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Signal Pattern-Recognition for Damage Diagnosis in 
Structures 

Long Qiao PhD1, Asad Esmaeily PhD, PE2 & Hani G. Melhem PhD, PE3 

 

Abstract: A signal-based pattern-recognition approach is used for structural damage diagnosis with a 

single or limited number of input/output signals. The approach is based on extraction of the features of 

the structural response that present a unique pattern for each specific damage case. In this study, 

frequency-based features and time-frequency-based features were extracted from measured vibration 

signals by Fast Fourier Transform (FFT) and Continuous Wavelet Transform (CWT) to form one-

dimensional or two-dimensional patterns, respectively. Three pattern-matching algorithms including 

correlation, least square distance, and Cosh spectral distance were investigated for pattern-matching. To 

demonstrate the validity of the approach, numerical and experimental studies were conducted on a 

simple three-story steel building.   

Results showed that features of the signal for different damage scenarios could be uniquely identified by 

these transformations, and suitable correlation algorithms could perform pattern matching that identified 

both damage location and damage severity. Meanwhile, statistical issues for more complex structures as 

well as the choice of wavelet functions are discussed.  
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Introduction 

Civil structures are susceptible to damage over their service life due to aging, environmental factors, 

fatigue and excessive load.  Health monitoring of civil infrastructures aims at monitoring the 

performance of a system to enhance its safety and reduce its life-cycle cost by detection of possible 

damage in an early stage. This includes various infrastructures from pavements to bridge decks (Lajnef  

et al 2011; Cusson et al 2011; Adewuyi et al 2011). Structural Health Monitoring (SHM) monitors the 

performance of a structural system with an identical goal. In this field, Nondestructive Damage 

Detection (NDD) techniques are of special interest in monitoring structures for possible damage. 

Basically, NDD techniques can be classified into either local or global methods. Most currently used 

methods such as ultrasonic, eddy-current and thermal methods are visual or localized experimental 

methods that detect damage on or near the surface of the structure. Limitations of local methods are the 

need to know the vicinity of the damage and accessibility of the portion of the structure being inspected.  

Chang and Liu (2003) provided detailed information about “local” methods. The need for global damage 

detection techniques has led to development of vibration-based detection methods that rely on the 

change of vibration characteristics and signals as indication of damage. Over the last two decades, 

extensive research has been conducted on this detection approach, leading to various experimental 

techniques, methodologies, and signal processing algorithms. Doebling et al. (1996) and Sohn et al. 

(2003) presented comprehensive literature reviews of vibration based damage detection and health 

monitoring methods for structural and mechanical systems. These methods can be classified into 

parametric -based or signal–based categories. 

 Parametric-based methods use changes in measured system or FE modal parameters such as 

frequencies, damping parameters, stiffness parameters and mode shapes as a sign of damage in structure. 

Parametric-based methods have been applied successfully to identify the dynamic properties of 



linearized and time-invariant equivalent structural systems. (Kosmatka and Ricles, 1999; Ren and 

Roeck, 2002; Shi et al., 2000; Kim et al., 2003; Moaveni, et al., 2009; Soyoz and Feng, 2009; Jafarkhani 

R. and Masri S. F., 2011). Various algorithms such as Neural Networks, Wavelets, and Chaos Theory 

have been successfully used for damage detection, intelligent transportation systems and smart 

structures (Adeli H. and Jiang X., 2009; Adeli H. and Kim H., 2009). Wavelet-based and Hilbert-based 

approaches have been developed as enhanced techniques for parametric identification of non-linear and 

time-variant systems (Staszewski, 1998; Kijewski and Kareem, 2003; Yang et al., 2004; Huang et al., 

2005; Hou et al., 2006; Chen et al., 2006; Yan and Miyamoto, 2006; Umesha, et al., 2009). “These 

methods, however, depend strongly on the accuracy of the measured data. They cannot provide the 

required accuracy and reliability needed for complex system identifications of real life structures due to 

complicated nonlinear nature of behavior of civil structures, and incomplete, incoherent, and noise-

contaminated measurement of structural response under extreme loadings” (Adeli and Jiang, 2006). 

 Signal-based (or nonparametric-based) methods examine changes in the features derived directly 

from measured time histories or their corresponding spectra through proper signal processing methods 

and algorithms to detect damage. These features may not represent any explicit physical-dynamic 

parameters.  Based on different signal processing techniques for feature extraction, these methods are 

classified into time-domain methods, frequency-domain methods, and time-frequency (or time-scale)-

domain methods. Time-domain methods use linear and nonlinear functions of time histories to extract 

the signal features. Examples of this category are Auto-Regressive (AR) model, Auto-Regressive with 

eXogenous inputs (ARX) model, Auto-Regressive Moving Average (ARMA) model and Extended 

Kalman Filter (EKF) model (Sohn et al., 2000; Sohn and Farrar, 2001; Nair et al., 2006; Yan et al., 

2004; Chen and Liu, 2010; Gul and Catbas, 2011). Frequency-domain methods use Fourier analysis and 

cepstrum (the inverse Fourier transform of the logarithm of the Fourier spectra magnitude squared) 



analysis to extract features in a given time window. Examples of this category are Frequency Response 

Functions (FRFs), frequency spectra, cross power spectra, power spectra, and power spectral density 

(Tang et al., 1991; Kamarthi and Pittner, 1997; Lee and Kim, 2007). Time-frequency-domain methods 

employ Wigner-Ville distribution and wavelet analysis to extract the signal features. Examples of this 

category are spectrogram, continuous wavelet transform coefficients, wavelet packet energies and 

wavelet entropy (Staszewski et al., 1997; Hera and Hou, 2004; Melhem and Kim, 2003; Sun and Chang, 

2002; Ren and Sun, 2008). A comparison between parametric-based methods and signal-based methods 

for damage detection in bridges can be found in Cruz and Salgado (2009).  

 As an enhancement for feature extraction, selection and analysis, statistical pattern recognition 

techniques are deeply integrated into signal-based damage detection. Staszewski (2000) and Farrar et al. 

(2001) presented the detailed descriptions of feature extraction, selection and analysis based on pattern 

recognition. Some cases of successful application of the procedure for damage detection can be found in 

Sohn et al. (2000; 2001), Trendafilova (2001), Qiao et al. (2009), and Fang et al. (2005), Jiang et al. 

(2007) , Jiang and Adeli (2005), and Adeli and Jiang (2006). Compared with parametric-based methods, 

signal-based methods are particularly effective for large-scale structures due to their complicated 

nonlinear behavior and the incomplete, incoherent, and noise-contaminated measurements of structural 

response under extreme loadings (Adeli and Jiang, 2006). In the present study, a signal-based pattern-

extraction and recognition method, using a number of signal transformation and pattern matching 

algorithms, is investigated for damage detection. The vibration signals of a structure excited by a 

dynamic excitation such as an impulse load were decomposed by Fast Fourier Transform (FFT) or 

Continuous Wavelet Transform (CWT) for feature extraction. Two types of pattern formed by 

normalized FFT magnitudes or CWT coefficients of the signal were used in this phase of the study. 

Three statistical algorithms, correlation, least square distance, and Cosh spectral distance, were also 



investigated to perform pattern recognition separately. Damage-pattern database was developed 

analytically by simulating various damage scenarios. Damage location and level were identified 

simultaneously by best matching the unknown damage feature with that of known ones in the database. 

To show the applicability of the method, numerical and experimental case studies were conducted on a 

three-story steel structure. At the first phase of the numerical study, a 2-D, three-story steel structure 

model was numerically simulated and the method was applied to detect representative damage cases. 

The results encouraged the authors to expand the study to a real three-story steel structure, for which a 

detailed finite element model was developed and tuned against the physical structure. The detailed finite 

element model of the structure using ANSYS simulated the structural dynamic response excited by an 

impulsive load; without damage, as well as under different damage scenarios and, the recorded response 

was processed using MATLAB. The normalized signal features from this detailed model, generated for 

the base (healthy) structure, as well as various damage cases were collected in a database. The 

normalized signal features of the real structure under the same type of excitation for an unknown 

damage case, was then compared against this database, using three different pattern matching methods 

separately, to detect the most probable damage case. 

Fourier transform: This is a frequency-based transform widely used in analysis of linear systems. It 

decomposes a signal into sine waves of different frequencies which sum to the original waveform, 

distinguishing different frequency sine waves and their respective amplitudes.  

 Fast Fourier Transform (FFT) is an efficient algorithm for calculating discrete Fourier transform and 

its inverse by reducing the number of computations needed for N points from 2Nଶ to 2NlogଶN. FFT is 

of great importance to digital signal processing. It has been widely used to extract the frequency 

response of structures and has successfully been applied for fault detection in beam and rotating 

machinery. However, it should be noted that Fourier transform is not capable of preserving the 



information on time domain. If there is a local oscillation representing a particular frequency in the 

signal, its location on the time domain will be lost.  Note that while a structure might have been pushed 

into its non-linear range of response when damaged, the response due to the excitation used for damage 

detection will be linear, even if the dynamic properties of the structure has been affected by damage. So 

FFT can theoretically be applied for damage detection as outlined in this method.   

Wavelet transform: This is computationally similar to the Fast Fourier Transform. However, unlike the 

sine waves used in the FFT, the wavelet transform decomposes a signal into a set of orthogonal basic 

functions, also called mother wavelets. The mother wavelets are typically chosen to have compact 

supports in both time and frequency domains, so that they have local time-frequency properties. This 

addresses the aforesaid deficiency mentioned for FFT. In other words, the information on time and 

frequency will be preserved, depending on the scale-time range used in wavelet transformation, while 

the information on time is lost using FFT. FFT may serve as a suitable tool for detection of damage in 

terms of level and location, but fails if damage time is a factor in the algorithm. This includes various 

structural control systems, or methods in which time is implemented in the algorithm to distinguish 

concurrent damages at different locations.  

 The detailed descriptions about mother wavelet and Continuous Wavelet Transform (CWT) can be 

found in Melhem and Kim (2003). In this study, the Daubechies 6 wavelet was used as the mother 

wavelet. Meanwhile, other types of mother wavelets were also investigated. 

Pattern Recognition Techniques: A pattern can be a set of features recorded as discrete values forming 

a vector or matrix. The purpose of pattern recognition is to implement the algorithms that operate on the 

extracted features and qualify the damage state of the structure. In this study, three algorithms were used 

to perform pattern-matching of the extracted features against the database to identify the damage 

location and level (severity).  



 Correlation analysis, as the first method calculates the correlation value ܥ௜௝ of two patterns (Posenato 

et al., 2008). A correlation value of 1 indicates that the two patterns are identical, a correlation value of 

െ1 means that they are diametrically opposite, and a correlation value of 0 means that they are 

completely different. A closer value to  1 shows a closer match between the two patterns. 

௜௝ܥ			 ൌ
∑ ሺ ௜ܵሺ݇ሻ െ పܵഥሻ൫ ௝ܵሺ݇ሻ െ ఫܵഥ൯
௡
௞ୀଵ

ට∑ ሺ ௜ܵሺ݇ሻ െ పܵഥሻଶ
௡
௞ୀଵ 	ට∑ ൫ ௝ܵሺ݇ሻ െ ఫܵഥ൯

ଶ௡
௞ୀଵ

									ሺ1ሻ 

  The second method was the Least Square Distance (LSD), which has been widely applied for system 

modeling and identification, speech recognition, and fingerprint identification. It is defined as 
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The least value shows a closer match and vice-versa. 

 The third method was the Cosh Spectral Distance (CSD) which gives an indication about the global 

difference between two patterns (Trendafilova, 2001; Owen, 2003; Haritos and Owen, 2004). It is 

defined as 
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where ݊ is the number of vector points in the pattern; ௜ܵሺ݇ሻ and ௝ܵሺ݇ሻ are the vector values of the 

patterns ݅ and ݆ at point ݇; and పܵഥ  and ఫܵഥ  are the average values of the patterns ݅ and ݆, respectively. 

 If ݅ is the unknown-damage feature pattern, and ݆ is a known feature pattern in the database, then the 

highest correlation coefficient, the lowest LSD coefficient, and the lowest CSD coefficient indicate the 

most similar pattern in the database which shows the unknown case. Figure 1 shows the process of 



pattern recognition method for damage detection in this study. It mainly includes five operation stages: 

numerical simulation of the dynamic response of the structure under different known damage scenarios, 

signal processing and feature extraction and normalization, damage pattern database construction, signal 

acquisition on a structure with an unknown damage and pattern matching to find the most probable 

damage case from the database which indicates the damage location and severity. For continuous 

structural monitoring, it is necessary to update the numerical model once damage has been found to 

accurately represent the physical condition of the structure.  

 

    Figure 1. Flowchart of pattern recognition. 



 

 

Figure 2. 2-D three-story numerical structure 

 

Preliminary Numerical Investigations 

A 2-D steel structure as shown in Figure 2 was numerically simulated to compare the performance of the 

aforesaid algorithms and illustrate the applicability of the proposed damage detection procedure.  The 

material had a mass density of  7.85	݃/ܿ݉ଷ, modulus of elasticity ܧ ൌ 2 ൈ 10ହ	ܽܲܯ , and Poisson 

ration 0.3. The area of each floor cross section was 258	ܿ݉ଶ, with a moment of inertia of 555	ܿ݉ସ; 

column cross sectional area was 8.06	cmଶ, with a moment of inertia of  0.27	cmସ. This structure was 

modeled by ANSYS. The element type for floors and columns was 2-D elastic beam (beam3).  The 

floors was rigid compared to columns.  The ratio of unit nodal rotation moment of the floor to that of 

column was more than 1 ൈ 10ଷ. All of the connections were assumed to be fixed. Therefore there were a 

total of 3 noticeable horizontal DOFs in the numerical structure. The damage was simulated by using the 

baseline model with various dynamic properties, i.e. EI, of the damaged components. Various damage 

cases were introduced by symmetrically reducing the column stiffness at different stories to preserve the 

symmetry of the structure. For instance, damage case 0-40-20 refers to a case where stiffness of the 

columns at second and third stories was reduced by 40% and 20%, respectively.   



Transient dynamic analysis was performed by ANSYS to generate the dynamic response of the healthy 

structure, and the response under different damage scenarios.  The excitation was an impulse force of 

0.2 kN with 0.02 second duration acting at the very top corner of the model (point A, Figure 2), and the 

numerical acceleration response was recorded at the opposite top corner (point B, Figure 2) for 2 

seconds at a sampling frequency of 250 Hz. 

In a preliminary effort, frequency-based features were extracted by FFT. The frequencies and 

magnitudes corresponding to the three peaks in each of the FFT spectrums are listed in Table 1. The 

FFT magnitude vectors in frequency domain were selected as the sensitive features which also preserved 

the information of frequency shifting, forming a one-dimension pattern, presenting a unique damage 

condition. To eliminate the effects of possible variation of the other factors such as pulse intensity, each 

magnitude vector in a pattern was normalized with respect to the square root of the sum of squares of the 

corresponding pattern. 

Table 1. Peak values on the FFT spectrums 
Damage 

Case 
Peak 1 Peak 2 Peak 3 

frequency 
(Hz) 

magnitude frequency 
(Hz) 

magnitude frequency 
(Hz) 

magnitude 

0-0-0 1.996 1911.9 5.489 3220.8 7.984 1351.7 
20-40-60 1.497 1858 3.992 2468.5 5.988 709.95 
60-20-40 1.497 1376.3 3.992 3601.2 6.487 1181.9 
60-60-60 1.497 882.4 3.493 2429.4 4.990 1366.1 

 

In the second phase of the preliminary numerical study, time-frequency-based features were extracted by 

CWT. The acceleration signal was decomposed by CWT and the extracted features were time-scale-

based CWT coefficients.  The CWT is the inner product or cross correlation of the signal ݂ሺݐሻ with the 

scaled and time shifted wavelet ߰௔,௕ሺݐሻ. Variable ܽ determines the amount of time scaling or dilation, it 

is referred to as the scale or dilation variable. The value of the “scale a” is proportional to the reciprocal 

of the frequency. The smaller the value of a, the more the bandpass shifts to a higher frequency, 

implying that the CWT at small scales contains information about signal ݂ሺݐሻ at the higher end of its 



frequency spectrum. The variable ܾ represents time shift or translation and “time b” is the moment of the 

wavelet along the time axis. The CWT coefficients show the similarity between the signal and the scaled 

and shifted wavelet. The coefficients can be plotted in 2-dimensional contour with time on the horizontal 

axis, scale on the vertical axis, and values given by gray-scale colors. Figure 3a, 3b, 3c and 3d show an 

example of the CWT coefficients contours of acceleration signals of the structure under the selected 

damage cases.

 

Figure 3. CWT contours for (a) Damage case 0-0-0 (baseline condition). (b) Damage case 40-60-60. 

(c) Damage case 60-40-60. (d) Damage case 60-60-60 

Lighter shading in the contour indicates a higher wavelet coefficient value. Comparison of the four 

figures shows that the time-frequency-based CWT coefficients were sensitive to different damage cases, 



forming a two-dimensional pattern that presents a unique condition for a given damage case. Each 

coefficient vector in a pattern was also normalized with respect to the square root of the sum of squares 

of the corresponding pattern. 

Damage pattern database construction: As mentioned earlier, different damage levels and locations 

were numerically simulated by changing the model properties of the structure, i.e. EI, of the damaged 

components. For demonstration, the damage level was set on a scale of 0 to 60% with increments of 

20% at different locations. A total of 64 sets of damage cases, as shown in Table 2, including the 

baseline condition, were selected to represent the possible structural damage conditions (level and 

location) for the sample structure.  

Table 2. Damage Cases in Database 

Case 
No. 

Damage 
case 

Case  
No. 

Damage 
case 

Case 
No. 

Damage 
case 

Case 
No. 

Damage 
case 

Case 
No. 

Damage 
case 

1 0-0-0 14 0-60-20 27 20-40-40 40 40-20-60 53 60-20-0 

2 0-0-20 15 0-60-40 28 20-40-60 41 40-40-0 54 60-20-20 

3 0-0-40 16 0-60-60 29 20-60-0 42 40-40-20 55 60-20-40 

4 0-0-60 17 20-0-0 30 20-60-20 43 40-40-40 56 60-20-60 

5 0-20-0 18 20-0-20 31 20-60-40 44 40-40-60 57 60-40-0 

6 0-20-20 19 20-0-40 32 20-60-60 45 40-60-0 58 60-40-20 

7 0-20-40 20 20-0-60 33 40-0-0 46 40-60-20 59 60-40-40 

8 0-20-60 21 20-20-0 34 40-0-20 47 40-60-40 60 60-40-60 

9 0-40-0 22 20-20-20 35 40-0-40 48 40-60-60 61 60-60-0 

10 0-40-20 23 20-20-40 36 40-0-60 49 60-0-0 62 60-60-20 

11 0-40-40 24 20-20-60 37 40-20-0 50 60-0-20 63 60-60-40 

12 0-40-60 25 20-40-0 38 40-20-20 51 60-0-40 64 60-60-60 

13 0-60-0 26 20-40-20 39 40-20-40 52 60-0-60     

All of the 64 sets of simulated acceleration responses were transformed by FFT and CWT into FFT 

magnitude vectors and CWT coefficient vectors, respectively. The resulting 64 sets of normalized FFT 

magnitude vectors and 64 sets of CWT coefficient matrices form the representative damage feature 

patterns in the database. It should be noted that theoretically, a much larger number of damage cases 

could have been generated by combining various levels and locations. However, considering the 



limitations of the simple test structure, and as a preliminary step in exploring the approach, the damage 

cases generated and stored in the database was limited to 64. 

Case studies and pattern matching: Twenty damage cases listed in Table 3, slightly different from 

identical cases in the database were analytically simulated, and the corresponding dynamic response 

under the impulse excitation was numerically generated. Gaussian white noise was added to the 

generated acceleration signals of the test cases to simulate the condition of signal contaminated with 

noise. The signal-to-noise ratio (SNR) was 5 dB. The damping ratio (ζ) was 2% when generating the 

structure dynamic response with damping. 

Table 3. Test cases 

Single 
Damage 
Location 
G1 

Multiple 
Damage 
Locations 
(G2) 

Multiple 
Damage 
Locations & 
Severities 
(G3) 

Highest 
Damage 
Severity 
(G4) 

0-0-19 0-38-38 19-38-58 0-58-58 

0-19-0 38-0-38 19-58-38 58-0-58 

19-0-0 38-38-0 38-19-58 58-58-0 
0-0-58 38-38-38 38-58-19 58-58-58 

0-58-0  58-19-38  

58-0-0  58-38-19  

 The pattern-recognition results for all of the test cases by using the three different matching 

algorithms show that correlation algorithm could best perform pattern matching to identify the damage 

case even when the signal was highly contaminated with noise and structure had a damping property 

slightly different from the damping ratio used in the database. As a sample of the damage cases, Figure 4 

shows the correlation pattern-recognition results for the test damage case 58-38-19 (environmental 

condition: damping & noise), by using FFT and CWT pattern, respectively. The highest correlation 

value was achieved for pattern with damage condition of 60-40-20 in each pattern database, correctly 

detecting the closest damage case in the database.  



  

Figure 4. Correlation matching for damage case 58-38-19, FFT & CWT pattern matching. 

It should be noted that the process will be more probabilistic and will require a statistical component for 

more complicated structures, and the probability of a certain damage scenario will be the outcome of the 

algorithm. 

Experimental Tests and Verification 

Descriptions of test structure, impulse applicator and signal acquisition: Successful numerical 

implementation of the proposed damage detection procedure encouraged the authors to experimentally 

validate it. As shown in Figure 5, the test structure was 91.4 cm tall and consisted of 3 floors and 30 

columns. Each floor was supported on ten columns. The floors were steel plates with dimensions of 38.1 

cm × 25.4 cm × 2.54 cm and the columns were steel flat bars with dimensions of 41.91 cm × 1.91 cm × 

0.32 cm. 

 To make the rigid connection between the steel slab and the steel flat column, four pieces of steel 

angles (0.64 cm × 3.18 cm × 3.18 cm; length: 25.4 cm) were welded on the two faces and on the short 

edges of the floor plates; and two pieces of steel angles (0.64 cm × 3.18 cm × 3.18 cm; length: 25.4 cm) 

were welded on the top face and on the short edges of the foundation slab. A total of fourteen pieces of 
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steel angle were used. The columns were connected to the angles vertical legs using four bolts. To 

prevent rotation and drift, the foundation slab was fixed to the laboratory strong floor.  

 To apply a consistent impulse force on the structure, a steel ball with a diameter of 4.45 cm was used. 

The steel ball was magnetically adhered to the top of a frame. It was tied by a 52.07 cm chain to this 

frame so that when the magnet was turned off, the ball dropped 52.07 cm traveling on a circular path to 

its lowest position, where it hit the third floor slab and then bounced off the structure to create an 

impulsive force on the structure. The impact was mostly elastic; however, since the response was 

normalized, the impulse magnitude did not affect the recognition process as long as it did not push the 

structure into non-linear response range.  

 

Figure 5. Test structure 

 MicroStrain, Inc.’s G-Link was installed on the top of the third floor to sample and store the 

acceleration response. The sampled data was sent to the computer by a USB base station through a 



wireless connection. Agile-LinkTM software was used to communicate with G-Link and configure data-

logging. The sampling rate was 2048Hz. 

Numerical model simulation of the structure and its dynamic response: A 3-D FE model of the test 

structure shown in Figure 5 was constructed by ANSYS. The ANSYS element types for floors and 

columns were shell63 and beam4, respectively.  Transient dynamic analysis was carried out to determine 

the dynamic response of the structure under a time-varying load. The time-step was 0.000488 s (1/2048 

s). The FE model for healthy condition was tuned against test data to fine-tune the value of each 

parameter in the model. The tuned FE model represented the structure’s baseline (healthy) condition and 

was used in setting damage pattern database. 

Damage pattern database construction: Various damage cases were introduced by removing columns 

at different locations, which simulated the failure of one or more columns in the structure. 64 damage 

cases including the baseline condition were designed to represent possible structural damage conditions. 

In this study, the numerical dynamic responses of the structure under the 64 damage cases were 

simulated by removing corresponding columns from the structure FE model. The resulting 64 sets of 

normalized FFT magnitude vectors and 64 sets of CWT coefficient matrices formed the damage feature 

patterns in the database. 

Case studies and pattern matching: Twenty-eight damage cases were chosen to test as listed in Table 

4. Note that as mentioned earlier, each case is shown by the percentage of damage in the first, second 

and third stories. As example, 20-60-20 denotes a case where the strength of the columns has dropped 

20% in the first story, 60% in the second story and 20% in the third story. The acceleration response of 

the structure with each damage case was measured after application of the impulsive force on the 

structure by the ball. These acceleration signals were then de-noised and transformed by FFT and CWT. 

The three pattern-matching algorithms were used for pattern recognition. The results show that both FFT 



and CWT transformations could preserve the damage information enough for distinguished patterns in 

this study, and the correlation algorithm could perform a better pattern recognition.  Figure 6 and Figure 

7 show part of these results.  

Table 4. Test cases in experimental study 

Single Location 
Damage  

Double Location 
Damage 

Triple Location 
Damage 

0-0-20 0-20-20 20-20-20 
20-0-0 20-0-20 20-20-40 
0-20-0 20-20-0 20-40-20 
0-0-40 40-40-0 20-60-20 
0-40-0 0-40-40 40-20-20 
40-0-0 40-0-40 40-40-20 
0-0-60 20-40-0 40-40-40 
0-60-0 40-20-0 40-60-20 
60-0-0 40-0-20 

0-20-40 
0-40-20 

 

  

Figure 6. Correlation matching for damage case 0-20-20, FFT & CWT pattern matching. 
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Figure 7. Correlation matching for damage case 20-20-40, FFT & CWT pattern matching. 
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structure, no additional cases are needed to “train” the system. However, after any physical change 

including changes due to any possible damage, the database should be updated based on the new 

dynamic properties of the structure. Note that the method can be implemented in various layers, starting 

from global (the whole structure) and ending to a structural member for a detailed detection. The process 

can be automated in terms of detection and continuous fine tuning of the model and database. The study 

can be advanced further by using a more complicated structure. 

It should be noted that in addition to variations in the dynamic response of a structure inflicted by 

damage, dynamic properties such as damping ratio, stiffness, and mass are not deterministic values and 

are affected by numerous factors such as temperature and environmental conditions like humidity, etc. 

So, even if the model should be calibrated against these changes to enhance the accuracy of detection 

process, the values remain probabilistic and there is a certain level of uncertainty associated with them.  

Also, for large-scale structures with a large number of details and redundancy, some damage patterns 

may overlap each other. Therefore, in addition to fine tuning the model used for generation of damage 

database, a relatively large number of damage cases are needed in order to specify the most probable 

damage case, once damage in the real structure occurs. In a large structure, while major damage cases 

can be detected with a good probability, detection of some local damages that may lead to similar 

patterns in the dynamic response of the structure have a lower probability of being distinctly detected. 

This issue may be addressed by a multi-layer detection process which needs more damage databases at 

local levels. The method and algorithm in this study is an elementary step with promising results which 

can have some merits when it comes to detection of major damages, not detectable by visual inspection, 

in a large structure with a good probability. The same procedure can be used with more input-output 

signals to enhance the resolution/probability of damage detection for minor/local damage cases. 
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