - B,A) = 1, Since x ¢ P, then it rust be that x ¢ Bj which proves that BDA.



14

Proof of 3)., If i} holds, then {(P - C,-B) = 1. Since B D A, then
by 2.3 5(P - C,A) = 1. Thus C A. If ii) holds, then §(P - B,A) = 1. But
VC > B, s0P~Cc=P ~-B, Hence by 2.3, §(P - C,A) = 1: and so C DA,

Proof of 4). Suppose B, EbAi for i - 1, «++ , k.

Claim 1: (B U BE) = (Al U AE) ;

Procf of claim 1. Since B, EDAl and B, A, then §(P - B, .4 } =1 =

5(P - BE,RE).

(P-BE), and P - B

P - (B U B) =(P-B8)N(P-B),and P -B (P ~-B)N

52D (P - Bl) ni(e - BE); so by 2.3 we have that

s({(P - B ) n (p - B, )] Al) 1 and §([(P - B ) n{e - 32)], AE) = 1. Hence
by property 2) of definition 2.1 we have that §([(P - B]) n(e - BE)]’[AI A23)=
1; that is, &([P - (Bl u BE)]’[AI U A2]) = 1, This proves that (Bl U BEJ i)

(Al Y AE), which was claim 1.

Claim 2: (B; N B,) D(A; N A).

Proof of claim 2., Since Bl'ibAl and BQI:BAE’ then §(P - B LA ) =1=

1 and A A C:A2, so be 2,3 §(P - Bl,

A N AE)' By part 2) of definition 2.1 &([(P - Bl) U (e - BE)],

§(B - BouA). A NA,CA AN A2) =1 =

d(P - B,
[A; NAD = 1. That is, 8([P - (B N By ], {4, N 523) = 1, which proves
claim 2,

Part 4) of 2.11 follows from claims 1 and 2 by induction.

Proof of 5). Suppose C DA, then §(P - C,A) = 1. So there exzist
disjoint §-neighborhoods B and D of the sats A and P - C respectively. Thus
8(P -~ D, P - C) =1, and since B c P - D, then §(B, 38 - C) = 1l; hence C I)B.
Since by construction B 2)A, then we have CIDE DA as required in 5),

Thus we have completed the procf of the propositien,
Example. Let R* = [-=,%] with its usual topology. We define a proximity

* * .
relation, 4, on R by: Tf A, BC R, then A § B iff ¢l ,(A) Necl (B) #4#. It
R R
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can be shown that T(§) is exactly the usual topology on R%. 1t is easy to
see that the sets (0,4),(0,41,70,4), and [0,4] are all §-neighborhoods of the
set (1,2).

As the above example shows,4-neighborhoods need not be open or closed,
though they may be., We can however prove some relationships between §-
neighborhoods and open sets. We shall prove some of these relaticnships, and
this will in turn give us some information about the topology, T(§), induced

by the proximity relation § on a set P.

2.12 lemma. For any §-neighborhood B gDA, there is an open set U such that
B o UDA.

Proof. Since B DA, then §(P - B,A) = 1. From Lemma 2.8, we have

é(clP(P - B),A) =1, 8ince clP(P‘ - B) is closed, then U = P - clP(P - B) is

open, Then P - U is far from A, so that U2DA. Also, we have that
B=P - (P-B)DP-cly(k-3B) =0

Thus we have the open set U with B = U DA, and the lemma is proved,

5.13 Tenma. If A is a subset of the §-space P, then the intersection of all

the §-neighborhoods of A is the closure of A, CIB(A)'

Proof. We denote A" = N{B c PIB A}, &(P - B,A) = 1 for every B::)A, eo

by lewma 2.5 we also have §(P - B, cla(A)) =1, Thus B ':_Dcls(A) whenever

B DA, which proves clé(A) cA*, 1f x ¢ Clé(A)' then 5(5{, c}.&(A)) = 1; so

there axist disjcint §-neighbtoricods B' of A and C of {x}. Hence x ¢ B' o A*,

and % ¢ A#; so that we also have A% o claéA). Thus 2.13 is proved.
Proposition 2.6 shows that every §-space P has a topologle(a) associated

with it. There arise new questions. For exsmple, which, if any, of the sep-

aration axioms are always satisfied by T{§)? Can we place restrictions on §
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which force the topology T(8§) to be very specific {e.g. ccmpact, metrizable,
etc.)? Conversely, given a topological space X, is it always possible to
define a proximity velation on X which is in some sense-compatible with the
topologiéal structure of X? We can give a partial answer to the first ques-
tion at this time, but the second question must wait for more machinery to be
developed. Also, we can give a rather complete answer to the third question
after we determine in wﬂat sense we want a proximity relation to be compat-
ible with the topological space on which the relation is defined.
2.14 Proposition. If (P,§) is a proximity space, then T(§) is a Hausdorff
topology.
Proof. We already know by proposition 2.6 that T(§) is a topology. If x,y € P
such that x # y, then by part 3) of definition 2.1 we have §(x,y) = 1. By 5")
of definition 2.1 there exist disjoint §-neighborhoods of fx} and {y], say
AD{x} and B D{y}. Applying lemma 2.12 we get open sets U and V in P such
that A> UD{x} and B > VI {y}. Since A and B are disjoint then so are U

and V, so that 1(§) is Hausdorff.

2,15 Definition. A proximity space, (P,8§) is consistent with a topological

space, (R1£Z§, if: i) P = R, and ii) T(§) =;Zi

2,16 Theorem. For any compact space there is exactly one §-space consistent
with it.
Proof, It is sufficient to show:
(*) In any §-space P consisteant with the compact space R, sets A, B c P ar=
far apart if and only if clR(A) N clR(B) = (.
This is sufficient because tle tcpology on R it completely determined by

the closurs operation clR( ), and (*) shows that the closure operation in R
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also completely determines the proximity relation &.°

Proof of (¥). By lemma 2.8, 4(A,B) = 5(c1R(A), clR(B)), so we need only prove

(*¥) for closed sets A, B P. If A and B are closed subsets of P with
§(A,B) = 1, then by proposition 2.4 we have AN B = @. Hence we only have
left to prove the converse of (%).

Suppose A and B are closed subsets of P such that A1 B = #. Since B is
closed and disjeint from A, then every point x € A is far from B. By property
5'Y of definition 2.1 there exist for every x € A disjoint §-neighborhoods
Cx of {x} and Dx of B, By lemma 2.12 there is for each x € A an cpen set Ux
such that Cx o) Ux iafx}. Ux c Cx c (P - Dx) and §(P - Dx’ B) =1, so by
proposition 2.3 5(UX,B) = 1, [le x € A} is an open cover of A, and A is com-
pact (since it is a closed subset of the compact space R). Hence there is a

finite subcover, say [lei =1, »++ , n} of A; so that E]UX'D A. Applying

i=l 7i
2') of definition 2.1 we find that §( E}Ux B) = min {5(U B)} =
i=1 *1i i=1,...,k i
min {1} = 1. Since Llf]Ux > A, then 2.3 implies that 5(A,B) = 1. Thus
i=1,...,k i=1 ¥

(*) is proven.

Theorem 2.16 can be improved in some respects. It can be shown that even
for a completely regular space there is a proximity space consistent with it;
however, theve may be many proximity relations which induce the same topology.
First we prove a lemma which allows us to treat every subset of a proximity
space as a proximity space itself. The induced proximity relation @ on the
subset Q of the $-space P is defined as follows: 1f A, B c Q, then Q(A,B) =0

if and only if §(A,B) = 0, where A and B are considered as subsets of P.

5.17 Lemma. If P is a §-space and Q ¢ P with the induced proximity relation

@, then Q is a proximily space.
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Proof. All five of the properties of a proximity space listed in definition

2,1 are clearly satisfied by the set Q with relation @, as can be shown by

restricting the corresponding properties of the space (P,5) to the subset Q.

Thus 2.17 is proven.

2.18 Theorem. For any completely regular space there is at least one §-space
consistent with it.

Proof. Let R be any completely regular space. By theorem 1.5, R has at least

one compactification, say OR. By theorem 2.16 there is exactly one §-space

P

- consistent with QR. Since R ¢ @R, then by lemma 2.17 R is a proximity

space with the induced proximity Q.
Claim 1: The topology on R induced by the proximity relation Q is
consistent with that of R.

F4

Proof of claim 1. A C R is closed in the topology induced by the relation 8

iff A contains all points of R which are close to it under the proximity relation
5 in the space GR. This means that if we denote the set of all points from GR
which ars close to A by A, then A = AN R. But A is a closed set in OR so

A = AN R is precisely the statement that A is closed in the space R. Thus

the topology induced by § does coincide with that of the space R.

With claim 1, and the remarks preceeding that claim, the proof of theorem
2,18 is complete.

Observe that the proof of 2.18 gives more information than is stated in the
theorem, For example, it follows that for each completely regular space R,
there are at least as many §-spaces consistent with it as there are non-
homeomorphic compactifications of R. Of course, we have no way of knowing,
at the present, whether these various proximities are distinct. Moreover,
there arises a new question; namely, what is the relationship between the

proximity spaces consistent with a given completely regular space and the
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compactifications of that space? These questions, and some more which are

induced by answering these, will be itaken up in chapters three and four.

It is obvious that we have been working in a category of objecte which we
called proximity spaces. In our study we have raised gquestions concerning
the relationships of this category to other categories, such as the category
of completely regular spaces, 1In this treatment, we do nct pursue a categor-
ical approach to the problems confronting us; but rather leave the category
theory lurking in the background. Our only purpose in bringing the idea up
was to stress the naturality in considering our next topic; that is, in con-
sidering the morphisms between the objects in the category of proximity spaces.
Since §-spaces are in fact topolégical spaces, then we call the morphisms from
one §-space into another mappings, as in usually done in topological spaces.
Just as in groups we consider mappings which preserve the group operationm,
and in rings we consider maps which preserve both ring operations, and in

topological spaces we consider maps which preserve points of adherence; then

in proximity spaces we consider mapping which preserve proximity.

2.19 Definition, A map f: P » Q, where P and Q are §-spaces, is called a
f-m2p if and only if for any close subsets A and B of P then the images

f(A} and f(B) are close in Q.

2.20 Proposition. Let P and Q be proximity spaces with proximity relations
5 and 2, raspectively, A function £: P + Q is a §-map if and only if
for any subsets A and B of Q such that £(aA,B) = 1, then 5(f'1(A), f-](B))=1.

A

Proof, Suppose f: P 4 Q is a §-map. Let A, B — Q such that §(A,B) = 1. 1If



0, then since £ is a $-map we also have Q(f(ftl(A)),f(f'l(B))=

i

s¢ely, e

-1 i
0. But £(f (A)) c A and £(f "(B)}) — B, so by 2.3 8§(A,B) = 0. This is a

contradiction, so §(f—1(A), f-l(B)) 1. Conversely, suppose that for every

pair fo sets A, B ¢ Q which are far apart, it follows that f-l(A) is far from

-1,

f "(B). Let C and D be any subsets of P such that §(C,D) = 0. On the assump-

tion that B(E[C),£[DP]) = 1, we find that E(f-l(f[cj), f‘l(f[nj) = 1. But
C c,f-l(f[cj) and D C:ffl(f[D]), so by 2.3 §(C,D) = 1 which is an obvious

contradiction. This concludes the proof of 2.20.
2,21 Temma. Any §-map f: P + Q is continuous,

Proof. Llet A be a closed subset of Q. If x € P such that 5(x,f_1(A)) =0,
I

then =(£(x), f(f‘l(A})) = (0 because f is a §-map. But f(f-l(A)) — A, so by

243 ?{ {x),4) =90, &ince 4 is closed, then f(x) € A. Hence X ¢ fﬂl(AJ, which

Ih

-1
concludes the proof that £ (&) is closed. Thus, f is a continuous function,

0,22 Theorem. If f: R~ Q is a continuous map, R is a compact space, and Q

iz a f-apace; then f is a §-map.

Froof. Since R is compact, then by theorem 2.16 there is exactly one §-space
consistent with R, and in that §-space two subsets are close iff their closures
intersact, So if A, B — R and §{A,B) = 0, then there is a point

= [clR(A)ﬂclR(E)]. Since f is continuous, then frclR(A)] c:clg(F[A]) and

fEC1R(B)] & Clg(fEB]). Thus f{x) € (f[clR(A)] n f[clR(B}]), and hence

f(x) ¢ [cl@ faD N clg(trB])] By proposition 2.4, we have
@(cl {£[A]), cl (£[2])) = 0, where Q is the proximity relation on Q. By 2.8

we also have that ?(f[Aj, £f{31) = 0. Fence f is a §-map.
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11T, Extending Proximity Spaces.

After defining what we meant by a proximity space, we attempted to charac-
terize §-spaces in terms of some known topological concepts. We arrived at

he fact that every proximity space (P,3) induces a topology on the set P.

r

The induced topology, which we denoted by T(§), turned out never to be more
general than a Hausdorff topology. We also found that if we are given any
completely regular spacé (R,{Zﬁ, we can define at least one proximity relation
&, on R, such that the proximity space (R,§) is consistent with the topological
space (R,:ES.

In this chapter we shall extend and strengthen some of the results of
chapter two. We will prove that the topology induced by any proximity space is
more specific than Hausdorff; that it is, in.fact, completely regular at the
least. Combined with the information in the preceeding paragraph, we will
have that the class of §-spaces coincides with the class of completely regular
spaces; and problems concerning ccmpletely regular spaces are translated to
corresponding precblems in §-spaces. The advantages of this translation are
obvious, since completely regular spaces are defined in terms of real-valued
functions, which can become unruly; whereas, §-spaces are defined by a relation
§ with very simple properties. This, we hope, will give us insight, and
possibly solutions, to problems of completely regular spaces.

To accomplish the proof that every proximity space is completely regular,
we construct for every proximity spaces (P,8), another proximity space (uP,A),
which contains the given space (P,8) as a dense subset. The space (uP,A) will
turn out to be compact; which, of course, implies that (P,§) is completely
regular,

3.1 Definition. A j-space P is called a i-extension of the §-space P if P
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contains P as an everywhere dense subspace.

3.2 Definition. A §-space P is said to be absolutely closed if it has no §-
extensions except for itself; that is, if P is closed in every §-space

containing it.

The last remark in 3.2 reminds us that a compact (Hausdorff) space R is
closed in every (Hausdorff) space containing it., This observation proves the

following.
3.3 Proposition, Every compact space is absolutely closed.

We now ponder the converse of 3.3. If the converse were true, then our
problem of embedding every §-space in a compact space could be solved by
embedding every §-space in an abgglutely closed §-space, The converse is, in
fzct, true (cf. 3.25); and we begin the task of embedding an arbitrary §-space

(P,8) into an absolutely closed §-space.

Construction of uP for a fixed proximity space (P,8).

3.4 Definition. In a §-space P, a system of sets is said to be centered if the

intersection of any finite number of them is not empty.

3.5 Definition. We call a system E of sets in a g-space P a 5;system if each
set A € £ is a §-neighborhood of some set B e E.
At this point in the construction, we can consider the set of all centered
§-systems in a fixed g-~space P, but the resulting space turns out to be only
a generalized §-space. Hence we refine the collection of all centered §-systems
of the space P. ‘

For a fixed centered §-system £, in the fixed space (P,8), we supplement g

with the intersections of all finite subsystems of £, and call the new system g'.
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3.6 Proposition. If E is a centerad §-system, then ' is a centered §-system.

Proof. We break the proof into two claims. We first claim that g' is centered,

and next that it is a §-system,
Claim 1. ' is centered.

Proof of claim 1, Let {Ei!12| , ***, n} be a subsystem of £'. Each E; is

a finite intersection of member of 2. 8o we may write for each i,

k

1}
P-:lir

n n
Then r‘Ei = N (

Ei.) is still a finite intersection of
i=1 i=1l j ]

i
i Ei..
=1 M

members of £, so it is not empty since Z is centered.

Claim 2. £' is a §-system.

Proof of claim 2. Let E € €', then we must find a set D ¢ g' and that

E eD. IfEe E, then the result is clear since £ is a §-system. If E € E

n
then E = .f}Ei where each Ei € E. £ is a §-system, so for each i, 3Di € g

i=1

n n
and E1 EDDi. By 2.11 4) E = F}El =), f}Di. This proves £' is a §-system,
i=1 i=1

Claims 1 and 2 prove proposition 3.6.

Observe that the system £' has the property that it contains all inter-
sections of finite subsystems of £'. This is true since every intersection of
a finite uumber of members of g' is still a finite intersection of members of
E,

We ncw supplement g' with all sets A < P which contain a set B ¢ E'. We

call this new system g" aund shall prove it is still a centered §-system,

3.7 Propositicn., £" is a centered §-system.
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Proof. Again we break the proof into two paxts; firét'proving E" is centered

and second proving g" is a §-system,

Claim 1: E" is centered.

Proof of claim 1. Let {Aili =1, «+» ,n} be a subsystem of g". 1If A € g,
then A, §DBi for some B, € g'. If A ¢ £', then, by construction, A; contains
some Bi e £'. Hence in either case, for every Ai there is a Bi € g' such that

n n n
ADB,. Since g' is centered, then (B, # §. N A, 2 N
£k =1 i=1 '

By
foml i-1

n
so NA, #0;
A 1
i- i-1

which proves claim 1,

claim 2: &" is a 4-system,

Proof of claim 2. Suppose A ¢ gﬁ. If Ae g', then since g' is a g§-system,
there is a B ¢ #' and hence B ¢ £" such that AZ)B. If A € E', then by con-
struction, there is a set C ¢ E' such that A D C. Again g' is a §-system

implies there is a B ¢ €'

and hencé B ¢ £" such that C > B. We now have a
B e g" with ADC2D)B and by 2.11 3} this means AS)B. Hence for every A e E'

there is a B ¢ £" with A B. This proves claim 2.

The next step in the construction will be forming the eleaments of the set
which will be a §-extension of the original §-space P. The elements of the

v

§-extension will be the maximal centered §-systems from the §-space P.

3.8 Definition. An end of the $-space P is any centered §-system, E, which
is not a subsystem of any other centered j-system. (Cbserve that an end

is always a maximal filter.)

3.9 Propositien. If £ is an end of the &-svace P, then every intersection of

finite subsystems of 2 is still 2 member of Eg.
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Proof. If £ is an end for which the intersection of some finite subsystem is
not a member of £, then we form a new system £' by supplementing £ with all
intersections of finite subsystems. By proposition 3.6; g' is also a centered

¥

§-system., Since g' contains £ properly, we have a contradiction to the fact

that £ is an end.

3.10 Proposition. If £ is an end of the §-space P, then every set A < P which

contains a member of E is alsc a member of E.

Proof. 1If this were not the case for some end g, then we could form a new
system £' by supplementing £ with all sets AcC P which contain some element of
-1

£. By proposition Bk 5 g' is a centered §-system. Since £' contains g properly,

then we have a contradiction to the fact that £ is an end.,

3.11 Proposition. If P is a §-space, then every centered §-system of P is

contained in some end of P.

Proof. We shall use Zorn's lemma to prove this proposition. First we define
an ordering ">>" on the set, S, of all centered §-systems containing a given
centered §-system £. If g', £ € S then g' >> g" iff E" is a subsystem of g'.
The fact that ">>" is reflexive and transitive follows from the corresponding
properties of set inclusion. Thus ">»" is a precrdering in S. Ezch chain in
S certainly has an upper bound, since the union of all the elements of a given
chain of membersof S is easily shown to be a centered §-system. Hence Zorn's
lemma does apply, and there is a maximal element in the set S. This maximal

element of § is clearlv an end which contains the centered §-system E.

3.12 An example of a centered §-system is the set EA of all g-neighborhoods

of a given nonempty set A C P. o is centered bocause every element of EA



26

contains A and thus every intersection of a subsystem of EA contains the non-

empty set A. Ea is a §-system since if E ¢ I then E © A. By 2.11 5), there
is a set B c P such that ED B DA, So B e SaandEDB.

We shall now prove the very important observation that if the set A in
the above example consists of one point, then the centered §-system EA is an

end of the §-space P. This fact will enable us to establish a correspondence

between the set of ends of the §-space P, and the points of P.

3.13 Lemma. If x is an element of the §-space P, then the centered §-system

E. ™ {AcC PIA'D {x}} is an end of the §-space P.

Proof. 1In 3,12 we showed that £ is in fact a centered $-system, so to prove
3.13 we show: if g is a S-Systeg_which properly contains Ex’ then F is not
centered. E 2 g, means there is a set A¢ £ and A ¢ E.,» & is a §-system, so
there is a set B ¢ E such that A > B. By 2.11 5) there is a set C € P with

AS C>oB. Since A e Ex’ then A 3 {x}. A=B and A x means x € B, so x € P-B.
B>C so §(P - B,C) =1 and so §(x,C) = 1. ¢c=°P - (P - C) so §(x,P - (P - C)) =
1 which means that P - C D {x}. Hence (P - C) € g . But £ C g, so (P - C) e E.
Since C € F, we have C, P - C ¢ € and C N (P - C) = @. This means £ is not
centered, which concludes the proof of 3.12.

Notation. If P is a §-space, we denote the set of all ends of P by uP.

3.14 Definition. 0 < > : 2P -+ QUP, is defined as follows: If A c P, then

0 <A> = {E € uP!A € E} < uP.

3.15 Definition. @ is a relation on the set of all subsets of uP, and is
defined as follows: 1f C, D — uP, then € e D if and only if there exist

sets A, B c P with A § B, and such that C c 0 <A>, D c 0 <B>. That is,
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Q(C,D) =1, if and only if there exist sets A, B'c P with §(A,B) = 1 and

Cc0<A> DcO B>,

Before proving that the realtion in 3.15 is a proximity relatiomn, we need
to investigate the behavior of the operator 0 < >, which carries subsets of P

into subsets of uP.

3.16 Proposition. If P is a §-space and A, B — P, then the following relation-
ships hold:

1) 0 <A>N 0 <B>

0 <A N B>
2) 0 <A> 0 <B>cC 0 <A B>

3) If §(P - A, P - B) =1, then 0 <A> U 0 <B> = uP.

Note: The relation in 1) may be extended to a finite number of sets, and 2)

may be extended to any number of sets.

Proof of 1). Suppose E ¢ 0 <A> N0 <B>, Since £ ¢ 0 <A>, then A € E. Since
e 0<B> thenB e g. F € uP &0 by 3.9 (A N B) € £. Thus by definition 3.14
we have that F e 0 <A N B>, Hence we have proven 0 <A> N 0 <B> < 0 <A N B>.
Suppose £ ¢ 0 <A N B>, then ANB e g. Since f ¢ uP and A= (A N B) and

B> (AN B), we have by 3.10 that A e € and B ¢ §. This proves E € 0 <A> and

£e 0 <B> Hence 0 <ANB>cO0<A>N0 <B> Thus 1) is proven.

Proof of 2). Suppose £ € 0 <A> |y 0 <B>. Then either £ € 0 <A> or E € O<B>.
If e 0 <A>, then A e E. Since AJBD A, then AUB e E. But A UB e g
means E e O <A { B>. Similarly, £ ¢ 0 <B> implies £ ¢ 0 <A |j B>. Hence in any

= b=l

case F ¢ 0 <A> |J 0 <B> implies Z ¢ 0 <A {J B>, This concludes proof of 2).

Proof of 3). Clearly 0 <A> |} 0 <B> ccuP. Suppose § € uP. We want to show

£e0<A>U0<B> 1Incase A=7P, thenA € g because it is a trivial fact that

»
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IfA#P, then P - A# %, Llet D=7P ~ A, then from 3.11
By~ {E c P|E 2D} is a centered §-system. 1f some H e ¢ is
contained in A; that is, if H does not meet the set D, then A e £ and so

£ € 0 <A>, which proves £ € 0 <A> U 0 «<B>. If there doss not exist such an

H e £, then every E ¢ £, meets the set D. 1In this case we make the claim that

£p U £ is a centersad g-systom.

rflzim l: If every H ¢ E meets [, then 7 U E is centered.

Proof of claim 1. Let {Di‘i = 1,+»+,n} be a finite subsystem of B U Ee.
Suppose Di € £n for i = 1,"°°,k £ n and that Di e € for i =k+1, k+ D,eer, 0.

¢ we can write s
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let E= () D, then E ¢ E, because £ is an end. Since D, D for 1L =1,k
i=k

1 i
- k
then also Di:D D for i = 1,+--,k. Hence we have [ Di:D D. Thus from (1) we
i=1
have
n
{2} (D, 2D NE,
g=1 *

By bvpothesis we know that D NE # @; so from (2) we have

n
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meets D, then gD U g is a §-system.
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Proof of claim 2. Let A ¢ gD UE. 1IfAe ¢k

) then. there is a B ¢ ED such

that A.i}B, because £_ is a §-system. Since B ¢ ED’ then also B ¢ ED UE. If

D S

A ¢ E, then there is a B € &, hence B ¢ p U & such that AZ}3. Thus in either

U £ with A = B, which proves that

case if A ¢ ED U E then there is a B ¢ ED

Ep UE is a g-system.

Claims 1 and 2 show that 2N U € is a centered §-system. Since £ is an end,
then £, C £. Since D = P - A, then we have by hypothesis that §(D,F - B) = 1,
go that B > D. This means that B ¢ gD. Since ED C g, then B € E. This means
Fe 0 <B>and so £ € 0 <A> U <B>., Since we have shown that an arbitrary ele-
ment £ € uP is also contained in 0 <A> |J O<B>, then we have uP C 0 <A> | 0 <B>,

Hence we have proven part 3) of 3,16,

Having proven some properties of the operator 0 < >, we will now apply these
properties in demonstrating that the relation defined in 3.15 is actually a

proximity relation on uP.

3.17 Proposition. The relation Q defined in 3.15 on the set uP of ends of the
§-space P, is a proximity relation.
Proof. The proof of this proposition consists of verifying that @ satisfies

the five properties of a proximity relation as set forth in definition 2.1,

Verification of 1). Suppose C, D ¢ uP, aad Q(C,B) = 1, Then there must be sets

A,B P such that 8(A,B) = 1 2nd C < 0 <A>, while D © 0 <B>., Since A(A,B) =

5(B,4), and B we get g(n,c) =1,

Verification of 2}. We shall verify the contrapcsitive of 2): %(c UD,E) =1

A a
if and only if &(C,E) = 1 and Q(D,E) = 1. 1If C,D,E < uP and @(C UD,E) =1,

then there are sets A,B ¢ P with §{(A,B) =l and CUYUD <0 <A>, E c 0 B>.
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Hence it is true that C ¢ 0 <A> and D < 0 <&> while E- 0 <B>. This implies
g(C,E) =1 = @(D,E). Now suppose Q(C,E) = 1 and g(D,E) = 1, Then there are
sets A,B ¢ P such that §(A,B) =1 and C ¢ 0 <A>, E € 0 <B>. Also there are
sets A",B' ¢ P with §(A',B'Y =1 and such that Dc 0 <A'>, E c 0 <B'>. Tence

we have E NE <« 0 <8> N 0 <B'>, and by part 1) of 3.16,

(1 . EcO0<BNnB'>.

Also we have that C YD c 0 <A> | 0 <A'>, and by part 2) of 3.16 this gives:
©) CUDCO <A U A

Since §(A',B') = 1 and B N B' ¢ B', we have

(3) a@u£n3w=1.

Since §(A,B) = 1 and B N B' < B, then we have

(4) 8(A,B NB') =1,

Using property &) of definition 2.1 for the proximity relation 5, we can combine

(3) and (4) to give,
(5) 5(AUA", BNB') = 1.
From (1), (2), and (5) we have Q(C U D,E) = 1. This concludes the proof of 2).

Verification of 3)., We must prova that two points of uP are close iff they are

the same point, We first prove that every point is close to itself. Suppose
€ € uP. On the assumption that g(g,g} = 1, then there are sets A, B — P with

6(A,B) =1 and such that £ e 0 <A>, £¢ 0 <B> So Ae¢ E and B ¢ g. Since g

is an end, then A N B # ¢; which contradicts the fact that $(A,B) = 1. So



we must have é(g,a} = 0. We acw prove the contrapositive of the converse,

Supgose 7 # £', then we want to show %(E,?' = 1., We now show that it is
¥ < =3 =2 )

possible to pick sets A ¢ £ and B ¢ ' with AN B = 4.

el

Claim 1: If every A ¢ E meets every B e g', then £ U £' is a centered §-system.

A

Proof of claim 1. To prove £ | £' is centered, let {Di}i =1,+-+,m} be a sub-

L]

i

system of £ U E'. Say D, € g for i 1,++,k and D, e g' for i = ktl, ==, m,

So we c¢an write:

m k m
8y Ao = (A BN A D
i=l * i=1 i=k+l
k m
Let E = D, and F= () D,. ThenE ¢ £ and F ¢ E' because £ and g' are ends.
. 1 . 1 *
i=1 i=l+l

So we have frocm {1), and by hypothesis,

(2)

(1=

D. =ENTF #4d.
. * )

1

(2) proves that ¢ U g' is centered. It is clear that g U g' is a §-system
since if £ ¢ £ £, thenE is either in Z or g' hence E is a §-nsighborhood of

. Thus claim 1 is proven.

Since T | £' is a centered §-system and £ g' > eand £y ' Dg', where
£ and £’ are ends; then £ = g |y ¢' = 2'. This is a contradiction, since we

chosz & # g'. liencr there must be sets A€ g and B ¢ £' with AN B = ¢. But

.5 a £-5

'stam, so there is a set C ¢ £ with A> €. A D C means that §(P-A,C)=

o
.
U
-
o
e
w
g~
]
1}

#, then B P - A; so by 2.3 5(B,0) = 1. Be £', so ' ¢ G<B>

=

i

J <>, Thus

3

(2,8') = 1. This concludes verification of )

Ui
Iy
J

L.
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Verification of 4). To prove that every subset of uP is far from the empty

set, we will show that uP is far from the empty set. To avoid confusion, we
denote the empty set by ¢ when we censider it as a subset of P and by A when we
consider it as a subset of uP. Clearly A c 0 <ff>. Also u? — 0 <P>, since
every end contains P as an element. §(#,P) = 1 follows from part 4) of defin-
tion 2.1 for the relation §. Thus by definition of the relation é, we have

i
@(A,UP) = 1. This implies that every subset cof uP is far from the empty set.

Verification of 5). Suppose C,D — uP and @(C,D) = 1. We must prove the exis-

tence of sets E,F c uP with F |J F = uP and g(C,E) =1 = Q(D,F). Since

@(C,D} = 1, then there are sets A,B P such that §(A,B) = 1 and C c 0 <A>,

D c0 <B>. Since §(A,B) = 1, then §(P - (P - A),B) = 1, so that (P - A) o B.

Applying proposition 2.11 5) twice in succession, we get sets B',B" < P with .

(P ~A) oB' oB" o B. Hence we have §(P - B',B") =1 and so (P - B',P-{P—B")j
1. By proposition 3,16 3), we have that

(1) 0 <B'>10 <P - B"> = uP.

Since §(A,B') = 1 and C c 0 <A>, while 0 <B'> = 0 <B'>,

(2 ' 8(c,0 <8'>) = 1.

Since 3(P - B",B) = 1 and 0<P -~ B"> < 0 <P ~ B™>, while D — 0 <B>,

(3) B(D,0 <P - B"S) = 1,

From (1), (2), and {3) we sece that 0 «B'> and 0 <P - B"> are the sets E and F

in uP which we were looking for; hence property 5) of definition 2.1 is sat-

isfied by %.

Having verifiad that all five properties of a proximity space are satisfied
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. g . p iz o]
U is an open set containing x and countained entirely in A, so x € A", Thus

we have,
-1 (o]
(1) § (0 <) c A,

o] . -
If xe A", then x € P - AD. 2% is cpen, so P - A° is closed, from which it

follows that §(x,P - Ao) = 1, Hence we have A°® o {x}. But A = AO, so AD fx].

Thus A ¢ B and E, € 0 <A> and x € ¢-1(0<A>). So we have shown that,

0

(2) A" ¢ ‘;;'1(0 <A>) .

(1) and (2) prove the lemma.

We now return to the proof of theorem 3,19, We still have to prove that

the maps § and ¢_1 are §-maps.
Claim 2: { is a §-map.

Proof of claim 2. Let C,D c uP with @(C,D) = 1, Then there exist sets A,B c P

with §(A,B) = 1, and C ¢ 0 <A>, while D c 0 <B>. Thus we have,

(3) e ey o @y,
and
(4) sty <y ho @)

Applying lemma 3.20 to (3) and (4) we have,

-1 o
(5) y (C) c A,
and

(6) ¢ o) <o



Since §{A,B) = 1 and A° c A and B° c B, then we have,

@ 5(a°,8% = 1.

Applying proposition 2.3 to (7) together with (5) and (6}, we have,
8) U ONEICNERE

From (8) and proposition 2.20, we may ccnclude that § is an §-map.

Claim 3: is a §-map.

Proof of claim 3. Since we already have that § is 1-1, then (-,‘!;"1)"1 = §. So

if we apply proposition 2.20 to prove is a §-map, we must only show that
vherever §(4,8) =1, then 9($(AJ,‘$(B)) = 1, If A,BcP and §(A,B) =1, then
also §(P - (P - A),B) = 1; so thac P - A D B. By 2.11 5}, there are sets

C,D c?P with P - ADC=D>B., Since by lemna 2.12 there is an open sat U such
that D = Y = B, and since p° is the largest open set contained in D, then

p® = B. Of course p° 5B implies p° = B. By lemma 3.20, p° = ¢-1(0 <D>), so:

-1
(9) ¢ (0 <D>) o B.
Every map preserves set inclusion, so from {9) we have,

(10) W50 D] = §@.

[}

Since 4§ 1 uP, then (10) gives us,

il
¥
(11) & D> §(F).

Since P - A= C, then we also have P - C D A. As we aoted previocusly, this means

that (P - C)0 o A and hence that (P - C)0 = A. Applying lerma 3.20, we get



¢q1(0 <P - C>) D A, from which it follows that,

(12) 0 <P - C>> §(A).

Since §(P - C,D) = 1, then

(13) 80 <>, © o - c>) = 1.
From (11), (12), and (13) it follows that

(14) B, yey) =1

Hence the proof of claim 3 is complete.

Claims 1,2, and 3 prove that P is §-homeomorphically embedded in uP, so

that theorem 3.19 is true.

Since $-homeomorphisms are homeomorphisms (2.21), we can now treat P as a

subspace of uP simply by indentifying each point x € P with the end g, € uP.

Having made this identification, we can restate lemma 3.20 in the form:
e | PNO<A>=A4A%

We have finally arrived at the place where we can prove that the construc-
tion of uP from P was worthwhile, because uP is exactly what we wanted — a §-

extenszion of P.
3.22 Theorem. The §-space uP is a §-extension of the j-space P.

Procf. Since we already have that P is a subset of uP, and since P being §-
homeomorphically embedded in uP insures that the original proximity in P is the

same as that induced on P a3 a subset of uP; then all we have left to do is show
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that P is a dense subset of uP. To do this, we show ‘that every point of uP is
close to P. Suppose £ ¢ uP., 1If @(g,P) = 1, then there are sets A,B — P with
5(A,B) =1 and £ € 0 <A>, while P c 0 <B>. Since P = [gy|y € PJc 0 B>, this

means B € gy for every y € P. But then y ¢ B for every y € P, which provas

Il

B = P. Since §(A,B) =1, then A = @. Since £ ¢ 0 <A>, then 24 = § is a coa-
tradiction. Thus we have S(E,P) = 0, and theorem 3,22 is proven,

The construction of uP is now complete.

Not only is uP a §-extension of P, but we shall prove that uP is an absolutely
closed §-space. This will be important since we will thgn prove the converse
of proposition 3.3; that is, every absclutely closed §-space is compact. When
all this is done we will have P as a subspace of the compact space uP, and thus

we will have proved P to be completely regular.

3.23 Theorem. A §-space P is absolutely closed if and only if every centered
§-system of sets from P has non-empty intersection; that is, iff every

centered §-system has the finite intersection property.

Proof. We first prove the contrapositive of the "if" part of 3.23. 5o we
suppose P is not azbsolutely closed, and try to find some centered §-system of P
whose intersecticn is empty. P is not absolutely closed is equivalent tc saying
there is a peint y € P and P | [y} = P' is a f-space containing P as a dense
subspace. Let gy denote the end of P' consisting of all A-neighborhoocds of {y}.

Let e=¢g' N{P} ={ENP|Ee ]
) ¥y ¥y
Claim 1:. £ 1s ceuntered,

Proof of claim 1. Suppose {E€!i = 1,++-,k} is a subsystem of E. Then for each

i, there is an H, —P' with E, = H, NP and H, € . So we have:
i i i i Ey
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(L ﬁEi=ﬁ(HinP)=(F\_H.)n1=.
i=1 i=1 i=1 *

n n ' '
Since g is an end, then (N H, ¢ By If N H = {v), then {y} > {y}. So we
i=1 * i=1 )

have g(P' - {y},¥) = 1, which means
() _ Ae,y) = 1.

(2) is impossible since P is dense in P'. Thus there must be an element x # ¥y

n n
and x € Hi' Since x #y, thenx e ( N Hi) 1 P. So from (1) we have that
1=1 - i=1 |

rlEi # @#. Hence claim 1 is proven.
Claim 2: F is a g-system in P.

£

Proof of claim 2. Suppose Ae . Then A = H P for some H € gy. Since Ey is

a §-system, then there is an H' ¢ with H 3 H'. Let A' = H' 1 P. Then
&y

ADA' € g. This completes the proof of claim 2.

clain 3: N {AlA e g} ='0.

Proof of claim 3. Since every A e € is of the form H § P, where H € gy, we can

write:
(3) N{aslaec gl = n{unrlaeel,

and using commutativity of intersection in (3) we have,
(%) Nfalae g} = N{ulae gl NeE.

Thus in order to prove claim 3 it is sufficient to prove that

(5) N{ala e gy} =y}
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If there were an x € fj{H]H € £1 and x # y, then §(x,y) = 1. So there would

By
be disjoint §-neighborhoods C of {x} and D of [y}, so x € D. x € D contradiers
the fact that C and D are disjoint. Thus (5) is verified, and the proof of
claim 3 is complete.

Claims 1, 2, and 3 prove that £ is a centered §-system with empty inter-
section.

We now prove the coﬁtrapositive of the "only if" part of 3.23, Suppose g'
is a centered §-system in P with empty intersection. By proposition 3.11, g'
is contained in some end E of P. & must have empty intersection because it
contains the system g', which has empty intersection. Since every end of the
form s where x € P, has non-empty intersection; then £ is not one of these
ends, Identifying the points x € P with the ends .8 uP, we have that uP con-
tains P properly, because £ € uP and £ ¢ P. This proves P is not absoluiely

closed.

We have thus completed the proof of theorem 3.23,
3.24 Thecrem, Tor any §-space P, the g-extension uP is absolutely closed,

Proof. According to theorem 3.23, we must show that every centered §-system in
uP has a non-empty intersection. Let n' be an arbitrarily chosen centered §-
system in uP. Extend m' via proposition 3.1l to an end y of the space uP. We
now define g' = {A c:PIA =HNP for some H ¢ n}. Following a procedure like

that in claims 1 and 2 of theorem 3,23, we arrive at £' being a centered §-

system in P. Again we invoke proposition 3.11 to extend £' to an end g of the

space P, that is £ € uP. We now show:

(1 ge N{d c:uPiH en'l.



40

If (1) were not true, then there would be an H ¢ " such that g € H. ﬂ' is
a §-system, so there is a set H' e 7' with H H'. Thus we have
g(uP - H,H") = 1, where é is the proximity relation in uP. £ e uP - H, so we

o

also have,
@ B(g,H") = 1.

From (2) and definition 3.15, follows the existence of sets A,B — P with:

3) 5(A,B) =1,

and

(4) Ee 0 <A>,
while

(5) H' c0 <B>.

From (5), 5.20, and 5.21, it follows that,

(6) PNAH' cPNO <B>=8" cB.
From (3) and (6), we have:

(7 5(A,P N U =1,

(7) clearly implies that,

(8) AnEna) =4.

Since H' ¢ n', then P N H' € g; and (4) implies that A € E. So (8) contradicts

the fact that ¢ is an end. We have proven that (1) bholds, thus completing the
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proof of theorem 3.24.
3.25 Theorem. A proximity space is absolutely closed iff it is compact.

Proof. "If" was proven in proposition 3.3. For "only if" we use the charac-
terization of compactness in theorem 1.2. So we are trying to prove that every
centered system of closed sets in an absolutely closed §-space P has non-empty
intersection. Let & be.any centered system of closed sets in P. For each

we 8, let gm be the centered §-system in P consisting of all the §-neighborhoods
of . Let £ = LJ{§m|@ € §}. We shall prove that E is a centered §-system having

non-empty intersection. ¢ is a §-system: IfE ¢ g, thenE ¢ §$ for some

we & and §$ is a g-system, so there is a D ¢ §$ hence D ¢ £ with E JD.

E is centered: If CEiIi = 1,-++,n} is a finite subsystem of g, then for each

n
E.D> No, ¥ 0.
1t i=1 %

i}

i . i . . i entered
Ei there is a @1 € § with E1 € §$i But § is centered, so )

Since P is absolutely closed, then theorem 3.23 verifies that £ has non-empty

intersection., That is, we have that,
(1 N{acrlie e} #4d.
From the definition of g, we have:
(2) N{ulie g} = N{H[He (U gw)}.
ped

Restating the right hand side of (2) we have:
(3 N{afEe el = N (N{rfreegd .

e
Employing lemma 2.13 for each ¢ € § on the right hand side of (3) gives us:

4) N{ujne g} = = Niolp e 8}

N o
D
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Since 8 is a system of closed sets, we can replace é'by ¢ in the right hand

side of (4) and have:

(5) N{ElEe g} = N{olo e &l

From (5) and (1), we conclude that § has non-empty intersection, which completes

the proof of theorem 3.25.

3.26 Corollary. Every §-space P, considered as a topological space, is completely
regular.

Proof. If P is a §-space, then by theorem 3.25 uP is an absolutely closed §-
extension of P. By theorem 3.25, uP, being absolutely closed, is compact. uP
is compact implies uP is normal. Since every subspace of a normal space is
completely regular, and since P is a subspace of the normal space uP, then P
is completely regular.

We clese the chapter with a theorem which strengthens theorem 3.24. After
proving this theorem, we will have uP as the unigue absolutely closed §-

extension of P.

3.27 Theorem. Every §-space P has only one absolutely closed §-extension, up

to §-homeomorphism.

Proof., Suppose P has an absclutely closed g-extension vP different from uP.
That is, uP and vP are both absolutely closed §-extensions of P, and there does

not exist a surjective §-homecmorphism f: vP + uP with £ p - 1P. By theorem

3.25, vP and uP are compactifications of P when considered as topological spaces.
Since every continuous map from a ccmpact §-space into any other £-space is
also a §-map (2.22), then there is no homeonmorphism from vP onto uP which is the

identity on points of P. From Theorem 1,12, we conclude that there must be
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e —~— P hi: i / B .:L

sets A,B ¢ P such that either cluP(A} N CluP‘B) # whereas cluP(A) N
clvP(B) # @, or cluP(A) n cluP(B) # @ whereas clvP(a) N clvP (B) = @. This
is an iwmpossible situation, since uP and vP must induce the same proximity

relation on P. Thus uP is the uaigue absolutely closed §-extension of P.
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IV. Relationship between Proximity Spaces and Compactifications

In Chapter III, we have seen that for a given completely regular space X,
each proximity space (X,#) consistent with it gives rise to a compactification
of X, and conversely. In this chapter, our immediate goal is to show that this
assignment defines not only a 1-1 correspondence, but an "order" preserving
isomorphism between the collection of proximity spaces consistent with X and the
class of compactifications of X. Moreover, in the process of proving this

isomerphism, we uncover some nice properties of j-spaces.

4.1 Theorem. Let X be a completely regular space, let

R = (x4l e A}

be the collection of all §-spaces consistent with X, and let § be the col-
lection of all compactifications of X, Then there is a 1-1 correspondence

between ® and #.

Proof, We define a map p:® - 8 as follows: if (X,ql) e®, let @(X,qa) = W]X’
the unique absolutely 3-extension of (X,QI) [see 3.27], which is also compact
by 3.25. Then ¢ is well-defined and is 1-1, since each proximity relation qx
on X gives rise tec a unique compactification WJX which, in turn, induces a
unique proximity on uax whose restriction to X is q}. Finally, since each
compactification Y of X is associated with a unique proximity space (Y,$) consis- -
tent with it, then (X,ﬁ‘PX) is a proximity space consistent with X and m(X,&‘FX =
Y. Hence gp is onto. 4.1 is proved.

As we have observed in Chapter I, there is a natural partial ordering = in
f. This ordering should induce a partial ordering in 42, by using the map ©

defined in 4.1. 1In fact, this ordering will turn out to be just as natural as
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the one in R.

4.2 Definition. 1If (X,ﬁz) and (X,éY) are §-spaces, we define (X,Qa) >> (X,éy)

if the identity map
Lt (85 (X8
is a §-map.

4.3 Proposition. The relation ">>" defined in 4.2 is a partial ordering for

the set R of all §-spaces (X,Qz) consistent with the space X.

Pronf. Reflexivity and anti-syumetry are clear, and transitivity of the relation

"s>" follows from the fact that the composition of two §-maps is again a §-map.

Since the ordering >> is defined in terms of §-maps whereas the ordering
> is defined in terms of continuous functions, we need a connection betweean
§-maps defined on §-spaces and continuous functions defined on the associated

compact spaces.

4.4 Theorem. Every &-map f: (X,4) + (Y,8) can be extended to a continucus map,
and therefore a §-map, from the §-extension uX of (X,8) to the j-extension

uY of (Y,§8').

Proof. By theorem 1.11, we need only show that if A and B are disjoint closed
sets in uY, then clux(f-l[A]) and clux(fﬂl[B]) are disjoint. Let A and B be
disjoint closed sets in uY. Then A and B are far in the (induced) proximity of
uY, Since f is a §-map into u¥, then 5(f—1[A], f-l[Bj) = 1. Since the prox-
imity § is that induced by the compactification uX, then clux(f-l[A]) and

clux(f-chj) are disjoint, as desired.
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4,5 Theorem. For any completely regular space X, the bijective map gp: R+ 8
of 4.1, is an isomorphism relative to the partial orderings >> and 2 of

#, and R, respectively.

Proof. Suppose (X,8.) >> (X,8 ) in ®. Then the map 1 : (X,§.) = (X,5 ) is a
s a v X (04 ¥
§-map, and therefore can be extended to a continuous map from the g-extension

%IX of (X,qx) into the f-extension uYX of (X,éy), by theorem 4.4. Thus
uaX = qu in f. Since @(X,Qx) = %xx and m(x,&y) = uyx (see definition of @ in
the proof of 4.1), we have m(x,ql) = m(X,BY).

Suppose now that Y,Z ¢ R with ¥ 2 Z. Since ¢ is onto, there are (X,5a),
(X’sy) ¢ € such that m(X,ﬁm) =Y 2Z = m(X,éy). Hence, by definition of =,
there is a continuous f: ¢(X,qx);= Y+ 2Z = m(X,ay) such that f[x = lx. By

2,22, £ is also a §-map so that its restriction to X, which is IX’ is a

§-map from (X,Qa) into X,SY). Thus we have m-l(Y) = (X,ﬁz) = (X’5Y) = m'l(x).

Hence ¢p is an isomorphism.

We have thus sﬁccessfully represented the compactifications of a given com-
pletely regular space X by §-spaces consistent with the space X, and therefore
problems of compactifications are translated to appropriate problems of §-spaces.
Due to the relatively simple structure of §-spaces, we have the hope of solving
gome of these problems.

Before we go into the solutions of these problems (see Chapter V), we wish
to point out other niceties of §-spaces by proving the following analogues of

the Urysohn and Tietze theorems.

4.6 Theorem. Let (P,§) be a proximity space. A,B C P are far apart if and
only if they are separated by a §-map, i.e., iff there is a §-map

£: P - [0,1] such that £[A] = 0 and £[B] = L.
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Proof. Suppose f: P -+ [0,1] is a §-map such that £[A] = 0, £[B] = 1. Since
{0} and {l] are disjoint closed subsets of the compact space [0,1], so if e
denotes the unique proximity relation on [0,1], we havebg(ﬂ,l) =1, Since f is
a §-map, then a(fwl(O), f-l(l)) = 1, from which it follows that §(A,B) = 1.
Conversely, suppose A,B — P with §(A,B) = 1, then cluP{A) ] cluP(B) = @, where
uP denotes the unique absolutely closed §-extension of {(P,8). Since uP is

compact, in particular, uP is normal, there is a continuous function

i

F: uP + [0,1] such that F[cluP(A)] 0, Flel ,(B)] = 1. Since F is defined on
a compact space and is continuous, F is a §-map, by 2.21. Since F[A} =4qQ,

F[B] = 1, and A,B c P, then FIP: P o+ [0,1] is a §-map which separates A and B.

The proof of 4.8 is complete,

4,7 Theorem. Every bounded real-valued §-map f defined on a subset A of the
§-space P and satisfying |[f| <M, can be extended to a §-map F: P 4 R

satisfying ]Fl < M.

Procf. Since A c P, then cluP(A) is a compact subspace of the absolutely
clesed (compact) g-extension uP of the §-space P. It follows from the unique-
ness of §-extensions that cluP(A) is the &-extension of (A,&]A ) and that
[-M,M] is the p-extension of itself considered as a §-space. By theorem 4.4,
f can be extended to a continuous map F':_cluP(A) + [-M,M]. WNow F' is a con-
tinuous map from the closed subspace cluP(A) of the compact, in particular,
normal, space uP; so, by Tietze's characterization of normality, F' can be
extended to a continuous f"': uP - [-M,M]. Since F" is continuous on a compact
space, F" is a §-map. Let F = F" p? then F is the required extension of f.
The theorem is proved.

Finally, in this chapter, we list some properties of the operator.0 < >,

which are needed to prove a lemma that becomes useful in applying the theory of
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§-spaces to the study of compactifications(see Chapter V).

4.8 1f (P,§) is a proximity space, then:
1) for any AcP, O <1ntPA> = 0 <A>;
2) for any A c P, 0 <A> is open in uP, the $-extension of (P,8);

3) the set

{0<U>|U is an open set in P}

forms a basis for the topology of uP.

Proof, 1). Since Int A C A, we have 0 <Int A>C 0 <A>, by 2) of 3.16., To
prove the reverse inclusion, let £ ¢ 0 <A>. Then A ¢ g so that A is a §-

neighborhood of some B € £. By 2.12, B C IntPA, so that Int_A € €. Hence

P
Ee0 <IntPA>. 1) is proved.

2). By 2.12, it suffices.to show-that 0 <A> is a §-neighborhood of.each end
Ee 0 <A> Let £e¢ 0 <A>. Then A e E, so that there are sets B and C in g
such that ADB > C. Since B and P - A are far apart uP = 0 <P - B> |J 0 <&>,
by (3) of 3.16, so that uP - 0 <A> c 0 <P - B>. But £ ¢ § <C>, and the sets
C and P - B are far apart; it follows from our definition of the induced

proximity 3 on uP that g(g, uP - 0 <A>) =1; i.e., 0 <A> is a §-neighborhood of

£, as desired. Thus 2) is proved.

3). Let £ ¢ H with H open in uP. Since uP - H is closed, @(g,u? - H =1,
where Q is.tha induced proximity on uP. By the definition of 9, there are sets
A and B far apart in P such that 2 ¢ 0 <A> and uP - H € 0 <B>. Hence

80 <&>, uP - W) = 1; i.e., 0 <A> C H. But 0 <Int,A> =0 <A>by 1), and Int A

is open in P. Hence 3) is proven.

4.9 Lerma. For any set A of a given §-space (P,§), the set 0 <A> is the
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largest of all open sats H of the §-extension uP of (P,§) such that

HANP = IntPA.

Proof. Let U be the largest of all opzn sets H of uP such that HN P = IntPA.

By 4.8 3),

U= U 0> -
e .

for some family {Uk]l € A} of open sets in P. By 2) of 3.16,

() U= 0<U
A

>c 0 <) U>
A \eA A

By definition of U and 3.21,

> = U U

IntPA =PNU=PN(U O <ﬂk
A€

A€ b
It now follows from (&) and 4.7 1) that

0 <A>=0 <IntPA> =0< U Uk>:U.
Ach

On the other hand, it follows from 4.7 2) and the definition of U that

Uoo0 <IntPA> =0 <A>,

Hence 0 <A> = U, as was to be proved.



rV. Appiications

In the preceding chapters we went to a great deal of trouble defining and
proving certain properties of proximity spaces. Hopefully our work was not in
vain; and to prove that it wasn't, we demonstrate the usefulness of the thecry.

We need not go far to find a use Ior 5-5paces; in fact, we already noted
rhat the category of all proximity spaces coincides exactly with the category
of completely regular spaces, so that we can use the theory of §-spaces in the
study of completely regular spaces. An important use of the theory was made
by V. A, Efrimovic when he characterized uniformly continuous functions in
metric spaces as the §-maps in the §-spaces associated with these metric spaces.

In this chapter, we study another applicaticn of the theory of §-spaces,
as nad been done originally by E; G. Skljarenko. GCur probes reach into the
theory of compactifications, with an ultimate aim (in this paper at least) of
producing an extension theorem, and a proof of the Freudenthal-Morita theorem
(i.e., a sufficient condition for a space to have a compactification with
zero-dimensional annex and with weight the same as that of the original space).
These results enabled Skljarenko to solve, in the negative, an outstanding
problem of P. S. Aleksandrov. Wamely, is it true that every peripherally
compact space has a compactification (with a zerg-dimensional annex) of the same
dimensiocnality as that of the space itself?

1t is known that any homeomorphism between completely regular spaces X1
and X2 can be extended to a homeomorphism between the Stone-Cech compactifi-
cations Xl and XE' In this paper we do not relax the prerequisites on the
function, but we do show that one is not forced to choose the Tech compactifi-
cation to retain the force of the extension. This improved extension theorem

is based on the concept of a perfect compactification,.
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5.1 Definition. A compactification Y of the completely regular space X is said

to be perfect with respect to the open set Uc X if: :

(1) FrYO <U> = clY(Fer).

Y is a perfect compactification of ¥ if it is perfect with respect to

every open set U C X,

This definition immediately reminds us that the set, {ax}, of all compact-
ificaticns of a given completely regular space X, is isomorphic to the set,
{%1}, of all proximity spaces consistent with the space X. We are simul-
taneously envigorated by the hope of discovering which, if any, of the §-spaces

%I correspond to perfect compactifications of the space X.

5.2 lemma. Let X be a completely regular space, § a proximity on X consistent
with the given topology on X, and let Y a compactification corresponding
to 8. Then Y is perfect with respect to the open set Uc X if and only

if for every set AcC U, 5(A,Fer) = 1 implies §{A,X - U) = 1,

Proof. Let Y be a compactification which is perfect with respect to the open

set U c X, and A be contaired in U such that 6(A,Frxﬁ} = 1, Thus we have:
T \ = N

(1) clY(A, N clY(FrXU) @

To show #(A,X - U) = 1, we assume that {(A,X - U) =0, i.e., we assume:

@) cl,(A) N el (X - V) # 4,

and we search for a contradiction. If (Z) holds, then there is a point

Ee [clY(A) N clY(X - U)). Since A < U c 0 <U>, then we have:
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(3) clY(A) & clY(O <>) .

From (3) we have E € clY(O <i>). Since 0 <> =Y - clY(X - U) and E ¢ alY(X -,

then £ ¢ 0 <U>, Thus £ ¢ FrYO <U>, but from (1) we see that g ¢ clY(FrXU);
hence we have a contradiction to the fact that Y is perfect with respect to
the set U. We now let the condition of the lemma be fulfilled for the open

set T < X, and show that

(%) el (Fry0) = Fr,0 <>,
Hence we have:

(5) Fr,U c Fr,0 <U>.

From (5) it follows:

(6) CIY(FrXL) - FrYO <>,
Having (6), we need the following lemma to prove (4).

5.3 Lemma. Let X be a completely regular space with compactification Y, and
proximity relation § on X corresponding to Y. If V' and V" are open sub-

sets of X with §(v',v") = 1, then:

i

{3') 0 <7' Yyv'>=0<"'> 0 ">,

Proof. Ve already have!
2" : 0 <v' U V'>n 0> U0 ",

ViU v, and £ € 0 <V>. ince V is

so we prove the reverse inclusion. Let V



dense in 0 <>, then

(3% Ee clY(V) = [clY(V') U clY(V )Ji
Since §(V',Vv"') =1, then

") L (V") N el (V) = 4.

From (3') and (4'), either £ ¢ clY(V’) and g ¢ clY(V"),
£ ¢ clY(V'). We verify the reverse inclusion from (2')
since the two cases ars analogous. Since Y is compact,
neighberhood U' of the poiné g, with U' clY(V') =@.

that U is open in Y, U contains £, and U N clY(V'} =@,

" UNXcO0O<>NX=VvV=yV yv.
Since U N clY(V') = @, then we must have:

(6") UNXcV' =0 <«">NX

or E e clY(V") and

only in the second case,
then we can find a

let U=0U"'NO <V, so

We now have:

So € € U implies £ € 0 <M>, Thus, 0 <Vv' U V'> =0 <&¥'> U 0 &""'>; and 5.3 is

provead.

Proof of 5.2 (continued). We have yet to show:

(7) FrYO <U> c:clY(FrXU).

Let E & clY(FrXU). Since ¥ is compact, we can choose a

such that:

() clY(W) N clY(Fer) = g,

neighborhoodrw of g

let V! =WNUand V' =W X - C]K(U)]° From our definition of V' and V' we
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get:
(9 WNX=vVv yvVv.

Since 0 V' Y V"> is the largest open set in Y exciseing V' U V" from X (4.9),

it follows from (9) that
(10) £Ee 0 V' V>,

From (8) and the definition of V', we have 6(V',FrKU) = 1. By the condition

of lemma 5.2, we also have §(V',X - U) = 1, from which it follows that §(V',V") =
1. We now invoke lemma 5.3vin (10), so that either £ ¢ 0 <V'> or £ ¢ 0 <V''>,

1f £ ¢ 0 <V'>, then £ ¢ 0 <U>, so € ¢ FrYO <U>. If £ ¢ 0 <V'>, then

Ee 0 <X - clx(U)>. Since
0 <0> N 0<X - el (N> =0<UN[X-cl(M]P>=0< =3,

then 0 <X - ch(U)> is a neighborhood of £ not meeting O <U>; which proves

e ¢ FrY 0 «0>. Thus, if £ ¢ clY(FrXU), thén g ¢ FrYO <U>., This completes the

proof of lemma 5.2.

5.4 Corollary. The Stone-Cech compactification BX of a completely regular

space X is a perfect compactification.

Proof, Let § be the proximity relation on X corresponding to 2X. Let U be an
arbitrary open set in X, and A ¢ U with ﬁ(A,FrXU) =1, By (4.6), there is a
continuous function £:X -+ [0,1) such that f(a) = 0 for every a ¢ A, £(x) = 0

for every x ¢ Fr U, and 0 < f(x) = 1, for every x € X. UWe now define a funec-

X

tion g:X = {0,1] as follows:
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£{x), if x ¢ ch(U); and

g(x) =

1, if x e X - U,

Since f = 1 en FrKU; then g is well-defined. It now follows that g is contin-
uous and separates the sets A and X ~ U, so 5{A, X - U) =1 (4.6). From 5.2,

it follows that 5.4 is broved.

We found in corollary 5.4 that lemma 5.2 made it easy to prove that the
Eéch compactification is perfect. However, if we try to prove that some other
compactifications are perfect, we find the representation given in 5.2 hard
to handle. So we prove several other characterizations of a perfect compacti-

:

fication.

5.5 Definition. We say a closed set F ¢ X separates (or splits) the space

X into sets Ul and UB’ ifX-F-= Ul U UE’ where Ul and U2 are disjoint

open sets in X.

5.6 Definition. The set N c Y separates (or splits) the space Y at the point

x ¢ N, if the point x has a neighborhood U in Y such that
UN(-K =v' yv,
where V' and V" are disjoint open sets in ¥ - N, and x € [clY(V‘) n clY(V"}].

5.7 Theorem. Let Y be a compactification of the completely regular space X.
The following properties of the compactification Y are equivalent:
1) Y is a perfect compactification of X.
2) The annex, Y - X, does not split the compactum Y at any point of

Y - X.
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3) For any two disjoint sets V' and V", open in X, we have:

0 <V yv'>=0<V'> ) 0 <>,

4) If the set F, closed in X, splits the space X into the sets U1
and UE’ then clY(F) splits the compactum Y into the sets 0 <UI> and

0 <H2>.

Proof. 1) = 2): Let Y. be a perfect compactification of X. Assuming the annex
Y - X splits the compactum at scme point £ € ¥ - X, we have a neighborhood U of
the point £ such that V =U N X =V' J V"', where V' and V" are disjoint open
sets in X, with the additional property that £ € clY(V')lﬂ clY(V"). Since

ch(V'} n ch(V") Nv=@, it follows that

1
(1) FrXV C:FrXV @ FrYU.

Since Y is ccmpact, we can find a neighborhood W of £ with clY(W) c U; and we

let A=WNV'. So AcW, and FrKV' ¢ Fr_U, while clY(W) f clY(FrYU) = @; from

Y
which it follows that

(2) S(A,Frxv') =1,

Since A is contained in the open set V', and Y is a perfect compactification,

they by 5.2,
(3 5(AX - V') = 1.

But E ¢ clY(A) and £ ¢ clY(V"):: clY(X - V'), so wa have E ¢ ECIY{A) N clY(X - ¥

which contradicts (3).

2) = 3): Suppose 2). holds, and yet for scme pair of disjoint open sets

V',V < X, there is a point £ ¢ [0 <V' U V"> - (0 <V'> U 0 <V'">)]. 1If
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£ ¢ clY(V'), then there is a neighborhood W of £ such that

(4) Wc0 v v,
and
€) wnv =¢,

From (4), it follows that

(6) WANXcoN'"yYyv>nNx=v' yv'.
Now (5) and (6) give us:

(7 WNXcv'.

From (7), it follows that £ ¢ 0 <V'">, contradicting the choice of Z. Hence, we
nust have € clY(V'). In exactly the same way, € € cIY(V"). Thus, the annex

Y - X splits the compactum Y at the point g, contrary to the hypothesis.

3) = 4): Let F be a closed set which splits the space X into the sets U; and

U From 3) it follows that

o°

(8) 0 <U; YU =0<U>U0 U2

But F = X - (Ul U UE), S0 we have:

& fi = o B ¢ 11 =
(9) Y clY(l") Y clY(ai R U LE") 0 <U1 U U2>.
Combining (8) and (2), we have:
(10) ¥ - clY{F) =0 <U1> i 0 <U2>.

Since U; n ‘U2 = §, then



(11) 0<t;>N0 > = @.

(10) and (11) verify that clY(F) splits the compactum Y into the sets

0 <Uf> and 0 <Ué>.
4) = 1): Let U be an open set in X, As the proof of lemma 5.2 shows, we

always have:

(12) clY(Fer) c:FrYO <U>.

1]

We prove the reverse inclusion. Let V =X - chU. Then Fr_U splits X into the

X
sets U and V; so that by 4), clY(FrXU) splits Y into the sets 0 <> and 0 <V>.

Since no point of Fr 0<U> is in 0 <U>, then

Y
(13) FrYO <U> thlY(FrXU).

Thus, Y is perfect with respect to the set U < X; and since U was an arbitrary
open set in X, then ¥ is s perfect compactification of X. Thus we have proven

all parts of 5.7 equivalent.

Note that all of the characterizations of & perfect compactification have
to do with the splitting of the csépactum (compact and Hausdorff). In fact,
corollary 5.4 shows that the Stone-tech compactification resists splitting so
well as te be a perfect compactification. Hopefully we can backtrack from
the Stone-fech coupactification, to find some other ccwpactifications which are
perfect, Ag it turas out, we can do even better than that., Our next theorem
tells us how to backtrack from the Stone-Gech compactification, and even tells

us how far back we can go,.
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5.8 Theorem. The compactification Y of the cmnpletély regular space X is
perfect if and only if the natural suvrjection of the Stene-tech compackt-

ification BX onto the compactification Y is a monotone map.

Proof. To prove the theorem, we prove two lemmas, which properly contain the

theorem.

5.9 Lemma, Let Y be a perfect compactification of X. If Z is any compactifi-

cation such that Z = Y, then the natural surjection ¢: Z + Y is monotone.

Proof. On the assumption that ¢ is not monotone, we have a £ € Y such that

(M o (&) = F, UF,,

where F, and F_, are disjoint closed subsets of Z. Since Z is compact, there

1 2

£ T T
are disjoint open sets Ul and LE in Z with Fl C:U1 and FE C:UE. We let

vV, = XN Ul’ and V., = X N U2. Since F1 C:clz(Vl), then E € clY(Vl). Similarly,

1
£ e C1Y(V2)' We denote by U, the following open set in Y:

>

2

Y -0 [Z - (Ul UUE)];

so that £e Uand UNX =V, UV, Since V, n v, = @ and £ ¢ [clY(Vl) N clY(VQ)],
then Y - X splits the compactum Y at the point E, contrary to the fact that the

compactification Y is perfect. The lemma is proved.

5.10 Temma. Let Z be a perfect compactification of X, and Y be a compactificatioh
of X with the properties: i) Z =Y, and ii) the natural surjection

p: Z + Y is monotone. Then the compactification Y is perfect.

Proof. We shall presuppose rhat the compactification Y is not perfect. Then

there is a point £ € Y - X, at which the ammex Y - X splits the compactum Y.



Let U be a neighborhood of the point £ in Y such thats

(1) Unx=v yv,

where V' and V" are disjoint open sets in X, with:

@) g e [el, (V") N el (V)]

Since g € DY<V' U v, it follows that

(3) cp_l(g) Ccp-1[0Y<V' U vs>] e 9, <V' V> = oz<v'> U oz<v">,
where the later equality follows from 5.7 3).

-1 )
1f we assume ¢ (g) is contained in 0 <V'>, then

Z

[o™ " (2) N cl, ("] c [m-l(g) N el (0, <">)] =4,

so that

[{g} N el (v ] = {&] N ely(elv"D

® $'1[{§} N el @V'D

3 7@ Ne e [el, ("]

» lo T n el (V"]

that is, £ ¢ clY(V"), which is contrary to (2}. Hence we have:
=l - 11
(4) © (8) NOo,<V"> F 4,

and similarly we must have:

60
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(5) 2 (D N0'># 0.

Since OZ<V'> and OZ<V"> are disjoint open sets in Z, it follows that m-l(g) is

disconnected. Proof of 5.10 is thus complete.

Lermas 5.9 and 5.10 do more than prove theorem 5.8. After recalling a
definition, we shall prove a corollary of these lemmas which will give us
information enabling us to determine when there is a minimal element in the

partially ordered set of perfect compactifications of the space X.

5.11 Definition. The space N is called punctiform if eﬁery connected, compact

subset of N consists of one point.

5.12 (Corollary. A perfect compactification Y of the space X, is a miniwal
element in the partially ordered set of perfect compactifications of X if

and only if Y - X is a punctiform space.

Proof. Suppose that Y is a perfect compactification of X with Y - X puntiform,
For any perfect compactification of X such that Z <Y, we have a continuous

surjection f: ¥ + Z such that £ x = 1,. It follows from 5.9 that f is monotcne,

X
so that Y - X being punctiform implies f is 1-1. It follows from (EIJ,XI,

thm, 2.1(2)) that f is a homeomorphism of Y onto Z. Hence f-l: Z+Y 1is, in
particular, a continuous surjection, which shows Y £ Z. Thus Y is a minimal
element in the set of all perfect compactifications of X.

Conversely, supposa that Y iz a minimal perfect compactification of X. 1If
Y - X is not punctiform, let C be a non-degenerats continum in ¥ - ¥X. Let Z be
the quotient space of Y with C ideatified to a point [C], and let q: Y 4+ Z be
the queotient (identification) map. Then Z is a compactification of X, and q is

obviously wmonotone., It follows from lemma 5.10 that Z is a perfect
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compactification of X with Z €Y. By the minimality of Y, we also have Y < 7;
so that there is a continuous surjection p: Z - Y such that p X = 1X' It
follows from theorem 1.9 that g: ¥ -+ Z is a homeomorphism., The fact that
q-l([C]) = C is not a single point contradicts q being 1-1. Thus Y - X
must be puntiform. The corollary is proved.

Using corollary 5.12, and some results in the theory of continuous decomp-
ositions of compact spaces, we can produce a probe that points to the spaces
having a minimal perfect compactification. The probe takes the form of the

following theorem.

5.13 Theorem., The space X has a minimal perfect compactification if znd only
it has at least one compactification with a punctiform annex. 1In this
case, the minimal perfect éompactification Y is unique; it has a puneti-
form annex, and is the greatest of all compactifications with a punctiform

annex.

Proof. The necessity of the condition is éontained in corollary 5.12. To
establish the sufficiency, we must verify the existence of a minimal perfect
compactification of X. The condition gives us a compactification Yl of ¥, with
punctiform annex, Y1 - X. Let ¢ denote the natural surjection from the
Stone-{ech compactification 8X of X onto the compactification Yl. We denote

-

by {F

Crnd

. . . ; i ’ ' !
the upper semicoantinuous collection of point-inverses @ (y), v € Y1

N

see [2], thm. 3-37); and let {&} be the upper semicontinuous collection of
(connected) components of poiut-inverses w_l(y), v € Yl' Let Y be the topological
space associated with {@}. By ([2], thm. 3-40), there are continuous mappinge

f: BX 4+ Y and g Y - Y1 having the following properties:

Do =wey

ii) 4 is monotone



iii}y g is light; that is, zero-dimensional.

Moreover, it is clear that Y is a compactification of X and § is the natural
mapping. By theorem 5.8, Y is perfect.

Next, we shall show that Y is independent of the particular choice of Yl.
To this end, we only need to show that the decomposition {@} is indeéendent of
the choice of Yl' Let B be a continuum (compact and connected set) in the
annex X - X. Since Y, - X is punctiform, B c:g-l(ya) for some Vo € Y1 - X,

and therefore, B C @o for some 8, ¢ {@}. Thus, the elements of the decom-
position {@} lying in PX - X may be described as maximal connected compact
subsets of pX ~ X and so the decompositicn {@} is uniquely defined.

We now show that Y is the minimal perfect compactification of X, For any
perfect compactification Z of X,!we have the natural mapping §: BX =+ Z. By
theorem 5.8, § is monotone so that each 9-1(2), z ¢ Z, is a connected compact
subset of 8X - X. From what we have just shown of {@}, we now havé that the
upper semicontinuous decomposition {e-l(z)|z ¢ 2} is a refinement of {§}. Con-
sequently, there is induced a natural mﬁpping of the compactification Z onto
the compactification Y; that is, Z = Y. Hence Y is the minimal perfect compact-
ificarion of X. Moreover, Y - X is punctiform now follows from corollary 5.12.

1+ remains to be shown that Y is tte largest of ail the compactifications
of ¥ with punctiform annex. Since Y has been shown to be independent of the
particular choice of Yl’ it follows that any compactification of X with
puntctiform annex precedes Y. The theorem is now proved,

Though the theory of perfect compactifications is interesting in its own
right, as is witnessed by the preceding theorem; the notion of perfact com-

pactificaticn has further applications.
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5.14 (Corollary. Let ¥, and Y, be compactifications of the spaces X, and X5

such that the annexes Yl - Xl and Y2 - X2 are puncitiform, and split

the compacta Y and Y2 at none of their points. Then every homeomorphism

between the spaces X, and ¥

o (if any exist) can be extended te a homeo=

1

morphism between the compacta ¥, and YE.
L

Proof. It is sufficient to show that in the case when X, = X

1 X the identity

homeomorphism from X, onto itself is extendable to a homecmorphism between the
compactifications Y1 and YE' So we let X1 = XE’ and ¢p: Xl -4 X2 where

: X, =+ X_, where =1
®: X ®

5 X The properties of the annexes of Y. and Y_ show that

1 2
they both coincide with the unique minimal perfect ccompactification of Xl, and
s0 Yl = YE. Hence the identity map {: Yl -+ YE’ is an extensicn of the map Q.

Corollary 5.14 is established.

Since the relationships between perfect compactifications and punctiform
annexes was established wia a characterization of perfect compactifications inm
terms cf proximity spaces; then it is indeed the theory of §-spaces which is
responsible for the production of the extension property in 5.14. We further
support the usefulness of §-spaces by applying the theory to study spaces
which are not compact; but which, as we shall prove, can be compactified by
adding a zero-dimeusional annex (in the sense of ind) the addition of which
does not increase tine weight of tﬁe original space (a fact which must also be

proven).

5.15 Definjtion. A Hausdorif space X is called peripherally compact if there

exists in this space a basis of open sets, each of which has a compact

frontier.

[¥) ]
"

et
h

Definition. If X is a Hausdorff space and 3' is a basis for X as described
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in 5.15, then the basis f derived from 2' by supplementing @', with all
finite intersections, finite unions, and complementation of closures of

elements of R'; will be called a T-compact basis of X.

It is important to observe: A T-compact basis consists only of cpen sets
with compact frontiers. The cardinality of the fmr-compact basis B, derived
from the basis R', is the same as the cardinality of the basis f'. A m-compact
basis is the key to producing a compactification with a zero-dimensional annex.
We prove that a m-compact basis # for the space X, induces a proximity relation
§ on X. The relation § then corresponds to some compactification Y of the
space X. As it turns out, the compactification Y (called the T-ccmpactification

of X) has a zero-dimensional annex. We proceed with the proof of these facts.

4

5.17 Lemma, A peripherally compact space is fegular.

Proof. Let x be a point in the peripherally compact space X. Let U be an
arbitrary neighborhood of x. Since ¥ has 2 basis of sets with compact frontiers,
then it may be assumed that FrXU is comﬁact. Since X is Hausdorff, there exist
a finite number of open sets Vl, Fre ,Vn < X, whose c¢losures do not contain the

point x. We now let

V=0~ E)Cl‘(‘!'.)g
- et

so that

o
r -
x € Vel (M c el (D .lﬁlvi] c U,

This completes the proof that X is a regular space.

5.18 tLemma, let X be a peripherally compact space with p-compact basis #. If
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A is a closed subset of Z contained in the element U € §, then there is
aWe R such that A c W ¢ clx(w) c U.

Proof., Since U € R, then FrXU is compact. X is regular, so there is a finite
number of open sets W,, **° ,Wm, whose closures do not meet the set A, and
Ly

whose union ccniains FrXU. If

n

W==rU- .L]C1X(Wi)’
i=1

then

m
AcWecel W) cel (U) - U W.]cuU.
X X 1-1 i

The lemma is preved.

5.19 Definition. If (¥,T) is a peripherally compact space with m-compact
basis R, then we define a relation §, on the power set of X as follows:
A % B if and only if there is a neighborhood U € 8, such that cIX(A) C

u, clx(B) o X - chQJ).

The relation § in 5.19 turns out to be a proximity relatiorn for the set

X

Pl

cf. 5.21). We recall that every proximity relation § induces a topology
which we denote by T(8). So to decide whether the relation defined in 5.19
is the relation we want, it is necessary to check whether it inducee the per-

ipherally compact topology T on X.

5.20 Proposition., The proximity space (X,{) is consistent with the topological

space (X,T).

Proof, Suppose A — ¥, and x ¢ el . (A). Then every neighbcrhood of the point x
-
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must meet the set A, so by definition of the proximity, x § A. If x ¢ CI:I(A),
then there is a neighborhood V of x such that VN A = §J; hence there is also

an element U of the m-compact basis f, such that U is a neighborhood of x and
UNA=08, According to lemma 5.18, there is a set W € R, with x e W ch(W)cﬂ.
It follows that we alsc have ch(A) c X - ch(W), so that x § A. 5.20 is

proved.

5.21 Proposition. The relation §, defined in 5.19, is a proximity relationm,

Proof. Properties 1), 3), and 4), of definition 2.1 are clearly satisfied by
the relation 4. If (A UB) £ C, then it easily follows that A £ C and B § C.
let A £ C, B § C; we show that (A | B) £ C. There are neighborhoods U sUse 8,

for which clx(A) C:Ul, ch(B) T T clx(C) cX - clx{Ul), and

2
ch(C) cX - C1X(U2)' Letting U = U; U UE’ we then ﬁave:

clx(A UB U, ?1X(C) cX - ch(U).

Clearly, U e R, so that (A U B) § C; and property 2) of definition 2.1 is

satisfied. To verify property 5), we let A,B « X such that A § B, Then there
is a set U € R, for which clx(A) ez, ch(B) cX - ch(U). In accordance with
lemma 5.18, there is a set V ¢ R, such that clx(AJ c V and ch(V) cU. By

regularity, there exists a set W such that ch(B) c W and clK(W) cX - ch(U).

Since ch(A) c V and ch(X -0 cX - clx(v), then we have:
(1) Af X-1U).
Since clx(E) c W and ClK(U) c X - clx(w), then we have:

(25 B £ 0.
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Since U U (X - U) =X, then (1) and (2) conclude the proof that property 5) is

satisfied., Hence 5.21 is proved,

5.22 Corollary. A peripherally compact space is completely regular.

Proof. The preceeding proposition shcwed that every peripherally compact space
is a proximity space; and since every §-space is completely regular (3.26) the

corollary is established.

Of course, we now have that every peripherally compact space has a com-
pactification. 1Ia fact, if R is a m-compact basis on the space X, and § is
the proximity relation defined by means of this basis, then there is a com-

pactification of X corresponding to the relation 4.

5.23 Definition. The compactification Y of the peripherally compact space X,
which corresponds to the proximity relation § defined by means of the

T=compact basis R, is called the TT-compactification associated with the

T-compact basis R.

5.24 Theorem. The annex in every fm-compactification is zero-dimensional in the

sense of ind.

Froof. The proof follows from the next two lemmas.

5.25 Lemma. Let Y be a mr-compactification of the space X, associated with the
m-compact basis A; and Z an arbitrary compactification of the same space
following the compactification Y. Then the compactification Z is perfect

with respect to all the sats of the basis f.

Proof., let Ue R, and A U be far from FrKU in the sense of the proximity
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relation 51 corresponding to the compactification Z. So we have ch(A) N
Fer = (§, which means ch(A) C U, By lemma 5.18, there is a set V ¢ g, for
which ch(AJ c V and clx(v) cU. But then X -UcX - ch(V), so Af X-1),
where § is the proximity relation assocaited with the m-compactifiecation Y.

Since the compactification Z precedes Y, then we also have A ﬁl(X - U). The

lemma is proved,

5.26 Lemma. Let Y be the T-compactification of the space X, associated with
the T-compact basis f. The system of sets {0 <U>1U € R} is a basis of

the compactum Y.

Prcof. Let £ be any point of the compactum Y, and 0f be an arbitrary neigh-
SEL P g ¥ g

borhood of it. We select another neighborhcod 0.2 of the point g, such that

1
clY(Olg) < 0E. The sets clY(Olg) and Y - 0f do not intersect; therefore the
sets clx(Olg N X) and X - Og are far apart. Hence there is a set U e R, for
which clx(olg NX)cUand X - 0 cX - ch(U). But then £ € Olg c 0 <U> and

0 <> c 0. The lemma is proved.

Proof of theorem 5.24. We only need to observe that the system of sets

{0 <>n (¥ -X|Ue gl

is a basis of the ammex Y - X, whose elements have empty frontiers in ¥ - X.
The later follows from:
Fry _ X[O <> 0N X - X)) C Fry 0 <U>,

and

T == . 1 =
FrY 0 <U> clY(FrXJ) FrKU c X.
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We now have for every peripherally compact space X, a compactification with
a zero-dimensional annex, namely the m-compactification. Since we can pick
from every basis, a basis whose cardinality equals the weight of the space, and
since extending such a basis to a T-compact basis does not alter the cardinality

of th

L]

basis; then for the m-ccmpactification of the space we have a basis with

the same cardinality as the weight of the space X. We have proven the following.

5.27 Corollary. (Freudenthal-Morita) Every peripherally ccmpact space X may
be embedded in a compactum with zero-dimensional (in the sense of ind)
annex; furthermore, there is a compactification with zero-dimensional

annex, whose weight coincides with that of the original space.
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ABSTRACT

A variety of questions remained unanswered in the theory of compactifications
of completely regular spaces. The reason these questions are unanswered is
apparently the complexity and the external nature of the available character-
izations of compactifications.

Tn this paper we tranzfer problems of compactifications of completely
regular spaces to corresponding problems in proximity spaces. A proximity
space (g-space) is a pair (P,$), where P is a nonempty set and § is a relation
on the power set of P, satisfying:

1Y IfABc P, then A § B 1ff B § A.

2) 1f AB,Cc P, then (AUB) §Ciff A§Cor B § C.

3) If x,y € P, then {xi 5§ {y} iff x = y.

4y If Ac P, then A { @.

5) If A,Bc P and A § B, then there are sets C,D cP with C YD =P

and A § C, B § D.

We begin by proving that the class of proximity spaces coincides with the

Pl
rh

ass of completely regular spaces. We then construct an isomorphism from the

2t Bo

T ; X . - .
set {1 of all preximity spaces with 2 as the set on which the proximity relation

[¢]

all compactifications of a given completely regular space X onto the

bty

n

iz defined, This isomorphism transfers problems of compactifications into

problems of §-spaces.

We next demonstrate the suitability of §-spaces to solving compactification
problems. We give a simple proof of the fsmous Freudenthal-Morita theorem on
the existence for every peripherzlly compact space {also called rim compact or
semi-compact) of a compactification with zero-dimensional avnrex and whose

weight coincides with that of the original space. We alsc show that ia the



class of perfect compactifications of a given completely regular space X,
there is a minimal element if and only if there is at least one member of this

class with a punctiform annex.



