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INTRODUCTION

Queulng theory involves the formal study of units arriving
at some facility which services these units. The origin of
queuing, or waiting-line, theory dates back to the early 1900's
when A. K. Erlang developed telephone-traffic theory while
working for the Copenhagen Telephone Company. Since that time,
queuing theory has been applied to a wide wvariety of problems
such as the landing of aircraft, the loadlng and unloading of
ships, the timing of traffic lights, the design of automcbile
parking areas, the design of taxi walting areas, the scheduling
of patients in clinics, the processing of x-ray films, the
péssage of travelers through customs, the servicing of machilnes,
and various aspects of the computer and teleprocessing fields.

Queuing theory attempts to solve problems that occur
because of a fluctuating demand for a service to be performed
over a period of time. Problems may arise because of too much
or too little demand on the facilities or because of too few or
too many facilitles. In-the case of too much demand on the
facilities or too few facilities to meet the demand, a waiting-
line forms. Too little demand or too many facilities results in
i1dle facility time.

There are costs associated with both waiting time and
idle time. Sometimes the actual costs assoclated with waiting
time are difficult to calculate, since the monetary cost of
inconvenience and congestion is intangible. But often an

estimate of direct costs can be made. A restaurant can estimate



how many customers 1t loses because customers refuse to wait in a
long line, and multiply this number by the average customer bill.
The costs associated with idle facilities in terms of personnel
and equipment are obvious.

One would like to obtain some optimum balance between the
costs assocliated with waiting time and the costs associated with
idle facility time. If the service facilities are fixed, some
scheduling of the flow of units may be possible. An example of
this situation is found in a study, made by the New York Port
Authority, of automobile traffic through tunnels around Manhattan
(11). The objective was to find some method of increasing the
number of cars going through a tunnel in a given interval of time
and, particularly, to try to eliminate the back-up of cars found
in heavy traffic at the junction of the level part of the tunnel
with the upgrade at either end.

Obviously, the facilities were fairly well fixed since
the problem would have to become acute before building another
tunnel would be Justifled. Therefore, a scheduling of the flow
of units was tested. A computer program was written which
accurately simulated the tunnel traf©ic, and then the effects
of various speed limits and limits on inter-car spaci - were
tested. Indeed, 1t was found that it was possitle to obtain
more throughput if, instead of allowing the cars to enter the
tunnel as fast as they arrived, the flow of cars were interrupted
every so many cars and traffic were sent through in "platoons™".
Of course the optimum platoon size and inter-platoon distance

had to be chosen correctly.



On the other hand, if the flow of unilits is not subject
to conftrol, then one tries to find the proper combination of
personnel and equipment. An example of this technique is fcund
in another study conducted by the New York Port Authority (5)
concerning delays at toll booths at Port Authority tunnels and
bridges. The result of this study was a recommendation of the
optimum number and schedule for the toll collectors and the
number of toll booths needed open at any time of day.

It may be possible to exert some control over both the
flow of units and the available facilities. 1In this case, one
seeks to schedule the flow of units and to provide the proper
combination of facilities in order to minimize the over-all cost.

Whether one is studying the flow of automobiles in a
tunnel, of customers in a supermarket, or of messages in a tele-
communications system, common terminology and elements of study
exist. One purpose of this paper is to acquaint the reader with
queuing theory terminology, the four basic elements of any queuing
situation, and the measures of congestion which may be examined.

Ideally, given these elemehts and their Interactions,
any of these systems could be represented in mathematical terms
and the appropriate analyses applied to determine the expected
effects of various modes of operation. In reality, however, it
is often impossible to carry out such an extensive analysis.

This is due in large part to the fact that the theory has not
progressed beyond the point where easily manageable solutions are

available for more than a few idealized systems.



The theoretical background and analytical solution through
the use of differential/difference equations are presented for one
of these idealized cases, the single-queue case with random
arrivals and random service. The formulas for certain measures
of congestion are presented for some of the other solvable
gqueuing situations.

A study of these idealized problems should help one
develop an insight into the character of gqueulng action. In some
cases, it will provide upper bound and reasonableness checks for

more accurate computer simulation, another topic of discusslon in

this paper.



THE ELEMENTS OF A QUEUING PROBLEM

A waiting line or queue occurs when a unit arrives at some
busy service facility. In order to study .his queulng situation
one must first of all state the problem in a logicr: fashion.

This Involves a forma’® description of the situation and an
enumeration of the results desired.

Before proceeding further some terms will be explicitly
defined, since many definitions are not uniform in the literature.
For example, some authors use the terms "queue" and "waiting line"
to represent different phenomena while others use them inter-
changeably. In this paper the term walting line will be used to
denote those items actually waiting in line and will not include
any items being serviced. A walting line will be considered to
be only part of a queue which will refer to all items in the
system. '

A service faclility is alternatlvely referred tc as a
server or as a channel. Each of thesec terms refers to the personfs)

i/or piece(s) of equipment providing the service.

In developing a model of the queuing situation c¢-rtain
assumptions must be made that specify it completely. T e four
basic areas of concern or elements of any queuing problem are
the system's input, the walting lines, the service channels, and

the system's output.



The System's Input

The system's Input is the area which is concerned with how
units arrive and become part of the systeni. Once the unit becomes
a part of the system it is zenerally called a "customer". The
customers come from a population of potential customers. Usually
each member of the population is considered to be functionally
independent of all others.

One important characteristic of an input source is the
population size, that is whether it 1s considered to be finite or
infinite. 1In general the smaller the source or population, the
greater 1s its effect on the arrival rate. If the population is
assumed to be Infinite, it is obvious that the supply of potential
cugtomers could never be depleted. Although a population is known
to be finite, sometires it may be assumed to be infinite if its
behavior more closely resembles fhat of an infinite population.

The second important characteristic of an input source
is the arrival rate. 1In order to describe the customer arrivals
at a queue, some pattern must exist. It 1s posslible that
customers arrive at constant intervals, say one every twenty
seconds. This would be the simplest pattern but 1s one which
occurs infrequently. Usually the arrivals are somewhat irregular
or variable. Because of this irregularity, arrival patterns are
usually described in probabilistic terms in elther of two basic
ways. One way of doing this is to state the probabllity of a
specific number of arrivals per time unit. The other is to state

the probability that the time between arrivals (the interarrival



time) is less than a particular time t in the form of a probability
distribution.

The arrival pattern most commonly used in queuing applica-
tions 1ls that of completely random arrivals. It 1= also the
simplest to deal with mathematically. Let a denote the mean
arrival rat- or the average number of customers ar ' ving in each
unit of the time interval T. That I3, if T is measured in
seconds, a is expressed as customers per second. The mean
arrival rate, a, is sometimes referred to as the'traffic rate
and in some of the literature is denoted by A instead of a.

Let At denote a small increment in time. Then the following
assumptions must hold 1f the 1nput traffic is to be cor:sidered
completely random:

1. The numbers of arrivals during non-overlapping

time intervals are always independent. Thus
neither is the arrival of a customer influenced
by past arrivals nor does it affect future arrivals.
2.  The prébability that more than one arrival occurs
in a given time At 1s negligible when compared with
the probability of a single crrival, for small At.
This probability 1s denoted by o(At) where o (At)
denotes an infinitesimal of order higher than that
of At.
3. The probability that an arrival occurs in At is
approximately proportional to At when At is small,
P(one customer arrives in any At) = aAt + o(At).

This implies that the traffic load must be independent



of time and that peakling conditicns must not be pre-
dictable within the time span being studied. If it
is known when peak-period traffic occurs, that
particular span of time may be studied independently.
Now divide t, a time period of fixed length, into m inter-
vals of length At and let Pk(t) denote the probabllity of exactly
k arrivals in t, for all values of k = 0, 1, 2, ... . Cox (6)

outlines the following method of deriving Pk(t).

alht + 6(At)

Pl(At)

PO(At) 1 - aAt + o(At)

Therefore, by the binomial probability law,

P (t) = lim m! (aht+o (8t))¥(1-ant+o(at) )™k
At =0 k!im—kj!

Since t=mAt, At=t/m and m=t/At; therefore as At >0, m»=,

Thus,

P (t) = lim m! ak_if(l_g_g -k
™ K (mek) 1 m¥ o
_ () 1im _ mr 1im (1_§3 ~k
k! mi= mk(m—k)! m-+ m



Now, for fixed k

lim m! 1im m. (m=1)+... - (m=(k-1)) (m-k)(m-(k+1))+ ... 1

R mk(m—k)! = m-mk—l'(m—k)(m-(k+1))-...'1

- lin (m=l)(m=2). . (e=tet) )
22 () ()

Also,

Hence,

-at

)k
e gy adll, E=B, Ly By v

(at
k!

Pk(t) =

This is the Polsson distrlbution with b cth mean and variance of at.
As stated befeore, an alternate way to describe the arrival
pattern 1s to glve a probability distribution F(t) that the time
between arrivals is less than a particular time t. This is known
as the interarrival distribution. If a 1s the mean arrival rate,
then 1/a is the mean interarrival rate or the mean arrival time,

Ta.
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If the input process is Poissdnian, then Po(t)=e"at.
The probability of no arrivals by time t is equivalent to the
probability that periods of time between events will exceed t.
Therefore,

P(interarrival time <t) = F(t) = l-e
This is referred to as the exponential distribution. The density
function F'(t) equals ae_at. Note that this is a continuous
distribution in time whereas the Poisson 1s discrete.

The Polsson or exponential distributions of arrivals are
likely to be par’ .cularly good approximations when the customers
are drawn from a large population all of whose members behave
independently of one another. Flagle (10) states that it is
demonstrable

..that as the divergence of events from scheduled
times becomes great relative to the interval between
scheduled events, the statistical properties of the
phenomenon rapidly converge upon those of the Poisson
process.

Indeed, the Poisson process may be looked on as the disintegration
of a scheduled process.

If the pattern of arrivals is considered to be regular,
it is usually assumed that customers arrive singly at equally
spaced intervals 1/a. The rate of arrival of customers is a
p: - 'nit time.

Of course, many other types of arrival patterns may occur.
Those discussed by Cox (6) include general independent arrivals,
regular arrivals with unpunctuality, aggregated arrivals, complex

deterministic arrivals, discrete-tlme arrivals, non-stationary

arrival patterns, arrivals correlated with other aspects of the



il

system, and arrivals in a continuous flow. But, as he states (6),

p.18,
...The completely random and regular patterns are
the most commonly used in applied mathemat’cal work and

iv is only for these that mathematical solutions of any

generality can be obtained; other arrival patterns usually

require special investigation.

A check to roughly determine whether test data has a
Poisson character is given in (1). It uses the squared coeffi-
clent of variation, Ce=variance/mean2. The following criteria
are suggested:

0.0<02<0.7.: arrivals tend to be evenly spaced;

0.7<02<l.3 : arrivals approximateiy Poisson;

l.3<C2 : arrivals tend to cluster.

The mean for the exponential distribution is 1/a and the variance
is l/az. So 1t can be seen that in this case CZ=1.

Furthermore, (1) states that congestion becomes more
acute as 02 increases. Actually, an assumption of random or
Poisson arrivals gives "worst-case" estimates for the behavior
of queues with more regular arrivals. On the other hand, it will
underestimate queues with clustering arrivals. This assumes the
same mean arrival rate in each case.

The distribution of the system's input may be complicated
by many factors which should be taken into consideration. Some
control may be exerted on customers before their arrival. For
example, an airport might notify incoming airplanes of inclement
weather and ask them to take various courses of action. A unit

might balk (nut j2in the queue) if it sees that the line is too

long. If there is more than one waiting line, the method of
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choosing which one to join is important. Maybe the shortest line
is joined or perhaps one 1is chosen at random, regardless of size.
One might find collusion of customers over whether to join a line
or which line td Join. If a unit does not Jjoin a waiting line,
it would be important to know whether it is entirely lost to the
system or whether its entry i1s delayed for a certain period of

time.

The Waiting Lines

Once a waiting line has formed, there are further proper-
ties of the line and customers to conslider. Even after a customer
Joins a line it might be possible for him to renege or leave the
system if he becomes impatient. Many times the walting line
has an upper bound on its length. In analysis, however, an
infinite waiting area is often assumed and then probabilities
for exceeding various finite levels are estimated.

Another characteristic of the waiting line to consider is
referred to as the queue discipline. This is the rule by which
the next customer is chosen from tﬁe waiting line to be serviced.
The most common discipline i1s service in order of arrival or
first—in/first~out. Other common disciplines include last-in/
first-out and random selection. Customers may have assigned
priorities, priorities which change, or preemptive priorities.

Other less common disciplines are also mentioned in the literature.
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The Service Channels

The service channels or servers also need to be described.
2f course, one needs to know the number of channels available at
any given time. If mrre than one channel is »resent, the zrrange-
ment of channels must be known. The channels may be in parallel,
in series, or in any combination of these.

Service may be intermittent because of the server some-
times being unavailable. However, in this paper the assumption
is made that a server is always present. A server is said to be
idle if and only if there are no customers to be served. If the
server is 1dle and a customer arrives, service begins lmmediately.
Upon completion of the service, the next service begins immediately
if a customer is waiting. Otherwise the server is again idle.

The most important characteristic of = channel is the
amount of time which the customer spends in the channel., This
is called the holding time or sefvice time. This service time
may vary from customer to customer and, as In the case of the
arrival pattern, is described by a probability distribution, H(t).
In the great majority of cases it is assumed that the holding times
of different customers are mutually independent, ldentically
distributed random variables. H(t) denotes the probability that
the service time is less than a particular time t. The average
number of customers serviced per unit time is s. The mean service
time p is the average time required tc service a customer, 1/s=u.

As with arrival rates, a great mathematical simplification
can be made if the individual service times can be assumed to be

distributed completely randomly. Under such a constraint the
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three assumptions listed previocusly for random arrivals would hold
for individual service times. In most practical applications, the
service distribution is not exponential. However, an assumption

St, usually

of exponentially distributed service times, H(t)=1l-e~
represents a worst-case assumption (1). Therefore, it is still
often used because of its great simplification in the form of
solution.

In (1) there is an explanation of how the assumption of
exponentially distributed service times results in simplification
of analysis. Let

H(t) = P(service time<t) = j-g~ 5t
Then

~RE , with mean equal to 1/s.

P(service time>t) = e

Now assume that a service has been given for to units of
time and let r denote the remaining time servire is to be given.
Let S equal the total service time so that S=t0+r. One wants to
find the mean of the remaining service time. The distribution of

r is given by the conditional probability

] ]
P(r>t [s>to) P(r+t >t +to|S>to)

= P(S>t‘+to and S>to)
P(S>t67

]

P(S>t'+to)
T
P S>t0

- T
- e s(t +to)

e~5%,

2 e—st'
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It is seen that the distribution of the remalning service
time 1s the same as the original distribution, and the mean
values are the same. This means that given a mean service time
of 1/s, no matter how long a particular service has been in
progress, the mean remaining service time 1s still 1/s. The
simplification in analysis comes from that fact, namely, that a
process governed by the exponentlal distribution 1s not affected
by what has occured in the past and its future is affected only
by its present state;

Although arrivals can often ue approximated by a Poisson
distribution, service times can rarely be realistically approxi-
mated by an exponential distribution. If the queue is simple
(one server) and has a generalized service distribution, some
mean queue statisties may be derived whiech depend only on the
first two statistical moments of the service distribution.

This type of analysis was first done by Pollaczek and was sub-
sequently simplified by Khintchine. Therefore, the formulas are
usually known as the Pollaczek-Khintchine formulas.

The squared coefficient of.variation, C2=variance/mean2,
can also be used with service distributions to determine what
type of analysis is applicable. If service is constant, the
variance is zero and, “herefore, C2 equals zero. If service 1is
exponential, as before, 02 equals one. If 02 is greater than one,
the general or arbitrary service theory should be used.

Ir 02 lies between zero and one, there is a specilal

service distribution which may be used (1), the Erlang-m distri-

bution. It is actually a family of functions known as Erlang



distributions with parameter m. It 15 so named because Erlang
used the functions in his studies of telephone traffic. The
general form is

P(service time<t) = F _(t:

il
=
|
o

[
-
jw)
Il
0
=
ct
2
8
[
=
-
n
-

Hence

= 1_a—8t
Fl(t) = l-e

A constant results if m is infinite. As m increases from the
value of one, more and more of the probability masses about the
mean value 1/s.

The density function is then given by

The first and second moments may be obtained by a progressive
integration by parts. The first moment is 1/s and the second
moment is (m+1)/52m giving a variance of l/s2m.

‘The squared coefficlient of service variation for the

Erlang~m distribution is

2 _ varliance _ s.-2
¢ = 5 % 3
mean s™m

16
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Therefore, given the mean and variance of the service times, cone
can determine the order m of the Erlang distribution that approxi-
mates most closely a given distribution (1). It should be
remembered thezt the Erlang distribution 1s not wvalid if 02 1is
greater than one.

There are several other more complicated ways of stating
the service time or time spent in the channels. Some of these

are speclal Erlangian and gamma type distributions. Others

take into account customers of several different types.

The System's Output

The system's output 1s a result of all the previously
discussed elements plus any ad:. .ional factors.jnherent in the
output process itself, if such _..ut. In the simplest case,
with » -ingle server and first-in/first-out queue discipline,
the system': output can be determinzd from the arrival and service
distributions. As the system becomes more complicated, the
system's output will be influenced by the growing number of
factors.

The process of a unit leaving the system may in itself
become more complicated. For example, the customers leaving the
system may back-up and disrupt the servicing process. There may
be some cycling of customers with scme of the system's output

again becoming part of the system's input.
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MEASURES OF CONGESTION

Certaln measures of congestion drawn from statistics are
required to describe the effects of a queuing system under a
fluctuating traffic load. The simplest measure of congestion

is the concept of traffic intensity. It 1s defined as

mean arrival rate _ mean service time for customers
mean service rate mean arrival time for customers

a
s

This dimensionless ratio, called an "erlang" in honor of
A. X, Erlang, is equal to the total expected service time per
unit time. 7

As explained by (1), aT customers are expected to arrive
in a long time interval T. Each of these customers requires a
service of mean time 1/S=Ts' The total expected time to sequen-
tially service all the expected customers is aTTS. The ratio
of the total expected service time per unit time may be obtained
by dividing by the length of the period T, resulting in aTs or a/s.

If this ratio is greater than one, customers are arriving
faster than one server can serve them. It can be seen that the
traffic intensity of any queuing system identifies the minimum
number of servers required to handle a given traffic system with
no loss of customers.

In order to generalize the above discussion of traffic

intensity to compensate for systems with loss of customers or
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with multiserver facilities in which traffic is evenly divided
among the servers, another closely related ratlio may be intro-
duced. It 1s the server utilization, denoted by p, and measures
the fraction of time th~t a single server is busy.

p = a'TS = a'/s

The variable a' is introduced which represents the
traffic rate ofrcustomers actually served iy the server. It
will be less than or equal to a, the total arrival rate of
customers to the queue. 1In a single-servef system with no loss
of customers, a' equals a. Indeed, much of the literature
defines p=a/s. In a system in which traffic is evenly distributed
among ¢ servers, a'=a/c.

Empirically, p is restricted to a value less than or equal
tq one, since it 1s physicallr ‘mpossible for a server to be
more than 100% busy (p=l). As the rate of traffic passing through
the system, a', lncreases, so does the server utilization and
customer congestion. That is, the waiting line and, consequently,
customer walting time, becomes longer.

The theoretical maximum input toc a single-server, no-loss
queue would bellfTS=s, or the mean service rate. However, waiting
lines become gquite large near system saturation and grow without
bound when p=1. As (1) points out, practicality usually limits
the input for a single server to 70-90% of the thecretical
maximum.

These two ratios, traffic¢ intensity and server utilization,
provide rough measures of the reasonableness of a system's capacity

for handling given traffic loads. They provide a limit beyond
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which the system cannot operate unless corrective action is taken.
However, they do not provide a direct measure of how well a system
is operating within rated limits.
Saaty (18) gilves an extensive list of meas'..cments that
could be important in studying a queuing system. It includes,
in zJdition to those mentioned previously:
(1) the probability that the number of customers in the
walting line or in the system equals n,
(2) the mean and variance of the number of customers in
the walting line or in the system,
(3) the distribution of the time spent in the waiting
line or in the system,
(4) the mean and varianc- _ the time spent in the
walting line or in tr= system,
(5) the probability that the waiting time is longer or
is not longer than a given period of time,
(6) the probability that there is someone walti..,,
(7) the mean length of a busy period,
(8) the ratio of the mean waiting time to the mean
service time,
(9) the probability that not more than a certain
number of channels 1is occupied,
(i) the mean number of idle channels,
(11) the probability of a lost call.
It is not within the scope of this paper to study all of
these measures of cohgestion. The two areas of greatest practical

interest are the number of customers in the queue and the amount



of time a customer spends in the system. In particular, this
paper examines the probability of any specified number of
customers in the queue or in tiie waiting line alone, and the
mean and variance of the number of customers in the queue or in
the walting line. It examines the mean and variance of the
queulng time and waiting time and the probability that the
queuing time and waiting time are less than some specified

amount.

2l
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NOTATION

It seems appropriate at this time to summarize previous

notation and introduce notation for the measures of congestion

to be studied throughout the rest of this report.

At

1/a

1/s

n

1

time interval under study

an instant in time

a small increment in time

mean arrival rate (if T is in seconds, the
average number of customers arriving per
;" econd)

T, = mean interarrival time (if T is in
seconds, the average time between customer
arrivals in seconds)

mean service rate (i T is in seconds, the
average number of c.scomers serviced per
second)

T, = mean service time (1f T is in seconds,
the average time required to service a
customer in seconds)

a'Ts = a'/s = server utilization

Probability (n customers in the system)
mean number of customers in the system (queue)
variance of the number of customers in the system

mean nﬁmber of customers in the wait’'ng line alone

variance of the number of customers in the waiting



I

[}

line

Probability (queuing time, including service
<some value t)

mean queuing time

variance of the queuing time

Probability (waiting time <some value t)
mean walting time for service

variance of waiting time for service

number of channels

23
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STATIONARITY

There are two basic types of servicing operations, deter-
minate and indeterminate. In a determinate type of operation,
all aspects of the system, such as the arrival and servicing
rates, are precisely known as functions of time. Therefore,
the state of the system can be precisely predicted at any time.
However, 1f any of the aspects of the system vary in an unknown,
or random, fashion, then an indeterminace situation exists.

Thus in an indeterminate mode of operation, the measurable
quantities associated with tne operation will be stochastic
variables, which, over a span of time, fluctuate about some
average values or rates. The system can then be defined as
being in a number of pcssible states, specified by such things
as the number of customers in a queue, waiting for service, or
in service, the particular phase of eéch customer in its service
channel, etec.

Now instead of trying to predict precisely how the state
under study changes with time, the.probabilities that the system
is in each,af its possible states, the state probabilities, may
be calculated. From these probabilities, one can calculate the
means and variances of the various quantities of 1lnterest, such
as the average length of the queues, and derived probabilities,
such as the probability that the gueue is not longer thzn a cer-
tain amount.

If the mean arrival and service rates are constant (that

is, if the fluctuations in both are short term arocund constant



mean values), the state probabilities and the derived'averages

will be independent of time. That 1is, starting from an initial
state, the process tends toward equilibrium irrespective of the
initial state. In the state of equilibrium, the process shows

only statistical fluectuation with no tendency toward any parti-
cular state. In all practical cases, this stationary condition
will occur after a long enough time if p is less than one and if

a and s remain constant.

es
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ANALYTICAL SOLUTIONS TO SCME QUEUING PROBLEMS

In solving queulng problems analytically, one starts by
surveying the structure of the system and rules which govern its
behavior. Assumptions are made concerning the arrival and service
probability distributic.... From this foundation, one then tries
to compute the state probabilities and, finally, to calculate the
mean values of the various quantities of interest.

It becomes apparent that the number of combinations of
arrival rates and service rates, queue disciplines and channel
designs 1s quite large. 1In a paper of this type it is impossible
to do more than outline some of the more important techniques
used and to give results for only the few commonly occurring,
idealized situations.

In this section, it is assumed that the customers arrive
from an infinite source and are served on a first-in/first-out
basis. The servicing rate is assumed to be independent of the
number of customers in line. In the case of a single server, the
server is assumed to be busy as lohg as there is a customer in

the queue.

Single-Server Queue: Random Arrivals/Random Service

Queue Size. Let Pn(t) equal the probability that n customers are

in the queue at time t. Then by the assumption of stationarity
Pn may be obtained and from it the means and variances can be

calculated. The following derivation is taken from Churchman (5).
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First of all, one develops a set of differential equations

from which to obﬁain'Pn(t). Note that aAt equals the probability

of a new customer entering the line in the time interval t to

t+At. sAt equals

customer 1s completed 1in the time interval t to t+At.

the probabiliifty; that the serviecing of a

Therefore,

the probabiiity that there will be n customers (:>0) in the queue

at time (t+At) 1s expressed as the sum of the fr ‘owing four

independent compound probabilities:

1. The product of the probabilities that

a.

There are n customers in line at
time t

There are no arrivals during the
At interval

There are no customers serviced

during the At interval

2. The product of the probabilities that

a.

There are (n+l) customers in line
at time t

There are no arrivals during the
At 1Interval

There is one customer serviced

during the At interval

3. The product of the probabilities that

a.

There are {(n-1) customers in line
at time t
There is one arrival during the

At interval

(B, (£))

(1-aAt)

(1-sAt)

(Pn+l(t))
(1-aAt)

(sAt)

(P, _(t))

(aAt)



c. There are no customers serviced
during the At interval (1-sA
4, The product of the probabilities that
a. There are n cuétomers in 1line
~at time t ‘ ' (Pn(t
b. There is one arrival during the
At interval (ant)
¢. There is one customer serviced
during the At interval (sAt)
The probabilities that more than one customer arrives
or that more than one customer is serviced during the At interva
may be assumed to be negligible since the arrival and service
rates are random.
The above four probabilities may be %transformed as

follows:

1. Pn(t)(l-aﬂt)(l—sAt)' P, (t)(1-adt-sAt) + o, (4t).

2 (t)(1-aAt)(sAt) Pn+1(t)sAt + oZ(At).

Ph+1
. P__(£)(at)(1-sA¢t)

3 Pn_l(t)aAt + oS(At).
b, Pn(t)(aAt)(sAt) = ou(At).

The oi(At) are higher order terms of At that are assumed
to be negligible when compared to those in At.

By adding these probabilities, one obtains for the prob-

ability of n customers in line at time (t+At),
(1) P (t+At) = P (t)(l-alt-sdt) + Poyp(t)sat + P, (t)aAt +

ol(At) + oe(At) + oB(At) - ou(At).
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This equation may be rewritten as follows

Pn(t+At) - Pn(t)
At

= aPn_l(t) + sPn+1(t) - (a+s)Pn(t) +

707 (88) + 0,(At) + o5(At) + oy(At)).

By letting At approach 0, one obtains the differential equation

e

~dE = aPn_l(t) + sP

a4y (8) = (a+s)P (£) n>0f

The assumption has been made so far that n>0. Now con-
sider the case when n=0, In this :ituation, the probability that
there will be 0 customers in the g .ec at time (t+At) is the sum
of the two independent probabilities:

1. The product of the probabilities that

a. There are 0 customers in line at

time t (P (%))
b. There are no arrivals during the

At interval (1-aAt)

2. The product of the probabilities that

a. There is one customer in line at

time t (P, (t))
b. There is one customer serviced

during the At interval (sAt)
¢. There are no arrivals during the

At interval (1-aAt)



By adding these two probabilities, one obtains for the

probability of a queue of length 0 at time (t+At)

(3) P_(t+At) = P_(t)(1-aAt) + P (t)sit - asPl(t)(At)z,

from whiech it follows that

Po(t+At) -,PO(t)

AT =—aPO(t) + sPl(t) -asPl(t)(At)

and

) ap (%)

—aE = -—aPo(t) + SPl(t) s n=0.

The differential equations 2 and 4 express implicitly
the relationships between waiting time and servicing time and
thus furnish the basis for solutions to many queulng problems.
Solutions are usually difficult to obtain, depending upon the
complexity of Pn(t).

However, one readily obtains a solution in the case in

which it is assumed that stationarity 1s obtained and that Pn(t)

1s 1ndependent of t and, in fact, equals Pn; Then, since this
probability does not change with time, its rate of change is

equal to zero:
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Equations 2 and 4 then become

+ sP

(2a) 0 = aP n+l

- (a+s)Pn (n>0),

(4a) 0 = —aPO + sP (n=0).

Equations 2a and 4z are difference rather than differen-

tial equations and may be solved for Po’ P P ... by

74 *wia n?

successive substitution and utilization of the fact that

The procedure is as follows:

P, = PP, (From eq. l4a and setting p=a/s)

P, = ngo’ (From setting n=1 in egq. 2a and
substituting for Pl)

P3 = pBPO, (From setting n=2 in eq. 2a and
substituting for P20,

P = pnP
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Summing corresponding members of these equations, one obtains
oo [=-)
(5 § P, =F. T p ,

The assumption is made that p<l, a condition that must

hold to prevent queue length without bound. Since

then by the equation for the sum of an infinite geomeﬁric series,

one has

1 =
'i':BPO_}.n

" Hence,

(6) PO = l-fp.
By substituting this wvalue of PO in the foregoing expres-
sion for Pn’ it follows that the probability of a waiting line

of length n is given by

(7) P, =p"(1-p) , p<l.

Now one may find MCq, the mean length of the queue.

By definitiun, since EPn =1,



(8) MCgq = I nP

Substituting in.equation (8) the wvalue of P_ given in equation

(7), equaticn (8) becomes

Mcq = 2, np”(1-p)

(1-p) &

n
n=0 "P ,

(l-p)(p+2p2+3p3+...)

p(1-p) (1+2p+3p°+...).

(9

To evaluate this expression one first obtains the sum of
the series within the last set of parenthesis by the use of
integration and differentiation. Call the series S(q) and
integrate it term by term to cbtain

&
J S(q)dq = p+p2+p3+...

o

which is a geometric se—'es having the sum p/(l-p). Now

differentiate this sum with recpect to p and obtain 1/(1-p)2.

This means that

(10) s(p) =
(1-p)

Hence, substituting this value in equation(9),one obtains
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1 . _ p
(11) p(1-p) = 5
(i=p)* +P

so that, for the given conditions, the mean length of the gqueue
i1s given by

(12) MCq = Igﬁ , p<l.

,The variance of the queue size can be calculated by

using the procedure above to find the second moment, MCzq.

Then
veq = MC2q - (MCq)?
= P+P2 - P2
(1-p)°  (1-p)°
(13) - __E__2 v
(1-p)

It can_be seen that as p approaches 1, the queue size
grows without bound, gi.ing rise to an infinite queue. Similarly,
the variance 1ncreases sharply with p. This explains the great
instability of highly utilized queues.

In the single-server case, the mean size of the walting

line 1is

MCw

]
™8

. (n-—l)Pn
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= I (m-1)p"Q-p)

]

(1-p) I (n-1)p"
n=1

(1-p)(p2+2p3+3p”+...)

p2(1-p) (1+2p+3p2+. .. )

(1-p)
2
= P _
(14) = 5 -
Similarly,
Vow = MC%w - (MCw)?

(15) - p2(1+p—p2)

(1-p)°2

Note that MCw is shorter than MCq by the quantity p,
MCq=MCw+p. The difference is, on the average then, less than
one customer.

Queuing Time. The derivation of the probability distributions

for queuing time and waiting time is quite lengthy, involving
Laplace transforms, and only the results will be given here (1).

The distribution for total time spent in the system is

Q(t) = Prob(queuing time<t)
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(16) = 1-¢~(1-PIE/T;

This distribution 1s of the exponential form. As p approaches
1, the (1-p) factor causes the distribution to streteh out.
The mean queulng time of customers at a single channel

with random input can be formulated as follows:
(17) MCg = aMTq

Therefore,

MTq = MCq
a
= a(i-p)
= a/s
a(l-p)
1
s{l-p
Ts
(18) = i‘-ﬁ

Of course, MTq could also be obtained as follows:

MTq = / tdQ(t)
0

- 7 B-R) -1/ Ty
0 s
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After integrating by parts,

T =
~(1-p)t/T
MTq:_.:LT.;_e( p)/sn‘;o
Ts
(18a) =i »

which agrees with equation 18.

The wvarlance of the queuing time is

VIq = / (t-MTq)2aqQ(t)
0

2
Ts

(1-p)?

(19)

The distribution for the waiting time, not including

service, is

W(t) Prob(waiting time<t)

(20) = l—pe—(l_p)t/Ts.

3

It should be noted that W(0)=l-p. This represents the fraction
of arrivals which find the server free and therefore have zero
waiting time. The waiting time distribution has a modified
exponential form.

The mean waiting time could be derived in the following
manner. Since queuing time is the sum of the waiting time and

the service time, the mean values are additive.



(21)

Therefore,

(22)

fashion:

(22a)

The

MTw
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aMTq (Eq. 17)
a(MTw+Ts). (Additive property)
MCq
a2 ~ Ts
1
05T~ & (Substituting for MCq and T, )
sp - a(l-p)
as(1l-p)

s(a/s) - a{l-a/s)
as(1l-p)

(Substituting for p)

a-a+ a2/s
as(1l-p)

a/52
(1-p)
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The variance of waiting time for service 1s

S (£=MTw)2dw (&)
0

(2-p)st
(l-p)2

VTw

2
(23) =

Example [(1),p.10.]. Messages arrive at a telecommunications
swltching center for a particular outgoing communication line
in a Poisson manner with a mean arrival rate of 180 messages
per hour. The outgoing transmission times are proportional to
the message lengths, which are distributed approximately exponen-
tially, with mean length of 144 characters. Line speed is 12
characters per second.

The mean arrival rate, or average number of messages

arriving per second is

a = 180 mgs/hr = 0.05 mgs/sec.

The reciprocal, or average time between message arrivals is

1l/a = Ta = 20 sec/mg.

The average time required to service a message is

1/s = T, = 144 char/(12 char/sec) = 12 sec/mg.

8, the average number of messages per second is then



s = l/'I‘S = 0.08 mgs/sec.

The server in this example is the outgoing transmission line.

Its utilization is glven by
p = a’s = aT_ = (0.05 mgs/sec) x (12.0 sec/mg) = 0.6

Knowing the value of p and using equations 12-15, values

for the followlng table may be calculated.

Numbers of messages

In the system (gqueue) In the walting line
Mean 1.5 0.9

Variance 3.75 2.79

Then using equations 18, 19, 23, and the values of p and
Ts’ the following values regarding queuing time and wailting time

can be evaluated.

Time in seconds
Queulng time Waiting time
Mean 30 18

Variance 900 756

4o



Single-Server Queue: Random Arrivals/General Service

As has been stated previously, the assumption of an
exponential (random) service time distribution is usually
unrealistic. An approximation technique using the Pollaczek-
Khintchine formulas may be used for a simple gqueue with gener-
-alized service time distribution. As it turns cut, the mean
queue statistics.depend only on the first two statistical
moments of the service distribution. The following discussion
is taken in large part from (1}.

Arrivals and Service. Let H(t) denote the generalized service

time distribution of a simple queue, with moments bn:

i1

H(t) = Prob(service time<t)

(24) b =/ t%qH(t).
n
0

The mean service time, Ts, and the variance of the service
time, VT, are then glven by
(25) Ty = by,
(26) VI. = b_-b.°

s 2 1 °

Assuming a Poisson input with mean arrival rate a, the

server utilization is then given as
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(27) p = ab, .

Unlike the exponential service case, expliclit expressions
for the queue size distribution and the waiting time distribution
are not known in the general case. Instead, expressions are
derived for the moments of these distributions using Laplace
transform theory.

Queue Slize. The mean and variance of the queue size in terms of

the service moments, bn’ are (see (1))

_ a2b2
(28) MCq = 3(1-p) +p
a3b3 a”be2 a®(3-2p)b,

If the service time distribution is indeed exponential,

the service moments, bn’ are found to be

=]

—_ n
bn = é t"dH(t)

t"a(1-e~ % Ts)

[}
O~

=<}

= 7 (/r,) &t
0 s

s)dt

n
=
=]

I
—

so that bl s® Do



43

Substituting these values into equations 28 and 29, the
queue size formulas for exponential service are obtalned as given
in equations 12 and 13. For example, substituting into equation

28,

azb2

MCq = 5(i-p) +p
a2(2T52)
= 2(T-aT,) + aly
242aT -2a°T 2
S S
2(1-ar)

2
2a TS

aTS
m
1 als

ng . | (Same as eq. 12)
Since MCq = MCw + p,
it follows that

MCw = MCq-p

= B, (Same as eq. 14)



Queuing Time. The first three moments of the walting time

distribution, W(t), are as follows:

“':‘.b2

(30) Wy = MIW = 51155y >

(31) ab3 a2b22
31 W, = + —_—
ab4 a2b b 3a3b 3

2°3 , B
(l—p)2 4(1-p)3

Likewise, the first three moments of the queuling time

distribution, Q(t), are

ab
2
(33) q; = MIq = (1) T b,
ab +3b2 a2b22

= 3

ab, +4b
_ Bbytiby

2a% b +3a0,°  3a%,3
(35) q3 = TI(1I-p)

+
2(l—p)2 14(1—p)3

In the special case in which the service is a constant,

T the service time distribution, H(t), 1s defined as

s,
H(t) = 0, when 0<t<T_

1, when t>TS

The moments, bn’ of H(t) are then
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b= f t"au(s)
0
= f t%(t-T_)at
0 S

n
=TS %

=m 2 =m 3
1 5 = Ts , and b3 TS .

Substituting the values for these moments into equation

so that b, = Ts’ b

30, the mean walting time for constant ser ice is found to be

Z

2(1-p)

pTg
(36) " ()

By comparing this with the waiting timé found using the exponen-
tially distributed service time given in equation 22, one can
see that the wait for a constant sérver is, on the average,
one-half the walt for a random server.

Equation 33 may be rewritten for mean queuing time in
terms of the mean service, Ts’ and the service v=rlance, VTS.
Using the relationships of equations 25 and 26 in equation 33,

one obtains

a‘.:2

MTq = 3(i-p) + bl



- 1 -
= my (ab2+2bl 2blp)

i 2
= S(3p7 (2bl—2abl +ab2)

2 3
i} 1 (2bl -2ab, +ab1b2)
2 3
i by (2bl -2ab, +ablb2)
1-p 2
( 2b, )
T (1- 2ab 3_ab.b )
- s 1 172
1-p 2
( 2by )

2
T {1- ab1(2bl —bg))

P2 b )

2 2
T (1- E(bl ~b,*b, ))

e 9 B

2
Tg (1- (1-by-by 7))
P % b))
T  (1- gl vT,))

(37) el —.
P 2 o ?)

It should be not=d that the last term in equation 37 is
the squared coefficient of variation of service time. As has
been mentioned, for most useful service distributions, 02 lies
between 0 (constant service) and 1 (exponential service). Thus
mean queuing °ime 1s usually found within limits given by the

following:

46



T
(38) g (1-p/2) < MIq < T2 .

These bounds are close for small server utilization and diverge
f~r inecreasing utilization. This indicates that service distri-
bution is relatively unimportant in low-use systems but becomes

more important with heavy traffic.

b7
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Single-Server Queue: Random Arrivals/Erlang Service

In order to classify those service distributions with
squared coefficlent of service variation between 0 and 1, the

Erlang-m distribution is used. The general form with mean TS is

k
! 2

m-1
z
k=0

(w]

-D B i

ng

= smt.

~

(39) Fm(t) =1-e

4]

As was pointed out previously, the value of m can be obtained by

knowing the mean and variahce of the service distribution since

1 _ Mean”
C2 Variance °

The nearest integer value of m must be chosen.

Moments of the Erlang-m Distribution. Using the Erlang-m
distribution for service timé, one can derive formulas éontain—
ing only the mean and the pafameter m by sub«.'tuting the
“Erlang-m moments into the queuing formulas for random arrivals
and general sefvice. The moments for the Erlung distribution are

"
_ (n+m-1)! (Ts)
(4o) °h = (1) (m ) °

In particular

_ (1em-1)t (Tg)
(m )

S
b = DT (m
m! (Ts)



(T,)
-0 @)
(41) =T,
2
b o (24m=1)) (Tg)
2 - T (m-I)! (m )
&
- (m+1)! (Ts)
T m-1)!T (m)
2
= _B
= m(m+1) W
(m+l)T82
(42) B

Queue Size. Substituting the first and second moments of the

Erlang-m distribution into equation 28 and remembering that

p=abl=aTs, one obtains for the mean queue size

a2b2
M= ey TR
a?(m+1)T 2
= m(i-py TP
°(

m+1l)
om(1-p) ' P

= EER%:ET-(mp2+p2+2mp—2mp2)

2 2
55?%:57 (2mp-p m+p~)

b9



- _P (2m-pm+p)
1-p 2m

S I
1-p 2m

[ p 1
(43) T% 1w 5(1- fﬁ)] .

Using the same method, one obtains the variance of the queue size

2
(44) vcq = _PL_E 1- 2(3_ p(lg—p) _ 3-3r1;+p _ p(B-gp? .
(1-p) ém

Queuing Time. These formulas are obtalned in the same fashion

as above. The results are

pT
(45) MIw = 5757 (1 + 1}1),
T
(46) MIq = [1 ~ -‘23(1 - nl—{)]
4 AP
(47) VTq = (T;) 1 - I%ﬂ(l 1) (1 + %).-
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Since these formulas are somewhat complicated, it is usually
easler to graph them as functions of p and m.

Example. Messages arrive at a telecommunications switching
center for a particular outgoing line in a Poisson manner with

a mean arrival rate of 0.20 messages per second. The messages
are of fixed length and the service time is a constant of 4.0
seconds. The variance of the service time is thus zero, causing
m to be infinite since m=mean2/variance. If m is infinite, then
1/m 1s zero.

The average number of messages arriving per second 1s

a = 0.20 mgs/sec.

The average time required to service a message is the constant

time

TS = 4.0 sec/mg.

The utillization of the server, that is, the outgoing transmission

line 1is
p = aT_ = 0.80
‘'The means of the number of messages in the system (queue)

and in the waiting line alone may then be calculated from equa-

tion (43) to be



MCq

MCw

The means of the queuing and walting times may be calcu-

2.4 messages, and

MCq - p = 1.6 messages.

lated from equation (46) to be

MTq

MTw

12.0 seconds, and

MIq - T = 8.0 seconds.

52
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Multiserver Queue: Infinitely Many Servers

In this situation, 1t is assumed that each of the infinite
number of servers offers identical service to customers arriving
at random, each finding a server avallable immedlately no matter
how many others are already being served. Hence, no waiting
line can form and the number of customers in the queue consists
only of those being served.

The problem in such a situation is to find the distribu-
tion, mean, and variance of the number of busy servers. Then
a practical upper bound for the number of servers can be estab-
lished. Random or Poisson input has been assumed with mean rate
a. Each server 1s assumed to have an identical general service
distribution with mean service time TS. Upon letting Pn be the
probability that an observer finds n customers in the system,
causing n servers, or channels, to be busy, one obtains the
relation

a(aT )™
(48) P = -5 =8Iy

n n!
or the Poisson distribution with parameter aTS.
The mean and variance of the number of customer :olding

servers is then

(49) MCq = aT,

(50) VCaq aT, .
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Note that the traffic intensity, aT_, is in this case
not limited to less than one. It indicates the mean number of
busy servers.

The probabllity that the number of customers is less
than some given value of m is

gy @ (aTs)n

(51) Prob(n<m) = e s I

el nl

The values of this funection can be found in a cumulative Poisson

function table.
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Multiserver Queue: Filnite Number of Servers

In this model it is assumed that arriving customers join
a common waiting line and are serviced by a2 finite number of
identical servers in parallel. In actuality any rule could be
used to assign a customer to several available servers. The
rule which, on the average, evens out the traffic load among
the servers 1s that allowing the customers to choose a free
server at random.

(1) states that useful measures of congestion in this
case have been obtained only by using the following assumptions:
Random input with mean arrival .ate=a customers per unit time
and identical exponential service time distribution with mean
TS for all servers. |

The traffic intensity is zain aTS. But now, since there
is more than one server, a'=a/c énd p=aTs/c, which for stable
operation must be less than one.

The probability of n customers in the system, Pn’ can
be found by using differential-difference equations as in the
single-server case. It can be shown that

" (aT )"
(52) P_ = ﬂ S .

"4

%!
I (aTy)
P « if mae. .

Lf!cn—c 0

=1 Po s 1f n<c ,

n
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As before, P, can be determined by using the law of

0
total probability, which states that the sum of the probabilities

Pn is equal to unity. The result 1s

1

(53) PO = -1 n c '
Cz - (aTy) oo (aTy)

n=0 n! c-aTs c!

The mean number of busy servers is given by

or the traffic intensity.
The probability that all ¢ servers are busy 1s the same

as the probability that there are ¢ or more customers in the

system.
e~3Ts (ar )€
@ 1-r, __E%__
(54) P(nze) = & P_ = , P =1 = .
n=ce n l‘Prc c e—aTS (aTs )n
n!

In this form r, can be calculated from tables of the Poisson
distribution.

Equation 54 can also be viewed as the probability that
an arriving customer, finding all servers busy, must wait for

service in the common waiting line.



Queue Size. The formula for the mean length of the waiting line

is

il
ner8

(55) MCw (n-c)P_

n=c

b
-5 Prob(n>c).

Queuing Time. The mean time walting for service, MTw, is

obtained from the relation MTw = MCw/a:

TS Prob(n>c)
c(1l-p)

(56) MTw =

The waiting time distribution is given by

(57) W(t) = 1 - Prob(n>e) e~ (c-aTg)t/ Ty

An important use of the distribution W(t, is to determine the

number of servers required to satisfy a given waiting time

criterion.

o
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THE USE OF SIMULATION IN SOLVING QUEUING PROBLEMS

In constructing a model of a queulng situation, it is
desirable to be able to use variables whose values can be
obtained analytically without too much difficulty. In order
to do this, simplifying assumptions, such as random input, are
often made. However, some of the expressions in the model which
are constructed from even very simple variables may themsel#es
become complex. This is particularly true when probability

concepts are involved.
Monte Carlo Technique

In some instances, it is not even possible, let alone
practical, to evaluate such a function by mathematical analysis.
Fortunately, such expressions can often be evaluated by a Monte
Carlo technique. In essence, a Monte Carlo technidue consists
of simulating an experiment to determine some probabllistic
property of a population of objecté or events by the use of
random sampling applled to the components of the objects or
events. Examples and descriptions of how a Monte Carlo technigue
can be applied to queuing problems are found in (5), (6), (12),
and (19).

The Monte Carlo technique can be employed by the use of
random number tables and manual calculations. However, many
computerized routines have been developed to enable the simula-

tion to be done on a digital computer.



Computer Simulation

Distinct programming languages exist by which computers
may be made to show how a particular model of a gqueuing situation
would perform. One such language, written by IBM, is called the
General Purpose Systems Simulator, GPSS (13).

GPSS allows the user to study the logical structure of
the system, to follow the flow of traffic through the system,
and to measure the effects of blocking which might be caused by
the limited capaecity of parts of the system. Output of such a
program gives such information as the amount of traffic that
flows through a part of the system or the whole system, the
average time to pass between selected points of the system or
thg whole system, the extent to which each part of the system
is used, and the maximum and average queue lengths occurring in
various parts of the system. .

It does not seem worthwhile to go into any detailed
explanation of how to use such a language. It should be pointed
out, however, that the user need only know the language used to
descripe the model and does not need to be able to program for
the computer on which the program operates.

An example of a problem which is quite simple to simulate
on the computer, but which would prove more difficult to solve
analytically, is the following supermarket problem.

Customers arrive every 30+30 seconds at a supermarket
with 100 pushcarts. If no carts are avallable, the customer

goes away.
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Twenty percent of the customers are express (8 items or
less) and complete their shopping in 6+5 minutes. They are
serviced by a single express checkout counter which takes 90160
seconds per customer. -

The remaining eighty percent of the customers take 50+40
minutes to do thelr shopping. They are serviced by 4 regular
checkout counters which take 120490 seconds per customer.

There is a separate line for each regular checkout counter.
Customers pick a checkout counter at random without regard to
length of line since they cannot observe all checkout counters
simultaneously.

An advantage of computer simulation is that once the
model of such a system has been set up, various of the parameters
may be changed and the model run again with relative ease. 1In
the example above, the arrival and service rates, and the numbers
of pushcarts and counters could all be varied and the best
arrangement found.

The biggest disadvantage of computer simulation is that
it is expensive in terms of computér time. It is characteristic
of many queuing systems, especially those with extremely variable
service times or arrival patterns, or with high traffic intensity,
that quite variable results are obtained. This means that the
whole procedure should be repeated a number of times independently
from the beginning and run for a sufficiently lons time to avoid
any difficulties associated with initial conditions.

This underlies the desirability of first trying to get

at least some rough "ball-park" analytic solution 1f at all
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possible in order to try to determine the feasibility of computer
simulation. It is also desirable to obtaln analytic solutions
where possible in the model, even if they are applicable only to

small parts of the problem.
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CONCLUSION

This paper describes the basic elements in a queuing
situation, presents the basic theory which describes the
relationships among these elements, and reviews some basic
techniques used to study queuing problems. Indeed, the purpose
of queuing theory is to provide various techniques for obtaining
such measures of congestion as the average queue length and
average waiting time when the arrival and service rates are
known. These quantities may be found by analytical techniques
if possible, by computer simulation, or often by some combination
of these two techniques. If costs can be assigned to waiting
time and service time, the problem of establishing a proper
balance between these costs can be determined.

Further areas of interest might involve the study of
combinations of arrival and service distributions other than
those presented, the study of queuing disciplines other than the
first-in/first-out discipline assumed in this paper, the study of
customer priorities, the study of systems in which there is
customer loss, and the study of networks of gueues. A brief
description and the results of many of these variations can be
found in reference (1).

There are many other, more advanced, mathematical tech-
niques which are employed ‘n the study of gqueues. Boudreau and
others set up their analyses of a computer study (3) and a
telecommunications study (H) using the theo:y of Markov chains.

Schay (20) studied a multiserver problem using methods that were



based on an analogy to statistlcal mechanlcs. Leibowitz (15)
suggested the investigation of the extensive theory of many-body
systems in mathematical physics as a clue to techniques for
approachling queuing structures.

The number of books and articles on queuing theory
describing the types of problems that have been approached and
the methods that have been used to solve these problems is quite
large. An article by Doig (8) contains a bibliography of
published work on queuing theory up to 1957. A more recent,
excellent bibliography is found in Saaty's book (18). New

British and American work appears mostly in the Bell System

Technical Journal, in the Journal of the Royal Statistical

Society, Series B, and in Operations Research.
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SEQUEL

Since some of the preceding portions of this report were
vritten in 1966, it was felt that a 1969 sequel would be apy -
priate in order to review recent literature concerning the
theory and application of queuing theory. It was soon evident
that the fliood of papers relating to queuing theory has not
ceased.

Three important abstract sources for materizl relating

to queuing theory ar. Mathematical Reviews, the _.r.'.ernational

Journal of Abstracts: Statistical Theory and Method, and

In.ernational Abstracts in Operations Research., To illustrate

the abundance of literature being published in this area, it
was discovered that for the period 1966-1969 the annual average

of references in the International Abstracts in U} »rations

Rescarch (26) alone was over one hundred per ye:. .
In 1965, Morse (29) presented an analysis of queuing
theory literature. He stated:

Publication increased exponentially until a few
years ago. Fro 1010 to 1955 the number of papers
on queuing published per year doubled every five
years; in other words, in each five-year period the
number of papers piblished equalled the total number
publi shed previously. This rapid growth slac ..ned
some.. at in the »ast eight years; 1. is still
growing but the gro: .a is slower. The rate - even
now considerably faster than the doubling eve.y
fifteen years, which is characteristic of scientific
publication as a whole.

Several authors now use the term 'st.chastic service
system' rather than 'queue'. Riordan (31) argues that the

use of the term gueue has many weaknesses and prefers not to
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use it. For example, 1in some problems no physical queue forms.
However, as Morse (29) points out, the "vocal simplicity" of

the word 'gueue'! will probably result in its being used in
somewhat inappropriate situations. Meanwhile, when researching
the literature, one must examine both subject headings, queues
and stochastic service systems.

Another problem confounding an evaluation of recent
developments in queuing theory 1s the criticism that much of
the work is receiving. In particular, it appears that more
and more of the publications are oriented towards theory (29).
This tendency towards more formal mathematics does not delight
the applications oriented operations research people, since
they feel that most of the results are of little practical use.
Lee (27) is most critical of current work:

The majority of these papers originate, 1t appears,

in the twilight zone of academic graduate research.

In them, the remoter mysteries of the simpler models

of the more familiar queuing-processes are courage-

ously explored; and the well-known properties of the

classical models are repeatedly derived anew. Whilst
the mathematical apparatus becomes even more elsborate,
it remains difficult to find reports of experimental

Work with queueing-processes, or of empirical obser-

vation of queuelng-processes, or even of apglications

of existing theory. There seems to be a great deal of
what passes for research, and very little of what might
pass for application.

Morse (29) relates his fear that "...the theory may lose
its contact wilth applications and become ingrown". He suggests
that a change in view may help keep interest in the field and,
in fact, stimulate its growth. His main suggestion is to invert
the study of a typical queuing problem and pose such questions

as to whether the arrival distribution can be determined from
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the queue-length and service-time distributions. Morse's hope
is that "...future developments of queuing theory will not Jjust
be further embellishments of other special cases, but will also
include consolidation of concepts."”

The problem of application of queuing theory concepts is
indeed a profound one. Alec M. Lee, Director of Operational
Research, Air Canada, at the time of publication of his book (27 )s
has perhaps written the best exposition on application of exist-
ing queuing theory tools. He believes that a great deal of
service improvement can be made through use of existing tools.
His argument is that any logical theory 1s better than none at
all as long as one remembers its limitations. From his position
as an applications speclalist, however, Lee states:

We need to know more about the real behavior of people

in queues: until such time as we have that information,

much of the theory that appears in the Jjournals will
remain no more than a collection of charming, mathe-
matical acrosties. Mathematics, however ingenious,

is not a proper substitute for knowledge.

The following may very well be an illustrative example
of the situation about which Lee 1s speaking. The Association
for Computing Machinery recently began publication of a new
survey and tutorial journal. The editor saw fit to include in
the second publication of this new journal an article (28) based
upon the queuing problem of many remocte computer users demanding
simultapeous access over telephone lines to the central computer
facilites. The editor certainly must have believed this subject
to have great significance tec ineclude it so early 1n the 1life of

a new journal. However, he himself states (25): "After reading

this survey, one cannot fail to be struck by the primitiveness
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of all the models which have been studled...". It appeared to
the editor that assumptions regarding arrival and service distri-
butions and queue disclpline were made merely to simplify the
mathematics without due regard to the real-life situation.

As a result of this recent review of the state-of-the-art
in queuing theory, one must say that the field of queulng theory
could certainly benefit from research resulting in Morse's
"consolidation of concepts" and more true experimentation in
the scientific sense. It would appeaf that much work needs to
be done 1n the desigh and control of experiménts (using either
real or computer models) in order to test various queulng theory
models. Often experimental results suggest theory where little

existed before.
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ABSTRACT

This report serves as an introduction to the concepts
of queuing theory. Queuing theory is a study of units arriving
at some facility which services these units. The terminology
and elements of study in any gqueulng situation are defined and
discussed.

The four basic elements of any queuing situation are
the system's input, the waiting lines, the service channels,
and the system's output. The system's input is generally
described in probabilistic terms with assumptions made as
to the size of the source population. The primary waiting-
line consideration involves the order in which units are
chosen from the line for service. The service channels or
servers may vary in number and/or arrangement. The service
time itself is also generally described in probabilistic
terms.

The system's output may, in the simpler cases, be derived
from an analysis of the previous three elements. Various
measures of congesﬁion concerning queuing time and queue
lengths may be estimated if assumptions of stationarity may
be made. In this paper, analytic derivations for measures of
congestion are made for a single-server queue with random
arrivals and random service. Results are given for the single-
server case With random arrivals/general service and random
arrivals/Erlang service. Results are also given for

the multiserver case with random arrivals/general service and



both a finite and infinite number of servers.

The use of simulation techniques in solving queuing
theory problems may be necessary for a complex model. A
Monte Carlo approach and the use of a general purpose conmputer
simulation language are discussed.

A sequel has been appended to the main body of the
paper. It serves as a recent review of the state-of-the-art

in queuing theory and appllcations.



