Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation

http://archive.org/details/developmenttesti00hayd

DEVELOPMENT AND TESTING OF A MULTIPURPOSE HYDROLOGIC YIELD MODEL

by

JUDITH MARIE HAYDEN

B.S., Oklahoma State University, 1977

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas 1979

Approved by:

mane

Major Professor

Dreume D 168 74 1777 H3

ACKNOWLEDGMENTS

The author wishes to express her gratitude and appreciation to the following individuals: to her major advisor, Dr. J. J. Zovne, for his encouragement and consultation throughout this research study; to her committee members, Drs. J. K. Koelliker and H. L. Manges, for their encouragement and assistance during this study; to her husband, Myron, for his encouragement and understanding throughout her graduate studies; to her parents for being dedicated individuals from which to learn; to Mrs. Joan Edwards for typing the manuscript; and to the Engineering Experiment Station, Agricultural Experiment Station, Department of Civil Engineering, Kansas Water Resources Research Institute and the State of Kansas Water Resources Board for providing financial support during this research.

TABLE OF CONTENTS

Chapter				
I.	INTRODUCTION	1		
	Statement of Problem	1		
II.	REVIEW OF PREVIOUS PROGRAM PARAMETERS	3		
	Evapotranspiration	3 7 8		
III.	DEVELOPMENT OF NEW METHODOLOGICAL CONCEPTS	11		
	Weather Modification	11 16 19		
IV.	DESCRIPTION OF COMPUTER PROGRAM	25		
	Purpose	25 26 39 41 50		
V.	RESULTS AND DISCUSSION	53		
	Weather Modification	53 62		
VI.	CONCLUSIONS AND RECOMMENDATIONS	66		
	Conclusions	66 67		
REFER	ENCES	68		
APPEN APPEN APPEN APPEN APPEN	DIX A - LIST OF SYMBOLS	70 73 78 104		

LIST OF TABLES

Table		Page
I.	Precipitation Enhancement Models	15
II.	Guide for Data Input	42
III.	Summary of Results for Precipitation and Runoff	54
IV.	Summary of Results for Recharge and Evapotranspiration	61
v.	Summary of Results for a Disposal Control Facility	64
VI.	Runoff Curve Numbers for Antecedent Soil Moisture Condition II	74
VII.	Soil Classification Used for Irrigation Design	75
VIII.	Crop Codes Used in the Computer Program	77
IX.	Area Codes Used in the Computer Program	77
X.	INPUT DATA FOR NAMELIST ALPHA	105
XI.	INPUT DATA FOR NAMELIST BETA	106
XII.	INPUT DATA FOR NAMELIST AREAS	108

LIST OF FIGURES

Figur	ce	Page
1.	Schematic of the Subsurface Profile	9
2.	Schematic Representation of Moisture Redistribution	18
3.	Generalized Flowchart for Main Program	27
4.	Generalized Flowchart for Subroutine CROPCO	32
5.	Generalized Flowchart for Subroutine WTRMOD	33
6.	Generalized Flowchart for Subroutine SNOWRT	35
7.	Generalized Flowchart for Subroutine DARCRT	36
8.	Generalized Flowchart for Subroutine STORAG	38
9.	Natural and Enhanced Annual Precipitation for Western Kansas	57
10.	Natural and Enhanced Annual Precipitation for Central Kansas	58
11.	Natural and Enhanced Annual Precipitation for Eastern Kansas	59

CHAPTER I

INTRODUCTION

A dependable supply of water for domestic, agricultural and industrial use in the United States has increased in importance during the past few years. Although water is fundamentally a renewable resource in some regions, it is becoming increasingly scarce. For example, the water levels in many reservoirs are falling and groundwater tables are declining to dangerously low levels in many areas, thus resulting in periodic restrictions placed upon its use. In an effort to remedy these conditions extensive research is being conducted on the technological possibilities of providing sufficient water to meet man's increasing demands. These technological possibilities include providing new supplies of fresh water while increasing the efficiency of available supplies.

Statement of Problem

A possible method for increasing the water supply within a particular locality is by weather modification. Weather modification is an attempt to alter the atmospheric conditions, thereby providing a more favorable distribution of precipitation. During the past thirty years the main emphasis of weather modification has been to increase localized precipitation. Although considerable research has been conducted in the past two decades on cloud seeding technology, the effect on the hydrological environment remains uncertain.

In addition to methods of providing new supplies of water by weather modification, methods to increase the efficiency of available water supplies have also received considerable attention. The method of optimizing available water supplies considered in this study is the utilization of effluent from wastewater-treatment plants for irrigation purposes. This method involves the controlled discharge of wastewater to the land for the purpose of promoting plant growth. A major factor which must be considered in land application of wastewater effluent is the design of a storage facility for wastewater control. The design of such a facility requires the evaluation of the relative effect of various conditions on the minimum containment volume necessary to store and control the wastewater effluent.

This research study consisted of the development of a new methodological approach to the previously described problems. The new methodology was incorporated into a computer program initially developed by Bean (1). The final computer program considers selective land disposal and evaporative techniques to enhance agricultural production under various geographic and climatic conditions. The computer program can be used to predict the optimized design for a disposal control facility in addition to evaluating the hydrological effects resulting from the implementation of a rainfall alteration scheme.

CHAPTER II

REVIEW OF PREVIOUS PROGRAM PARAMETERS

The purpose of this Chapter is to review the basic theories and concepts utilized in the computer program developed previous to this study which established feedlot runoff control and disposal guidelines (1). Presented in the first section are the concepts and principles of evapotranspiration. The second section reviews the hydrological aspects of infiltration, interception and surface runoff. Presented in the final section are the concepts of moisture redistribution.

Evapotranspiration

The concept of evapotranspiration was incorporated into the program to evaluate the change in the soil-moisture regime as a result of a change in the climatic environment. Evapotranspiration as used in this study is defined as the rate of moisture loss to the atmosphere as a result of the evaporation of water from plants and/or a specified surface under ambient climatological conditions. It should be noted that a difference exists between potential and actual evapotranspiration for any given site. The potential evapotranspiration, more correctly termed the evapotranspiration potential, is the maximum rate of moisture lost under ideal conditions. Therefore, the evapotranspiration potential is the upper boundary limit on the rate of moisture loss. This fact necessitates that the actual value of the evapotranspiration can never be greater than the evapotranspiration

potential and is usually appreciably lower. The evapotranspiration potential as well as the actual evapotranspiration for any crop and soil condition can only be estimated by indirect means.

A common method for computing evapotranspiration is the Penman combination equation. This equation is capable of considering the effects of various climatic conditions on the rate of evaporation likely to occur from lakes, bare soil, and vegetative surfaces. The Penman equation incorporates both energy balance and aerodynamic transport theories into a single mathematical expression. The mathematical model, based on the Penman equation as developed by Bean (1), for determining the daily evapotranspiration is shown in Equation (1).

ETP = 0.039 Ta^{C.6/3} [(1-r) Ra (0.22 + 0.54 PSUNS) - (1)
2.010 x 10⁻⁹ T⁴ (0.98 - a-b
$$\sqrt{\text{ES x RHD}}$$
)x(0.1 + 0.9 PSUNS)]
+ (1 - 0.039 Ta^{C.673}) x 0.26(e + 0.01 WVD) (ES - ES x RHD)

where

ETP = evapotranspiration potential, in inches Ta = mean daily air temperature, in ${}^{O}F$ T = mean daily air temperature, in ${}^{O}K$ Ra = solar radiation, in mm of water PSUNS = percent sunshine, in %/100 ES = saturated vapor pressure at Ta, in millibars RHD = relative humidity, in %/100 WVD = wind speed, in miles/day a,b = geographic location constants r = reflectance coefficient (albedo) e = mass transfer coefficient The variables Ra, PSUNS, RHD and WVD for a specific geographic location are extrapolated monthly averages from first-order weather station data while T and Ta are computed from daily climatological records. The value of the reflectance coefficient is dependent on the type of surface cover. The evaporation potential is equivalent to evaporation from a free water surface when r is equal to 0.05. For green crops r varies from 0.20 to 0.25. The geographic location constants can be obtained by the methods described by Zovne and Koelliker (2). The saturated vapor pressure, according to Linsley (3), can be computed by the use of Equation (2).

$$ES = 33.9 [(0.00738 + 0.8072)^8 - 0.000019 | 1.8Ta + 48 | + 0.001316]$$
(2)

where

ES and Ta have been previously defined.

The actual rate of evapotranspiration for either bare or vegetated soil conditions is affected by the type of soil and crop present. Evapotranspiration is believed to occur in two stages (4). The first stage, known as the constant rate stage, occurs when the available soil moisture is greater than thirty percent of the maximum amount of available soil moisture. Hillel (4) defines available soil moisture as the difference between the in situ soil moisture content and the permanent wilting point. The maximum available soil moisture is defined as the difference between the field capacity and the permanent wilting point. To calculate the first stage evaporation, Equation (1) is used for a bare soil condition with r equal to 0.20.

When the available soil moisture is less than thirty percent of the maximum available soil moisture, second stage evapotranspiration occurs. To calculate the evaporation from bare soil for this stage Equation (3) can be used.

$$E_{s} = c' t^{\frac{1}{2}} - c' (t - 1)^{\frac{1}{2}}$$
(3)

where

 $E_s = soil evaporation, in inches$ c' = hydraulic coefficient of the soil, in inches/day^{1/2} t = time after the first stage evaporation, in days

If a vegetated surface exists, then Equation (4) should be used to calculate the evapotranspiration.

$$AET = ETP \times k \times \theta_a / .3 \theta_{max}$$
(4)

where

AET = actual evapotranspiration, in inches k = crop consumptive use coefficient θ_a = available soil moisture, in inches θ_{max} = maximum available soil moisture, in inches ETP = same as defined previously

When the soil moisture content is at the permanent wilting point, evapotranspiration does not occur. Equation (4) therefore assumes a linearly decreasing AET from ETP to zero from 0.3 θ_{max} to wilting point. The crop consumptive use coefficient (K) incorporates the Blaney-Criddle Method (5) for evaluating actual evapotranspiration. A daily k value is computed as described in (2).

Surface Runoff

A method for estimating surface runoff which has received wide acceptance has been developed by the Soil Conservation Service (SCS) (6). This method assumes that there is an initial abstraction (IA) of rainfall prior to the occurrence of any surface runoff. The initial abstraction consists of infiltration, interception and surface storage. Incorporated into the method is the assumption that IA is equal to 0.2 of the maximum potential difference(s) between precipitation and runoff. Equation (5) can be used to calculate this maximum difference.

$$S = \frac{1000}{N} - 10$$
 (5)

where

N = runoff curve number

S = maximum potential difference, in inches

As can be seen in this Equation, S is dependent upon the antecedent moisture conditions, soil conditions, land use, and conservation practices through the use of a value (N) obtained from generalized runoff curves. Values for N are listed in Table VI located in Appendix B.

Upon evaluating the maximum potential difference, the magnitude of surface runoff can be estimated by the use of Equation (6).

$$Q = \frac{(P - 0.2 \text{ s})^2}{P + 0.8 \text{ s}}$$
(6)

where

Q = surface runoff, in inches

- P = precipitation, in inches
- S = as defined previously

This equation is applicable only when the amount of precipitation is greater than twenty percent of S. When precipitation is less than twenty percent of S, surface runoff is assumed not to occur.

To evaluate the magnitude of the initial abstraction believed lost as a result of interception Bean (1) suggested using an interceptionstorage capacity of 0.1 inch which is evaporated at the free potential rate. By this method the interception-storage requirement must be satisfied prior to the evaluation of any infiltration or runoff. The remainder of the potential difference which is not lost to evaporation or interception is considered as infiltration.

Moisture Redistribution

This section of the Chapter discusses the concepts used by Bean (1) for the redistribution of moisture within the soil profile. The soil profile was divided into two layers with the first layer being one foot in thickness and the second layer being three feet thick. These two layers were believed to adequately describe the potential root zone within the subsurface soil profile. This assumption is presented conceptually in Figure 1.

Based on this assumption infiltration which resulted from either rainfall or irrigation was assumed to fill each layer to ninety percent of the saturation value with any excess moisture passing below four feet to be used as groundwater recharge. When the time between any successive events which could result in infiltration exceeded two days, the soil moisture of the upper zone was decreased to field capacity with the excess moisture redistributed to the lower zone. The lower zone was then decreased

Figure 1. Schematic of the Subsurface Profile

to ninety percent field capacity. The remaining moisture was considered to percolate below the two layers as a source for groundwater recharge. This method for the redistribution of moisture has produced reasonable estimates of the vertical movement of infiltrating water, although it neglects upward movement of sub-soil water.

CHAPTER III

DEVELOPMENT OF NEW METHODOLOGICAL CONCEPTS

Presented in this Chapter are the basic theories utilized in the development of new methodological concepts incorporated in the computer program (1). The Chapter is divided into three sections. The first section reviews the predictive techniques to evaluate the effect of weather modification on precipitation. The concepts and principles of moisture redistribution within the upper subsurface stratum are presented next. Presented in the final section are the current theories and research which relate to the use of municipal waste as a controllable source of water for irrigation.

Weather Modification

Weather modification encompasses all aspects of weather and climate changes brought about by the activities of man. This section of the Chapter presents the current theories of weather modification which could be used to increase the amount of precipitation within a particular locality. The principal technique used is cloud seeding from airborne or groundbased generators.

Two methods whereby precipitation could be increased artificially by cloud seeding have been suggested by Hobbs (7). The first method is the introduction of large hygroscopic particles or liquid water droplets into a warm cloud formation which lies completely below the level of the 0°C isotherm. The artificial nuclei initiate the coalescence mechanism

of rainfall production by falling through the cloud which results in the collision and coalescence of the smaller droplets lying in their paths. In this way the larger droplets tend to increase in size rapidly. Upon emerging from the base of the cloud the larger droplets should be large enough to survive evaporation in the dry air and reach the ground as raindrops.

The second method to increase precipitation is to introduce artificial ice nuclei in a cold cloud. Precipitation from a cold cloud is dependent upon the coexistence of supercooled water droplets and ice particles in the regions of a cloud above the 0° C isotherm. Since the concentration of natural ice nuclei in the atmosphere is small, cloud seeding with artificial ice nuclei could result in the rapid growth of the ice crystals by condensation of the ambient moisture. The ice crystals then combine to form snowflakes which fall to the 0° C isotherm, and subsequently melt to form raindrops as they reach the ground.

During the past thirty years experimental research has been conducted concerning the effects of cloud seeding on the amount of precipitation. The first extensive experiment conducted on the seeding of warm clouds was carried out in 1952. Warm clouds were seeded with small particles of sodium chloride in East Africa by exploding bombs impregnated with sodium chloride just above the base of the cloud (7). On some occasions the clouds in which the sodium chloride bombs were exploded were noted to disperse rapidly. However, during the seeding period of one month the total rainfall in an area 10 miles downwind had increased six inches over a similar period in this area of nonseeded days.

During this same period of time Bowen (7) experimented in Australia by seeding warm clouds directly with water droplets. In this experiment, the behavior of the seeded clouds were compared with that of similar nonseeded formations and an increase in precipitation was observed. More recently, the University of Chicago conducted research by seeding warm cumulus clouds in the Caribbean with water droplets. An increase in clouds developing precipitation was noted.

The first experimental research conducted on seeding cold clouds occurred in 1946 by Vincent Schaefer and Irving Langmuir (8). Schaefer and Langmuir observed that dry ice, when dropped into a cloud of supercooled droplets under laboratory conditions, produced numerous ice crystals. Consequent field testing verified dry ice to be an effective means to nucleate large areas of supercooled clouds.

Following this demonstration, Bernard Vonnegut (8), who was also working with Schaefer and Langmuir, began to search for other substances having the same crystal properties as ice. Vonnegut found that a silver iodide solution was an effective ice nucleator and could be applied from a ground-based generator, thereby reducing the cost of modifying cold clouds. Thus, a silver iodide solution became the source for consequent cloud seeding research.

In 1966 the National Academy of Sciences Panel on Weather and Climate Modification analyzed the results of research projects involving cloud seeding with ground-based silver iodide generators. The panel concluded that the artificial seeding of clouds apparently could modify cloud structure and increase precipitation by an average of approximately ten percent. However, it remained uncertain whether it is possible to increase

precipitation over large areas for extended periods of time by this weather modification technique. Many more experiments need to be conducted before definitive conclusions can be drawn.

To estimate the potential effects of weather modification on the environment it was assumed in this study that cloud seeding can produce changes in precipitation and that this change will occur in a specified manner. Based on the research conducted by Changnon and Huff (9) the effects of a seeding program will produce a seventy-five percent increase in precipitation of normally small precipitational clouds. They further indicate that clouds producing normally large amounts of precipitation do not benefit from cloud seeding and, in some cases, seeding can reduce the natural efficiency of a cloud by ten percent. Factors hindering the effectiveness of a cloud seeding program are incorporated into the precipitation alteration scheme developed during this research study.

Model B-ZERO which is presented in Table I is based on the results of Changnon and Huff's research (10). The model alters the daily rainfalls in Kansas by the percentages indicated during the months March through September. In the model a discontinuity occurs at the 24-hour precipitation value of one inch. To correct this anomoly and also to provide a precipitation enhancement range, Model B-ZERO MODIFIED was developed (11). Model B-ZERO MODIFIED, also presented in Table I, assumes that there is no increase nor decrease to daily rainfalls of greater than one inch. The effects of these two precipitation alteration models on the hydrological aspects in Kansas are discussed in detail in Chapter V.

Η
6-1
7
8
<
F-i

PRECIPITATION ENHANCEMENT MODELS

Model B-Zero Modified (% increase)	75	30	10	0
Model B-Zero (% increase)	75	30	10	-10
Precipitation Amount (inches)	0.10 or less	0.11 - 0.50	0.51 - 1.00	over 1.00

The process of moisture redistribution within a soil profile primarily occurs under unsaturated conditions. The unsaturated flow process is difficult to describe quantitatively because of the complex relationships between water content, hydraulic conductivity, and hydraulic gradient. Hillel (4) suggested that an accepted method for estimating the movement of water one-dimensionally is by use of the Darcy equation, represented mathematically by Equation (7).

$$q' = K \Delta t i \tag{7}$$

where

q' = volume of water movement per unit area, in inches
K = hydraulic conductivity, in inches/day

 Δt = time increment, in days

i = hydraulic gradient, in feet/feet

The hydraulic conductivity in Equation (7) is a function of the water content of the soil. The value of the hydraulic conductivity is at its greatest when the soil is saturated, and decreases steeply with decreasing water content. Since the value of soil moisture is a continuous variable over time within the computer program, unsaturated hydraulic conductivity-soil moisture content relationships for the in situ soil are required to apply Equation (7). These relationships can be obtained from laboratory experimentation.

The hydraulic gradient in Equation (7) is the sum of the gravitational gradient, directly dependent on elevation, and the soil water potential. This is expressed mathematically by Equation (8).

$$i = \frac{\Delta z + \Delta h}{\Delta z}$$
(8)

where

 Δz = change in elevation, in feet

 Δh = change in soil water potential over distance Δz , in feet

i is the same as previously defined

The soil water potential is assumed to be a positive value when the water movement is in the downward direction indicating a decrease in soil water potential with a decrease in elevation. A negative soil water potential, also referred to in literature as a capillary potential or a soil water suction, occurs when the decrease in soil water potential is in the upward direction causing an upward movement of flow. To apply the value of the soil water potential within the computer program to Equation (7) laboratory experimentation relating soil moisture and the soil water potential is required.

To evaluate the redistribution of moisture using Darcy's equation for one-dimensional flow, the subsurface profile illustrated in Figure 2 was incorporated conceptually into the computer program. As illustrated, the subsurface profile was divided into three layers with the upper layer being one foot in thickness, the middle layer being three feet in thickness, and the lower layer being two feet thick. The three layers were believed to adequately describe the movement of moisture within the potential root zone of the subsurface profile.

An infiltrating event resulting from either rainfall or irrigation is distributed within the soil profile by filling each successive layer to field capacity. All excess moisture passing below six feet is assumed to

Figure 2. Schematic Representation of Moisture Redistribution

be eventually used as groundwater recharge. The moisture within each layer is then redistributed by applying the Darcy equation for onedimensional flow. The time increment At, suggested by Neibling, et al. (12), is assumed to be equal to one day when no water infiltrates the soil surface on any given day and equal to 1/6 day when an infiltration event occurs.

The use of the Darcy equation for the one-dimensional unsaturated redistribution of moisture requires the use of soil water potentialsoil moisture and unsaturated hydraulic conductivity-soil moisture relationships obtainable from laboratory testing on undisturbed soil samples, as described by Neibling, et al. (12).

Municipal Wastewater Effluents

The application of municipal wastewater effluents on agricultural land has received considerable attention during recent years. With the enactment of the Federal Water Pollution Control Amendments of 1972 requiring that the discharge of pollutants into waterways cease by 1985, the irrigation method of land application has been recognized as an alternate means to treat wastewater. The irrigation process is used primarily to maximize crop production while the disposing of municipal wastewater is a secondary benefit.

There are many factors affecting the use of wastewater effluent as a source of water for irrigation. The first factor to be considered is the minimum level of wastewater treatment required prior to land application. Wastewater effluent from primary and/or secondary treatment plants has been used for irrigation in many states. As

an example, California allows the use of primary effluent for surface irrigation of orchards, vineyards, and fodder, fiber and seed crops (13). Generally, the public health agencies of each state place limitations on the quality of municipal wastewater that can be used for irrigation.

The next factor to be considered is site selection. Hall, Wilding and Erickson (14) suggest that the site selection criteria be based upon three interrelated parameters. These parameters include general topographic features, geologic characteristics, and in situ properties of the soil. An evaluation of the proposed site includes both a careful inspection of the site and preliminary tests conducted on the soils.

The ideal topography for utilization of wastewater by irrigation is directly dependent upon the type of distribution system to be used. For example, the irrigation of cultivated crop lands using the sprinkler technique restricts the slopes to fifteen percent or less. However, slopes of up to thirty percent are permissible if the sprinkler method of irrigation is to be applied where noncultivated crops are grown. Surface irrigation requires relatively flat land although slopes as steep as five percent could be used with contour furrows. Increasing slopes generally result in a reduction of the infiltration rates of most soils thus causing excessive runoff and soil erosion. The cost effectiveness of various irrigation practices is a major constraint in selecting the topography best suited for application of the wastewater effluent.

The suitability of a site is also a function of the physical, chemical and mineralogical properties of the soil. These properties influence the infiltration rate, moisture holding capacity and any

absorption reactions with the waste components. In land application of municipal wastewater, the soil functions both as a natural filter and as a medium for any biological and/or chemical reactions, thus providing for the natural treatment of wastewater. An ideal situation would be to have a soil with the ability to assimilate large quantities of dissolved solids while remaining highly permeable, however such a soil does not exist. Therefore, the selection of the most advantageous soil is dependent upon other constraints.

The storage requirement for the wastewater effluent is the third factor to be considered. Conventional treatment plants collect, treat, disinfect and discharge effluent wastewater into available surface water on a continuous basis. The design of a land disposal treatment facility, like the conventional plant, must be operated continuously with the exception that the ability to discharge effluent is seasonal. The design of a land disposal facility must include a storage reservoir capable of containing the effluent wastewater for a period ranging from three months in moderate climates to seven months in cold northern states. This storage requirement is directly related to several climatic factors. The primary climatic factors are temperature, precipitation and snow cover. The application of effluent to the land is generally suspended when the temperature falls below 25 degrees Fahrenheit (13). The maximum daily precipitation allowed before the application of wastewater must be suspended is dependent on the infiltration rate of the soil. Snow cover should be minimal during the land application process.

The treatment process of wastewater by land application requires an extensive monitoring program. The program should be designed to consider

influent, pretreatment, storage, disinfection, drainage, seepage, groundwater, surface water, soil and crop characteristics. Data obtained from these monitoring programs is essential to the management decisions concerning land application.

In recent years a number of experimental and operational land application systems have been designed to utilize wastewater. The Michigan State University Water Quality Management Project (WQMP) is an example of a research and development project which studies the applications of wastewater to agricultural land (15). This facility, which was completed in 1974, utilizes effluent from the East Lansing sewage treatment plant after it has undergone primary and secondary treatment processes. The site is carefully monitored and controlled to determine possible changes in groundwater, soil, or other variables.

The WQMP facility consists of four artificial lakes having a total surface area of forty acres with an average depth of eight feet. The municipal effluent undergoes chemical, biological and physical treatment while it passes sequentially through the four lakes over a period of 30 to 60 days. Up to two million gallons per day of effluent can be handled by this facility.

The facility at Michigan State University also includes three hundred and twenty acres for application of treated wastewater effluent to agricultural lands. One hundred and fifty of these acres have been provided with irrigation spray equipment capable of applying effluent at a rate of two inches per week between the months March and November. Both annual and perennial forage crops have been irrigated using this technique. Although the project is still in the experimental stage, present

results indicate the economic feasibility of applying wastewater effluents on agricultural land for the purpose of enhancing food and fiber production for livestock.

The largest wastewater land treatment facility using sprinkler irrigation equipment in the United States at the present time is the Muskegon County Wastewater Management System (16). This facility was designed to transmit municipal and industrial effluents on a county-wide basis into a central treatment plant. At the central plant the wastewater is treated to comply with the local, state and federal discharge requirements prior to land application. All facets of the operation are continuously monitored to guard against possible pollution of the soil, groundwater and surface waters.

The Muskegon County facility was designed for an influent flow rate of forty-two million gallons per day. The current average flow is approximately twenty-eight million gallons per day with forty percent domestic wastewater and sixty percent industrial. The wastewater is initially treated biologically in three aerated lagoons. The wastewater is then discharged into two large storage lagoons which have a maximum design storage period of four months. The water quality of the storage facilities is monitored daily. When the water quality meets the state health department standards, the treated wastewater is released from the storage lagoons into an outlet lagoon where it is disinfected by chlorination prior to land application. The disinfected effluent is then sprayed on 6,000 acces of farmland at an application rate of approximately 3.5 inches per week.

The Muskegon County Wastewater Management System has proven to be an efficient means of treating and productively disposing of the municipal

wastewater effluent while maintaining strict environmental protection. The elimination of direct effluent discharges into the waterways has also resulted in improvements in the water quality of the surface water while providing conservation of the groundwater.

CHAPTER IV

DESCRIPTION OF THE COMPUTER PROGRAM

Purpose

The purpose of the computer program is to provide a means of designing various disposal control facilities. The program also serves as a means of evaluating both selective land disposal and evaporative techniques to enhance agricultural production within Kansas. The general format of the model makes it applicable over a wide range of disposal conditions in addition to being readily adaptable to various geographic and climatic regions. The computer program also serves as an effective means to evaluate the variation in hydrological effects which could result from the implementation of methods to modify existing weather patterns.

The size of the disposal control facility required is directly dependent upon the magnitude of inflow. There are four major sources of inflow which can be considered by this model. These sources are: (1) precipitation directly into the pond, (2) runoff from the natural watershed, (3) feedlot runoff, and (4) municipal wastes. Any combination of these sources can be considered by the model as inflow to the system. However, outflow from the system can occur only as evaporation, overflow or induced removal. The induced removal of outflow generally consists of incorporating the wastes into a supplemental irrigation system. Although pond overflow is a source of outflow it should not be directly considered in the design. The model depicted by the computer program simulates field

conditions by extrapolating the data obtained from previously recorded precipitation and temperature patterns. The model also considers variation in soil properties, meteorological conditions, tillage and farming practices which may exist in the area under consideration.

Organization

This section of the Chapter describes the organizational make-up of the computer program. Included with a description of the main program are brief descriptions of each subroutine and generalized flowcharts illustrating their operational procedures. The computer program, titled Kansas State University Hydrologic Yield Model (KSUHYDRO), was written in Fortran IV language and calibrated on the ITEL AS/5 computer located at Kansas State University.

KSUHYDRO consists of a main computer program which utilizes several subroutines as a means of incorporating various options. The use of several subroutines rather than a continuous program provides for a stable framework upon which to base future modifications. In addition, this framework allows for building, testing and modifying the program without necessitating long periods of down time.

The main program, illustrated in Figure 3, controls and regulates the various program components. As can be seen in Figure 3, the first function of the main program is to read-in the various information required. This information is read-in on both data cards and data statements. After the data has been entered, properly stored and categorized the main program initiates the sequence of computational operations specified by the model.

Figure 3. Generalized Flowchart for Main Program

Figure 3. (Continued)

Figure 3. (Continued)

Figure 3. (Continued)

The computational operations begin by sizing the storage facility. The required storage facility or pond is developed by using the general configuration of a prismatoid. The maximum depth, base length, base width, and side slopes of the prismatoid are varied to maximize the volume and surface area. This maximization technique provides for the optimization of required resources.

The format of the main program directs the computer to call subroutine CROPCO next. Subroutine CROPCO, developed by Zovne, et al. (2), is used to calculate the various crop coefficients necessary in the analysis of the evapotranspiration of the disposal areas under consideration. Figure 4 shows the generalized flowchart for this subroutine. Upon returning to the main program, the annual crop rotation pattern for the disposal areas is established.

WTRMOD, the next subroutine called by the main program, incorporates the implementation of a weather modification technique. As presented in Chapter III, the only weather modification technique considered by KSUHYDRO is cloud seeding. The generalized flowchart for this subroutine is shown schematically in Figure 5. After all the adjustments are made to the values previously recorded for the daily precipitation, the operational coding directs the computer to return to the main program.

The calculation of the potential evapotranspiration is the next operation performed by the main program. Potential evapotranspiration is determined by means of the Penman Combination equation. Following completion of this operation, lake and bare soil evaporation potentials are determined for the geographic area under consideration. Subroutine SNOWRT is then called by the main program. SNOWRT evaluates the maximum and

Figure 4. Generalized Flowchart for Subroutine CROPCO

minimum daily temperatures, and determines if the precipitation is in the form of rain or snow. Also the potential accumulation of the snow pack or the possibility of the formation of a snow melt is evaluated. Following these computations subroutine SNOWRT, represented by the flowchart shown in Figure 6, directs the computer to return to the main program.

The main program evaluates the amount of soil moisture within the land disposal area next. If any precipitation has occurred, the magnitude of infiltration, interception storage, and runoff is calculated. The amount of moisture which infiltrated from the surface is distributed within the upper six feet of the soil profile. Any moisture infiltrating below six feet is considered as groundwater recharge. The volume for surface runoff is calculated by using the method developed by the Soil Conservation Service (SCS) for the antecedent moisture condition II. Modifications to antecedent moisture conditions I or III are then made and evaluated. The soil moisture which has been modified is then redistributed. The main program calls subroutine DARCRT where redistribution is accomplished by utilizing a modified form of Darcy's equation for unsaturated one-dimensional flow. The equation requires the use of hydraulic conductivity and soil-water potential parameters which should be determined from laboratory testing. Subroutine DARCRT, as shown conceptually in Figure 7, then directs the computer to return to the main program. If soil laboratory testing data is not available, moisture redistribution can be established through an evaluation of field capacity, as discussed in Chapter II.

The next operation conducted by the main program is the calculation of the magnitude of evapotranspiration likely to occur under field

Figure 6. Generalized Flowchart for Subroutine SNOWRT

Figure 7. Generalized Flowchart for Subroutine DARCRT

conditions. This calculation is dependent upon ambient soil moisture, vegetation, and climatic conditions. The soil moisture distribution is then reevaluated. After the determination of the evapotranspiration is complete the possibility of using the stored water for irrigation is considered. By adjusting soil moisture values while decreasing the pond volume, irrigation can be simulated mathematically for specific disposal areas.

If feedlot and/or municipality wastes are to be considered, then subroutine STORAG is called. This subroutine generates the volume of potential feedlot runoff as inflow to the storage facility in addition to considering any variations in climatic conditions. Additional pond loading resulting from the inflow of municipal waste disposal can also be evaluated. A conceptual flowchart for subroutine STORAG is shown schematically in Figure 8.

Upon returning from subroutine STORAG the computer calculates the surface evaporation from the storage pond. The required volume of the storage pond is reevaluated by incorporating all the inflows to the system. If the combined inflows produce a volume greater than the maximum volume available for storage, then the amount of overflow is calculated and a message is issued to the user which indicates the base dimensions required to contain all the inflow. The main program then updates the daily and monthly accounts for the storage facility and disposal areas. A written summary is provided at the end of each set of yearly calculations prior to continuing on to the next year. The final operation of the computer program is to write an average annual summary which can be used for a prediction analysis.

Figure 8. Generalized Flowchart for Subroutine STORAG

Capabilities

This section describes the capabilities of the computer program to simulate actual field conditions. The possible existence of varying climatic, soil and vegetation conditions as well as inflow and outflow sources requires that the program possess multiple capabilities.

The model simulates climatic conditions by utilizing previously recorded precipitation and temperature patterns on a daily basis for a specified geographic location. The required climatological data is obtained from a magnetic computer tape provided by the National Weather Service Climatic Center located in Asheville, North Carolina. Missing data on the tape is automatically adjusted in the program by assuming the previous day's value. In addition, the program can be used to predict the possible effects of weather modification based on historical precipitation patterns. The period and location to be evaluated is controlled by input parameters.

The major components used in the program are the inflows from the feedlot and/or municipal wastes, in addition to the size of the storage and disposal facilities to be used. The program is capable of evaluating the results from up to nine disposal areas under the following three conditions: (1) a watershed with runoff as inflow to the storage facility, (2) a watershed with runoff as inflow to the storage facility which is to be used as a major irrigation source, and (3) a disposal area requiring only supplemental irrigation. The components to be evaluated in any simulation model is regulated by means of the input data.

Variations in terms of area, soil type and crop for each disposal area can also be incorporated. The twelve soil types which can be

evaluated by this program are presented in Appendix B. The variation in crops which can occur are: wheat, grain sorghum, corn, soybeans, pasture, alfalfa, and fallow. An annual crop rotation using periodic fallow conditions can be analyzed with crop cover occurring on either the odd or even years of the simulation period.

The hydrological effects on each area are evaluated using the operations defined earlier in the Chapter. The program is capable of evaluating the redistribution of soil moisture by using a modified one-dimensional Darcy equation using unsaturated flow conditions. This option can be used only when the unsaturated flow characteristics of the soil are known.

Irrigation can be rapidly evaluated by using the program. The irrigation application rate, in units of inches per day over the proposed areas, can be varied by input parameters. In addition, the application of irrigation can be optimized by specifying that the soil moisture within the top twelve inches must be below a specified percentage of field capacity before irrigation is implemented.

The disposal facility should be designed to provide one hundred percent control of inflow so that no overflow occurs. Incorporated into the program is a written statement to the user indicating the required base dimensions to provide for one hundred percent control. Statistical hydrological data is also available to the user for use in prediction analysis. Since the cost of irrigation is increasing, the computer program developed previously and modified during this research study provides an adequate and efficient means to design and evaluate performance of systems for utilizing runoff and wastes as a renewable irrigation resource.

Data Input

This section of the Chapter describes the format specified for the data to be entered into the computer program. The section is divided into seven subsections with each subsection describing the required format necessary for a particular set of data. All numeric data must be right-hand justified and a complete data set is required for a successful model analysis. Presented in Table II is a guide for data input.

Location and Model Identification

The first three data cards are written in alphanumeric notation for the purpose of aiding in identification of a particular analysis. The first card is used to describe the geographic location, stored as NAME OF CITY AND STATE. This description begins in column 20 and may contain a maximum of 20 alphanumeric characters. The second card is used to indicate if a weather modification technique is to be implemented. The term WEATH MODIF MODEL, which begins in column 2 with 20 characters, indicates that a weather modification scheme was used. If no weather modification technique was used then the card must be left blank. The third data card is used to identify the possible incorporation of municipal wastes to the storage pond. This is represented by the term INFLOW TO STORAGE POND, beginning in column 2 with 24 alphanumeric characters. A blank card will indicate no municipal wastes are to be considered.

Simulation Model Parameters

The data cards described in this subsection utilize the NAMELIST feature of the Fortran IV language. The first column of the data card

TABLE II

GUIDE FOR DATA INPUT

TABLE II (Continued)

(Donnt from 1 1 (Cont from)

TABLE II (Continued)

	80	80		80		80
			HGWZ	19 1		
			HLZ			
			ach area) HUZ	31	ich month)	
	GSEP		ne card for e CONDGW	21	e card for ca	
ATE	SBP_MCSEP_D	11 13	Flow Data (o CONDLZ	11	aste Data (on	
IPLAN KOT	1 2 3 4 MGSBP DGS	1258	Unsaturated CONDUZ		Municipal Wardship	1

TABLE II (Continued)

Climatological Data

Magnetic Tape Driver

utilizing this feature is required to be blank. The character '&' must appear in column 2 followed immediately by the NAMELIST name, with no embedded blanks. The NAMELIST name is followed by a blank space. All input items must appear in the form of a variable = constant, with each item separated by a comma. The list of items is terminated with the characters '&END' which allows for several data cards to be used as input under one NAMELIST.

The first data card featuring a NAMELIST option is termed SEED. The variables included are MODEL and WPCNT. MODEL is represented by the integer 1,2,3or4. When MODEL is equal to 1, there will be no modification of the precipitation data. When MODEL is equal to 2, the 'B-Zero' modification, previously described, is implemented. When 3 is used, rainfall is increased by the percentage inputted for WPCNT. The integer 4 indicates the implementation of the 'B-Zero Modified' alternation scheme.

The next set of data is read from the NAMELIST ALPHA. The following variables are included in this NAMELIST feature: BRUNTA, BRUNTB, E, RCROP, DORM, GROW, PAVLU, PCVMAX and DSRATE. The first four variables are used in computing the evapotranspiration potential. BRUNTA and BRUNTB are geographic constants, E is the wind coefficient, and RCROP describes the reflectance coefficient for use in the Penman equation described previously. The variables DORM and GROW, expressed in inches, are used in computing surface funoff from a feedlot area.

Scheduling irrigation requires the input of PAVLU, PCVMAX, and DSRATE. Irrigation is implemented only when the soil moisture is below a percentage, PAVLU, of field capacity. PCVMAX expresses the minimum pond volume, as

a fraction of the maximum volume, required for irrigation. The disposal rate, in units of inches per day, is defined by DSRATE.

The final NAMELIST data set is represented by the name BETA. The variables, HMAX, L, W, and S are the base parameters, in units of feet, for maximum depth, length, width and side slope used in sizing the retention pond. Variables INDST, YSTART, MSTART, and YEND locate the appropriate block of precipitation and temperature data to be read from the magnetic tape. INDST is an index reference number for the geographic location. YSTART, MSTART and YEND define the starting year, month, and ending year of the simulation period.

The variable ROTAYR is represented by the integer 1 or 2. When ROTAYR is equal to 1, an annual crop/fallow rotation is implemented with the crop analysis on the first year of the simulation period. When ROTAYR is equal to 2, fallow is established on the first year of the simulation period.

DARCEQ is also represented by the integer 1 or 2. When DARCEQ is equal to 1, the redistribution of moisture within the soil profile is evaluated by the Darcy equation for one-dimensional unsaturated flow. When DARCEQ is equal to 2, the simplified method, described previously, is used for analyzing the redistribution of moisture. The unsaturated flow data cards, described below, are not required when DARCEQ is equal to 2.

The variable BYPASS establishes feedlot runoff and/or municipal waste as a source of inflow to the storage facility. BYPASS is represented by the integer 1,2,3or4 with each integer establishing the following analysis: (1) BYPASS equals 1- no feedlot runoff or municipal waste, (2) BYPASS equals 2- feedlot runoff, (3) BYPASS equals 3- municipal waste, and

(4) BYPASS equals 4- both feedlot runoff and municipal waste. Data cards for municipal waste input, described below, are required only when BYPASS is greater than or equal to 3.

The final three parameters included in BETA are LTAREA, STORM, and NPLOTS. The feedlot area, in acres, is represented by LTAREA. The statistical 25 year-24 hour storm is stored as STORM, in inches. NPLOTS indicates the number of disposal areas included in the analysis.

Meteorological Data

The data required for the meteorological conditions is entered on the next set of data cards. This data is entered on a monthly basis with each month appearing on a separate card, thus a total of twelve cards are necessary to describe the expected conditions.

The mean monthly sunshine and relative humidity are entered in columns 3 and 5, respectfully. Both variables are entered in units of percent and are stored by the variables PSUNS and RHD. RA, the midmonthly intensity of solar radiation in mm of water evaporated per day, appears in column 7. In column 11 the mean monthly wind speed, WIND, is entered in the units of miles per hour. The final parameter is stored as MMAT, the mean monthly temperature in degrees Farenheit, and is located in column 14.

Disposal Area Data

The next group of data requires one card for each disposal area under analysis. The first card is read in matrix form (i,j) where i and j represent the reference number for crop and soil in column 3 and 6, respectfully. This information is stored by the computer under the parameter name IAREA. The area of each plot, stored as AREA, is entered on the second card in column 2, using units of acres. The parameter IPLAN on the third card indicates the reference number for irrigation or runoff collection for each disposal area. IPLAN is an integer located in column 2. Column 3 of this same card implements annual crop rotations through an integer reference number stored as ROTATE. All reference numbers are defined in Appendix B.

The final data card establishes the dates for planting and harvesting crops on each area. MGSBP and DGSBP indicate the month and date for the beginning of the growing season, located in column 2 and 5, respectfully. The ending month and date are stored as MGSEP and DGSEP in columns 8 and 11, respectfully. The monthly parameters are entered as integers with January represented by 1, February by 2, etc. The field for each integer is two spaces.

Unsaturated Flow Data

A data card for the hydraulic properties of each disposal area is required when the moisture redistribution is to be analyzed by the Darcy equation for one-dimensional unsaturated flow. The parameters CONDUZ, CONDLZ, CONDGW, entered in columns 1, 10, and 20, respectfully, are the computed hydraulic conductivities for the soil profile layers described previously. The soil-water potential variables, stored as HUZ, HLZ, HGWZ, are entered in columns 30, 40, and 50, respectfully.

Municipal Waste Data

The municipal waste data is entered on a monthly basis, requiring a total of 12 cards. The monthly values, stored as MUNDIS, are located in column 1. MUNDIS is in the units of gallons per day with each value being the average monthly disposal. These data cards are included only when municipal waste is included as input to the storage facility.

Climatological Data

The final set of data cards are IBM control cards generating the input of climatic data from a magnetic tape. The tapes, provided by the National Weather Service Climatic Center, are written in NWS Format II language. The data includes daily precipitation, inches, and temperature, degrees Farenheit, for the simulation period.

Data Output

This section of the Chapter describes the output data from the computer program. The section is divided into three subsections with each describing a portion of the program output. An example of the output data is presented in Appendix E.

Input Data

The first set of data to appear as output is a summary of input parameters. The first line, indicating the station and simulation period, is followed by the model identifiers and the size of the 25 year-24 hour storm. The retention pond variables are then listed. Included are the facilities base dimensions, side slope, maximum depth, maximum pond volume and the receiving area for precipitation.

Next the area variables are presented according to plot numbers. Under each plot the area, soil type and vegetative cover, including an annual crop rotation, is listed. The plan to be implemented on each area (irrigation and/or runoff collection) and the irrigation management scheme is also included.

The summary of input parameters described under this subsection is repeated as output prior to the final summary. The purpose for duplicating this information is to aid the user in analyzing the results.

Annual Summary

This subsection describes the annual summaries for the disposal facility and areas during each year of the simulation period. A message to the user is initiated at the beginning of the annual summary when the following events occur: (1) a storm of magnitude equal to or greater than the 25 year-24 hour storm, and (2) an overflow of the storage facility. The date of occurrence and also the dimensions required to prevent overflow are included in the statements.

The water budget for the storage facility is printed in tabular form. Each row tabulates the monthly summaries with the last row representing the annual totals. The units incorporated for inflow and outflow are acre-inches. Columns 2 through 5 correspond to inflows to the system while columns 7 through 9 represent outflows. The sources of inflow include precipitation, municipal waste, feedlot runoff and watershed runoff. Irrigation, surface evaporation and overflow are the sources of

outflow. In addition, the number of days irrigation is implemented and the depth, in feet, of the storage facility at the end of each month is included in volumns 6 and 11, respectfully. Column 10 represents the change in volume in units of acre-inch. This column can be used as a water account check since the inflows minus outflows equals the change in volume.

Next the moisture budget for each area is printed in tabular form. Sources of moisture input for each area include precipitation and irrigation. The outputs are interception, surface runoff, percolation and evapotranspiration. A column indicating the total monthly and annual change in soil moisture is also included. All units are in terms of inches. The moisture account balances when inputs minus outputs minus change in snow storage equals change in soil moisture.

Following the monthly accounts for each area an annual summary of the operating parameters is printed. This includes statements indicating the percent of wastewater controlled and percent of maximum pond volume required. Also included is the accumulation of a snow pack during the season and the change in snow storage as compared to the previous year.

Final Summary

The final portion of output is a final summary utilizing average annual computations over the simulation period. The summaries include meteorological input, pond operations and individual disposal area averages which can be used in a cost to benefit prediction analysis. Also included is a summary of statistical data used to generate the precipitation and runoff frequency curves.

CHAPTER V

RESULTS AND DISCUSSION

This Chapter presents and discusses the results obtained from using the computer program to analyze the effects of weather modification and the design of a supplemental irrigation system using municipal wastewater. The first analysis presented is the evaluation of the hydrological effects of implementing a weather modification program in Kansas. The second analysis consists of an optimized design for using effluent municipal wastewater for supplemental irrigation.

Weather Modification

Ten locations representing a geographic cross-section of Kansas were used to test the effects of cloud seeding on the current hydrological environment within the state. The locations selected to represent the western section of Kansas were Colby, Dodge City, Garden City, Goodland and Hays. Belleville and Ellsworth were selected to represent the central section of the state. The eastern portion was represented by Horton, Independence and Topeka. These ten locations were chosen because of the availability of historical climatic data in these regions. Each location was analyzed for a crop cover of wheat without irrigation. The period simulated for each location used in the analysis is presented in Table III. The input data used for each location is presented in Appendix D.

TABLE III

SUMMARY OF RESULTS OF PRECIPITATION AND RUNOFF

		Precipitation (in.)			Runoff (in.)		
Location	Time Period	Natural	B-ZERO	B-ZERO MODIFIED	Natural	B-ZERO	B-ZERO MODIFIED
Colby	1950-1962	18.4	20.9	21.3	0.8	0.9	1.1
Dodge City	1949-1973	20.7	23.0	23.6	1.1	1.2	1.4
Garden City	1950-1974	18.2	20.2	20.7	0.8	0.8	1.0
Goodland	1949-1973	15.9	18.4	18.7	0.4	0.5	0.6
Hays	1948-1973	23.4	25.4	26.2	1.6	1.6	2.0
Belleville	1949-1973	30.0	32.1	33.2	3.4	3.5	4.0
Ellsworth	1946-1970	27.1	29.1	30.0	2.4	2.5	2,9
Horton	1946-1970	36.7	38.6	40.1	5.9	5.9	6.8
Independence	1948-1961	36.9	38.8	40.0	5.7	5.7	6.4
Topeka	1964-1973	37.0	38.7	40.1	5.6	5.5	6.4

Precipitation

Two weather modification schemes were used to modify the historical precipitation patterns for each of the ten locations during the months March through September. The first modifying scheme, Model B-ZERO, produces a seventy-five percent increase in precipitation from clouds producing normally 0.10 inch or less. Precipitational clouds which normally provide between 0.11 and 0.50 inches are increased thirty percent under Model B-ZERO conditions while amounts between 0.51 and 1.00 inches are increased ten percent. Large precipitational clouds are reduced ten percent by Model B-ZERO.

The second weather modification scheme analyzed is Model B-ZERO MODIFIED. This model modifies the daily rainfalls in Kansas the indicated percentages given for Model B-ZERO with the exception of large rainfalls. There is no modification to rainfalls of greater than 1.00 inch under this model. Model B-ZERO MODIFIED provides the potential range in precipitation increase using cloud seeding programs.

The results of modifying the daily rainfalls during the periods simulated for each location are presented in Table III. The average increase in the magnitude of precipitation for the time period considered within the state was approximately two inches per year using Model B-ZERO while approximately three inches per year was obtained using Model B-ZERO MODIFIED. These results agree with previous research estimates which indicated that a possible increase of ten percent could be obtained from using a cloud seeding program (7).

Although the increase in magnitude of rainfall was approximately equal throughout the state, the percentage of rainfall increase varied significantly for western, central and eastern portions of Kansas. In the western section of the state, Model B-ZERO indicated an average increase in precipitation of 11.6 percent while B-ZERO MODIFIED indicated a 14.5 percent increase. An increase of 7.3 and 10.7 percent resulted in the central portion of Kansas from using Models B-ZERO and B-ZERO MODIFIED respectfully. Increases in the eastern section were indicated to be only 5.0 percent for B-ZERO and 8.7 percent for B-ZERO MODIFIED. The range of this potential precipitational increase is shown schematically in Figures 9, 10 and 11 for the western, central and eastern sections respectfully. The time period chosen was from 1950 through 1962 because of the wealth of data available during this period for the ten locations.

Surface Runoff

The surface runoff which could be expected was estimated using the method developed by the Soil Conservation Service previously described in Chapter II. It should be noted that prior to any surface runoff an interception-storage requirement of 0.1 inch had to be satisfied. The results obtained for the surface runoff based on the ten locations previously defined are presented in Table III.

As can be seen in Table III the expected average amount of annual surface runoff in western Kansas is only 0.9 inches, while central and eastern Kansas averaged 2.9 and 5.7 inches respectfully. The use of Model B-ZERO increased the runoff in all three sections of Kansas approximately 0.1 inch. However, Model B-ZERO MODIFIED indicated an increase in the annual runoff of 0.2 inches in western Kansas, 0.5 inches in central Kansas and 0.8 inches in eastern Kansas. It is believed that the results

Figure 9. Natural and Enhanced Annual Precipitation for Western Kansas

Figure 10. Natural and Enhanced Annual Precipitation for Central Kansas

Figure 11. Natural and Enhanced Annual Precipitation for Eastern Kansas

obtained from using the two precipitation enhancement schemes accurately describe the expected range of increase in runoff. This belief is based on the results of the research conducted by Hanson and Woolhiser (18). Their research conducted on conditions in western South Dakota which were similar to those used in this study indicated a limited increase in runoff similar to B-ZERO and a 27 percent increase using a Model similar to B-ZERO MODIFIED.

Deep Percolation

The deep percolation values presented in Table IV represent the quantity of moisture passing through the lower zone of the soil profile as discussed previously. The natural amount of deep percolation under normal precipitational patterns in the western section of the state is apparently quite low. The computer analysis predicts an increase in the magnitude of deep percolation to be 0.1 inch annually using a precipitation enhancement program in western Kansas. The central section of the state, which currently has an average annual deep percolation of 0.7 inches could expect an increase of 0.5 to 0.8 inches.

The eastern portion of Kansas would receive the greatest benefit to potential groundwater recharge as a result of using a weather modification scheme. The average amount of deep percolation under natural conditions is currently estimated to be 3 inches annually. Models B-ZERO and B-ZERO MODIFIED predict that potential recharge could be increased to 4.0 and 4.5 inches respectfully. These values indicate that approximately 50 percent of any additional moisture which would result from cloud seeding in eastern Kansas could be considered as potential groundwater recharge.

TABLE IV

SUMMARY OF RESULTS FOR RECHARGE AND EVAPOTRANSPIRATION

		Deep Percolation (in.)			Evapotranspiration (in.)		
Location	Time Period	Natural	B-ZERO	B-ZERO MODIFIED	Natural	B-ZERO	B-ZERO MODIFIED
Colby	1950-1962	0	0	0	12.9	14.8	15.0
Dodge City	1949-1973	0	0.04	0.07	14.5	16.2	16.6
Garden City	1950-1974	0	0.03	0.05	12.9	14.4	14.8
Goodland	1949-1973	0	0	0	10.8	12.7	12.9
Hays	1948-1973	0.10	0.14	0.18	16.6	18.2	18.6
Belleville	1949-1973	1.24	1.99	2.36	19.3	20.1	20.3
Ellsworth	1946-1970	0.22	0.46	0.61	18.9	20.2	20.6
Horton	1946-1970	4.25	5.51	6.05	19.8	20.2	20.2
Independence	1948-1961	2.06	2.95	3.33	22.1	22.7	22.9
Topeka	1964-1973	3.01	3.63	4.05	21.2	21.9	22.0

Actual Evapotranspiration

Evapotranspiration (AET) as used in this study includes both bare soil evaporation and any transpiration. The AET values predicted for each location are presented in Table IV. Using the data presented in this Table the average annual AET values were estimated to be 13.5, 19.1 and 21.0 inches for western, central and eastern Kansas respectfully. These values indicate that nearly two-thirds of the total precipitation under natural conditions is dissipated by AET.

In western Kansas, Model B-ZERO predicted an increase in the AET value of 1.8 inches while Model B-ZERO MODIFIED indicated an increase of 2 inches. These values imply that 75 percent of the moisture added as a result of weather modification will be utilized in the ET process. In the central portion of the state, increases of 1.0 to 1.3 inches were predicted. These values represent nearly 50 percent of the precipitation added from a cloud seeding program. The increased values in evapotranspiration suggest an economic benefit through potential improvement of crop yields due to weather modification in western and central Kansas. Eastern Kansas is predicted to have a maximum AET increase of 0.7 inches which suggests that the soil moisture required for maximizing evapotranspiration is adequate in this portion of the state.

Municipal Wastewater Effluents

This section of the Chapter presents the results obtained by the computer program to analyze and design a supplemental irrigation system using the effluent from a municipal wastewater-treatment plant. The application of municipal wastewater as a supplement to an irrigation system requires the design of a storage facility. Since the volume of municipal wastewater is generally large and the flow rate is time dependent the storage facility must act as a fluid control system in addition to being based on an optimum design.

For comparative purposes two designs were made for a storage control facility to be located in the Topeka area during a ten year simulation period beginning in 1964 and ending in 1973. The first design was for a storage facility having the following natural sources of inflow: (1) precipitation directly into the facility, and (2) surface runoff from a 120 acre watershed area. The second design included municipal inflow into the storage facility using an average flow rate of 84,000 gallons per day. Both facilities were anaylized for supplying irrigation water for two 40 acre areas with the vegetative cover of corn and wheat. Results are presented in Table V.

The use of municipal wastes as supplemental irrigation water required a storage facility volume of 2720 acre-inches for controlling ninety-eight percent of the inflow while under the natural inflow conditions the storage volume required was 690 acre-inches. Utilizing the municipal effluent the total annual increase in the volume of irrigation water applied to the disposal areas was 838 acre-inches. Irrigation was applied at a disposal rate of 0.5 inches per day when the soil moisture was below ninety percent of field capacity.

The additional irrigation increased potential groundwater recharge an average of 4.6 inches annually. Evapotranspiration on the irrigated corn field increased 2.9 inches annually. On the wheat field

Parameter	Natural Inflow	Natural and Municipal Inflow
Storage Volume	690 ac-in	2720 ac-in
Receiving Area	7.1 ac	26.5 ac
Precipitation	38.7 in	38.7 in
Moisture Deficit	3.5 in	3.5 in
Disposal Area - Corn Recharge No. Irrigation Days Evapotranspiration	5.1 in 17 25.0 in	9.4 in 40 27.9 in
Disposal Area - Wheat Recharge No. Irrigation Days Evapotranspiration	6.7 in 14 22.7 in	11.6 in 33 23.8 in

TABLE V

SUMMARY OF RESULTS FOR A DISPOSAL CONTROL FACILITY

evapotranspiration was increased 1.1 inches annually. The increase in evapotranspiration indicates the possibility of maximizing crop production.

The computer program provides an effective means of evaluating the application of municipal wastewater effluent on agricultural land. To optimize the storage facility design various disposal rates as well as differing soil conditions should be considered.
CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The objective of this research study was to develop a new methodological approach to the problem of providing a dependable supply of water for man's use. This objective was accomplished by developing and testing a multipurpose hydrologic yield model. The model was used to evaluate the effects of weather modification schemes on the hydrological environment in Kansas. In addition, the utilization of municipal waste as a controllable source of water for irrigation was evaluated.

As a result of this study, the following conclusions can be made:

1. Cloud seeding programs in Kansas could produce a uniform increase in the total amount of precipitation.

2. Weather modification could be used to increase surface runoff, deep percolation and evapotranspiration.

3. Fifty percent of any moisture added as a result of cloud seeding in eastern Kansas could be used to recharge the groundwater supplies.

4. In western and central Kansas more than fifty percent of any moisture added because of cloud seeding could be used in the evapotranspiration process.

5. The computer program provides an effective method of evaluating the hydrological effects which result from the implementation of a weather modification scheme.

6. The computer program provides an effective means of predicting the optimized design for a disposal control facility.

Recommendations

With respect to future research, the following recommendations are made:

1. Additional verification of the simulation model should be conducted under both controlled laboratory conditions and field conditions.

2. A comprehensive study should be conducted to evaluate moisture redistribution utilizing Darcy's equation for unsaturated one-dimensional flow.

3. A comprehensive study should be undertaken to evaluate municipal wastewater as a controllable source of irrigation water for various geographic and climatic conditions.

4. A comprehensive study should be initiated to study the possibility of collecting surface runoff from natural watersheds as a supplemental irrigation water source.

5. The computer program should be modified to incorporate the following: (1) seepage from the storage facility, (2) the possibility of constructing multiple storage facilities, and (3) a cost optimization package.

REFERENCES

- Bean, T. A. "A Continuous Watershed Model for Evaluation and Design of Feedlot Runoff Control Systems." Master's Thesis, Kansas State University, Manhattan, Kansas, 1976.
- Zovne, J. J. and J. K. Koelliker. <u>Application of Continuous Water-</u> <u>shed Modelling to Feedlot Runoff Management and Control</u>. Robert S. Kerr Laboratory, Office of Research and Development, U. S. Environmental Protection Agency, Ada, Oklahoma, Grant R803797-01-0 (To Be Published).
- Linsley, R. K., M. A. Kohler, and J. L. H. Paulhus. <u>Hydrology for</u> Engineers. McGraw-Hill, New York, 1975.
- 4. Hillel, D. Soil and Water. Academic Press, New York, 1971.
- Schwab, G. O. et al. "Infiltration, Evaporation and Transpiration." <u>Soil and Water Conservation Engineering</u>, John Wiley and Sons, New York, 1966, pp. 79-80.
- 6. U. S. Soil Conservation Service. <u>Kansas Irrigation Guide and</u> <u>Irrigation Planners Handbook</u>. 1975, pp. 3-7 to 3-18.
- 7. Hobbs, P. V. "The Scientific Basis, Techniques, and Results of Cloud Modification." <u>Weather Modification</u>: <u>Science and Public</u> <u>Policy</u>, University of Washington Press, Seattle, Washington, 1968, pp. 30-42.
- Battan, L. J. <u>Harvesting the Clouds</u>. Doubleday and Company, Garden City, New York, 1969.
- 9. Huff, F. A. and S. A. Changnon, Jr. "Evaluation of Potential Effects of Weather Modification on Agriculture in Illinois." <u>Journal of</u> <u>Applied Meteorology</u>, Vol. 11, No. 2, March, 1972, pp. 376-384.
- Zovne, J. J. and D. H. Rogers. "Impact of Rainfall Enhancement on Hydrology." Journal of the Hydraulics Division, ASCE, Vol. 104, No. HY5, May, 1978, pp. 681-694.
- 11. Bark, L. D. et al. "A Comprehensive Study of the Effects of Altering the Precipitation Pattern on the Economy and Environment of Kansas." <u>Third Annual Report to the Kansas Water Resources</u> <u>Board</u>, Kansas Agricultural Experiment Station, Manhattan, Kansas, January, 1977.

- 12. Neibling, W. H., J. K. Koelliker, and F. E. Ohmes. <u>A Continuous</u> <u>Water Budget Model for Western Kansas</u>. American Society of <u>Agricultural Engineers</u>, North Carolina State University, Raleigh, North Carolina, Paper No. 77-2056, June, 1977.
- Pound, C. E., R. W. Crites, and D. A. Griffes. <u>Land Treatment of</u> <u>Municipal Wastewater Effluents: Design Factors-I</u>. Technology Transfer, U. S. Environmental Protection Agency, January, 1976.
- 14. Knezek, B. D. and R. H. Miller, ed. <u>Application of Sludges and</u> <u>Wastewaters on Agricultural Land: A Planning and Education</u> <u>Guide</u>. U. S. Environmental Protection Agency, Office of Water Program Operations, Municipal Construction Division, Washington, D. C., March, 1978.
- 15. D'Itri, F. M. et al. Land Treatment of Municipal Wastewater Effluents: <u>Case Histories</u>. Technology Transfer, U. S. Environmental Protection Agency, January, 1976.
- 16. Demirjian, Y. A. Land Treatment of Municipal Wastewater Effluents: <u>Muskegon County Wastewater Management System</u>. Technology Transfer, U. S. Environmental Protection Agency, 1975.
- 17. Hanson, C. L. and D. A. Woolhiser. "Probable Effect of Summer Weather Modification on Runoff." Journal of the Irrigation and Drainage Division, ASCE, Vol. 104, No. IRl, March, 1978, pp. 1-11.

APPENDIX A

LIST OF SYMBOLS

AET	actual evapotranspiration
Es	soil evaporation
ES	saturated vapor pressure
ETP	evapotranspiration potential
K	hydraulic conductivity
Ν	runoff curve number
Ρ	precipitation
PSUNS	percent sunshine
Q	surface runoff
Ra	solar radiation
RHD	relative humidity
S	maximum potential difference
Т	mean daily air temperature
Та	mean daily air temperature
WVD	wind speed
а	geographic location constant
Ъ	geographic location constant
C [†]	hydraulic coefficient
е	mass transfer coefficient
i	hydraulic gradient
k	crop consumptive use coefficient
ď ,	volume of water movement per unit area
r	reflectance coefficient
t	time after first stage evaporation

$\Delta \mathbf{h}$	change in soil water potential
Δt	time increment
Δz	change in elevation
θ _a	available soil moisture
Gmax	maximum available soil moisture

APPENDIX B

REFERENCE IDENTIFIERS

RUNOFF CURVE NUMBERS FOR ANTECEDENT SOIL MOISTURE CONDITION II*

Turrication				Crop			
Soil Class	Wheat	Grain Sorghum	Corn	Soybeans	Pasture	Alfalfa	Fallow Soil
1	83	86	86	84	80	86	84
2	83	86	86	84	80	86	84
3	78	82	82	81	74	82	81
4	78	82	82	81	74	82	81
5	69	75	75	73	61	75	73
6	69	75	75	73	61	75	73
7	69	75	75	73	61	75	73
8	69	75	75	73	61	75	73
9	69	75	75	73	61	75	73
10	69	75	75	73	61	75	73
11	69	75	75	73	61	75	73
12	55	65	65	61	39	65	61

*From Bean, 1976

TABLE VII

Profile Irrigation Depth Soil Class (ft.) Soil Class Description 31 1 Deep soils with silt loam or silty clay loam surface layers and slowly to very slowly permeable heavy clay and claypan subsoils. 31 2 Deep soils with silty clay or clay textures throughout. Surface infiltration and subsoil permeability are very slow when the soil is moist. Shrinkage from drying causes extensive cracking, resulting in high infiltration rates until swelling occurs. 3 51 Deep soils with silt loam, loam, clay loam, or silty clay loam surface layers and clay loam, silty clay loam, or silty clay subsoils. Subsoil permeability is slow to moderately slow. Shrinkage cracks resulting from drying in the soils with more clayey subsoil textures give a relatively high initial infiltration rate. 4 2.5' Moderately deep soils with silt loam, clay loam, or silty clay loam surface layers and clay loam or silty clay subsoils with predominately moderately slow permeability. 5 51 Deep soils with silt loam, loam, clay loam, or silty clay loam surface layers and subsoils. Subsoil permeability: moderate to moderately slow. 6 31 Moderately deep soils with silt loam or loam surface layers and loam, clay loam, or silty clay loam subsoils with moderate to moderately slow permeability. 7 51 Deep soils with silt loam, loam or very fine sandy loam surface layers and moderately permeable, medium textures subsoils. Moderately deep soils with silt loam, loam or 2.5' 8 very fine sandy loam surface layers and moderately permeable clay loam, loam, or silt loam subsoils.

SOIL CLASSIFICATION USED FOR IRRIGATION DESIGN*

9	5'	Deep soils with fine sandy loam and loam surface layers and subsoils that have moderately rapid permeability. Available water capacity is moderate to low.
10	5'	Soils are moderately deep over sand with sandy loam to loam surface layers and moderately rapid to rapidly permeable subsoils with low available water capacity.
11	5'	Deep soils with loam fine sand or loamy sand surface layers and moderately rapid to rapidly permeable subsoils.
12	5'	Deep rapidly permeable soils with sand or fine sand textures throughout.

*From Bean, 1976

TABLE VIII

CROP CODES USED IN THE COMPUTER PROGRAM

Crop	Reference Number
Wheat	1
Grain Sorghum	2
Corn	3
Soybean	4
Pasture	5
Alfalfa	6
Fallow Soil	7

TABLE IX

AREA CODES USED IN THE COMPUTER PROGRAM

Plan Indicated	Rotation Indicated	Reference Number
Collect Area Runoff	Crop - Fallow	1
Collect Area Runoff and Irrigate	None	2
Irrigate		3

APPENDIX C

LISTING OF COMPUTER PROGRAM

CURIENNE IN C) LEVEL	< L			AUN		0.	AIE -	15045	21/21/40
	ç	HYDROLD	CICAL MAI	COCHE						
	č	FIDRULU	UICAL MAI	CK3HC1		-				
	C C	KANSAS	STATE UNI	VFRSI	TY 1	7 8				
0001	•	INTEGER	CRCP, FRC	ZE,SO	IL,STI	U.T.YE	EAR, YE	ARS,Y	ENC, Y ST A	RT
0002		INTEGER	PLCT, PRE	VAN '3.	YPASS,	WR CPTS,	DARCE	Q,ROT	AYR	
0003		INTEGER	DGS8,DGS	E,DGS	67(9),	COSEP (9	I), CAY	RCTA	TE(9)	
0004		REAL IA	, IAAUU, IA	FT KCI	RUP,KS	LAKEVP	PILKEV	PI,LT	AREA, L.M.	MA, NIA, NDPERC
0005		DIMENST	700 AILL21	1 J K K V I 1 J H I 7 7 1	01 UPU	101 EC ((VULIM	KINKN OI CM	UF # L 2 3/1 #1	10NULS(12)
0000		DIMENSI	ON SH(9)	SHUZE	91.541	7(9).59	4GW7 (9),FCG	W(12).CE	NCU 7 (9)
0008		DIMENSI	CN CONDLA	2(5),0	GNDGW (9) CTP((25) .A	STAT	25),CTR(25,4)
0009		DIMENSI	CN AREA(), IAR	EA19.2	1, IPLAN	1(9),I	NCRUP	(9),4GSE	P(9), MGSEP(9)
0010		DIMENSI	ON CNSI(7),CNS	3(7),C	VS5(7).	CNS12	(7),F	REC(25),	CIPR(25)
2011		DIMENSI	GN CTPDAY	((4) • A	ETU(9)	ALTLIS	9),1AA	(9) 33	. I AET (9)	NIA(9)
0012		DIMENSI	UN AMUNIF	1 (1 3) +	NOTAL	(12) AV		2 111	(12),FCL	
3014		DIMENSI	ON PWP171	121.2	WP11711	21.8411	21.20	M(12.	TLACN(1	2.7).8H0(12)
0015		DIMENSI	CN SMACCT	113.8	SM	SA TL (12	2).SMS	ATUCI	2) .TAVCI	31), TMAX(31)
0015		DIMENSI	ON THING	31).U(121,41	10(12),	PRECA	C(25,	4), RUNAC	C(25,9)
0017		DIMENSI	ON DSRNFF	(9),A	INTER	9),AAE1	[RS(9)	,ACHS	2C+(9) M3	PERC(9)
0018		DIMENS1	ON NENDE	(9),ND	PERC (2), SHSAT	G(12)	• N AM E	S(6),DAY	SDS(9), PWG(12)
0019		CO.4PLEX	*16 KROP	*16(7)	/ WHEA	T', SOR	KSHUM*	, CON	N* + SCY	BEANS',
0.020		L TA CN	ASTURE :	ALFAL 86 0.8	FAT+1E. 6 0-86	ALLUWY/ ALLUWY/	/). 43 0	. 84 0	,	
0020		DATA CN	\$3/81.0.8	32.0.8	2.0.82	.0.74.0	0.79.0	.78.0	,	
0 0 2 2		DATA CN	35/73.3.	5.0.7	5.0,75	.0,61.0	1,09.0	,69.0	1	
0023		DATA CN	\$12/61.0	65.0.	67.0,6	5.0,39.	.0,55.	0,61.	0/	
0024		DATA NA	MES/ IRR.	***IN	T. +, +R.	VEE1,1P	'ERC'	*AET	', ' SM '	/
0025		UATA AM	US I IS I	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	234797	MAR.','		+*MAY	', JUNE	***JULY**
0.026		1 74 24 ATAO	TAT/150.0		11.15	NUV.'.'.'	0.31.	120.4	1.120.51	.120.51.
		1 *>	3.71,1>0.	31,12	0.91,1	>1.01,1	>1.1'	, 1>1.	21,1>1.3	*,*>1.4*,
		2 '>	1.5*,*>1.	.6','>	1.7*,*	>1.8','	'>1.9'	,'>2.	01,1>3.0	','>4.0',
		3 '>	5.01,1>10	. 1/						
0027		DATA AV	LFCU/2.6	1.5.2	• 5 • 2 • 4	12.512.	• 5 • 2 • 4	+2+4+	2.4.2.2	1.5,1.0/
0025		DATA AV	0.2.0.2.0	1.177.	• / • Z • 5 0 - 177 •	10 • / 14 • 0 - 177 • 1	. 2 + 0 + 0	12.159	2.2.155.0	-138.0.138.
002 /		1 0.	134.0.13	1/					,	
0030		DATA FC	U/4.6.4.	4,4.5,	4.6.4.	5,4.3,4	4.0,4.	0,3.3	,3.5,2.3	,1.7/
0031		DATA FC	L/4.4.9.	+,14.2	,7.0,1	3.9.9.1	1.13.7	16.01	9.2.7.3.	7.3,4.3/
0032		DATA FC	GW/7.0,6	.9,9.4	,5.8,7	.2.6.7	,8.8,5 7 \ /	.4,6.	5,5.2,4.	5,3.0/
2033		DATA PH	217/6 7	6 5 9 .	5.4.5.	7.2.6.3	7 + 1 + 6 +	3.5.4	.9,1.3,0	.9.1.8/
0035		DATA PH	iG/4.3.4.	7,5.2,	3.3,4.	6,3.3,4	4.3,2.	6,2.7	,2.1,1.8	,1.3/
0035		DATA S	ASATU/5.8	,6.2,5	.7.5.7	.5.7.5	.5,5.4	.5.4.	5.3.5.2.	4.8,4.8/
0037		DATA SH	SATE/11.	8,11.5	116.3,	8.2,15.	.8,10.	4,15.	4,7.1,13	.9,13.2,13.2,
2 2 2 2		1 12	2.9/		106	c 13 7	2 0 1	0 4 6		20098/
1033		DATA U	-3419/3.4	7.0.39	.0.35.	C. 39.0.	.39.0.	35.0.	35.0.31.	0.31.0.28.
		1 0.	.241							
0040		DATA N	014/31,28	,31,30	,31,30	,31,31	,30,31	,30,3	17	
2041		DATA F	KEQ/0.0.0	.1,0.2	.0.3.0	.4.0.5	.0.6.0	. 7.0.	8.0.9.1.	0,1.1,1.2,
0.04.3			- 3 = 1 - 4 = 1 - 7 T - CH MA VI	5+1+0+ CM1270	1./+1.	8+1.9+1	2.0+3.	6.2.2	3 25.12	60.0.5/
3043		EATA A	VAILL AVA	ILU.CM	1. 05C VO	L + DSCAY	YS.EVA	PLK.H	IRRSUN-	
0040		1 21	EAK PREVD	S-SNO	TPARE	A. TPRE	C. UZSH	CH HA	STHNINET	/16+0.0/

FORTRAN IV G LEVEL 21

MAIN

TE = 79045

21/27/40

FORTRAN	IV	G LEVEL	. 21		MAIN		DA	IE =	= 7	\$045		21/27/40
0044			DATA	AET, AETLZ, AETU	Z,82,DA	PERC, EXCESS	5, IA,	M., M.	4.M	R , P A(CK, PACKP	POVOL,
0015			1	PERC, PONVCL, P1	+P2+P3	SNOMLT, TOP	PERC,	TRNO	18,	11,12	2/23*0.0/	0 5#01
0/0/45			DATA	CIPUATINALERIS	IRVULIV		' I LUM	1100	100		2011/440	.0,3+07
0046			DATA	CIP, CIPR, CIRDA	Y JULKZZ	(5 ¥0 • 0 • 2 5 ¥ 0	3.0,4	+0.0	381			acuuty
0047			*0.5201	LISIZALPHAZSKUN	TAJAKUP	il By CRUP y UC	JK M y E	FUKL	116.8	USRA	IC, PAVED	PLVMAAB
0049			MANEL	TOTING TA INDUCT	C HUAY	IND ST. L. LT		Sec.	1 4 0	T. S	TORM	END.
0040			AT2VA	T.CARCEC.ROTAY	D. PYDA	(C)	IANGA	103		1131.	SIGNATING	
0.649			NAME	IST/SEED/MODEL	WPENT							
00.7		с										
		č		***** INPUTS *	****							
		С										
		C***	READ	PROGRAM IDENTI	FIERS							
0050			READ	(5,5) NAME, OF,	CITY, AN	ID,STATE						
0051		5	FCRM/	AT(20X,5A4)								
0052			REAC	(5,10) WEATH,MD	DIF,MUD),EL						
0053		10	FCRM	AT(1X,4A4)								
0054			REND	(5,15) IN,FLON,	TC,STOP	AGE, POND						
0055		15	FURM	AT (1X, 6A4)								
		C***	READ	WEATHER MODIFI	CATION	FEEDLOT,	PCNC	ANI	D P	LOT	PARAMETE	RS
0.056			READ	(5, SEED)								
0.057			READ	(5.ALPHA)								
0058			READ	(S.BETA)								
0.059			PREV	R=YSTART								
		6+++	READ	THE MONTHLY AV	FRAGE N	ETE CROLOGI	IC AL	ο ΔΤ /	2			
0.060		U	READ	15.201 (PSHNS/1	1.840(1	1R A(T) . W1	INCLI	1.4	A A T	(1).	1=1.121	
0050		20	EC3M	NT (2Y . E2 2. E2 0	. 54 2.6	2 1.53 11						
0001		(***	PEAO	102 903 2THOUR	I TYPE	CRUP AND	APEA	FO	5 F	ACH -	9107	
0.062		Q	READ	5.251 /(TAREA)	1.11.11	-1.21.7=1.0	0101	51		-011	201	
0002		25	: ECOM	TTOY TE OV TO	110110.	-192791-191	ir LUI	21				
00033		23	0 EGEM	41 1 20 9 1 19 20 9 1 2 3	(-) -) (OF CT CA						
0004		20	REAU FORM	13,301 (AREA(1)	4 C = T 4(3)	20131						
0005		00		4441X956.01 Thouts soo of a		NENTLEICH	110	c		CTAT	1.0.1	
00//		6+++	REAU	INPUIS FUR PLA	IN CHIPLE	TENTALLUN	AND	CKUI	- K	LIAI	1 L N	
0000			KEAU CORM	(D,3D) (IPLAR(J	IT, KUIA	(F())*J=r*C	ANCOI	51				
0057		25	D FURM.	AI (1X)2113								
0068			REAU	(5,40) (MGSBP[]	1.02281	P(I) MGSEP	([]+0	62E	201	1+1=	T-NELOI2)
0.09.9		40	I FURM	11(413)								
		6***	READ	INPUTS FOR CAP	CY'S EC	JATION AND	D MUN	ICI	PAL	DIS	PCSAL	
0070			IF(D	ARCEQ.EQ.1) RE	AD(5,49	S) (CENDUZ()	11,00	NCL.	2(1	1,00	NDGWEI3,	HUZ(I),
			IHEZ(I, $HGH(I)$, $I=1$, N	PLOTSI							
0071		45	5 FCRM	AT(3F10.2,3E10.	4)							
0072			IF(3)	YPASS.GE.31 REA	D(5,50)	(MUNDIS(I)),[=1	,12)			
0073		50) FCRM.	AT(F10.2)								
		С										
		C***	RUNO	FF CURVE NUMBER	S FOR :	SOIL AND CR	ROP T	YPE:	S			
0074			DU 51	5 K=1,7								
0075			RENI	1,K)=CNSI(K)								
0076			RENE	2,K)=CNS1(K)								
0077			RENC	3 • K) = CNS3 (K)								
0078			PCNI	4,K)=CNS3(K)								
0079			RENU	5,K)=CNS5(K)								
0080			RENE	6,K)=CNS5(K)								
0031			RONG	7,K)=CNS5(K)								
0082			8CNI	8.K)=CNS5(K)								
0033			BONG	9.K)=CNS5(K)								
0.034			RENE	10.KI = CNS5(K)								
0.085			RENE	11.X)=CNS5(K)								
0.036		5	5 8CNI	(2,K) = CNS12(K)								

FURIKANI IV	G LEVEL	21	MAIN	DATE = 75045	21/27/40
	C * * *	SIZING POND VOLUME	ROUTINE		
0087		A1=L*W			
0088		A2=S#{L+W}			
0089		A3=4./3.*S**2			
0090		44=2. *A2			
0071		A5=4.*S**2			
	C + * +	VOLMAX IS THE MAXIN	YUM VOLUME HELD BY	THE STORAGE FACILITY	
0092		VULMAX=(A1*HMAX+A2	*HMAX **2+A3 *HMAX **3	3)/3630.	
	C * * *	PSAREA IS THE DIFE	CT RECEIVING AREA C	OF THE FACILITY	
0073	_	PSAREA = ((W+2.*S*HM)	AX)*(L+2.*S#HMAX))/	43560.	
0.00/	(***	CALCULATE THE CROP	CDEFFICIENTS		
00004		UU SU K=1+NPLUIS			
0075		PG50=PG58P(K)			
0.097		D350=0035P(K)			
0097		0.025=00552(K)			
0,099		CHER=IAREAIK.1)			
0100		CALL CROPCOLLROP.M	GSB.DGSB.MGSE.DGSE.	KCROP-NOTH-MMATI	
0101		INCEOPIX) = LAREA(K.	1)		
0102	50	CENTINUE			
	C # * *	INITIALIZE VARIABL	ES		
0103		DO 70 I=1,25			
0104		DC 65 J=2,9			
0105		IF(J.LE.4) PRECACI	[;J)=0.0		
0105	65	RUNACC(I,J) = 0.0			
0107	70	CONTINUE			
9108		00 75 J=L,12			
0109	75	$KCRUP(7, \mathbf{J}) = 0.0$			
0110			(* * *		
0112		TITIO O	(11)		
1113		FOULLED D			
0114		1451111=0.0			
0115		IAACC(II)=0.0			
0116		DISVCL(II)=0.0			
0117		DAYSDS(II)=0.0			
0118		OSRNFF(II)=0.0			
0113		AINTER(II)=0.0			
0120		AAETRS(11)=0.0			
0121		ACHSEM(II)=0.0			
0172		OSPERC(II)=0.0			
0123		SML2(11)=9.35			
0124		SHOW71111-5+25			
0125	80	SMPD111=SM17(11)+	SMUTITY		
0127	~~	YEAKS=YEND-YSTART+	1		
	С		•		
	C***	PRINT INPUT PARAME	TERS		
0128		WRITE(6,95) NAME,	OF .CITY .AND .STATE .Y	START, YENC, WEATH, MOOI	F,MCD,EL
		1, IN, FLOW, TO, STOR, A	GE. PCND, LTAREA, STOP	<pre>RM+L+W+S+HMAX+VCLMAX+P</pre>	SAREA
0129	85	FORMAT(+1++10X////	//////lox. STATICN	4:",3X,5A4,10X,14," T	0 1,14,
		1////10X, MODEL: .	,4A4//18X,6A4//18X,	"FEEDLOI AREA = ",F6.	Z ACRE
		25 ////lox, SIZE OF	CRIFICAL EVENT:	, F4. 2/// 10X, PGND VA	RTABLES:
		JT//25X, T(A) BASE D	1 MENSION + F7.2.		*//25X;*
			KUNIKISE = 11530	IN SCAD VC:: 45 1 50	7.1.400
		50	1 DIRECT PECELVING	AREA LEOR PRECIPITATI	ON)
		7 1.F8.2.1 ACRES!/	/// 10X. JAREA VARIAR	VES:11	0.07
		, , ore, acres /	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		

FORTRAN	IV G LEVEL	21	MAIN	DATE = 79045	21/27/40
0130		00 130 J=1,N	PLOTS		
0131		PLAREA=AREA(.	(L		•
0132		CROP=IAREA(J	•1)		
0133		SCIL=IAREA(J	,2)		
0134		RPAVLU=PAVLU			
0135		IF (IPLAN(J).	E0.1) PAVLU=0.0		
0136		WRITE (6,90)	J, PLAREA, KROPICROP	1, SOIL, DSRATE, PAVLU	
0137	66	FERMATE//15X	, 'PLUT ', [1//25X, '(A) AREA ',F6.2,' A	CRES //25X, /
		L(3) 4868	TRADICAL PLAN	L IYPE '+13,' (SUS	SULL ITPEIT
	4	272341107 187	EMENT - TOUTCATTO	FD+29' INCHESTEAT '772 N 25100 + 55 3 4 5151	D CADACITYEN
0133		TELIPLAN(.I)	EOLII WRITE(6.95)		U GAPACITI I
0139		IF(IPLAN(J).	EQ.2) WRITE(6.100)		
0140		IF((PLAN(J).	E2.3) WRITE(6.110)		
0141	95	FORMAT(/25X,	(F) PLAN IMPLEMENT	ED RUNCFF!)	
0142	100	FORMAT(/25X,	(F) PLAN IMPLEMENT	ED RUNCEE AND IRRIG	ATION ()
0143	110	FORMAT(/25X,	(F) PLAN IMPLEMENT	ED IRRIGATION*)	
0144		IF(ROTATE(J)	.EQ.1) WRITE(6,120)		
0145	120	FORMATI/25X.	(G) CFOP ROTATION	WITH FALLCH')	
0146		PAVLU=8PAVLU			
0147	130	CONTINUE			
	C C				
	5	***** 51.71			
	C C	TTTTT CHI	ER TEARET LOOP ++++	•	
0148	C	00.980 NY=1	YEARS		
51,40	c	30 300 MICT	FICHNS		
0149	-	CO 160 [=1.1]	3		
0150		DC 150 J=1,1	1		
0151		00 140 K=1,N	PLOTS		
0152	140	IF(J.LE.8) SH	MACCT(I,J,K)=0.0		
0153	150	PDACCI(I,J)=	C.O		
0154	160	CONTINUE			
	C***	ESTABLISH CRO	CP ROTATIONS		
0155	170	DG 17C K=1,Ni			
0150	175		NCRUPIKI		
0157		DO 180 1-1 N	•17 GU 10 190		
0159		TE(IAREA(1.1)	1.50.11 GO TO 180		
0160		IF(ROIATE(J))	-EQ.2) GO TO 180		
0101		IAREA(J,1)=7			
0162	180	CONTINUE			
0163		RGTAYR=1			
0164		GO TO 200			
0165	190	ROTAYR=2			
	C***	INITIALIZE V	ARIABLES		
0166	200	IDISDA=0.0			
0167		MAXVUL=0.0			
0169		VOLIZO-0 0			
0170		VOLCEG = 0.0			
0171		IF (NY .GT. 1)	MSTART=1		
0172		WRITE(6,210)			
0173	210	FCRMAT(11, 40	6X, ***** ANNUAL SU	MMARY *****!)	
	С				
	С				
	С	***** ENT8	ER MONTHLY LOOP ***	**	
	Ċ				

FORTRAN	IV G LEV	EL 21		MAIN	DA	TE = 79045	21/27/40
0174		00 840	NM=MSTART	,12			
	C						
0175	(**	* ESIAGE	ISH CRUP RU	TATIONS FOR	WHEAT		
0176			PODITI NE	5 11 66 70 23	0		
0177		TEISOT	ATE(II).EO.	2) GO TO 23	0		
0178		16(201	AV2. FC. 21 G	27 00 10 2. n Th 223			
0179		LEINM.	GT. MGSEP(11)) IAREA(II	. 1) =7		
0130		GO TO	230				
0181	2	20 IFINM.	LT.MGSEP(II)) [AREA(I]	,1)=7		
0182		IF(NM.	GE.MGSBP(II)) IAREA(11	, 1) = INCROP(I	1)	
0183	2	30 CONTIN	UE				
	C **	* READ M	ONTHLY METE	CROLOGICAL	DATA		
0184	2	40 REAC(1	,250,END=15	201 KAN, STI	ND, YEAR, MONT	H,[PREC(I),I⇒1.	,31),
		1 (TMAX (1),1=1,31),	(TMIN(I),(=	1,31)		
0195	2	50 FORMAI	(12,14,212)	31F4.2,62F3	. ()		
0135		151511	NU-NE-INCSI	1 60 10 240	0 2/0		
0107		101704	D OT VEND-1	-14001 CC 1	0 240		
0150		TEIVEN	17.401.470.407.1071 17.41.17.467.10	T 3NO YEAR	-790 EC VSTART-19	001 60 10 240	
6190		ACTIRA	=0.0	I SMILLS LANK	CRAIDIANI-13	007 00 10 240	
0191		DSDAY=	.0				
0192		NOIM(2	()=28				
0193		IF(NM.	FQ.2.AND.TH	AX(29).LT.9	00) NOIM(2)=	29	
0194		NDAYS=	NDIM(NM)				
	С						
	c						
	C C	***	*** ENTER DA	ILY LOOP **	***		
0195		00 800	ND=1,NDAY	S			
	С						
	C * *	* THE FO	LLCWING STA	TEMENTS COR	RECT FOR MI	SSING CATA CN	INPUT TAPE
0196		IFITMA	X (ND) .GT .25	0.0) THAX(N	D)=PDT+100.0		
0197		IF(TM)	N(NO).GT-25	0.0) TMIN(A	(D)=PDT+100.0		
0138		IF(PPF	C(ND).GT.99	.97) PREC()	10)=0.0		
2100	(+ +	TAVG I	S THE AVERA	GE CAILY AN	R TEMPERATUR	E, DEGREE FAMRI	ENHELI
0133	C + +	1AVG10 + CU22CI	UTTHE STUDIO	TTIMININUTI TTIMINUTI	72.0-100.0 	TON DECHITTAC	
	C * *	+ SUSKUU	C CLOUDS	AU20313 IF	e PERGIPITAI	TON RESOLITING	CKGA
0.200	6.44	CALL V	TEMEDIPRECI	LOL NY HODE	I LUPCATE		
0200	C*+	* THE FO	HIGHING CAR	D EVALUATES	S WHETHER INE	24 HOLR CESIG	N STORM
	C = 3	+ HAS BE	EN EXCEEDED				
0201		IF (PRE	C(ND).GE.ST	OR M/1.14) V	RITE(6,250)	NH, ND, YEAR, PRE	C(ND)
0202	2	60 FCRMAT	120X+12+*/*	+12+1/1+121	* CRITICAL	EVENT EXCEEDED	· · ·
		12X+F10	-2+1 INCH	STCRM 1)			
	С						
	C						
	C	*** 62	LCULATION U	F PUIENTIAL	EVAPUIRANSP	TRAFILS BY YEAR	NS UF
	5			PENMAN EQUA			
0.203	C	0-000	10				
0205	(N-RURU 18 TEE EC	UTOWING CAR	n nuerks er		,	
0.204	0.44	IF(PAC	K GT Q 1 R	=0.70	A SHOW COVEN		
5251	(**)	THE NE	XT THO CARD	S CENVERT	AVG TO ABSOL	UTE, DEGREE KE	LVIN
0205	-	CENT=	TAVG (ND) - 32	.0) #100.0/	83.0		
0206		ABST=0	ENT+273.16				
	C**	* ES IS	THE DAILY C	ALCULATED :	ATURATED VAP	CR PRESSURE, I	N MILLIBARS
0207		ES=33.	9\$110.00738	*CENT+0.801	2)**8-0.0000	15*A8\$(1.8*CEN	T+481

FORTRAN	IV G LEVEL	. 21	MAIN	DATE = 75045	21/27/40
		1 +0.001	36)		
0208		IF(ES.LE	.0.01 ES=0.0		
_	C***	ESA IS T	HE DAILY CALCULATED ACTUA	L VAPOR PRESSURE, IN MI	ILLIBARS
0209		ESA=ES#R	HD(NM)/100.0		
	C * * *	RN IS TH	E CALCULATED DAILY NET RA	DIATION, IN MM OF WATER	3
0210		RN=(I-R)	*RA(IM)*(0.22+0.54#PSUNS)	NM)1-2.010E-05#A851##4	μ.
0.311		1(0.58*(1	- HRUNIA-BFUNIB#SGRI(ESA)))*(0.1+0.9*PSUNS(NM))	
0211	~ + + + +	- 1018-9-L1 	THE MONTHLY AVERACE HIND		TEDE HETCHT
0 21 2	0+++	- HINDO-13	TND/NULAZZIKA 555	KONT HILESTUAT AT 2 HE	IENS HEIGHT
0212	C ***	EA IS TH	E CONVECTIVE LASSES, MM W	ATER	
0213	0	EA=0.26*	$(E+0_0)$ + $(ES-ESA)$		
0214		EALAKE=0	.26*(EPRIM+0.01*WINDD)*(E	S-ESA)	
0215		IF (TAVG)	ND)) 270,270,280		
0215	270	DELTA=0.	0		
0217		GO TO 29	0		
0213	230	DELTA=0.	039*TAVG(ND)**0.673		
0219	290	GA*MA=1-	DELTA		
	C * * *	PET IS T	HE CALCULATED DAILY POTEN	TIAL EVAPOTRANSPIRATIO	N. INCHES
0220		PET = ((DE)	LTA#RN)+(GAMMA*EA))/25.4		
	C				
0.001	C***	CALCULAT	E LAKE AND BARE SUIL EVAP	ORALION	
0221		RNSUIL=P	(N≠((1.0-0.23)/(1.0-R))		
0222		RNLAKEF#		120 1	
0223		- PE135=((JELIATENSULLITUGAMMATEATI	/23+4 Avel1/25 /	
0225			IDELIAMBNIAKE/FIGAMMAMEAL	AKE1 11 20 .4	
0225		TELTAVO			
0227	•	1811490	101.1T.20.01 PETRS=0.0		
0229		TELTAVIL	ND) 1 T 20.0) 1 AKEVP=0.0		
0229		00 300 8	D=1.NPFCTS		
0230		LADDIMO)=IAFT(MO)-PFT		
0231		CCROP=1	REA(MC.1)		
0232		IF (KCRCP	CCCRCP, NMI.EQ.0.0) IAADD(MQ)=IAET(MQ)-PETBS	
0233		IF(IAADO	(MQ).GT.0.1) IAADD(MQ)=0.	1	
0234		IF(IAAD)	(MC).LT.0.0) IAADD(MQ)=0.	0	
0235	300	CONTINUE			
	C***	SUBROUT	INE SNOWRT CALCULATES THE	MOISTURE ADDED TO THE I	DISPOSAL
	C***	SITE DUE	TO SNOWMELT ON THE AREA		
0236		PRECIP=F	PREC(ND)		
0237		SNOVAP=0	.0		
0238		WATER=PF	LECIP		
0239	~	CALL SNL	JARI (PRECIP, WATER, PACK, PET	, TAVG(ND], SNUVAPI	
	C C				
	č	### EV.11	HATTON OF SOTE MOTSTUPE A	NO CALCHIATICS	
	č	L'IL L'IL	OF ACTUAL EVAPOTRANS	PIRATION ###	
	č				
0240	-	STRVOL=0	0.0		
0241		RUNMDS=0	0.0		
0242		JJ=0			
0243		NNN=0			
0244	330	NNN=NNN+	-1		
0245		IF (LNN. (T-NPLOTS) GO TO 650		
0246		STRNOF =	•0•0		
0247		1+11=11+1			
C248	340	CROP=IAP	(EA(JJ,1)		
0249		SOIL=IAP	REA(JJ,2)		

FORTRAN	١V	G	LEVEL	21	MAIN	DATE	= 79045	21/27/40
0250				DSAREA=AREA	(LL)			
0251				RAIN=WATER+	DISVEL(JJ)/ESAREA		70 (10	
0252				IF (DISVUL (J	11.61.0.0.ANU. PREC	1P.LI.0.41 GC	10 410	
0235			C ***	CALCULATE S	USEACE PULACE VALU	NE BY COS METH	00	
0254			Q	IFIKCRCPICR	0P . NM] . L F . 0. 0) GC	TO 370		
0255				IF(SMUZ(JJ)	+LT . (PWPUZ(SOIL) +0	.5 *AVL FCU(SO IL))) GO TO 350	
0256				IF(SMUZ(JJ)	.GT. (PWPUZ (SDIL)+0	.8*AVLFCU(SCIL	3)) GO TC 360	
0257				GO 10 380				
			C***	MODIFY RUNC	FF CURVE NUMBER TO	CONDITION I A	NTECEDENT MOIS	TURE
0253			350	RCM(SOIL,CR	CP) = RCN(SGIL,CKOP)	*0.39*EXP(0.00	9#RCN(SOIL,CRG	P))
0259				GC TO 390	SE CHANE MUMOCO TO	CONSTRUCT III	INTEGEDENT NO	TETHOR
0740			2(0	PUDIFY RUND	PRIVE NUMBER IN	*1 OF*FYOL-C C	ANTECEDENT MU	ISIUKE
0260			200	CE TE 300	UPJ-RENTSUIL, ERUPJ	+L.+93+EXPL=0.40	1005 J TREMISULE	
0262			370	TE(SMUZ(JJ)	.1T.0.6*FCU(SOIL))	GO TO 350		
0263			2.0	IF(SMUZIJJ)	.GT.0.9#FCU(SOIL))	GO TO 360		
0254			380	RCM(SCIL,CR	GP)=RCN(SOIL,CFOP)			
0265			390	S(=1000.0/H	CM(SOIL, CRCP) - IO.0			
0256				ER=RAIN-0.2	*S [
3267				IF(ER.LT.O.	C) GO TO 410			
0263				RNOF=ER##2/	(RAIN+0.8*SI)			
0259			C + + +	GU IU 420	TERCENTION STORACE			
0270			400	RNOF=0.0	TERCEPTION STORAGE			
0271			400	14=0.0				
0272				GG TC 430				
0273			410	RNCF=0.0				
0274			420	IA=0.1				
0275				IF(IA.GT.RA	IN) IA=RAIN			•
0276				IF((IA+IAAD	C(JJ)).GE.0.1} IA=	0.1-IAADC(JJ)		
			C			5 UDDCD 70N5		
0777			(***	EVALUATE IN	NOS-IA	E UPPER LUNE		
1279			450	HIZEVARED O	NUFTA			
0279				IE (CARCEO, E	C.21 GO TO 435			
0277			C * * *	SUBROUTINE	DARCRT EVALUATES T	HE FLOW WITHIN	THE SOLL PROF	ILE
			C ***	BY APPLYING	THE ONE-DIMENSION	AL DARCY EQUAT	TION	
0280				CALL CARCRT	(PERC, FCU(SCIL), SM	UZ(JJ),FCL(SG)	(L), SMEZ(JJ), FC	GW(SOIL).
				ISHCWZ(JJ),D	PERC, CONDUZ (JJ), CO	NOLZ(JJ),CENDO	GM(JJ),HUZ(JJ),	HLZ(JJ),H
				2GH(JJ)+PHPU	IZ(SO(_),PWPLZ(SOIL),PWG[SOIL))		
0281				GUIU 450	DECENT CTODACE ANA	TIADIC TAL HOOS	D 2015	
0.727			415	CALCULATE P	KESENI SIUKAGE AVA	ILADEC IN UPPE	IN ZLINE	
0252			(***	EVALUATE MA	TER CASCADED TO 10	HER ZONE FOR	TORAGE	
0283			U	PERCL=PERC-	SYMAXU			
0234				IF(PERC.GT.	SMMAXU) PERC=SMMAX	U		
0235				IF(PERCL.LT	.0.0) PERCL=0.0			
0236				IF (SMUZ(JJ	1).GT.FCU(SOIL)) GO	TO 440		
0287				EXCESS=0.0				
0283			· · · · ·	GU 10 450	AVITATIONAL LATCO	IN UDDER TONE		
0.280			640	EVALUATE UK	(AVIIALIUNAL WATER	IN UPPER LUNE		
0207			C 440	L AGE 3 3 - 3 102	(00/100(0016)			
			C***	IF THE CROP	IS DORMANT CR THE	SOIL LIES FAL	LOW, SOIL	
			C = * *	EVAPORATION	I IS EVALUATED			
0290			450	IFIKCROPICP	OP, NY) . LE.0.0) GO	TO 560		
0291				T(JJ)=0.0				

FORTRAN	I۷	G LEVEL	21	MAIN	DATE = 79045	21/27/40
		C***	MODIFY PE	T BY THE PLANT CONSUMI	TIVE USE COEFFICIENT	
0292			AET=KCROP	(CROP,NA) *PET		
0293			IF(PET.L8	E.IAET(JJ)) AET=0.0		
		2***	CHECK HHE	THER SOLL MOISTURE LIN	ITS AET FRCM THE UPPER	ZONE
0294		-	IF (SMUZ (.	IJ)-(0.3*(AVLFCU(SUIL))	+P%PUZ(SCIL))) 460.460.	490
		C***	CALCUATE	AET FROM THE UPPER ZCI	E WHEN LIMITED BY SOIL	MOISTURE
0295		460	AVATL L= SY	447(14)-26247(501)		
0.296			TELAVATO	I = I = 0, 0 AVAILUE 0, 0		
0297			3 ET117 =0.1	$7 \pm \Delta FT \pm (\Delta V \Delta T + H) / (0.3 \pm \Delta V + H)$	CU (SOTI)))	
0		C * * *	EVALUATE	AVATIABLE WATER TN TH	LOWER ZONE	
0.209		6	AVALUATE		EGNER EGNE	
0270			15/31/011			
02.99		C ***	- TELAANTER		TTO ACT COCH THE LOUGO	7646
0330		6	TELEMITE	111-10 3#/AVIECT/SOTIA	1113 ALT PRUM THE LUMER 199001715011111 470.470.	20NC
0300		C + + +	CALC INTE	ACT E004 THE LOVER 70	TERFECTORIES BY CON	400
0.201		170	AFTL 3-2	AFI FROM THE LUNCK 20	C (SOLIN)	MOISTORE
0301		410	ABILZEU.	S*AEI + (AVAILL/(0. 5*AVL)		
0302		(20	60 10 500			
0303		480	AEILZEAEI	I-AEIUZ		
0304			GC 10 500			
		Cass	EAVENTE	NET FREM BOTH ZUNES U	IDER WET CUNDITIONS	
0305		490	AETUZ=0.7	7 = A ET		
0306			AETLZ≠0.3	3 ¥AET		
0307			AVAILL=S:	1LZ(JJ)-PWPLZ(SCIL)		
0308			IF(SMLZ(JJ).LE.0.3≠(AVLFCL(SOI	.))+PWPLZ(SCIL)) GO TO 4	70
0309		500	IF (DARCE)	3.EG.1.0) GC TO 605		
0310			IF(PERC-S	SAMAXU1 510,520,520		
		С				
		C * * *	EVALUATE	SGIL MCISTURE		
0311		510	SMUZ(JJ):	SMUZ(JJ)+PERC-AETUZ-E	CESS	
0312			SFLZ(JJ):	=SMLZ(JJ) = 4ETLZ+EXCESS		
0313			GO TO 610	o		
0314		520	SMHZ(JJ)=	- SHUZ(JJ)+SMMAXU-EXCES	S-AETUZ	
0315		53.3	SMMAXL=0.	9#FC1 [SO11 1-SML7111		
0316			TE (PERCL	+FXCESS-SMMAXL1 540.54	.550	
0317		540	SML7(3.1);	= SML7(1.1)+PERCL = AFTL7+	YCESS	
1719		5.0	60 10 61	h		
0319		550	SMI7(11)			
0320			DDE0C-3E	- THE ALECCTONNYAL		
0321				n CEFERCESSESON ARE		
0321		C * * *		S EVADODATION EDOM CAD		IN HONTHE OCTORES
		Case	TURONOU	ARCH CO SHEN THE DICH	SULL SURFAGENSEVAFF FU	ik huntris uctuses
0327		54.3	ASTUZ-0	ARCO OK MHEN THE DISH	SAL AREA IS FALLUM	
0322		100	ACTUZ-0.0			
0323			AEILLEU.			
0.324			IF (PACK)			
0325			IFISMUZI.	JJ1.L1.(FCU(SU(L)-U(SU		
0:20			20(JJ)=F0			
0327			14(5,402)	JJ1.GE.FCU(SGILI) EU(J	J)=0.0	
		(***	CALCULAT	E STAGE I SOIL EVAPORA	IION	
0328			UZEVAP=PE	185		
0329			EC(JJ)=E(C(JJ) +UZEVAP		
0330			IF (EO(JJ)	.GT.J(SOIL)) JZEVAP=E	(JJ)-U(SOIL)	
0231			[(JJ)=0.0	0		
0332			GO TO 580	0		
		C***	CALCULATI	E STAGE 2 SOIL EVAPORA	ION	
0333		570	T(JJ) = T(JJ)+1		
0334			UZEVAP=C	(SOIL) = (T(JJ) * = 0.5) - C(GIL) +{ (T(JJ)-1) ++0.5)	
0335		580	IF(UZEVA:	P.GT. (PETES-IAET(JJ)))	UZEVAP=PETES-IAET(JJ)	
0336			TE (117 EV SI	P.1 T. 0. 01 117 EVAP= C. 0		

FORTRAN	IV	G LEVEL	21		MAIN		DATE = 79	045	21/27/40
0337			IF(SMU)	(JJ)-PWPUZC	SOIL).LT.	JZEVAPI U	ZEVAP=SMUZ(JJ)-PWPUZ(SOLL
0338			GO TO '	500					
0339		590	UZEVAP	=0.0					
0340		600	TELCAR	F0.F0.11 PF	20-0				
0341		000	TELCAR	CEQ.EC.I) EX	0.0=02030				
0342			59177.1	13=58077771113-	17 E VA P+ PE	C-EXCESS			
0343			TELSMO	71113.15.040		SM(17111);	= 0 4 0 1 7 1 50 1 1	1	
0364			LEIDAR	190.20 21 GP	TC 530	3:021331		,	
0345		605	SHUTEL	11=59(17111)-	AETH7				
0345		005	SM17(1	11=5M17E111=	AET17				
0347		610	TELSVI	7/11/17 0-0		A ET1 7 = A ET	117-10-20171	0111_011	
0348		010	TEISMI	71111.1 E. P.J.P.		SMI 77 113	- 2401 78 COTI		
0349			TELCAR	CED.EC.IN GC	IC 620	50021007		•	
0350			OPERC=	SML7(11)-0.9	*FC1/SOT				
0351			TEICPE	C I T 0.01 0	PF8(=0.0	·			
0352			TELSMI	71111 GT 0 G	AFCI (SOTI		11-0 9*501 /	1 1 02	
0353		620	ASTU7=	VET17741175VAD			37-0+9+7CL1.		
222		(***	CM IC	THE SOLL WOL	STILLE IN	THE CONUT		INCHES	
0354		Cree	SMILLI	= CM117771113+CM		INC SKUME	NO LUNE, IN	INCHES	
0355			LAFTI	11=14104001					
0356			AFTUL	$1) = \Delta E T (17)$	557				
0357			AFTLE	1) = A F T1 7					
0358			NUPERC	(11)=00FRC					
0359			NTALLE						
0360			NRUCEL	LII#RNOE					
0361			IF (IP	LANEAD JEF. 2	I STRNUE	RNOF			
0362			STRVOL	= STRVCI +	STENCERAR	=4 (.1.1)			
0363			60 10	330					
0364		650	CONTIN	UF					
		5000		** EVALUATIO	N CF VOLU	HE USED A	S IRRIGATIC	N ***	
0365		C = * * C = * * C * * *	TI IS DEGREE PPICR VCLDIS	THE PREVIOUS S, T2 IS THE TO TODAY =0.0	CAY'S AV Average	ERAGE TEMI TEMPERATUI	PERATURE, I RE OF THE D	N FAHRENHE Ay Two Dan	ETT rS
0366			JDISDA	= 0					
0367			NCNT = 0						
0368			DQ 675	MS=I,NPLCTS					
0369			DISVEL	(MS)=0.0					
0370			IFLIPL	AN(MS).EQ.I)	GO TO 66	2			
0371			THANED	=TAVG(ND)+T1	+ 12				
0372			FREEZE	=TAVG(ND)+T1					
0373			12=11						
0374			I1=IAV	G(ND) SIS IT ((A)	50015-1				
0375			TELERE		FRUZE=1				
0310		~ * * *	IFUEN E	4E0.01.114.0	J FRUZE=U	10 0000		5 5007 CN	T TO THALES
		C + + +	WHEN F	RUZE EQUALS	1 145 201	L IS CONS	IUEKEU IG E	C PRUZEN I	LI IS IMAMED
0377		6444	TELEDO	ADZE EQUALS	10 440				
0571		(***	CMH7 T	C THE COTE M	DISTURE T	THE TOP	12 INCHES	CVER EACH	
		C * * *	3102 1	AVERCE 15 TH	E AVAILAD	E WATER	CADACITY OF	THAT SOLL	
		(***	TERICA	TICN: ATLL NO		V DAYS TH	AT THE SOTI	RELETION	TS AT
		C * * *	ALEVE	CREATER TH	IN THAT O	THE PER	CENTAGE OF	AVALLABLE	WATER
		C***	SPECIE	LED BY THE V	ARTABLE P	AVIU	ochrinde di		and wat
0379			SCIL=I	AREALMS - 21					
0379			IFISHU	ZIMSI .GT. IPA	VLU#AVLEC	USOIL))+	PWPUZ (SOIL)) GO TO 60	50

FORTRAN IV	G LEVEL	21	MAIN	DATE	= 79045	21/27/40
0380		JDISDA=JDISCA+1				
0391		NCNT=NCNT+1				
0 3 8 2		IF(PONVOL-LT-POVM	AX*VOLMAX}	GC TO 660		
0383		CISVOL(MS)=CSRATE	≠AREA(MS)			
	C * * *	IF THE POND VOLUM	E IS LESS	THAN THE VOLUME	REQUIRED F	OR ONE FULL
	C***	DAY OF IRRIGATION	, IT WILL :	BE ASSUMED THAT	NG (RRIGAT	ION WILL OCCUR
	C***	ON THAT DAY.				
0 38 4		PCNVOL=PONVOL-DIS	VOL(MS)			
0335		IF (PENVOL.GT.0.0)	GO TO 670			
0386		DISVOL(MS) = DISVOL	(MS)+PCNVC	Ĺ		
0387		PUNVUL=0.0				
0338						
0359	680	DISVULIMSIEG.J	ACCTINA 3	HELLOTENOL LHEL	405 A (M C)	
0390	010	-2 HACCILINM + 2 + M 2 / = 3	MACCILINE, 5 Voltaci	PHST+DISVULLMST.	TAKEPIMAT	
0307		TECOLSHOL (MS) GT	O OL DAVED	CINCI-DIACOCINC	1 +1 0	
0372	675	CONTINUE	0.01 04130	31 1137		
0364	015	TEINENT CT.ON IDI	ATRIACA	+ LOISDAZNENT		
0234	(***	HPDATE DISPOSAL D	AV ACCOUNT	-30130A/ NON1		
0395	6	(ELVELDIS-GT.0.0)	05047±050	AV +1		
0396		(E(BYPASS_NE.1) G	D TC 680			
0397		RUNCEF=0_0				
0398		GQ TO 730				
	C***	SUBROUTINE STORAG	CALCULATE	S ADDITICNAL LC.	ADING TO TH	E STORAGE
	C***	POND DUE TO FEEDL	OT RUNCEE	OR MUNICIPALITY	DISPOSAL	
0 399	630	CALL STORAG(P1, P2	,P3,PRECIP	, SNOW , FROZE, MCN	TH, GROW, DOR.	M.RUNDEF.MUND
		1IS(NM),RUNMDS)				
	С					
	С					
	С	*** CALCULATION 0	F SURFACE.	AREA AND DETERM	INATION OF	SURFACE
	С	EVAPORA	TICN FROM	STORAGE FACILIT	Y ***	
	С					
	C * * *	THE FOLLOWING CAL	CULATION E	XPRESSES THE VC	LUME OF WAT	ER IN THE
	C***	STORAGE FACILITY	IN CUBIC F	EET.		
0400	730	(FIPUNVUL-LE-0-0)	GO 10 750			
0401		V#PUNVUL#3630	ULATIONS O	FTEOMENE THE CH	0.5.5.5 A0.5.4	00 TIC CTODACC
	6444	THE FULLOWING CALC	CTICN CE S	ELERMINE IME SU	ADEA TO IN	COUNDE SECT
	0 ***	VOLUME 16 IN CHAI	CILLIN CF 3	HE STODACE ESCT	11 CT 4376	SQUARE FEEL
	(= = = =	FRISTRIN OF A DYD	ANIO INP	T DADAMETERS T	CITTIN 304 0 ST25 THS	EXCLUSE AN INTERIC
	(***	(I) OF THE BASE I	N FEET. WI	OTH OF THE GASE	(L) IN FEET	AND SLOPE OF
	C\$**	INSIDE EMPANKMENT	S GEVEN AS	A RATIO OF RUN	TO RISE(S)	. IT IS ASSUMED
	C * * *	THE POND DOES NOT	LEAK. IN	PUTS IG THE STC	RAGE WILL B	E NATURAL
	C * * *	RUNGER, FEEDLOT R	UNCEF. MUN	IC IPALITY DISPO	SAL AND PRE	CIPITATION.
	C ***	LOSSES FROM THE P	CND INCLUD	E EVAPORATION A	ND DISPOSAL	VOLUME.
	C * * *	BZ IS THE APEA OF	THE SURFA	CE LIQUID IN SC	UARE FEET.	
0402		HAPPX=(PCNVCL/VCL	мах) ФНМАХ			
0 40 3	740	VC=A1#HAPPX+A2#HA	PRX##2+43#	HAPRX≠≠3		
0404		D V = V - V C				
0405		DVDH=A1+A4+HAPRX+	A5*HAPRX **	2		
0406		H=HAPRX+DV/DVDH				
0437		IF (ABS(H-HAPRX) .L	1.0.1) GC	10 750		
0408		HAPFX=H				
0409	300					
0410	750	THE THEOTERMAN H=				
3412		D2=(W+2++3+H)*(L+	∠•*3*H) KEVD=0_0			
0613		INCOMPLETATION	KC7P=0.0			
0410		- LNEVFIELNEVFI+LAK	LVP			

FORTRAN	IV	G	ι ενει	21		м.	AIN		OATE =	79045		21/27/40
0414				SEVAP=	B2+(LAKEVP	/12)	_					
			(***	SEVAP	IS THE VOL	UME CI	E WAT	ER EXTRACT	TED FRCM	THE STOR	AGE FA	CILITY BY
0415			6.44.4	TELLSE	VAP/3630).	GT. PC	NVCI 1	SEVAPERIN	WC1 #3630			
0416				PONVOL	=PCNVOL-LS	EVAPI	3630)	3C MAL-FOR				
0417				IFIPSN	VOL-LE-0.0) PON	VUL=0	.0				
			C									
			C * * *	THE VO	LUMES OF C	ALCUL	ATED	RUNCEE, FE	ECLOT RU	NOFF, MU	NICIPA	LITY
			(***	DISPOS	AL, AND PR	ECIPI	TATIC	N FALLING	ON THE F	ACILITY	ARE ADI	DED
3418			(+++		PENVELAD	WALL	* 1N *1 TAR	THE STURAU	35 FAUILI /3#361064	IT LAURE	-101	c
0410			C***	THE VO	LUME DE WA	TER R	EMAIN	ING AT THE	E END CE	THE DAY	IS EXP	RESSED
			C ***	IN ACR	E- (N.		-					
			С									
			C * * *	THE FO	LLOWING ST	ATEME	NTS D	ETERMINE W	HETHER T	HE STORA	GE FAC	ILITY HAS
			C # # #	OVERFLO	GWED AND I	F SO,	THE	JUANTITY 0	DISCHARGE	C		
0419				USCHRG	=0.0 V01V01.4AX	1 70	0 790	74.0				
0420			760	DSCH3/a	=PONVOL-VO	Ι ΜΔΧ	U , (QU	, /60				
0422			100	DSCVCL	= JSCVOL+DS	CHRG						
			C * * *	VOLUME	CALCULATI	GNS T	G INC	REASE THE	PCND SIZ	E		
0423				CONTRL	= 1.0							
0424				PONTRE	= CONTRL*	100.0						
0425				VOLCHG	= CONIRE*	PUNVU	L-VUL	MAX+VULCH	,			
0420				VCB = 1	· 후 오UL(리스지 1 2.0 호 호 호	HMAX	6					
0428				VCC =	((4,/3,)*5	++2)	- (VC	I MX 1# 3630.	(HMAX)			
0429				VCD =	VCB**2 - (4. #VC	c)					
0430				VC1 =	SQRT (VCD)							
0431				CIM =	(VC1-VC3)/	2.0						
0432				WRITE	6,770) NM.	ND,YE	AR+DS	CERG, VOLM	K1,PCNTRL	DIM		
0433			110	- FURMAI SHIJEC -	(/+1X+12+' Volume of	1 + 12	, ' / ' ,	1277 - 913	SCHARGE U 3 # 64 9	17 197142 1 9 CONT	1 ALX	ETIN KEQ EDE 1 -
				201865 20 = 1.	VOLUME OF Falsi	· • F 3 •	4 . 47	CRETIN FOR	< ',F0.2;			CRE L -
0434				PONVEL	=VOLMAX							
0435				IFIDSC	HRG.GE.PE	K) PE	AK = D S	CHRG				
0436				IF (YEA	R.GT.PREVY	R.CR.	CM.LT	.1.0) MM=/	M M+1			
0437				PREVYR	=YEAR							
0438			700		1.0							
0455			r /00	CONA PER	UE							
			C***	UPCATE	SOIL MOIS	TURE	ACCOU	NT FOR EAG	CH PLCT			
0440				DC 785	K(=1,NP(015						
0+41				SHACCT	(NM,2,K()=	SMACC	T(NM,	2,KI)+PRE(CIP			
0442				SMACCT	(\\4,KI)=	SMACC	TINH 1	4 . KI) + NIA	(KI)			
0443				SHACCT	1147929818=	SMACC SMACC	TINM.	6.KII+NDPE	FRECKIN			
0445				SMACCT	(N.4.7.K()=	SMACC	TINM.	7.KI)+AET	U(KI)+AET	L(KI)+SN	OVAP	
0446				SMACCT	(NM,8,K()=	SMACC	TINM,	3 .KI)+SM()	K()-SMPD4	KIJ		
0447			735	SMPDIK	I)=SM(KI)							
			C	1100 175	90ND 1000	12 4N T						
0448			(* **	ACTIER	FUND AULL	LDIS						
0449				POACCT	(NM.3)=204	CCTIN	M. 3) +	RUNMOS				
0450				PEACET	(NY,4)=PD/	CCTIN	4,41+	RUNCEF +LT	AREA			
0451				PEACCT	(NH,5)=PC/	COTIN	M.5) +	STRVOL				
0452				PCACCT	(NM+S)=054	CCTON	M,8)+	SEVAP/363	3			
0453				PEACCT	[NM,9]=PC/	ACCT IN	M,91+	USCHRG				

FORTRAN	IV	Gι	EVEL	21	MAIN		DATE = 79045	21/27/40
0454				PCACCT(NM,	10) = PDACCT (NM, 1	0) + (PONVOL-P	DVCLI	
0455				IFIND .EQ.N	DAYS) PDACCTINM	.11)=H		
0456				POVOL =PONV	01			
0457				TELPONVOL.	GT. MAXVOL) MAXV	CL = P CNVOL		
0421		c			UTIMATION MART			
		Ç	***	STATISTICA	L PRECIPITATION	AND RUNDEF	FREQUENCY DATA	
0458				IF (PREC (ND).GT.0.0) CTPDA	Y = CTPDAY+1	•0	
0459				IPLOT=NPLG	TS			
0460				LEINPLOTS.	GT.4) NPLOTS=4			
0.461				00 795 11=	1.25			
3462				JEIPPECINO	1.GT ERECTION	TP / 1 11=C TP / 1	11+1.0	
0462				CNTR=0.0				
0465				00 700 41-	1 NOTOTS			
0404				161100 01-	TA CT O O AND T	1 50 11 CT20	AVINTI-CTODANIA	X1141 0
0435				TEINBROFIN	11.01.0.0.AND-1	-1 0	ATTAIJ=CIKJATT	K1771-0
0400			300	TELNANGELK	TI-GI-ULUI UNIK	-L.U	CT0///	
0457			790	IF(NENUPIK	LI.GI.FREQ(LLII	CIRTING RIJ=	CIRCII, KIJ+I.U	
0463			795	IF (PRECINC	0.GT.FREQ(11).A	ND.CNTR.EQ.1		TPRIII+1.0
0469				NPLCTS=IPL	СТ			
0470			800	CONTINUE				
		C						
		C			VIT 0111 1 1000	*****		
		2		*****	XII DALLY LUOP	*****		
		2	***	UPBATE ACC	CUNTS			
0471				OPDATE ACC				
0472				PEACETINH,	11-ABONT 11001	110004064		
0472				PLACETING,	ZI=SMALLIINM;Z;	LIPPSAKEA		
0413				PLACE IINA,	6J=USUAT			
0414				POACCT (NM,	7)=ACTIRR			
0475				=L 018 00	2,10			
2476			810	PEACET(13,	J = PBACCT(13, J)	+PDACCT(NM,J	13	
0477				DO 830 MP	P=1,NPLCTS			
0478				DC 820 J=	2,8			
0479			820	SMACCT(13,	J,MP)=SMACCT(13	+J+MP1+SMACC	TENM, J, MPJ	
0480				SMACCTINM,	1, AP) = AMONTH(NM)		
0481			830	SMACCT(13,	1,HP)=AMENIH(13)		
0432				PDACCT(13.	1)=AMONTH(13)			
0483				VCLIRR=VCL	IRE+ACTIR8			
0434			840	CONTINUE				
		C		Continue				
		C						
		c		****	XIT MONTHLY LCO	P 48988		
		d						
0435				DSNGH=PACK	-PACKPY			
0486				PACK PY=PAC	X			
0437				PC-W= (PDA	CCT (13-21+PDACC	T(13.3)+PCAC	CT (13-4) + POACC1	T(13,5)-PDACCT1
• • • •				113.911/120	ACCT113,21+PDAC	CT(13.31+PDA	CCT (13.4) + PDAC	CT (13,51)1#100.
0433				VASTUREANS	TWWADCWW	01120908-106		
0439				201007013	111=000007112.1	1.1		
0400				DO SEC VI	-1 NOLOTS	11		
0421				DC21/2 00	- LYNPLUIS	CCT112 5 /7.		
0491				USKAPPIKI	-DSHNFFIKIJ+SMA	COT(13,5,K)		
0492				AINTERIKT	=AINIERIKIJ+5MA	CUT(13,4,KT)		
0493				AAEIRS(KT)	=AAEIRS[KT]+SMA	CUT(13,7,KT)		
0494				ACHSE V(KT)	=ACHSCM(KT)+SMA	CCT(13,8,KT)		
0495			850	OSPERC(KT)	=DSPERC(KT)+SMA	CCT(13,6,KT)		
0495				IFRSUM=IRF	SUM+VCLIRR			
0497				TPREC=TPRE	C+SMACCT(13,2,1	1		
0498				IFILYEAR+1	9001.EQ.YSTART1	DRY=SMACCT(13,2,11	
0499				IF (SMACCT (13,2,1).GE.WET)	A ET =S MACCT (13,2,11	

FORTRAM IV	G LEVEL	21		MAIN		OATE = 7904	5	21/27/40
0500		IFISMAC	CT (13,2,1).LE	E.DRY) DP	RY=SMACCT(1	3,2,1)		
	C	007117 0						
0.501	6+++	WRITE(6	-860) YEAR					
0 50 2	860	FORMATE	'0',27X,'	WATER	ACCOUNT FO	R STORAGE F	ACILITY	(IN ACRE-
		1 INCHES)	- 19	1+(2//9)	(, !			
		2			S1.48X.101	TEL CH St / 124		
		4		*, 17)	(, !			
		5!/	3X, *MONTH*,4)	(, PRECI	MUNICI	PAL FEECL	CT RUI	OFF1,4X,1
		GERR. CA 7 CHANGE	YS1,4X,1DISP(====================================	ISAL VOL-	• SURFACE	EVAP. DI	SCHARGE	,4X,'VOL.
0 50 3		WRITE(6	,870) ((PDAG	CT(1,K)	x=1,11),I=	1,13)		
0 50 4	870	FURMAT	4X, A4, F10.1, F	12.1,2F	10.1,F10.0,	F16.1,F17.1	+F13+1+8	15.1,F10.
	r .	12)						
	C***	PRINT S	OLL MOISTURE	ACCOUNT	s			
0505		DO 910	JM=1,NPLCTS					
0506		CROP=(A	REA(J*,1)					
0507		-SUIL=14 -#81TE14	REA(JM+Z) 	DICRCP	SOLL APEAL	1.4.1		
0509	830	FORMAT	////,60X,'PLC	DT NO. 1.	13,////,25X	,'CROP',2	A8,5X,'	SOIL TYPE-
		1-1,13,5	X, DISPOSAL	AREA ", 1	F6.2. ACRE	S*)		
0510		WRITE(6	,890) YEAR					
0511	890	HUEMAIL	. 101 9 35X 9 1WALL	ER BALAN	LE LINCHESS	IN THE UIS	PUSAL A	(EA = 19")
		2						132X,
		3 INPUT	S',38X,'CUTPU	JTS1/21X	, '			*,3X, *
		4	CIPITATIONI	4Y. + 18 81 (GATION! . 3Y .	+ IN TERCERTI	*/9) EN\$ -2X -	(, 'MUNIH', Sureace R
		6UNCEE ,	3X, 'PERCOLAT!	LCN1,8X.	'AET", 3X, 'C	HANGE IN SM	1)	JONT NOL IN
0512		ARITELE	,900) ((SMA)	CTIL,K,	JH),K=1,8),	I=1,13)		
0513	900	FCRMAT	10X, A4, 7F15.	2)				
0514	910	WRITELA	15 1920) PCWW					
0516	920	FCRMAT	101,10X, PEP	CENT OF	ASTEWATER	CONTROLLED	+,F10.2)
0517		WRITE I	6,930) IDIS	CA				
0518	930	FCPMATI	(101,10X,120T)	ENTIAL D	ISPOSAL CAY	5=1,14)		
0519	940	FERMAT	101.10X.12AC	K CN DECI	E48ER 31 =*	.E5.2.15X.		
0 2 0 0		1"CHANGE	IN SNOW STOP	RAGE= + , F	5.2)			
0521		WRITELE	950)					
0522	950	FORMATI	1908,10X,81NP) 215119583	JIS-OUIP	UT S-CHANGE	IN SNCW SIL	RAGE CH.	ANGE IN
0523		MAXVOL=	AXVEL#100.0	/VCLMAX				
0.52.4		WRITE (6	, 360) MAXVO	_				
0525	960	FCRMAT	+ UF , 10X , PERI	CENT OF	MAXIMUN PON	D VELUME RE	QUIRED	=*,=7.2)
0526		WRITEIA	EVAPENTEREYP	1 T				
0528	970	FCRMAT	10",10X, "EST	IMATED L.	AKE EVAPORA	TICN, INCHE	S =1,F6	.2)
0529	980	CONTINU	JE					
	C C							
	c	****	* EXIT YEARL	Y LOOP *	** **			
	C							
0530	990	CONTINU	JE					
0531	(***	CALCULA	ATE AVERAGE A	NNUAL VA	LUES			
	-							

FORTRAN	١٧	G	LEVEL	21	MAIN	DATE = 75045	21/27/40
0532				EVAP=EV	APLKZYEARS		
0533				CMNEW=C	Ч		
0534				IF(MA.E	0.0) MM=1		
0535				COUNT=C	MZMM		
0536				IFICOUN	T.EQ.0.C) MM=0		
0537				IF(CM.E	Q.O.O) CM=YEARS		
0533				OSCRG=D	SCVCL/CM		
0539				CM=CMNE	м		
0540				CONTRL=	WASTHW/YEARS		
0541				IRRVCL=	IRR SUM/YEARS		
0542				APREC = T	PRECIYEARS		
0543				RANGE=W	ET-DRY		
0544				AVGMD=E	VAP-APREC		
0545				00 1000	J=1,NPLCTS		
0546				DSPERCE	J)=DSPERC(J)/YEARS		
0547				USRNEEL	J)=USRNFF(J)/YEARS		
0548				ACHSUME	J) = ACHSCM(J)/YEARS		
0549				AINTERL	J)=AINTER(J)/YEARS		
0.550				AAEIRSU	J)=AAEIRS(J)/YEARS		
0551			1000	DAYSUSI	JI = UATSUSTUI/TEAKS		
0272				DE 1020	13.01.47 NFLC1344		
0554				DO LUZU	J = L + 2J		
0553				TELCTOS	AY.CT.0.01 CTP(1)=CTP(1)/C	TPDAY#100.0	
0556				PRECACI	1.11=\\$777777	, IF 541 - 1004 0	
0557				PRECACI	1, 2 = (TP(1))		
0552				PRECACE	1.4)=(TFR(1)		
0559				DO TOTO	7=1.NPICTS		
0.560				11.141=5	+I		
0561				RUNACCE	1. INUM11=CIR(1.1)		
0562				TELCIED	AY(I) = GI = 0 = 0 CIRL I = I) = CIR	(1.1.1)/CTRDAY(1)+100.0	
0563				INUM= I+	1		
0.56.4			1010	RUNACCI	J.INUM) =CTR(J.I)		
0555			1020	RUNACCI	J + I = A STAT(J)		
0566				NPLCIS=	IPLCT		
			C				
			C ***	PRINT I	NPUT PARAMETERS		
0567				WRITE(6	, 95) NAME, CF, CITY, AND, STA	ATE, YSTARI, YEND, WEATH, M	ICDIF,MCD,EL
				L.IN.FLC	W, TC, SICR, AGE, PCND, LTAREA	STORM & L + W + S + HMAX + VCLM	X, PSAREA
0558				00 1080	J=1,NPLCTS		
0569				CROP=IN	CROP(J)		
0570				PLAREA=	APEA(J)		
0571				SOIL = IA	REA(J+2)		
0572				RPAVLU=	PAVEU		
05/3				TELIPLA	N(J).EQ.L) PAVEU=0.0		
0574			1022	WRITE16	, 1030) J, PLAKEA, KRUPICKUP;	SUIL,DSRAIE,PAVEU	
0515			1030	FURMALL	//IDX; PLUI *; II//2DX; *(A)	I AKEA ',FO.2;' AU	KES'//23X9'
				1(8) GRU	2 ',2A8//25X,'(C) SUIL	17PE '+13+' (565)	CIL ITPEIT
				3617102	MANAGENENT TODICATION	ASLOW 1 55 3 1 51510	CADACITYEN
0.576				TELLON	N(1) SO 1) UDITE (6 1040)	CLUM 'PEDAZA' FIEL	GAPACIT'
0577				TECTOLA	N(1) EC.21 WRITE(6,1050)		
0578				IF(121A	N(1) E0.3) WRITE(6.1050)		
0579			1040	FORMATI	/25X (E) PLAN INPLEMENTED	RUNDEET1	
3530			1050	FORMATE	125X (E) PLAN INPLEMENTED	BUNCEE AND IRRIGA	T ION * 1
0531			1060	FERMATI	(25X+1(5) PLAN IMPLEMENTED	ISPIGATION'I	
0532				IF (ROTA	TE(J).EC.1) %R(TE16.1070)		
0 5 3 3			1070	FORMATI	/25X, '(G) CROP RETATION W	TH FALLCH!)	

.

-UKIKAN I	V G LEVEL	ZI MAIN	DATE = 75045	21/2//40
0584		PAVLU=RPAVLU		
0535	1090	CGNTINUE		
	С			
	Caes	PRINT FINAL SUMMARY		
0536	1000	WRITE(6,1090)		
0538	1040	- FURMA((////)4/X)***** FINAL 3	UMMARY *****'}	
0589	1100	FORMATIZION, INC. METEOROLOGICAL	SHAMAR YF 3	
0590	1100	WRITE(6+1110) EVAP	30	
0591	1110	FOPMATIO1, 25%, AVERAGE ANNUAL	LAKE EVAPORATION= +, F6.2,	INCHES')
0572		HRITE(6,1120) APREC		
0593	1120	FOPMAT('0', 25%, 'AVERAGE ANNUAL	PRECIPITATION=',F6.2,' IN	ICHES ! 1
0594	1170	WPITE(6,1130) PANGE, DRY, WET		
0242	1150	TOSTICS 2.7 INCHES TO A HIGH D	KANGER';[[0.2]] INCHESITI	-RUM A LUW
0596		wRITE(5.1140) AVGMD	i grotzy inchest /	
0597	1140	FORMATI'0', 25%, 'AVERAGE ANNUAL	MOISTURE DEFICIT=', F6.2,	INCHES!)
0598		WRITE(6,1150)		
0599	1150	FORMATE OF LOX , SUMMARY OF FON	O OPERATIONS!)	
0600		WRITE(6,1160) //M		
0601	1160	FCRMATITOT,25X, NO. OF YEARS F	AVING A DISCHARGE=',16)	
0602	1170	EDEMATION, 25Y, LAVERAGE NO. OF	DISCHARGES / YEAR HAVING	A DISCHARG
0000	1110	1E=*+E6.21	DISCHARGES / TEPR HAVENS	A DISCHARG
0604		WRITE(6,118C) DSCRG		
0605	1180	FORMATI'O', 25%, 'AVERAGE DISCHA	RGE=',F6.2,1X,'ACRE-INCHES	5*)
0606		WRITE(6+1190) CENTRL		
0617	1190	FCRMAT('0', 25X, 'AVERAGE PERCEN	T OF WASTEWATER CONTROLLED)='+F6-2}
0603	12.20	WRITE(6,1200) ESCVOL		
0609	1200	FLEMATION (20X) TIGTAL DISCHARG	E VULUME=', F9.2; ' ALRE-INC	, , ,
0611	1210	- FERMATEROF .258 . TOTAL NO. OF 0	15CHARGES=1.E4.01	
0612		WRITE(6,1220) PEAK		
0613	1220	FERMATIO1,25x, MAXIMUM DISCHA	RGE=',F6.2,' ACRE-INCHES')	
0614		WRITE(6,1230) IARVOL		
0615	1230	FORMATI'0', 25X, 'AVERAGE ANNUAL	. VOLUME OF WASTEWATER APPL	.IED=',F8.2
2616		Ly' ACRE-INCHES')		
0617	1240	EDRMATITO: 10X. SUMMARY DE DIS	POSAL PLOTS!	
0618	(2.13	DC 1320 J=1.NPLCIS	COAL FLORD F	
0619		WRITE(6,1250) J		
0620	1250	FURMAT[*C*;15X;*PLOT *;11]		
0621		WRITE(6,1260) DSRNFF(J)		
0622	1260	FURMAILTOT: 25X; TAVERAGE ANNUAL	. DISPUSAL AREA RUNUFF=',Fe	.2. INCHE
0.623		ARTIFIA, 12701 OSPERCE 1		
0624	1270	FORMATI'O', 25X, 'AVERAGE ANNUAL	DISPOSAL AREA PERCOLATION	=".F6.2."
		1[NCHES!]		
0625		WRITE(6.1280) DAYSDS(J)		
0626	1220	FCPMAT('0', 25%, 'AVERAGE ANNUAL	NO. OF DISPOSAL DAYS='+F&	5.1)
0627	1 200	WRITE(6,1290) AINTER(J)		1 ml 54 2 1
0.625	1290	I INCLESES	. DISPUSAL AREA INTERCEPTIC	1 + FO+ 6 + '
0623		WRITELE.130C) AAETRSLJ		
0630	1300	FURMATIO . 25% . AVERAGE ANNUAL	DISPOSAL AREA EVAPOTRANSE	IRATION='.
		1F6.2, ' INCHES')		
0631		WRITE(6,1310) ACHSOM(J)		
0632	1310	FORMATI'O',25X, AVERAGE ANNUAL	DISPOSAL AREA CHANGE IN S	SGIL MOISTU

FURIRAN	IN G CENEL	21	MAIN	UATE = 19045	21/2//40
		1RE=',F6.2	(,' INCHES!)		
0633	1320	CENTINUE			
0634		WRITE (6,1	330)		
0635	1330	EGRMAT(*C	+,10X, SUMMARY OF STAT	ISTICAL DATA")	
0636		WRITE(6,1	340)		
0637	1340	FORMAT (10	+,41X, PRECIPITATION F	REQUENCY CATA' . //27X .*	INTENSITY . 5X
		1, "FREQUES	ICY 1, 5X, 1 FREQUENCY 1, 5X,	*RUNDEF FREQ. *,/29X,*(IN.1',10X,'(2
		211,98,110	DAYS)', 10X, '(CAYS)',/)		
0638		WRITE (6,1	350) ((PRECAC(1,J), J=1,	4), [=1,25)	
0639	1350	FORMAT(29	X,A4,3F15.2)		
0540		WRITE(6,1	.360)		
0641	1360	FORMATING	1,///60X, RUNDEF FREQU	ENCY DATA + //27X, * INTE	NSITY', 15X. 'F
		1F EQUENCY	(%)',26X,'FREQUENCY (C	AYS) *,/29X,*(IN.)*,7X,	PLCT 1 PLO
		3T 2 PLC	T 3 PLOT 41, 3X, PLOT	1 PLOT 2 PLOT 3	PLOT 4+,/)
0.642		WRITE(6,1	370) ((RUNACC(I,J), J=1,	9),I=1,25)	
0643	1370	FCRMAT(29	X,A4,5X,4F9.2,4X,4F9.2)	
0644		STCP			
0645		END			

.

, 7 . . . **.**...

FORTRAN IV	G LEVEL	21 0	ROPCE	DATE = 79045	21/27/40
0001		SUBROUTINE CROPCO (CR	CP,MGSE,CGS8,MGS	E. DOSE . KOROP . NOIN. MMA	r)
	***	SUBPOUTINE CROPCO CAL	CULATES THE CROP	CCEFFICIENTS FOR USE	IN
	C * * *	THE MAIN PROGRAM. TH	E CRCP COEFFICIE	NTS ARE CALCULATED BY	THE
	C * * *	PROCEDURES GUILINED 1	N THECHNICAL REL	EASE NC 21, IRRIGATION	4
	(+++ (+++	WATER REQUIREMENTS, U	INTIED STATES DEPA	ARIMENT OF AGRICULTUR	
	(***	SUIL CONSERVATION SER	WILE: ENGINEERING	G UIVISIUN, APRIL 196	
	C***	EJUATIONS FOR THE CR	P GROWTH STAGE C	DEFETCIENT CURVES wER	:
	C * * *	DEVELOPED WHICH ELIMI	NATES THE NECESS	ITY OF READING THE VAL	UES
	C * * *	FRUM THE CURVES. INF	UTS TO THE SUBRO	UTINE INCLUDE THE CRC	,
	C***	MONTH AND DAY GROWING	BEGINS AND ENDS	, NUMBER OF DAYS IN E	ACH
	C***	MONTH, AND THE MEAN N	CNTHLY AVERAGE T	EMPERATURES IN FAHREN	HEIT
0002	(***	UEGREES.	r		
0.003		INTEGER NOIM(12).SHIE			
0004		REAL MID(12)/12+0./.0	BMD(12)/12*0./.A	CC(12)/12+0./.PCGS(12)	/12+0-/
0005		REAL MMAT(12), KT(12)	KCRCP(7,12),PCGS	1(12)	
	[≄ ≉ ¢	MGSB= MONTH GREWING S	EASLN BEGINS EXPI	RESSED NUMERICALLY IS	1-12
	C * * *	DGSB= DAY GROWING SEA	SCN BEGINS EXPRE	SSEC NUMERICALLY	
	C * * *	MGSE= MONTH GROWING S	EASON ENDS EXPRE	SSEC NUMERICALLY IE 1-	-12
	(+++	UGSE= DAY GRUWING SEA	SUN ENDS EXPRESSI	ED NUMERICALLY	
	C###	DRADE DAYS BETWEEN MI	DE DUNING IN INC.	GRUWING SEASON	
	C***	ACC= ACCUMULATIVE DAY	'S IN GROWING SEAT	SON	
	C * * *	PCGS= PERCENI OF GROU	ING SEASON REACH	ED AT MID CATES	
	C***	MMAT=MEAN MONTHLY AVE	RAGE TEMPERATURE	S	
	C * * #	MGSB1=TEMPORARY STORA	GE FCR MGSB		
	C * * *	MGSE1=TEMPCRARY STCRA	GE FOR MGSE		
	C * * *	PCGSI=TEMPCRARY STOR	GE FOR PCGS		
0006		MGSE1=MGSB			
0007		TEINGSELFRUSE TEINGSE GT NGSEL OB I	0.10		
0 0 0 0		GC TO 20	0.10		
	C***	WHEN MOSE IS GREATER	THAN MOSE SUCH A	S IN WINTER WHEAT THE	
	C * * *	SUBFOUTINE "SHIFTS" (R ADES 1 TO MOSE	AND MOSE UNTIL MOSE	= 13
	(* # #	WHICH CORRESPONDS TO	JANUARY. THIS S	HIFI WAS NECESSARY TO	
	C###	FACILITATE PROGRAM LO	CPING. AFTER CA	LCULATIONS ARE MADE TH	1E
	C * * *	CROP COEFFICIENTS AR	SFIFIED" BACK	IC THEIR CRIGINAL MC	VIHS.
	(****	*********	*****	*****	*************
	C * * * *	*********	********	*************	*********
	C * * *				¢ \$
	C * * *				**
	C * * *			WILL WET CONCIENTS	**
	(====	CONTINU SEASON EXCERT	A UNE VEND	WILL NUT WURK IF THE	
	C 4 1 #	GROWING SEASON EXCEED	IS UNE TEPK.		43
	C***				**
	C***				**
	C 3###	***********	******	******************	******
	C ****	********	***********	****************	*****
	C ####1	**********************	*********	****************	*****
0010	10	SHIFT=13-MGSB		· · · · · · · · · · · · · · · · · · ·	
0012		MC2B=1			
0013	20	NPLUS=MGSB+1			
0014	20	NMINUS=MGSE-1			
0015		HID(MGSB)=((NDIM(MGSE	1-DGS81/2.1+0GS8		

FORTRAN	IV	GL	EVEL	21	CROPCO	DATE = 79045	21/27/40
0016				DO 30 N=NPLUS . NMINUS			
0017			30	MID(N)=NDIM(N)/2.0			
0013				MID(MGSE)=DGSE/2.0			
0019				OBMD(MGSB) = M1D(MJSB)	-DG SB		
0020				CC 40 N=NPLUS . NMINUS			
0.021			40	DBMCIN)=NDIM(N+1)-MI	D(N-1)+#10(N)		
0.022				DEMDINGSE)=NDIM(MGSE	-11-410 MGSE-11+00	355	
0.023				$\Delta(CLMGSB) = CBMDLMGSB)$			
0.024				DO 50 N=NPLLS+MGSE			
0025			50	$\Delta CC(N) = \Delta CC(N+1) + 0BMD$	(N)		
0.02.6				ACCIMGSEI = ACCIMGSEI =	MED (MGSE)		
0.02.7				DG 60 N=4658.465E			
0028			60	$PCGS(N) = (ACCIN) \neq 100$.)/TACCINGSE)+MID()	MGSEI)	
0029				IFINGSB1.LE.NGSE11 G	G TG 100		
0030				CG 80 N=1.12			
0.031				NN=N+SHIFT			
0032				IFINNILE.01 NN=NN+12			
0033				IF (NN.GT.MGSEL.AND.N	N.LT.MGSB1) GO TO	70	
0034				PCGS1INN)=PCGSIN)			
0.035				GD TC 80			
0036			70	PCGS1(hN)=0.0			
0037			80	CONTINUE			
0039				00 90 N=1,12			
0039			90	PCGS(N)=PCGS1(N)			
0040			100	MGSB=MGSB1			
0041				MGSE=MGSE1			
0042				DD 110 J=1+12			
		C	***	KT IS A CLIMATIC CCE	FFICIENT APPLIED	TO THE CRCP GRCWTH	
		C	* * *	COEFFICIENT. IT IS	CALCULATED BY THE	FOLLOWING EQUATION:	
0043				KT(J)=.0173*MMATIJ)-	•314		
0044				IF(EMATIJ).LT.36.) K	T(J)=.3		
0045			113	CENTINJE			
		C	***	CROP=1 FCR WHEAT			
		C	**¢	CRCP=2 FOR SORGHUM			
		C	***	CROP=3 FOR CORN			
		C	***	CROP=4 FCR SCYPEANS			
		0	***	CROP=5 FOR PASIDRE			
		C C	***	CRUP=6 FUR ALFALFA			
224		6	~ * 4	CRUPEZ FUR FALLOW	EA 1/A 122 2001 C		
0045			120	GU 10 1120,130,140,1	50,100,180,2001,0	KUP	
0047			120	ABAR = 20.0 A=1 - 30062200			MARAT
0.049				A=1.33073377 B==0.00349379			HIEAT
0.050							HTEAT
0.051				D = -0.0000000000000000000000000000000000			MIDEAT WHEAT
2052				E==0.00000299			
0053							HOLAI
0 054			130	XEAR=SU.			
0055				A=1.05528355			SORGHUM
0056				3=2.00196600			SORGHUM
0057				C=-0.60051577			SERGHUM
0058				D=C,00000045			SURGHUM
0059				E=0.0000011			SORGHUM
0050				GO TO 210			
0061			140	XHAR=50.			
0.052				A=1.02305328			CCRN
0063				3=0.00980046			CORN
0064				C=-0.00031919			CORN

FORTRAN	IV G LEVE	L 21	CROPCO	DATE = 79045	21/27/40
0065		0 = -0.0000194			CORN
0056		E=0.00000007			CORN
0067		GO TO 210			
0.06.8	15	0 XBAR=50.			
0059		A=0.74790430			S CY BEAN S
0070		B=0.01474796			SCYBEANS
0071		C=-0.00013486			SOYBEANS
0072		D=-0.0000443			SCYBEANS
0073		E=0.			SCYBEANS
3074		GO TO 210			
	C***	FOR PEPENNIAL CRO	IPS SUCH AS ALFA	LFA AND PASTURE, VALUES	OF THE
	C * * *	CROP CCEFFICIENTS	ARE BEST PLOTT	ED ON A MONTHLY BASIS TI	HEREFORE
	C***	EQUATIONS WERE NO	DT DEVELOPED. M	ONTHLY VALUES WERE INTE	GRATED
	Caaa	WITHIN THE ROUTIN	E FOR PASTURE A	ND ALFALFA.	
0075	16	$0 \ \text{KCRCP}(5, 1) = 0.49$			
0076		KCROP(5,2) = C.57			PASTURE
0077		KGRUP(5,3)=0.73			PASTURE
6100		KCR(1P(5+4)=0.05			PASTURE
0079		KCRUP (5,5)=0.90			PASIURE
0080		$K_{C}^{(P)}(5,6) = 0.92$			PASIURE
0021		$K_{CRUP}(5, 7) = 0.92$			PASIUKE
0032		VC2C2(5 2)=0.91			PASTURE
0003		x C2C215 101-0 79			PASIURE
0085		kC2CP(5,11)=0.67			PASTORE
0.036		XCUCP(5,12)-0.55			0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.037		00 170 1=1.12			PASIONE
0038		KCR02(5, 1)=KCR02(5.11****(1)		PASTIRE
0039		TE(PCGS(J)) IE-0.0) KCROP(5.1)=0.	0	PASTURE
0.390	17	O CONTINUE		•	1431-042
0091	• ·	GO TO 230			
0092	13	0 KCPCP(6,1)=0,63			
0093	• -	XC3CP(6+2)=0-73			ALEALEA
0094		KCRCP(6,3)=C.96			ALFALFA
0075		KCROP(6,4)=0.99			ALFALFA
0096		KCR0P(6,5)=1.08			ALFALFA
0097		KCRCP(6,6)=1.13			ALFALFA
0098		KCRDP(6,7)=1.11			ALFALFA
0099		KCR0P(6,8)=1.06			ALFALFA
0100		KCRCP(6,9)≠C.99			ALFALFA
0101		KCRCP(6,10)=0.91			ALFALFA
0102		KCROP(6, 11) = 0.78			ALFALFA
0103		KCRUP(6,12)=0.64			ALFALFA
0134		DO 190 J=1,12	1		
0105	10		.6,J]#KI(J)	2	ALFALFA
0108	19	0 IF(PC03/J).LE.0.0)] XCRUP(6,J)=0.	5	
0107	20				
0100	20	A = 3			EALLON
0110		A-0.			EVIOR EVIOR
0111		C=0.			FALLOW
0112		D=0.			FALLOW
0113		F=).			FALLOW
0114	21	0 00 220 J=1+12			
0115		Z=PCGS(J)-XBAR			
0116		KCRUP (CRUP , J) = (A+	B*Z+C*Z**2+0*Z*	*3+E*Z**4)*KT[J]	
0117		IF (PCGS(J).LE.O.	O) KCRCP(CROP, J	0.0=(
0118	22	O CONTINUE			

FORTRAN	ΙV	G LEVEL	21	CRUPCC	DATE = 75045	21/27/40
0119		230	CENTINUE			
		C * * *	SINCE THE MA	IN PROGRAM APPLIES THE	E CROP COEFFICIENT (XC)	ROP) TO
		C * * *	THE ENTIRE M	INTH, THE KOROP WAS PE	ROPORTIONED ACCORDINGL'	r TO
		C * * *	COMPENSATE F	OR THIS. THE NEXT TWO	I CARDS DO THIS.	
0120			KCROPICROP,M	SE)=KCRCP(CROP,MGSB)	<pre>F(NDIM(MGSB)+DGSB+1)/NI</pre>	DIM(MGS8)
0121			KCROPICROP, M	SSE)=KCRCP(CRCP,MGSE)	≭OGSE/NDIM(MGSE)	
0122			PETURN			
0123			END			

FORTRAN	IA (S LEVEL	21	WTRMO	ס	DATE = 7	5645	21/27/40
0001			SUBROUTINE	WTRMCCIPRECIP,	MONTH, MOCEL			
		C * * * C * * *	SUBROUT IN E	E WTRMOD ADJUSTS LCUDS	THE PRECIP	PITATION RE	SULTING FROM	
		C***	NO PRECIPI	TATION MODIFICA	TICN			
		C * * *	MODEL 2:	INCREASE PRECIP	ITATION DUP	RING MARCH	THROUGH SEPT	EMBER BY
		C * * *		THE FOLLOWING P	ERCENTAGES	- 75% FCR	RAINFALLS <	0.10 IN,
		C * * *		30% FCR RAINFAL	LS < 0.50	IN, 10% FOR	RAINFALLS <	1.0 IN.
		C***		-10% FCR RAINFA	LLS > 1.0 1	IN ELERY		0-010100
		(***	MODEL 3:	INCREASE ALL KA	INFALLS DUP	KING EVERY	MUNIH BY A S	PECIFIED
		(++++	MODEL 4:	INCREASE DOFCTO	TATION OUS	THE MARCH	TERCUCH SEPT	EWAER BY
		C = = =	HOULE 4.	THE FOLLOWING P	ERCENTAGES	- 75% ED3	RAINFALLS <	0.10 IN.
		C = = =		30% FCR RAINFAL	LS < 0.50	IN, 10% FOR	RAINFALLS <	1.3 IN,
		C***		NO ADJUSTMENT F	CR RAINFALL	LS > 1.0 IN	1	
		C						
0002			IF(MODEL.E	EQ.1) GO TO 40				
0073			IF (MONTH-L	.T.3) GO TO 10				
0004			1-1-1MUNIH_U	21.93 60 10 IJ				
0005			161206010	GT 0.101 AD I=1	30			
0000			TE(PRECIP.	GI.0.501 ADJ=1.	10			
0203			IFIMCOEL .	EQ.4) GC TO 20				
0009			IF (PRECIP.	GT.1.0) ADJ=0.9	0			
0010			GO TO 30					
0011		10	ACJ=1.0					
0012			IF (MCDEL.E	EC.3) ADJ=WPCNT				
0013			GO TC 30					
0014		20	IF (PRECIP.	.01.1.0) ADJ=1.0				
2015		30	PRECIPEPSE DETUDN	CUIPTAUJ				
2015		40	END					
0017			ENU					

FORTRAN	IV	G	LEVEL	21		SNOWRT	DATE	=	79045	21/27/40
0001			<i>c</i>	SUBROUT I	NE SNOWRT (PR	ECIP, NA TER	,PACK,PET,TE	MPA	SNCVAP)	
				*** CALC	ULATION OF M SNOWME	DISTURE AD LT ON THE	DED TO DISPO AREA ***	S AL	AREA CUE TO	
0002			•	REAL M. M	A . MR					
0003				M=0.0						
0004				IF (PACK.	GT.0.1) SNOV	AP=PET				
0005				PACK=PAC	K-SNCVAP					
0006				IFISNOVA	P.GT.0.0) PE	I=0.0				
0007				IFITEMPA	V-32.1 10,10	,20				
0008			10	IF(PPECI	P1 70,70,30					
0009			20	IF(PACK)	90,90,40					
0010			30	PACK=PAC	K+PRECIP					
0011				WATEP=0.	0					
0012				GO TC 90						
			C * * *	MA IS SN	OWMELT DUE T	C ATMCSPHE	RIC CONDITIO	NS .		
0013			40	MA=0.05*	(TEMPAV-34.)					
0014				IF(MA.LT	.J.0) ⊬A=0.0					
0015				IF(PACK-	MA1 60,60,50					
			C***	MR IS SN	OWMELT DUE T	O RAIN				
0016			50	MR=(PREC	IP+{TEMPAV-3	2.))/144				
0017				M=MR+MA						
0018				IF (PACK-	4) 60,70,70					
0019			50	M=PACK						
0020				PACK=0.0						
0021				GO TO 80						
0022			70	PACK=PAC	K-M					
0023			80	WATER=M+	PRECIP					
0024			90	RETURN						
0 0 2 5				END						

FORTRAN	IV G	LEVEL	21	DARCRT	DATE = 79045	21/27/40
0001			SUBROUTINE CAR	CRT (PERC, FCU, SMUZ, F	CL, SMLZ, FCGW, SMGWZ, DPE	RC,CONDUZ,C
0000			DIVERSION HIST	10297629730978097815 11231 590131 06131	CON0/31 059/31 0/31	
0002			DATA DED SCHOS	- EALESS SUPPRIST 45	- CUNUL 3J + UEP (3J + C(2)	
0003		c	DATA DEPAKUNUS	; EXCESS; XCH08/30.40	1 3 1 - 44 1 0 1 - 30 1 3 - 0 - 0 1	
		C***	DISTRIBUTION C	OF WATER ADDED TO EA	CH PLOT	
0004		•	EXCESS=0.0			
0005			IF (PERC.LE.O.C)) GO TO 10		
0006			SMAVUZ=FCU-SMU	IZ		
0007			IF(SMAVU2.LT.C	. G) SMAVUZ=0.0		
8 000			EXCESS=PERC-SM	AVUZ		
0009			IFIEXCESS-LI-C	1.01 EXCESS=0.0		
0010			SHUZ=SHUZ+PEKU	- EXLESS		
0011			TELEVANIZ IT (
0012			EVIDAVELOLIOU	1.01 SHAYLZ-U.U		
0014			EXCESS=EXCESS-	-SMAVE 7		
0015			TELEXCESS.LT.C	1.01 EXCESS=0.0		
0016			SMLZ=SMLZ+EXTR	A-EXCESS		
0017			SHAVG = FCGH-SA	1GW		
0018			(FISHAVGW.LT.C	.0) SMAVGW=C.0		
0019			EXTRA=EXCESS			
0020			EXCESS=EXCESS-	-SMAVGW		
0021			(F(EXCESS.LT.C).0} EXCESS=0.0		
0022			SMGHZ=SMGHZ+E)	(TRA-EXCESS		
0023			RCHGR=EXTRA-E)	CESS		
0024		-	IF (RC+GR+LT+0.	.0) RCHGR=0.0		
		C		TOTOUTION HEINE THE	ONE OTHENETEN AL CADEN	FOUNTION
		(*** (***	FOR UNSATUPATE	ED FLOW	UNE-DIMENSILAAL GAKUT	EQUATION
2025		C 10				
0025		10	DT ME-0 1667			
0.02.8			161059C.15 0.0	DI DIIME#1.0		
0.02.9			TE (PESCALE.O.)	11000		
0029			OPEPC=EXCESS			
0030			<pre>kF(1)=PhU/12.</pre>			
0031			WF(2)=PWL/36.			
0032			WF(3)=PwG/24.			
0033			SM0(1)=SMUZ/12	2•		
0034			SMD(2)=SMLZ/36	· ·		
0035			SMD(3)=SMGHZ/2	24.		
0036			DO 20 K=1,3			
0037		ZO	IF(SMG(K).GT.	L.0) SMG(K)=1.		
		C***	CALCULATE SOT	HDISTURE TENSION I	NCM	
0.038			H1(1)=(MD(1)-F	4117	in ch	
0039			H1(2)=SM0(2)-P			
0040			H1(3)=SMD(3)-	-GW		
0041			DO 30 K=1,3			
0042			H(K) = EXP(H1(K))	11		
0043			IF(H(K).GT.150	00.) H(K)=1500.		
0044			IF(H(K).LT.0.	3) H(K)=0.0		
0045			XXX=SMD(K)-WF	(K)		
0046		~	IF(XXX.LT.0.0)	L3 SMO(K)=WF(K)+0.01		
		C ***	CALCULATE UNS	TURATED HYDRAULIC C	ONCUCTIVITY IN CH PER	0 A Y
URIKAN I	V G LEVEL	21 UARCKI UAIE = 19040 21/2//40				
----------	-----------	---				
0047		IF(K.EQ.1) CONC(K)=CONDUZ*(EXP(72.039*SMD(K)))/(SMD(K)-wF(K))				
0048		(F(K.EQ.2) COND(K)=CONDLZ*(EXP(75.595*SMC(K)))/(SMC(K)+WF(K))				
0049		IF(K.EQ.3) CCND(K)=CCNDGW#(EXP(70.588#SHD(K)))/(SMD(K)-WF(K))				
0050		(F(COND(K).GT.10.0) CCND(K)=10.0				
0051	30	(F(CCND(K).LT.1.0E-07) COND(K)≠1.0E-07				
	С					
	C***	CALCULATE MOISTURE FLOW, IN INCHES				
0052	40	DO 50 $K = 1, 2$				
0053		Q(K)=(COND(K)+COND(K+1))/2#DTIME#(H(K+1)-H(K)+DEP(K))/DEP(K)				
0054	50	Q(K) = Q(K)/2.54				
0055		SMUZ=SMUZ-Q(1)				
0056		SMLZ=SMLZ+C(1)				
0057		SMLZ=SMLZ-Q(2)				
0058		SMGWZ=SMLZ+Q(2)				
0059		RCHGS=RCHGS+Q(2)				
0060		LCOUNT=LCCUNT+1				
0061		IF(LCOUNT.LE.6) GQ TO 40				
0062		DPERC≠DPERC+RCHGS+RCHGR				
0063		RETURN				
0064		END				

FORTRAN	IV	G	LEVEL	21	STCRAG	CATE = 790	45 21/27/40
0001			,	SUBROUTINE ST	CRAGIP1, P2, P3, PRECIP, S	NCW, FRCZE, MCN	TH, GRCW, DERM, RUNDF
			c .				
			č				
			č	***	CALCULATION OF FEFDIO	T RUNCEE ***	
			C.				
0002			-	IF (BYPASS.EQ.	3) 60 10 60		
			C***	CALCULATE 3 D	AY ANTECEDENT MOISTURE		
0003				A'4=P1+P2+P3			
0004				P1=P2			
0005				P2=P3			
0006				P3=PRECIP			
0007				IF (SNEW.GT.C	+0.AND.FROZE.EQ.0) GO	TO 10	
0008				IFIPPECIP.LE.	0.C) GO TC 50		
0009				IF (FROZE.EQ.	1) GO TO 40		
0010				IFIAM.LE.0.5.	AND.PRECIP.LE.0.5) GO	TO 50	
			C***	CALCULATE FEE	DLOT RUNDEF USING 3 CA	Y ANTECEDENT	MOISTURE CONDITIONS
			C***	MCDIFICATION	OF THE SCS METHOD		
0011			10	AM1=AM+PRECIP			
0012				PRESIP=PRECIP	'+SNCW		
0013				RC=97.0			
0014				IF (MONTH.LT.4	CR.MONTH.GT.10) GC TO	20	
0015				IF (AM .LT.0.75	3 RC=91.0		
0015				IF (AML.GI.GRC	W.AND.PRECIP.GT.GRCW)	PRESIP=GROW	
0017				GG 10 30			
0018			20	1F(AF-L1-0-50	1) RC=9I.0		
0019				IF ISNUW.GI.C	1.0] KL=97.0	005510-0C0H	
0020			20	1FIAM1.61.004	M.AND.PRECIP.GI.DORMI	PRESIDEDCKW	
0.021			06	C2=1000.07KC-	0-0-2+65/*+2//005510-0	94663	
0022				RUNDEF=1PRE31		+0+(3)	
0025				SUBLED D	TPREUIPPRESIPTSNUM		
0.025				TELOUNDEE CT	O CAL DUNCEE-DINCEE-O	06	
0.025				TETOPESTO-0.2	ACS IT 0.01 CO TO 50	00	
0.027				CO TO 60			
0027			40	SNOW=SNOW+PRE	C 10		
0.029			50	RUNDEE=0.0	.G1F		
0030			20	TELBYPASS.ED.	21 60 10 70		
0031			60	RUNDET= WINPT	/13630#7.48)		
0032			. 70	RETURN			
0.033				END			

1 1

INPUT FOR COMPUTER ANALYSIS

TABLE X

INPUT DATA FOR NAMELIST ALPHA

RCROP DORM 0.23 1.0
0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23

TABLE XI

INPUT DATA FOR NAMELIST BETA

Location	Н	Ц	М	S	INDST	YSTART	YEND
Belleville	6.0	950	950	3.0	0682	1949	1973
Colby	6.0	230	230	3.0	1699	1.950	1962
Dodge City	6.0	400	400	3.0	2164	1949	1973
Ellsworth	6.0	725	725	3.0	2459	1946	1970
Garden City	9.0	380	380	3.0	2980	1.950	1974
Goodland	6.0	325	325	3.0	3153	1949	1973
Hays	6.0	600	600	3.0	3527	1948	1973
Horton	9.0	2000	2000	3.0	3810	1946	1970
Independence	9.0	800	800	3.0	3954	1948	1972
Topeka	0.6	1.070	1070	3.0	8167	1949	1973

Location	MSTART	ROTAYR	DARCEQ	BYPASS	LTAREA	STORM	NPLOTS	1
Belleville	1	1	2		0	5.1	1	1
Colby	1	1	2		0	4.5	1	
Dodge City	1	-	2	Ļ	0	4.6	Ţ	
Ellsworth	Ч		2	1	0	5.4	1	
Garden City	1	ŗŢ	2		0	4.5	1	
Goodland		1	2	1	0	4.3	J	
Hays	1	J	2	1	0	4.7	1	
Horton	Ţ	, - i	2	1	0	5.9	1	
Independence	1	1	2	1	0	6.7	1	
Topeka		Ţ	2	1	0	6.1	1	

TABLE XI (Continued)

TABLE XII

INPUT DATA FOR DISPOSAL AREAS

Location	CROP	SOIL	AREA	IPLAN	ROTATE	MGSBP	DCSBP	MGSEP	DCSEP
Belleville	Wheat	5	80	1	2	6	1.5	7	10
Colby	Wheat	5	40		2	6	15	7	10
Dodge City	Wheat	2	80	1	2	6	15	7	10
Ellsworth	Wheat	5	80	1	2	6	15	7	10
Garden City	Wheat	5	80	1	2	6	15	7	10
Coodland	Wheat	5	80	1	2	6	15	7	10
Ilays	Wheat	5	80	l	2	6	15	7	10
Horton	Wheat	5	80	1	2	6	15	7	10
Independence	Wheat	5	40	1	2	6	15	7	10
Topeka	Wheat	5	80	1	2	6	15	7	10

APPENDIX E

OUTPUT OF COMPUTER PROGRAM

,

STATION: TOPEKA, KANSAS

1964 TO 1973

MCDEL: MODEL 8-ZEKO

MUNICIPAL INPUT

FEEDLUT AREA = 0.0 ACRES

SIZE OF CRITICAL EVENT: 6.10

POND VARIABLES:

(A) BASE DIMENSION-- 1020.00 FEET BY1020.00 FEET

(b) SIDE SLOPE-- RUN:RISE = 3. : 1

(C) MAXIMUM DEPTH--- 9.00 FEET

(D) MAXIMUM POND VOLUME-- 2718.48 ACRE-INCHES

(E) DIRECT RECEIVING AREA (FOR PRECIPITATION) -- 26.48 ACRES

AREA VARIABLES:

PLOT 1

(A) AREA-- 40.00 ACRES

(B) CROP-- CORN

(C) SOIL TYPE-- 5 (SCS SOIL TYPE)

(D) IRRIGATION RATE-- 0.50 INCHES/DAY

(E) IRRIGATION MANAGEMENT-- IRRIGATION BELCH 0.90 FIELD CAPACITY

(F) PLAN IMPLEMENTED--- RUNDFF AND IRRIGATION

÷

PL07 2

[A] AREA-- 40.00 ACRES

(B) CROP-- HHEAT

(C) SOIL TYPE-- 5 (SCS SOIL TYPE)

(D) IRRIGATION RATE-- 0.50 INCHES/DAY

(E) IRRIGATION MANAGEMENT-- IRRIGATION BELOM 0.90 FIELD CAPACITY (f) PLAN IMFLEMENTED-- IRRIGATION

PL0T 3

(A) AREA-- 40.00 ACRES

(B) CROP-- HIEAT

(C) SOIL TYPE-- 5 (SCS SOIL TYPE)

(D) IRRIGATION RATE-- 0.50 INCHES/CAY

(E) IRRIGATION MANAGEMENT-- IRRIGATION BELOW 0.0 FIELD CAPACITY

(F) PLAN INPLEMENTED-- RUNDFF

(G) CROP ROTATION WITH -- FALLGW

PL01 4

(A) AREA-- 40.00 ACRES

(B) CKOP-- PASTURE

(C) SOIL TYPE-- 5 (SCS SOIL TYPE)

(D) IRRIGATION RALE-- 0.50 INCHES/CAY

(E) IRRIGATION MANAGEMENT-- IRRIGATION BELOW 0.0 FIELD CAPACITY

***** ANNIAL SUMMARY *****

ALZZAN - DISCHARTE OF

(F) PLAN INPLEMENTED- RUNDFF

						HE I CHI	7.86	E. C5	8.06	8-63	8.60	8.85	6.66	7.50	6.51	7.30	7.16	7.53	7.53
1021.24	1023.05	1023-63	1031.26			VOL. CHANGE	102.8	58.8	1-1	194.4	-22.2	108.3	-92.0	-366.3	-180.5	122.5	5°15-	116.6	1.1
WFERE L = W =	WHERE L = W =	WHERE L = h =	WFERE L = W =	695		DI SCHARGE	C. C	0.0	0.0	0°0	0.0	56.4	0.0	0.0	0.0	0.0	C. C	0.0	56.4
00-00 \$ CONTROL	CO.OO \$ CONTROL	00.00 \$ CCNTRUL	00.00 t CONTROL	S) – 1	OUTFLONS	SURFACE EVAP.	5.1	16.5	48.7	112.3	148.7	1 6 3 . 2	153.6	1 62.0	126.1	70.2	32.9	2.7	10 66.9
54 ACRE-IN FCK 10	96 ACRE-IN FOR 10	96 ACRE-IN FOR 10	85 ACRE-IN FOR 10	IY-(IN ACRE-INCHE		DISPOSAL VOL.	0.0	20.0	100-0	260-0	120.C	130.0	160.0	340.0	220.0	40-0	100.0	0-0	1540.0
UME OF 2122.	UME 0F 2731.	UME OF 2734.	UME OF 2774.	TORAGE FACILI		IRR. CAYS	•0	ι.	5.	12.	5.	8.	8.	15.	9.	2.	5.	•0	70.
QUIRES VUL	CUIRES VCL	CUIRES VOL	QUIRES VOL	OUNT FOR S		RUNDEF	0.0	1.6	14.9	299.5	4 C . 8	182.5	46.6	2.4	16.6	36.0	0.0	C. 8	641.7
ACRÉ-IN RE	ACRE-IN RE	ACRE-IN RE	ACRE-IN RE	WATER ACC	hS	FEELLOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0-0	0-0	0*0
F 4.06	F 9.43	F 3-00	F 39-89		INFLO	UNICIPAL	85.6	82.5	91.3	93.9	102.8	105.0	108.5	102.8	93.9	91.3	38.4	85.6	1131.6
DI SCHARGE O	D I SCHARGE 0	OI SCHARGE D	D I SCHARCE D			PRECIP. M	22.2	11.1	43.5	173.3	103.0	225.4	1 06.5	30.5	54.7	105.4	26	32.8	911.2
6/22/69 -	6/23/69 -	6/25/69 -	6/26/69 -			HINOW	JANS	FE9.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT	0.01.	NCV.	DFC.	101.

***** ANNUAL SUMMARY *****

-
•
C.3
-
-
L
_
-
Δ.
_

DISPOSAL AREA-- 40.00 ACRES

SOIL TYPE-- 5

CROP--CORN

		WATER EALANCE	(INCHES) IN IF	E UISPOSAL AREA -	- 1969		
	INNI	15		DATUO	S fu		
ĬН	PRECIPITATION	IRRIGATION	INTERCEPTION	SURFACE RUNDFF	PERCULATION	AET	CHANGE IN SM
.N.	0.84	0.0	0.24	0.0	0.11	0.23	- C - 05
.8.	0.42	0.50	0.46	60°0	0.38	0.65	- C. C9
19.	1.64	1.50	0.72	61.0	0.61	1.28	C.14
·R.	6 . 54	3.50	0.57	4.19	2.49	2.25	0.15
۲	3.89	0.50	0.82	0.83	1.21	1.74	-0.21
INF	8.51	1.50	1.22	3.00	2.06	3.49	0.24
ιLY	4 - 02	4 .00	1.11	0.15	0.12	6.17	-C.73
19.	1.15	4.50	1.17	0 - 06	0.0	5.79	-1.37
14	2.07	3.00	0.62	0.41	0.0	3.80	-0-46
.1.	3.94	0.0	0.45	0.59	0-0	0.82	2.12
· ^[0.10	1.50	0.40	0-0	0.01	0.99	0.20
с.	1.24	0.0	0.27	0.02	0.38	0.39	0.02
• 1	34.41	20.50	9.76	10.01	1.57	27.55	-0-04

PLOT NO. 2

CRUP--WHEAT

SOIL TYPE-- 5 DISPCSAL AREA-- 40.00 ACRES

		WATER BALANCE	(INCHES) IN TH	E DISPOSAL AREA	6961 -		
	IduI	JTS		00110	nt s		
MONTH	PRECIPITATION	IRR IGATION	INTERCEPTION	SURFACE RUNDFF	PERCOLATION	AET	CHANGE IN
J AN .	0.64	0*0	0.24	0.0	0.10	0.23	-0-04
FEB.	0.42	0.0	0.42	0.02	0.23	0.37	-0.16
MAR .	1 - 64	1.00	0.53	0.15	1.03	0.58	-0-04
APH.	6.54	3.00	0.87	3.59	1.72	2.96	-0-11
MAY	3.89	2.50	1.30	E1.0	0.44	4.23	0.14
JUNE	8.51	3.00	1.42	3.39	1.51	4.50	C.30
JULY V	4.02	0.0	1.11	0.35	1.57	1.29	-0.34
AUG.	1.15	4 .00	1.07	0.03	0.56	2.12	0.37
SEPT	2.07	2.50	0.62	0.91	0.54	2.95	-C.45
0.1.	3 . 98	1.00	0.95	0.73	1.17	1.79	0.34
- VON	0.10	1.00	0.16	0.0	0.03	0.80	-0.39
DFC.	1.24	0.0	0.37	0.01	0.58	0.28	0.33

SH

1

PLCT NO. 3

-0-06

23.10

10.39

9.95

9.06

18.00

34.41

101.

CROP--FALLOW

SOIL TYPE-- 5 DISPCSAL AREA-- 40.00 ACRES

WATER BALANCE (INCHES) IN THE DISPOSAL AREA - 1969

CHANGE IN SH -0.04 -0.04 -0.16 -0.11 -1.47 -0.11 -1.47 -0.75 0.20 0.20 0.20 0.20 0.50 0.50 -0.51 -1.01 PERCOLATION 0.10 0.28 0.02 1.41 1.41 1.41 1.32 0.02 0.02 0.00 0.00 0.00 OUTPUTS INTERCEPTION SURFACE RUNDFF 0.0 0.15 0.15 1.73 0.12 1.73 0.12 0.33 0.00 0.00 0.00 0.00 0.02 0.02 3.92 0.24 0.42 0.42 0.42 0.54 0.54 0.54 0.33 0.33 0.33 0.32 0.32 0.32 0.27 0.27 0.27 i INPUTS PRECIPITATION 111 MONTH JAN. FE3. MAR. APR. JUNE JUNE JULY AUG. SEPT NOV. DEC.

PLOT NO. 4

	CROPPASTU	RЕ	SOIL TYPE	5 DISPOSAL	AREA 40.00 ACRE	S	
		WATER BALANCE	(INCHES) IN TH	E DISPOSAL AREA	- 1969		
0 0 8 0 0 0 0 0 0 0 0 0 0 0 0	INPL	15		OUTPI	215		
HIND	PRECIPITATION	IRRIGATION	INTERCEPTION	SURFACE RUNDFF	PERCOLA TI CN	AET	CHANGE IN SH
JAN.	0.84	0.0	0.24	0-0	0.13	0.17	-0-01
f EB.	0.42	0.0	0.42	0.0	0.32	0.22	-0-04
MAR.	I . 64	0.0	0.42	E 0 ° 0	0.66	0.62	-C.C8
APR .	6.54	0.0	0.54	1.56	2 . 54	2.00	-0.10
MAY	3.89	0.0	0.82	0.06	0.23	3.40	-0.63
JUNE	8.51	0.0	1.12	0.35	1.55	4.11	67.0
JULY	4.02	0.0	1.1.1	0.03	0.0	5.99	-3.11
AUG.	1.15	0.0	0.39	0 • 0	0*0	3.76	-3.01
SEPT	2.07	0.0	0.32	0 • 0	0.0	2.05	-0.30
0.1.	3.98	0.0	0.45	0.01	0.0	C.53	2.53
NOV -	0.10	0.0	0.10	0.0	0.0	0.34	-0.34
DEC.	1.24	0.0	0.27	0*0	0.0	0.23	0.58
101.	34.41	0.0	6.60	2.05	5.43	24.11	-3.15
PERCENT	OF WASTEWATER CON	TROLLED= 5	06-1				
POTENT	AL DISPOSAL DAYS=	70					
PACK ON	DECEM3ER 31 = 0.1	6	CHANGE IN SN	UN SICRAGE=-0.03			
-STUPNI	OUT PUT S-CHANGE IN	SNOW STORAGE=0	HANGE IN SCI	I MOISTURE			

PERCENT OF MAXIMUM POND VOLUME RECUTREC = 100.00

ESTIMATED LAKE EVAPORATION, INCHES = 41.41

13

)

0.90 FIELD CAPACITY 26.48 ACRES (D) MAXIPUM POND VCLUME-- 2718.44 ACRE-INCHES (E) DIRECT RECEIVING AREA (FOR PRECIPITATION) ---(A) BASE DIMENSION-- 1020.00 FEET BY1020.00 FEET (E) IRRIGATION MANAGEMENT-- IRRIGATION BELOW (F) PLAN IMPLEMENTED-- RUNDFF AND IRRIGATION 1964 TO 1573 (D) IRRIGATION RATE-- 0.50 INCHES/CAY (B) SIDE SLCPE-- RUN:RISE = 3. : 1 5 (SCS SOIL TYPE) (C) MAXIMUP DEPTH-- 5.00 FEET 40.00 ACRES 0.0 ACRES (C) SOIL TYPE--(B) CRCP-- CORN SIZE OF CRITICAL EVENT: 6.10 (A) AREA--STATION: TOPEKA, KANSAS FEEDLCT AREA = MUNICIPAL INPUT MODEL: MODEL 8-ZERO AREA VARIABLES: POND VARIABLES: PL01 1

(A) AREA-- 40.00 ACRES

(B) CROP-- WHLAT

(C) SOIL TYPE-- 5 (SCS SOIL TYPE)

(D) IRRIGATION RATE-- 0.50 INCHES/EAY

(E) IRRIGATION HANAGEMENT-- IRRIGATION BELOW 0.90 FIELD CAPACITY

(F) PLAN IMPLEMENTED-- IRRIGATION

PL0T 3

IA) AFEA-- 40.00 ACRES

(B) CROP-- WHEAT

(C) SOIL TYPE-- 5 (SCS SCIL TYPE)

IDJ IRRIGATIEN RATE-- 0.50 INCHES/EAY

(E) IRRIGATION MANAGEMENT- IKRIGATION BELOW 0.0 FIELO CAPACITY

IF) PLAN IMPLEMENTED-- RUNDFF

(G) CROP RDIATION WITH -- FALLOW

.

PLOT 4

(A) AKEA-- 40.00 ACRES

(B) CRCP-- PASTURE

(C) SOIL TYPE-- 5 (SCS SOIL TYPE)

(D) IRRIGATION RATE-- 0.50 INCHES/CAY

(E) IRRIGATION MANAGEMENT-- IRRIGATION BELOW 0.0 FIELD CAPACITY

(F) PLAN IMPLEMENTED-- RUNDFF

***** FINAL SUMMARY *****

METEOROLOGICAL SUMMARY

AVERACE ANNUAL LAKE EVAPURATION= 42.15 INCHES

AVERAGE ANNUAL PRECIPITATION= 38.69 INCRES

PRECIPITATION FANGE= 40.30 INCHES (FROM & LOW OF 21.17 INCHES TO A HIGH OF 61.46 INCFES)

AVERAGE ANNUAL MCISTURE DEFICIT= 3.51 INCHES

SUMMARY OF POND CPERATIONS

NG. OF YEAKS HAVING A DISCHARGE= 2 AVERAGE NU. OF DISCHARGES / YEAK HAVING A CISCHARGE= 26.50 AVERAGF DISCHARGE= 16.86 AGRE-INCHES AVERAGF DISCHARGE= 16.86 AGRE-INCHES AVERAGF PERCENT OF LASTEMATER CONTRCLLED= 57.87 TUTAL CISCHARGE VOLUME= 893.39 AGRE-INGHES TETAL NG. OF DISCHARGES= 53. MAXIMUM DISCHARGE=259.69 AGRE-INCHES

SUMMARY OF DISPOSAL PLOTS

AVERAGE ANNUAL VOLUME OF WASTEWATER APPLIED= 1454.00 ACRE-INCHES

PLOT 1

AVERAGE ARNUAL DISPCSAL AFFA RUNUFF= 10.63 INCHES AVERAGE ANNUAL DISPUSAL AFFA PERCULATION= 5.37 INCHES AVERAGL ANNUAL DISPUSAL AFFA PERCULATION= 5.37 INCHES AVERAGE ANNUAL NO. CF DISPOSAL CAYS= 39.9 AVERAGE ANNUAL DISPOSAL AFFA INTERCEFTICN= 10.22 INCHES AVERAGE ANNUAL DISPOSAL AFFA EVAPCTRANSPIRATION= 27.668 INCHES AVERAGE ANNUAL DISPOSAL AFFA CHANGE IN SUIL MCISTURE= 0.44 INCHES

PL01 2

AVERAGE ANNUAL DISPCSAL AREA RUNDHF= 9.53 INCHES AVERAGE ANNUAL DISPUSAL AREA PERCGLATIGN= 11.61 INCHES AVERAGE ANNUAL DISPUSAL AREA PERCGLATIGN= 3.8 AVERAGE ANNUAL DISPOSAL AREA INTERCEPTICN= 9.60 INCHES AVERAGE ANNUAL DISPOSAL AREA EVAPOTRANSPIRATIGN= 23.81 INCHES AVERAGE ANNUAL DISPOSAL AREA EVAPOTRANSPIRATIGN= 23.81 INCHES AVERAGE ANNUAL DISPOSAL AREA EVAPOTRANSPIRATIGN= 23.81 INCHES

AVERAGE ANNUAL DISPUSAL AREA RUNDIF= 5.04 INCHES AVERAGE ANNUAL DISPOSAL AREA PERCGLATION= 7.19 INCHES AVERAGE ANNUAL NO. CF DISPOSAL DAYS= 0.0 AVERAGE ANNUAL DISPOSAL AREA INTERCEPTICN= 7.13 INCHES AVERAGE ANNUAL DISPOSAL AREA EVAPGTRANSPIRATION= 10.79 INCHES

PL01 3

AVERAGE ANNUAL DISPOSAL AREA CHANGE IN SOIL MOISIURE= 0.44 INCES

PLOT 4

AVERAGE ANNUAL DISPOSAL AREA MUNOFF= 2.58 INCHES

AVERAGE ANNUAL DISPOSAL AREA PERCOLATION= 4.57 INCHES

AVERAGE ANNUAL NO. CF DISPOSAL DAYS= C.O

AVERAGE ANNUAL DISPOSAL AREA INTERCEPTION= 7.13 INCHES

AVERAGE ANNUAL DISPOSAL AREA EVAPCTHANSPIRATION= 23.88 INCHES

AVERAGE ANNUAL DISPOSAL AREA CHANGE IN SOIL MDISTURE * 0.44 INCHES

SUMMARY OF STATISTICAL DATA

PRECIPITATION FREQUENCY DATA

CENCTTV		COCULTANC V	BIIADEE CRED
1.21	(8)	(DAYS)	KUNULL TKEU.
0.0	100.00	035.00	4 64 -00
0.1	10.00	626.00	402.00
0.2	53.05	410.00	401.00
0.3	40.08	382.CC	362.00
0.4	35.68	335.00	320.00
0.5	30.14	283.00	212.00
0.6	23.43	220.00	211-00
.0.7	19.06	179.00	00.171
•0.B	16.19	152.00	148.00
0.9	16.61	125.00	122.00
.1.0	10.01	103.00	100.00
1.1	8.41	75° 00	00-11
1.2	1.35	69.00	63.00
1.3 .	6.24	59.00	53.00
1.4	5.64	53.00	\$2.30
1.5	51.04	45.00	44.00
1.6	4.05	36.00	31.00
1.7	3.51	33.00	32.00
1.8	3.19	30.00	29.00
6 • 1	2.56	24.00	23.00
2.0	1.8.1	17.00	17.00
1.0	0.32	3.00	3.00
4.0	0.11	1.00	1.00
5.0	0.0	0.0	0.0
.10.	0.0	0.0	0-0

RUNUFF FREQUENCY DATA

INTENSITY		FREQUEN	ICY (8)		() (FREQUENC	Y (CAYS)	
(14-)	PLUI 1	PL01 2	PL.UT 3	PL01 4	FLUT 1	PLGT 2	FLUT 3	FLUT 4
>0.C	100.00	1 00.00	100.00	00.001	411.00	393.00	271.00	165.00
>0.1	49.39	46.82	38.28	32.73	20-E02	184.00	104-00	54.00
>0.2	37.71	33.59	25.09	22.42	155.00	132.00	έε.00	37.60
>0.3	27.74	23.16	11.34	18.18	114.00	00-16	47.00	30.06
>0.4	17.46	18.59	13.65	13.33	80.00	13.00	37°CC	22.00
>0.5	16.06	16.03	11.67	01.0	66.00	63.00	30.00	16.00
>0.6	12.41	12.41	4.56	6.06	00.15	49.00	27-00	10.00
>0.7	9.73	9.41	61.1	4.45	40.03	37.00	21.60	8.00
>0.B	8.03	7.61	5.50	4.24	33.00	30.00	16.00	7.00
20.9	1.0.1	6.11	4.43	4 .24	31.00	24.00	12.60	7.00
>1.0	5.11	4.33	3.32	3.03	21.00	17.00	00.2	5.00
>1.1	3.39	3.62	2.21	3.03	16.00	15.30	6.00	5.00
>1.2	3.16	3.05	1.85	0.61	13.00	12.00	5.00	1.00
>1.3	2.68	2.54	1.48	0.61	11.00	10.00	4.00	1.00
>1.4	2.63	2.04	1.48	0.0	11.00	8.0C	4.60	0.0
>1.5	2.43	1.79	1.43	0.0	10.00	1.00	4.00	0.0
>1.6	1.70	1.70	1.11	0.0	1.00	1.00	3.00	0.0
>1.7	1.70	1.53	· · · · ·	0.0	1.00	6.00	2.60	C - C
>1.8	1.22	1.53	C.37	0.0	5.00	6.03	1.00	0.0
9.1<	16.0	1.27	16.0	0.0	4.00	5.00	1.00	0.0
>2.C	0.97	1.02	0.0	0.0	4.00	4.00	0°0	0.0
>3.0	0.24	0.25	0.6	0.0	1.00	1.00	C•0	0.0
>4.0	0.0	0.0	0.0	0.0	C . O	0.0	C.O	0-0
>5.0	0*0	0.0	0.0	0-0	0.0	0.0	0-0	0.0
>10.	0*0	0.0	0*0	0*0	0.0	0.0	0.0	0.0

DEVELOPMENT AND TESTING OF A MULTIPURPOSE HYDROLOGIC YIELD MODEL

Ъу

JUDITH MARIE HAYDEN

B.S., Oklahoma State University, 1977

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

ABSTRACT

Providing a dependable supply of water for industrial, domestic and agricultural use in the United States has increased in importance during the past few years. One method which is gaining in acceptance for increasing the water supply in a particular locality is weather modification. This research was conducted to study the effects of a weather modification program on the hydrological environment in Kansas. Ten locations were tested using two rainfall alteration models which produced variable percentage changes in the natural daily rainfall.

In addition to supplying new sources of water, a method to increase the efficiency of available water supplies was investigated. The method of optimizing available water supplies considered in this study was the utilization of effluent from wastewater-treatment plants for irrigation purposes. The scope of this study included the development of a procedure to design wastewater control facilities.

A multipurpose computer program was developed to evaluate the effects of rainfall augmentation on surface water hydrology and to provide an efficient means of designing a disposal control facility. The computer program is capable of evaluating the hydrologic response of various crops and soils to added rainfall and of considering selective land disposal and evaporative techniques to optimize a disposal system.

The rainfall alteration models resulted in two to three inch increases in annual rainfall throughout the State. Most of this added rainfall results in increased evapotranspiration, with smaller increases noted in surface runoff and deep percolation.

