/£NNAMIC DATA DICTIONARY,

by
ROBERT WILLIAM PHILLIPS

B. S., Kansas State University, 1974

A MASTER'S REPORT
submitted in partial fulfil;ment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1983

Approved by:

/ L

or Profesﬁr .

All202 244513

A

f? TABLE OF CONTENTS
!

LIST OF FIG(IRES - L] L] - - - L] - L] -

1 Introduction to Data Dictionaries

2 Current Systems and Trends in the

3 An Ideal Dynamic Data Dictionary

4 How Does the System Work

5 Overview and Conclusions

BIB.LI (x;RAPHY - - L[] L] . L] L] . [] - -

Data Dictionaries

10

30

43

52

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH THE ORIGINAL
PRINTING BEING
SKEWED
DIFFERENTLY FROM
THE TOP OF THE
PAGE TO THE
BOTTOM.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

ILLEGIBLE

THE FOLLOWING
DOCUMENT (S) IS
ILLEGIBLE DUE
TO THE
PRINTING ON
THE ORIGINAL
BEING CUT OFF

ILLEGIBLE

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

LIST OF FIGURES

1 Classification of Data Dictionary

2 LEXTCON . v v o o s « o o « = +« « a s «

3 DATAMANAGER . 4 & ¢ o o « o = = = s s o =

§ TOMSTIBE 5 s © < 5 5 6 § B W E I B H B S F

5 IMS DB/DC . . v ¢ o = « 2 s s o s = = o« &

@ ADABAS . « &+ + « 2 & s & 8 s s« s s = = = =

7 Zahran's Data Dictionary System

8 Dynamic Data Dictionary System P S

9 Access of a real data element existing in

tlle DBS - L] » = = = - L] L] - L] - L] - L] -« =

10 Access of a real data element existing in
the DBs that was not originally supported
by that DBMS . . « « « « « « =« o « « «+ =

11 Access of a virtuél data element that is
derivable from real data elements

12 Access of a virtual data element that is deriwvable
from a combination of data elements that include

one or more virtual data element

14

19.

22

24

28

29

33

36

47

48

51

53

PAGE i

Chapter 1

Introduction to Data Dictionaries

Computer science, as a true science, is still in its
infancy. As with any new science,its foundations are still
in turmoil. Historically speaking, computer scientists
should have been forewarned and able to foresee the problems“
that lay ahead for thenm. The main problem that plagques any
science,for that matter most human endeavors,is a
communicatior barrier among the participaants. This barrier
in computer science has not been built slowly as with other
sciences,but has sprung up as guickly as the science it

kinders.

The knowledge being gained in computer science is
geometrically increasing with the advancement of Letter
technoloqy and development of new and better techniques.
Although knowledge of computer science 1is accugulatircg
rapidly, it is still feeling tke sting of its growth,
Communication breakdown among colleques 1is getting worse
instead of bhetter. Inconsisternt terminology, definitions
and noeenclature, copmpounded by the proliferaticn cf
acronyms, has 1left the "secasoned®" veteran of computer
science disgruntled and tke beginning coaputer scientist in

despair of deciphering the basics of his/her chosen field.

In the field of data bases, one conceptual tool has taken

PAGE 2
on marny semblances but its hasic premise has remained the

same. That tool is the "data dictionary”.

shat is a data dictionary? This seemingly simplistic
guestion turns out +to be a difficult guestion to answer. In
perusing the 1literature in coaputer science, information
concerning the data dictionary 1is sparse to =say the least.
A very noticeable yap between the Yyears 1973 tc 1581 exists
in literature concernisg data dictionaries. dhy this
happened is not apparent, however, one source stated that
the main reason for this neqglect was that "data
dictionaries™ were Jjust plain Dboring. {28) Whether tkis
statemert reflects the feelings o9f the entire computer

science community can only be inferred by the reader.

Possibly the renewed interest in the data dictionary is
the realization that the use of +this software tool can e
invaluatle to the Data Base Administrator (CBA) and the

different departments of any large company. (28)

Returning to the original question, 'Yhat is a data
dictionary??, We find inadequate and ccnflicting
definitions. B.G. BRoss feels that the name data dictionary
is a complete mispomer. Ross states,

"It is reasonable to assume,however,that the term
*dictionary' was selected because the entity sc
named was largely coaposed of various defipitions.
*Data’ was probably chosen because these
defini+tions were mostly definitions

of data. Thus +he term ‘'dictiomary of data
definitions! or '*data dictionary' eventually
apreared in commor usSage.

BAGE 3

This nov seens unfortunate. A 'data
dictionary' does not contain only definiticons for
data, nor is it merely a dictiomnary. Consider,
for example, that practically every data
dictionary has information about application
prcgrams. This information can only be descrited
as '"data' (remeiber that 'data' is shorthand for

'data definition?) only in the loosest sense."(17)

One agreement is that the data dictionary is a software
tool used to aid in the buildirng and wmaintenance of a
database. itgreement as +to what the data dictionary is
supposed to accomplish does not exist. Most groups have
gone thelr separate ways in defining and develcping a data
dictionpary. As an 4individual or group of individuals
proceeds irn dcveloping a data dictionary, it 1is molded tc
it +heir requirements and constraints, dictated by their
company's needs, or as in the case of vendors, these needs
are dictated by what they perceive as the optimal surplement
+0 their particular Data Management Base System {DEAS} tc
make it more appealing in the marketplace. Although, other
justifications do exist for such development, the previously
mentioned justifications seem to be the prevailing reasons

for the increased interest in a data dictiomary.

¥hat to name such a software tool also seems to present
problems to the Jdevelopers. Although it appears the term
'data dictionary! kas been used to label many software
+opols, it ray wvell have been applied to one sgecific tecl
that is presently in evolation. In literature ‘'data
dictionary' has frequently been interchangeably applied to

such software tools as the data catalog, data directory,

PAGE 4

data dictionary/directory, and the da*ta resource directory.

Now would seen an appropriate time to give soRe
definitions of such tools, that are generally accepted ky

the comruter science community.

* A data catalog is an organized listing,with or
without a description, by full name of all data
elements used by an organizationm.

* A data dictionary (DD) is an ordered ccllection of

data element descriptiorns containing specific
identification attributes.

A data directory 1is an ordered collection of data

element names, and/or identifiers, and attributes which
prcvide location of the elements.

* A data dictionarysdirectory (DD/D) is an ordered
collection of data elements that combines the features
of a data catalog, data dictionary,and a data
directory.

* A data resource directory is an ordered collection of
informational entity identifiers and their attributes
including those whick provide location anrd dinter-
relationship information. A data resource directory
contains many of the features of a dictionary/
directory,but is not limited to data elements insofar
as informational entity content is concerned. (4)

Although these defiritions are Mgenerally” accegted for each

PAGE 5
of these software tools, the confusion still exists kecause,
as stated previously ,"data dictionary" has been generically
used 1imn referring to these tools. How has this
disconcerting situation arisen? As mentioned rrevicusly,
lack of communication among colleques is a main contributor.
Another interesting side of the problem is that, even though
each software tool developed is distinct in its c¢wn right,
when locked at temporally, they appear to be a part of a
complex concept in evolutiorn. That concept could keccme the

ultimate paradigm of a 'data dictionary systen’'.

About the mid-1970's, +t+he data dictionary concept care
into being, aimed at control over database definitioans. In
this way, better protection of definition inteqrity was
provided and data descriptions for automatic inclusion in

application programs at compile time were provided.

In dcing this, the responsibility of the applicatiomns,
proyrammer for data base description and use was dirminished
in maqnitude much as the responsibility of the programmer
for inrput/output descriptior and use was diminished when
operating systems were introduced. Operating systeams
provide a complex collection of routines to the user for use

of the input, output and overlooking storage hardware.

The forerunners of modern operation system freed the
applications programmer from such details of input/outgut as
checking to see if a card reader was turned onr, starting the

reader, waiting until the card was rTead, checking for

EAGE €
ecisreads or a jam, e*c., by incorporating these functiomns
into readers and writers. Analogous to this in a DBHXS is
the removal of physical and loagical file descriptions to the
manager itself and eventually the data dictionary's
relieving +he applications programmers of +the task of
describing +these input/output details. As the computer
became faster and more expensive it was too costly tc have a
computer sit idle while each programmer loaded hisgher jot
and ran it, Batch processing was introduced s¢ that several
jobs could be loaded together im a "batch”™ and ruan. The
jobs then were automatically run in sequence, each jcb being
igitiated to start at the end of the previous jor via a

batch mcnitor.,

#ith the complexity of the computer growing, the need for
better 1/0 device managdement evolved. To acccpodate this,
executive systems were developed that resided in main memory
permanently. They provided the I/0 controls for the users®
jobs. FEy the early €0's multi-programming was introduced to
solve the increased probleas of I/0 caused by <the larger
systems., In the mid to late 60's , computers were Leirng
used more for sophisticated data processing rather than just
numnerical computation. Standardization of data storage and
Landling was necessary to ease this prcblem, which gave rise
to facilities called data management of filing systers.
Also the concept of direct user interaction via timesharing
technigques was incorporated. Through refinements cf these

concepts in the mid 70's have evolved our present day

PAGE 7

operating systems. (14)

The concept of the operating system and its evcluticn has
some interesting parallels with the concept of the data
dic+tionary and its evolutiorn. As 1s evident in the short
synopsis of the history of operating systems, the changes
came aktout through necessity of efficiency and cost
effectiveness. The development of +he data dictiocnary
followed somewhat the same pathway. The data dictionary
started as tool for description and documentation of data.
Recognition of the productivity services thar the dictionary
could provide was highly significant in data resource

control.

"Among these, new horizons vere compilable data
descriptions for non-database base-files; suppert fcr the
modeling of Jjob streams, structured systeas, and on-line
environménts; and, in some cases, assistance in the system
design phase. Increasinqly, the dictionary becanme
indispensable to impact assessment: the often tremendously
difficult task of tracing the implications of a change from
one system coamponent to others. This was possible only
because the dictionary allowed inteqration of informatiom
about system components within a definition repcsitcry over

which centralized control could be exercised.®(17)

This freed the programmers from the responsibility of
knovwing definitions of data already dincorporated in the

databaée. Better efficiency and central control of

PAGE &
rescurces are the KXey goals that parallel the evcluticn cf
data dictionary systems. Data dictionary systems have yet
to rcach their full potential and the coancept is still in

evoluticn. Operating systems are still in their =stage cf

refinements, incorporating new ideas and discardinoqg old
ideas. This is +the stage of evolution that data
dictionaries have reached. To accomodate tke Lincreasing

complexity of dataktases along with the existing DBMSs tke
data dictionary must become a more powerful tool fcr the
management of data and the programs and systems that use the

data.

In +*the second chapter of this paper, an analysis of
current systems and trends in data dictionary design will
be presented. Characteristics and tangible terefits of
existing data dictionaries will be discussed. These
characteristics and benefits may exist 1in reality or
presently in theory. A general overview <c¢f how data
dictionaries are implemented and their functions will also
be presented. Some current systems now in thé marketplace
will be described, however, the benefits or deficiencies of
each individual system will not be discussed, as it will
become evident in the following chapter when great detail
will be provided in what may be the "ideal™ data dictionary

system:the dynamic data dictionary systen.

The third chapter will deal with theoretical design of a

model of the dynamic data dictionary system. Hopefully this

PAGE 9
modcl will serve as a paradigm to the computer science

community for the "ideal” data dictionary systen.

After this model is defined, it will fre nused to
theoretically construct an "ideal" data dicticonary systen
with the power to convert real data to wvirtual data arnd
vice-versa without affecting existing applicaticn prograas.
7hus, there will Le no need for recompilation of applicaticr
programs each time a decision is made to change a real data

element to a virtual data element.

In the final chapter, a general overview of the impact of
such a powerful software tool will be discussed, alcng with
the benefits that can be reaped. An actual attempt to
implement suck a software tool is beyond the scope of the
paper but hopefully it will provide some insights tc

problems that need to be solved before implementation.

PAGE 10
Chapter 2

Current Systems and Trends in the Data Dictionary Area

Data dictionary systems today offer a variety of services
and benefits to people and organizations in the database
field, whether they are used in conjunction with a DBMS cr
as stand-alone software tools. Their importance is growing
as rapidly as the complexity of the databases that they
serve, Marty Goetz, senior vice-president and director cf
software product division at Applied Data Research Inc.,
says,

"Most companies should get a data dictionary perhaps a year
before they select a data base management system."(21)

He feels that it is necessary to find out how different
departments of a company use and organize data. Once this
task is completed, this information should be catalogued in

the data dictionary before one program has been written.

This seems guite a valid statement. It is important to
realize that a data dictionary describes and defines the
characteristics of the data elements, not the actual

contents of the data elements within the data base.

Perhaps now is a good time to give two generalized
definitions of what the current data dictionary is perceived
to be. According to P.P. UDhrowczik in pager, "Data

Dictionary/Directories”™,

PAGE 11

"A DD/D is a centralized repository of information
about data descriptions such as meaning,
relationships to other data, responsikility,
origin, usage and format. It 1is a basic tool
within the data base enviromnment that assists
coEpany management, data base administrators,
systems analysts, and application programmers in
effectively planning, controlling, and evaluating
the collection, storage and ase of the data
resource, " (2€)

As R.G. Ross succinctly defines it, a data
dictionary is "a repository for definitions and
related information for the data resources of the
corporation." {17) Readily observable is the
phrase, "related information", which leaves open
to speculation a multitude of possible entries

into a data dictionary.

what are some hasic characteristics cf mcst
data dictionaries in use today? Leong-hong and

Marron provide some typical characteristics. {12)

1) It contains a unique identification, a set of
physical characteristics, and a textual
description for each of the data elements.

2) It shows the relationships of elements to each
other and to components of the systea, e.qg.,
Frograms, reports.

3) It specifies the source, lo¢ation, usage and
destinatinn.of the elements.

4) It has validation and redundancy-checking
capabilities.

5) It contains security safeguards to contrcl the

PAGE 12
accessibility to the data elements.
6) It has a command language.
7) It has reporting capabilities, such as:
A} Pre-defined management-oriented,
statistical or summary reports;
B) Ad-hoc user defined reports;
C) Cross reference reports;
D) Element usage reports;
E) Audit trail reports;
F) Change effects reports;
G) Error reports.
8) It has retrieval capabilities, such
as keywording, indexing, and online
of batch querying.
9) It has facilities for interacting

with a DBHS.

Data dictionaries are classified according to their
function and implementation, Their function can be either
primary or secondary. In the primary function, the data
dictionary is a separate software package in which its main
function is "as a tool for identifyirng, lccating,
controlling, reporting and manipulating the information
about data elements in a data base.®({12) It is a Lasic tocl

utilized by all those involved in the data base environment.

The primary data dictionary can be implemented one of two

ways: free-standing or dependent. Free-standing data

PAGE 13
dictionaries are self-contained software packages without
dependence on a DBMS. Dependent data dictionaries are
constructed to meet the needs of a specific DBMS arcd
although performing the same functions as a free-standircg

data dictionaries, are hindered in their portability.

A secondary data dictionary is a software systemr whose
functions are embedded within another systen. Secondary
data dictionaries are implemented obviously as dependent Ly
definition, They differ from primary data dictionaries in
that they are not self-contained systens, their reporting
and retrieval capabilities are not as extensive, and they do
not have as extemsive security control over the data

elements. {(4) (See Figure 1)

It is important at this time to note that a primary,
free-standing data dictionary could have interfaces with
several different DBMSs supporting different data
nodels (hierarchical, network or relational). This tocl
would prove to be invaluable to companies that each support

a different DBMS.

#hat are the categories of +these data dictionaries?
Three of the data dictionary systems are defined in R.G.
Ross' beok: (17)

Passive DDs (Data Dictionary System) - a DDS in which

the data dictiopary acts as a passive repcsitcry

for data and system definitions. The DDS does not

become involved in any of the schema, sukschema,

PAGE 14

SOFTWARE TOOL FUNCTION IMPLEMENTATION
DATA PRIMARY FR§I:;STAN’DI}E
DICTIONARY ENDENT
SECONDARY DEPENDENT

(by definition)

PRIMARY - separate software package

7

SECONDARY - functions are embedded within another scftware system

FREE~STANDING - self-contained software package without dependence on

any DBMS

DEPENDENT - constructed to the needs of a specific DBMS

FIGURE 1 CLASSIFICATION OF DATA DICTIONARIES

(3)

PAGE 15
or program compilation processes of the overall
data management 'complex and thus takes no active
steps to ensure the consistency of its own
definition versions with those used at execution
time to drive prﬁﬁuction systenms.

- a DDS whose processes are merged with the
compile-time processes of the DBMS5, as well as with
those of the machine as a whole (for example with
the COBOL compiler), so that it can actively ensure
the consistency of its own data and sustenm
definition versions wvwith those used at execution
time to drive production systems.

In-line DDS

- a DDS whose dictionary 1is made availatle to the
execution~-time processes of the machine {for
exaaple, those of the DBHMS) for on-the-fly
resolution of data reéferencing requirements. An
in-line DDS eliminates the schema and subschena
compilation steps, and ensures that documentation
products are produced from exactly the sane
definitions used at execution time to drive

production systeas. {17)

Data dictionaries can be run in two operational modes:
batch and on-line. As Ross states,

"The increasing significance of the data
dictionary to data base systems and to data
administration, and indeed to the ongoing

PAGE 16
maintenance of all corporate systems, Futs new
desands on the DDS and its operation for timely
access to information. Siaultaneously, eany of
the types of guestions asked of the dictionary are
becoming either more specific or more ad hoc in
nature. Both of these facts point squarely in the
direction of on-line access."(17)

Wwhat are some tangible benefits gained by the use of a
data dictionary? From the HNBS Special Puablication 500-3
reports that some benefits are as follows: {12)

1) Simple and effective control of the data elcments;

2) Reduction of data redundancy and inconsistency:

3) Enforcement of standard usage;

4) Enforcement of security safequards and controlled

accessibility of the data base; .

5) Determination of the impact on the total

information activity of changes to data elemernts;

¢) Centralization of data elements as an aid in design

and development of new systeas;

7) Consistency in documentation for data elements; (12)

The primary concern of security safequards is to comtrcl
access to the data elements within the data base. Following
hand-in-hand with these safeguards, protecticn of tte

integrity of the data element can also be implemented.

What are some data dictionary systems currently in use
today? There are several data dictionary systems c¢n the
market today,hovwever, to list and describe all c¢f them would
not necessarily be beneficial to the reader, siEeply because

of the immensity of material involved. However, it swould

PAGE 17
prove enlightening to give a general ovérvieu of five
popular systems novw beiny used: Arthur Andersen's LEXICON;
IBM's DE/DC Data Dictionary System; Cullinane's ICDMS IDD:

MSP's DATAMANAGER: and ADABAS Data Dictionary.

LEXICON

The LEXICON is a software system designed Ly Arthur
Andersen & Company. The LEXICOWN is classified as a primary
software systenm. It -is implemented as free-standing
software package that is not dependent on one particular
DBMS. It is designed for use with the IBM's 360,370 and IBEM
System 3 hardware. Its operational mode can be either batch

or on-line.

The LEXICON operates under the 0S/MFT, OS/MVS, and
DOS/MVT operating systeams. The programming languages in
which the LEXICON's software are written are AIC and COBCI.
The LEXICON may use the IMS file definition utilities in

additior to programs specifically written for itself.

The LEXICON possesses interfaces to IDMS, IMS, and TQTAlL
DBAS's. The LEXICON provides single-entry update where it
updates every occurrence of the affected entry. The LEXICCN
has a free-form definition langunage for its input language
and possesses a free-form Report definition 1language. It
also has on-line capakbilities in which it utilizes an on-
line free-form guery language. The user can call help

routines to guide him/her on the uses of LEXICON.

PAGE 18

Element identifiers used for referencing elements in
LEXICON dictiopnaries can be COBGL, PL/1, or ALC compilable
names in which it allovs synonyms to be used for the data

element identifier.

The types of data structures supported by LEXICCN include
hierarchical, network, and relational. The character types
allowed in LEXICON are alpha, numeric, alphanumeric, aand
special. LEXICON also Aincorporates redundancy and

inconsistency checks on data elements.

LEXICON allows you to define or describe data elements in
a narrative form and specify a relationship of a data

element to another data element or higher level structure.

The LEXICON provides a facility for specifying authcrized
users or ogwners of data elements, where security to the data
element can be specified and require user-supplied

passwords.

The report capabilities provided by LEXICON are as
follows: a listing of the emtire DED/D in a formal report;
statistical reports; user-defined reports; element usage
Teports; cross-reference and/or relationship repcrts; ard
error reports. The LEXICON also provides a facility to
produce documentation for user application programs tased cn

data definitions and descriptions. (12) (See Figure 2)

DATA
~DATA |~ [|DEFINITION
.. |DEFINITIONS FACILITY
DATA
DICTIONARY
DMS
. -| FACILITIES
ENTITY
ENTITY TYPES CHARACTERISTICS INPUTS
Element , subgroup COBOL,PL/1,0r Pree-form definition
Segment, entry ALC compilable languages
file,databases, nanes -
sensitivity,program, . Frec-foim Report
systea 'mrn cap-::r 2_ Definition Language

FIGURE 2

1licy

* Max 500 characters
User/owner responsible
DED/D special security
module; security at

element level may be
specified

Free-form on-line
query lanquages

LEXICO

PAGE 19

REPORT

WRITER

INTERFACES

RN 360/370 (also
I8M System 3}

Batch and on-line
via TSO or IMS/DC

Inter{aces IDMS,
IM5 and TOTAL

N

SPECIAL FEATURES
AKD NUMBER OF
INSTALLATIONS

Programs profiles
Records layouts

Master terminal
Operator Report

1MS Stage 1 SYSGEM;
SYSGEN Compare
Report

ARTHUR ANDERSEM § CO.

PAGE :Z0
DAT AN AN AGEE

CATAMANAGER 1is a software +tool produced by MSP 1Inc.
DATAMANAGER is classified as a primary software systen. It
is implemented as a free-standing softvare fpackage. Its
primary hardware implementation is the IBM 3€¢0,370 and can
be used with 0S, 0S/Vs, DOS and DOS/VS operating systenm.
Its operational mode can batch amd on-line via TS0, CICS ard
CHS. It is written in ALC programming lanquage and can

utilize IBM system routines.

DATAMANAGER can be interfaced with ADABAS, IpMs, 1IMs,
I4S/DL1, MARK IV, and TOTAL. DATAMANAGER provides single-
entry update where it automatically updates every cccurremnce
of the affected data entry. Its input language is a free-
form definition language and a free-form command language.
It has cn-line capabilities with a free-form query language.
There are no tutorial or "prompting"™ guides provided for

uses.

CATAMANAGER allows the use of synonyms for a data element
with a limit of sixteen per data element. DATAMANAGER
supports a hierarchical database structure and allows tke
use of alpha, numeric, alphanumeric, and special character
types. It also provides for redundancy and inconsisterncy
checking among the data elements. Data elements may be
defined or described in a narrative form, with capability of
describing relationships of data elements with c¢ther data

elements or higher level structures.

PAGE :z1

Facilities are provided to indicate cwnership and
authorized use of a data element. Security at the data
element level can be specified and some commands are only

available to the LBA.

Report capabilities include: a listing of the entire
DED/D; management-oriented and summary repcrts; ad-hoc
reports; element usage reports; cross-rteference reports;
audit trail reports; change—-effect reports; and errcr.
reports. Other output capabilities include: data
descriptions for ADABAS, DL/1, 1IDMS, 1IMS, System 2000 and
TOTAL; a display of actual contents of source files; systen
documentation; and test file generation report. (12) (See

Fiqgqure 3)

IDMS IDE

The IDMS IDD {Integrated Data Dictionary) was designed by
the Cullinane Datakase Systems, Inc. It is a secondary
software system and as such 1is implemented as a dependent
softuare package. It is designed for use with IBHM's
360,370, 303x 43xx or compatible hardware. Its operational

rode can be either batch or on-line.

The IDD operates under operating systems, 0S NFT, 0S HMVI,
os/Vs1, 05,/V52(5VS) or 05/VsS2 (MVs), DOS/VsS, DOS/VSE or
VM /CHS, Languages supported are COBOL, PL/1, FORTRAN and

ALC.

DATA-
MANAGER
GENERATE
DBMS ;

DBIS

ENTITY TYPES

Systems,programs,
modules, files, groups,
data items,DBMS
definition entities,user-
defined entities

FIGURE 3

ENTITY
CHARARCTERISTICS

u&- are 32 charactey
unique identifiers

together with statos(up

to 255 statuses)

Descriptions are 65,000

_ lines

16 aliases and 15

versions for all entities

Userfowner responsible
for

Unlimited keyword
descriptors

Level,picture,range,

aligmment,initial value

for elements

User-defined
characteristics*

*Release 4.0

DATAN

ANIA

{
£
N L

SOUFCE COMPILFR
COPY/INCLUCE

INPUTS

On-line and batch free-
form keyword based

Set default value feature

Dunmy members for as
yet unentered lower
level entities
automatically produced

Data definition extracsts
from COBOL PL/1 .

DDL and control block
statement data sets
*gonerated for ADABAS,
InMs, IMS , DL/1-DOSs/
VS ,Mark IV,S52000,
TOTAL

Data definition data sets

generated for COBOL,
PL/1,BAL, and MARK IV

Fun time call inerface

Batch file interface

PAGE 22

SPECTAL FEATURES
AMD EUMEER CF
INSTALLATIONS

User exit facility

Secreen layouts under
IMs/DC,CICS

User~-defined syntax
allows choice of 3
additional dictionary
strutures

Utilities copy data
between physically
separate dictionaries
S00 installations

PAGE Z3

The IDD possesses only one interface with a particular
DBMS, that of IDXNS. As a secondary dependent software
package, IDD may use the facilities provided for it through
IDMS. IDD uses the DLDL, which is a free-fore definiticn
language and has sixty-nine standard reports provided
through the DDR (Lictionary/Directory Reporter} and allous
user defined reports. The IDD has an Online Query systen
(OLQ) which provides conversational access and a On-Line

English for individuals with no computer background.

In IDD, the synonyms are used to accommodate different
programping language requirements. Element identifiers used
for referencing data elements can have COBOL, PL/1, FORTRAN
and Assemkbler. Synonym capabilities are alsa allowed in
IDD. The type of data model supported by the ILD is network
data model. The character types allowed in the 1IDD are

alpha, numeric, and alphanumeric.

An unlimited number of synonyms for a particular element
eliminates data redundancy. Data entities <can be the

standard IDD entities provided or can be user defined.

IDD provides security to protect the data dictionary from
unauthorized access via passvords. Only the DEA or DDA has

the authority to control all passwords.

IDD's report capability has sixty-nine standard reports
which dinclude: a 1listing of the dictionary ccrntents:

summary or statistical reports; cross-reference rerorts:; and

| Y

ERCITY TVPES

Data elements,records,
files,schemas,
subschemas,areas,
pMCL, systems,
subsystems, programs,
modules,entry peints,
users,tasks, reports,
transactions,screens,
physical terminal,
lines,messages,
destinations,queunrs, .
processes,attributes

Allows user—defined
entities

These. entity types

are in the dictionary
via DDL,pot DDDL;
included in reports

and may be deleted,

but no other dictionary
features

FIGURE 4°

PAGE 24

SCHE1- AFTLICATION COFY
SUBSCHMA les{ DD PROGRAMS LIBS
COMEL FiR
3 OviL
PRECOMPILERS
UTILITIES
BATCH LOAD
2 SPECIAL FLATURES
ENTITY AND NUMSER CF
CHARRCTERISTICS INFUTS JETERFACES INSTALLATIONS
Names are 1-32 Free format Dicticnary IDMS is the only DEMS Prefixes automatical
character identifiers Data Definition interface generated for elemen
together with version Language (DDDL) using of a record
number (default to keywords; AND, Precompiler statements
MODIFY,DELETE, copy subschemas, 200 installations

highest version number)
40 char. descriptions

Unlinited length
definitions/comments

Unlimited keyword
descriptors{40
characters each)

Prepared/revised
by name

User name ana -

responsibility
for (create,
modi £y, delete)

Synonyms for data
elements, records,
files

User defined
characteristics and
values using class and
attribute entities

Range,initial value,
redefines,picture and

alternates for elements -

EDIT, (for text definitions control blocks,non-
comzents) commands IDMS data definitions,
and procedures from
dictionary into COBOL,
PL/1,RPG, and BAL
programs

User-defined syntax
feature for repetitious
values

Interface with OLQ(run
time)and CULPRIT

“Create same as”
feature

COBOL,PL/1,RPG and Sch and Subsch

BAL precompilers compilers derive some
register program input from dictionary
database usage into

dictionary

Data definition
extracts from COBOL
FL/1 source and
COPYLIBS
P and subsch
compi les update
dictionary

DS 1DD

CULLINANE DAT=R ST SSTEVS, 1l C.

PAGE z°%

on-site ad-hoc reports. (12) (See Figure 4)

LB/DC Data Dictionary Systenm

The DB/IC (Data BasesData Communication) Dictionary
System was designed by IBHM. The DB/DC is classified as a
primary softvare systen. It is implemented as dependent
software and requires IMS/VS or DL1 DOS/VS DENS. It is
inplemented with 1IB¥ 370 hardware. The DB/DC coferates under
0S/VS or D0S/VS. It can operated as batch and can be on-

line for IMS/VS.

The programming language which DB/DC is written is ALC.
DB/DC may use Systen Conirol Programs, IMNS/VS or DL/1 DOS/VS
programs, File-updates can be of the single-entry type cr
individual update in which only the specified cccurrence is
updated, and other occurrences are individually updated.
The input languages include: a free-form command language€;
fixed form "Interactive Display Forms"; and DBNMS data
definitions. It does have on-line gﬁeries with an on-line
query language that is fixed form through "Interactive
Display Foras" facilities. It also provides tutorial
services througqh the 3270 Ainteractive Display Forms"
facilities. Synonyms are allowable in the DB/DC. The DB/LIC
supports the hierarchical data model and allows character

types of alpha, numeric, alphanumeric, and special.

The DB/DC does provide for redundancy and consistency

PAGE 26
checks. There is a facility for defining and descriking a
data element through narrative description and also “User
Data™. It also bhas the «capability for specifying the
relationship of a data element to another data element or to
a higher level of structure. DB/DC alsc indicates
authorized users or owners of a data element. Security

safeguards exist throughout the IMS and operating systenm.

Report capabilities include: 1listing of the entire DED/L;
sumpary or statistical reports; element usage reports;
cross—-reference reports; audit trail (IMS audit trail)
reports; change effect reports; and error regorts. Gther
report capabilities include inquiry reports using GIS and
DBD and PSB for INS5/VS and DOS/DL! "Interactive Display

Forms™ facility. (12) (See Figure 5)

ADABAS Data Dictionary

ADABAS Data Dictionary 4is a software system designed Ly
the Software A.G. of North America, Inc. The ADAEAS Data
Dictionary is classified as a secondary softvware system. 1t
is 1implemented as a dependent software package that is
dependent on one particular DBMS - ADABAS. Its operational

mode can be either batch or on-line.

It is designed for use with the IBM 3€0,370, 3031,
SIEMEES 4004, Univac 9000, ICL System 4, DEC PDE1. ADABAS
Data Dictionary operates under 0S/DOS operating system. Tke

programming host languages are COBOL, FORTRAN, PL/1, and

PAGE 27
BAL. The data structure used is a network-oriented file

structure.

It possesses on-line query capabilities and utilizes its
o¥h guexry language. The ADABAS Data Dicticrnary supports
interfaces with other ADABAS components. These include
ADABAS LOADER, ADABAS high level DML (ADAMINT), Data
Definition Module (DDM). It can generate COBCL <copy ccde

from ADABAS or file definitions stored in the Dictionary.

The ADABAS Data Dictionary can specify owner I.D. which
is 3-32 characters in length, where the first character is
alphabetic and all others must be alphanuomeric (A-2 and
0-9), tlank or hyphen. Password facility is also provided

and must be 8 characters or less.

Thé report facility enables the user to retrieve
information stored within the Dictionary. Reports alsc
provide 1listings for File/Field/Verification/Relaticnship
information. Also included in the report facilities are

system dependencies and cross-reference reports.

DBD,PSB GUT COMMANDS

PAGE 28

STRUCTURES-QUT COMMAND

JCL

DB/DC
DICTIONARY

- GISAS
DATA DEFINITION
TABLES

ENTITY TYPES

Systems,prograns
jobs ,modules,dictionary

" users,transactions,

databases (physical and
logical) ,segments, ’
elemcnts ,PCBs,PSBEs,

lus user-defin-d
entities and attributes

FIGURE 5

ENTITY
CHARACTERISTICS

Names are uwp to 31
character identifiers
plus status,subject,
and occurrerce
{synomymas)

qualifiers

Status can be
production or 29 levels
of test

Aliases for all
entity types

Up to 999 lines of
40 character descrip- -
tions per entity

Up to five sets of 999
lires of 80 characters
of free text per entity

User defined attributes
can apply to any entity

Picture and intial value
for elements

3

APPLICATION

PROGRAM DATA

STRUCTURES

COBOL,PL/

IN COMMANDS

D50
IBRARIES

INFUTS

Batch forms or keyword
command language

On-line update via on-
line commands of
interactive display forms
tacility with IMS DC or
ac

Data definition extracts
from COBOL or PL/1
copy libraries

Loads from existing
DBD and PSB libraties

“Copy same as" entities

Irput from database
design aid

INTERFACES

M only DBMS
interface

Wl’lf-t; the following:
DL/1 DBDs and PSBs
Stage 1 SYSGEN inputs

COBOL, PL/1 ,BAL data
definitions

MS DB/DC

INTEFNETIONAL BUSEESS MACHINES CORR

" FILE
—JDEFMFK)NSL,

ADAWAN

PAGE 29

ADABAS

~H
DATABASE

-UTIUTY
UTILITY
INPUT

, DD UPDATE

DICTIONARY

DATA

- UTILITIES

' ATA
DEFINITION
MODULES

ENTITY TYFES

Fields,frelationship,
files,databases,field

verification procedures,

owners/users,
programs ,modules,
systems, reports,
response codes,
user views

FIGURE 6

ERTITY
CHARACTERISTICS
Names arc 3-32
character identifers

Comments are 30
characters per line.
arbitary number of
lines.

Picture,99 syncnyms,
range,cdit mask,
redefines capability.
multiple output pictures
for fields

Type of file to support
user views and standard
(master) files

200 descriptors per
ADABMS file

ADABIS

INPUTS

Fixed format card input
transactions

Existing ADABAS
database description
input capability

Pull forward facility
from standard file
element definitions

Automatic ripple

facility for changes
to data elements in
multiple file types

Initial load utility
available

‘Rssociator (for

. descriprors) created
automatically at file
load time

ADAMINT]
| MICROS

ASSEMBLER
SPECIAL FEATURES
AXD FINBER OF
INTERFACES INSTALLATIONS

ADABAS is the only %00 installations

DBMS interface

ADABAS file definitions
generated

.COBOL data division
statements gencrated
with optional prefixes

Data definition modules
for ADASCRIPT,

ADACOM, and MATURAL
generated

Supplies data for ADAMINT
PrEProcessor

OF TWARE A.G. OF NORTH AMERICA,INC.

PAGE 30
Chapter 3

An Ideal Dynamic Data Dictionary

Now that we have taken a sasple 1look at some data
C{ictionary systems that are on the market, we are aktkle tc
see how they each differ and how each are similar. What the
comfputer science community needs is a systenm that
incorporates all the good aspects of current data dictionary
systeas with some additions and modifications that would

create a paradigmatic form of a data dictiomary.

The main goals of manaqing a database, among cthers, are:
data independence; shareability; non-redundancy;
relatability; integrity of data; access flexibility; privacy
and security controls; performance and efficiency; and

administration and control. (3)

/Removing direct access rights from the DBMSs and movirng
these to the DBA would allow the DBMSs to relinquisk part or
all of the responsibility of total attainment cof said goals,

and at the same time, make these goals more easily reached.

Ultimately, the responsibility for maintenance of the DBs
falls on +the shoulders of the Data Base Administrator (DBA).
The D3A's Job has been hampered because of a lack of an
adequately powerful software tool to aid in maxiamizing

his/her efforts to supervise the DBs. In order tc do this,

PAGE 31
+he software tool must be able to monitor all activities
taking place within the databases. The @most likely
candidate would be a dictionary system with more power than

has ever beer realized before.

This dictionary system must be designed to ke as flexible
as possible and cater to the needs of a variety of LBXNSs,
despite the differences among the data models supported,
i.e., vwhether it be relational, hierarchical or a network

systen.

A da*ta dictionary system of this type would need to be a
primary, free-standing software systen. The theoretical
architecture of this system could be realized by placing the
data dictionary system between the DBMSs and the databases
they support. In constructing am architecture such as this,
we would create a "data-dictionary driven" systenm. The
remainder of +this paper will elaborate upon the basic
structure of this "ideal" data dictionary system and wili be
referred to hence as the "Dynamic Data Dictionary System™ or

DDDS.

Bagic Structure for the Dynamic Data Dictiopary System

in his paper,”A Basic Structure for Data ©DPictionary
Svystems",F.S.Zahran suggests a new structure,

"the structure separates the Data Dictionary Data Base
(DDDB) from the software that mamages that Latabtase and
interacts with the DD users. e call that software ?Data
Dictionary Management Systeh (DDMS). This separation will

PAGE 32

lead to an architecture in which one DDM5 «carn drive ard
control several DDDBs."(See Figure 7) {29)

This concept i3 an excellent innovation in allosing the
data dictiorary to support mixed DBMS environments. Zahran
goes on to elaborate the objectives of such a structure,

"This structure will enable us to reach a clearer
definition of the functiors and facilities of the
Dictionary Management Software, independent of the
structure of the associated database that heolds
the Dictionary information. The role of the DLHS
falls irto three main areas, as follows:

-It must Support different data management
facilities in order to manage, control and update
+he different Dictionary Data Bases asscciated
with it.

-It must support interactions with the different
Dictiopary users.

-1t may support interfaces with different standard
softwvare packages which may provide facilities
that the Dictionary users may need.* {29)

Specifically what functions should the DDMS have within
the DDDS. Zahran offers these three cateqories:

"I, Data Management Facilities

These are facilities for managing +the data
elements stored in the DDDB. They are similar to
those facilities offered by an ordinary ©ICBMS for
handling its associated database. These include
data management functions such as aCCESS
facilities, data security,error recovery,dump and

restart...etc. Since DBHS facilities are simpilar
yWe would like to stress the fact that a DDHMS
would normally be expected to be mere

sorhisticated and more versatile than a DBXS.

IT. Dictionary Language Support

PAGE 33

N
DDDB |- [DDDB | |DDDB

ol e e

DDMS - DATA DIGTIONARY MANAGEMENT SYSTEM

'DBMS - DATA BASE MANAGEMENT SYSTEM
{(may be mixed DBMSs)

DB - DATA BASE _
(may be hierarchical, network or relational)

DDDB - DATA DICTIONARY DATA BASE

ZAHRAN’S DATA DICTIONARY SYSTEM

FIGURE 7

PAGE

DDMS should support a family of Data Dictionary
Languages +*hrough which the different users
interact with +the Dictionary. Such a family of
langnages should cover facilities for:

Defipition of Dictionary Entities: This should

enable authorized users to enter apd urdate
definitionS...

Interrogation of Dictiomary Contents: This should
enable authorized users to 1interrogate the
contents of the Dictionary database after chtecking

the access authority and privacy controls.

Generation of Data and Procedure Defipitions:
Tkis should enable the users to generate from the
dictionary, Data and Procedure definitiorns in a
formal predefined format, €.q., in a fprogram
source form suitable for a particular programming
language.

These lakguages should be available for use
either interactively by human users or in katch
mode ty application programs in the form of calls
emtedded in the host programming languages. These
calls may dgenerate schema definitions or data
definitions for use by the progran.

ITI. Interface to other Software Systenms:

——

DDMS functions and facilities can be extended
through supporting interfaces to other software in
the following categqgories:

-Generalized packages, such as Report Generators,
Query language Processors... etc. The objective
of such interfaces would be offering the
facilities of these packages to the Dicticnary
users for theilr use on the Dictionary data.

-The other type of softvware packages that the DDMS
might have to support an interface with are
DBMSs. This interface may be mainly for the
Dictiorary to provide Database descrictions,
access controls, privacy checks, ...etc., to the

DBMS when necessary. In this way the Dictiomary
will act as a central source for the information
which may be cCommon to more than one

Da tabase. " (29)

24

PAGE 35
Finally Zahran suggests "that the DDMS should Le interfaced
with Source Language Generators, to accommodate specific

programrking languages. {29)

Aside from the incorporation of this structure intc
Zahran's data dictionary systen and the Dynamic Data
Dictionary System, the similarities of the two mcdels part
CORpany . In order to achieve a more dynapic system,

considerable modificatiors and additions must be introduced:

-Multiple UIDDBs will be stored relationally and contain

Halementary data objects”™ and "complex data objects".

-Introducing a new module which will be called the Data
Abstraction Management System which will be layered between
the DDHS and its DDDBs along with its own accompanying

database, the Data Abstraction Data Base (DADB).

-Direct access to a particular database by a DE¥S will te
eliminated and replaced by access only througk the DDDS.

{See Figure 8)

These concepts will be defined and discussed in the
following section.

I. Data Cbjects

A data object is an abstraction of some real world
entity. we use the data object concept proposed by Liskov

{13) and later elaborated by Unger (27). A data object

DADB

DDMS - DATA DICTIONARY MANAGEMENT SYSTEM
DAMS - DATA ABSTRACTION MANAGEMENT SYSTEM
DADB - DATA ABSTRACTION DATA BASE

DDDB ~°DATA DICTIONARY DATA BASE
(stored in a relational data modell

DE - DATA BASE
{may be relational, network or hierarchical)

DEMS - DATA BASE MANAGEMENT SYSTEM

DYNAMIC DATA DICTIONARY SYSTEM

FIGURE 8

PAGE 36

\ DBMS

()

DBMS

@

DBMS

@

PAGE 37
+heoretically should be general enough to represent any
entity including prograas, and hardware and software
systens. An object according to Unger is a five tuple with
the following components: {27)
- pame or set of names
- attribute or set of attributes to describe its
characteristics {e.g., fixed binary, prccess)
- representation (e.g., packed array, PL/! source
code
- corporality (an indication of the &nucter of
copies, location, integrity, security
constraints)

- value

The value is a reference to either an atoamic value (known
in tkhe environment of reference), a structure of atomic

values, or structure of objects {e.g., a program).

Applying this concept *o the dynamic data dictionary
problem, the data entities within the database can each ke
represented by a data object. The data object provides
security, integrity, location, and replication information.
Additionally if the data object is real, the value will bte
present in atomic or structural atomic form. Bowever, if
the object is virtual the representation and value will
provide a process to exXxecute in order to compute the value.

Since for the new object, i.e., the process, we pay find

that the value can be obtained only by calling cn further

PAGE 38

procasses, recursior is indicated.

¥uch of the information stored about a data element in
+he data object would be rather esoteric in view of an
organization, hovwever, some of the informaticn contained
would ke &mandatory. This mandatory dinformation would
include, security checks for access to the data element that
the data object describes, as well as security checks for
access to the contents of the data object itself. The data
object must also contain +the address of the data elemert
within the DBs, formats, type, and aliases with respect to
who is accessing the particular data element. It must alsc
contain relationships to other data elements, nurkber cf
accesses to the data element during a prescribed amount time
of time, and status of the data element within the DB, e.qg.,

proposed, now-in-use, or archived.

Data obijects <could be thought of existing in two
different categories: elementary, and corglex. The
elementary data object would have a value, that is represent
a real data element actually residing within a T[CEB. The
complex data object would represent a data element that
existed virtually, i.e., its value is a process to calculate
the value. In the case of the complex data object, the
virtual data element would be derivable froa one or more
real data elements, and zero or more virtual data elements.
The derivation of a virtual data element, represented by a

complex data object would be layered according tc the number

PAGE 39
of virtual data elements used in its derivation. Refore a
derivation could he completed, the virtual data elements
used in its derivation would first need to be derivecd. All
the elementary and conplex data objects used in its

derivation plus the conversion routines contained in the

DADB would be considered part of a complex data okject.

In the case of retrieval of data objects dinvelving the
satisfying of a regquest for a data element from a LB, the
responsibility of access security controls would rest ugcn
the DDMS. (This process is described in detail in Chapter 4)
The insertion, deletiom or perusal of a data chﬁect in the
DDDBs would be monitored by the DAMS so that changes made
within the DDDBs could be accounted for and adjusted within
its DADE where these changes would involve any virtual data
element. Again, the ultimate responsibilities concerning
+he security controls involving these operations would still
belong to the DDHNS. Stored within the DADB wculd Le the
names and aliases of all the wvirtoal data elements
represented in the DBs and all the conversicm routines

reeded for the derivatiom of the virtual data elements.
IT. Data Abstraction Hanagement System {DAHMS)
There is considerable amount of data within any DB that

is cerivable from existing data. The storage of all this

data within a DB is coaceivable but =not necessary. To

PAGE 40
kandle the concept of virtual data versus real data within
N3, the introduction of a module layered between the DDDS
and its DDDBs seems to be a viable option. That module
would be termed the Data Abstraction Management System or

DAMS,.

The DAMS would support its own DB, henceforth and
previously being referred to as the Data Abstraction Data
Base (DADB). The DANS would process all queries by the DDMS
concerning the contents of the DDDBs. If a data element
existed vir+*ually within the DBs, the DAMS after accessing
the DADE could communicate this information to the DDHMS flus

the needed information to process this conversion.

The [AMS in this position would then eliminate direct
access to the DDLCBs by the DDHS. Any inguiries altout the
contents of the DDDBs would have to be processed through the
DAMS. The DAMS would have responsibility of monitorirng
retrieval, insertion, deletion or perusal of data objects

within the DDDBs.

III. How will the layering of the DDDS between the DBMEs
and the DBs help realize the goals of data base management

mention earlier in this section?

A. Data independence - With the architectual structure

of the BPIIDS in relation to the DBMSs and DBs data

PAGE 41
independence not only c¢ould be achieved, but would e
practically mandatory. In a mpixed DBMS environmeant, as
could exist with the DDDS, knowledge of the actual locatich
of data, physical representation, physical data
organization, access paths, particular storage devices, ard
data sharing could ke hidden froa the user and only made
available to those users that Fpossessed the actual access
rights to each 1level of a data object. The CLDMS upch
request from a Gparticular DBMS, could determine through
interaction with the DAMS the availability of the requested
data, whether it be information concerning the ccntents of a
particular DD2B of the actmal contents contained in

particular DB.

Ba Shareability - The ability of different application
prograns to be able to use common data would be enhanced by
the DDODS. The DDMS and DAMS would process a request for use
of a particular data object and could allow multiple viess
of a data element, In a mixed DBMS epvircnment, a
particular D3MS would not be constrained toc the DB it
supports, Frut with proper security level checks, indirect
access +*o other DBs would be allowed. To a 1large
corporatior which has acquired a variety of DBMSs and their

accompanying DBs this would be considered a necessity.

c. Non-redundancy f data - Through the ©merging «cf

— . e e e i —

companies, each which utilizes its own DBMS and LB, to fora

one comrpany, the possibilities of data redundancy existirng

PAGE 42
between the *wo DBs is almost a guarantge. An obvious
example would be each D3 containing an elementary data
element called Total_Number_of_ Employees. In light of such
a4 merqger, the DDDS would be able to moritor such a
redundancy, and upor Jjudgement of a DBA, it cculd ke
eliminated from one DB or the other. Because of the
structure of the DDDS this would not affect the ability of
either DBMS to access the data element and again would

ensure true shareability.

by the application of data objects stored withinm the DDDBs.
Stored within the data object would be relaticnships that

affected that particular data element.

%. Inteqrity - The inteqrity of DBs would be ensured Ly the
fact that any access to particular DB must tke obtained
through the DDDS. The DDDS could support an interface with
a software package that maintains a 1log of all accesses
and changes that have occurred either in tke DDLCEs or the
DBs themselves. By keeping track of programs or users that
have interacted with the DDDS, an "audit trail" could ke
generated to track down an error that has been detected arnd
recover the integrity of the data element At the same time
+he DBRA or the errant user could be alerted of the progranm

responsible for the error.

be reflected in the DBMSs that are interfaced with the DDDS.

PAGE 43
The DDDS could, with the proper interface to a particalar
D3MS, endure a multitude of access modes that would te

inherent to the DBMS.

G. Privacy and Security Controls - Once a request has

entered the DDDS, tke DDDS would merely interact with the
DAMS *to check on the security 1level of the requestor. The
DAMS would drive +the information on the particular data
element in gquestion after retrieving it from its data
object. The DDMS would merely check the security «cf

requestor to determine if access would be allowed.

II. Performance and Efficiency - As the DDDS is yet, at this
writing, merely a thecoretical system, a working model will
need to be implemented to actually test performance and

efficiency.

I. Administration and Control - The advantages of the DLLS
in this area are obvious. Here in one system, <centralized
control of pumerocus DBs are encorporated. The ability to
monitor and control all definitions of data €lements in
maltiple CBs and to require any access to said CBs by the
DBMSs interfaced with it, <causes the DDDS tc ke one the
most powerful software tool available to the Data Base

Adminis*ration.

PAGE 44

Chapter 4

How Does the Systea Work?

A main goal in the management of databases 1is comglete
data independence. As stated before, the use of the DDLS

could very well enable that goal to be reached.

Generally speaking, all databases contain elementary data
elements that could be derived from one or more data
elements that also exist within the database kut are not sc
derived, because of a management decision. Ey the sane
token the reverse is also true, many derivable data elenments
do exist that only are Yaccessable® through- derivatich
involving some prescribed routine using other real andsor

virtual data elements.

To illustrate how the DDDS works, secticn I cf this
chapter will be 1limited to addressing the problem of
accessing data, real or virtual, within the [Bs without
affecting existing application programs and elimipating the
need to supply +this information about real or virtual data
to the users. This is not to imply that tkis is the omly
benefit derived by +the use of the DDDS; however, it best

represenrts a step towards the goal of data independence.

I. Accessing the DBs: Process of handling Real verses

Virtual Data data elements.

PAGE 45

A very important problenm , the converting cf a "real"
data element dinto a "virtual data element ard vicc-versa
without affecting aprlications programs exists. There is
presently an enormous job of maintenance in tracking down
everything affected by a comnversion. The criteria for such
a conversion of course would be up to the Jjudgement of the
DBA. cne of the main reasons for changing a real data
element *0o a virtual data element would be the failure cf
the data element to reach a threshold value for the minimus
gquota of accesses in a specific time period. This is, cf
course, assuming that +the data element is one that |is

derivable.

In a data dictionary systen, such as the DDDS, the
conversion from real to virtual and vice-versa, would ble
done efficiently and with the minimum of maintenance. There
are four types of accesses to a DB that would be encountered
ir a system such as the DDDS: access to a real data
element; access to a real data element that was not created
through that particular DBMS; access to a virtual data
element that is derivable from real data elements; access cf
a virtual data element that 4is derivable from a combinaticn
of data elements that includes one or more virtual data
elements. Let us look at how each of the accesses would fe

kandled by the DDDS.

A. Access of a real data element existing in the LB.

PAGE. UE

The [B¥S would send a request to the DDDS for access to a
particular data element . The DDMS would take the request
arnd pass it on to the DAHMS. The DAMS would check the DALE
to see 1if +he data element existed virtually. After
discovering that it did not, the DAMS would fetch the
necessary information from the data object within the DDLE,
e€.gJ., security authorization, format, value type, and send
it back to the DDMS. After the DDMS wmakes the T[roper
security checks, €.9., read only, update, or delete, the
DDHS would then access that particular data element and send
the request back to the IBAS of the requestor. This adds
another layer of protection to the access of a data element

from unauthorized sources. (See Figure 9}

B. Access of a real data element existing in a DB that was

not originally sugpported by that DBHS.

This would wvirtually be the Jidentical prcocedure as
previously described im section A above. However, it is
worth mentioning because of the unigueness of the situation.
Here we have a DBMS that is allowed indirect access tc a LB
that it previously did not support,

e.g., the DBMS may support a network data model and still
be allowed to have indirect access to a DB that may be

relational or hierarchical. (See Figure 10)

C. Access of a virtual data element that is derivakle frem

real data elements.

PAGE 47

. DBMS
) 0]
I)
DDMS ‘\\IQK}\b D%{S
(z)l T(s) ! '
DAMS | ”’(33’35

T

DB DDD2 | | DDDB
lI!!I' ||!!||| ll!!ll
_________________ 4

1. A request for a data element is by DERMS(2J] to the DDMS.

Lt T T T e —

2. The DDMS sends the request to the DAMS to fetch the data
object within the DDDBs. °

3. The DAMS checks the DADB to see if the data element exists
virtually.

4. Upon determining that the data element is real, the DAMS
retrieves the data object from the DDDB(2]).

5. The information within the data object is driven back to the
DDMS . '

6. The DDMS retrieves the data element from DB(2).

7. The DDMS drives the information back to DBMS(2).

FIGURE 9 ACCESS OF A REAL DATA ELEMENT EXISTING IN THE DBs

PAGE 48

&)

l. A request for a data element is made by DBMS(1) to ‘the DDMS.

2. The DDMS sends the regquest to the DAMS to fetch the data object
within the DDDBs.

3. The DAMS checks the DADB to see if the data element exists virtually.

4. Upon determining that the data element is real, the DAMS retrieves
the data object from the DDDB{2).

5. The information within the data object is driwven back to the DDMS.
6. The DDMS retrieves the data element from DB(2).

7. The DDMS drives the information back to DEMS(l).

FIGURE 10 ACCESS OF A REAL DATA ELEMENT EXISTING IN THE DBs THAT WAS
NOT ORIGINALLY SUPPORTED BY THAT DBMS.

PAGE 49

Here again, a program or user nmakes a request thrcugh a

particular LBMS. OUnknown to the requestor the data element
exists virtually, in other words it must be derived. The
DDMS sends the regquest down to the DAMS. The DA#S checks

the DALB and determines that the data elepent exists
virtually and dJdetermines that is derivable frcm real data
elements, In order to have Maccess" to the virtual data
element, the requestor must satisfy the security checks to
all of the real data elements which need to te accessed in

order tc derive the virtual data elemrent.

To maxe the proper security checks, the L[AMS then
retrieves the complex data object representing the virtual
data element from the DDDB. The DAMS, at the sase tinme,
retrieves the elementary data objects in the DIDBEs and the
routine stored in the DADB needed for the derivation atd

sends this information back to the DDHS.

The [DMS then must make +the necessary security checks on
the data elements needed in the derivation. This
determination is made by looking at the elementary data
objects passed to it by the DAMS. If any of the elementary
data objects contain security controls whichk the requestcr
fails then the reguest is denied and the proper message is

sent back to the requestor,

If the requestor passes all security clearances, then the
DDMS accesses the data elements within the DB and uses the

routine passed to it to make the conversion ifor the virtual

PAGE 590
data element, This 1is then sent back through the DBMS of

the requestor. (See Figqure 11)

D. Access of a virtual data eleazment that is derivakle frcem
a combination of data elements that include <c¢cne or more

virtual data elements.

A request has been received by the DDMS which it in turn
sends cn to the DANS. The DAMS then checks to =see if the
data elements involved in the derivation exist as virtual cr
real data elements, again by checking the L[ADB. For
illustration, let us assume that it discovers that cne of
the data elements used in the derivation also exists as a
virtual data element. The DAMS then must not only fetch the.
routine responsible for the.conversion of the criginal data
element Trequested, but also the routine wused for the

conversion of the virtual data element used in tte

derivation of the origqinal reguest.

As is now obvious, the derivation of the original virtual
data element will become a layered process. The DAMS will
access the D[DDBs and retrieve the complex data objects along
with the‘elementary data obhjects used for the derivation cf
the original virtual data element. The complex data objects
along with their routines retrieved £rom the DADB and the
simple data objects will then be sent back to the DDYS im a
structure such as a stack, with the secondary complex data
objec*, its routine and real data elements used for it

derivation on top, followed by the original data object, its

1s
2.

3.

PAGE 51

R e

DBMS
@

7

D8MS
®))

G G ——— e — T —— — — — — " (oo ——

—— . E——— p — m——— ——— i —

A request for a data element is made by DBMS (2] to the DDMS.
The request is sent to the DAMS to fetch the data object.

The DAMS checks the DADB and determlnes that the data element exists
virtually.

The DAMS retr1eves the data object representlng the virtual data
element. :

5&6. The DAMS retrieves the data objects needed to derive the virtual

7.

data element.

The data objects are driven back to the DDMS along with the conversion
routine stored in the DADB. .

889. The real data elements needed for the der:l.vatl.on are retrieved

from DB(1) and DB(3).

10. The derivation is made by the DDMS and driven back to DBMS(2).

FIGURE 11 ACCESS OF A VIRTUAL DATA ELEMENT THAT IS DERIVABLE FROM REAL

DATA ELEMENTS.

PAGE £z

rontines and data objects used in its derivation.

It would then be the responsibility of the DDMS tc
process all security checks for all the real data elements.
Again 4if the original requestor fails to Fass =ecurity
clearance of one or more of the real data elements, the
request would be denied and the proper message would ke
driven back to tke requestor, othervise, the TLDHXS would
process the informaticn and send the request tack thrcugh

the DBMS of the requestor. (See Figure 12)

II. Accessing the DDDBs through the DAMS.

The access to the DDDBs for the perusal, 1iasertion and
deletion of data objects would be handled through the DAMS.
The DDMS would relay the request to the DAMS from the
requestor. The DAMS would then be allowed to monitor any
possible changes that would occur in the ODDDBs. The
security checks would wultimately be determined ty the DDMS

by the information driven back to it by the DAMS.

Any time a decision is made to create a data object in
whick its data element would occur virtmally cr tc ckange
an existing data element from real to virtual or vice-versa,
tte DAMS would then be able to rake the necessary
adjustments within 1its own DADS. only allowirg the DDMS
access to the DDDBs through the DANMS, as has just been

illustrated, enhances the reliability and inteqrity of the

PAGE 53

DBMS
)

N

i

DBMS
®

DBMS

®

1. A request for a data element is made by DBMS(2) to the DDMS.

2. The request is sent to the DAMS to fetch the data objecﬁ.

3. The DAMS checks the DADB and determines that the data element exists
virtually.

4. The DAMS checks and determines that one of the data elemaﬁts used in the

derivation is also a wvirtual data element.

The DAMS retrieves the data cbject representing the virtual data element.

6. The DAMS retrieves the data object needed in the derivation that also
exists.

7. The DAMS retrieves the data object needed to derive the data element
that is used to derive the original data element.

8. The data object is retriéved that represents the real data element used
in the derivation of the original data element.

9. The data cbjects are driven back to the DDMS along with the conversion

routines retrieved from the DADB.
1081l. The data elements are-retrieved for the derivation.
12. The derivation is made by the DDMS and driven back to DBMS(2]).

RTUAL DATA ELEMENT THAT IS DERIVABLE FROM A

FIGURE 12 ACCESS OF A VI :
ONE OR MORE VIRTUAL

COMBINATION OF DATA ELEMENTS THAT INCLUDE
DATA ELEMENTS.

PAGE t4

contents of the DDLBs.

PAGE &5

Chapter 5

Overview and Conclusions

The evolution of the concept of the data dictionary has
been an erratic and diversified one. ©No standards have been
set or agqreed upon by the computer science community. With
more and more organizations incorporating a éariety of LBKSs
and D3 models, being able to utilize, to the full extent,

existing UBMSs and DBs will be essential.

The +*heoretical Dyramic Data Dictionary System (DDDS)
proposed in this work appears to be a viable solution te the
problems associated with integrating databases and with
moving more authority to the DBA. It is also a step toward
t+he elusive goal of total data independence. As yet no
software tool presented in literature seems to cffer the as
many bepefits as the DDDS. The DDDS would ¢Le the 'most
powerful and useful tool possessed by the LBEA. A
corporation would be allowed to assimilate many different
DBMS environments during its growth without fear cf
incurring insurmountable costs or the mismanaqement and

possible loss of one of its most valuable assets - its data.

Future research into a dictionary-driven systea such as
+he DDDS is needed. First and foremost, the actual attempt

to implement a prototype DDDS is necessary. Orce this has

PAGE 56
been acccmpiished, research can be conducted using the
prototyre to answer the gquestion of the feasibility and
efficiency of this as paradigmatic model for future data-

dictionary systeams.

BIBLIGGRAPHY

1. Adam,R.G., "Da'ta dik'shan—er'ies for that Mature look",
LM , October, 1979, pp.47-51.

2. "A New View of Data Dictionaries", EDP Analyzer , Vcl.
19, No.7, July 1981.

3. Cardenas,A.F., Data Base Management Systems , Allyn and
BEacon, Inc., copyright 1979.

4. A Suyrvey of Eleven Government-Developed Data Elemert

Dictionary/Directory . NBS Special Publicaticn

500-1¢,U.S. Department of Commerce, VNaticnal Bureau
of Standards, Augqust ,1977.

5. Collard,A.F.,"A Data Dictionary Directory" Jcurral cf
Systems Management , June, 1974, pp.22-2E.

€. Coulson, C.J., "data dictionaries", ICP Interface Data
Processing Mapagement , Spring, 1981, pp.37-40.

7. Curtice,Robert. M, “Data Dictionaries: ARnR Assesswment cf
Current Practice and Problems", IEEE , 1981, pp.
5¢4-570.

8. Curtice, R.HM. & Dieckman, E.M., “A Survey of Data
Dictionaries", Datamation , March, 1981, p.135-158.

9, Ewers,Jdack E., %YHow to Evaluate a Data [Cictionary",

Computer World , 1981.
10. “Installing a Data Dictiomary"™, EDP Apalyzer , Vol. 16,
Ko.1,January, 1978.

11. Kreitzer 1L.W.,"Data Dictionaries-The Heart of IRFK,”

Infosystems , February, 1981.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21,

22.

[
o
0
=T
[
Im
e}
It
kn
m
[E-1
Im
}=]

Lecng-honqg,B. & E.Merron, Technica
Lata Element Dictionmary/Directory Systems ., ¥BS
Special Publication 500-3, February, 1977.

Liskov B.H. & Zilles, S.MN.,"Programming with Abstract
Data Types,"™ SIGPLAN Notices,IX,No. &, April, 1974,
Ep. 50-59,

Madnick,S.E. & Jd.J. Donovan, Operating Systems ,
FcGraw-Hill Boock Company, 1974.

Martin G., "Data Dictionary/Directory System," Journal
of Systems Management , Vol. 24,¥No. 12,December,
1973, pp. 12-19.

Risch,Tore,"Production Program Generation in a Flexible
Lata Dictionary System", IEEE ,1980, pp.343-348.

Ross, R.G., Data Dictioparies & Data Adpinpistration ,
AMACOH, 1981.

Ssakamato, J.G., and Ball, F.¥.,, "Supporting Eusiness
Systems Planning Studies with the [B/DC Data
tictionary,"]IBRM Systems Jourpnal , Vol. 21, Ro.l1,
1982, pp.54-80.

Schelling,G., "the Use of IBHM's Data CDictionary",
Computer Bulletin , December, 1978.

Schussel, Georgqge, "“The Role of the Data LCictionary",
Latapation June, 1977,pp. 129-142.

Snyders, J.,"New Trends in DBMS," Computer Decisions ,
Fetruary, 1982,fp. 100-133.

snyders,Jan, "Data Dictionary : The Manager in LENS",

-

Conmputer Decisioms , Vol.13, October, 1981,pp. 36-46.

23.

24.

25.

2¢.

27.

28.

29.

Technica

]

Profile of Seve at

Jow
3]
[
[i+]
E]
[[1"]
1

w
th
o)
(1))
(1]
¥
w
[

Eictionary/sDirectory Systenms ’ NE
Publication 500-3, U.S. Department of Commerce,
National Bureau of Standards, February, 1§77.

“The British Computer Society Data Dictiopary Systenms
Working Party keport"™, ACHM Special Interest Group Cn
Management Data Sigmod/Record Vol. 9, Nc.4, December
1977, pp. 2-24.

"The Data Dictionary/Directory Function", ELF Analyzer
s November, 1974, Vol.12,No.11.

Ohrowczid, P.P., "Data Dictionary/Directcries," IEN

Systems Journal ,vcl. 12, No. 4,1973, pp. 332-3%0.

Unger, E.A. & E.J. Schweppe, "A Concurrent Model:
4

Puhdementals", 2nd International Ccnference cn

R e

iarallel Computation, France, 1979.
Walsh, M.E., "Update on Data Dictionaries", ournal cf
Systens Mapagement , Auqust , 1978, pp. 2&-27.
Zahran,F.S., "A Basic Structure for Data ©Dictionary
Systems", ACH ﬁgzgﬂgﬁa Begional Conference (Englang)

Proceedings..- Systems Architecture , March, 1981.

DYNAMIC DATA DICTIONARY

by

ROBERT WILLIAM PHILLIPS

B. 5., Kansas State University, 1974

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1983

What is a data dictionary? This question turns out to be an
uneasj one to answer. ?hroughout the literature concerning data
dictionaries, we find conflicting and inadequate definitions. One
agreement is that the data dictionary is software tool used to aid

in the building and maintenance of a data base.

The main thrust of this paper is to develop an "ideal" data
dictionary system that will serve as a paradigmatic model for the

computer science community.

First, a look is taken at the evolution of the data dictionary
as a software tool followed by the current trends of data dictionary

systems existing in reality of theory.

An "ideal" data dictionary system is then defined, the Dynamic
Data Dictionary System (DDDS). To illustrate the flexibility and
power of the Dynamic Data Dictionary System, its capaﬁility to deal
with the conversion of real d#ta elements to virtual data elements
and vice-versa without affecting existing application programs

is theoretically constructed and examined.

In conclusion, future research is suggested to prove the
feasibility of developing such a powerful software tool as the

Dynamic Data Dictionary System.

