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ANALYSIS CF STATICALLY INDETERMINATE STRUCTURES

BY COMBINING REPUNDANTS

By

SURSNDRA B- DAULAT

SYNOPSIS

In the analysis of highly indeterminate structures, the task

of setting up and solving the elastic equations becomes time-

consuming. Several methods have been developed to reduce the work

considerably. Analysis by combining recundants is one of them.

Each method has its own advantages. Two illustrative examples are

solved to compare the combined redundant method with the method of

consistent deformations.

INTRODUCTION

In the study of indeterminate structural analysis the usual

procedure is to solve simultaneous equations obtained by the method

of consistent deformations. The number of equations involved is

equal to the degree of indeterminancy of the structure. For high

degrees of indeterminancy, the solution of the simultaneous

equations becomes a tedious task, The combined redundant method

eliminates the time-consuming procedure of solving these simul-

taneous equations. The purpose of this study was to become

familiar with this method of analysis and its applications to

structural analysis problems. To illustrate this method, three

numerical examples are solved. First, a truss with three degrees

"Graduate Student in Civil Engineering, Kansas State Uni-
versity, Manhattan, Kansas.



of indeterminancy (7), second, a flexural bent with three degrees

r£ indeterminancy, an.: third, a truss, indeter inate to the eighth

;ree. To compare t ; thod with another
1

method, problems 2 and

3 arc also served by zh<i method of consistent deformations.

The us )rocec ore for the analysis of indeterminate

structures is to select a statically determ - structure by re-

moval of redundant forces. This is done by cutting through the

.:.._-.. inserting hinges ana removing reaction components. The

number of these i at forces is always n for an n-times inde-

terminate case* A set of simultaneous equations results:

J J

where X
i
are the redundants. The subscript i and j are integers

from 1 to n. The terms Si J are coefficients depending only on the

size ana shape of the original structure and the terms oi° are the

loading terms which .depend on geometry and on the loaa (4).

The primary purpose of the method of combining - sdundants is

to get a system of linear equations which can very easily b;e solved.

is involves the determination of the coefficients of tl

"combined redundants". After tnese a .cients have been founc,

tber stresses corresponding to the given condition of ioaaing or

distortion may be evaluated. These coefficie its are independent of

a of loading a structure has to bear CIO).

OUT] : OF THE METHOD

The 'm 1 times statically indete: . ite structure is first

to a statically determinate form by removing a number of

lal to the degree pi indeterminancy. The system of



simultaneous equations thus obtained is:

X, &n -t-^x £»«.+ + x ™ £>»*- Al * °

• X c^2l + X 2 Six + " + ~X™ <^2.iv\ - A 2. =

"

_ — .. .- EV i-

. X| Swi i + * 2. o w a. + 1- x->vv <S tw ^ - A w - o

The proposed method, the orthogonalization of the above equations,

givas the following form.
/

x
2-
6z\ A 2

'
-_ o E^.2.

/

X r _ Am = o
J mm•y\i *» m tv\

To establish this pattern of equations, the principle of virtual

work will be used. It states that during any virtual displacement

of an elastic body the net work done by all the forces is zero..

The internal andexternal forces must be in equilibrium and the

virtual displacement must be small and compatible with the condi-

tion of the constraints. (12),.

For example, assume a truss which is three times statically

indeterminate Fig. 1(a). If the final stress in a member is de-

noted by S, then by the principle of superposition

S sx.s, +x»s1fX,s3 +So (3)

where s-,, S2, s^ are the bar stresses due to unit value of re-

dundants x^, x^j x-d and S
Q

is the bar stress due to external load-

ing on the statically determinate structure. If the constant term

L/A3 for each bar is represented by <=< , then the corresponding

elongation is given by

A L - '-< S - <*(*.S. -t- X^S^ XvjS 3 + S ) "(4)



Considering the case of Fig. 1(c) where a unit load is applied at

point Hj the bar stress s
t
results. The system will be in equi-

librium due to this force. If a small displacement is given to the

truss, it causes a virtual displacement in all the members of the

truss. By the principle of virtual work, the net work done by all

the forces due to this virtual displacement is zero. Internal and

external forces must be in equilibrium and the virtual displacement

must be small and compatible with the condition of the constraints

(12). The following equation may be written:
x

(A)

This equation contains three unknown redundant forces, -x-,, x2 , 2o«

Applying the redundant forces as shown in Fig„ 1(d) and Fig. 1(e)

the bar stresses s2 and s^ will result. Two similar equations

could be obtained as given below.

IS)

and

Co

This summation extends over all the members of the truss. The

above three equations are set up in the form given in equation (1),

and can be solved simultaneously for the unknown redundant forces

x-p Xg, x-,. In the combined redundant method, the redundants

chosen from Fig. 1(c) to Fig. 1(e) are combined with each other in

such a manner that the quantity£* St S: becomes zero, where i£j»

Thus reducing the system of equations to the form given in eouation

(2). This method is called the combined unit redundants method as

the unit redundants are combined with each other to obtain the form



of equation (2). It is to be noted that only one of the combined

redundants will have a unit value. The bar stresses due to 'n'

combined redundants will be denoted by S . The first combined
n

redundant -will be equal to "one; Fig. 1(c) and corresponding bar

stresses are given by

S, = s
> ... 5(a)

The second combination of redundants from Fig. 1(c) and Fig. 1(d)

is made in such a way that bar stresses due to these forces are

S a
= C ajS, + S^

# a # 5(b)

The third combination of Fig. 1(c), (d), (e) such that bar stresses

are

S 3 = C 3iS, + C 3i S z f S3 ... 5( c )

Ihe coefficients C
2 -,

, C-^, and C^2 are constants, yet to be

determined (12).

With these new bar stresses S , 3 , and S , the values of the12 3
redundant forces X_, X and X can be obtained and by the principle

of superposition the final stresses are given by

5 = S
l
X,-tS aX a +-S iX 5 +&

. . . (6)

It is worth noting that the redundant forces X , X and X are quite12 3

different from x , x
2

and x . The corresponding elongation is

given by

Applying the virtual work principle, the set of equations similar

to equations (A), (3), and (C) can be written as
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X « SS, - o - X, > .x S, + x a s 'A S, S L + X, 5«^S,S3 + !'•< S, So' (A.)

^SS 4-0« x^^^o.s^X.S^-Sh X jS-<S,^ S3+5^st Se - -{BO

^ 5 S ..
-- 0--X.S <* ^3 s,+x 1 >- <* &3 s, +-x3 s> £3 + ^o< S3 So -(CO

This summation extends over all the members of the truss.

Actually, as per the scheme, one needs t o establish a condition

such as that

^o< S, Sa. -0

2. -< S, S5 -. o ....... -7(b)

*£.<* 5ZS 3 -o , , » - - . .. .,..- 7(c)

This can be done by suitably choossing tiie constant terms of

equations (5). We have from equat;ion 7 (a) S* s, s,.* o

Substituting the value of S
9

from equati.on 5 (b)

^.*< S, ( Ci, S, 4- S^ ) -o

5 t.2.i Z°< —-'i "^ Z.<* S, s a -

- - V. 2. | — — <x S, s^

X * S,
2

Similarly, substitutingg the 'value of S
3

from equation 5 (c) in

equation 7 (b)

]> o< £, QC3l S, -hCsi S^ + S3 ) - o

ol Csi ^ <* ^> 4- C 32 1^ s,,Sx + ^E. <x.-S, s3 - o

but 2.<*S,S a - o j- rom e^u. oJtio-n 7(°-l

S, s3
8( b)

t> o<



and finally substituting the value of S, in equation 7(c)

S <x 3, (C S1 S, + C3a S, + s3 ) - o

or C 51 "S.c< Sa.S, -hC3a- 'S.°c S x -h^>L<^ S 2 s3 ^ O

but 5«, S 2 S, - O from equation 7(a)

.'.C52 -- ^-'X S "
S
j . . . 8(c)

In order to compute the value of constant C.. . , first one needs to

know the bar stresses s
1 ,

$
2

aR^ s
^ ^ ue "fc0 a unii: value of

redundants applied as shown in Fig. 1(c), (d), and (e). The first

combined redundant is chosen equal to one and thus the bar stress

S - s. . With this value of S n known, the coefficient Con can veryli 1 .
' 21

easily be obtained from the equation 8(a). Cnce the value of

coefficient C is known, the magnitude of Sp can very easily be
21

s

found from the equation 5(b) and thus the coefficients Co-^ and

CU can be found from equation 8(b) and 8(c) and therefore the

magnitude of S~ may be computed. Cnce the coefficients C. are
3 ij

known, the bar stresses (due to combined redundants) S_ , S and
1 2

S can be found from equation (5) with thecombined redundants as

shown in Fig. 2. The bar stresses uroduced are S , S and S .

1 2 3
With these values of bar stresses, the equations (A ), (B ) and

(C ) reduce to

X,S^S,+ 2L k S.So - o 9(a)

9(b)

X
3 ^ o< 3/ 4- S <K S, 5 & ?

9(c)
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The unknown X , X and X
n , thus obtained, will give final bar

J- C. 2

stresses by substitution into equation (6). It is worth noting

that the constants C. . and the bar stresses S are independent of

the type of loading, that is, with a different type of loading, one

needs to calculate only equation (6) and (9). The remaining values

are unaltered. (12)

G3K3RAL THEORY

To generalize the above methods, let there be a "m" times

statically indeterminate structure. Let the internal stresses

•produced due to redundants x„ , x . . . . x be s , s . . . • s .12- m i ^ m

The structure is made statically determinate by removing the re-

dundant forces. In order that no external work will be done by

interior redundants, they are cut or hinged so that equal and

opposite forces or moments can be applied at points infinitely

close together. Therefore, the only external work that can be

done by the combined unit redundant system during its virtual

displacement is due to yielding of supports. (12)

As shewn in equation (5), the internal stresses S , S . .

S produced by combining unit redundants can be put in the follow-
m

ing pattern:i u

(10)

^Wi - ^—m j
/li, + L.vi-12. o 2 + *" " " * \ ^->n(v7)-i) ^>r»»-i "t~ ^-•m(m-i'i -~>m-i ' S

»->



The internal stresses s , s
2

s
m

are produced due to ex-

ternal forces like axial forces, shear forces, couples or any

combination of such functions. (12)

j*c< Sj 5; dv

The coefficients C;j = --
z f°*

L >j

here °< is the constant term -
^^_

where L - is the length of the member

A - is the Cross Section area of the member

E - is modulus of elasticity for a given member

Y/ith the arrangement shown in equation (10)

J
°< S- Sj c[v -- O for i-f 3. This results in an orthogo-

nal form of the linear equations. By the principle of super-

position, the internal stresses in the actual structure is given by

where S is the stress due to external loading on the statically

determinate structure.

Corresponding elongation is given by

r-^^t^t - »<(x
1 s

l
+x xsx +x3 S3 + X>„s Mi- ^> t̂

where £t represents internal strain due to temperature changes, due

to loosening of connection, etc. For flexural members, that is,

members subjected to pure bending, the term £t is neglected as its

magnitude is negligible in comparison with stresses due to bending.

Applying the principle of virtual work, the unknowns

X , X o . . X can be determined from the following equations.12 m
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X, US^v
+-
J* Sc S, d v -h |^S lCLv + 5R lP Ap^O

X ,[<* Sj
t
ctv+ j<*S.£*clv+-J$i: S^otv + STR^Ap^o^

^ ^ ^ (12)

where 2 K^cpAp denotes the external work done due to settlement of

th
the p support, which is equal to the external force R. at the

th
p support due to combined redundant at point i multiplied by the

settlement Ao of the p . support. Let the external force or

moment at p, for the system s , be r and for the system S , bep ' n 7 np n*

R . It can be seen that these are the same for the system S as
np 1

for the system s. that is R - r .

1 lp Ip

Writing these equations in a form similar to equation (10)

lv
| p - ^ < p

(13)

from eauation (13) values of R ; i= 1,2,. . . n, can be determined

and if substituted in equation (12), unknown redundants X , X*, . .

X can be determined. (12)

Actually the terms representing strain due to temperature

changes and support settlements are neglected since these cause a

stress which is of opposite nature to the stress due to live-loads.

Moreover, its magnitude is negligible as compared to that due to

live loads.-
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COMBINED- REDUNDANTS FOR FLEXURAL STRUCTURES

The method of combined redundants applied to structures in

pure bending, compares favourably with result obtained by the

elastic center method. For such structures the work done by the

axial force andby shear or torsional force is neglected as it is

of very small magnitude in comparison with the work done by bend-

ing. For the sake of Illustration, let us assume a bent with fixed

end support as shown in Fig. 3(a).

The given structure is made statically determinate as shown

in Fig. 3(b). The three unknown redundants are moment, horizontal

force and vertical force. These forces and the moment are applied

at the free end 'A'. These forces at the free end will cause

moments at each section of the given bent.

Let the moments at any point be m p 1; nu- x; m.- y. Now as

per equation (10), the combined unit redundants will be

M , - rv\
,
- 1

(llf)

Here the coefficient C , (i^j) has a meaning similar to that for

truss members.

V 2.1 =
~~ _

£1

w,
1 a

E_I.
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where 1/EI is constant for flexural member.

From eauation (1H-)

1
rn, 7n x

{II

21

Coefficient C
31

32

5*%
r cU
J E-I

CIS
3 "O

u
E.I.

For C , the numerator is
32' fCCz, + x) il ^ s_

EI.

{"

d<
J EX

J £1

. . .(I5)a

. . .(I5)b

M c '(5-+ xP r

r s ds

J El

J El

and the denominator is
, L J**ft + (*jfi )(S*& )1

J IT

- jc^n+^y as
EI

{

L
2. 1 a\c

X 2.^

J
J EI 1

cU
El

El

x-j-x 1 -2£
El



13

= JKJ^)*- 2>tx-^-*--^J(#lf]£

-
l%

c
32

jtT-

EI

Multiplying the denominator and numerator by (-1)

C '.- . . . (I5)c
32

i^-C>^)/(JH)
With these known values of coefficients Cg-p (o]_ and C. the

moments ML, Mp and M-, can be found from the equation (Ih) and the

multiplier X,, X
2

and X^ can very easily be found from equation (12)

where S. = M, ; S2 = Mo etc. Mq is the bending moment due to the

external load on the statically determinate structure. The inte-

gration of the bending moment is over the whole structure.

Actually the bending moment diagram is split up into various

parts, rectangles, triangles, trapezium etc. for which ready-made

integration formulas are available (6).
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PHYSICAL MEANING OF THE METHOD

To demonstrate the physical meaning of the given method,

assume a continuous beam with four spans as shown in Fig. ^(a).

This structure is statically indeterminate to the third degree.

For the sake of illustration let the three redundants be the

reactions applied at points 1, 2, and 3* By removing the inter-

mediate supports, a simply supported beam will result with its

deflection curve as shown in Fig. k-(b), Thisrepresents the state

of S
Q , that is the deflection due to applied loading. Applying a

unit redundant at point (1), the deflection curve will be as shown

in Fig. 4(c) . Fig. ^(d) represents the deflection curve which is

due to the combination of redundants at the point (1) and (2).-

It may be observed that the selection of the coefficient C21 is

such as to cause the deflection at point (1) to be equal to zero.

The deflection curve shown in Fig* He) is the superposition of the

deflection curve shown in Fig. He) and Ha) plus that due to the

unit redundant at point (3). Thus in Fig. ^(e) the coefficients

C^ and C32 nullify the deflection at points (1) and (2).

Now, from state S.^ S
2

and S
3

, only state S
x causes the

flection at point (1) but the multiplier X is so chosen that the

deflection at point (1) becomes equal to zero (due to state S Q ).

The state S
2

causes the deflection at point (2) but multiplier X

nullifies the deflection at point (2) (due to states s + IS).
Similarly the scheme is extended for other redundants. The super-

position of all the different states is shown in Fig. h(f)

(Ref. 12).



RELATION TO OTHER METHODS

The application of this method to flexural structures has

been established. It can be shown that this method is very closely-

related to the well-known elastic center and column analogy methods.

To illustrate this, consider the same bent as shown in

Fig. 3(a). The structure is made statically determinate by making

end 'A' free. Applying three redundants for moment, horizontal

force and vertical force such that m, = 1; nu = x and eh = y»

Rewriting the equation (1*0.

M- = m
1

B 1

H
2 = C

21
M
1
+ E1

2 = C21 -Vx

M
3 =

C
31
M
1 + C

32
M
2 + m

3
= C

31
+ C

32
(C

2l'
h x) * y

The coefficients: C
21 -

Jft
.. >*C

31 =

°32-

f olS,

J^-a~#)7a*0
In the elastic center method, the point of application of

redundants is so chosen that

x.
|

=-

EI



>),
4s
El •=: o

5C. V
J> EI

= o

16

j

j

where x_ and y. are the distances to the center of gravity of the

closed structure.

J

X|
eli andjb>i "ii- represent the statical moments of the area

about Y-axis and X-axis respectively from the fixed point 'A'

Fig. (3); (1).

Therefore, coefficient -C_. - J_ ^f = X I5(a,

)

J ^
where ds represents the length of thesmall element and 1/EI the

width of that small element.

Therefore | ^4 - Area of the whole structure.
J EI -

Similarly -CL., - = "V I5(b-,)

Prom eauation l5)c) it can be seen that the numerator

J
xv) <ril - f j xas_ "\ / f^^l^Z-r ds \ represents the product of

inertia about the X^-Y^ axis and the denominator

El
/ 1

*- "r—
j

/V' f cls_ \ represents the moment of

inertia about the Y.-axis.

^% Lx Vthus -C - J EI - J-*>y* .... 15(o )

Ft'" ^
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If the redundant forces and moment are applied at the origin of

principal axis then,

c
21 = - J « =

( ?^

C « - J ' f£ -
31 ~T^-

J EX

C - - J El -

J EI

The coefficient CL
2

becomes zero on the centroidal axis if the

given structure is symmetrical as shown in Fig. 3 (d).

Thus the elastic center method' becomes a special case of the

proposed method.

Rewriting equation (1*+) we have,

M2 Z C21Ml+m2 = C21^ m
2 = ^l4"-2 (^

M
3 =

C3lW"'2+ m
3 = V°32 CC

2l
+x)+-y

With these known values of M, , ll and M , multipliers X , X and
*- ^ 3 1 2

X^ can very easily be found from equation (9) that is,
'

1 "° %
x
l =

X
2 =

X
3 "

—

f -is

16(a)

16(b)

16(c)
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The final moment at any point is given by

M = XiMx + X^* X
3
M
3

+ M (17)

To show the relation of the method of combining redundants with the

well-known column analogy method:

From the fundamentals of column analogy (9)

Xs.

Simplifying equation (16)

(18)

\=-^i = -|- 19(a)

f

Y fCGz,+x.)iv) oU
J c*~* ) ^o cJi.

From the equation 15"(a )

\-. - J—_h_= -J211 19(b)

f
E L

x - - J CU^C-^G., -t-C3a .
x^j jM %
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Ixa.yj-

X.

Mm f

J
Iyt - a.^O^

.

t

-I * Vi- 1

^ "In,. 7vj, i

IxtSi. .M
ya.

1 71-^^
19 (c»

lv)i

Substituting into equation (17) Troni equations (1*0 and (19) v;e

obtain the following equation.

Mm m >,V,
M = M

Q
- P - '2*- . x

2
-

j
"•- J„

U,>V1^
(i, - i^. xj.

!„, -Ittx v*

I^M. M ") .

Yl"

-
J-"^'

u A
. M»- El" 'V. M,.x, (Wr^A^

1 M X

•1-1

I* ,

ll,;J..
a-^

Iv,

- M„
-

'
P - "»*- 3

i
fl^p-v^-l^)+^v

J- Kv -= r i1^ fyy)*- _L*i. Iv,, - i-yi.- Vi

I ll^-Xx^l

I

Xxj.1^ — X>£Vi.

M . P — JV^Ny . ^^I^I^-H
I*, - L *-^ \

[IxxV-I^J.
F2

- M - P -
- ° !

-X?-

Mx," MvvJu
i.

lvfi_

J Ivi

In
This is the general form of the column analogy method for unsym-
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metrical bent. Substituting 1*^ =. Othat is, considering the sym-

metrical frame of Fig. 3(d)

A 2 ~ ^7
2

"

Thus the method of combined redundants reduces to the column analo-

gy method.

ILLUSTRATIVE PROBLEMS

To illustrate the mothod of combining redundants, several

problems will be solved, involving the application of this method:

PRCBLdl-l; 1

A truss shown in Fig. 5(a) with 12
k

load applied at

point H, acting downward (7).

Required: Ear stresses due to the given load:

Solution: The given frame is statically indeterminate to the third

degree. The truss is made statically determinate by removing the

intermediate support and cutting bars CH and CF.

The combined redundants are shown in Fig. 5 the required compu-

tations are framed in Table 1.

21 = - Ii±i' = -
^* S± -. J>8£ . . 262

S
2 - C

21
S
1 + s2 = 0.262s

1 +- s
2
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C - - ^*S.S a = - *-<* S
'

*»
= 0.262

2.ocSa S3 £oc(0'26iS,fSz )Sj 0.1105
^->p - " — - "

s
3

~= c3i
sl * C

32
S
2 * s

3 = c31sl
+ C32< C

2.i
+ S

2
) + s

3

- 0*262 s - 0.1105 (0.262 s^ s^ t s

With these known values of C
21 , C^, C^

2
and hence, S^, S

2
and S^,

unknown redundants could be computed as follows.

y lEL^^i ^° ^ °< 6i ^q _ 3.
i

• && _ 7.0650
1 " ^ocS, 2

-
" ^o^s, 8

- ^ XT*

X - —^ ^^ - 2.Q'7/ _ 5^ifb

X =- - ^j*^ S o 5 _ I'^a. _ _ 0.353

The final bar stresses due to the given loading are shown in column

22 of Table 1.

For the sake of convenience, L has been chosen equal to unity.
A

(L same for all members)
A

PROBLEM; 2

A flexural bent is shown in Fig. 6(a) with both ends

fixed. The loading is as shown..

Required: Horizontal reaction due to given load and the bending

moment diagram.

Solution: The given bent is statically indeterminate to the third
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degree. The end A is freed and the following three redundant

forces are applied; counter-clockwise moment }L , horizontal force

Xp and vertical force X^ at A. The moment diagrams for these

forces are shown in Fig. 6(c), (d) and (e). Fig. 6(b) is the

moment diagram cue to the applied load on the statically determi- '.

nate structure.

With the use of formulas given in Tafel der Werte (6), the neces-

sary coefficients can be obtained.

(Detail calculations are not shown)

EI o 10 _ 2,295,000 kip ft.

EI S30 r -4,360,000 kip ft.

EI S l0 = 7b1

, 000 kip ft.

EI Ixi - 182,250 kip ft..

21 bV = -1^1,750 kip ft.

21 £33 = 234,000 kip ft.

EI £j.i - 4,725 kip ft.

EI 6i, = -4,500 kip ft.

EI S\, - 150 kip ft.

C21 = - A El z - J
z - 31.5

f
(vj

,

L
<=*k i So

f M
c - - J^'^Ti _ . 4,So6

. 30

~ J ^Vttuds. ](Ci, ,V
'')+n)i ) ttl ,

C

|| .
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x _ _
jM,V»o E L _ m 7&QQ _ „ j^O

1 "

1 M,
a ^L '

^°
J El

*2 =

1l
EI

El

-Si'fx 7&000 f nsjooo
(3JT) 1

- x \ro +- 2(~ %\»S) ( 4 7XS") 4-lSixi-o

- 4-.b5

*2 - " I El

3o > 78ooot ("- ^36 OoooJ)

9oo xi ro h-Go("-4Soo) +2i40oo

= 20.4-

Final Moments:

\ - X
l
M
i + *2M2 +" X

3
M
3

+"

- -520(1)4- 4-. 85 C3I. 5x1 +• 0) 4- 20.4 (30x1+0) 4-0

z -60 kip ft.

^ = X-^-f- X
2
M
2

-f- X^ + M
Q

- -520 +- 4.85 (-31.5) + 20.4 (30-50) 4-1200

= -84-. 5 kip ft.

K - -520 4 4-.B5 (-31-5 4- 4-5) 4-20.4- (30 t- 0)

- 156.5 kip ft.
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M = -520 4- 4. 8b (-31.5+45) + 20.4 (30 - 60) +- 1200
o

= 131.5 kip ft.

Horizontal Reaction at A - 156. 5 + 60 - 4-. 82

4i>

Horizontal Reaction at D - 131.54-84.5 - 4.82
45

The final moment diagram is shown in Fig. 6(f)

To compare the solution by the method of combined redundants to the

solution by the method of consistent deformations the same problem

can be worked solving the resulting equations by the triangular

method.

The pattern of the equations is:

150 x
x

+- 4'725x
2

4- (-4500)x
3

= -78,000 .... (I)

4725 x
x

182,250 x
2

4- (-141,750)x
3

= -2,295,000 . . (II)

-4500 x
1

+ (-l1+l,750)x
2
+- (234,000)x

3
- 4,360,000 . (Ill)

Solving by the triangular method: 03)^

150 x + 4-725 x -4500 x = -78,000
J- *- 3

f kZii (I) + (11)1 ; 33250 x 250 x^ - 165,000
*> I5O J

2 3 "

[
4500 (1)4- (III) j; 250x2 99,000 x z 2,020,000

Solving the last two equations

(
-250^ \ ; 33250 x 4 250 * - 165,000

V 332T0V 2 3

250 x
2

4- 999000 x
3 = 2,020,000

x~ - 2074"
and .-

«2 = 4.8
3
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Substituting these values of x
p

and x in (I)

x - -59.5

Moments at A = x (1) - -9.5 kip ft.

Moments at D - -1200 4 59-5 + 60x20. k- - 8^.0 kip ft.

Moments at B : 59.5 t- (0Lt-5)x1+.8 - -156.5 kip ft.

Moments at C : -1200 4- (-1) (-59.5) -^5 C^*8) + 60 (20^)

- -132 kip ft.

which gives the same bending moment diagram as shown in Fig. 6(f).

PRC3L3H: ^

A truss shown in Fig. 7(a) with 8k load applied at point

(1L0, acting downward.

Required: Bar stresses due to given load. (5) page ^01.

Solution: The method of combined redundants for higher degree of

indeterminancy can be demonstrated by this problem. The given

truss is statically indeterminate eight degrees internally. The

truss is made statically determinate by cutting one of the diagonal

members in each panel Fig. 7(b). The forces in the members due to

the applied loads and the redundant forces are shown in Fig. 7(b)

and (c) respectively. The systematic calculations for various

combined redundant coefficients and the final bar stresses are

tabulated in Table 2.

It is to be noted that calculations up to column (31) remain

unaltered for different loadings.
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In order to compare the combined redundant method with the

method of consistent deformations the same problem is solved using

Guass's Elimination Method to solve the resulting equations. (Table

4)

The equations are:

79.96 x + 20.45 x
2

4- 140.08 -

20.45 x
x
+ 93.86 x

2
+ 20.45 X

3
-V-169.60 =

20.45 x + 112.86 x + 20. ^5 x^-)- 193.39 =

20.45 x 4- 123. ob x
h
+ 20.^5 x^ +206.9 =

20.M-5 x^ 4- 123.08 x 4 20.45 x
6 -f- 205.9 =

20.45 x
5
+ 112.86 x

6
+ 20.45 x - 11.30 =

20.45 x
6
+ 93.86 x +20.45 x

8
- 508.60 =

20.45 x -h 79.96 x
b
- 339 .40 =

The solution of simultaneous equation gives:

x
p = 22^ = 2.93
8 - 75.32

x = 500.875 - 20.45x2.93 = 4.86
7 90.04~

x, - 41. '^0 - 20.45x4.86 - - 0.-53
6 " 109.38

x. -176.7 + 20.45x0.53 - -: 1.37
5 " 120.17

X - -176.20 -t- 20.49x1.37 = -1.23
h _ ii9.5i

x? = -162.59 ^-20.45x1.23 = -1.25
108.135

xo = -133.60 4- 20.45x1.25 = -1.21"
d

86.635

*, - -140.08 4 20.45x1.21 -r:-l„44
1 - 79^93
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The detailed calculations are given in Sable 3. The bar stresses

by both methods check fairly well.

CONCLUSION

From the illustrative examples it can be observed that the

combined redundant method eliminates the task of solving the

simultaneous equations, which result from application of the method

of consistent deformations. This is replaced by calculation of

the coefficients of the combined redundants.

In Table 1, for different loading systems, the calculations

remain unaltered except for columns 15 to 22. Therefore, by the

principle of superposition the maximum 1 bar stresses can be obtained

by suitable combinations of loading systems. If the same problem

were to be solved for maximum bar stresses by some other method,

for example^ consistent deformations, then, for each system of load-

ing, the magnitude of the redundant forces must be calculated by

solving the simultaneous equations each time. This is a very

tedious and time-consuming approach. Thus it can be seen that this

method has an advantage if the maximum bar stresses are to be

calculated.

Per a flexural structure, the calculations involved by the

combined redunaant method are the calculations for coefficients of

combined redundants. Thus, the problem of solving simultaneous

equations is eliminated. The redundant forces in this method, of

combined redundants, are quite different from those obtained by the

consistent deformation method.
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It was pointed out by Steven J. Fenves2 A.M. ASCE (8), that

in common types of trusses, if the number of members greatly

exceeds the number of redundants, the combined redundant method

does not have any computational advantage. Moreover, for higher

degree of indeterninancy the accuracy is affected by this method,

.ce more operation of multiplications are involved. However,

the same author, Steven J. Fenves, discovered that, for computer

programming, this method involves fewer operations than by

ordinary methods, that is, matrix inversion by the computer.

2_
Instructor in Civil Engineering, University of Illinois

Urbana, Illinois.
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Table 3. Eighth degree redundant frame by-

consistent deformation method.

BAR : L/A :
s

:
tJ

: u2 k J

U|Un,T
:

-U k
• • : n : n a : ' 2'A : n A

1-3 14-.40 -1.5 - .6 5.18 12.98
2-4 14. 40 - .6 5.18
1-2 17.45 -2.0 - .8 11.15 27.90
3-hr 32.0 -2.0 -.;8 20.4-5 20.45 51.20
1-4 19.20 2.5 i.O 19.20 48.0
3-2 19.20 1.0 19.20

U2U3 T79.96 140.08
3-5 2 -3.0 - .6 2.88

c u 2i:

14.40
4-6 8 1.5 - .6 2.68 -7.20
3-4 32 -2.0 - .8 20.4-5 51.20
5-6 32 -2.0 - .8 20.45 20-45 51.20
3-6 24 2.5 1.0 24.0 60.0
5-4 24 1.0 24.0

u
3
u4 i93.86 169.60

5-7 5.76 -4-. 5 - .6 2.08 15.57
6-8 5.76 3.0 - .6 2.08 -10. .58

5-6 32.0 -2.0 - .8 20.45 51.20
7-8 32.0 -2.0 - .8 20.45 20.45 51.20
5-8 34.J0 2.5 1.0 34.30 85.80
7-6 34.30 1.0 3^-30

U4U5I112.66 193.39
7-9 4.97 -6.0 - .6 1.79

*' xi

17.90
c-iO 4.97 4.5 - .6 1.79 -13.40
7-8 32.0 -2.0 - .6 20.45 51.20
9-10 32.0 -2.0 - .8 20.45 20. *5 51.20
7-10 40.0 2.5 1.0 40.0 100.0
9-8 40.0 1.0 40.0

123.68 D
5
U6I 206. 90

9-11 4.97 -7.5 - .6 1.79 20.40
10-12 4.97 6.0 - .6 1.79 -17.90
11-12 32.0 -2.0 - .8 20.45 51.20
9-10 J2.0 -2.0 - .8 20.45 ZO-AO 51.20

11-10 40.0 1.0 40.0
9-12 40.0 2.5 1.0 40.0

123.68
6 7a

100.0
206. 90

11-13 5.76 -9.0 - .6 2.06 31.10
12-11+ 5.76 7.5 - .6 2.08 -25.90
13-14 32.0 . 6.0 - .8 20.45 20.45 -153.50
11-12 32.0 -2.0 - .8 20.45 51.20
13-12 34.30 1.0 J4-.30
li-14 34.30 2.5 1.0 34.30

112.86
U
7
U8 |

05.80
-11.30

13-15 £ -4.5 - .6 2.88 21.6
14-16 8 9.0 - .0 2.88 -43.2
15-16 32 0.0 - .8 20.45 -153.60
13-14 32 6.0 - .8 20.45 20.45 -153.60
15-14 24 1.0 24.0
13-16 24- -7.5 1.0 24.0

93.86
-180.0
-508.60
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TABLE 3 (concl .).

BAR ; l/a :
• •

a i

•

•
•

un
•

•
• ^ L

A
; u

f
u2 ,

L :

A
:

n

L
A

15-17
16-18
17-18
15-16
17-16
15-18

U+AO

17A5
32.0
19*20
19.20

k.

0.

-7.

5

.5

- .6
- .6
- .8
- .8
1.0
1.0

5.

5.

11,
20.

.19,

19,

,18
,18

.15

,65
,20

.20

- 38.90

-153.60

-144*0
79,.9(7 , .319.,Ml
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ABSTRACT

In the analysis of highly indo terminate structures, the task

of setting up and solving the elastic equations becomes time-

consuming. Several methods have been d eveloped to reduce the

work considerably. This paper illustrates the method of com-

bining redundants. By suitably combining the redundant forces,

an orthogonalized form of simultaneous eauations is achieved.

These can easily be solved for unknown redundant forces. Three

illustrative examples are solved. To compare this method with

another method, two of the problems are also solved by the method

of consistent deformations.

This method of combining redundants has great advantage when

the bar stresses are to be calculated for different loading

conditions. For flexural structures, it is well suited. This

method does not show any computational advantage, when the

structure is highly indeterminate. In such cases, accuracy is

also affected since more operation of multiplications are

involved.


