ANALYSIS OF INDETEMMINATE STRUCTURES

 BY COMBINING REDUNDANTSby

SURENDRA B. DAULAT
B.E. (Civil), (Hons.), S. V. UNI VERSITY, GUJARAT-STATE, INDIA 1961

A MASTER'S REPORT
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNI VERSITY Manhattan, Kansas

Apnroved by:

LD 2668
G64
C.
TABLE OF CONTENTS
TABLE OF CONTENTS
Page No. 1
INTIZODUCTION 1
OUTLINE OF THE NETHOD 2
GENERAL THEORY 8
COMBINED RETUNDANTS FOR FLEXURAL STRUCTURES 11
PHYSICAL IEANING OF THE METHOD 14
RELATION TO OTHER METMODS 15
ILLUSTRATIVE PROBLEMS 20
CONCLUSION 27
ACKNOVLEDGEMENT 29
REFERENCES 30
DIAGRAMS (Figures 1 to 7) 31
TABULATIONS (1 to 4) 36

ATALYSIS CF STATICALLY INDETERNIMATE STRUCTURJS BY COMBINING REDUNDANTS

By
SUREIDRA B. DAULATT
SYMCPSIS

In the analysis of highly indeterminate structures, the task of setting up and solving the elastic equations becomes timeconsuming. Several methods have been developed to reduce the work considerably. Analysis by combining redundants is one of them. Each method has its own advantages. Two illustrative examples are solved to compare the combined redundant method with the method of consistent deformations.

IITTRODUCTION

In the study of indeterminate structural analysis the usual procedure is to solve simultaneous equations obtained by the method of consistent deformations. The number of equations involved is equal to the degree of indeterminancy of the structure. For high degrees of indeterminancy, the solution of the simultaneous eouations becones a tedious task. The combined redundant method eliminates the time-consuming procedure of solving these simultaneous equations. The purpose of this study was to become familiar with this method of analysis and its applications to structural analysis problems. To illustrate this method, three nunerical examples are solved. First, a truss with three degrees

[^0]oz indeterminancy (7), scconu, a ilexural bent with three deşrees of indeterminancy, and thira, a truss, indoteritnata to the eighth degree. To compare this method with brother methor, probiems 2 and 3 are also solved by the method of consistent deformations. The usual proceduee for the analysis of indeterminate structures is to select a staticaily determinate structure by removal of redundant forces. This is done by cutting through the members, inserting hingas and removing reaction components. The numbe: of these reaundant forces is always n for an n-times indeterminate case. A. set oi simultaneous equations results:
$$
\Sigma \delta_{i j} X_{j}+\delta_{i o}=0
$$
whore X_{j} are the redundants. The subscript i and j are integers from I to n . The terms $\delta: j$ are coeificients acpending only on the size and shape oif the orizinaI structure and the terms $\delta i o$ are the -oaking rems which depend on geometry and on the load (4).

The primary purpose of the method of combining redundants is to get a systen of linear equations which can very easily be solved. This invoives the determination of the coefficients of the "combined redundants". After these coedRicients have been round, mumber stresses corrosponding to the given condition oi loading or distortion may be evaluated. These coofficients are independent of the tyse of loading a structure has to jear (IO).
OUPLINE OI MHE IEMOD

The 'm' times scatically indetemmate structura is first ICuced to a statically determinate form by nemoving a number of rodundants equal to the destee of indeterminancy. Tha syeto of
simultancous equations thus obtained is:

The proposed method, the orthogonalization of the above equations, gives the following form.

$$
x_{1}^{\prime} \delta_{11}^{\prime}
$$

$$
x_{2}^{\prime} \delta_{22}^{\prime} \ddots^{\prime}
$$

$$
\begin{aligned}
-\Delta_{1}^{\prime} & =0 \\
-\Delta_{2}^{\prime} & =0 \\
-\Delta_{m}^{\prime} & =0
\end{aligned}
$$

To establish this pattern of equations, the principle of virtual work will be used. It states that during any virtual displacement of an elastic body the net work done by all the forces is zero. The internal andexternal forces must be in equilibrium and the virtual displacement must be small and compatible with the condition or the constraints. (12).

For example, assume a truss which is three times statically indeterminate Fig.I(a). If the final stress in a member is denoted by S, then by the principle of superposition

$$
\begin{equation*}
S=x_{1} s_{1}+x_{2} s_{2}+x_{3} s_{3}+S_{0} \tag{3}
\end{equation*}
$$

where s_{1}, s_{2}, s_{3} are the bar stresses due to unit value of redundants x_{1}, x_{2}, x_{3} and S_{0} is the bar stress due to external loading on the statically determinate structure. If the constant temn I/AS for each bar is represented by α, then the correvponding elongation is given by

$$
\begin{equation*}
\Delta_{L}=\alpha S=\alpha\left(x_{1} S_{1}+x_{2} S_{2}+x_{3} S_{3}+S_{0}\right) \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& x_{1} \delta_{11}+x_{2} \delta_{12}+\cdots \cdots+x_{m} \delta_{1 m}-\Delta_{1}=0 \\
& x_{1} \delta_{21}+x_{2} \delta_{22}+\cdots \cdots \cdot+x_{m} \delta_{2 m}-\Delta_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} \delta_{m_{1}}+x_{2} \delta_{m 2}+\cdots \cdots+x_{m} \delta_{m m}-\Delta_{m}=0
\end{aligned}
$$

Considering the case of Fig. I(c) where a unit load is applied at point H, the bar stress s_{1} results. The system will be in equilibriun alue to this force. If a small displacement is given to the truss, it causes a virtual displacement in all the members of the truss. By the principle of virtual work, the net work done by all the forces due to this virtual displacement is zero. Internal and external \mathcal{P} ores must be in equilibrium and the virtual displacement must be small and compatible with the condition of the constraints (12). The following equation may be written:

$$
\begin{equation*}
\Sigma \alpha S_{s_{1}}=0=x_{1} \Sigma \alpha s_{1}^{2}+x_{2} \Sigma \alpha s_{1} s_{2}+x_{3} \Sigma \alpha s_{1} s_{3}+\Sigma \alpha s_{1} S_{0} \tag{A}
\end{equation*}
$$

This equation contains three unknown redundant forces, x_{1}, x_{2}, x_{3}. Applying the redundant forces as shown in Fig。 $I(d)$ and Fig. I(e) the bar stresses s_{2} and s_{3} will result. Tvo similar equations could be obtained as given below.

$$
\Sigma \alpha S S_{2}=0=x_{1} \Sigma \alpha S_{1} S_{2}+x_{2} \sum \alpha S_{2}^{2}+x_{3} \sum \alpha S_{2} S_{3}+\sum \alpha S_{2} S_{0}
$$

and

$$
\begin{equation*}
\Sigma \alpha S S_{3}=0=x_{1} \Sigma \alpha S_{3} S_{1}+x_{2} \Sigma \alpha S_{3} S_{2}+x_{3} \Sigma \alpha S_{3}^{2}+\Sigma \alpha s_{3} S_{0} \tag{c}
\end{equation*}
$$

This summation extends over all the members of the truss. The above three equations are set up in the form given in equation (1), and can be solved simultaneously for the unknown redundant forces x_{1}, x_{2}, x_{3}. In the combined redunaiant method, the redundants chosen from Fig. $I(c)$ to Fig. $I(e)$ are combined with each other in such a manner that the quantity $\sum \alpha S_{i} S_{j}$ becomes zero, where $i \neq j$. Thus reducing the system of equations to the form given in equation (2). This method is called the combined unit redundants method as the unit redundants are cornbined with each other to obtain the form
of equation (2). It is to be noted that only one of the combined redundants will have a unit value. The bar stresses due to ' n ' combined redundants will be denoted by S_{n}. The first combined redundant will be equal to one; Fig. $I(c)$ and corresponding bar stresses are given by

$$
\begin{equation*}
S_{1}=S_{1} \tag{a}
\end{equation*}
$$

The second combination of redundant from Fig. Ifc) and Fig. Id) is made in such a way that bar stresses due to these forces are

$$
\begin{equation*}
S_{2}=C_{21} S_{1}+S_{2} \tag{b}
\end{equation*}
$$

The third combination of Fig. ICc), (d), (e) such that bar stresses are

$$
\begin{equation*}
S_{3}=C_{31} S_{1}+C_{32} S_{2}+S_{3} \tag{c}
\end{equation*}
$$

The coefficients C_{21}, C_{31}, and C_{32} are constants, yet to be determined (12).

With these new bar stresses S_{1}, S_{2}, and S_{3}, the values of the redundant forces X_{1}, X_{2} and X_{3} can be obtained and by the principle of superposition the final stresses are given by

$$
\begin{equation*}
S=S_{1} X_{1}+S_{2} X_{2}+S_{3} X_{3}+S_{0} \tag{6}
\end{equation*}
$$

It is worth noting that the redundant forces X_{1}, X_{2} and X_{3} are quite different from x_{1}, x_{2} and x_{3}. The corresponding elongation is given by

$$
\Delta_{L}=\alpha S=\alpha\left(x_{1} S_{1}+x_{2} S_{2}+x_{3} S_{3}+S_{0}\right)
$$

Applying the virtual work principle, the set of equations similar to equations (A), (B), and (C) can be written as

$$
\begin{aligned}
& \Sigma \alpha S S_{1}=0=X_{1} \Sigma \alpha S_{1}^{2}+X_{2} \Sigma \alpha S_{1} S_{2}+X_{3} \Sigma \alpha S_{1} S_{3}+\Sigma \alpha S_{1} S_{0} \ldots\left(A_{1}\right) \\
& \Sigma \alpha S S_{2}=0=X_{1} \Sigma \alpha S_{2} S_{1}+X_{2} \Sigma \alpha S_{2}^{2}+X_{3} \Sigma \alpha S_{2} S_{3}+\Sigma \alpha S_{2} S_{0} \ldots\left(B_{1}\right) \\
& \Sigma \alpha S S_{3}=0=X_{1} \Sigma \alpha S_{3} S_{1}+X_{2} \Sigma \alpha S_{3} S_{2}+X_{3} \Sigma \alpha S_{3}^{2}+\Sigma \alpha S_{3} S_{0} \cdots\left(C_{1}\right)
\end{aligned}
$$

This summation extends over all the members of the truss. Actually, as per the scheme, one needs to establish a condition such as that

$$
\begin{array}{ll}
\sum \propto S_{1} S_{2}=0 & \cdots \cdots \cdots \cdots \cdots \cdot 7(a) \\
\sum \propto S_{1} S_{3}=0 & \cdots \cdots \cdots \cdot \cdot 7(b) \\
\sum \propto S_{2} S_{3}=0 & \cdots \cdots \cdot \cdots \cdot 7(c)
\end{array}
$$

This can be done by suitably choosing the constant terms of equations (5). We have from equation 7 (a) $\Sigma \propto S_{1} S_{2}=0$ Substituting the value of S_{2} from equation $5(b)$

$$
\begin{aligned}
& \quad \sum \propto S_{1}\left(C_{21} S_{1}+S_{2}\right)=0 \\
& \text { or } C_{21} \Sigma \propto S_{1}^{2}+\sum \alpha S_{1} S_{2}=0 \\
& \quad \therefore C_{21}=-\frac{\sum \propto S_{1} S_{2}}{\sum \alpha S_{1}^{2}} \quad \ldots8(a)
\end{aligned}
$$

Similarly, substituting the value of S_{3} from equation 5 (c) in equation 7 (b)

$$
\begin{aligned}
& \sum \propto S_{1}\left(C_{31} S_{1}+C_{32} S_{2}+S_{3}\right)=0 \\
& \text { or } C_{31} \sum \propto S_{1}^{2}+C_{32} \sum \propto S_{1} S_{2}+\sum \propto S_{1} S_{3}=0
\end{aligned}
$$

but $\sum \alpha, S_{1}, S_{2}=0$ from equation 7 (a)

$$
\therefore C_{31}=-\frac{\sum \alpha S_{1} S_{3}}{\sum \propto S_{1}^{2}}
$$

and finally, substituting the value of S_{3} in equation $7(c)$

$$
\begin{align*}
& \sum \propto S_{22}\left(C_{31} S_{1}+C_{32} S_{2}+S_{3}\right)=0 \\
& \text { or } C_{31} \sum \propto S_{2} S_{1}+C_{32} \sum \alpha S_{2}^{2}+\Sigma \alpha S_{2} S_{3}=0 \\
& \text { but } \sum \propto S_{2} S_{1}=0 \quad \text { from equation } 7(a) \\
& \therefore C_{32}=-\frac{\sum \alpha S_{2} S_{3}}{\sum \alpha S_{2}^{2}} \quad . .8(c) \tag{c}
\end{align*}
$$

In order to compute the value of constant $C_{i j}$, first one needs to know the bar stresses s_{1}, s_{2} and s_{3} due to a unit value of redunants applied as shown in Fig. $I(c)$, (d), and (e). The first combined redundant is chosen equal to one and thus the bar stress $S_{I}=s_{1}$. With this value of S_{1} known, the coefficient $C_{2 I}$ can very easily be obtained from the equation $8(a)$. Once the value of coefficient C_{21} is known, the magnitude of S_{2} can very easily be found from the equation $5(b)$ and thus the coefficients $C_{3 I}$ and C_{32} can be found from equation $8(b)$ and $8(c)$ and therefore the magnitude of S_{3} may be computed. Once the coefficients $C_{i j}$ are known, the bar stresses (due to combined redundants) S_{1}, S_{2} and S_{3} can be found from equation (5) with thecombined reaundants as shown in Fig. 2. The bar stresses produced are S_{2}, S_{2} and S_{3}. With these values of bar stresses, the equations $\left(A_{1}\right),\left(B_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$ reduce to

$$
\begin{aligned}
& x_{1} \sum \alpha S_{1}^{2}+\Sigma \alpha S_{1} S_{0}=0 \ldots 9(a) \\
& X_{2} \sum \propto S_{2}^{2}+\Sigma \alpha S_{2} S_{0}=0 \\
& X_{3} \sum \alpha S_{3}^{2}+\Sigma \alpha S_{3} S_{0}=0
\end{aligned}
$$

The unknown X_{1}, X_{2} and X_{3}, thus obtained, will give final bar stresses by substitution into equation (6). It is worth noting that the constants $C_{i j}$ and the bar stresses S_{n} are independent of the type of loading, that is, with a different type of loading, one needs to calculate only equation (6) and (9). The remaining values are unaltered. (12)

GMinRAL theory

To generalize the above methods, let there be a "m" times statically indeterminate structure. Let the internal stresses produced due to redundants $x_{1}, x_{2} \ldots x_{m}$ be $s_{1}, s_{2} \cdots s_{m}$. The structure is made statically determinate by removing the redundant forces. In order that no external work will be done by interior redundants, they are cut or hinged so that equal and opposite forces or moments can be applied at points infinitely close together. Therefore, the only external work that can be done by the combined unit redundant system during its virtual displacement is due to yielding of supports. (12)

As shown in equation (5), the internal stresses S_{1}, S_{2}. $S_{\text {In }}$ produced by combining unit redundant can be put in the following pattern:

$$
\begin{aligned}
& S_{1}=S_{1} \\
& S_{2}=C_{21} S_{1}+S_{2} \\
& S_{3}=C_{31} S_{1}+C_{32} S_{2}+S_{3} \\
& \begin{array}{c}
\ldots \ldots \ldots \\
S_{m}=C_{m 1} S_{1}+C_{m 2} S_{2}+\ldots \ldots+C_{m(m-2)} S_{m-2}+C_{m(m-1)} S_{m-1}+S_{m}
\end{array}
\end{aligned}
$$

The internal stresses s_{1}, s_{2}. . . . s_{m} are produced due to external forces like axial forces, shear forces, couples or any combination of such functions. (12)

The coefficients

$$
C_{i j}=-\frac{\int \alpha S_{j} S_{i} d v}{\int \alpha S_{j}^{2} d v} \quad \text { for } i>j
$$

here α is the constant term $=\frac{L}{A} E$
where L - is the length of the member
A - is the Cross Section area of the member
E - is modulus of elasticity for a given member
With the arrangement show in equation (10)

$$
\int \propto S_{i} S_{j} d v=0 \quad \text { for } i \neq j \text {. This results in an orthogo- }
$$

nal form of the linear equations. By the principle of superposition, the internal stresses in the actual structure is given by

$$
S=X_{1} S_{1}+X_{2} S_{2}+X_{3} S_{3}+\cdots \cdots+X_{m} S_{m}+S_{0} \cdots(11)
$$

where S_{0} is the stress due to external loading on the statically determinate structure.

Corresponding elongation is given by

$$
\delta=\alpha S+\delta_{t}=\alpha\left(X_{1} S_{1}+X_{2} S_{2}+X_{3} S_{3}+\cdots \cdots X_{m} S_{m}+S_{0}\right)+\delta_{t}
$$

where δ_{t} represents internal strain due to temperature changes, due to loosening of connection, etc. For flexural members, that is, members subjected to pure bending, the term δ_{t} is neglected as its magnitude is negligible in comparison with stresses due to bending.

Applying the principle of virtual work, the unknowns $X_{I}, X_{2} \ldots X_{m}$ can be determined from the following equations.
$x_{1} \int \alpha S_{1}^{2} d v+\int \alpha S_{0} S_{1} d v+\int \delta_{t} S_{1} d v+\sum R_{1} p \Delta_{p}=0$
$X_{2} \int \alpha S_{2}^{2} d v+\int \alpha S_{0} S_{2} d v+\int \delta_{t} S_{2} d v+\sum R_{2 p} \Delta_{p}=0 \ldots(12)$
$X_{m} \int \alpha S_{m}^{2} d v+\int \alpha S_{0} S_{m} d v+\int \delta_{t} S_{m} d v+\Sigma R_{m p} \Delta_{p}=0$
where $\Sigma R_{i p} \Delta_{p}$ denotes the external work done due to settlement of the $p^{\text {th }}$ support, which is equal to the external force $R_{\text {ip }}$ at the $p^{\text {th }}$ support due to combined redundant at point i multiplied by the settlement Δ_{p} of the $p^{t h}$ support. Let the external force or moment at p, for the system S_{n}, be $r_{n p}$ and for the system S_{n}, be $R_{n p}$. It can be seen that these are the same for the system S_{I} as for the system s_{I} that is $R_{I p}=r_{I p}$. Writing these equations in a form similar to equation (10)

$$
\begin{array}{ll}
R_{1 p}=\gamma_{1 p} \\
R_{2 p}=C_{21} R_{1 p}+\gamma_{2 p} & \ldots \tag{13}\\
R_{n p}=C_{n 1} R_{1 p}+C_{n 2} R_{2 p}+ & +C_{n(n-1)} R_{(n-1) p}+\gamma_{n p}
\end{array}
$$

from equation (13) values of $R_{i p} ; i=1,2 \ldots . n$, can be determined and if substituted in equation (12), unknown redundant X_{1}, X_{2}, \ldots X_{m} can be determined. (12)

Actually the terms representing strain due to temperature changes and support settlements are neglected since these cause a stress which is of opposite nature to the stress due to live-load. Moreover, its magnitude is negligible as compared to that due to live loads.

CClibined redundaitis for flexural structures

The method of combined redundants applied to structures in pure bending, compares favourably with result obtained by the elastic center method. For such structures the work done by the axial force andby shear or torsional force is neglected as it is of very small magnitude in comparison with the work done by bending. For the sake of illustration, let us assume a bent with fixed end support as shown in Fig. 3(a).

The given structure is made statically determinate as shown in Fig. 3(b). The three unknown redundant are moment, horizontal force and vertical force. These forces and the moment are applied at the free end ' A '. These forces at the free end will cause moments at each section of the given bent.

Let the moments at any point be $m_{1}=1 ; m_{2}=x ; m_{3}=y$. Now as per equation (10), the combined unit redundants will be

$$
\begin{aligned}
& M_{1}=m_{1}=1 \\
& M_{2}=C_{21} M_{1}+m_{2}=C_{21}+m_{2}=C_{21}+x
\end{aligned}
$$

$$
M_{3}=C_{31} M_{1}+C_{32} M_{2}+m_{3}=C_{31}+C_{32}\left(C_{21}+x\right)+y
$$

Here the coefficient $C_{i j},(i \neq j)$ has a meaning similar to that for truss members.

$$
C_{21}=-\frac{\int M_{1} m_{2} \frac{d s}{E I}}{\int M_{1}^{2} \frac{d s}{E I}}
$$

Where I/EI is constant for flexural member.
From equation (14)

Coefficient

$$
\begin{aligned}
& c_{21}=-\frac{\int m_{1} m_{2} \frac{d s}{E I}}{\int m_{1}^{2} \frac{d s}{E I}}=-\frac{\int x \frac{d s}{E I}}{\int \frac{d s}{E I}} \\
& c_{3 I}=-\frac{\int m_{1} m_{2} \frac{d s}{E I}}{\int m_{1}^{2} \frac{d s}{E I}}=-\frac{\int y \frac{d s}{E I}}{\int \frac{d s}{E I}} \\
& c_{32}=-\frac{\int M_{2} m_{3} \frac{d s}{E I}}{\int M_{2}^{2} \frac{d s}{E I}}
\end{aligned}
$$

For C_{32}, the numerator is

$$
\begin{aligned}
& =\int\left(c_{21}+x\right) y \frac{d s}{E I} \\
& =\int\left\{-\frac{\int x \frac{d s}{E I}}{\int \frac{d s}{E I}}+x\right\} y \frac{d s}{E} \\
& =\left\{-\int x \frac{d s}{E I}+x \int \frac{d s}{E I}\right] \int^{E} \frac{d s}{E I} \\
& =\left\{-\frac{\int x y \frac{d s}{E I}+\left(x \int \frac{d s}{E I}\right)\left(\int y \frac{d s}{E I}\right)}{\int \frac{d s}{E I}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\int\left(c_{2 I}+x\right)^{2} \frac{d s}{E I} \\
& =\int\left\{\left(c_{21}\right)^{2}+2 \cdot c_{21} \cdot x+x^{2}\right\} \frac{d s}{E I} \\
& =\int\left\{\left(-\frac{x \int \frac{d s}{E I}}{\int \frac{d s}{E I}}\right)^{2}-2 x \int \frac{d s}{E I}\right. \\
& \left.\int \frac{d s}{E I} \cdot x+x^{2}\right\} \frac{d s}{E I}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\int\left\{\left(\int x \frac{d s}{E I}\right)^{2}-2 \int x \frac{d s}{E I} \cdot \int \frac{d s}{E I} \cdot x \cdot+x^{2} \int\left(\frac{d s}{E I}\right)^{2}\right\} \frac{d s}{E I}}{\int\left(\frac{d s}{E I}\right)^{2}} \\
& =\frac{\left\{\int\left(x \frac{d s}{E I}\right)^{2}-\int x^{2} \frac{d s}{E I}\right.}{\int \frac{d s}{E I}} \\
C_{32} & =-\frac{\left\{-\int x y \frac{d s}{E I}+\left(\int x \frac{d s}{E I}\right)\left(\int y \cdot \frac{d s}{E I}\right)\right\} / \int \frac{d s}{E I}}{\left\{\int\left(x \frac{d s}{E I}\right)^{2}-\int\left(x^{2} \frac{d s}{E I}\right)\right\} / \int \frac{d s}{E I}}
\end{aligned}
$$

Multiplying the denominator and numerator by (-1)

$$
C_{32}=-\frac{\int x y \frac{d s}{E I}-\left(\int x \frac{d s}{E I}\right)\left(\int y \frac{d s}{E I}\right) /\left(\int \frac{d s}{E I}\right.}{\int x^{2} \frac{d s}{E I}-\left(\int x \frac{d s}{E I}\right)^{2} /\left(\int \frac{d s}{E I}\right)} \cdot \ldots(15) c
$$

With these known values of coefficients C_{21}, C_{31} and C_{32} the moments M_{1}, M_{2} and M_{3} can be found from the equation (14) and the multiplier X_{1}, X_{2} and X_{3} can very easily be found from equation (12) where $S_{1}=M_{1} ; S_{2}=M_{2}$ etc. M_{0} is the bending moment due to the external load on the statically determinate structure. The intergration of the bending moment is over the whole structure.

Actually the bending moment diagram is split up into various parts, rectangles, triangles, trapezium etc. for which ready-made integration formulas are available (6).

PHYSICAL REANING OF THE METHOD

To demonstrate the physical meaning of the given method, assume a continuous beam with four spans as shown in Fig. 4(a). This structure is statically indeterminate to the third degree.

For the sake of illustration let the three redundants be the reactions applied at points 1,2 , and 3. By removing the intermediate supports, a simply supported bearn will result with its deflection curve as shown in Fig. 4(b). Thisrepresents the state of S_{O}, that is the deflection due to applied loading. Applying a unit redundant at point (I), the deflection curve will be as shown in Fig. 4(c). Fig. 4(d) represents the deflection curve which is due to the combination of redundants at the point (1) and (2). It may be observed that the selection of the coefficient C_{21} is such as to cause the deflection at point (1) to be equal to zero. The deflection curve show in Fig. $4(e)$ is the superposition of the deilection curve shown in Fig. 4(c) and 4(d) plus that due to the unit redundant at point (3). Thus in Fig. 4(e) the coefficients C_{31} and C_{32} nullify the deflection at points (1) and (2). Now, from state S_{1}, S_{2} and S_{3}, only state S_{1} causes the
flection at point (1) but the multiplier X_{1} is so chosen that the deflection at point (I) becomes equal to zero (due to state S_{0}). The state S_{2} causes the deflection at point (2) but multiplier X_{2} nullifies the deflection at point (2) (due to states $S_{0}+X_{I} S_{I}$). Similarly the scheme is extended for other redundants. The superposition of all the different states is shown in Fig. 4(f) (Ref. 12).

RELATION TO OTHER METHODS

The application of this method to flexural structures has been established. It can be shown that this method is very closely related to the well-known elastic center and column analogy methods.

To illustrate this, consider the same bent as shown in Fig. 3(a). The structure is made statically determinate by making end 'A' free. Applying three redundant for moment, horizontal force and vertical force such that $m_{1}=1 ; m_{2}=x$ and $m_{3}=y$. Rewriting the equation (14).

$$
\begin{aligned}
& M_{1}=m_{1}=I \\
& M_{2}=c_{21} M_{1}+m_{2}=c_{2 I}+x \\
& M_{3}=C_{3 I} M_{1}+c_{32} M_{2}+m_{3}=c_{3 I}+c_{32}\left(c_{21}+x\right)+y \\
& \text { The coefficients: } c_{21}=-\frac{\int x \frac{d s}{E I}}{\int \frac{d s}{E I}} \\
& C_{3 I}=-\frac{\int y \cdot \frac{d s}{E I}}{\int \frac{d s}{E I}} \\
& C_{32}=-\frac{\int x y \frac{d s}{E I}-\left(\int x \cdot \frac{d s}{E I}\right)\left(\int y \cdot \frac{d s}{E I}\right) /\left(\int \frac{d s}{E I}\right)}{\int x^{2} \frac{d s}{E I}-\left(\int x \frac{d s}{E I}\right)^{2} /\left(\int \frac{d s}{E I}\right)}
\end{aligned}
$$

In the elastic center method, the point of application of redundant is so chosen that

$$
\int x, \frac{d s}{E I}=0
$$

$$
\begin{aligned}
& \int y_{1} \frac{d s}{E I}=0 \\
& \int x, y, \frac{d s}{E I}=0
\end{aligned}
$$

where x_{1} and y_{I} are the distances to the center of gravity of the closed structure.
$\int x_{1} \frac{d s}{E I}$ and $\int y_{1} \frac{d s}{E I}$ represent the statical moments of the area about Y-axis and X-axis respectively from the fixed point 'A' Fig. (3) ; (1).
Therefore, coefficient $-C_{21}=\frac{\int x \frac{d s}{E I}}{\int \frac{d s}{E I}}=\bar{x} \ldots 15\left(a_{1}\right)$
where ids represents the length of the small element and I/EI the width of that small element.

Therefore $\int \frac{d s}{E I}=$ Area of the whole structure.
Similarly $-C_{3 I}=\frac{\int y \frac{d s}{E I}}{\int \frac{d s}{E I}}=\bar{y}$
From equation 15)c) it can be seen that the numerator
$\int x y \frac{d s}{E I}-\left(\int \frac{x d s}{E I}\right)\left(\int y \frac{d s}{E I}\right) /\left(\int \frac{d s}{E I}\right)$ represents the product of inertia about the $X_{2}-Y_{2}$ axis and the denominator

$$
\int \frac{x^{2} d s}{E I}-\left(\int x \frac{d s}{E I}\right)^{2} /\left(\int \frac{d s}{E I}\right) \text { represents the moment of }
$$

inertia about the Y_{2}-axis.
thus $\quad-C_{32}=\frac{\int x_{2} y_{2} \frac{d s}{E I}}{\int x_{2}^{2} \frac{d s}{E I}}=\frac{I_{x_{2} y_{2}}}{I_{y_{2}}}$

If the redundant forces and moment are applied at the origin of principal axis then,

$$
\begin{aligned}
& c_{21}=-\frac{\int x_{1} \frac{d s}{E I}}{\int \frac{d s}{E I}}=0 \\
& c_{31}=-\frac{\int y_{1} \frac{d s}{E I}}{\int \frac{d s}{E I}}=0 \\
& c_{32}=-\frac{\int x_{1} y_{1} \frac{d s}{E I}}{\int x_{1}^{2} \frac{d s}{E I}}=0
\end{aligned}
$$

The coefficient C_{32} becomes zero on the centroidal axis if the given structure is symmetrical as shown in Fig. 3 (d). Thus the elastic center method becomes a special case of the proposed method.

Rewriting equation (14) we have,

$$
\begin{align*}
& M_{1}=m_{1}=1 \\
& M_{2}=C_{21} M_{1}+m_{2}=c_{21}+m_{2}=c_{21}+x \quad . . .{ }^{2}+(14) \tag{14}\\
& M_{3}=C_{31} M_{1}+c_{32} M_{2}+m_{3}=C_{31}+c_{32}\left(c_{21}+x\right)+y
\end{align*}
$$

With these known values of M_{1}, M_{2} and M_{3}, multipliers X_{1}, X_{2} and X_{3} can very easily be found from equation (9) that is,

$$
\begin{align*}
& x_{1}=-\frac{\int M_{0} \frac{d s}{E I}}{\int \frac{d s}{E I}} \tag{a}\\
& x_{2}=-\frac{\int M_{2} M_{0} \frac{d s}{E I}}{\int M_{2}^{2} \frac{d s}{E I}} \tag{b}\\
& x_{3}=-\frac{\int M_{3} M_{0} \frac{d s}{E I}}{\int M_{3}^{2} \frac{d s}{E I}}
\end{align*}
$$

The final moment at any point is given by

$$
\begin{equation*}
M=X_{1} M_{1}+X_{2} M_{2}+X_{3} M_{3}+M_{0} \tag{17}
\end{equation*}
$$

To show the relation of the method of combining redundant with the well-known column analogy method:
From the fundamentals of column analogy (9)

$$
\begin{align*}
& \int M_{0} \frac{d s}{E I}=P: \int \frac{d s}{E I}=A \\
& \int x_{2} y_{2} \frac{d s}{E I}=I_{x_{2} y_{2}}: \int x_{2}^{2} \frac{d s}{E I}=I_{y_{2}}: \int y_{2}^{2} \frac{d s}{E I}=I_{x_{2}} \tag{18}\\
& \int M_{1} 0^{2} x_{2} \frac{d s}{E I}=M_{y_{2}}: \int M_{0} \cdot y_{2} \frac{d s}{E I}=M_{x_{2}}
\end{align*}
$$

Simplifying equation (16)

$$
X_{1}=-\frac{\int M_{0} \frac{d s}{E I}}{\int \frac{d s}{E I}}=-p
$$

From the equation $15\left(a_{1}\right)$

$$
\begin{aligned}
& x_{2}=-\frac{\int M_{0} x_{2} \frac{d s}{E_{1}}}{\int x_{2}^{2} \frac{d s}{E I}}=-\frac{M_{y_{2}}}{I_{y_{2}}} \cdots{ }^{2} \cdot \cdots(b) \\
& X_{3}=-\frac{\int\left(C_{31}+C_{32} C_{21}+C_{32} x+y\right) M_{0} \frac{d s}{E I}}{\int\left(C_{31}+C_{32} C_{21}+C_{32} x+y\right)^{2} \frac{d s}{E I}} \\
& \left.x_{3}=-\frac{\int\left\{-\bar{y}+\left(-\frac{I x_{2} y_{2}}{I y_{2}}\right)(-\bar{x})+\left(-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}}\right) \cdot x+y\right\}}{x^{\prime} I}\right\} M_{0} \frac{d s}{E 1} . \\
& \int\left\{-\bar{y}+\left(-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}}\right)(-\bar{x})+\left(-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}}\right) x+y\right\}^{2} \frac{d s}{E I} .
\end{aligned}
$$

$$
\left.x_{3}=-\frac{\left\{M_{x_{2}}-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}} \cdot M_{y_{2}}\right\}}{\left\{I_{x_{2}}-\frac{I_{x_{2} y_{2}}^{2}}{I_{y_{2}}}+\frac{I_{x_{2} y_{2}}}{I_{y_{2}}}\right\}}=-\left\{\frac{M_{x_{2}}-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}} \cdot M_{y_{2}}}{I_{x_{2}}-\frac{I_{x_{2} y_{2}}^{2}}{I_{y_{2}}}}\right\} 1 g(\mathrm{c})\right)
$$

Substituting into equation (17) from equations (14) and (19) we obtain the following equation.

$$
\begin{aligned}
& M=M_{0}-\frac{P}{A}-\frac{M_{y_{2}}}{I_{y_{2}}} \cdot x_{2}-\left\{\frac{M_{x_{2}}-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}} \cdot M_{y_{2}}}{\left.I_{x_{2}}-\frac{I_{x_{2}} y_{2}{ }^{2}}{I_{y_{2}}}\right\}\left(Y_{2}-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}} \cdot x_{2}\right), ~}\right. \\
& =M_{0}-\frac{P}{A}-\left\{\frac{M_{x_{2}}-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}}, M_{y_{2}}}{I_{x_{2}}-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}}}\right\}-\frac{M_{y_{2}}}{I_{y_{2} x_{2}}}+\left\{\frac{M_{x_{2}}-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}} M_{y_{2}}}{I_{x_{2}}-\frac{I_{x_{2} y_{2}}{ }^{2}}{I_{y_{2}}}}\right\}\left(\frac{I_{x_{2} y_{2}}}{I_{y_{2}}} \cdot x_{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =N_{0}-\frac{P}{A}-\left\{\frac{M_{x_{2}}-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}}-M_{y_{2}}}{I_{x_{2}}-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}}}\right\}_{2}-\left[\frac{M_{y_{2} x_{2} I_{x_{2}}}+M_{y_{2}} \cdot x_{2} \cdot \frac{I_{x_{2}}{ }^{2} y_{2}}{I_{y_{2}}}+M_{x_{2}} I_{x_{2} y_{2} \cdot x_{2}}}{I_{x_{2} I_{y_{2}}-I_{x_{2}} \cdot y_{2}{ }^{2}}{ }^{2}}\right. \\
& -\frac{I_{x_{2} y_{2}}^{2} \cdot \frac{M_{y_{2}}}{I_{y_{2}}} \cdot x_{2}}{I_{x_{2}} \cdot I_{y_{2}}-I_{x_{2} \cdot y_{2}}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =M_{0}-\frac{p}{A}-\left\{\frac{M_{x_{2}}-\frac{I_{x_{2} y_{2}}}{I_{y_{2}}} M_{y_{2}}}{I_{x_{2}}-\frac{I_{x_{2}}^{2} y_{2}}{I_{y_{2}}}}\right\} y_{2}-\left\{\frac{M_{y_{2}}-\frac{I_{x_{2} y_{2}}}{I_{x_{2}}} M_{x_{2}}}{I_{y_{2}}-\frac{I_{x_{2}}^{2} y_{2}}{I_{x_{2}}}}\right\} x_{2}
\end{aligned}
$$

This is the general form of the column analogy method for unsym-
metrical bent. Substituting $I_{x_{2}} y_{2}=$ Othat is, considering the symmetrical frame of Fig. 3(d)

$$
M=M_{0}-\frac{p}{A}-\frac{M_{x_{2}}}{I_{y_{2}}} \cdot y_{2}-\frac{M_{y_{2}}}{I_{y_{2}}} \cdot x_{2}
$$

Thus the method of combined redundant reduces to the column analogy method.

ILLUSTRATIVE PROBLEMS

$T 0$ illustrate the mothod of combining redunants, several problems will be solved, involving the application of this method:

PROBLEM: I

A truss shown in Fig. 5(a) with 12^{k} load applied at point H , acting downward (7).
Required: Bar stresses due to the given load:
Solution: The given frame is statically indeterminate to the third degree. The truss is made statically determinate by removing the intermediate support and cutting bars CH and CF . The combined redundants are shown in Fig. 5 the required comptations are framed in Table 1.

$$
\begin{aligned}
& s_{1}=s_{1} \\
& c_{21}=-\frac{\sum \alpha S_{1} s_{2}}{\sum \alpha S_{1}^{2}}=-\frac{\sum \alpha s_{1} s_{2}}{\sum \alpha s_{1}^{2}}=\frac{0.85}{3.25}=0.262 \\
& s_{2}=c_{21} s_{1}+s_{2}=0.262 s_{1}+s_{2}
\end{aligned}
$$

$$
\begin{aligned}
c_{31} & =-\frac{\sum \alpha s_{1} s_{3}}{\sum \alpha s_{1}^{2}}=-\frac{\sum \alpha s_{1} s_{3}}{\sum \alpha s_{1}^{2}}=0.262 \\
c_{32} & =-\frac{\sum \alpha s_{2} s_{3}}{\sum \alpha s_{2}^{2}}=-\frac{\sum \alpha\left(0.262 s_{1}+s_{2}\right) s_{3}}{\sum \alpha\left(0.262 s_{1}+s_{2}\right)^{2}}=-0.1105 \\
s_{3}= & =c_{31} s_{1}+c_{32} s_{2}+s_{3}=c_{31} s_{1}+c_{32}\left(c_{21}+s_{2}\right)+s_{3} \\
& =0.262 s_{1}-0.1105\left(0.262 s_{1}+s_{2}\right)+s_{3}
\end{aligned}
$$

With these known values of C_{21}, C_{31}, C_{32} and hence, S_{1}, S_{2} and s_{3}, unknown redundants could be computed as follows.

$$
\begin{aligned}
& x_{1}=-\frac{\sum \alpha S_{1} S_{0}}{\sum \alpha S_{1}^{2}}=-\frac{\sum \alpha S_{1} S_{0}}{\sum \alpha S_{1}^{2}}=\frac{22.88}{3.254}=7.0650 \\
& x_{2}=-\frac{\sum \alpha S_{2} S_{0}}{\sum \alpha S_{2}^{2}}=\frac{20.71}{3.775}=5.48 \\
& x_{3}=-\frac{\sum \alpha S_{3} S_{0}}{\sum \alpha S_{3}^{2}}=-\frac{1.32}{3.736}=-0.353
\end{aligned}
$$

The final bar stresses due to the given loading are shown in column 22 of Table 1.
For the sake of convenience, $\frac{L}{A}$ has been chosen equal to unity. ($\frac{L}{A}$ same for all members)

PrOBLEM: 2
A flexural bent is shown in Fig. 6(a) with both ends fixed. The loading is as shown.
Required: Horizontal reaction due to given load and the bending moment diagram.
Solution: The given bent is statically indeterminate to the third
degree. The end A is freed and the following three redundant forces are applied; counter-clockwise moment X_{I}, horizontal force X_{2} and vertical force X_{3} at A. The moment diagrams for these forces are shown in Fig. 6(c), (d) and (e). Fig. 6(b) is the moment diagram due to the applied load on the statically determinate structure.
With the use of formulas given in Tafel der Werte (6), the necessary coefficients can be obtained.
(Detail calculations are not shown)
ET $\delta_{20}=2,295,000 \mathrm{kip} \mathrm{ft}$.
BI $\delta_{30}=-4,360,000 \mathrm{kip} \mathrm{ft}$.
BI $\delta_{10}=78,000 \mathrm{kip}$ ft.
BI $\delta_{22}=182,250 \mathrm{kip} \mathrm{ft}$.
II $\delta_{32}=-141,750 \mathrm{kip} \mathrm{ft}$.
BI $\delta_{33}=234,000 \mathrm{kip} \mathrm{ft}$.
PI $\delta_{21}=4,725 \mathrm{kip}$ ft.
II $\delta_{31}=-4,500 \mathrm{kip} \mathrm{ft}$.
II $\delta_{11}=150 \mathrm{kip} \mathrm{ft}$.
$c_{21}=-\frac{\int M_{1} m_{2} \frac{d s}{E I}}{\int M_{1}{ }^{2} \frac{d s}{E I}}=-\frac{4,725}{150}=-31.5$
$c_{31}=-\frac{\int m_{1} m_{3} \frac{d s}{E I}}{\int m_{1}^{2} \frac{d s}{E I}}=-\frac{4,500}{150}=30$
$c_{32}=-\frac{\int m_{2} m_{3} \frac{d s}{E} I}{\int m_{12}^{2} \frac{d s}{E I}}=-\frac{\int\left(c_{21} M_{1}+m_{2}\right) m_{3} \frac{d s}{E I}}{\int\left(c_{21} m_{1}+m_{2}\right)^{2} \frac{d s}{E I}}=\frac{\int 500 \times 31 \cdot 5-141750}{\int\left(c_{21} M_{1}+m_{2}\right)^{2} \frac{d s}{E I}}=0$

$$
\begin{aligned}
x_{I} & =-\frac{\int M_{1} M_{0} \frac{d s}{E I}}{\int M_{1}^{2} \frac{d s}{E I}}=-\frac{7800}{150}=-520 \\
x_{2} & =-\frac{\int M_{2} M_{0} \frac{d s}{E I}}{\int M_{2}^{2} \frac{d s}{E I}}=-\frac{\int\left(c_{21} m_{1} M_{0}+m_{2} M_{0}\right) \frac{d s}{E I}}{\int\left(c_{21}^{2} m_{1}^{2}+2 c_{21} m_{1} m_{2}+m_{2}^{2}\right) \frac{d s}{E I}} \\
& =\frac{-31.5 \times 78000+2295000}{(31.5)^{2} \times 150+2(-31.5)(4725)+182250} \\
& =4.85 \\
X_{3} & =-\frac{\int\left(c_{31} M_{1}+m_{3}\right) M_{10} \frac{d s}{E I}}{\int\left(c_{31} M_{1}+m_{3}\right)^{2} \frac{d s}{E I}} \\
& =\frac{30 \times 78000+(-4360000)}{900 \times 150+60(-4500)+234000} \\
& =20.4
\end{aligned}
$$

Final Moments:

$$
\begin{aligned}
M_{A} & =X_{1} M_{I}+X_{2} M_{2}+X_{3} M_{3}+M_{0} \\
& =-520(1)+4.85(31.5 x 1+0)+20.4(30 \times I+0)+0 \\
& =-60 \mathrm{kip} \text { ft. } \\
M_{D} & =X_{1} M_{1}+X_{2} M_{2}+X_{3} M_{3}+M_{0} \\
& =-520+4.85(-31.5)+20.4(30-60)+1200 \\
& =-84.5 \mathrm{kip} \text { It. } \\
M_{B} & =-520+4.85(-31.5+45)+20.4(30+0) \\
& =156.5 \text { kip ft. }
\end{aligned}
$$

$$
\begin{aligned}
M_{C} & =-520+4.85(-31.5+45)+20.4(30-60)+1200 \\
& =131.5 \mathrm{kip} \mathrm{ft} .
\end{aligned}
$$

Horizontal Reaction at $A=\frac{156.5+60}{45}=4.82$
Horizontal Reaction at $D=\frac{131.5+84.5}{45}=4.82$
The final moment diagram is shown in Fig. 6 (i)
To compare the solution by the method of combined redundant to the solution by the method of consistent deformations the same problem can be worked solving the resulting equations by the triangular method.
The pattern of the equations is:

$$
\begin{aligned}
& 150 x_{1}+4725 x_{2}+(-4500) x_{3}=-78,000 \\
& 4725 x_{1} 182,250 x_{2}+(-141,750) x_{3}=-2,295,000 \cdot(\text { (II) } \\
& -4500 x_{1}+(-141,750) x_{2}+(234,000) x_{3}=4,360,000 \text {. (III) }
\end{aligned}
$$

Solving by the triangular method: (3),

$$
\begin{aligned}
& 150 x_{1}+4725 x_{2}-4500 x_{3}=-78,000 \\
& \left\{\frac{4725}{150}(I)+(I I)\right\} ; 33250 x_{2} 250 x_{3}=265,000 \\
& \left\{\frac{4500}{150}(I)+(I I I)\right\} ; 250 x_{2} 99,000 x_{3}=2,020,000
\end{aligned}
$$

Solving the last two equations

$$
\begin{aligned}
\left(-\frac{250}{33250}\right) ; \quad & 33250 x_{2}+250 x_{3}=165,000 \\
\text { and } x_{2}=4.8 & \frac{250 x_{2}+999000 x_{3}=2,020,000}{x_{3}=20.4}
\end{aligned}
$$

Substituting these values of x_{2} and x_{3} in (I)

$$
\begin{aligned}
& x_{1}=-59.5 \\
& \text { Noments at } A=x_{1}(1)=-9.5 \mathrm{kip} \text { ft. } \\
& \text { Noments at } D=-1200+59.5+60 \times 20.4=84.0 \text { kip ft. } \\
& \text { Noments at } B=59.5+(045) \times 4.8=-156.5 \mathrm{kip} \text { ft. } \\
& \text { Noments at } C=-1200+(-1)(-59.5)-45(4.8)+60(20.4) \\
&=-132 \mathrm{kip} \mathrm{ft} .
\end{aligned}
$$

Which gives the same bending moment diagram as shown in Fig. 6(f).

PROBLYM: 3

A truss shown in Fig. 7(a) with 8 k load applied at point (I4), acting downward.
Required: Bar stresses due to given load. (5) page 401.
Solution: The method of combined redundants for higher degree of indeterminancy can be demonstrated by this problem. The given truss is statically indeterminate eight degrees internally. The truss is made statically determinate by cutting one of the diagonal members in each panel Fig. 7(b). The forces in the members due to the applied loads and the redundant forces are shown in Fig. 7(b) and (c) respectively. The systematic calculations for various combined redundant coefficients and the final bar stresses are tabulated in Table 2.

It is to be noted that calculations up to column (31) remain unaltered for different loadings.

In order to compare the combined redundant method with the method of consistent deformations the same problem is solved using Guass's Elimination Method to solve the resulting equations. (Table 4)

The equations are:

$$
\begin{array}{ll}
79.96 x_{1}+20.45 x_{2}+140.08 & =0 \\
20.45 x_{1}+93.86 x_{2}+20.45 x_{3}+109.60 & =0 \\
20.45 x_{2}+112.86 x_{3}+20.45 x_{4}+193.39 & =0 \\
20.45 x_{3}+123.08 x_{4}+20.45 x_{5}+206.9 & =0 \\
20.45 x_{4}+123.68 x_{5}+20.45 x_{6}+206.9 & =0 \\
20.45 x_{5}+112.86 x_{6}+20.45 x_{7}-11.30 & =0 \\
20.45 x_{6}+93.86 x_{7}+20.45 x_{8}-508.60 & =0 \\
20.45 x_{7}+79.96 x_{8}-339.40 & =0
\end{array}
$$

The solution of simultaneous equation gives:

$$
x_{8}=\frac{225.7}{75.32}=2.93
$$

$$
x_{7}=\frac{500.875-20.45 \times 2.93}{90.04}=4.86
$$

$$
x_{6}=\frac{41.30-20.45 x^{4} .86}{109.38}=-0.53
$$

$$
x_{5}=\frac{-176.7+20.45 \times 0.53}{120.17}=-1.37
$$

$$
x_{4}=\frac{-176.20+20.4 .5 \times 1.37}{119.81}=-1.23
$$

$$
x_{3}=\frac{-162.59+20.45 \times 1.23}{108.135}=-1.25
$$

$$
x_{2}=\frac{-133.60+20.45 \times 1.25}{88.635}=-1.21
$$

$$
x_{1}=\frac{-140.08+20.45 x 1.21}{79.96}=-1.44
$$

The detailed calculations are given in Table 3. The bar stresses by both methods check fairly well.

CONCLUSION

From the illustrative examples it can be observed that the combined redundant method eliminates the task of solving the simultaneous equations, which result from application of the method of consistent deformations. This is replaced by calculation of the coefficients of the combined redundants.

In Table 1 , for different loading systems, the calculations remain unaltered except for columns 15 to 22 . Therefore, by the principle of superposition the maximum'bar stresses can be obtained by suitable combinations of loading systems. If the same problem were to be solved for maximum bar stresses by sone other method, for example, consistent deformations, then, for each system of loading, the magnitude of the redundant forces must be calculated by solving the simultaneous equations each time. This is a very tedious and time-consuming approach. Thus it can be seen that this method has an advantage if the maximum bar stresses are to be calculated.

Foi a flexural structure, the calculations involved by the combined redundant method are the calculations for coefficients of combined redundants. Thus, the problem of solving sinultaneous equations is eliminated. The redundant forces in this method: of combined redundants, are quite different irom those obtained by the consistent deformation method.

It was pointed out by steven J. Fenves ${ }^{2}$ A.M. ASCI (8), that in common types of trusses, if the number of members greatly exceeds the number of redundants, the combined redundant method does not have any computational advantage. Moreover, for higher degree of indeterminancy the accuracy is affected by this method, - rice more operation of multiplications are involved. However, the same author, Steven J. Fenves, discovered that, for computer programing, this method involves fewer operations than by ordinary methods, that is, matrix inversion by the computer.

ACKNO:NL EDGEMENT

The author of this paper wishes to express his thanks and appreciation to his major professor, Dr. Robert R. Snell for his aid and criticism given to him during the preparation of this report.

REFERENCES

1. S.F. Borge and J.J. Gennaro, Advanced Structural Analysis.
2. W.M. Fife and J.B. Wilbur, Theory of Statically Indeterminate Structures, 1937, P. 39.
3. L.E. Fuller, Basic Matrix Theory.
4. J.F. Morrison, "Group Loading Applied to the Analysis of Frames", Transactions of the American Society of Civil Engineers, Vo1. 119, 1954, p. 338.
5. C.T. Voodhigula, "Analysis of Statically Indeterminate Trussed Structures by Successive Approximations", Transactions of the American Society of Civil Engineers, Vol. 107, 1942, p. 395 .
6. Tafel der Werte (Tables for Bending Moments).
7. P.L. Gould, "Discussion on Analysis of Indeterminate Structures", Transactions of the American Society of Civil Engineers, 1271962, Part II, P. 372-374.
8. Steven J. Fenves, "Discussion on Analysis of Indeterminate Structures", Transactions of the American Society of Civil Engineers, Vol. 127-1962, Part II, D. 362.
9. C.K. Wang, Statically Indeterminate Structures, pp. 330-335.
10. J.B. Wilbur, "Characteristic Redundants Used for Analysing Statically Indeterminate Structures", Transactions of the American Society of Civil Encineers, W01. 110, 1945, p.1257.
11. Johnson, Bryan and Turneaure, Modern Frame Structures, Part II, pp. 297-307.
12. P. P. Gillis and K.H. Gerstle, "Analysis of Structures by Combining Redunciants", Transactions of the American Society of Civil Engineers, Vo1. 127, 1962, Part II, pp. 349-364.

(a)

(C)

(b)

(d)

Fig. 1 System of Loads

(a)

(b)

Fig. 2 Combined Redundants

(b)

(d)

(e)

(f)

(a)

(b)

(c)

Fig. 3

Fig. 4

Fig. 5: Problem No. 1 Method of Combined Redundants

Fig.6: Problem No. 2: Flexural members by combining Redundants

Fig.7. Problem No.3: 8 עi, egree redundant truss by Combining Redundants

	$: 1$:	2	:	3	: 4	$: 5$: 6	$: 7$: 8	: 9	$: 10$
BAR	$!{ }^{5} 1{ }_{1} \mathrm{~S}_{1}$:	s_{2}	:	s_{3}	$: \quad s_{1}^{2}$	$: \quad S_{1} s_{2}$	$c_{21} S_{1}$		$: \mathrm{S}_{1} \mathrm{~S}_{3}$	$: \mathrm{S}_{2} \mathrm{~s}_{3}$	$: \quad s_{2}^{2}$
${ }^{-} A B$	$:+0.625$:	0	:	0	$:+0.391$	0	$:+0.164$	$:+0.164$	0	0	$:+0.027$
BC	$:+0.75$:	-0.60	:	0	$!+0.563$	$:-0.45$:+0.197	$:-0.403$	0	0	$!+0.16$
CD	$:+0.75$:	0	:	-0.60	$:+0.563$	0	:+0.197	:+0.197	$:-0.45$	$:-0.118$:+0.039
DE	:+0.625	:	0	:	0	:+0.391	0	:+0.164	:+0.164	0	0	$:+0.027$
EF	: 00.375	:	0	:	0	$:+0.141$	0	:-0.098	:-0.098	0	0	:+0.01
	:	:		:		.	:		:	:	:	:
FG	:-0.375	:	0	:	-0.60	:+0.141	: 0	:-0.098	:-0.098	:+0.225	:+0.059	$:+0.01$
	: 0	:		:		:	: 2	: 0	: 0	: 0	: 0	
GH	:-0.375	:	-0.60	:	0	:+0.141	:+0.225	:-0.098	:-0.698	0	0	:-0.487
HA	: -0.375	:	0	:	0	$:+0.141$: 0	:-0.098	: -0.098	0	0	:+0.01
	:	:		:		.	-	:	:	: 0	: 0	
BG	:-0.625	:	$+1.0$:	0	:+0.391	: -0.625	:-0.164	:+0.836	0	0	$:+0.70$
	:	:		:		-	:	:	!	: 0	\% 0	: 0
DG	:-0.625	:	0	:	$+1.0$	$:+0.391$	0	:-0.164	: -0. 164	:-0.625	: -0.164	:+0.027
BH	: 0	:	-0.	:	0	0	: 0	: 0	: -0.80	0	0	$:+0.64$
	:	:		:		:	:	.	.	:	:	
CG	: 0		-0.80	:	-0.80	0	0	: 0	: -0.80	0	:+0.64	$\dot{i}+0.64$
	:	:				: 0	: 0		: 0	: 0	:	
DF	: 0	-	0	:	-0.80	: 0	: 0	- 0	0	0	0	0
	:	:		:		.	-	.	.	:	: 0	
CH	0	:	$+1.0$:	0	0	0	: 0	$:+1.0$	0	0	$:+1.0$
	: 0	:		:		: 0			:	: 0	: 0	
CF	0	:	0	,	+1.0	0	: 0	: 0	0	0	0	0
	,	:		:		:	:	:	:	:	:	:
TOTAL	: -	:	-	-	-	:+3.254	$:-0.85$	- -	- -	: -0.85	$:+0.417$	$:+3.775$

Table 1 (concl.)

EIGHTH DEGREE REDUNDANT FRAME BY COMBINING REDUNDANTS ：TABLE 2

	$\frac{1}{8}$	2ささささ～							
	70								
	7 ¢								
	\％枵	f				¢ ¢ ¢ ¢ ¢ ¢	ㅎㅜㅜㅜㅜㄴ） 3	¢ \ddagger	
	\％${ }_{*}^{5}$	\％		$!$	\％\％\％		\％\％\％？	教等等。等	3
	\％ 5	8		\％\％\％ 50	： 5 ¢ 20	颔 70 号			6
		－${ }^{4} 0$							\％
				吅巻管。					E
	\％		73．${ }^{\text {星。 }}$						4
	\＃								3
									\％
	98	\％ 03730	929820	708830	¢7\％980	73980？	\％2：80\％	72： $3: 02$	－\％ 080%
						\％！${ }^{\text {！}}$ ！			
	8 5 8			\％					¢0：
	（2） 5				\％ 0^{5}				
	\％ 7 \％				－${ }^{\text {\％}}$	\％\％	？${ }_{\text {\％}}^{\text {\％}}$ ？		8
	（2）							\％	\cdots
	（9）${ }^{\circ}$			1119 年交				\％${ }_{\text {a }}^{\text {：}}$	
				！ 11					
	a ${ }^{\text {a }}$－			${ }^{\frac{1}{2}} 7$					$\stackrel{3}{2}$
	\％${ }_{\text {\％}}^{\text {c }}$						\％		¢
	ส \sim^{*}						\％\％\％\％\％		
	－${ }^{\text {a }}$								
					888 8^{8}				葍
	9 a					$\stackrel{8}{8}$			
	$=0$								
	\bigcirc	！ 1	！！\％\％\％	！！\％¢					\％
	－ 0^{3}				$\stackrel{\text { \％}}{ }$				：
	\pm＊				！				
	2 ${ }^{5}$								
	\simeq								8
	$={ }^{\text {a }}$			$!$					\％
	\bigcirc－ 0°			：\％\％\％					
	の ${ }^{\circ}$		5\％${ }^{5}$						
	∞－${ }^{\circ}$								t
	－缺		\％						\％
	\bigcirc－ 5	9 ${ }^{\text {9 }}$	？${ }_{\text {？}}^{\text {¢ }}$						
	$\square 0^{6}$								
	＋	$\stackrel{3}{ }$							\％
	¢ \％								8
	\cdots－					x \％\％：¢ ：			95 \％ 5 \％\％ 2
	－S								
	是	2ちさささ3	375： 5 \％	53 $5: 3$ \％					

Table 3. Eighth degree redundant frame by consistent deformation method.

TABLE 3 (concl.).

Table 4. Gauss's Elimination Method

Elimination Method	$: x_{1} \quad \vdots$	$: \mathrm{x}_{2}:$	X_{3}	$: \mathrm{X}_{4}$	x_{5}	$\mathrm{x}_{6} \quad: \mathrm{x}_{7} \quad \vdots$	X_{8}	$!=K_{1}$	$: \mathrm{K}_{2}$
(1) (2) (3) (4) (5) (6) (7) (8)	$\begin{array}{ll} \vdots & 79.96 \\ \vdots & 20.45 \\ \vdots & \\ \vdots & \\ \vdots & \\ \hline \end{array}$	$\begin{aligned} & 20.45 \\ & 93.86 \\ & 20.45 \end{aligned}$	20.45 112.86 20.45	$\begin{array}{r} 20.45 \\ 123.68 \\ 20.45 \end{array}$	$\begin{array}{r} 20.45 \\ 123.68 \\ 20.45 \end{array}$	$\begin{array}{r} 20.45 \\ 112.86 \\ 20.45 \\ 20.4593 .86 \\ \\ \hline \end{array}$	$\begin{aligned} & 20.45 \\ & 79.96 \\ & \hline \end{aligned}$	$\begin{array}{r} -140.08: \\ -169.60: \\ -193.39: \\ -206.90: \\ -206.90: \\ 11.30: \\ 508.60: \\ 339.40: \end{array}$	
EQUATION	$: x_{1}:$	x_{2}	x_{3}	x_{4}	$x_{5}:$	$x_{6}: x_{7}:$	x_{8}	: K	Check
Equation (1) Sum 1 ₹ Eqं (1) Equation (2)	79.96 79.96 20.45	$\begin{aligned} & 20.45 \\ & 20.45 \\ & 93.86 \end{aligned}$	20.45					-140.08 -140.08 -169.60	-34.84
Multi Sum I by -. 2555	-20.45	-5.225						+36.0 +	+10.325
Sum II	0	88.635	20.45					-133.60	-24.515
Equation (3)		20.45	112.860	20.45				-193.39	-39.63
Multi Sum I by 0	0	0						0	0
Multi Sum II by -. 231		-20.45	-4.725	50				30.80	5.625
Sum 111	0	0	108.135	20.45				-162.59	-36.005
Equation (4)			20.45	123.68	20.45			-206.90	-42.32
Multi Sum I by 0	0	0						0	0
Multi Sum II by 0		0	0					0	0
Multi Sum II I by -. 189			-20.45	-3.87				+30.7	6.38
Sum IV			0	119.81	20.45			-176.20	-35.94
Equation (5)				20.45	123.68	20.45		-206.90	-42.32
Multi Sum I by 0	0	0						0	0
Multi Sum II by 0		0	0					0	0
Multi Sum III by 0			0	0				0	0
Multi Sum IV by -ol715				-20.45	-3.51			30.2	6.24
Sum V Equation (6)				0	120.17 20.45	$\begin{array}{r} 20.45 \\ 112.86 \quad 20.45 \end{array}$		$\begin{array}{r} -176.7 \\ 11.30 \end{array}$	$\begin{aligned} & -36.08 \\ & 165.06 \end{aligned}$
Multi Sum I by 0						112.86 20.15		11.30	165.
Multi Sum II by O									
Multi Sum III by 0									

Table 4 (conclo)

ANALYSIS OF INDETERMINATE STRUCTURES

BY COMBINING REDUNDANTS

by

SURENDRA B. DAULAT
B.E. (Civil), (Hons.), S. V. UNIVERSITY, GUJARAT-STATE, INDIA 1961

AN ABSTRACT OF A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1964

Approved by:

Abstract

In the analysis of highly indeterminate structures, the task of setting up and solving the elastic equations becomes timeconsuming. Several methods have been developed to reduce the work considerably. This paper illustrates the method of combining redundants. By suitably combining the redundant forces, an orthogonalized form of simultaneous equations is achieved. These can easily be solved for unknown redundant forces. Three illustrative examples are solved. To compare this method with another method, two of the problems are also solved by the method of consistent deformations.

This method of combining redundants has great advantage when the bar stresses are to be calculated for different loading conditions. For flexural structures, it is well suited. This method does not show any computational advantage, when the structure is highly indeterminate. In such cases, accuracy is also affected since more operation of multiplications are involved.

[^0]: ${ }^{\text {Graduate }}$ Student in Civil Engineering, Kansas State University, Kanhattan, Kansas.

