
  

 
ECONOMIES OF SCALE FOR DATA ENVELOPMENT ANALYSIS WITH A KANSAS 

FARM APPLICATION 
 
 

by 
 
 

BRYON JAMES PARMAN 
 
 
 

B.A., Peru State College, 2008 
M.S., University of Nebraska-Omaha, 2010 

 
 
 

AN ABSTRACT OF A DISSERTATION 
 
 

Submitted in partial fulfillment of the requirements for the degree 
 
 
 

DOCTOR OF PHILOSOPHY  
 
 
 

Department of Agricultural Economics 
College of Agriculture 

 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2013 
 



  

 

Abstract 

Estimation of cost functions can provide useful economic information to producers, 

economists, and policy makers. From the estimation of a cost function, it is possible to calculate 

cost efficiency, economies of scope, and economies of scale. Economic theory specifies the cost 

function as a frontier since firms cannot operate at lower cost than the cost minimizing 

input/output bundle. However, traditional parametric estimation techniques often violate 

economic theory using two sided-error systems. The stochastic frontier method has allowed the 

estimation of a frontier but continues to restrict the technology through functional assumption. 

Nonparametric frontier estimation is an alternative approach to estimate a cost frontier by 

enveloping the data which by its construct, conforms to economic theory. This research expands 

the economic information available by deriving multi-product scale economies and product-

specific scale economies from the nonparametric approach. It also tests its ability to accurately 

recover theses important economic measures under different assumptions of the cost function, 

and cost inefficiency distributions. Next, this new method is compared to other methods used to 

estimate cost functions and associated economic measures including a two-sided error system, 

stochastic frontier method, and an OLS model restricting the errors to take on only positive 

values. Finally, the nonparametric approach with the new measures is applied to a sample of 

Kansas farms. 

The nonparametric approach is able to closely estimate economies of scale and scope 

from estimation of a cost frontier.  Comparison reveals that the nonparametric approach is closer 

to the “true” economic measures than some parametric methods and that it is better able to 

extrapolate out of sample when there are no zero output firms. Finally, the nonparametric 



  

approach shows that potential cost savings from economies of scale and economies of scope 

exist for small Kansas farms. However, cost savings from economies of scale become exhausted 

when farms exceed gross annual revenues of $500k, while economies of scope also diminish as 

farms grow larger. Results also show from annual frontier estimations that estimates of 

economies of scale, scope, and cost efficiency have remained relatively stable from 2002 to 

2011. 
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Estimation of cost functions can provide useful economic information to producers, 

economists, and policy makers. From the estimation of a cost function, it is possible to calculate 

cost efficiency, economies of scope, and economies of scale. Economic theory specifies the cost 

function as a frontier since firms cannot operate at lower cost than the cost minimizing 

input/output bundle. However, traditional parametric estimation techniques often violate 

economic theory using two sided-error systems. The stochastic frontier method has allowed the 

estimation of a frontier but continues to restrict the technology through functional assumption. 

Nonparametric frontier estimation is an alternative approach to estimate a cost frontier by 

enveloping the data which by its construct, conforms to economic theory. This research expands 

the economic information available by deriving multi-product scale economies and product-

specific scale economies from the nonparametric approach. It also tests its ability to accurately 

recover theses important economic measures under different assumptions of the cost function, 

and cost inefficiency distributions. Next, this new method is compared to other methods used to 

estimate cost functions and associated economic measures including a two-sided error system, 

stochastic frontier method, and an OLS model restricting the errors to take on only positive 

values. Finally, the nonparametric approach with the new measures is applied to a sample of 

Kansas farms. 

The nonparametric approach is able to closely estimate economies of scale and scope 

from estimation of a cost frontier.  Comparison reveals that the nonparametric approach is closer 

to the “true” economic measures than some parametric methods and that it is better able to 

extrapolate out of sample when there are no zero output firms. Finally, the nonparametric 



  

approach shows that potential cost savings from economies of scale and economies of scope 

exist for small Kansas farms. However, cost savings from economies of scale become exhausted 

when farms exceed gross annual revenues of $500k, while economies of scope also diminish as 

farms grow larger. Results also show from annual frontier estimations that estimates of 

economies of scale, scope, and cost efficiency have remained relatively stable from 2002 to 

2011. 
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Chapter 1 - Introduction 

 The economic definition of a cost frontier is that it represents the lowest cost for 

producing a given level of output. There are fundamental elements in the study and evaluation of 

industry structure. Firms on the frontier change their cost by changing their output level or output 

bundle. These firms are unable to improve cost through alterations to their input mix. Firms 

above the frontier are not efficient and can reduce their cost by changing the output levels or 

their input bundle.   

 Figure 1.1 illustrates a single output cost frontier where the cost curve is the minimum 

cost to produce a given output level. Points A, B, and C represent the actual total cost for three 

firms where firms A and B are producing at costs higher than the frontier cost for their respective 

output levels. Point C is operating on the cost frontier. The calculation of cost efficiency (CEi) of 

a firm, i, is the ratio of minimum cost (TCmin) to actual total cost incurred in the production of the 

output (ATCi) and represents the distance the firm is from the frontier.   

 min
i

i

TC
CE

ATC
  (1.1) 

 When estimating the cost frontier, economies of scale for firm i can be calculated. 

Economies of scale refer to the cost reductions obtained as the firms size approaches constant 

returns to scale (Figure 1.2). The economies of scale of firm i in the production of output Y, (SiY) 

may be determined for a single product Y, produced by the firm as follows: 

 
( )

( )iY

C Y
S

C Y
Y

Y


 
  

 (1.2) 
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where C(Y) is the total cost and ∑C(Y)/∑Y is the marginal cost for producing Y.  

 Figure 1.2 represents the average cost of firms A, B, and C. Firm C is on the frontier 

operating at the minimum average total cost, yielding a scale economy measure equal to one and 

a cost efficiency measure equal to one. Firms A and B are off the frontier by distance αA and αB, 

respectively such that both firms can reduce average total cost by moving closer to the frontier. 

However, firm A can reduce costs more by exploiting economies of scale rather than improving 

cost efficiency. The measure θA is the distance from the frontier to the line tangent to the 

minimum average total cost that defines potential savings from increasing output. Since θA > αA, 

holding CE (αA) constant and increasing output to the same level as firm C reduces average cost 

more than improving cost efficiency. Firm B, since θB < αB, improves cost efficiency while 

holding output constant leading to a reduction in its average total cost more than through output 

growth.  

 For the case of a multi-output firm, economies of scale (MPSE) for a firm producing i 

products, is defined as follows: 

 
( )

(Y)
i

i i

C Y
MPSE

C
Y

Y


 
  


  (1.3) 

  The cost frontier for multi-output firms allows the calculation of product-specific 

economies of scale (PSE) and economies of scope as well. PSEs are calculated holding all other 

outputs constant while examining cost as one of the other outputs is varied. The calculation of 

PSE uses the marginal cost in addition to the incremental cost and average incremental cost for 
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the output of interest. The incremental cost (ICi) represents the cost the firm would incur were it 

to produce only output i. That is: 

 ( ) (Y) C(Y )i N iIC Y C     (1.4) 

where YN-i is a vector with a zero component in place of Yi and components equal to Y elsewhere. 

The average incremental cost (AICi) is the incremental cost divided by the output 

 i
i

i

IC
AIC

Y
   (1.5) 

Product-specific scale economies for firm i are defined as the ratio of AIC and marginal cost:  

 
( )

i
i

i

AIC
PSE

C Y
Y





  (1.6) 

 Economies of scope (SC) are the potential cost savings that exist from simultaneous 

production of more than a single output by a single firm. Economies of scope measure the 

relative increase in cost should the firm split and produce each product individually. 

Mathematically, economies of scope for product Y is:  

 
 ( ) ( ) ( )

( )
( )

T N TC Y C Y C Y
SC Y

C Y
 

   (1.7) 

where C(YT) and C(YN-T) respectively define the cost of producing product YT and the remaining 

products YN-T.   

 Multi-product economies of scale are a function of product-specific economies of scale 

and economies of scope. The relationship between multi-product scale economies (MPSE), 
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product-specific scale economies (PSE), and economies of scope (SC) can be determined by 

defining: 

 
2

1

( )

( )

i
i

i

i
i i

C Y
Y

Y

C Y
Y

Y





 
  
 
  


 (1.8)  

Where αi is the weight placed on the PSE of interest based upon its relative contribution to total 

output from a two output firm: 

 
( ) (1 ) ( )

1 ( )
i i i N iPSE Y PSE Y

MPSE
SC Y

   



  (1.9) 

  MPSE can take one of three values: decreasing, constant or increasing returns to scale. 

Equation 1.9 allows factors underlying the measures of MPSE. If SC(Y) is zero and the 

numerator is less than 1, equal to 1 or greater than 1, then there are decreasing, constant and 

increasing returns to scale. If SC(Y) is greater than zero and the PSEs are at constant returns to 

scale, MPSE is increasing (>1). 

 Research Motivation 

 Historically, cost frontiers were econometrically estimated assuming a functional form 

such as a translog (Christensen et. al. 1973), normalized quadratic (Diewert and Wales 1988), or 

Generalized Leontief (Diewert 1971) using standard two-sided error systems where some errors 

are positive (above the frontier), and others are negative (below the frontier). Multiproduct-scale 

economies, product-specific scale economies, and economies of scope can be estimated from the 

parameter estimates. This approach allows firms to operate at lower costs than the cost frontier.   
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 Frontier estimation research has addressed the issue of two-sided error estimations by 

ensuring that frontiers do not have firms below the frontier using both parametric and 

nonparametric approaches. The parametric approach is the stochastic frontier method by Aigner, 

Lovell and Schmidt with a nonparametric alternative, the data envelopment analysis method 

(DEA), proposed by Farrell.   

 Frontier approaches have typically analyzed the relative efficiency of firms in 

relationship to the frontier. Measures of economies of scale and/or scope are not typically 

reported. Thus, economic analysis has focused on firms above the cost frontier or the behavior of 

the frontier using dual methods and not both as illustrated in Figures 1.1 and 1.2. 

 This dissertation will examine methods to unify the measurement of scope, scale, and 

cost efficiency. The stochastic error methods can be used to measure scope and scale, but have 

typically focused on cost efficiency. The nonparametric method (DEA) has also focused 

primarily on cost efficiency, although Chavas and Aliber propose a method for measuring 

economies of scope. Measures of product-specific economies of scale and multi-product 

economies of scale have not been formalized in the literature for the nonparametric method. 

Finally, the literature does not contain analysis that compares the accuracy of alternative 

techniques to measures of cost efficiency, economies of scale and economies of scope from a 

“true” cost frontier.  

 This dissertation has been organized into three papers. The first formalizes and tests a 

method for calculating multi-product and product-specific scale economies from an estimated 

nonparametric cost frontier. This contributes to the literature by increasing the amount of 

information that may be reported from nonparametric estimation. The analysis uses two datasets 
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assuming a “true” cost function generated using Monte Carlo. The simulations are conducted 

using half-normal and uniform distributions of cost efficiency. This allows for a comparison 

between the two distributions of the errors for the “true” cost frontier. Two “true” cost functions 

were assumed as well and two data sets examined with one containing single output firms and 

multiple output firms, and one with only multiple output firms. 

 The second study compares the accuracy of the nonparametric approach developed in the 

first paper to three parametric approaches. The three parametric approaches evaluated are a two-

sided error system, the stochastic frontier method, and an OLS model in which all errors are 

restricted to be positive. The data sets used for the first objective are used for the second 

comparison. The different models abilities to accurately calculate the cost efficiency, economies 

of scope, multi-product economies of scale, and product-specific economies of scale measures 

are then evaluated.   

 The final paper uses the methods and techniques developed and tested under the first two 

papers on farm level data instead of simulated data. The data are obtained from the Kansas Farm 

Management Association for 241 farms from 2002 to 2011. Under this objective, the foregoing 

methods are used to estimate the cost efficiency measures along with multi-product and product-

specific scale economies, and economies of scope for these Kansas farms.   

 The dissertation is presented in the next three chapters. The information presented in 

these chapters will be useful to researchers, economists, managers, and policymakers as it 

provides sound economic tools for quantifying the cost advantages farms have due to their 

relative size. The tools allow the determination of the extent that small farms may improve their 

cost savings from increasing output exploiting economies of scale. It will then be determined 



7 

 

how much costs are reduced by producing multiple outputs (scope) rather than each output 

individually. In addition, cost efficiency reveals the reduction in overall costs that can be 

obtained by appropriately adjusting the input mix. 
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Chapter 2 - A Nonparametric Approach to Multi-product and 

Product-specific Economies of Scale 

 Introduction 

Producer theory provides useful tools for exploring the structure of cost. Estimates of 

frontier functions, and the distance of firms from the frontier provide insights into how firms 

with similar technological access and marketing achieve different levels of production efficiency 

and average costs. These methods allow firms operating off the frontier to understand the 

potential disadvantages due to sub-optimal output and input bundling choices and the effects on 

firm performance.  

Traditionally, multi-product and product-specific economies of scale and economies of 

scope are estimated parametrically using two-sided error systems through specification of a cost 

function and estimation of parameters (Christenson et. al.). The error structure is important in the 

estimation of a cost frontier function since negative errors imply that some firms are actually 

producing at a lower cost or higher quantities than the frontier that was being estimated which is 

not consistent with the economic definition of a cost function (Farrell 1957). The stochastic 

frontier method has addressed the concerns of two-sided error systems by restricting the errors 

using positive error models (Aigner, Lovell, and Schmidt).   

Lusk et al. examined the relative variability needed in the estimation of dual cost 

functions. They found that the relative variability necessary to accurately estimate a dual cost 

function requires more than 20 years of data based on observations. Thus, dual cost functions 

may have difficulty recovering the underlying technology. Featherstone and Moss note that 

parametric frontier estimations may also violate curvature of the cost function. Therefore, the 
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lack of ability to accurately measure the underlying technology given data availability and the 

frontiers not maintaining the necessary cost function conditions are issues that may affect 

parametric frontier methods. 

One of the methods used for frontier estimation is the nonparametric method that 

constructs a frontier from a series of line segments using a linear cost minimization program 

(Färe, Groskopf, and Lovell). With this method, it is not necessary to restrict the production 

technology by imposing a functional form. The nonparametric approach conforms to economic 

theory because curvature restrictions on the production/cost function are imposed in the 

estimation process. Further, the nonparametric method of Färe et al. may allow technology to be 

measured using a single year’s data; thus, reducing the need of relative price variability to 

accurately measure technology using the dual approach. 

Numerous studies have used nonparametric methods to analyze efficiency in various 

industries including Banker and Maindiratta, Jaforullah and Whiteman, and Chavas and Cox. In 

these studies, several types of efficiencies are estimated to determine if a firm is producing on 

the production or cost frontier, whether the firm is optimally allocating inputs, or if the firm is 

operating at the most efficient size. Chavas and Aliber measure scope economies to determine 

cost savings from production portfolio diversification in the nonparametric framework.   

Typical parametric measures of multi-product scale and product-specific scale measures 

have not yet been developed in the nonparametric DEA framework. For example, Paul et. al. 

(2004) and Kumar and Gulati (2008) use the DEA method to estimate scale efficiency which 

takes on values of less than, equal to, or greater than one giving an indication of returns to scale. 

This measure follows from Ray (1998) and Cooper et. al. (2007) where the DEA method is 

estimated assuming constant returns to scale, and then again assuming variable returns to scale 
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and takes the ratio of the two measures. However, Paul et al. explain that the interpretation of 

scale efficiency is not as straight forward as a traditional scale economy measure explained by 

Baumol et. al. Specifically, they note that these measures only indicate if average per-unit costs 

are increasing, decreasing, or constant, but not necessarily the magnitude of cost savings from 

scaling. In both Paul et. al., and Kumar and Gulati, it was necessary to perform a parametric 

estimation to recover traditional estimations of economies of scale, and compare the results to 

their DEA estimation. Further, techniques for estimating product-specific economies of scale 

have not been reported for the nonparametric method. 

This research develops and tests estimation techniques for multi-product and product-

specific economies of scale for the nonparametric method. Specifically, this research develops a 

multi-product and product-specific scale measure using the definition of Baumol et. al. from 

nonparametrically estimated marginal costs, incremental costs, and output quantities. The 

estimated measures are then compared to an assumed known cost frontier. From this comparison, 

it is possible to assess the accuracy of the nonparametric approach estimates and proposed 

economic measures.   

In addition, previous research that estimates economies of scope with the nonparametric 

approach has dropped one or more of the output constraints when estimating the cost of 

producing a single output (Chavas and Aliber). This research examines that procedure by 

comparing a method which requires that output to be zero as required in the theory of an 

incremental cost. The principle advantage to forcing the output to zero rather than dropping it is 

that it should more closely measure the theoretically defined incremental cost of each output. 

Further, we evaluate the nonparametric approach under alternative efficiency distributions to 

investigate the robustness of the results. 
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 Theory 

Typical economic measures calculated from a cost function estimation include economies 

of scale and economies of scope. Measures of scale economies include both multi-product 

economies of scale (MPSE), and product-specific scale economies (PSE) differing only in that 

MPSE refers to changes in cost relative to more than one output in a multi-output firm, while 

PSE refers to proportionate changes in cost relative to a single output (Baumol et al.). 

Mathematically these measures are defined as follows where C(Y) represents the cost of 

production with ∑C(Y)/∑Yp representing the marginal cost of the pth output.  
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To calculate PSE, the average incremental cost (AICp) of producing p must be calculated where 

the incremental cost (IC) for the pth output is defined as: 
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Product-specific economies of scale are the ratio of the average incremental cost of output p and 

the marginal cost of the pth output. 
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 Estimates of economies of scope (SC) represent the cost savings of producing multiple 

outputs within a single firm versus producing outputs individually. Economies of scope may be 

expressed in the following manner where C(Y) is total production cost, C(YT) is the cost of 

producing output YT, and C(YN-T) represents the cost of producing the remaining outputs where 

YN-T = (Y1,…Yk-1,0…0). 
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 Measures of multi-product economies of scale, product-specific economies of scale and 

economies of scope are related. The relationship between multi-product scale economies 

(MPSE), product-specific scale economies (PSE), and economies of scope (SC) can be 

determined by defining: 
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where αi is the weight placed on the PSE of interest based upon its relative contribution to total 

output. Thus: 
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 MPSE can take one of three values: decreasing, constant or increasing returns to scale. 

Equation 2.7 examines the relationship among factors affecting MPSE. If SC(Y) is zero and the 

numerator is less than 1, equal to 1 or greater than 1, then there are decreasing, constant and 
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increasing returns to scale. If SC(Y) is greater than zero and the PSEs are at constant returns to 

scale, MPSE is in a region of increasing returns (>1). 

  

 

  

 Data and Methods 

  The Nonparametric Method 

 To estimate the new scale measures, the cost (Ci) is determined for each firm following 

Färe, Grosskopf, and Lovell where costs are minimized for a given vector of input prices (wi) 

and outputs (yi) with the choice being the optimal input bundle (xi
*).   
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  (2.8)  

where there are “n” producers. The vector Z represents the weight of a particular firm with the 

sum of Zi’s equal to 1 for variable returns to scale. From the above model, the costs and output 

quantities can be estimated. The output quantities (yi) constrain the cost minimizing input bundle 

to be at or below that observed in the data. Total cost from the model (Ci) is the solution to the 

cost minimization problem including the production of all outputs for the ith firm. The cost of 

producing all outputs except one (Ci,all-p) where p is the dropped output and is determined by 

either forcing one of the outputs to equal zero or by dropping one of the pth output constraints.   
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 To calculate multi-product scale measures, marginal costs must be determined. The 

marginal costs (MCi,p) for the pth output are obtained from the shadow prices on the output 

constraints on the base model (equation 2.8). The calculation of multi-product economies of 

scale (MPSE) uses the total cost of producing all outputs (Ci,all), the marginal costs (MCi,p), and 

the output levels produced (Yi,p) (equation 2.1). There is an issue with the nonparametric 

marginal cost because the linear structure results in “Kink Points” on the frontier that results in 

non-unique marginal costs. Thus, the marginal costs for the most efficient firms may not be 

unique. In practice this is usually a relatively small number of firms. In addition, a range of 

estimates of marginal costs can be calculated. 

 Product specific economies of scale (PSE) require the calculation of incremental costs 

(ICi,p) which are the cost of producing all outputs minus the sum of the costs of all individual 

outputs except output (p) for firm i (equation 2.2). Previous methods to calculate incremental 

costs using the nonparametric method drop one or more of the output constraints from equation 

2.8 to determine the cost of producing the output alone (Chavas and Aliber). For example if a 

firm produces four different products, four different linear programs would be estimated 

excluding one of the outputs at a time. In this research, results from dropping one of the output 

constraints are compared with constraining the appropriate output to zero. 

 Using equation 2.2, average incremental costs (AICi,p) are determined by dividing 

incremental costs by individual output as shown in equation 2.3. From the average incremental 

cost (equation 2.3) and the marginal cost calculations from the shadow prices, it is possible to 

calculate PSEs (equation 2.4) where PSEs are interpreted similar to MPSEs except that PSEs 

pertain to only one output.     
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 The calculation for scope economies (SCi) follows from equation 2.5 where Ci,p is the 

cost of producing output p for firm i, and Ci,all is the cost of joint production of all outputs for 

firm i. This measure identifies the potential for cost savings through product diversification. 

Generally, SCi > 0 implies that scope economies exist and average per-unit costs are reduced 

with diversification. A scope measure of 0.5 implies that jointly producing multiple outputs in a 

two goods case would reduce costs of producing these outputs by 50% compared to producing 

them individually. 

 Cost efficiency (CE) identifies a firm’s proximity to the cost frontier for a given 

input/output bundle. It is the quotient of the estimated frontier cost (Ci) and the actual total cost 

(ATC) the firm incurred producing their output bundle.  

 i
i

i
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CE
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 
  
 

  (2.9) 

 This measure must be greater than 0 but less than or equal to 1. A cost efficiency of 1 

implies that the firm is operating on the frontier at the lowest possible cost for a given output 

bundle. However, a cost efficiency less than 1 implies that cost can be reduced by altering the 

input bundle. 

 This sub-section has operationalized the measure of marginal costs and incremental costs 

necessary for the measurement of multi-product and product-specific scale economies. The next 

section examines the methods used to compare the accuracy of the nonparametric measures with 

those from a “true” cost frontier. 

 Data Simulation 

 The data for the analysis were generated utilizing a modified Monte Carlo procedure 

found in Gao and Featherstone (2008) run on the SHAZAM software platform with the code 
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found in Appendix A. A normalized quadratic cost function involving 3 inputs (x1, x2, x3) with 

corresponding prices (w1, w2, w3), and 2 outputs (y1, y2) with corresponding prices (p1, p2) was 

used. The normalized quadratic cost/ profit function is used because it is a self-dual cost function 

and a flexible functional form (Lusk et al.). The input and output prices (wi, pi) are randomly 

generated following a normal distribution. Assumed distributions for the output prices and input 

prices provide observed prices strictly greater than zero with different means and standard 

deviations to ensure some variability in input/output quantity demands and relative prices. They 

are: 

 w1 ~ N (9, 0.99) 
 w2 ~ N (18, 1.98) 
 w3 ~ N (7, 0.77)         (2.10) 
 p1 ~ N (325, 99) 
 p2 ~ N (800, 99) 

The input price variability was set proportionate to its mean while the output prices have 

different relative variability to represent products in markets with different volatilities.  

 The outputs (yi) and inputs (xj) are determined as a function of input and output prices 

using an assumed underlying production technology. All prices are normalized on w3 and the cost 

function is divided by w3 to impose homogeneity. To ensure the curvature condition is met, the 

“true” cost function is assumed to be concave in input prices and convex in output quantities.  

The assumed parameters are set to satisfy the following theory based condition: bij=bji 

(symmetry in input prices). The assumed parameters (Table 2.1) are used to generate the output 

quantities y1 and y2
1.  The general form of the normalized quadratic cost function is: 

                                                 
1 The analysis also was completed for alternative assumptions on price distributions. 
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 Output quantities (shown below) are calculated using the assumed parameters of the cost 

function (Table 2.1) and the random prices defined in equation 2.10.  
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  (2.12) 

 Using the above cost function (Equation 2.11), a positive random cost deviation term is 

added to the cost function following a half-normal distribution that alters the cost efficiency 

where the absolute value of e is distributed e~N (0,1000)2. The inclusion of this term adds cost 

inefficiencies in the data such that firms are off the frontier effectively increasing their cost while 

keeping the output quantities the same. The level of inefficiency is half-normally distributed. 

 An additional data set3 is generated assuming a uniform distribution. The uniform 

deviation ranged from zero to 900. The normal distribution standard deviation of 1,000 generates 

a mean and standard deviation for cost efficiency roughly equivalent to a uniform distribution 

with a range from zero to 900.  

 From equation (2.11), and using Shephard’s Lemma where (∑C(W,Y)/∑wi)=xi, the factor 

demands for inputs x1 and x2 are recovered. Factor demand for x3 is found by subtracting the 

product of quantities and prices for x2 and x3 from the total cost (equation 2.13).  

                                                 
2 The analysis also examined alternative normal standard deviations. 
3 The analysis was run using 2500 observations with little difference in the results. 
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The input quantities (xi’s) are then adjusted (xi
a) by the cost efficiency (CE) effectively 

increasing the input demands proportionate to the costs generated for each firm. 

 a i
i

x
x

CE
   (2.14) 

 Using the above method, 400 observations were generated where firms produce a 

combination of both outputs. Fifty firms were generated producing only y1 with another 50 firms 

producing only y2 which is accomplished by restricting either y1 or y2 to equal zero and re-

running the simulation for 50 separate observations each. Thus, a total of 500 observations were 

simulated with descriptive statistics shown in Table 2.2. In Table 2.2, xi
n represents inefficient 

input quantities for the normal error distribution and xi
u represent the inefficient input quantities 

for the uniform distribution. The summary statistics for the multi-product scale, product-specific 

scale, scope, and cost efficiencies for each data point from the “true” cost function are shown in 

Table 2.3. Summary statistics on scale and scope are independent of the distribution of cost 

“inefficiency”. Figures 2.1 through 2.4 provide visual representations of the multi-product scale 

and scope economies as well as cost efficiencies and product-specific scale economies calculated 

from the “true” cost function. These calculations are used to examine the accuracy of the 

proposed nonparametric approach.   

 While the cost efficiency for each firm is simulated under a uniform and a half-normal 

distribution (Figure 2.2), the MPSE, PSE’s, and Economies of Scope are identical for each data 

point (Table 2.3) for the “true” cost function. This is due to the fact that the input prices (wi’s) 

and output prices (pi’s) remain unchanged and thus, the output quantities (yi’s) remain unchanged 
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(Equation 2.14). The input quantities (xi’s) are different in that the deviation in input quantity is 

uniformly distributed. In the uniformly distributed data more evenly distributes the quantity of 

firms at each relative distance from the frontier, rather than many firms being clustered around 

the mean distance as in the half-normal case. 

 The difference between the “true” and the nonparametric approach is evaluated by 

subtracting each nonparametric calculation from the “true” measure calculated with Monte Carlo 

simulation. Since the approximation of the “true” measure is key, the statistics reported hereafter 

are the difference between the “true” measures and what was estimated nonparametrically. Using 

this approach, any possible bias from the nonparametric approach can be determined.  A positive 

number implies that the nonparametric approach underestimates the measure being evaluated and 

conversely, a negative difference indicates the nonparametric method overestimates the measure. 

The mean absolute deviation is also reported for all three models allowing for the comparison of 

average absolute deviation from zero   

 Cumulative density functions are presented for the differences between the true measures 

and the estimated measures to produce visual representation of both bias and deviation. If there is 

no difference between the estimated measure and the true measure, the cumulative density 

function is a vertical line at zero (see figure 2.10 for the No Inefficiencies model).  

 Results 

 Three comparisons were conducted using the half-normal distribution for cost 

inefficiency, and three identical comparisons using the uniform distribution for cost inefficiency. 

The first comparison for both distributions uses the Monte Carlo data with only cost 

inefficiencies in the cost function (No Inefficiency). The purpose of this simulation is to ensure 

the model is estimating the measures correctly, and to examine the nonparametric procedure 
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estimates of scale and scope when all firms are efficient in input quantities. The second and third 

comparisons for both distributions involve introducing technical inefficiencies into the input 

quantities (equation 2.16), and are more consistent with observed data. Since efficient firms have 

a cost efficiency of 1, and less cost efficient firms have a cost efficiency between 0 and 1, an 

efficient firm uses optimal input quantities. However firms may use additional inputs to produce 

output if the firm is not efficient. Inputs x1, x2, and x3 are adjusted upwards by the proportionate 

cost inefficiency to reflect this.   

 The second nonparametric comparison for the half-normal and uniform distributions 

assume the appropriate constraints are dropped (Dropped) for the estimation of incremental 

costs. The third simulation forces the appropriate output to be 0 (Constrained). The estimation 

was done using the General Algebraic Modeling Software and the code can be found in 

Appendix A. 

 Twenty-four frontier points are identified from the nonparametric estimates for the half-

normal distribution and twenty-five using the uniform data. For each distribution, the firms 

found on the frontier were the same for the Dropped Model and the Constrained Model. These 

points have non-unique marginal cost estimates. Due to the non-uniqueness of the marginal costs 

from these observations, MPSEs cannot be calculated. For single output observations, PSEs 

cannot be calculated for the output not being produced. Economies of scope are also not 

calculated for single output observations. 

 Multi-product Economies of Scale 

 The differences results for MPSE are found in Table 2.4 and Figure 2.5. The No 

Inefficiencies model for both distributions shows little difference from the actual frontier 

function (Figure 2.5). The average bias was close to 0 for both distributions with a standard 
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deviation of 0.11 in the half-normal case and a standard deviation of 0.023 for the uniform case 

(Table 2.4). The mean absolute deviation was nearly zero as well. This result indicates that since 

MPSE is a function of total costs, marginal costs, and output levels, the marginal costs are 

estimated closely to the “true” marginal costs.   

 For the two models estimated where technical inefficiencies were introduced, with half-

normal distribution nearly 85% of the MPSE difference calculations were within 0.1 in absolute 

value to the “true MPSE” (Figure 2.5). The standard deviations for both the Constrained and 

Dropped models were small (Table 2.4) and the mean absolute deviation was less than 0.05 for 

both models. For the uniform distribution, the average for both models was nearly zero with the 

Constrained model being slightly closer to zero than the Dropped Model in terms of bias but the 

mean absolute for the Constrained model was 0.04 higher than the Dropped model. The standard 

deviations for both models was approximately 0.05. When comparing the distributions, the 

models with the uniform distribution estimated the MPSE’s closer to the “true MPSE’s” for each 

observation with greater than 99% within between -0.1 and 0.1 and mean absolute deviations less 

than for the half-normal distribution. 

 The nonparametric approach showed a very close proximity to the calculations from the 

frontier function with respect to the MPSE. The model with outputs constrained to zero results in 

slightly more accurate estimate of MPSE compared to those estimates dropping a constraint. 

 Product-specific Economies of Scale 

 Product specific scale economies estimated from the No Inefficiencies model showed 

slight differences from that of the actual frontier function for both distributions (Table 2.5, and 

Figures 2.6 and 2.7). The averages and mean absolute deviations for both PSEy1 and PSEy2 were 

nearly zero and the standard deviations were also low.  This result concurs with the results from 



25 

 

the other measures where deviations from the frontier function were small. Though the averages 

were nearly 0 for both distributions, the bias for both PSEs y1 and y2 were negative in the half-

normal case showing that the nonparametric approach slightly overestimated PSE while the 

average difference in the uniform case was positive showing a slight underestimation of the 

PSEs.   

 The differences for the estimates with technical inefficiencies in the input quantities were 

highest for the PSE estimates compared to the other measures.  For the half-normal distribution, 

the average of PSE1 for both the Constrained and Dropped models was about 0.13 showing 

negative bias with standard deviations and mean absolute deviations of approximately 0.22. For 

PSE2 the average was much closer to zero at approximately 0.03 for the Dropped model and 0.02 

for the Constrained model with standard deviations for both around 0.11.  The mean absolute 

deviations were also lower with both being around 0.085.  The direction of bias was negative in 

that the models with technical inefficiency overestimated the PSE estimates.   

 The estimations for PSE1 and PSE2 were closer to the “true PSE’s” for both models with 

the uniform distribution having lower standard deviations, and averages closer to zero. The 

average PSE1 for the Dropped model was nearly zero in the uniform case with a standard 

deviation of 0.106, while the average for the Constrained model was 0.05 and a standard 

deviation of 0.19 (Table 2.5).  Mean absolute deviations for the uniform distribution were also 

closer to zero however the Dropped model’s mean absolute was nearly halved while the 

constrained model changed by only 0.01. Like the half-normal case, the differences for the 

uniform distribution were positive on average indicating that both models slightly 

underestimated the PSE’s. The differences for PSE estimates are also evident in Figures 2.6 and 

2.7. PSE measures are relatively less accurate than the measurement of MPSE. 
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 The cause of the higher error in the PSE estimates in both the half-normal case and the 

uniform case occurs due to variations in the incremental cost calculations. The total costs 

estimated by the nonparametric methods were nearly the “true” costs, as were output quantities 

with only slight variations in marginal cost. Thus, the MPSE differences were small. Product-

specific economies are calculated using total cost and incremental costs. Incremental costs 

exhibit some, albeit small variation. 

 The concern with the incremental cost was hypothesized to be due to missing frontier 

observations with zero quantities. This results in the frontier estimation for regions with missing 

data to shift upward for an inefficient firm reflecting that a firm is on the frontier when it is not.  

This conclusion is apparent in that the No Inefficiency model under both distributions which has 

no inefficiency shows less deviation from the frontier function than the two models with cost 

inefficiency.  

 To examine the importance of the single output firms, the 24 efficient observations from 

the models with the half-normal distribution were set to be efficient. This puts them on the true 

frontier and the model is re-estimated with the remaining observations unchanged. Table 2.6 and 

Figure 2.8 show the results for PSE1 which had the largest deviation for both distributions. The 

standard deviations for both models decreased from 0.221 to approximately 0.169 and 0.164 

while the averages were reduced from 0.133 to 0.065 and 0.069 respectively. The mean absolute 

deviations also fell for both models indicating a closer proximity to the true PSE values than in 

the initial estimation of PSE1. Thus, obtaining correct measures of the frontier for zero output 

observations is key to improving the accuracy of PSEs. 
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 Economies of Scope 

 The distribution of the difference for scope between the frontier function and the 

nonparametric estimates for both distributions are shown in Figure 2.9. For the half-normal 

distribution, differences in scope for the No Inefficiency model were very small yielding a 

standard deviation of about 0.017 and an average and mean deviation close to 0. For the uniform 

distribution, the differences were small as well with a standard deviation of 0.020 and mean 

absolute deviation nearly zero (Table 2.7). The implication is that in the absence of input 

inefficiency, the individual cost estimates from the nonparametric method are close to that of the 

actual frontier function.   

 The estimates for models where inefficiencies were introduced were also very close to 

that of the frontier function for both distributions. For the half-normal case, the standard 

deviation for the Constrained, and Dropped models were small. The average differences were 

both less than 0.1 in absolute, value as were the mean absolute deviations (Table 2.7). The 

estimates were identical for both models. This indicates that the calculations for costs for 

producing zero output (Ci,all-p) are the same. Thus, both approaches including dropping a 

constraint, or constraining an output to zero appear to do equally well estimating economies of 

scope. 

 In the uniform distribution case, both models with technical inefficiency did not estimate 

an identical scope. The absolute values for average and standard deviation for the Dropped 

model was -0.017 and 0.066 respectively for the while the absolute values for average and 

standard deviation for the Constrained model was -0.028 and 0.095, respectively. Also, the mean 

absolute deviation was more than twice as high for the Constrained model than the Dropped 
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model. Thus, under a uniform distribution, dropping the appropriate constraint reduces the mean 

absolute deviation of economies of scope more than constraining the appropriate output to zero. 

 Figure 2.9 shows that most of the differences in scope estimates from the models with 

technical inefficiency for both distributions are negative. This implies that the economies of 

scope measures for the Constrained and Dropped models slightly over estimate economies of 

scope. The average scope difference with inefficiency is less than 0.1 in absolute value and over 

70% of the differences are within this proximity range to the “true” scope measure in the half-

normal case for both models. In the uniform case, the models with technical inefficiency have an 

average difference of nearly zero with all but five observations within 0.03 of the true scope 

calculation in absolute value. The results demonstrate small differences between the economies 

of scope estimates between the Dropped model and Constrained model in the half-normal case. 

However, the uniform case shows that the Dropped model in Figure 2.9 had a slightly tighter 

estimation of economies of scope than the Constrained model. 

 Cost Efficiency 

 The difference of cost efficiency estimates from the nonparametric models without 

technical inefficiency in quantities (No Inefficiency) for both distributions and the actual frontier 

were identical in that every single observation yielded the exact same cost efficiency estimate 

(Table 2.10). This implies that the minimum cost estimated from the nonparametric system was 

the same as that of the actual frontier. Thus, the No Inefficiency procedure correctly estimated 

the “true” cost frontier for the half-normal and uniform distributions. 

 With inefficiencies introduced in the input quantities, the Constrained and Dropped 

model’s differences for the half-normal distribution were small. Approximately 80% of the 

observations had a difference of less than 0.05 in absolute value from the true cost efficiency 
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with approximately 12% having a difference of less than 0.1 but greater than 0.05 in absolute 

value (Figure 2.9). The implication is that, an introduction of technical inefficiency in the input 

variables does not significantly reduce the accuracy of the nonparametric models estimates of 

cost efficiency in the half-normal case.   

 In the case of the uniform distribution, both the Constrained and Dropped model 

estimated the same frontier as illustrated by the same mean and standard deviation for the 

differences.  However, the half uniform estimated the frontier more closely than the half-normal 

with a mean, mean absolute deviation, and standard deviation for both models of nearly zero 

(Table 2.10). This is also confirmed in Figure 2.9. Both models slightly over estimated the cost 

efficiency on average with an average for both models in the half-normal case being negative 

and in the uniform case however, they are both close to zero. 

 Conclusions 

 This paper develops, and tests a method for estimating product specific scale economies 

and multi-product scale economies using Färe’s nonparametric method using two efficiency 

distributions. Alternative specifications of the nonparametric approach to measure incremental 

costs by forcing the appropriate output to equal zero rather than dropping the constraint as 

suggested by Chavas and Aliber. The results are compared to a “true” cost function using Monte 

Carlo Simulation where the difference between the “true” measures and the estimated values are 

used to evaluate the accuracy of the approach.   

 When measuring observations with inefficiency, the nonparametric approach with the 

uniform and half-normal distributions do well in estimating scope, multi-product scale 

economies, cost efficiency, and product-specific scale economies. The mean differences were 

close to zero as were the mean absolute deviations. While the PSE estimates are close to the 
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“true” frontier PSEs, in the half-normal case, the deviations for PSE calculations using a uniform 

distribution illustrate the importance of having observations from efficient firms producing a 

single output. Since PSE is based on a ratio of incremental costs to marginal costs, the PSE 

measures are sensitive to these calculations. In areas where there are few single output 

observations where observations are not on the “true” frontier, the estimated incremental costs 

for these observations may deviate from the “true” incremental cost. In areas of the data where 

there are many observations, the likelihood that observations do not come close to the frontier is 

small. Thus, areas where the data are clustered yield more precise results than areas where 

observations are sparse. It should be noted that this is important when estimating these measures 

using parametric estimation. 

 The nonparametric approach developed in this article has been shown to accurately 

estimate scope, multi-product scale, and product-specific economies. It’s consistency with 

economic theory without restrictions on technology make it particularly attractive empirically 

along with the ability to estimate from a primal rather than a dual approach due to the higher 

need for relative price variability in the dual approach. 
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 Chapter 2 Tables 

 
Table 2.1   Coefficients used in cost function for data simulation for half-normal and uniform 
distributions 
Coefficient Value 
A1 30.0 
A2 80.0 
A11 0.50 
A12 1.00 
A21 0.60 
A22 0.50 
B0 20.0 
B1 10.0 
B2 35.0 
B11 -0.09 
B12 -0.15 
B22 -0.47 
C11 1.44 
C12 -0.24 
C22 2.29 
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Table 2.2   The average, standard deviation, minimum and maximum for the input/output 
quantities and input prices in half-normal (xi

n) and uniform (xi
u) cases  

N=500 Average 
Standard 
Deviation 

Minimum Maximum 

x1
n 42.29 11.95 13.35 88.33 

x2
n 69.85 23.29 38.44 268.76 

x3
n 2602.60 1154.75 152.95 8083.87 

x1
u 36.93 8.644 14.06 68.89 

x2
u 60.16 10.25 38.43 136.13 

x3
u 2302.06 1027.79 147.92 6585.05 

w1 
9.05 0.98 5.42 11.98 

w2 
17.95 1.88 13.15 24.70 

w3 
6.98 0.78 4.85 9.75 

y1 
11.67 5.90 0.00 30.19 

y2 
14.31 7.53 0.00 37.92 
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Table 2.3  Summary statistics for MPSE, PSE, economies of scope, and cost efficiency 

Economic Measure Average 
Standard  
Deviation 

Minimum Maximum 

------Half-normal Distribution------ 

Multi-product Scale            
Economies 
 

0.931 0.108 0.779 1.989 

Cost Efficiency 
 

0.721 0.177 0.129 1.000 

Scope 
 

0.096 0.051 0.037 0.513 

Product-specific Scale 
Economies for y1 
 

0.728 0.246 0.000 0.957 

Product-specific Scale 
Economies for y2 

0.763 0.257 0.000 0.995 

------Uniform Distribution------ 

Cost Efficiency 
 

0.799 0.133 0.268 1 

Note: Economies of Scope, Multi-product Scale Economies, and Product-specific Scale 
economies are identical for the Half-normal and Uniform distributions 
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Table 2.4   Statistics for simulated multi-product scale economies estimates minus multi-product 
scale economies estimated nonparametrically for the half-normal and uniform distributions. 
N=476 Average Standard 

Deviation 
Minimum Maximum Mean Absolute 

Deviation 
------Half-normal Distribution----- 

Nonparametric no 
Technical Inefficiency 
 

-0.002 0.011 -0.108 0.046 0.008 

Dropped 
 

0.001 0.047 -0.145 0.235 0.049 

Constrained 
 

0.001 0.047 -0.145 0.235 0.049 

------Uniform Distribution----- 
Nonparametric no 
Technical Inefficiency 
 

-0.003 0.023 -0.336 0.198 0.008 

Dropped 
 

-0.012 0.054 -0.277 0.114 0.027 

Constrained 
 

-0.006 0.055 -0.266 0.320 0.031 
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Table 2.5  Statistics for simulated product-specific scale economies estimates minus product-
specific scale economies estimated nonparametrically for the half-normal and uniform 
distributions for outputs 1 and 2. 
N=426 Average Standard 

Deviation 
Minimum Maximum Mean 

Absolute 
Deviation 

------Half-normal Distribution----- 
 Nonparametric no 

Technical Inefficiency 
 

0.000 0.046 -0.325 0.629 0.016 

y1 
Dropped 
 

0.133 0.221 -0.257 0.633 0.219 

 Constrained 
 

0.133 0.221 -0.257 0.633 0.219 

 Nonparametric no 
Technical Inefficiency 
 

-0.002 0.020 -0.080 0.260 0.007 

y2 
Dropped 
 

0.032 0.108 -0.344 0.712 0.086 

 Constrained 
 

0.022 0.109 -0.204 0.723 0.085 

-----Uniform Distribution------ 
 Nonparametric no 

Technical Inefficiency 
 

0.002 0.024 -0.084 0.109 0.016 

y1 
Dropped 
 

0.003 0.106 -0.214 0.185 0.107 

 Constrained 
 

0.050 0.191 -0.239 0.735 0.259 

 Nonparametric no 
Technical Inefficiency 
 

0.002 0.021 -0.148 0.082 0.014 

y2 
Dropped 
 

-0.003 0.051 -0.169 0.109 0.042 

 Constrained 
 

0.019 0.088 -0.294 0.294 0.068 
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Table 2.6  Statistics for simulated product-specific scale economies estimates minus product-
specific scale economies estimated nonparametrically for y1 removing the technical inefficiency 
in the input quantities. 
N=426 Average Standard  

Deviation 
Minimum Maximum Mean Absolute 

Deviation 
Nonparametric no 
Technical Inefficiency 
 

-0.002 0.053 -0.399 0.629 0.016 

Dropped 
 

0.065 0.169 -0.744 0.583 0.154 

Constrained 
 

0.069 0.164 -0.272 0.671 0.154 
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Table 2.7   Statistics for simulated scope economies estimates minus scope economies estimated 
nonparametrically. 
N=397 Average Standard 

Deviation 
Minimum Maximum Mean Absolute 

Deviation 
------Half-normal Distribution------ 

Nonparametric no 
Technical Inefficiency 
 

0.000 0.017 -0.201 0.193 0.003 

Dropped 
 

-0.098 0.070 -0.709 -0.043 0.098 

Constrained 
 

-0.089 0.034 -0.249 0.234 0.098 

------Uniform Distribution------ 
Nonparametric no 
Technical Inefficiency 
 

0.001 0.020 -0.201 0.206 0.008 

Dropped 
 

-0.017 0.066 -0.712 0.017 0.020 

Constrained 
 

-0.028 0.095 -0.813 0.206 0.044 
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Table 2.8  Statistics for simulated cost efficiency minus cost efficiencies estimated 
nonparametrically for half-normal and uniform distributions. 

N=500 Average 
Standard 
Deviation 

Minimum Maximum 
Mean Absolute 

Deviation 
------Half-normal Distribution------ 

Nonparametric no 
Technical Inefficiency 
 

0.000 0.000 0.000 0.000 0.000 

Dropped 
 

-0.025 0.041 -0.530 -0.003 0.026 

Constrained 
 

-0.025 0.041 -0.530 -0.003 0.026 

------Uniform Distribution------ 
Nonparametric no 
Technical Inefficiency 
 

0.000 0.000 0.000 0.000 0.000 

Dropped 
 

-0.004 0.007 -0.079 0.000 0.004 

Constrained 
 

-0.004 0.007 -0.079 0.000 0.004 
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Chapter 2 Figures 

 

 

 

 

 

Note: the MPSE calculations for both the half-normal and uniform error distribution is identical. 

 

Figure 2.1 Frontier Multi-Product Scale Economies Cumulative Frequency for Generated Data. 
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Note: The PSE calculations for Y1 and Y2 for both the half-normal and uniform error distribution are identical 

 

Figure 2.2  Frontier Product-Specific Scale Economies 



43 

 

 

Note: The Economies of Scope calculations for both the half-normal and uniform error distribution is identical. 

 

Figure 2.3  Frontier Economies of Scope Cumulative Frequency 
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Figure 2.4 Frontier Cost Efficiencies Cumulative Frequency for both Half-normal and Uniform 
Distributions. 
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Note: Constrained and Dropped trace out identically for Half-normal distribution. 

Panel A: Multi-product Scale Economies Half-normal 
Distribution  

Panel B: Multi-product Scale Economies Uniform Distribution 

Figure 2.5 Differences between frontier Multiproduct Scale Economies and nonparametric estimates of Multiproduct Economies of 
Scale for Half-normal and Uniform Cumulative Distributions. 
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Note: Constrained and Dropped trace out identically for half-normal distribution 

Panel A: Product-specific Scale Economies Y1 Half-normal 
Distribution  

Panel B: Product-specific Scale Economies Y1 Uniform 
Distribution 

Figure 2.6  Differences between frontier Product-specific Economies of Scale for Y1 and nonparametric estimates of Product-specific 
Economies of Scale for Y1 for Half-normal and Uniform Cumulative Distributions. 
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Panel A: Product-specific Scale Economies Y2 Half-normal 
Distribution  

Panel B: Product-specific Scale Economies Uniform Y2 
Distribution 

Figure 2.7 Differences between frontier Product-specific Economies of Scale for Y2 and nonparametric estimates of Product-specific 
Economies of Scale for Y2 for the Half-normal and Uniform Cumulative distributions. 
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Note: Constrained and Dropped trace out nearly identically 

 

Figure 2.8  Differences between frontier Product-specific Economies of Scale for Y1 and 
nonparametric estimates of Product-specific Economies of Scale for Y1 removing technical 
inefficiency from frontier firms. 
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Note: Constrained and Dropped trace out identically for economies of scope for the half-normal Cumulative distribution 

Panel A: Economies of Scope Half-normal Distribution  Panel B: Economies of Scope Uniform Distribution 

Figure 2.9 Differences between frontier Economies of Scope and nonparametric estimates of Economies of Scope for Half-normal 
and Uniform distributions. 
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Note: Constrained and Dropped trace out identically for Cost Efficiency in Half-normal and Uniform cases. 

Panel A: Cost Efficiency Half-normal Distribution  Panel B: Cost Efficiency Uniform Distribution 

Figure 2.10  Differences between frontier Cost Efficiency and nonparametric estimates of Cost Efficiency for Half-normal and 
Uniform Cumulative Distribution 
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Chapter 3 - A Comparison of Parametric and Nonparametric 

Estimation Methods for Cost Frontiers and Economic Measures   

 Introduction 

 The study of producer theory uses several tools for exploring the structure of cost. 

Estimates of frontier functions, and the distances that firms are from the frontier provides insight 

into how firms with similar technological access and marketing opportunities achieve different 

levels of production efficiency. Frontier estimation also provides insight for both managers and 

economists regarding where cost savings exist for multi-product output firms. Parman et al. 

illustrate that it is possible to calculate multi-product scale economies and product-specific 

economies of scale that measure the potential for cost savings through the adjustment of output 

mix using Data Envelopment Analysis (DEA). Calculations of economies of scope from frontier 

estimation estimates illustrate how savings are achieved through producing multiple outputs in 

the same firm versus each output in a separate firm.  

 Traditionally, cost functions have been estimated using parametric methods with two-

sided errors (i.e. OLS) where more efficient firms lie below the “average” frontier and less 

efficient firms lie above the “average” frontier (Christenson et. al. 1973, Diewert et. al. 1988). 

The result of such an estimation from a two-sided error model is thus an average cost function 

for the firms and not truly an estimation of the best practices (Greene 2005). Farrell (1957) used 

piece-wise linearization to envelope production data. In his analysis, all firms were either on or 

below the production frontier. In this way, the firms that reside on the frontier are relatively 

efficient, while those who resided below the frontier experience some amount of inefficiency. 

The distance from inefficient firms to the estimated frontier is calculated as a ratio of estimated 
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minimum production inputs for a given output to actual production inputs for a given output was 

then used as a metric to determine relative efficiency among firms. Later works by Farrell and 

Fieldhouse (1962), and Afriat (1972) eliminated the restriction of constant returns to scale 

technology using the nonparametric approach. Charnes, Cooper and Rhodes (1978), while 

evaluating the technical efficiency of decision making units coined the name Data Envelopment 

Analysis (DEA) used today to describe the evolved method developed by Farrell. 

 The DEA method was later augmented using the works of Samuelson (1938) and 

Shephard (1953) to highlight the dual relationship between costs and production to provide an 

envelope method to estimate relative cost efficiency among firms. Färe, Grosskopf, and Lovell 

(1985) provided a method using the dual cost approach with DEA to estimate cost efficiency. In 

this case, a cost frontier (minimum) is calculated rather than a production frontier (maximum) 

and thus efficient firms lie on the frontier, but inefficient firms lie above the frontier.   

Aigner, Lovell and Schmidt and Meeusen and Van den Broeck; and Battese and Coelli 

suggest a method of estimation known as the stochastic frontier estimation based on maximum 

likelihood. They argue that the stochastic frontier conforms more closely to economic theory 

building a frontier where the observations of cost lie either on, or above a cost frontier. Like 

traditional parametric estimation methods, the stochastic frontier method requires the 

specification of a functional form, and all the assumptions that traditional parametric estimation 

methods must satisfy remain for the function to be consistent with economic theory. Battese and 

Coelli have expanded this method to include panel estimation of a stochastic frontier using the 

software program Frontier V4.14.   

                                                 
4 Frontier V4.1 written by Tim Coelli are available online at : http://www.uq.edu.au/economics/cepa/frontier.php 
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Regression based methods with two-sided errors have been used to envelope the data 

such as the Conditional Ordinary Least Squares method (COLS) (Greene 2005), and Modified 

Ordinary Least Squares Method (MOLS) (Afriat 1972). These methods involve either altering 

the intercept (COLS) or shifting the production/cost function up/down based upon an expected 

value of the inefficiency distribution (MOLS). These methods are not without challenges and 

restrictions since the COLS method requires a homoscedastic distribution and the frontier 

function may not be the same as the minimized sum of squared errors. Also, the MOLS method 

cannot guarantee that the data is enveloped. A shift or intercept change only affects the 

calculation of the distance from the frontier calculations but does not affect calculations of 

marginal costs or incremental costs.   

A less investigated parametric method uses OLS, restricting the errors to take on only 

positive values in the case of a cost function. This method does not require any prior assumptions 

of distribution and envelopes the data. Further, since it is not a shift, it allows for the marginal 

cost calculations to be based off of a parametric curve fitted to frontier firms.   

 The nonparametric approach to frontier estimation has as a few advantages to parametric 

methods. The most important is that it envelopes the data such that it conforms to economic 

theory. That is, the cost function is the minimum cost to produce an output bundle (Mas-Colell et 

al. 1995). As mentioned above, this is a disadvantage to the traditional parametric methods. 

Another cited advantage is that it does not require the specification of a function and thus is not 

technologically restrictive. In addition, the nonparametric method does not require the imposition 

of curvature required for a cost function (Featherstone and Moss 1994).  

 Recently, studies by Chavas and Aliber (using the dual DEA method shown by Färe et al. 

1995) and Chavas et al. (2012) discuss methods for calculating economies of scope. These 
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articles developed nonparametric frontier estimation and associated incremental cost calculations 

to determine cost savings from producing multiple outputs simultaneously. However, the 

methods for calculating multi-product and product-specific scale economies nonparametrically 

are relatively new (Parman et. al.) and have not been compared to other methods. Such a 

comparison will evaluate the relative efficiency of the nonparametric approach to estimate the 

economies of scale measures.  

 This research examines the robustness of four different estimation approaches to evaluate 

their ability to estimate a “true” cost frontier and associated economic measures. The manuscript 

will evaluate three parametric methods including a two-sided error system, OLS with only 

positive errors, and the stochastic frontier method. The fourth method will be the DEA method 

(Färe et. al.) augmented to calculate multi-product and product-specific economies of scale 

(Parman et. al.). The robustness of the four estimation methods is examined using simulated data 

sets from two different distributions and two different observation quantity levels.   

 Data 

 The data for the analysis were generated using a modified Monte Carlo procedure found 

in Gao and Featherstone (2008) run on the SHAZAM software platform with the code found in 

Appendix A at the end of this document. A normalized quadratic cost function involving 3 inputs 

(x1, x2, x3) with corresponding prices (w1, w2, w3), and 2 outputs (y1, y2) with corresponding 

prices (p1, p2) was used. The normalized quadratic cost/ profit function is used since it is a self-

dual cost function and a flexible functional form (Lusk et al.). The input and output prices (wi, pi) 

are simulated randomly following a normal distribution. The assumed distributions for the output 

prices and input prices shown below were set to provide observed prices strictly greater than zero 
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with different means and standard deviations to ensure some variability in input/output quantity 

demands and relative prices. They are:  

 w1 ~ N (9, 0.99) 
 w2 ~ N (18, 1.98) 
 w3 ~ N (7, 0.77)         (3.1) 
 p1 ~ N (325, 99) 
 p2 ~ N (800, 99) 

The input price variability was set proportionate to its mean while the output prices have 

different relative variability to represent products in markets with different volatilities.  

 The outputs (yi) and inputs (xj) are determined as a function of input and output prices 

using an assumed underlying production technology. All prices are normalized on the input price 

w3 and cost is scaled by w3 to impose homogeneity. To ensure curvature holds, the “true” cost 

function is concave in input prices and convex in output quantities. The assumed parameters also 

satisfy symmetry (bij=bji). The assumed parameters (Table 3.1) are used to determine the output 

quantities y1 and y2
5.  The general form of the normalized quadratic cost function is: 
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  (3.2) 

 Output quantities (shown below) are calculated using the assumed parameters of the cost 

function (Table 3.1) and the output prices generated in equation 3.1.  
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  (3.3) 

                                                 
5 The analysis also was completed for alternative assumptions on input. 
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 Using Equation 3.2, a positive random cost deviation term is added to the cost function 

following a half-normal distribution that alters the cost efficiency where the absolute value of e 

is distributed e~N (0,1000)6. The inclusion of this term adds cost inefficiency to the data such 

that firms are off the frontier effectively increasing their production cost while keeping the 

output quantities the same.  The level of inefficiency is half-normally distributed. 

 An additional data set7 is generated assuming a uniform distribution. The uniform 

deviation ranged from zero to 900. The normal distribution standard deviation of 1,000 generates 

a mean and standard deviation for cost efficiency roughly equivalent to a uniform distribution 

with a range from zero to 900.  

 From equation 3.2, and using Shephard’s Lemma where (∑C(W,Y)/∑wi)=xi, the factor 

demands for inputs x1 and x2 are recovered. Factor demand for x3 is found by subtracting the 

product of quantities and prices for x2 and x3 from the total cost.  
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  (3.4) 

The input quantities (xi’s) are then adjusted (xi
a) by the cost efficiency (CE) effectively 

increasing the input demands proportionate to the costs generated for each firm (equation 3.5). 

 a i
i

x
x

CE
   (3.5) 

 Using the above method, 400 observations were simulated where firms produce a 

combination of both outputs. Fifty firms were generated producing only y1 with another 50 firms 

producing only y2 which is accomplished by restricting either y1 or y2 to equal zero and re-

                                                 
6 The analysis also examined alternative normal standard deviations. 
7 The analysis was run using 2500 observations. The results were robust for 500 and 2500 observations 



57 

 

running the simulation for 50 separate observations each. Thus, a total of 500 observations were 

generated with summary statistics shown in Table 3.2. In Table 3.2, xi
n represents inefficient 

input quantities for the normal error distribution and xi
u represent the inefficient input quantities 

for the uniform distribution. The summary statistics for the multi-product scale, product-specific 

scale, scope, and cost efficiencies for each data point from the “true” cost function are shown in 

Table 3.3. Summary statistics for the economic measures are independent of the distribution of 

cost “inefficiency”. Figures 3.1 through 3.4 provide a visual representation of the multi-product 

scale and scope economies as well as cost efficiencies and product-specific scale economies 

calculated from the “true” cost function. 

 While the cost efficiency for each firm is altered under a uniform versus a half-normal 

distribution (Figure 3.2), the MPSE, PSE’s, and economies of scope are identical for each data 

point (Table 3.3) for the “true” cost function due to the input prices (wi’s) and output prices (pi’s) 

being the same. Thus, the output quantities (yi’s) remain unchanged (Equation 3.3). The input 

quantities (xi’s) are adjusted such that the deviation in input quantity used by each firm is 

uniformly distributed. In effect, the uniform data evenly distributes the quantity of firms at each 

relative distance from the frontier, rather than most firms being clustered around the mean 

distance as in the half-normal case. 

 A third data set is simulated using the half-normal distribution. This set uses the same 

data points as the half-normal case but excludes the single output firms. In this set, there are 400 

firms each producing both y1 and y2. This data is used to evaluate each method’s ability to 

estimate incremental costs accurately when no zero output firms are observed in the data.   

 The difference between the “true” estimates and each of the four methods are evaluated. 

This is done by subtracting each model’s estimate from the “true” measure calculated with 
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Monte Carlo simulation. Since an approximation of the “true” measure is key, the statistics 

reported are the difference between the “true” measures and what was estimated by each method. 

Using this approach, any possible bias from each approach can be determined. A positive 

difference implies that the model underestimates the measure being evaluated and conversely, a 

negative difference indicates the model overestimates the measure being evaluated. The mean 

absolute deviation is also reported for all four methods allowing for the comparison of average 

absolute deviation from zero. 

 Cumulative density functions are presented for the differences between the true measures 

and the estimated measures to produce visual representation of both bias and deviation. If there is 

no difference between the estimated measure and the true measure, the cumulative density 

function is a vertical line at zero. 

 Estimation Methods 

 The Two-Sided Error System Equation 

The traditional two-sided error system involves specification of a cost function and single 

frontier of input quantities and costs from observed prices and outputs. This method fits a curve 

with observations residing both above and below the fitted curve. The two-sided error method 

for this study was estimated using the SHAZAM software package using a normalized quadratic 

cost function with input prices normalized on w3 (equation 3.6).   
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Once the parameters shown in Equations 3.6 and 3.7 are estimated, the marginal costs are 

calculated by:  
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 (3.8)  

For the normalized quadratic function with two outputs, the incremental costs for each output 

are: 
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The costs of producing a single output are: 
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 Once the marginal costs, incremental costs, and single output costs have been estimated, 

the multi-product scale economies (MPSE), economies of scope (SC), and product-specific scale 

economies (PSEyi) can be calculated:  
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  Cost efficiency is not calculated for the two-sided error system since the deviations from 

the “frontier” are two sided.   

 The OLS Estimator with Positive Errors 

A one-sided error model is estimated similar to the two-sided error model with the 

difference being the error term is one sided and input demand equations (3.7) are not estimated. 

Equation 3.6 is estimated with the restriction that ei ≥0 for all i using the General Algebraic 

Modeling Software (GAMS) program. The objective function minimizes the sum of squared 

errors subject to constraints that define the error. Firms on the frontier exhibit errors equal to 

zero while those with inefficiency exhibit positive errors. The calculations of MPSE, PSE, and 

SC are identical to the two-sided error model using the coefficient estimates from the one-sided 

error model. 

 The Stochastic Frontier Cost Function Estimator 

The stochastic frontier estimation method uses FRONTIER Version 4.1 by Coelli. It is 

based off the stochastic frontier methods of Battese and Coelli (1992, 1995) and Schmidt and 

Lovell (1979). One of the primary differences between the stochastic frontier method and the 

OLS two-sided error method is the error term. Specifically, the error term consists of two 

elements, Vit which are random variables assumed to be iid N(0, 2), and Uit which is a non-

negative random variable capturing inefficiency. Uit is assumed to be half-normal for this 

analysis and defines how far above the frontier a firm operates. The resulting cost function is:  
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For simplicity 3.14 can be rewritten as follows: 

  ( , )i i i iC W Y X B V U    (3.15)  

The cost efficiency (CE) from the stochastic frontier method takes on a value between 

one and infinity since Ui ≥ 0. The cost efficiency from the nonparametric method and the one-

sided error model is evaluated by taking the minimized total costs estimate dividing it by the 

actual total costs resulting in cost efficiency estimates between 0 and 1. 

 i

i i

X B
CE

X B U



  (3.16) 

The calculations of marginal costs, incremental costs, the MPSEs, the PSEs, and the 

economies of scope are the same as those shown in the two-sided error model above using the 

estimated parameters.  

Each of the methods used to estimate the dual cost function are parametric. Symmetry 

and homogeneity are imposed in the estimation process. Curvature and monotonicity are not and 

in an empirical estimation they would need to be examined to ensure the cost function estimated 

is consistent with economic theory. 

 The Nonparametric Approach 

 The nonparametric approach for estimating multi-product scale, product-specific scale 

and scope economies follow Parman et al. (2013). The cost (Ci) is determined for each firm 

where costs are minimized for a given vector of input prices (wi) and outputs (yi) with the choice 

being the optimal input bundle (xi
*).   
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where there are “n” producers. The vector Z represents the weight of a particular firm with the 

sum of Zi’s equal to 1 for variable returns to scale. From the above model, the costs and output 

quantities can be estimated. The output quantities (yi) constrain the cost minimizing input bundle 

to be at or above that observed in the data. Total cost from the model (Ci) is the solution to the 

cost minimization problem including the production of all outputs for the ith firm. The cost of 

producing all outputs except one (Ci,all-p) where p is the dropped output and is determined by 

either forcing one of the outputs to equal zero or by dropping the pth output constraint.   

 Cost efficiency identifies a firm’s proximity to the cost frontier for a given output bundle. 

It is the quotient of the estimated frontier cost (Ci) and the actual cost (ATCi) the firm incurred 

producing their output bundle.  
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  (3.18) 

The calculation for economies of scope are: 
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The calculation of multi-product economies of scale uses the shadow prices on the output 

constraints (3.17) to calculate marginal cost. MPSE is then: 
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Product specific economies of scale (PSE) require the calculation of the incremental costs (ICi,p): 

 , ,i p i i j p
j

IC C C j     (3.21) 

Average incremental costs (AICi,p) are determined by dividing incremental costs by individual 

output: 
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Using the average incremental cost and the marginal cost calculation above, the PSEs are:  
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 When estimating the frontier nonparametrically using a data set with no single output 

firms, it is not possible to estimate the incremental costs by forcing one of the output constraints 

to zero (Equation 3.17). Thus, the only alternative is to drop one of the constraints. However, 

when an output constraint is dropped, the program may allow some of the output for the dropped 

constraint to be produced resulting in an overstatement of the cost of that one output (Ci,p) which 

will cause an over statement of economies of scope (equation 3.19) and an understatement of 

product specific scale economies (3.23). 

 Thus, the additional product-specific production costs from an output being produced 

when it shouldn’t must be. The procedure for adjusting in a two goods case is as follows: the cost 

of producing y1 only (Ci,1) assumes that only (y1
1) is being produced. However, the optimization 

program allows some yi,2
1

 to be produced in this situation overstating the cost of producing y1 
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only (Ci,1). To remove the additional cost, the percentage contribution of yi,1
1 to cost is multiplied 

by the cost of producing y1 only, yielding an adjusted cost (Ca
i,1). This new adjusted cost is then 

used in the calculation of incremental costs and associated economic measures: 
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  (3.24) 

 The analysis evaluates the difference between the “true” measures of cost efficiency, 

economies of scope (scope), multi-product scale economies (MPSE), and product-specific 

economies of scale (PSE) from the four modeling approaches. The statistics and results presented 

are not the economic measure calculations but the difference between the model estimates and 

the “true” measure.  

 The parametric estimators are specified knowing the “true” functional form: the 

normalized quadratic cost function. Therefore, the differences may represent a “best case 

scenario” for each parametric method in that the true functional form is known with only the 

parameter estimates being unknown.  

 Results 

 Table 3.4 shows the parameter estimates and standard errors for the parametric methods 

for all three data sets. The parameter estimates from each method were different under the same 

distributional assumptions, and different for the same method under different distributional 

assumptions with the exception of the OLS positive errors model which yielded the same 

parameter estimates for the uniform and half-normal distributions. For both the two-sided error 

system, and the stochastic frontier estimation, different distributional assumptions yielded 

changes in magnitude as well as sign changes for various parameter estimates. Also, when 
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comparing the 500 observation half-normal case to the 400 observation half-normal with no zero 

outputs case, there were changes for all three estimation methods as well as changes in 

magnitude for the estimated parameters. The calculation for the standard errors using GAMS was 

conducted using the method from Odeh et. al. (2010). 

 Curvature was checked for each estimation method and each simulation to ensure that it 

was not violated (Table 3.5).  A curvature violation implies that the shape of the cost frontier 

estimation does not conform to the “true” cost function which is known in this case, and that it 

violates the economic theory of the cost function. To check these conditions, the eigenvalues are 

calculated for the “b” (price) and “c” (output) matrices where the eigenvalues for “b” should be 

negative (concave in prices) and “c” values should be positive (convex in outputs). Each 

parametric model violated curvature in every simulation for either the “b” or “c” matrices or 

both. The one-sided error model and the two-sided system violated curvature of both the “b” and 

“c” matrices for the 400 observations simulation. 

 Cost Efficiency 

 Cost efficiency differences evaluate each model’s ability to estimate the frontier since it 

is the ratio of estimated minimum cost to actual total cost. The two-sided error model was not 

examined because it does not estimate a frontier. The OLS Positive Errors and Nonparametric 

models performed well for all three data sets in estimating the frontier with average differences 

below 0.03 in absolute value and standard deviations below 0.04 (Table 3.6). The most accurate 

estimation of cost efficiency was the nonparametric model under the uniform distribution 

simulation with the average, standard deviation, and mean absolute deviation close to zero.   
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 The stochastic frontier method performed almost as well under the half-normal 

simulation with the average closest to zero, and under the 400 observation simulation with an 

average difference of -0.028 but much worse under the Uniform simulation (Figure 3.5) with an 

average difference of -0.198, mean absolute deviation of 0.198, and standard deviation of 0.118. 

This implies that estimating efficiency measures with the stochastic frontier method may be 

dependent on the correct assumption of the error distribution. 

 In all cases, the average differences were below zero implying that the OLS positive 

errors, Stochastic Frontier, and Nonparametric models slightly over estimated the cost 

efficiencies for most of the firms. This is confirmed by examining the mean absolute deviation in 

the uniform and 400 observations cases being the same the absolute value of the mean. This is 

expected given the simulation procedure. Frontier methods envelope the observed data, thus cost 

efficiencies are overestimated unless there are a significant number of firms where the simulated 

error is zero. However, the averages were close to zero in most cases with low standard 

deviations. 

 Economies of Scope 

 Differences in estimates of economies of scope for the four different methods raised more 

issues than the cost efficiency estimates. For the half-normal and uniform simulations, the two-

sided error system had an average furthest from zero at -0.30 in with a standard deviation similar 

to the other methods (Table 3.7). For the 400 observation simulation, the Stochastic Frontier 

Method was furthest from zero at -2.32. Due to scaling, the stochastic frontier method 

cumulative density is not visible in Figure 3.6 for the 400 observations case. 
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 The OLS Positive Errors Model and Nonparametric Model estimated economies of scope 

closely with averages for the half-normal distribution of -0.08 and -0.09 respectively and 

standard deviations around 0.07 and 0.03 respectively (Table 3.7). The estimates of scope for the 

uniform distribution from the OLS Positive Errors Model and Nonparametric Model were less 

than 0.02 in absolute value with low standard deviations. The average and standard deviation for 

the Nonparametric method under the uniform distribution were affected by a few observations 

being significantly off (Figure 3.6). For the 400 observation data set, the Nonparametric method 

had the lowest standard deviation (0.04) and an average closest to zero in absolute value (0.07) 

(Table 3.7).   

 The three parametric estimation methods over estimated economies of scope in all 

simulations except for the case of a normal distribution where the OLS Positive Errors Model 

under estimated economies of scope slightly. In many cases, the parametric methods strictly over 

estimated scope where the absolute values of the means were the same as the mean absolute 

deviations (Table 3.7). The Nonparametric Model slightly over estimated scope in both the half-

normal and uniform simulations but slightly underestimated scope in the 400 observations data 

set.  

 The most robust estimator of economies of scope appears to be the Nonparametric 

approach with averages close to zero in all three simulations and low standard deviation. The 

OLS Positive Errors Model does not perform as well in the case of 400 observations simulation, 

nor does the Stochastic Frontier Model and the standard Two-sided Error System under the half-

normal and uniform simulations. Measures of economies of scope are suspect using any of the 

methods when there are no zero output observations in the data sample. 
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 Multi-product Economies of Scale 

 An accurate estimation of MPSE requires both a close approximation of the true frontier 

and marginal costs. It is possible to have a very good approximation of MPSE but be off on 

economies of scope and PSEs due to the necessary estimation of incremental costs for scope and 

the PSEs. 

 The nonparametric approach appears to be the most robust estimator of MPSE (Figure 

3.7). It has an average difference closest to zero in all three simulations and the lowest standard 

deviation in both the half-normal case and 400 observation cases (Table 3.8). Its mean absolute 

deviation is also lowest except compared to the OLS Positive Errors model under the uniform 

distribution. The standard deviation was only slightly higher for the nonparametric approach 

compared to the OLS Positive Errors model in the uniform case with a standard deviation of 0.05 

for the Nonparametric model and 0.04 for the OLS Positive Errors model (Table 3.8). All 

average differences except OLS Positive Errors in the uniform case were negative implying that 

MPSE was, for the most part, over estimated by the models. 

 Of the four modeling methods in all three simulations, the two-sided error system had the 

largest average differences from zero and the highest standard deviations (Table 3.8). No 

observations were correctly estimated for MPSE (Figure 3.7) in any of the three simulations. The 

standard two-sided system approach never approaches the zero difference. 

 The Stochastic Frontier method results were mixed. While it was out performed by the 

nonparametric approach in all simulations, it was close to the “true MPSE’ in the case of the 400 

observations. However, in the uniform distribution simulation, it did not perform well with an 

average difference of -0.21 and standard deviation of 0.26 (Table 3.8). 
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 Product-Specific Economies of Scale 

 The estimation of the PSEs for both y1 and y2 for the half-normal and uniform simulations 

yielded similar results for all three parametric type estimations (Table 3.9). The parametric 

approaches appear to slightly outperform the nonparametric approach in the estimation of PSE1 

(Figure 3.8 Panel A) in the half-normal simulation but performed similarly in the estimation of 

PSE2 (Figure 3.8 Panel B) under the same distribution in terms of absolute distance from zero. 

For the uniform simulation, the PSE1 and PSE2 estimates from the Nonparametric Model were 

similar to both the Stochastic Frontier Method and the two-sided error systems with the OLS 

Positive Errors Model being the closest to zero under the uniform simulation (Table 3.9). 

 Under the half normal and the uniform simulations, the two-sided error system and the 

stochastic frontier underestimated PSE’s for y1 and y2. OLS Positive Errors under estimated PSEs 

under both distributions except for the half-normal PSE1. In the 400 observation simulation, OLS 

overestimated both PSEs where that was not the case for the Nonparametric Model and OLS 

Positive Errors Model. 

 The average difference and standard deviation for the PSEs from the Stochastic Frontier 

Method in the 400 observation simulation are off significantly (Table 3.9). Of the parametric 

methods, it appears that two-sided error system performed best when there were no single output 

firms having the lowest standard deviations and averages fairly close to zero, especially for PSE2 

(Figure 3.9 Panel B). 

 In the 400 observations simulation, while the standard deviation was higher for the 

nonparametric method than OLS and OLS Positive Errors, the average for PSE1 was closest to 

zero using the nonparametric method and closer than OLS Positive Errors and the Stochastic 
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Frontier Method for PSE2 (Table 3.9).  None of the methods accurately predict the PSEs when 

there were no zero observations (Figures 3.8 and 3.9, panel C). 

 The challenge for each model in the 400 observations simulation is that there are no firms 

producing only a single output. This requires each method to extrapolate estimates out of sample 

for the purpose of calculating incremental costs.  If the smallest firms are not efficient, a linear 

projection will be inaccurate depending on the amount of inefficiency of the smaller firms. 

 Implications of the Results 

 Results suggest the two-sided error system is least accurate for estimating a frontier 

function and associated cost measures. This method lacks consistency with the economic 

definition of a cost function. This is apparent in that it does not, in any simulation, robustly 

estimate the MPSE or the economies of scope. 

 The stochastic frontier method appears susceptible to incorrect distributional assumptions 

on the one sided error as it estimates the frontier much closer to the “true” frontier under a half-

normal distribution rather than the uniform distribution. Results also suggest that the stochastic 

frontier method has difficulty extrapolating when there are no zero output firms as shown by its 

inability to accurately estimate economies of scope or PSEs for the 400 observations simulation. 

However, in the case of a normal distribution it accurately estimates the frontier and, with the 

existence of zero output observations, accurately estimates economies of scope and PSEs. 

 The OLS positive errors model appears to accurately project the cost frontier regardless 

of the distributional assumption and whether there are no single output firms.  However, like the 

stochastic frontier method, the OLS positive errors method has difficulty extrapolating when 
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there are no single output firms. Thus, under no single output cases, the economies of scope 

estimations from the positive errors model may be incorrect, as may be PSE estimates.   

 The nonparametric method in all three simulations is fairly robust in estimating the “true” 

cost frontier and associated economic measures. It is also the model most capable of handling 

data with no single output firms as shown by its proximity to zero in estimating economies of 

scope and PSEs. It does not appear to be particularly susceptible to distributional assumptions. 

 It is important to remember that all of the parametric methods used the correct function 

form (normalized quadratic). These results may be different should the data not be consistent 

with that functional form. Functional form and statistical assumptions are not necessary in the 

case of the nonparametric method, thus, the results will likely be more robust. Therefore, if a 

researcher is unsure of model specification or the data generation process, the nonparametric 

approach may be a good alternative to parametric estimation. 

 Conclusions  

 Four methods for estimating a cost frontier and associated economic measures were 

examined under three different simulations including a half-normal distribution, uniform 

distribution, and a data set with no single output firms. The first method examined was a 

traditional two-sided error system regression with costs residing above and below the fitted 

curve. The second was the stochastic frontier method initially proposed by Aigner, Lovell, and 

Schmidt where the error term ensures all observations lie on or above the cost frontier. The third 

method was an OLS regression where the error term was restricted to take on positive values 

only ensuring that all observations lie on or above the cost frontier. Finally, a nonparametric 

DEA method proposed by Färe et. al. using a series of linear segments was used to trace out a 
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cost frontier. For each simulation, cost efficiency, economies of scope, multi-product scale 

economies, and product specific scale economies were calculated and compared to the known 

values from the “true” cost frontier.   

 The results show that the three frontier estimators are capable of estimating the “true” 

frontier in some simulations however; the stochastic frontier method was not as robust as the 

nonparametric method or the OLS Positive Errors Model. This result was also observed in the 

calculation of multi-product scale economies where all three frontier functions estimated the 400 

observations data set and the half-normal data set close, whereas the Stochastic Frontier Model 

was not. The OLS method could not estimate a frontier and corresponding cost efficiency and 

was the furthest from the “true” calculation of multi-product scale economies indicating it was 

not close in estimating marginal cost. 

 The Stochastic Frontier Model appears to be less robust for estimating the “true” 

measures that require calculating incremental costs such as economies of scope and product-

specific scale economies. Though the two-sided error model was less accurate in obtaining the 

“true” estimates in the half-normal and uniform simulations, the Stochastic Frontier method was 

less accurate in estimating scope economies or product specific economies of scale when there 

were no single output firms. 

 Overall, the nonparametric approach estimated the frontiers and associated economic 

measures close to the “true” values considering no special assumptions or specifications were 

required in its estimation. It’s estimation of the frontier was about as close, or closer to the “true” 

values as any of the methods examined and its calculations of MPSE and economies of scope 

were the closest in several of the scenarios presented. The nonparametric approach did not 
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significantly fail to estimate PSEs compared to any other method. Therefore, it appears that the 

DEA method is robust for estimating scale and scope measures. 
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 Chapter 3 Tables 

 

 

 

 

 

Table 3.1 Assumed coefficients used in cost function for data simulation for half-normal and 
uniform distributions. 
Coefficient Value 
A1 30.0 
A2 80.0 
A11 0.50 
A12 1.00 
A21 0.6 
A22 0.50 
B0 20.0 
B1 10.0 
B2 35.0 
B11 -0.09 
B12 -0.15 
B22 -0.47 
C11 1.44 
C12 -0.24 
C22 2.29 
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Table 3.2 The average, standard deviation, minimum and maximum for the input/output 
quantities and input prices in half-normal (xi

n) and uniform (xi
u) cases. 

N=500 Average Standard Deviation Minimum Maximum

x1
n 42.29 11.95 13.35 88.33 

x2
n 69.85 23.29 38.44 268.76 

x3
n 2602.60 1154.75 152.95 8083.87 

x1
u 36.93 8.644 14.06 68.89 

x2
u 60.16 10.25 38.43 136.13 

x3
u 2302.06 1027.79 147.92 6585.05 

w1 
9.05 0.98 5.42 11.98 

w2 
17.95 1.88 13.15 24.70 

w3 
6.98 0.78 4.85 9.75 

y1 
11.67 5.90 0.00 30.19 

y2 
14.31 7.53 0.00 37.92 
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Table 3.3 Summary statistics for efficiency calculations from generated data including half-
normal and uniform distributions.  

Economic Measure Average 
Standard 
Deviation Minimum Maximum 

------Half-normal Distribution------ 
Multi-product Scale 
Economies 
 

0.931 0.108 0.772 1.989 

Cost Efficiency 0.721 0.177 0.129 1.000 

Scope 0.096 0.051 0.037 0.513 

Product-specific Scale 
Economies for y1 
 

0.728 0.246 0.000 0.957 

Product-specific Scale 
Economies for y2 

0.763 0.257 0.000 0.995 

------Uniform Distribution------ 

Cost Efficiency 0.799 0.133 0.268 1.000 

------400 Observations------ 

Multi-product Scale 
Economies 

0.918 0.082 0.773 1.989 

Cost Efficiency 
0.751 0.159 0.129 1.000 

Scope 
0.085 0.028 0.062 0.514 

Product-specific Scale 
Economies for y1 
 

0.808 0.047 0.678 0.957 

Product-specific Scale 
Economies for y2 

0.848 0.041 0.733 0.996 

Note: Economies of Scope, Multi-product Scale Economies, and Product-specific Scale 
economies are identical for the half-normal and uniform distributions 
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Table 3.4 Parameter estimates and standard errors for three simulations of each parametric model  

 N= 500 Half-Normal Distribution N=500 Uniform Distribution N=400 No Zero Outputs 

 
Two-sided 

Errors 
One-sided 

Errors 
Stochastic 
Frontier 

Two-sided 
Errors 

One-sided 
Errors 

Stochastic 
Frontier 

Two-sided 
Errors 

One-sided 
Errors 

Stochastic 
Frontier 

A1 

 
28.83 
(4.67) 

56.05 
(3.61) 

32.00 
(27.32) 

29.77 
(2.05) 

56.05 
(1.88) 

28.90 
(3.74) 

60.92 
(23.12) 

76.82 
(5.24) 

302.28 
(12.03) 

A2 

 

79.33 
(3.83) 

88.39 
(2.75) 

46.05 
(21.10) 

80.18 
(1.62) 

88.39 
(1.43) 

78.24 
(4.41) 

52.38 
(17.58) 

54.74 
(4.40) 

-221.34 
(10.46) 

A11 

 

0.49 
(0.05) 

-9.73 
(2.42) 

2.91 
(19.55) 

0.47 
(0.04) 

-9.73 
(1.26) 

3.04 
(1.85) 

1.17 
(0.39) 

24.21 
(3.51) 

-45.54 
(22.64) 

A12 

 

0.67 
(0.19) 

-3.83 
(1.39) 

-7.58 
(11.78) 

0.56 
(0.08) 

-3.83 
(0.72) 

1.31 
(1.57) 

1.91 
(0.75) 

-16.74 
(1.78) 

-88.03 
(21.90) 

A21 

 

0.54 
(0.69) 

-5.00 
(1.71) 

1.69 
(14.72) 

0.76 
(0.03) 

-5.00 
(0.89) 

4.45 
(1.59) 

0.12 
(0.29) 

-34.24 
(2.71) 

65.82 
(18.24) 

A22 

 

-1.16 
(0.15) 

0.44 
(1.13) 

5.61 
(9.84) 

-0.39 
(0.07) 

0.44 
(0.58) 

1.66 
(1.26) 

-1.67 
(0.59) 

-0.99 
(1.50) 

78.41 
(18.03) 

B0 

 

684.95 
(60.23) 

360.20 
(100.29) 

-2011.12 
(42.22) 

401.01 
(26.66) 

360.20 
(52.15) 

460.56 
(1.34) 

689.81 
(80.79) 

-194.91 
(42.64) 

-4270.54 
(1.82) 

B1 

 

26.18 
(26.17) 

-267.67 
(104.00) 

1833.84 
(107.89) 

20.20 
(0.75) 

-267.67 
(54.07) 

12.97 
(1.17) 

25.65 
(1.74) 

103.79 
(46.62) 

3225.37 
(8.11) 

B2 

 
70.13 
(5.25) 

-200.80 
(66.17) 

825.29 
(104.11) 

57.29 
(2.34) 

-200.80 
(34.40) 

48.74 
(1.71) 

68.61 
(4.74) 

56.44 
(26.04) 

2109.47 
(6.91) 

B11 

 

0.34 
(0.18) 

46.59 
(89.08) 

-834.08 
(74.46) 

-0.09 
(0.08) 

46.59 
(46.36) 

-65.45 
(1.00) 

0.12 
(0.17) 

-210.43 
(34.17) 

-529.61 
(8.11) 

B12 

 

0.83 
(0.51) 

143.01 
(34.06) 

-297.13 
(62.21) 

0.20 
(0.23) 

143.01 
(20.21) 

-28.37 
(1.05) 

0.22 
(0.50) 

195.80 
(14.26) 

-1076.81 
(10.09) 

B22 

 

2.85 
(1.88) 

27.48 
(26.88) 

-135.50 
(114.14) 

0.64 
(0.87) 

27.48 
(14.90) 

-8.34 
(1.17) 

0.25 
(1.80) 

2.74 
(10.34) 

-283.21 
(13.61) 

C11 

 

2.29 
(0.15) 

1.64 
(0.18) 

2.20 
(1.25) 

1.76 
(0.06) 

1.64 
(0.09) 

2.05 
(0.50) 

-0.35 
(1.67) 

-1.41 
(0.64) 

22.91 
(13.05) 

C12 

 
-0.78 
(0.53) 

-0.25 
(0.07) 

0.10 
(0.35) 

-0.48 
(0.02) 

-0.25 
(0.04) 

-0.75 
(0.19) 

1.40 
(1.25) 

0.013 
(0.53) 

-15.66 
(8.36) 

C22 

 
3.13 

(0.68) 
2.41 

(0.12) 
3.16 

(0.78) 
2.66 

(0.04) 
2.41 

(0.06) 
2.38 

(0.32) 
1.32 

(0.97) 
6.40 

(0.43) 
14.66 
(5.63) 
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Table 3.5 Eigenvalues for “B” (prices) and “C” (outputs) matrices for each model and 
simulation  

Half-Normal Uniform No Zero Outputs

B C B C B C 

------Two-sided Error System------ 

3.09 3.50 0.70 2.80 0.41 2.10 

0.09 1.80 -0.10 1.50 -0.40 -1.14 

X √ X √ X X 

------Stochastic Frontier------- 

-37.0 3.20 3.10 2.90 677 34.8 

-931 -2.20 -76.0 1.40 -1489 2.60 

√ X X √ X √

------OLS Positive Errors------ 

180 2.40 180 2.40 118 6.00 

-106 1.50 -106 1.50 -325 -1.50 

X √ X √ X X 

Note: The known cost function is concave in prices (B matrix) and convex in outputs(C 
matrix). For concavity, the matrix must yield negative eigenvalues and for convexity the 
matrix must yield positive eigenvalues. A “√” implies correct curvature while “X” 
implies a curvature violation. 
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Table 3.6 Statistics for simulated cost efficiency differences for the OLS positive errors, 
stochastic frontier, and nonparametric estimations  
 Average Standard 

Deviation 
Minimum Maximum Mean 

Absolute 
Deviation 

------Half-normal Distribution------ 
OLS Positive Errors 
 

-0.020 0.039 -0.277 0.063 0.023 

Stochastic Frontier 
 

-0.015 0.043 -0.304 0.155 0.024 

Nonparametric 
 

-0.025 0.041 -0.530 -0.003 0.026 

------Uniform Distribution------ 
OLS Positive Errors 
 

-0.011 0.013 -0.062 0.122 0.013 

Stochastic Frontier 
 

-0.198 0.118 -1.478 -0.058 0.198 

Nonparametric 
 

-0.004 0.007 -0.079 0.000 0.004 

------400 Observations------ 
OLS Positive Errors 
 

-0.017 0.023 -0.173 0.015 0.017 

Stochastic Frontier 
 

-0.028 0.049 -0.351 0.139 0.039 

Nonparametric 
 

-0.022 0.032 -0.386 -0.003 0.022 
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Table 3.7 Statistics for economies of scope differences from all four methods from all three data 
sets. 
 Average Standard 

Deviation 
Minimum Maximum Mean 

Absolute 
Deviation 

------Half-normal Distribution------ 

Two-sided Error System -0.300 
 

0.057 -0.474 -0.194 0.300 

OLS Positive Errors -0.082 
 

0.067 -0.291 0.093 0.088 

Stochastic Frontier -0.101 
 

0.056 -0.266 0.052 0.103 

Nonparametric -0.089 
 

0.030 -0.249 0.029 0.089 

------Uniform  Distribution------ 

Two-sided Error System -0.300 
 

0.058 -0.489 -0.191 0.300 

OLS Positive Errors 0.010 
 

0.023 -0.044 0.190 0.018 

Stochastic Frontier -0.158 
 

0.041 -0.312 -0.091 0.158 

Nonparametric -0.019 
 

0.079 -0.904 0.017 0.020 

------400 Observations------ 

Two-sided Error System -0.148 
 

0.115 -0.437 0.152 0.175 

OLS Positive Errors -0.187 
 

0.053 -0.376 -0.048 0.187 

Stochastic Frontier -2.324 
 

0.607 -4.109 -0.142 2.324 

Nonparametric 0.070 
 

0.036 0.025 0.514 0.070 
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Table 3.8 Statistics for Multi-product Scale Economies differences from all four methods from 
all three data sets. 
 Average Standard 

Deviation 
Minimum Maximum Mean 

Absolute 
Deviation 

------Half-normal Distribution------ 

Two-sided Error System -0.443 
 

0.361 
 

-2.917 
 

-0.067 
 

0.443 

OLS Positive Errors -0.257 
 

0.658 
 

-5.995 
 

0.104 
 

0.272 
 

Stochastic Frontier -0.084 
 

0.183 
 

-1.577 
 

0.107 
 

0.107 
 

Nonparametric -0.002 
 

0.096 
 

-0.678 
 

0.739 
 

0.049 
 

------Uniform Distribution------ 

Two-sided Error System -0.482 
 

0.609 
 

-7.857 
 

-0.068 
 

0.482 
 

OLS Positive Errors 0.023 
 

0.044 
 

-0.124 
 

0.515 
 

0.027 
 

Stochastic Frontier -0.210 
 

0.258 
 

-3.384 
 

-0.030 
 

0.210 
 

Nonparametric -0.012 
 

0.054 
 

-0.277 
 

0.114 
 

0.029 
 

------400 Observations------ 

Two-sided Error System -0.371 
 

0.300 
 

-4.642 
 

-0.065 
 

0.371 

OLS Positive Errors -0.087 
 

0.131 
 

-1.331 
 

0.105 
 

0.103 

Stochastic Frontier -0.074 
 

0.152 
 

-0.727 
 

0.177 
 

0.118 

Nonparametric -0.009 
 

0.137 
 

-0.821 
 

0.743 
 

0.058 
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Table 3.9 Statistics for Product-specific Scale Economies differences for y1 and y2 from all four 
methods and all three data sets 
 Average Standard 

Deviation
Minimum Maximum Mean 

Absolute 
Deviation

 ------Half-normal Distribution------ 
 Two-sided Error System 0.099 0.024 0.047 0.147 0.099 
y1 OLS Positive Errors -0.056 0.039 -0.130 0.140 0.064 
 Stochastic Frontier 0.111 0.018 0.081 0.176 0.111 
 Nonparametric 

 
0.128 
 

0.202 
 

-0.259 
 

0.573 
 

0.202 
 

 Two-sided Error System 0.053 0.011 0.022 0.081 0.053 
y2 OLS Positive Errors 0.075 0.016 0.037 0.148 0.075 
 Stochastic Frontier 0.060 0.006 0.004 0.072 0.060 
 Nonparametric 

 
0.027 
 

0.099 
 

-0.344 
 

0.303 
 

0.085 
 

 ------Uniform Distribution------ 
 Two-sided Error System 0.098 0.025 0.024 0.147 0.098 
y1 OLS Positive Errors 0.012 0.013 -0.012 0.049 0.013 
 Stochastic Frontier 0.056 0.018 0.012 0.093 0.056 
 Nonparametric 

 
0.020 
 

0.123 
 

-0.241 
 

0.299 
 

0.097 
 

 Two-sided Error System 0.052 0.011 0.002 0.075 0.052 
y2 OLS Positive Errors 0.005 0.002 0.000 0.011 0.005 
 Stochastic Frontier 0.004 0.004 -0.008 0.012 0.005 
 Nonparametric 

 
-0.004 
 

0.053 
 

-0.186 
 

0.126 
 

0.039 
 

 ------400 Observations------ 
 Two-sided Error System -0.218 0.054 -0.368 -0.048 0.218 
y1 OLS Positive Errors -0.421 0.296 -4.110 -0.066 0.421 
 Stochastic Frontier 1.696 32.94 -619.9 120.5 6.480 
 Nonparametric 

 
0.187 
 

0.310 
 

-0.311 
 

0.957 
 

0.266 
 

 Two-sided Error System -0.036 0.015 -0.086 0.000 0.036 
y2 OLS Positive Errors 0.302 0.028 0.042 0.373 0.302 
 Stochastic Frontier -9.224 248.9 -4952 444.3 18.15 
 Nonparametric 0.132 0.209 -0.248 0.937 0.183 
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Chapter 3 Figures 

 

 

 

 
Note: the MPSE calculations for both the half-normal and uniform error distribution is identical. 

Figure 3.1 Frontier Multi-Product Scale Economies Cumulative Frequency for Simulated Data.  
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Figure 3.2 Frontier Cost Efficiencies Cumulative Frequency for both Half-normal and Uniform 

Distributions. 
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Note: The Economies of Scope calculations for both the half-normal and uniform error distribution is identical. 

 

Figure 3.3  Frontier Economies of Scope Cumulative Frequency 
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Note: The PSE calculations for Y1 and Y2 for both the half-normal and uniform error distribution are identical 

 

Figure 3.4 Frontier Product-Specific Scale Economies 
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Panel A: Half-normal Distribution 

 
Panel B: Uniform Distribution 

Panel C: Differences 400 Observations 

Figure 3.5 Differences between frontier cost efficiency and estimated cost efficiency for the 
nonparametric, frontier, and OLS positive errors models 
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Panel A: Half-normal Distribution 

 
Panel B: Uniform Distribution 

 
Panel C: 400 Observations 

Figure 3.6 Differences between frontier Economies of Scope and estimated Economies of Scope 
from Two-sided Errors, OLS Positive Errors, Frontier, and Nonparametric models. 
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Panel A: Half-normal Distribution 

Panel B: Uniform Distribution 

 
Panel C: 400 Observations 

 
Figure 3.7 Differences between frontier Multi-product Scale Economies and estimated Multi-
product Scale Economies from the Two-sided Errors, OLS Positive Errors, Frontier, and 
Nonparametric models. 
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Panel A: Y1 Half-normal Distribution 

 
Panel B: Y1 Uniform Distribution 

Panel C: Y1 400 Observations 

 
Figure 3.8  Differences between frontier Product-specific Scale Economies for Y1 and estimated 
Product-specific Scale Economies for Y1 from the Two-sided Errors, OLS Positive Errors, 
Frontier, and Nonparametric models. 
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Panel A: Y2 Half-normal Distribution 

 
Panel B: Y2 Uniform Distribution 

 
Panel C: Y2 400 Observations 

Figure 3.9 Differences between frontier Product-specific Scale Economies for Y2 and estimated 
Product-specific Scale Economies for Y2 from the Two-sided Errors, OLS Positive Errors, 
Frontier, and Nonparametric models. 
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Chapter 4 - A Nonparametric Approach to Multi-product and 

Product-specific Scale Economies, Economies of Scope, and Cost 

Efficiency for Kansas Farms 

 Introduction 

 Reducing costs through understanding economies of scale and economies of scope is 

fundamental in producer theory. Estimation of cost functions has allowed the measurement of 

economies of scale and scope using duality theory developed by Samuelson (1938) and Shephard 

(1953), and later work from Baumol et. al. (1982). The full employment of land, labor, and 

capital make this particularly important in agriculture where resource expansion is costly. 

Knowing where potential cost savings exist, and for which farms, provides economists and 

producers with valuable information as they make investment decisions. However, typically 

scale and scope measures are not calculated from cost frontiers.   

 In instances where frontiers have been estimated parametrically (Atkinson and Halversen 

1984), a common method used is the stochastic frontier developed by Aigner et al (1977). This 

method has since been modified to estimate cost frontiers (Coelli and Battese 1994). Using the 

stochastic frontier cost method, Mafoua and Hossian (2001) examined economies of scale and 

economies of scope cost savings with a multi-product analysis of corn and soybeans using a 

panel data set.  

 An alternative method for frontier estimation uses a series of linear segments to envelope 

the data (Farrell 1957). From Farrell’s original model, the nonparametric method evolved until 

Färe, Grassokopf and Lovell (1985) formally established a linear program for cost frontier 

estimation.  Chavas and Aliber (1993) used the non-parametric cost frontier method to estimate 
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economies of scope by measuring cost savings from multiple outputs instead of producing each 

output individually using the data envelope analysis (DEA).  

 The DEA approach to cost frontier estimation has some attractive advantages over 

parametric methods. Particularly advantageous is that there is not a need to specify a potentially 

technologically restrictive functional form. The nonparametric approach is consistent with 

economic theory by ensuring curvature of the cost function is not violated during the estimation 

process. Lusk et al. examined the relative variability needed in the estimation of dual cost 

functions to recover the underlying technology. They found that the relative variability necessary 

to accurately estimate a dual cost function parametrically requires more than 20 years of data 

based on observed data. Thus, some estimates of scope and scale may be fragile due to the 

inability to trace out that underlining production process. 

 Economies of scale estimations from nonparametric methods have been limited to 

measuring scale efficiency by estimating the model assuming constant returns to scale, and 

comparing with it with variable returns to scale (Cooper et. al. 2007). The results of the estimates 

are compared using the ratio of the two cost estimations yielding a measure known as scale 

efficiency. Paul et. al. (2004) noted however that scale efficiency is not the same as the multi-

product scale economies explained by Baumol et. al. and cannot be interpreted as such. Also, 

there are no measures for product-specific economies of scale reported from nonparametric 

frontier estimations. Thus, those using nonparametric methods to estimate cost frontiers have 

been forced to parametrically estimate traditional scale measures (Paul et. al. 2004, Kumar, 

Sunil, and Gulati 2008). 
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 Recently Parman et al. have shown that the DEA approach can estimate cost efficiency, 

economies of scale, and economies of scope relatively close to the “true” values of these 

economic measures relative to other parametric methods. Their approach reduces the need to 

conduct estimations using multiple methods, and provides scale measures consistent with 

Baumol et. al. 

  The primary objective of this research is to estimate economies of scale using the 

nonparametric approach through estimations of multi-product and product-specific scale 

economies and cost efficiency for Kansas farms. Product-specific scale economies are evaluated 

to determine if farm size is related to cost savings for individual products. From the cost frontier, 

it is possible to determine what type and size of farms make up the frontier and how far other 

farms are from the most efficient producers (cost efficiency). Using the nonparametric methods 

of Parman et al. for estimating scale allows the trade-off between cost efficiency and multi-

product economies of scale to be examined to determine those farms that will reduce costs more 

by increasing output versus becoming cost efficient. 

 The second objective of this study evaluates estimating a panel of Kansas farm’s 

economic measures by year. Specifically, this objective addresses if scale and scope remain 

consistent across years as the cost frontier shifts due to technology improvement and/or weather 

variability. This has important implications for understanding how the cost function behaves 

over time. 

 Methods 

 Following Parman et. al., to estimate the frontier, economies of scope, and scale 

economies, the minimum cost (Ci) of producing the farm output mix is determined using DEA. 
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Costs are minimized for a given set of input prices (wi) and outputs (yi) with the choice being the 

optimal input bundle (xi
*).   

 ' *

*

'

1 2

min

.

... 1

i i i

i

i

n

i

C w x

s t

Xz x

y z y

z z z

z 






   



  (4.1) 

where there are “n” farms. The vector Z represents the weight of a particular farm with the sum 

of Zi’s equal to 1 for variable returns to scale. The output quantities (yi) constrain the cost 

minimizing input bundle to be at or below that observed in the data. Total cost from the model 

(Ci) is the solution to the cost minimization problem including the production of all outputs for 

the ith farm. The cost of producing all outputs except one (Ci,all-p) where p is the dropped output 

is determined by dropping the pth output constraint. The marginal costs (MCi,p) are obtained from 

the shadow prices on the output constraint (equation 4.1). Using the cost and output measures 

obtained from the previous program, economies of scope, multi-product economies of scale, cost 

efficiency and product-specific economies can be calculated.  

 Cost efficiency (CE) identifies a farm’s proximity to the cost frontier for a given 

input/output bundle. It is the quotient of the estimated frontier cost (equation 4.1) and the actual 

total cost (ATC) the farm incurred while producing their output bundle. This measure must be 

greater than 0 but less than or equal to 1. 

 i
i

i

C
CE

ATC

 
  
 

 (4.2)  
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 The calculation of multi-product economies of scale (MPSE) uses the total cost of 

producing all outputs (Ci,all), the marginal costs defined above, and the output levels produced. 

The MPSE is the change in total cost for a proportional change in the production of all outputs. 

For each output constraint (equation 4.1), the MCi,p is determined by the shadow price on the pth 

constraint.  

 ,

, ,

i all
i

i p i p
p

C
MPSE

MC Y

 
   
  


  (4.3) 

 Product specific economies of scale (PSE) require the calculation of the incremental costs 

(ICi,p)  that are the cost of producing all outputs minus the sum of the costs of all individual 

outputs except output (p).   

 , ,i p i i j p
j

IC C C j     (4.4) 

Average incremental costs (AICi,p) are determined by dividing incremental costs by individual 

output: 

 ,
,

,

i p
i p

i p

IC
AIC

y
   (4.5) 

  Using the average incremental cost and the marginal cost calculation above, PSEs are 

calculated by: 

 ,
,

,

i p
i p

i p

AIC
PSE

MC
  (4.6)  

 The calculation of scope economies (SCi) identifies the potential for cost savings through 

product diversification. 
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  


  (4.7) 

where Ci,p is the cost of producing output p for farm i, and Ci,all is the cost of joint production of 

all outputs for farm i.   

 Estimating the frontier nonparametrically using a data set with no single output farms 

reveals difficulty estimating the incremental costs by forcing one of the output constraints to zero 

(Equation 4.1). Thus, the only alternative is to drop one of the constraints. However, when an 

output constraint is dropped, the program may allow some of the output for the dropped 

constraint to be produced resulting in an overstatement in the cost of that one output (Ci,p) that 

will cause an over statement in economies of scope (equation 4.7) and an understatement in 

product specific scale economies (equation 4.6). 

 The additional product-specific production costs from an output being produced when it 

should be zero must be removed. The cost of producing y1 only (Ci,1) assumes that only (y1
1) is 

being produced. However, DEA allows some yi,2
1

 to be produced in this situation overstating the 

cost of producing y1 only (Ci,1). To remove the additional cost, the percentage of yi,1
1 is 

multiplied by the cost of producing y1 only, yielding an adjusted cost (Ca
i,1). This new adjusted 

cost is then used in the calculation of incremental costs and associated economic measures 

(equation 4.8). 

 
1
,1

,1 ,1 1 2
,1 ,2

a i
i i

i i

y
C C

y y

 
  

 
  (4.8) 
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 Data 

 The data for this study contains 241 Kansas Farm Management Association farms 

(KFMA) for the years 2002-2011. Input quantities are aggregated into categories including seed, 

fertilizer, chemicals, feed, fuel, labor, land, and machinery. Associated prices for each input are 

indexed by year using the NASS8 website or information from Agricultural Outlook. The land 

price is the Kansas cash rental rate from Kansas Farm Facts. 

 Outputs are aggregated into two categories including crops and livestock using output 

prices from NASS. Accrual revenue is divided by corresponding prices to obtain output 

quantities. Table 4.1 reports descriptive statistics for production quantity indices while Table 4.2 

shows the price indices for both inputs and outputs for all ten years. The DEA model is estimated 

for the 241 farms for each year individually.  

 Estimating the cost frontier each year may cause some farms that operate on or close to 

the frontier in some years to be off the frontier in others due to the randomness of weather, rate 

of technology adoption, or other unforeseen phenomenon as the frontier shifts from year to year. 

This is important if the model includes data from an area where a drought occurs in isolated 

regions, and does not affect all farms universally. 

 Using the traditional USDA sales classes, of the 2,410 total observations, 92 fell into the 

category of gross revenues less than $100k, approximately 4% of the total while, the $100k-

$250k categories includes 481 observations or nearly 20% of farms. The largest category is the 

$250k-$500k in annual gross revenues group that accounts for nearly 35% of farms or 837 

observations. The $500k-$1m category is the next largest with 705 observations or 29% .Farms 

with gross revenues greater than 1 million had 295 observations or 12% of the total. 
                                                 
8 http://www.nass.usda.gov/Statistics_by_Subject/index.php 
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 Results 

 Two types of analysis were completed; One estimating all years together, 2,410 

individual observations, and yielded 2,363 marginal cost estimations for crops. Therefore crop-

specific scale economy calculations are reported for 2,363 observations. Though all observations 

produced crops, crop marginal cost estimates that were non-unique for farms on the frontier were 

also dropped9. Livestock-specific scale economies are reported for 1,749 observations which is 

significantly less than crops because many of the observations do not produce livestock. The 

calculations for multi-product scale economies include 1,671 observations, the number of 

observations that yielded marginal cost estimates for both crops and livestock. Economies of 

scope were calculated for 1,694 total observations. Cost efficiency is calculated for all 2,410 

observations. 

 From the analysis that estimated each year individually, there were 2,271 observations 

yielding unique marginal costs for crops and 1,714 for livestock with 1,630 observations having 

marginal cost estimations for both. Thus, there are 1,630 estimates of each individual year’s 

multi-product scale economies. Economies of scope were calculated from 1,684 total 

observations. The disparity in the number of observations of each economic measure between the 

single frontier and annual estimations arises because there are ten frontiers in the 2nd analysis and 

one in the 1st analysis affecting the number of non-unique marginal cost and incremental cost 

estimations. 

 After dropping the observations with non-unique marginal costs or zero output 

observations for livestock, the number of observations in the calculation of multi-product scale 

                                                 
9 Also, some farms had a marginal cost calculation equal to zero for crops and livestock if they are small and highly 
inefficient not fully utilizing current resource allocation 
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economies (and economies of scope approximately) for the combined years estimation are: 31 

with gross revenues less than $100k (2%), 380 with gross revenues between $100k and $250k 

(24%), 543 had gross revenues between $250k and $500k (36%), 491 with gross revenues 

between $500k and $1m (31%), and 226 with gross revenues above $1m (14%). Observations 

estimating each year individually are as follows: 28 with gross revenues less than $100k (1.7%), 

298 with gross revenues between $100k and $250k (18%), 613 with gross revenues between 

$250k and $500k (38%), 489 with gross revenues between $500k and $1m (30%), and 226 with 

gross revenues above $1m (%12). Table 4.3 presents the summary statistics for the economic 

cost measures for both the annual and combined estimates. Table 4.4 shows the summary 

statistics for each year for the annual analysis.   

 F-tests were conducted for each economic measure to determine if the economic 

measures estimated annually were statistically different from the measures estimated with a 

single frontier. This was done by creating dummy variables for each year and regressing them on 

each economic measure. For all the economic measures including MPSE, cost efficiency, 

economies of scope, and the PSEs, the tests revealed that at a significance level of 5% these 

measures were statistically different (Table 4.5).   

 Cost Efficiency 

 The cost efficiency calculation for each farm represents its current distance from the 

frontier. A cost efficiency of 1 is on the frontier while those further from 1 are less cost efficient. 

From the single frontier analysis, average cost efficiency levels were highest for farms greater 

than $1m (0.55) and for farms less than $100k (0.55). Farms with gross revenues between $500k 

and $1m had an average cost efficiency of 0.48 while the categories $100k to $250k and $250k 

to $500k had averages of 0.43 and 0.42 respectively (Table 4.6). The standard deviation is 
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relatively high for farms less than $100k (0.20) compared to the other for revenue categories 

which had standard deviations of less than 0.15 (Table 4.6).   

 Estimation of each year yielded a higher overall average cost efficiency (Table 4.3) and 

higher average cost efficiencies for each gross revenue category (Table 4.6).  This implies that 

farms are closer to each year’s frontier on average than an overall frontier which is to be 

expected if the frontier is shifting. Each gross revenue category however retained its respective 

rank for overall average cost efficiency, i.e. farms with greater than $1m in gross revenues had 

the highest average cost efficiency while farms in the $100k to $250k range had the lowest 

(Table 4.6).  Examination of the annual cost efficiency averages (Table 4.4) reveals that average 

cost efficiencies have been lower in recent years than between the years 2003 to 2008.   

 Figure 4.1 shows the cumulative density or the amount of observations below a given 

cost efficiency level for the size categories. The slope of each curve indicates the variation 

observed for each group where a steeper slope represents less variability. Figure 4.1 shows an 

obvious flatter cumulative density for farms with gross revenues less than $100k indicating a 

large disparity for cost efficiency levels in this revenue group which is true for both the annual 

estimations and the single frontier. However, in the single frontier estimation, the cumulative 

density for cost efficiency of farms less than $100k in gross revenues crosses the curve for farms 

greater than $1m in gross revenues at a cumulative density of 0.7. For the annual estimations this 

does not occur indicating that the largest farms are strictly closer to the frontier than any smaller 

revenue category. This implies that in the year with the lowest total cost, there were relatively 

many small farms close to the frontier however, in each year on average, the largest farms are 

closer to the frontier. The results for cost efficiency remain similar for the annual estimation and 

the single frontier for the rest of the revenue categories. 
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 Multi-product Economies of Scale 

 Multi-product scale economies represent potential cost saving by reducing average per 

unit cost through spreading it over larger quantities. Because MPSE is calculated as total cost 

divided by the sum of the products of marginal costs and their associated output levels, an MPSE 

greater than 1 implies that increasing production uniformly across outputs will reduce average 

costs resulting in economies of scale. For MPSEs to be greater than one, the existence of 

economies of scope, and/or product-specific economies of scale (Fernandez-Cornejo et al 1992) 

are required (Baumol et al.). If the MPSE equals 1, then the farm is at constant returns to scale. 

However, if the MPSE is less than 1 for a given farm, then that farm can reduce average cost by 

proportionately reducing outputs since that farm lies in the diseconomies of scale region.  

 Single frontier estimation revealed that MPSE for each gross revenue category is highest 

for the smallest farm revenue category and gets progressively smaller for larger farms (Table 

4.7). MPSE averages ranged from 2.7 (farms less than $100k) to 0.9 (revenues $500k-$1m and 

farms greater than $1m). Farms with sales of $100k to $250k had an average MPSE at 1.7 and 

farms between $250k and $500k were closer to unity at 1.1.  

 The overall average estimated annually was similar to the single frontier at 1.171 

compared to 1.142 respectively (Table 4.3). The MPSEs are also smaller for each gross revenue 

category overall estimated yearly relative to the single frontier estimates while retaining the same 

relative rank of each category (Table 4.7). Yearly average MPSE estimates show farms, on 

average, remaining close to constant returns to scale each year (Table 4.4).   

 Figure 4.2 Panels A and B present the distribution for the single frontier analysis and the 

multiple frontier analysis respectively. The results are similar except that MPSE is lower when 
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estimated annually as reflected by MPSE density curves closer to one. Standard deviation is 

relatively low farms in the $500k to $1m and farms greater than $1m as illustrated by the nearly 

vertical cumulative density curves. Within these two groups, MPSE is relatively constant among 

large farms. For the smallest two categories, the density curves are relatively flatter, especially 

for the smallest farm category showing a disparity.   

 Economies of Scope 

 Economies of scope represent cost savings through the production of crops and livestock. 

This savings may be due to the use of resources required for the production of both products 

such as equipment or storage resources. An economy of scope calculation greater than 0 implies 

cost savings are realized though multi-product operations. Results show greater difference for 

economies of scope than for cost efficiency between the farm revenue categories (Table 4.8). 

From the data estimated for the single frontier, the highest average level of cost savings from 

economies of scope is for farms between $100k and $250k with average economies of scope of 

30% (Table 4.8). Large farms including farms with revenues over $1m and farms between $500k 

and $1m had relatively low economies of scope figures of 13% and 12% respectively. 

Economies of scope for the smallest category were also high (26%). Using annual frontiers, the 

measurement of economies of scope is less than those estimated from a single frontier. Annual 

averages for the scope measures range from 0.06 in 2004 to 0.17 in 2002 (Table 4.4). 

 Standard deviations for the economies of scope calculations were below 0.10 for the 

single frontier but higher for the two smallest gross revenue categories for the annual estimations 

(Table 4.8). Figure 4.3 Panel A shows that the cumulative density for farms in the $100k to 

$250k category is relatively flatter indicating more overall disparity among economies of scope 
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calculations for this revenue group. The largest gross farm revenue category (greater than $1m) 

had a relatively low average and relatively high standard deviation at 0.08. 

 One key difference between the two estimations of scope (annual frontiers versus a single 

frontier) was that annual estimations yielded negative economies of scope for some of the 

observations in the larger gross revenue categories. While nearly all of the observations of cost 

savings from scope estimated annually were lower than the simultaneously estimated data set, 

none of the simultaneous estimates yielded negative scope economies (diseconomies of scope).  

 Product-specific Economies of Scale 

 If a product-specific economies of scale (PSE) measure is greater than 1, it implies that 

there exists potential cost savings from increasing that output, and a PSE less than 1 implies cost 

savings by reducing that output. The overall average product-specific economies of scale 

measure for livestock (LSE) is higher than the product-specific economies of scale measure for 

crops (CSE) at 0.83 and 0.77 respectively (Table 4.3) using the single frontier. However the 

reverse is true for the PSE estimations from annual analysis, though the difference is relatively 

small (0.01). All farms operate either at constant returns to scale for CSE and LSE or in the 

region of diseconomies of scale for crops and livestock. 

 For CSE under a single frontier, the smallest farm revenue group (less than $100k) was 

the closest to constant returns to scale on average at 0.85 where the furthest group was the $500k 

to $1m with an average CSE of 0.74 (Table 4.9). There was not much difference in average CSE 

within the four groups with gross revenues greater than $100k. From annual frontiers, the 

revenue group of less than $100k was also highest but closer to constant returns to scale than in 

the previous estimation at 0.97. The greater than $1m sales group had a PSE of 0.83. Yearly 
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overall averages for CSE (Table 4.4) are between 0.8 and 0.9 during the ten year sample showing 

relatively little variation in overall crop-specific economies of scale from year to year. 

 The cumulative density curves (Figure 4 Panel A) for CSE for the four largest gross 

revenue categories estimated simultaneously overlap with small differences in slope indicating 

the relative variation within groups is also small. However, the CSE density curve for the group 

containing farms with revenues less than $100k is relatively flat for 50% of the farms and steep 

for the other 50%. This indicates that many farms in the less than $100k category are operating at 

a low CSE while others are at or close to constant returns to scale for crops with a single frontier. 

In Figure 4 Panel B the CSE for the smallest gross revenue categories is not as flat illustrating a 

tighter distribution with an annual frontier.  

 Single frontier estimates reveal that the averages between groups for LSE were highest 

among smaller revenue grossing farms with the three smallest categories all having an average 

LSE higher than 0.84 (Table 4.10). The two largest revenue grossing categories had nearly 

identical LSE averages at approximately 0.80. Annual frontier analysis shows that the smallest 

revenue group (less than $100k) is close to constant returns to scale on average with the other 

revenue groups averaging between 0.84 and 0.87. Annual averages (Table 4.4) for LSE yield 

results similar to CSE in that the lowest LSE estimate occurs in 2002 and the rest are 

approximately between 0.8 and 0.9 indicating relative stability for livestock-specific scale 

economy estimates from year to year. 

 For the single frontier data set, the standard deviations for LSE were higher than for CSE 

indicating more variability in the product-specific scale economies for livestock than crops 

(Table 4.10). The highest standard deviation was for the gross revenue category less than $100k 
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(0.23) and lowest was for the greater than $1m category (0.18). However, the density curves for 

all five categories are similar, without the obvious differences between groups that the other 

economic measures show (Figure 4.5 Panel A). The annual frontier analysis shows similar 

results for standard deviations among revenue categories with the exception of farms with 

revenues less than $100k.   

Implications 

 Differences between Annual Frontier and Single Frontier Analysis 

 The statistical test used to determine if the means from the model estimating single 

frontier was different from those estimating the frontier annually indicated statistical differences 

at the 5% level. However, the results show that the means are not that economically different. 

Overall average MPSE was around constant returns and did not vary much from year to year 

(Table 4.5). Crop-specific and livestock-specific scale differences from both estimations were 

similar in mean and relative rank with relatively little variation from year to year.   

 The largest difference between economic measure estimates occurred with respect to cost 

efficiency and economies of scope. In the case of cost efficiency, the difference in overall 

average from estimating a single frontier versus annual frontiers occurs due to the cost frontier 

shifting from year to year. Estimating a single frontier assumes the frontier does not shift and 

thus movement of farms closer to, and further from the frontier is due to efficiency. Estimating 

the frontier annually allows the frontier to shift and average cost efficiency to remain constant 

assuming farms are not changing their relative efficiency. 

 Allowing the frontier to shift from year to year will also affect calculations of economies 

of scope. Economies of scope are based on estimations of the intercept and when estimated for a 
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single frontier will not change. Thus, increase in the cost of producing each output individually 

will appear from a single frontier as higher cost savings from joint production rather than 

changes in the intercepts as the frontier shifts. 

 It appears that annual frontiers suggest that CSEs and LSEs are closer to one and the 

scope is closer to zero than the single frontier results. While there is some variation in the annual 

economic measures, they are relatively stable from year to year. 

 Implications for KFMA Farms 

 Despite the differences between the estimation of cost efficiency and scope between the 

annual and single frontier estimations, the implications are the same in that larger farms, and the 

smallest category, are typically closer to the frontier and economies of scope diminish as farms 

grow larger. Further, economies of scale exist for small farms and tend to be exhausted for farms 

with sales greater than $250k.  

 For the smallest farm category (less than $100k), the estimates for cost efficiency and 

MPSE suggest that these farms have a greater incentive to increase in size rather than move 

closer to the frontier. Estimated annually, the cost efficiency for this group is 0.66 and the MPSE 

is 1.99.  This shows costs can be reduced by on-average 50% by increasing in size and 34% by 

becoming more efficient.  Economies of size are clearly important for these farms.   

 For the $100k to $250k group, the implications are also similar in that the benefits are 

nearly equal in becoming more efficient versus increasing output. From the annual frontier 

estimates, the overall average cost efficiency is 0.56 indicating that they can save 44% becoming 

more efficient. Potential cost savings from scale are around 41% indicating a closeness between 

the two.   
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 For largest three gross revenue categories, the results show cost savings from reaching 

the frontier is more important than adjusting farm size. All three categories are near constant 

returns to scale, or slightly in the diseconomies of scale region.  The average cost efficiencies 

range from 0.57 to 0.75 indicating that there is room for cost savings by becoming more 

efficient. 

 Economies of scope are more important. Multi-product smaller farms realize greater cost 

savings through joint production than larger farms. At some point, the advantage of joint 

production is exhausted. Farms with less than $250k in gross revenues tend to experience greater 

cost savings with joint livestock and crop production. As farm sales increase however, the 

incentive to grow larger due to additional cost savings from scale, and savings from joint 

production diminish.  

 Product-specific scale economies from annual frontiers are between 0.75 and 0.95 for 

crop-specific economies of scale and livestock-specific economies of scale. These measures do 

not vary as much based on farm size as the other measures. Perhaps the conclusion is that the 

individual enterprises are more size neutral. When arranged in a multi-product farm, multi-

product scale measures differ due to level of scope economies. Multi-product farms reap the 

benefits of joint production (scope) and are not as far from constant returns to scale for livestock 

or crops specifically. However, the large potential for cost savings illustrated by small farms 

typically having high MPSE suggests the importance of economies of scope for these operations.   

 Conclusions 

 The objectives of this research were to determine the level of cost savings from cost 

efficiency, economies of scale and economies of scope based on farm size for Kansas farms. 
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This research also evaluated the difference between estimating the frontier yearly versus a single 

frontier.  

 The results suggest that there exists a larger incentive for small farms to expand and 

exploit cost savings through multi-product scale economies. Scale economies are larger than 

potential saving from becoming more efficient farms with sales less than $100k. As farms move 

past the $100k in sales range, the potential cost savings from efficiency is about the same as from 

adjusting size. After sales reach $250k, most of the economies of size are exhausted and cost 

differences occur due to inefficiency (not being on or close to the frontier).  

 Estimating the measures as a single multi-year frontier yielded results that were 

statistically different than from estimating annual frontiers. The measures of economies of scope 

were lower when estimated annually and the PSEs are higher. Interestingly, while those 

measures were statistically different, the variability in measures from year to year was not large 

and the measures of multi-product scale economies were nearly the same. For example, multi-

product scale economies for Kansas Farms were between 0.97 and 1.17 for the ten year period 

and cost efficiency measures were between 0.55 and 0.67 for the 2002 to 2011 time period. This 

indicates that while the cost frontier may shift from year to year, its shape remains relatively 

consistent.  
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 Chapter 4 Tables  

 

 

Table 4.1 Summary statistics for Kansas Farm Management Farms of input and output quantity 
indices, 2002 to 2011. 

 Mean Standard Deviation Minimum Maximum 

----------Inputs---------- 

Seed 188 199 1 2010 

Fertilizer 298 286 0 3328 

Chemicals 229 222 0 2457 

Machinery 530 437 24 4163 

Feed 401 1497 0 30454 

Fuel 162 160 4 1906 

Labor 192 306 0 3753 

Land 2514 1628 127 11797 

----------Outputs---------- 

Crops 2458 2182 30 50140 

Livestock 1514 3386 0 26277 

N=2410 
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Table 4.2 Price indices for farm inputs and outputs for each year 2002-2011. 

Year / 

Product Seed Fertilizer Chemicals Machinery Feed Fuel Labor Rent Crops Livestock

2002 154 124 121 151 114 140 157 123 109 103 

2003 158 140 121 162 121 165 160 126 120 116 

2004 168 164 123 173 117 216 165 129 111 118 

2005 182 176 128 182 124 239 171 141 134 116 

2006 204 216 129 191 149 264 177 147 186 118 

2007 259 392 139 209 194 344 183 165 259 117 

2008 299 275 149 222 186 229 188 184 186 106 

2009 310 252 144 230 180 284 189 190 177 123 

2010 332 328 145 244 226 362 192 205 239 151 

2011 359 333 153 257 260 360 199 212 246 160 

Source: http://www.nass.usda.gov/Statistics_by_Subject/index.php 
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Table 4.3 Overall summary statistics for estimated cost measures for Kansas Farm Management 
Farms estimated from a single frontier and annually. 
 

N Average 
Standard 
Deviation Minimum Maximum 

----- Single Frontier------ 

Cost Efficiency 
 

2410 0.462 0.136 0.138 1.000 

Multi-product 
Economies of Scale 
 

1571 1.142 0.407 0.588 4.210 

Economies of Scope 
 

1571 0.175 0.093 0.003 0.553 

Crop-specific 
Economies of Scale 
 

2363 0.768 0.167 0.023 1.000 

Livestock-specific 
Economies of Scale  

1649 0.830 0.190 0.010 1.000 

------ Annual Frontiers------ 

Cost Efficiency 
 

2410 0.608 0.168 0.138 1.000 

Multi-product 
Economies of Scale 
 

1630 1.171 1.328 0.072 3.079 

Economies of Scope 
 

1630 0.110 0.101 -0.220 0.639 

Crop-specific 
Economies of Scale 
 

2271 0.862 0.182 0.105 1.000 

Livestock-specific 
Economies of Scale  

1714 0.854 0.183 0.016 1.000 

 

 

 



117 

 

Table 4.4   Annual averages for cost efficiency, MPSE, PSEs, and economies of scope for 
Kansas Farm Management Farms 
Year Cost 

Efficiency 
Multi-product scale 

economies 
Economies 

of scope 
PSE  

Crops 
PSE 

Livestock 
2002 
 

0.546 1.061 0.170 0.752 0.796 

2003 
 

0.639 1.066 0.085 0.940 0.906 

2004 
 

0.635 0.999 0.063 0.937 0.906 

2005 
 

0.668 0.992 0.074 0.914 0.869 

2006 
 

0.610 1.068 0.124 0.848 0.852 

2007 
 

0.606 1.060 0.112 0.916 0.810 

2008 
 

0.653 1.022 0.096 0.926 0.803 

2009 
 

0.596 0.967 0.098 0.832 0.810 

2010 
 

0.546 1.155 0.157 0.795 0.892 

2011 
 

0.586 1.170 0.108 0.866 0.898 
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Table 4.5   F-Test results evaluating statistical differences in cost frontiers.  

Measure F-Statistic P-Value

Cost Efficiency 
 

10.28 0.000 

Multi Product Economies of Scale 
 

1.98 0.046 

Economies of Scope 
 

36.20 0.000 

Crop-specific Economies of Scale 
 

11.97 0.000 

Livestock-specific Economies of Scale 
 

7.43 0.000 
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Table 4.6 Summary statistics for cost efficiency for Kansas Farm Management Farms estimated 
from a single frontier and annually. 

Gross Revenues  N Average 
Standard 
Deviation Minimum Maximum

----- Single Frontier------ 

Less than $100k  92 0.549 0.204 0.198 1.000 

$100k-$250k  481 0.432 0.125 0.151 1.000 

$250k-$500k  837 0.421 0.110 0.138 1.000 

$500k-$1m  705 0.483 0.130 0.218 1.000 

Greater than $1m  295 0.552 0.146 0.280 1.000 

------ Annual Frontiers------ 

Less than $100k  92 0.660 0.206 0.261 1.000 

$100k-$250k  481 0.559 0.155 0.225 1.000 

$250k-$500k  837 0.567 0.145 0.198 1.000 

$500k-$1m  705 0.627 0.155 0.219 1.000 

Greater than $1m  295 0.749 0.179 0.357 1.000 
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Table 4.7 Summary statistics for multi-product economies of scale for Kansas Farm 
Management Farms estimated from a single frontier and annually. 

Gross Revenues  N Average 
Standard 
Deviation Minimum Maximum 

------ Single Frontier------ 

Less than $100k 
 

31 2.691 0.542 1.938 3.732 

$100k-$250k 
 

380 1.619 0.380 0.965 4.210 

$250k-$500k 
 

543 1.106 0.224 0.711 1.708 

$500k-$1m 
 

491 0.916 0.121 0.658 1.359 

Greater than $1m 
 

226 0.918 0.070 0.588 1.010 

------Annual Frontiers------ 

Less than $100k 
 

28 1.991 0.586 1.266 3.079 

$100k-$250k 
 

298 1.406 0.892 0.729 3.053 

$250k-$500k 
 

613 1.048 0.188 0.576 1.670 

$500k-$1m 
 

489 0.941 0.140 0.575 1.250 

Greater than $1m 
 

202 0.850 0.128 0.072 1.075 
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Table 4.8 Summary statistics for economies of scope from Kansas Farm Management Farms 
estimated from a single frontier and annually. 

Gross Revenues  N Average 
Standard 
Deviation Minimum Maximum

----- Single Frontier------ 

Less than $100k  31 0.255 0.075 0.063 0.443 

$100k-$250k  380 0.301 0.091 0.108 0.529 

$250k-$500k  543 0.169 0.060 0.057 0.553 

$500k-$1m  491 0.123 0.050 0.020 0.307 

Greater than $1m  226 0.134 0.083 0.003 0.332 

------Annual Frontiers------ 

Less than $100k 
 

28 0.201 0.161 0.000 0.481 

$100k-$250k 
 

298 0.196 0.133 -0.011 0.639 

$250k-$500k 
 

613 0.116 0.072 -0.128 0.323 

$500k-$1m 
 

489 0.075 0.059 -0.122 0.218 

Greater than $1m 
 

202 0.037 0.092 -0.220 0.558 
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Table 4.9. Summary statistics for crop-specific economies of scale categorized by gross 
revenues estimated simultaneously and individually by year 

Gross Revenues N Average 
Standard 
Deviation Minimum Maximum

----- Single Frontier------ 

Less than $100k  77 0.854 0.233 0.076 1.000 

$100k-$250k  476 0.780 0.155 0.023 1.000 

$250k-$500k  834 0.775 0.175 0.028 1.000 

$500k-$1m  703 0.743 0.162 0.120 1.000 

Greater than $1m  273 0.764 0.141 0.282 1.000 

------Annual Frontiers------ 

Less than $100k  53 0.974 0.095 0.387 1.000 

$100k-$250k  465 0.873 0.191 0.192 1.000 

$250k-$500k  821 0.902 0.145 0.149 1.000 

$500k-$1m  676 0.847 0.145 0.282 1.000 

Greater than $1m 256 .0826 0.147 0.105 1.000 
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Table 4.10   Summary statistics for livestock-specific economies of scale categorized by gross 
revenues estimated simultaneously and individually by year 

Gross Revenues N Average 
Standard 
Deviation Minimum Maximum

----- Single Frontier------ 

Less than $100k  31 0.850 0.232 0.082 1.000 

$100k-$250k  380 0.877 0.192 0.046 1.000 

$250k-$500k  543 0.842 0.182 0.010 1.000 

$500k-$1m  491 0.799 0.190 0.031 1.000 

Greater than $1m  226 0.807 0.179 0.029 1.000 

------Annual Frontiers------ 

Less than $100k  45 0.969 0.140 0.094 1.000 

$100k-$250k  310 0.846 0.230 0.020 1.000 

$250k-$500k  625 0.836 0.181 0.016 1.000 

$500k-$1m  512 0.862 0.167 0.048 1.000 

Greater than $1m 222 0.873 0.142 0.095 1.000 
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 Chapter 4 Figures 

 

 

 

A: Cost Efficiencies Estimated as a Single Frontier 

 

B: Cost Efficiency Estimated as Annual Frontiers 

 

Figure 4.1 Cumulative Density of Cost Efficiency Estimates for Kansas Farms Categorized by 
Farm Gross Revenue 
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A: Multi-product Scale Economies Estimated as a Single Frontier 

 

B: Multi-product Scale Economies Estimated as Annual Frontiers 

 

Figure 4.2 Cumulative Density of Multi-product Scale Economies Estimates for Kansas Farms 
Categorized by Farm Gross Revenue 
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A: Economies of Scope Estimated as a Single Frontier 

B: Economies of Scope Estimated as Annual Frontiers 

 

Figure 4.3 Cumulative Density of Economies of Scope Estimates for Kansas Farms Categorized 
by Farm Gross Revenue 
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A: Crop-Specific Economies of Scale Estimated as a Single Frontier 

 

B: Crop-specific Economies of Scale Estimated as Annual Frontiers 

 

Figure 4.4 Cumulative Density of Crop-specific Scale Economy Estimates for Kansas Farms 
Categorized by Farm Gross Revenue 
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A: Livestock-Specific Economies of Scale Estimated as a Single Frontier 

 

B: Livestock-specific Economies of Scale Estimated as Annual Frontiers 

 

Figure 4.5 Cumulative Density of Livestock-specific Scale Economy Estimates for Kansas 
Farms Categorized by Farm Gross Revenue 
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Chapter 5 - Conclusions 

 This research presents a method for measuring multi-product and product-specific 

economies using data envelopment analysis, a comparison of this method with alternative 

methods, and an empirical example of its use. The objective of this research is to provide a 

theoretically consistent method of frontier estimation that is able to recover economic 

information, while eliminating the need to use multiple methods. The additional nonparametric 

measures were developed using the DEA cost frontier method proposed by Färe et. al. where the 

marginal costs and incremental costs can be estimated, and used, to calculate multi-product and 

product-specific scale economy measures consistent methods proposed by Baumol et. al. The 

tests conducted, and overall results, indicate that the nonparametric cost frontier can be used to 

estimate these economic cost measures. The empirical application of these methods on Kansas 

farms shows its efficacy in practice, and provides some useful information for economists, 

producers, and policy makers with respect to cost savings potential for Kansas farms. 

  In Chapter 2, an approach was formalized to calculate multi-product and product-

specific economies of scale from DEA. It was then compared to data from a “true” frontier cost 

function using two different error (inefficiency) distributions, and two “true” cost functions. 

Chapter 2 also compared calculating scope economies and incremental costs by dropping an 

output constraint with constraining the appropriate output to equal zero. 

 When measuring observations with cost inefficiency, the nonparametric approach using 

either distributional assumption was able to estimate multi-product scale economies, product-

specific scale economies, cost efficiencies, and economies of scope. The mean differences 

between the nonparametric estimates and the “true” frontier were close to zero with low standard 

deviations. While the PSE estimates are close to the PSEs of the “true” frontier function in the 
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half-normal case, the deviations from the nonparametric approach for the PSE calculations using 

a uniform distribution illustrate the importance of having observations from efficient firms 

producing only a single output. In areas where there are few, or no, single output observations or 

where observations are not on the “true” frontier, the incremental costs for these observations 

may deviate from the “true” frontier function. Areas where the data are clustered yield more 

precise estimates than areas where observations are sparse. 

 Chapter 3 compares the nonparametric approach with three parametric cost frontier 

estimation techniques. The parametric methods include a two-sided error system, the stochastic 

frontier estimation, and an OLS estimation restricting the errors to be positive. Cost frontiers 

were estimated using the four estimation methods from a half-normal and uniform cost 

inefficiency distribution. Along with the two different distributions, a data set with no single 

output firms was used to evaluate each method’s ability to extrapolate incremental cost measures 

out-of-sample. The estimates calculated included multi-product and product-specific scale 

economies, economies of scope, and cost efficiency. These measures were compared to the 

“true” values form the simulated cost frontiers.  Cost efficiency is reported for only three of the 

methods except the two-sided error system because it does not estimate a frontier.  

 The two-sided error system was the furthest from the “true” values for multi-product 

scale economies in all three cases. For the product-specific scale economy estimates, the two-

sided error system performed similar to the other parametric methods using the half-normal and 

half uniform data simulations but was closest to the “true” values for data with no single output 

observations. For economies of scope, the two-sided error system was the furthest from the 

“true” values except for the simulation with no single output firms. 
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 The OLS positive errors model estimated cost efficiency closest to the true measures 

when compared to the other parametric methods for each of the three data simulations. For multi-

product scale economies and product specific scale economies, the OLS positive errors results 

were mixed in that it was closer than the other methods under the uniform distributional 

assumption, but further under the half-normal distributional assumption and the single output 

firm case. Results were also mixed for economies of scope calculations from the OLS positive 

errors model where it was closer than other parametric methods under the uniform and half-

normal distributions, but further than the two-sided error system for the case with no single 

output firms observed.   

 The stochastic frontier method estimated multi-product scale economies closer to the 

“true” measures compared to the two-sided error system but further than the OLS positive errors 

model. Cost efficiency for the stochastic frontier was similar to the OLS positive errors model 

for all three data sets, as were product-specific scale economies estimates under the half-normal 

and uniform distributional assumptions. However, economies of scope calculations were 

inaccurate for all three data sets. Product-specific scale economies using the data set with no 

observed single output firm observations were also inaccurate for this method. 

 Overall, the nonparametric approach estimated the frontiers and associated economic 

measures relatively close to the “true” values. The estimated economic measures were as close or 

closer to the “true” values than any of the methods examined. The MPSE and economies of 

scope measures were the most accurate of the scenarios examined. In the case of the PSE’s, the 

nonparametric approach was not more inaccurate compared to the other methods. 
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 Chapter 4 used the nonparametric approach developed in Chapter 2 to estimate a cost 

frontier for Kansas farms. The data contained farm level data from 241 farms for the years 2002-

2011. The data were estimated in two fashions nonparametrically. First, a single frontier was 

analyzed for the 2,410 individual data points. For the second analysis, each year estimated its 

own cost frontier. There was a statistical difference in the means for the cost measures estimated 

annually compared to a single frontier. Thus, the frontier shifts from year to year. With respect to 

cost efficiency, differences in the means occurred due to the cost frontier shifting. While mean 

calculations of scale and scope were statistically significant annually, the differences were 

economically small so that economic interpretations were not affected. For economies of scope, 

the differences between the years are consistent from year to year. The means for the product-

specific scale measures from both estimates were relatively close over time. 

 An important result of Chapter 4 is that it was possible to estimate cost efficiency, 

economies of scale, and economies of scope measures from a single year’s data. In these 

estimations, relative prices for inputs and outputs did not change within each year such that there 

was no relative price variability among farms. Parametric methods for these calculations using 

the dual cost approach has been shown in previous literature to require 20 years’ worth of data to 

yield enough price variability to estimate the same cost measures (Lusk et. al.). 

 The estimations suggest that there exists an economic incentive for small farms to expand 

up to about $250k in sales. Savings from exploiting economies of scale are greater for the 

smallest farms (less than $100k in gross revenues) than cost savings through efficiency 

improvements aimed at moving the farm closer to the frontier. Cost savings from scale versus 

cost efficiency are the same magnitude for farms with sales between $100k and $250k in sales. 

However, economies of scale are exhausted when gross revenues reach approximately $500k. At 
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average gross revenues higher than $500k, many farms are operating in a region of slight 

diseconomies of scale and cost savings can no longer come from scaling.  

 Results were mixed with respect to product-specific scale economies for crops relative to 

livestock and overall farm size. Frontier estimates of crop-specific and livestock-specific scale 

economies are close to constant returns to scale. The crop-specific and livestock-specific 

estimates are between 0.75 and 0.95 indicating that on average farms within this data set are 

operating near constant returns to scale or slightly in the diseconomies of scale region of 

product-specific economies of scale. 

 This dissertation also highlights areas for future research. The results suggest a thorough 

examination of product-specific economies of scale is warranted to provide more accurate 

estimates. Using the data from chapter 4, it may also be wise to estimate a cost frontier for 

alternative regions in Kansas due to highly variable precipitation rates. 

 To summarize, this dissertation operationalized the calculation of multiple economies of 

scale measures and product-specific economies of scale measures for DEA methods. This has not 

previously been reported in the literature. It then tests the methods compared to previous 

methods and finds that the measures are no worse than parametric methods. Finally, the methods 

are applied to Kansas farm-level data. Because of the nature of DEA analysis, annual measures 

of scope and scale can be measured. Current parametric methods based on duality often are 

unable to estimate these annual measures due to an insufficient amount of relative price 

variability. 
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Appendix A - Software Codes Used in Chapter 2  

 

 A.1 Data Generation Using Shazam Software Package  

Below is the software code used to generate the data for Chapters 2 and 3.  A.1. generates 

400 observations which are half normally distributed and calculates the associate economic 

measures including cost efficiency, multi-product scale economies, product-specific scale 

economies, and economies of scope.  To generate uniform data set, change line 25 to read “genr 

e=UNI(0,900)”.   

To make the full 500 observations for the half-normal distribution, 50 observations are 

created producing y1 only and y2 only. For the 50 observations producing y1 only, in the half-

normal case, change line 3 to read “gen1 nreps=1” and line 75 to read “genr y2=0*(c12*p1-

c11*p2+aa2*w1+bb2*w2+cc2)/(-D)”.   For the 50 observations with y2 only, change line 3 as 

shown above and change line 74 to read “genr y1=0*(c22*p1-

c12*p2+aa1*w1+bb1*w2+cc1)/D”.  Then combine the 3 data sets.   

For the full 500 observations with a uniform distribution, change line 25 for uniform 

distribution shown  above and repeat steps for y1 only and y2 only.  

1. par 60000 
2. size 10000 
3. gen1 nreps=8 
4. 50, 100, 250, 500 
5. gen1 nobs=50 
6. gen1 tot=nreps*nobs 
7. set maxcol=tot 
8. sample 1 tot 
9. *coef of variation on prices 
10. .1, .2, .3, .4 
11. gen1 coefp=.11 
12. *coef of variation on inputs - i.e. measurement error 
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13. .001, .005, .01, .02 
14. gen1 coefi= 0.02 
15. .001, .005, .01, .02 
16. gen1 coefmep=0.02 
17. *Generate original data input price(w), output price(p),  
18. *get output quantity y using w and p, then use w and y to calculate cost 
19. set ranfix 
20. genr w11=9+NOR(9*coefp)  
21. genr w22=18+NOR(18*coefp) 
22. genr w33=7+NOR(7*coefp)  
23. genr p11=325+NOR(100*coefp) 
24. genr p22=800+NOR(100*coefp) 
25. genr e=NOR(0,1000) 
26. stat w11 w22 w33 p11 p22/pcov 
27. *normalize input and output prices using third input price w33 
28. genr w1=w11/w33 
29. genr w2=w22/w33 
30. genr w3=w33/w33 
31. genr p1=P11/w33 
32. genr p2=p22/w33 
33. *parameters in cost function with two inputs and two outputs 
34. *second order derivative of input prices in cost function is b11 b12 b22 
35. *second order derivative of output prices in cost function is c11 c12 c22 
36. gen1 b0=20 
37. gen1 b1=10 
38. gen1 b2=35 
39. gen1 a1=30 
40. gen1 a2=80 
41. gen1 b11o=.3 
42. gen1 b12o=.5 
43. gen1 b22o=.7 
44. gen1 c11o=1.2 
45. gen1 c12o=-0.2 
46. gen1 c22o=1.5 
47. gen1 a11=.5 
48. gen1 a12=1 
49. gen1 a21=.6 
50. gen1 a22=.5 
51. gen1 zo=0.0 
52. *parameters related to input price w, pr is transform matrix of p, negative semi-definite 

matrix 
53. matrix p=((b11o|b12o)'|(zo|b22o)') 
54. matrix pr=p' 
55. matrix pp=-p*pr 
56. matrix b11=pp(1,1) 
57. matrix b12=pp(1,2) 
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58. matrix b22=pp(2,2) 
59. *parameters related to output quantity y, positive semi-definite matrix 
60. matrix h=((c11o|c12o)'|(zo|c22o)') 
61. matrix hr=h' 
62. matrix hh=h*hr 
63. matrix c11=hh(1,1) 
64. matrix c12=hh(1,2) 
65. matrix c22=hh(2,2) 
66. *generate output quantity given input price w and output price p 
67. matrix D=(c22*c11-c12*c12) 
68. gen1 aa1=a12*c12-a11*c22 
69. gen1 bb1=a22*c12-a21*c22 
70. gen1 cc1=a2*c12-a1*c22 
71. gen1 aa2=a12*c11-a11*c12 
72. gen1 bb2=a22*c11-a21*c12 
73. gen1 cc2=a2*c11-a1*c12 
74. genr y1=(c22*p1-c12*p2+aa1*w1+bb1*w2+cc1)/D  
75. genr y2=(c12*p1-c11*p2+aa2*w1+bb2*w2+cc2)/(-D) 
76. stat y1 y2 
77. *generate cost using input price w and output quantities (quadratic function with two 

inputs and outputs) 
78. genr 

cs=b0+b1*w1+b2*w2+a1*y1+a2*y2+0.5*b11*w1*w1+b12*w1*w2+0.5*b22*w2*w2+
0.5*c11*y1*y1+c12*y1*y2+ & 

79. 0.5*c22*y2*y2+a11*w1*y1+a12*w1*y2+a21*w2*y1+a22*w2*y2 + abs(e) 
 

80. *costs without the error 
81. genr TotalCost= 

b0+b1*w1+b2*w2+a1*y1+a2*y2+0.5*b11*w1*w1+b12*w1*w2+0.5*b22*w2*w2+0.5*
c11*y1*y1+c12*y1*y2+ & 

82. 0.5*c22*y2*y2+a11*w1*y1+a12*w1*y2+a21*w2*y1+a22*w2*y2  
83. *costs without the error_Unnormalized 
84. genr Cost_UN= 

(b0+b1*w1+b2*w2+a1*y1+a2*y2+0.5*b11*w1*w1+b12*w1*w2+0.5*b22*w2*w2+0.5
*c11*y1*y1+c12*y1*y2+ 
0.5*c22*y2*y2+a11*w1*y1+a12*w1*y2+a21*w2*y1+a22*w2*y2)*w33  

85. *Incremental Costs 
86. genr ic_i_y1= a1*y1+.5*c11*y1*y1+c12*y1*y2+a11*w1*y1+a21*w2*y1 
87. genr ic_i_y2= a2*y2+.5*c22*y2*y2+c12*y1*y2+a12*w1*y2+a22*w2*y2 
88. *Marginal Costs 
89. genr mc_y1= a1+c11*y1+c12*y2+a11*w1+a21*w2  
90. genr mc_y2= a2+c22*y2+c12*y1+a12*w1+a22*w2 
91. *calculate input demands using input price and output quantities 
92. genr x1=b1+b11*w1+b12*w2+a11*y1+a12*y2  
93. genr x2=b2+b12*w1+b22*w2+a21*y1+a22*y2  
94. genr x3=(TotalCost-x1*w1-x2*w2) 
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95. *Costs of producing single outputs 
96. genr cy2= TotalCost-ic_i_y1 
97. genr cy1= TotalCost-ic_i_y2 
98. *Scope 
99. genr scope=(cy2+cy1-TotalCost)/TotalCost 
100. *xeff 
101. genr xeff=TotalCost/cs 
102. *xerrors 
103. genr x1err=x1/xeff 
104. genr x2err=x2/xeff 
105. genr x3err=x3/xeff 
106. *PSE MSE  
107. genr mse=TotalCost/(mc_y1*y1+mc_y2*y2) 
108. genr pse_y1=ic_i_y1/(y1*mc_y1) 
109. genr pse_y2=ic_i_y2/(y2*mc_y2) 
110. write (“file name and destination”) variable 1 variable 2 variable 3……. 

 

 A.2 Nonparametric Estimation Using General Algebraic Modeling Software (GAMS) 

 The code shown below was read in using text documents compiled from the data 

sets generated from the above Monte Carlo program.  For the first paper this program was run a 

total of 5 times.  The first run’s results yielded the model “No Inefficiency” using a data set with 

all the x variables on the frontier run a shown below.  Changes to the distribution came from the 

input data, not the code itself.  The model shown has the output forced to zero for the 

incremental cost calculations by including the constraints shown in lines 56 and 58 in lines 88 

and 105.  For the model where the output constraint is dropped, delete the constraints from lines 

88 and 105. 

Nonparametric GAMS Programming Code 

1. *CODE TO CALCULATE NONPARAMETRIC 
2. *PRODUCT SPECIFIC SCALE EFFICIENCY 
3. *$OFFSYMXREF OFFSYMLIST OFFUELXREF  OFFUELLIST 
4. *$OFFSYMLIST OFFSYMXREF 
5. *$OFFLISTING 
6. *OPTION LIMCOL=0; 
7. *OPTION LIMROW=0; 
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8. OPTION DECIMALS=7; 
9. SETS 
10. P OUTPUTS /Y1, Y2/ 
11. N INPUTS /X1,X2,X3/ 
12. K OBSERVATIONS /F1*F500/; 
13. TABLE I(K,N) INPUT LEVELS 
14. $INCLUDE "file inputs"; 
15. TABLE IP(K,N) INPUT PRICES 
16. $INCLUDE "file prices"; 
17. TABLE Y(K,P) OUTPUT LEVELS 
18. $INCLUDE "file output levels"; 
19. *PARAMETERS IN PLACE TO PREPARE FOR THE LOOP 
20. PARAMETER R2(N) 
21. /x1 1 
22. x2  1 
23. x3  1/; 
24. PARAMETER R3(P) 
25. /Y1 1 
26. Y2 1/; 
27. POSITIVE VARIABLES 
28. Z(K) INTENSITY MEASURE 
29. XI(N) OPTIMAL INPUT LEVEL; 
30. VARIABLES 
31. CA COST OBJ FUNCTION VALUE FOR ALL OUTPUTS 
32. CY1 COST OBJ FUNCTION VALUE FOR Y1 ONLY 
33. CY2 COST OBJ FUNCTION VALUE FOR Y2 ONLY; 
34. EQUATIONS 
35. OBJA OBJECTIVE FUNCTION FOR ALL OUTPUTS 
36. OBJY1 OBJECTIVE FUNCTION FOR Y1 ONLY 
37. OBJY2 OBJECTIVE FUNCTION FOR Y2 ONLY 
38. CON1 INPUT CONSTRAINT 
39. ALLOUT OUTPUT CONSTRAINT INCLUDING BOTH Y1 AND Y2 
40. Y1OUT OUTPUT CONSTRAINT INCLUDING ONLY Y1 
41. Y2OUT OUTPUT CONSTRAINT INCLUDING ONLY Y2 
42. Y1OUTZERO OUTPUT CONSTRAINT FORCING Y1 OUTPUT TO BE ZERO 
43. Y2OUTZERO OUTPUT CONSTRAINT FORCING Y2 OUTPUT TO BE ZERO 
44. CON3 Z CONSTRAINT; 
45. OBJA.. CA=E=SUM(N,XI(N)*R2(N)); 
46. OBJY1.. CY1=E=SUM(N,XI(N)*R2(N)); 
47. OBJY2.. CY2=E=SUM(N,XI(N)*R2(N)); 
48. CON1(N).. SUM(K, I(K,N)*Z(K))=L=XI(N); 
49. *CONSTRAINT FOR ALL OUTPUTS 
50. ALLOUT(P).. SUM(K, Y(K,P)*Z(K))-R3(P)=G=0; 
51. *CONSTRAINT EXCLUDING Y2 
52. Y1OUT("Y1").. SUM(K, Y(K,"Y1")*Z(K))-R3("Y1")=G=0; 
53. *CONSTRAINT EXCLUDING Y1 
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54. Y2OUT("Y2").. SUM(K, Y(K,"Y2")*Z(K))-R3("Y2")=G=0; 
55. *CONSTRAINT FORCING Y1 TO BE ZERO 
56. Y1OUTZERO("Y1").. SUM(K, Y(K,"Y1")*Z(K))=e=0; 
57. *CONSTRAINT FORCING Y2 TO BE ZERO 
58. Y2OUTZERO("Y2").. SUM(K, Y(K,"Y2")*Z(K))=e=0; 
59. *SET THIS CONSTRAINT LESS THAN OR EQUAL TO 1 FOR CONSTANT 

RETURNS TO SCALE 
60. *SET THIS CONSTRAINT EQUAL TO 1 FOR VARIABLE RETURNS TO SCALE 
61. CON3.. SUM(K,Z(K))=E=1; 
62. ****************MODEL FOR ALL OUTPUTS********************** 
63. MODEL MODALL /OBJA, CON1, ALLOUT,  CON3/; 
64. MODALL.WORKSPACE=7; 
65. SETS 
66. ITER1 /I1*I500/; 
67. PARAMETER ACOSTS(ITER1) TOTAL COST OF PRODUCING ALL OUTPUTS; 
68. PARAMETER MCOSTA (ITER1,P) MARGINAL COSTS OF OUTPUTS; 
69. PARAMETER ZY2A (ITER1) LIVESTOCK OUTPUT AS CALCULATED WITH 

INTENSITY FACTORS; 
70. PARAMETER ZY1A (ITER1) CROP OUTPUT AS CALCULATED WITH 

INTENSITY FACTORS; 
71. PARAMETER ZVALSA (K,ITER1) Z VALUES OF EACH ITERATION; 
72. TABLE VAL1(ITER1,N) INPUT LEVELS 
73. $INCLUDE "file inputs"; 
74. TABLE VAL2(ITER1,N) INPUT PRICES 
75. $INCLUDE "file input prices"; 
76. TABLE VAL3(ITER1,P) OUTPUT LEVELS 
77. $INCLUDE "file output levels"; 
78. LOOP(ITER1, 
79. R3(P)=VAL3(ITER1,P); 
80. R2(N)=VAL2(ITER1,N); 
81. SOLVE MODALL USING NLP MINIMIZING CA; 
82. ACOSTS(ITER1)=CA.L; 
83. MCOSTA(ITER1,P)=ALLOUT.M(P); 
84. ZY1A (ITER1)=SUM(K,Z.L(K)*Y(K,"Y1")); 
85. ZY2A (ITER1)=SUM(K,Z.L(K)*Y(K,"Y2")); 
86. ZVALSA (K,ITER1)=Z.L(K);); 
87. ****************MODEL FOR ONLY Y2 ONLY********************** 
88. MODEL MODY2 /OBJY2, CON1, Y2OUT, Y1OUTZERO, CON3/; 
89. MODY2.WORKSPACE=1.5; 
90. PARAMETER Y2COSTS(ITER1) TOTAL COST OF PRODUCING ALL OUTPUTS; 
91. PARAMETER MCOSTY2 (ITER1,P) MARGINAL COSTS OF OUTPUTS; 
92. PARAMETER ZY2_Y2 (ITER1) Y2 OUTPUT AS CALCULATED WITH INTENSITY 

FACTORS; 
93. PARAMETER Zy1_Y2 (ITER1) Y1 OUTPUT AS CALCULATED WITH INTENSITY 

FACTORS; 
94. PARAMETER ZVALSY2 (K,ITER1) Z VALUES OF EACH ITERATION; 
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95. LOOP(ITER1, 
96. R3(P)=VAL3(ITER1,P); 
97. R2(N)=VAL2(ITER1,N); 
98. SOLVE MODY2 USING NLP MINIMIZING CY2; 
99. Y2COSTS(ITER1)=CY2.L; 
100. MCOSTY2(ITER1,P)=Y2OUT.M(P); 
101. ZY1_Y2 (ITER1)=SUM(K,Z.L(K)*Y(K,"Y1")); 
102. ZY2_Y2 (ITER1)=SUM(K,Z.L(K)*Y(K,"Y2")); 
103. ZVALSY2 (K,ITER1)=Z.L(K);); 
104. ************MODEL FOR ONLY Y1********************** 
105. MODEL MODY1 /OBJY1, CON1, Y1OUT,Y2OUTZERO,  CON3/; 
106. MODY1.WORKSPACE=1.5; 
107. PARAMETER Y1COSTS (ITER1) TOTAL COST OR PRODUCING ONLY 

Y1; 
108. PARAMETER MCOSTY1 (ITER1,P) MARGINAL COSTS OF OUTPUTS; 
109. PARAMETER ZY2_Y1 (ITER1) Y2 OUTPUT AS CALCULATED WITH 

INTENSITY FACTORS; 
110. PARAMETER ZY1_Y1 (ITER1) Y1 OUTPUT AS CALCULATED WITH 

INTENSITY FACTORS; 
111. PARAMETER ZVALSY1 (K,ITER1) Z VALUES OF EACH ITERATION; 
112. LOOP(ITER1, 
113. R3(P)=VAL3(ITER1,P); 
114. R2(N)=VAL2(ITER1,N); 
115. SOLVE MODY1 USING NLP MINIMIZING CY1; 
116. Y1COSTS(ITER1)=CY1.L; 
117. MCOSTY1(ITER1,P)=Y1OUT.M(P); 
118. ZY1_Y1 (ITER1)=SUM(K,Z.L(K)*Y(K,"Y1")); 
119. ZY2_Y1 (ITER1)=SUM(K,Z.L(K)*Y(K,"Y2")); 
120. ZVALSY1 (K,ITER1)=Z.L(K);); 
121. *WRITE OUTPUT INTO SPACE DELIMITED FILES* 
122. ********PRODUCTION INTENSITY MEASURES******** 
123. *Z VALUES FROM MODEL FOR ALL OUTPUTS* 
124. FILE ALLZ /”file destination”/; 
125. ALLZ.PW=5000; 
126. ALLZ.ND=4; 
127. ALLZ.PC=4; 
128. PUT ALLZ; 
129. PUT 'PRODUCTION INTENSITY FACTORS FROM MODEL FOR ALL 

OUTPUTS'//; 
130. PUT ' '; LOOP(ITER1, PUT ITER1.TL); 
131. LOOP(K, 
132. PUT/K.TE(K); 
133. LOOP(ITER1,PUT ZVALSA(K,ITER1));); 
134. *Z VALUES FROM MODEL FOR ONLY Y1* 
135. FILE Y1Z / file destination /; 
136. Y1Z.PW=5000; 
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137. Y1Z.ND=4; 
138. Y1Z.PC=4; 
139. PUT Y1Z; 
140. PUT 'PRODUCTION INTENSITY FACTORS FROM MODEL FOR ONLY 

Y1'//; 
141. PUT ' '; LOOP(ITER1, PUT ITER1.TL); 
142. LOOP(K, 
143. PUT/K.TE(K); 
144. LOOP(ITER1,PUT ZVALSY1(K,ITER1));); 
145. *Z VALUES FROM MODEL FOR ONLY Y2* 
146. FILE Y2Z / file destination /; 
147. Y2Z.PW=5000; 
148. Y2Z.ND=4; 
149. Y2Z.PC=4; 
150. PUT Y2Z; 
151. PUT 'PRODUCTION INTENSITY FACTORS FROM MODEL FOR ONLY 

Y2'//; 
152. PUT ' '; LOOP(ITER1, PUT ITER1.TL); 
153. LOOP(K, 
154. PUT/K.TE(K); 
155. LOOP(ITER1,PUT ZVALSY2(K,ITER1));); 
156. **********CREATE FILE FOR TOTAL COST, MARGINAL COSTS, 

INCREMENTAL COST RESULTS********** 
157. *TOTAL AND MARGINAL COSTS 
158. FILE RESULTS / file destination /; 
159. RESULTS.PW=5000; 
160. RESULTS.ND=4; 
161. RESULTS.PC=4; 
162. PUT RESULTS; 
163. PUT 'COSTS'//; 
164. PUT ' ';LOOP(P, PUT P.TL); 
165. PUT 'TOTAL COST' 'Y2COST' 'Y1COST' 'ZY2A' 'ZY1A' 'ZY2_Y2' 'ZY1_Y2' 

'ZY2_Y1' 'ZY1_Y1'; 
166. LOOP(ITER1, 
167. PUT/ITER1.TE(ITER1); 
168. LOOP(P,PUT MCOSTA(ITER1,P)); PUT ACOSTS(ITER1) Y2COSTS(ITER1) 
169. Y1COSTS(ITER1) ZY2A(ITER1) ZY1A(ITER1) ZY2_Y2(ITER1) 

ZY1_Y2(ITER1) 
170. ZY2_Y1(ITER1) ZY1_Y1(ITER1)); 
171. Display MCOSTA 
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Appendix B - Software Codes Used in Chapter 3 

 B.1 Two-Sided Error Model 

This routine is specified for the SHAZAM software platform.  This code reads in  prices 

and quantities and fits a traditional two-sided error regression curve to the data generated as 

shown in Appendix A. The economic measures are calculated within the code below and read 

out into an excel document. 

 

1. file 13 “file path” 
2. Read (13)  Firm pin1  pin2  pin3  pout1  pout2  out1  out2  in1  in2  in3; 
3. stat pin1  pin2  pin3  pout1  pout2  out1  out2  in1  in2  in3; 
4. genr b1=in1 
5. genr b2=in2 
6. genr b3=in3 
7. genr y1=out1 
8. genr y2=out2 
9. genr c1=pin1 
10. genr c2=pin2 
11. genr c3=pin3 
12. genr d1=pout1 
13. genr d2=pout2 
14. genr w1=c1/c3 
15. genr w2=c2/c3 
16. genr x1=b1 
17. genr x2=b2 
18. genr x3=b3 
19. genr cost=c1*b1+c2*b2+c3*b3 
20. genr costn=cost/c3 
21. stat w1/ mean= mw1 
22. stat w2/ mean= mw2 
23. stat y1/ mean= my1 
24. stat y2/ mean= my2 
25. nl 3 / ncoef = 15 iter = 2000 piter = 100 genrvar conv = .0000001  
26. eq COSTN = A0 + A1*W1 + A2*W2  & 
27. + AY1*Y1 + AY2*Y2 + 0.5*W11*W1*W1 + W12*W1*W2 + .5*W22*W2*W2  + 

.5*Y11*Y1*Y1 & 
28. + Y12*Y1*Y2 + .5*Y22*Y2*Y2 + YW11*W1*Y1 + YW12*Y1*W2  & 
29. + YW21*W1*Y2 + YW22*Y2*W2  
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30. eq X1=A1+W11*W1+W12*W2+YW11*Y1+YW21*Y2          
31. eq X2=A2+W12*W1+W22*W2+YW12*Y1+YW22*Y2          
32. ******************************************************************* 
33. ************  set y1 = 0 and then y2 = 0 in total cost************** 
34. *********************************************************** 
35. *Total Cost 
36. genr ttlcst = A0 + A1*W1 + A2*W2  & 
37. + AY1*Y1 + AY2*Y2 + 0.5*W11*W1*W1 + W12*W1*W2 + .5*W22*W2*W2  + 

.5*Y11*Y1*Y1 & 
38. + Y12*Y1*Y2 + .5*Y22*Y2*Y2 + YW11*W1*Y1 + YW12*Y1*W2  & 
39. + YW21*W1*Y2 + YW22*Y2*W2  
40. *Cost function for Y1 (y2=0) 
41. genr costy1 =A0 + A1*W1 + A2*W2  & 
42. + AY1*Y1  + 0.5*W11*W1*W1 + W12*W1*W2  & 
43. + .5*W22*W2*W2 + .5*Y11*Y1*Y1 + YW12*Y1*W2 + YW11*W1*Y1 
44. *Cost function for Y2 (y1=0) 
45. genr costy2 = A0 + A1*W1 +A2*W2  & 
46. + AY2*Y2 + 0.5*W11*W1*W1 + W12*W1*W2 & 
47. + .5*W22*W2*W2 + .5*Y22*Y2*Y2 + YW21*W1*Y2 + YW22*Y2*W2 
48. print ttlcst 
49. print costy1 
50. print costy2 
51. Estimate dC/dYi = MCYI 
52. genr mcy1 =  AY1 + Y11*Y1 + Y12*Y2 & 
53. + YW11*W1 + YW12*W2  
54. genr mcy2 =  AY2 + Y12*Y1 + Y22*Y2 & 
55. + YW21*W1 + YW22*W2  
56. matrix P = MCY1|MCY2 
57. *Multiproduct Scale Economies 
58. genr MPSE = ttlcst/(y1*mcy1 + y2*mcy2) 
59. genr scope = (COSTy1 + COSTy2 - ttlcst)/ttlcst 
60. *generate IC1  
61. genr IC1 = ttlcst -  (A0 + A1*W1 +A2*W2  & 
62. + AY2*Y2 + 0.5*W11*W1*W1 + W12*W1*W2 & 
63. + .5*W22*W2*W2 + .5*Y22*Y2*Y2 + YW21*W1*Y2 + YW22*Y2*W2)  
64. *generate IC2  
65. genr IC2 = ttlcst - (A0 + A1*W1 + A2*W2  & 
66. + AY1*Y1  + 0.5*W11*W1*W1 + W12*W1*W2  & 
67. + .5*W22*W2*W2 + .5*Y11*Y1*Y1 + YW11*W1*Y1 + YW12*Y1*W2 )  
68. genr PSEY1 = IC1/(y1*mcy1) 
69. genr PSEY2 = IC2/(y2*mcy2) 
70. print IC1 IC2 PSEY1 PSEY2 
71. write (file) ttlcst mcy1 mcy2 IC1 IC2  
72. write (file) MPSE PSEY1 PSEY2 scope 
73. stop 
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 B.2 OLS Positive Errors Model 

The following estimation was run using the GAMS software package. Prior to running 

the following code, the independent variable are multiplied out for each observation in the form 

of a normalized quadratic function.  The total cost for each firm is copied and pasted directly into 

this code between lines 14 and 15 while the RHS variables are read in from a table (Lines 9-12). 

Calculations for cost efficiency, multi-product scale economies, product-specific scale 

economies, and economies are done in excel using the parameters estimated from this model. 

1. Regression 
2. *$OFFSYMXREF OFFSYMLIST OFFUELXREF  OFFUELLIST 
3. *$OFFSYMLIST OFFSYMXREF 
4. *$OFFLISTING 
5. *OPTION LIMCOL=0; 
6. *OPTION LIMROW=0; 
7. OPTION DECIMALS=7; 
8. SETS 
9. D DEPENDENTS /B0,B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14/ 
10. i OBSERVATIONS /F1*F500/; 
11. TABLE X(i,D) DEPENDENTS 
12. $INCLUDE "File Location " 
13. parameter y(i) 
14. / F1 “ Total Cost for each firm”…….. 
15. / 
16. variables 
17. sse       objective function 
18. gamma(D)   parameter estimates 
19. e(i)      deviations; 
20. positive variable e; 
21. equations 
22. obj 
23. dev(i)  ; 
24. obj.. sse =e= sum(i,power(e(i),2)); ; 
25. dev(i).. e(i) =e= y(i)/1 - sum(D,gamma(D)*X(i,D)); 
26. model reg /obj,dev/; 
27. options nlp=conopt; 
28. options lp=minos; 
29. solve reg using nlp minimizing sse; 
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 B.3 Stochastic Frontier Model 

The stochastic frontier model was estimated using FRONT V4.1 written by Tim Coelli 

and downloaded from (http://www.uq.edu.au/economics/cepa/frontier.php).  The code shown 

below is a text document read into the program which specifies the models attributes, data 

source, and output destination.  In using this specification, a normalized quadratic cost frontier is 

estimated for the case with 500 observations under the uniform distribution, a constant, and 14 

coefficients.  For this we read in the text document as follows: 

 

1               1=ERROR COMPONENTS MODEL, 2=TE EFFECTS MODEL 

Uniform-dta.txt         DATA FILE NAME 

Uniform-out.txt         OUTPUT FILE NAME 
2               1=PRODUCTION FUNCTION, 2=COST FUNCTION 
n               LOGGED DEPENDENT VARIABLE (Y/N) 
500              NUMBER OF CROSS-SECTIONS 
1               NUMBER OF TIME PERIODS 
500              NUMBER OF OBSERVATIONS IN TOTAL 
14               NUMBER OF REGRESSOR VARIABLES (Xs)  
n               MU (Y/N) [OR DELTA0 (Y/N) IF USING TE EFFECTS MODEL] 
n               ETA (Y/N) [OR NUMBER OF TE EFFECTS REGRESSORS (Zs)] 
n               STARTING VALUES (Y/N) 
IF YES THEN     BETA0               
BETA1 TO 
BETAK             
SIGMA SQUARED 
GAMMA 
MU              [OR DELTA0 
ETA                 DELTA1 TO 
DELTAP] 
When estimating different data sets, the input file and output file names are changed and 

for the 400 observations case, the number of cross-sections and observations is changed. 

 B.4 Nonparametric Model 

 See Appendix A for nonparametric estimation code instructions. 
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Appendix C - Software Codes Used in Chapter 4 

Below is the program to estimate the nonparametric cost frontier for the KFMA data set 

using GAMS.  Since there are no zero output firms, the incremental costs are calculated by 

dropping the appropriate output constraints rather than forcing it to equal zero.  There are 8 

inputs, 8 input prices, and 2 outputs.   

 C.1 Software Code for Cost Frontier Estimation Using KFMA Data 

1. *CODE TO CALCULATE NONPARAMETRIC 
2. *PRODUCT SPECIFIC SCALE EFFICIENCY 
3. $OFFSYMXREF OFFSYMLIST OFFUELXREF  OFFUELLIST 
4. $OFFSYMLIST OFFSYMXREF 
5. $OFFLISTING 
6. OPTION LIMCOL=0; 
7. OPTION LIMROW=0; 
8. OPTION DECIMALS=7; 
9. SETS 
10. P OUTPUTS /YCROP, YLIVE/ 
11. N INPUTS /yseed,yfert,ychem,yfeed,yfuel,ylab,yland,ymach/ 
12. K OBSERVATIONS /F1*F2410/; 
13. TABLE I(K,N) INPUT LEVELS 
14. $INCLUDE "file"; 
15. TABLE IP(K,N) INPUT PRICES 
16. $INCLUDE "file"; 
17. TABLE Y(K,P) OUTPUT LEVELS 
18. $INCLUDE "file"; 
19. *PARAMETERS IN PLACE TO PREPARE FOR THE LOOP 
20. PARAMETER R2(N) 
21. /yseed 1 
22. yfert  1 
23. ychem  1 
24. yfeed  1 
25. yfuel  1 
26. ylab   1 
27. yland  1 
28. ymach 1/; 
29. PARAMETER R3(P) 
30. /YCROP 1 
31. YLIVE 1/; 
32. POSITIVE VARIABLES 
33. Z(K) INTENSITY MEASURE 
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34. XI(N) OPTIMAL INPUT LEVEL; 
35. VARIABLES 
36. CA COST OBJ FUNCTION VALUE FOR ALL OUTPUTS 
37. CC COST OBJ FUNCTION VALUE FOR CROPS ONLY 
38. CL COST OBJ FUNCTION VALUE FOR LIVESTOCK ONLY; 
39. EQUATIONS 
40. OBJA OBJECTIVE FUNCTION FOR ALL OUTPUTS 
41. OBJC OBJECTIVE FUNCTION FOR CROPS ONLY 
42. OBJL OBJECTIVE FUNCTION FOR LIVESTOCK ONLY 
43. CON1 INPUT CONSTRAINT 
44. ALLOUT OUTPUT CONSTRAINT INCLUDING BOTH CROPS AND LIVESTOCK 
45. CROPOUT OUTPUT CONSTRAINT INCLUDING ONLY CROPS 
46. LIVEOUT OUTPUT CONSTRAINT INCLUDING ONLY LIVESTOCK 
47. CON3 Z CONSTRAINT; 
48. OBJA.. CA=E=SUM(N,XI(N)*R2(N)); 
49. OBJC.. CC=E=SUM(N,XI(N)*R2(N)); 
50. OBJL.. CL=E=SUM(N,XI(N)*R2(N)); 
51. CON1(N).. SUM(K, I(K,N)*Z(K))=L=XI(N); 
52. *CONSTRAINT FOR ALL OUTPUTS 
53. ALLOUT(P).. SUM(K, Y(K,P)*Z(K))-R3(P)=g=0; 
54. *CONSTRAINT EXCLUDING LIVESTOCK 
55. CROPOUT("YCROP").. SUM(K, Y(K,"YCROP")*Z(K))-R3("YCROP")=g=0; 
56. *CONSTRAINT EXCLUDING CROPS 
57. LIVEOUT("YLIVE").. SUM(K, Y(K,"YLIVE")*Z(K))-R3("YLIVE")=g=0; 
58. *SET THIS CONSTRAINT LESS THAN OR EQUAL TO 1 FOR CONSTANT 

RETURNS TO SCALE 
59. *SET THIS CONSTRAINT EQUAL TO 1 FOR VARIABLE RETURNS TO SCALE 
60. CON3.. SUM(K,Z(K))=E=1; 
61. ****************MODEL FOR ALL OUTPUTS********************** 
62. MODEL MODALL /OBJA, CON1, ALLOUT, CON3/; 
63. MODALL.WORKSPACE=2.5; 
64. SETS 
65. ITER1 /I1*I2410/; 
66. PARAMETER ACOSTS(ITER1) TOTAL COST OF PRODUCING ALL OUTPUTS; 
67. PARAMETER MCOSTA (ITER1,P) MARGINAL COSTS OF OUTPUTS; 
68. PARAMETER ZLIVEA (ITER1) LIVESTOCK OUTPUT AS CALCULATED WITH 

INTENSITY FACTORS; 
69. PARAMETER ZCROPA (ITER1) CROP OUTPUT AS CALCULATED WITH 

INTENSITY FACTORS; 
70. PARAMETER ZVALSA (K,ITER1) Z VALUES OF EACH ITERATION; 
71. TABLE VAL1(ITER1,N) INPUT LEVELS 
72. $INCLUDE "file"; 
73. TABLE VAL2(ITER1,N) INPUT PRICES 
74. $INCLUDE "file"; 
75. TABLE VAL3(ITER1,P) OUTPUT LEVELS 
76. $INCLUDE "file"; 
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77. LOOP(ITER1, 
78. R3(P)=VAL3(ITER1,P); 
79. R2(N)=VAL2(ITER1,N); 
80. SOLVE MODALL USING NLP MINIMIZING CA; 
81. ACOSTS(ITER1)=CA.L; 
82. MCOSTA(ITER1,P)=ALLOUT.M(P); 
83. ZCROPA (ITER1)=SUM(K,Z.L(K)*Y(K,"YCROP")); 
84. ZLIVEA (ITER1)=SUM(K,Z.L(K)*Y(K,"YLIVE")); 
85. ZVALSA (K,ITER1)=Z.L(K);); 
86. ****************MODEL FOR ONLY LIVESTOCK********************** 
87. MODEL MODLIVE /OBJL, CON1, LIVEOUT, CON3/; 
88. MODLIVE.WORKSPACE=2.5; 
89. PARAMETER LCOSTS(ITER1) TOTAL COST OF PRODUCING ALL OUTPUTS; 
90. PARAMETER MCOSTL (ITER1,P) MARGINAL COSTS OF OUTPUTS; 
91. PARAMETER ZLIVEL (ITER1) LIVESTOCK OUTPUT AS CALCULATED WITH 

INTENSITY FACTORS; 
92. PARAMETER ZCROPL (ITER1) CROP OUTPUT AS CALCULATED WITH 

INTENSITY FACTORS; 
93. PARAMETER ZVALSL (K,ITER1) Z VALUES OF EACH ITERATION; 
94. LOOP(ITER1, 
95. R3(P)=VAL3(ITER1,P); 
96. R2(N)=VAL2(ITER1,N); 
97. SOLVE MODLIVE USING NLP MINIMIZING CL; 
98. LCOSTS(ITER1)=CL.L; 
99. MCOSTL(ITER1,P)=LIVEOUT.M(P); 
100. ZCROPL (ITER1)=SUM(K,Z.L(K)*Y(K,"YCROP")); 
101. ZLIVEL (ITER1)=SUM(K,Z.L(K)*Y(K,"YLIVE")); 
102. ZVALSL (K,ITER1)=Z.L(K);); 
103. ************MODEL FOR ONLY CROPS********************** 
104. MODEL MODCROP /OBJC, CON1, CROPOUT, CON3/; 
105. MODCROP.WORKSPACE=2.5; 
106. PARAMETER CCOSTS (ITER1) TOTAL COST OR PRODUCING ONLY CROPS; 
107. PARAMETER MCOSTC (ITER1,P) MARGINAL COSTS OF OUTPUTS; 
108. PARAMETER ZLIVEC (ITER1) LIVESTOCK OUTPUT AS CALCULATED WITH 

INTENSITY FACTORS; 
109. PARAMETER ZCROPC (ITER1) CROP OUTPUT AS CALCULATED WITH 

INTENSITY FACTORS; 
110. PARAMETER ZVALSC (K,ITER1) Z VALUES OF EACH ITERATION; 
111. LOOP(ITER1, 
112. R3(P)=VAL3(ITER1,P); 
113. R2(N)=VAL2(ITER1,N); 
114. SOLVE MODCROP USING NLP MINIMIZING CC; 
115. CCOSTS(ITER1)=CC.L; 
116. MCOSTC(ITER1,P)=CROPOUT.M(P); 
117. ZCROPC (ITER1)=SUM(K,Z.L(K)*Y(K,"YCROP")); 
118. ZLIVEC (ITER1)=SUM(K,Z.L(K)*Y(K,"YLIVE")); 
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119. ZVALSC (K,ITER1)=Z.L(K);); 
120. *WRITE OUTPUT INTO SPACE DELIMITED FILES* 
121. ********PRODUCTION INTENSITY MEASURES******** 
122. *Z VALUES FROM MODEL FOR ALL OUTPUTS* 
123. FILE ALLZ /file/; 
124. ALLZ.PW=5000; 
125. ALLZ.ND=4; 
126. ALLZ.PC=4; 
127. PUT ALLZ; 
128. PUT 'PRODUCTION INTENSITY FACTORS FROM MODEL FOR ALL 

OUTPUTS'//; 
129. PUT ' '; LOOP(ITER1, PUT ITER1.TL); 
130. LOOP(K, 
131. PUT/K.TE(K); 
132. LOOP(ITER1,PUT ZVALSA(K,ITER1));); 
133. *Z VALUES FROM MODEL FOR ONLY CROPS* 
134. FILE CROPZ /file/; 
135. CROPZ.PW=5000; 
136. CROPZ.ND=4; 
137. CROPZ.PC=4; 
138. PUT CROPZ; 
139. PUT 'PRODUCTION INTENSITY FACTORS FROM MODEL FOR ONLY CROPS'//; 
140. PUT ' '; LOOP(ITER1, PUT ITER1.TL); 
141. LOOP(K, 
142. PUT/K.TE(K); 
143. LOOP(ITER1,PUT ZVALSC(K,ITER1));); 
144. *Z VALUES FROM MODEL FOR ONLY LIVESTOCK* 
145. FILE LIVEZ /file/; 
146. LIVEZ.PW=5000; 
147. LIVEZ.ND=4; 
148. LIVEZ.PC=4; 
149. PUT LIVEZ; 
150. PUT 'PRODUCTION INTENSITY FACTORS FROM MODEL FOR ONLY 

LIVESTOCK'//; 
151. PUT ' '; LOOP(ITER1, PUT ITER1.TL); 
152. LOOP(K, 
153. PUT/K.TE(K); 
154. LOOP(ITER1,PUT ZVALSL(K,ITER1));); 
155. **********CREATE FILE FOR TOTAL COST, MARGINAL COSTS, 

INCREMENTAL COST RESULTS********** 
156. *TOTAL AND MARGINAL COSTS 
157. FILE RESULTS /file/; 
158. RESULTS.PW=5000; 
159. RESULTS.ND=4; 
160. RESULTS.PC=4; 
161. PUT RESULTS; 
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162. PUT 'COSTS'//; 
163. PUT ' ';LOOP(P, PUT P.TL); 
164. PUT 'TOTAL COST' 'LCOST' 'CCOST' 'ZLIVEA' 'ZCROPA' 'ZLIVEL' 'ZCROPL' 

'ZLIVEC' 'ZCROPC'; 
165. LOOP(ITER1, 
166. PUT/ITER1.TE(ITER1); 
167. LOOP(P,PUT MCOSTA(ITER1,P)); PUT ACOSTS(ITER1) LCOSTS(ITER1) 
168. CCOSTS(ITER1) ZLIVEA(ITER1) ZCROPA(ITER1) ZLIVEL(ITER1) 

ZCROPL(ITER1) 
169. ZLIVEC(ITER1) ZCROPC(ITER1)); 


