Genome-wide survey and molecular characterization of vacuolar-ATPase subunit genes in the yellow fever mosquito *Aedes aegypti* (Diptera: Culicidae)

by

Basak Coskun

B.S., Ege University, 2012

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Entomology College of Agriculture

KANSAS STATE UNIVERSITY Manhattan, Kansas

2017

Approved by:

Co-Major Professor Kun Yan Zhu Approved by:

Co-Major Professor Kristopher Silver

Copyright

© Basak Coskun 2017.

Abstract

The yellow fever mosquito, *Aedes aegypti*, is a significant vector of several viral diseases, including Zika, dengue fever, yellow fever, and chikungunya. Since vaccines are not currently available for these viruses, control of the disease vectors by using insecticides is the most common practice for preventing disease. As a result, *Ae. aegypti* has developed resistance against many of the most commonly used insecticides, including organophosphates and pyrethroids. The rise in resistance in vector mosquitoes requires the search for new control strategies, such as RNA interference (RNAi), to manage mosquito populations. Vacuolar H⁺-ATPase (V-ATPase), a multi-subunit enzyme involved in many cellular processes, including membrane energization, acidification of organelles, and entry of dengue virus into the cytoplasm, is a potential target for RNAi, though little is known about its genetic structure or expression patterns in *Ae. aegypti*.

In this study, I performed genome-wide surveys to identify the genes encoding different subunits of the V-ATPase protein complex, partially characterized the molecular properties and expression patterns of selected V-ATPase subunit genes, and tested the feasibility of using oralbased delivery of nanoparticles formed from double-stranded RNA (dsRNA) and chitosan to suppress the expression of selected V-ATPase subunit genes in *Ae. aegypti*. My genome-wide surveys revealed that *Ae. aegypti* V-ATPase consists of 13 different subunits (A, B, C, D, E, F, G, H, a, c, c", d, e) encoded by 14 genes. Analysis of exon-intron arrangements for each gene demonstrated that each V-ATPase subunit gene has between one (subunit c) and 12 (subunit C) exons, with most genes (11) having 3 to 6 exons. Subsequent phylogenetic analysis of the deduced amino acid sequences of each subunit showed that V-ATPase subunits A, B, C, F, G, H, and a exhibited high levels of conservation among all the examined species, but subunits D, E, c, c", d, and e showed high conservation only among dipteran species.

Analysis of the expression profiles in different tissues and developmental stages of three specific V-ATPase subunits (A, D, and H) showed that whereas the expression of these genes varied between tissues and developmental stages, the patterns of expression of subunits A, D, and H were very similar. The highest mRNA expression level was observed in Malpighian tubules in fourth-instar larvae. Interestingly, expression of subunits A, D, or H in different tissues of adults was highest in male hindgut versus Malpighian tubules in females. Feeding mosquito larvae with chitosan nanoparticles made with dsRNA complementary to subunits A, D, or H resulted in significant suppression of mRNA transcript levels of each of these subunits. Peak suppression of V-ATPase A, D, or H transcripts occurred on the fifth day, where the gene transcript level was suppressed by 66.0, 27.3, or 70.4%, respectively, as compared with those of the control. Additionally, feeding of dsRNA/chitosan nanoparticles targeting subunit D caused mortality starting on day 3, with cumulative larval mortality reaching 14.8% on the sixth day. These results suggest that oral delivery of dsRNA/chitosan nanoparticles can substantially suppress target gene expression in Ae. aegypti larvae. However, increasing RNAi efficiency in targeting V-ATPase subunit genes in mosquito larvae appears to be necessary in order to obtain higher larval mortality using oral delivery of dsRNA/chitosan nanoparticles.

Table of Contents

List of Figures	viii
List of Tables	xi
Acknowledgements	xii
Dedication	xiii
Chapter 1 - Literature Review	1
1.1. Vacuolar H ⁺ -ATPase	1
1.1.1. A brief history	1
1.1.2. Function of V-ATPase	2
1.1.3. Structure of V-ATPase	
1.1.4. RNAi-based silencing of V-ATPase genes	4
1.2. Yellow fever mosquito (Aedes aegypti)	6
1.2.1. Significance of Aedes aegypti	6
1.2.2. Biology of Aedes aegypti	7
1.3. V-ATPase studies in <i>Aedes aegypt</i> i	
1.4. Research goals and objectives	9
References	
Chapter 2 - Genome-wide Survey and Phylogenetic Analyses of the Vacuolar H ⁺ -A	TPase Gene
Family in the Yellow Fever Mosquito Aedes aegypti (Diptera: Culicidae)	
Abstract	
2.1. Introduction	
2.2. Materials and Methods	
2.2.1. Database searches and sequence analysis	
2.2.2. Exon-intron organizations	
2.2.3. Multiple alignments and phylogenetic analysis	
2.3. Results and Discussion	
2.3.1. V-ATPase gene family in Aedes aegypti	
2.3.2. Genomic distribution of V-ATPase genes	
2.3.3. Exon-intron organizations	
2.3.4. Phylogenetic analysis	

References	29
Chapter 3 - Molecular Characterization of Selected V-ATPase Genes in the Yellow Fever	
Mosquito Aedes aegypti	48
Abstract	48
3.1. Introduction	49
3.2. Materials and Methods	52
3.2.1. Mosquito rearing and maintenance	52
3.2.2. RNA isolation and cDNA synthesis	53
3.2.3. Molecular cloning and sequencing of selected V-ATPase subunits	54
3.2.4. Quantitative PCR analysis	55
3.3. Statistical analysis	55
3.4. Results	56
3.4.1. Sequencing of partial cDNAs of V-ATPase A, D, and H genes	56
3.4.2. Developmental stage expression patterns	56
3.4.3. Tissue specific expression patterns in larvae	57
3.4.4. Tissue specific expression patterns in adults	57
3.5. Discussion	58
References	61
Chapter 4 - Suppression of Selected V-ATPase Subunit Transcripts in Aedes aegypti Larvae	e by
Oral Delivery of dsRNA/Chitosan Nanoparticles	76
Abstract	76
4.1. Introduction	77
4.2. Materials and Methods	78
4.2.1. Mosquito rearing	78
4.2.2. dsRNA synthesis	79
4.2.3. Preparation of dsRNA/chitosan nanoparticles and larval feeding	79
4.2.4. RNA isolation and cDNA synthesis	80
4.2.5. Quantitative PCR analysis	81
4.3. Results	81
4.3.1. RNAi of V-ATPase subunits A, D, or H in mosquito larvae	81
4.4. Discussion	82

References	
Appendix A - Bioinformatic and Phylogenetic Data	

List of Figures

Figure 2.1. Exon-intron organization of the V-ATPase subunit A gene (V-ATPase A) in Ae. aegypti. 37
Figure 2.2. Phylogenetic relationship of the deduced amino acid sequences of <i>V</i> - <i>ATPase A</i> genes.
Figure 2.3. Multiple alignments of deduced amino acid sequences of V-ATPase subunits A (Ae.
aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A.
mellifera, A. pisum)
Figure 2.4. Exon-intron organization of the V-ATPase subunit D gene (<i>V-ATPase D</i>) in <i>Ae.</i> <i>aegypti</i>
Figure 2.5. Phylogenetic relationship of the deduced amino acid sequences of <i>V</i> - <i>ATPase D</i> gene.
Figure 2.6. Multiple alignments of deduced amino acid sequences of V-ATPase subunit D (Ae.
aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A.
mellifera, A. pisum)
Figure 2.7. Exon-intron organization of the V-ATPase subunit H gene (V-ATPase H) in Ae.
aegypti
Figure 2.8. Phylogenetic relationship of the deduced amino acid sequences of <i>V</i> - <i>ATPase H</i> gene.
Figure 2.9. Multiple alignments of deduced amino acid sequences of V-ATPase subunit H (Ae.
aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A.
mellifera, A. pisum)
Figure 3.1. Nucleotide sequence of the cDNA encoding V-ATPase subunit A
Figure 3.2. Nucleotide sequence of the cDNA encoding V-ATPase subunit D
Figure 3.3. Nucleotide sequence of the cDNA encoding V-ATPase subunit H
Figure 3.4. The relative transcript levels of V-ATPase A, V-ATPase D and V-ATPase H genes in
different developmental stages of the mosquito
Figure 3.5. The relative transcript levels of V-ATPase A, V-ATPase D and V-ATPase H genes in
different tissues or head from fourth-instar larvae74

Figure 3.6. The relative transcript levels of V-ATPase A, V-ATPase D and V-ATPase H genes in
different tissues from male or female adults75
Figure 4.1. Suppression of V-ATPase A, D, or H subunit transcript levels in Ae. aegypti larvae
fed dsRNA/chitosan nanoparticles91
Figure 4.2. The phenotypic effects of dsRNA/chitosan nanoparticles specific to V-ATPase D or
eGFP on Ae. aegypti larvae92
Figure A.1. Phylogenetic relationship of the deduced amino acid sequences of <i>V</i> - <i>ATPase B</i> gene.
Figure A.2. Multiple alignments of amino acid sequences of V-ATPase subunit B (Ae. aegypti,
D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A.
<i>pisum</i>)
Figure A.3. Phylogenetic relationship of the deduced amino acid sequences of <i>V</i> - <i>ATPase C</i> gene.
Figure A.4. Multiple alignments of amino acid sequences of V-ATPase subunit C (Ae. aegypti,
D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A.
<i>pisum</i>)
Figure A.5. Phylogenetic relationship of the deduced amino acid sequences of <i>V</i> - <i>ATPase E</i> gene.
Figure A.6. Multiple alignments of amino acid sequences of V-ATPase subunit E (Ae. aegypti,
D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A.
<i>pisum</i>)
Figure A.7. Phylogenetic relationship of the deduced amino acid sequences of <i>V</i> - <i>ATPase F</i> gene.
Figure A.8. Multiple alignments of amino acid sequences of V-ATPase subunit F (Ae. aegypti,
D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A.
<i>pisum</i>)
Figure A.9. Phylogenetic relationship of the deduced amino acid sequences of <i>V</i> -ATPase G gene.
Figure A.10. Multiple alignments of amino acid sequences of V-ATPase subunit G (Ae. aegypti,
D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A.
<i>pisum</i>)

List of Tables

Table 2.1. V-ATPase gene family in Aedes aegypti.	. 32
Table 2.2. Accession numbers of the V-ATPase genes in Ae. aegypti by database	. 33
Table 2.3. Comparisons of the V-ATPase genes of the V ₁ domain in <i>Ae. aegypti</i> and other	
insects. Light blue cells represent the selected subunits of V-ATPase analyzed in this stud	dy.
	. 34
Table 2.4. The comparison of V-ATPase genes of the V_0 domain in Ae. aegypti and other inse	cts.
	. 35
Table 3.1. RT-PCR primers used for sequencing in this study	. 67
Table 3.2. qPCR primers used for expression profiles in this study	. 72
Table 4.1. Double-stranded RNA primers used in this study. T7 promoters are underlined	. 89
Table 4.2. Mortality rate of larvae after feeding with dsRNA/chitosan nanoparticles	. 90

Acknowledgements

I would like to thank all those who provided invaluable support in so many ways during my thesis process.

First, I would like to express my appreciation to Dr. Kun Yan Zhu and Dr. Kristopher Silver, for their guidance, feedback, and advising on this research. Especially, I thank them for aiding me when I needed help in laboratory experiments. Without their valuable assistance, this work would not have been completed. Second, I am grateful to the other members of my supervisory committee, Dr. Yoonseong Park and Dr. David Margolies for their extraordinary support and suggestions in this thesis process. Third, I would like to thank the Turkish Government for sponsoring me throughout my graduate study. This project would have been impossible without the support of the Ministry of National Education of Turkey. Finally, I will never forget the help of my friends Moustapha Soumaila Issa, Anastasia Cooper, Siyi Wang, Jianxiu Yao, and several others.

Specimens used in this research are deposited as voucher number 250 in the KSU Museum of Entomological and Prairie Arthropod Research.

Dedication

To my parents

Rahime and Ahmet,

my wonderful husband

Burak,

and my precious daughter

Zeynep

for their unfailing love, support, affection, and encouragement.

Chapter 1 - Literature Review

1.1. Vacuolar H⁺-ATPase

The vacuolar H⁺-ATPase, also called V-ATPase, is one of the most important ancient enzymes that has significant, diverse functions in eukaryotic organisms (Nelson et al., 2000). This enzyme acidifies various intracellular compartments and transports protons across the plasma membrane in various cell types (Cotter et al., 2015; Nishi and Forgac, 2002). Acidification of endocytic compartments is necessary for entry of envelope viruses, including dengue (Perreira et al., 2015) and chikungunya viruses (Gay et al., 2012).

1.1.1. A brief history

Many researchers, working on many different organisms in many different laboratories, contributed directly to the discovery and characterization of V-ATPase. The first evidence of V-ATPase activity in animal cells was found in chromaffin granules of the bovine adrenal medulla (Kirshner, 1962). Chromaffin granules are storage vesicles that contain high levels of catecholamines, and it was observed that catecholamine uptake into these vesicles was dependent on both Mg²⁺ and ATP (Kirshner, 1962; Taugner, 1971). Further investigation showed that catecholamine uptake was also highly sensitive to membrane disruption and metabolic uncouplers, leading to the conclusion that this unknown ATPase was membrane bound and likely involved in the transport of protons across the membrane (Bashford et al., 1975). Subsequent isolation of this membrane-bound ATPase revealed that it was different from the already known mitochondrial ATPase (Cidon and Nelson, 1983). Following this discovery, similar V-ATPases were identified in other organisms including plants, such as red beet (Walker and Leigh, 1981) and yeast (Kakinuma et al., 1981), and that these ATPases were associated not only with plant

vacuoles, but also with clathrin-coated vesicles and endosomal membranes of lysosomes (Nelson, 1992; Stevens and Forgac, 1997).

1.1.2. Function of V-ATPase

V-ATPases are highly conserved proton pumps that are found in all eukaryotic organisms and are involved in many different cellular processes such as coupled transport and protein degradation (Cotter et al., 2015). These enzymes are located at the plasma membrane of many cell types such as midgut cells of insects (Cipriano et al., 2008), and are involved in pH homeostasis and membrane energization (Beyenbach and Wieczorek, 2006; Nishi and Forgac, 2002).

V-ATPases are also found within the membranes of many organelles. They acidify intracellular compartments such as early and late endosomes, lysosomes, Golgi-derived vesicles, or secretory vesicles in every eukaryotic cell (Forgac, 2007; Kane, 2006). Intracellular V-ATPases process and degrade the macromolecules in secretory and digestive compartments. For instance, they operate coupled transport of tiny molecules such as neurotransmitters and ATP in the entry of pathogenic agents, including envelope viruses and bacterial toxins (Cipriano et al., 2008).

V-ATPases have significant roles in endocytosis and vesicular traffic. The pHs of the intracellular compartments (4.5-7.0) in endocytic pathways are more acidic than extracellular pH (~7.4) (Maxson and Grinstein, 2014). Low pH allows for the uncoupling of internalized ligand-receptor complexes and recycling of these unoccupied receptors back to the cell surface (Forgac, 2007). In addition, acidification of endosomes is required for the formation of endosomal carrier vesicles that carry ligands from early to late endosomes (Nishi and Forgac, 2002). Lysosomes are

2

one of the most significant organelles in cells, and they are involved in protein degradation through endocytic pathways (Saftig and Klumperman, 2009). The degradative enzymes contained within lysosomes are activated at low pH level and degrade internalized macromolecules (Forgac, 2007).

1.1.3. Structure of V-ATPase

Structural examination of V-ATPases in animals, plants, and fungi revealed a multisubunit complex (Moriyama and Nelson, 1987) that can be subdivided into two functional domains that are named V₁ and V₀ (Forgac, 1998). The V₁ domain is a peripheral complex of 600-650 kDa located on the cytoplasmic side of the membrane. Consisting of eight different subunits (A, B, C, D, E, F, G, H), the V₁ domain is responsible for ATP hydrolysis (Drory and Nelson, 2006). In contrast, the V₀ domain is a membrane-embedded complex of 260 kDa responsible for the transposition of protons from the cytoplasm to the organelle/vesicle lumen or extracellular space (Forgac, 2007). The V₀ domain is composed of at least four different subunits (a, d, c, e) in organisms ranging from yeast to insects and mammals (Forgac, 1998). These two large multi-subunit complexes, V₁ and V₀, associate to form a functional proton pump.

Early studies showed that the V_1 domain detaches from the V_0 domain in response to glucose deprivation in yeast cells and at the apical plasma membrane of tobacco hornworm (Kane, 1995; Kane et al., 2012; Sumner et al., 1995). These studies showed that V-ATPase activity can be regulated by a process called reversible disassembly. It has been identified in eukaryotes in yeast, insects, and mammals (Huss et al., 2011). Since this mechanism is found in many different organisms, this indicates that reversible disasciation of the V-ATPase is an evolutionarily conserved mechanism.

Dissociation of the V₁ and V₀ domains was first demonstrated in the midgut of tobacco hornworm as an *in vivo* control mechanism that regulates energy usage (Sumner et al., 1995), and other studies showed that the activity of V-ATPase is regulated by reversible dissociation of the V₁ and V₀ domains in a variety of cells (Beyenbach and Piermarini, 2009; Beyenbach and Wieczorek, 2006; Dames et al., 2006). The peripheral V₁ domain and the membrane-embedded V₀ domain dissociate during molting or starvation in tobacco hornworm in order to save the energy (Beyenbach and Wieczorek, 2006; Sumner et al., 1995). The dissociation of the V₁ and V₀ complexes occurs as a result of changes in the ATP/ADP ratio in cells (Huss and Wieczorek, 2007). The mechanism of dissociation is still uncertain; however, Voss et al. (2007) showed that dephosphorylation of subunit C in the V₁ complex causes dissociation of the V₁ and V₀ domains in the midgut of tobacco hornworm. To date, the mechanisms that control the activity of V-ATPase have not been fully elucidated.

1.1.4. RNAi-based silencing of V-ATPase genes

RNA interference (RNAi) was first discovered in nematodes (*Caenorhabditis elegans*) where it was demonstrated that exogenous dsRNA could suppress expression of mRNA transcripts (Fire et al., 1998). After its discovery, it has been extensively used to analyze the function, regulation, and interaction of genes and their products at cellular and organismal levels in many different organisms (Agrawal et al., 2003). RNAi is a posttranscriptional technique to silence specific genes by administering double-stranded RNA (dsRNA) or small interfering RNA (siRNA) that is complementary to the gene of interest.

RNAi-mediated gene silencing starts with the delivery of dsRNA into insects. Long dsRNA (generally less than 1000 bp) is taken up and recognized by the host cell and is processed

4

into siRNAs (21-23 bp) (Hamilton and Baulcombe, 1999; Hammond et al., 2000) by the enzyme, Dicer. Each siRNA is separated into two single-stranded RNAs (ssRNAs); the passenger strand and the guide strand. The passenger strand is degraded while the guide strand binds to an argonaute multi-domain protein and generates the RNA-induced silencing complex (RISC). siRNAs have complementary base pairs to messenger RNAs (mRNA). When siRNAs bind to their complementary mRNA, the mRNA is degraded, preventing translation of the mRNA into protein (Siomi and Siomi, 2009).

To date, RNAi has been widely used to understand the function and regulation of genes in many organisms, including insects (Scott et al., 2013). It also has potential novel applications for insect pest management (Zhu, 2013), allowing researchers to knockdown genes which have essential biological or physiological functions for developing novel and sustainable pest management strategies (Burand and Hunter, 2013; Huvenne and Smagghe, 2010).

Davies et al. (1996) reported that the first animal knockout of a V-ATPase subunit (subunit B) was identified in *Drosophila* and that caused a larval lethal phenotype. Baum et al. (2007) demonstrated that feeding with dsRNA against V-ATPase subunit A suppressed the targeted mRNA in western corn rootworm (*Diabrotica virgifera virgifera*). When western corn rootworm was reared on transgenic corn plants that express V-ATPase A dsRNA, the transcript level of subuit A was reduced, and feeding damage on transgenic plants was much less compared to control. Thereafter, RNAi has been extensively used to elucidate the function of V-ATPase genes in various insect species including *Aedes aegypti* (Coy et al., 2012), *Peregrinus maidis* (Yao et al., 2013), *Bemisia tabaci* (Thakur et al., 2014), *Helicoverpa armigera* (Jin et al., 2015; Mao et al., 2015), and *Aethina tumida* (Powell et al., 2017).

5

Adult female *Ae. aegypti* mosquitoes were fed with sucrose meals including dsRNA targeting V-ATPase A. They observed 2.4 to 2.5-fold reduction in transcript level of subunit A (Coy et al., 2012). Yao et al. (2013) also showed that feeding and injection of dsRNA against the V-ATPase subunit D reduced the mRNA transcript level of subunit D and caused phenotypic changes such as curly and short wings in planthopper (*P. maidis*). Transgenic tobacco plants that express dsRNA complementary to V-ATPase A suppressed the transcript level of subunit A by 62% and caused mortality in whiteflies (*B. tabaci*) (Thakur et al., 2014). Injection of V-ATPase subunit A dsRNA into *A. tumida* caused phenotypic changes and significant reductions of 31-54% of V-ATPase A transcripts, whereas 48 h of feeding the same dsRNA did not affect mRNA levels despite causing 50% larval mortality (Powell et al., 2017). Given the vital role of V-ATPases in these other organisms, I examined the expression of selected V-ATPase subunit genes (*V-ATPase A, V-ATPase D,* and *V-ATPase H*) in *Ae. aegypti* and evaluated both the importance of these subunits to mosquito survival and the potential of these targets for mosquito control using RNAi.

1.2. Yellow fever mosquito (*Aedes aegypti*)

1.2.1. Significance of *Aedes aegypti*

Aedes aegypti belongs to the subfamily of Culicinae in the family Culicidae. *Ae. aegypti* originated from Central Africa where it is found in greatest abundance (Christophers, 1960; Tabachnick, 1991). However, this mosquito species has spread globally due to global trade and shipping activities, and is now established in all tropical and subtropical and some temperate areas around the world (Powell and Tabachnick, 2013; WHO, 2016).

Ae. aegypti is critically important as a carrier of human disease. *Ae. aegypti* has a very high vectorial capacity for yellow fever (Jentes et al., 2011), dengue fever (Simmons et al., 2012), chikungunya (Leparc-Goffart et al., 2014), and Zika (Musso and Gubler, 2016) viruses, and the number of people affected by these diseases has dramatically increased over the last 50 years (Weaver, 2014). A recent study indicates that over 390 million people are affected by dengue fever per year (Bhatt et al., 2013), while 3.9 billion people, in 128 countries, are at risk of infection with dengue virus (Brady et al., 2012). More recently, the World Health Organization declared Zika virus, which can be passed from a pregnant woman to her fetus and is associated with birth defects, as a public health emergency of international concern (WHO, 2016).

Whereas there is a safe and efficacious vaccine against yellow fever, control of transmission of Zika, dengue fever, and chikungunya is currently completely dependent on eliminating mosquito vectors. In these cases, insecticides are most commonly used to control the mosquito vectors, but widespread use of organophosphates and pyrethroids has resulted in the development of resistance to these chemicals in *Ae. aegypti* (Fox, 1961; Ranson et al., 2010). Therefore, it is imperative that novel methods and targets are developed to implement new management strategies for *Ae. aegypti* and controlling transmission of these viruses.

1.2.2. Biology of *Aedes aegypti*

Ae. aegypti has four developmental stages; egg, larvae, pupae, and adult (Christophers, 1960). The first three stages (egg, larvae, and pupae) are aquatic whereas the last stage (adult) is terrestrial. Each female mosquito lays 100 to 200 eggs at a time in a cluster on the water surface. After being laid, the eggs, which are white in color, harden and convert to a shiny black within minutes (Christophers, 1960; Schlaeger and Fuchs, 1974). The eggs can remain viable even

7

when dry for months, but hatch when they become flooded with water (Harwood and James, 1979).

After hatching, *Ae. aegypti* larvae grow through four instars, requiring five to ten days for completion of its larval stage, though variation of temperature and diets can increase or shorten this time period. The fourth-instar larvae of *Ae. aegypti* pupate when large enough. The completion of larval and pupal stages typically occurs within 12 days. Adults, male and female, survive approximately 20 to 30 days and feed on nectar. Female mosquitoes, however, require a blood meal in order to produce eggs.

1.3. V-ATPase studies in Aedes aegypti

V-ATPase studies in *Ae. aegypti* have focused on transportation of protons across the insect epithelia since it is thought to be energized by V-ATPase. Researches showed that V-ATPase is found in plasma membranes of insect epithelia to generate an electrochemical gradient across the membrane (Wieczorek et al., 1999). This membrane voltage has a role for nutrition uptake, fluid secretion and alkalizing the gut lumen (Harvey et al., 1998).

V-ATPases are expressed in all osmoregulatory organs including midgut and Malpighian tubules to provide the energy for transepithelial transport in adult and larval *Ae. aegypti* (Patrick et al., 2006). Malpighian tubules in the adult mosquito showed high expression of V-ATPase in the brush border membrane of principal cells but not in stellate cells (Beyenbach et al., 2009). The expression of A, B and C subunits of V-ATPase are increased in female adult *Ae. aegypti* after blood feeding, suggesting that V-ATPase might have an important role in the transport of ions, solutes and amino acids present in a blood meal (Sanders et al., 2003). To date, there are several reports on silencing of V-ATPase in *Ae. aegypti* using RNAi techniques. Coy et al. (2012) demonstrated that oral delivery of dsRNA targeting V-ATPase A suppressed the transcript level of subunit A by 2.4 - 2.5 fold, but they did not observe phenotypic changes or mortality in adult female *Ae. aegypti*. However, other studies have shown that RNAi knockdown of several V-ATPase genes in different insect species cause mortality (Baum et al., 2007; Mao et al., 2015; Powell et al., 2017). Recently, *Ae. aegypti* V-ATPase was identified as a necessary host factor since dsRNA-mediated suppression of V-ATPase subunits (vATP-ac39, vATP-V0B, vATP-f, and vATP-16) reduced dengue virus titers up to 98%. They also showed that the function of V-ATPase enzymes as a whole complex is required for efficient dengue virus infection in *Ae. aegypti* (Kang et al., 2014).

1.4. Research goals and objectives

Although significant research has revealed details about the structure and biological function of V-ATPases in a few insect species, only a few studies have focused on understanding the role of V-ATPase subunits in *Ae. aegypti* and their potential for use as targets in mosquito control. Further, there is only limited knowledge about the roles of each subunit of V-ATPase or the function of the complete enzyme in insects. Accordingly, I propose to characterize molecular properties of three selected V-ATPase subunit genes (*V*-ATPase *A*, *V*-ATPase *D*, and *V*-ATPase *H*) in the mosquito, *Ae. aegypti*, and evaluate the significance of these genes to mosquito growth and development by using RNAi techniques to suppress their mRNA transcript levels.

The objectives of this study include:

- To identify V-ATPase subunit genes using genome-wide analyses of mRNA sequences in Ae. aegypti and evaluate their evolutionary relationship with like subunits in other insect species.
- 2. To characterize the genetic structure of selected V-ATPase subunit genes and determine their relative expression in different tissues and developmental stages.
- 3. To reveal the importance of selected V-ATPase subunit genes for survival of mosquito larvae and evaluate these subunits as targets for insect vector control using RNAi.

This study is expected to generate new knowledge on the genetic structures of V-ATPase subunits in *Ae. aegypti*, which have not been well studied; improve our understanding of the biological importance of key V-ATPase subunit genes; and help researchers to develop RNAi-based strategies for managing mosquitoes and other insect pests by targeting various V-ATPase subunit genes.

References

- Agrawal, N., Dasaradhi, P.V.N., Mohmmed, A., Malhotra, P., Bhatnagar, R.K., Mukherjee, S.K.,
 2003. RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol.
 Rev. 67, 657-685.
- Bashford, C.L., Casey, R.P., Radda, G.K., Ritchie, G.A., 1975. The effect of uncouplers on catecholamine incorporation by vesicles of chromaffin granules. Biochem. J. 148, 153-155.
- Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., Roberts, J., 2007. Control of coleopteran insect pests through RNA interference. Nat. Biotech. 25, 1322-1326.
- Beyenbach, K.W., Baumgart, S., Lau, K., Piermarini, P.M., Zhang, S., 2009. Signaling to the apical membrane and to the paracellular pathway: changes in the cytosolic proteome of *Aedes* Malpighian tubules. J. Exp. Biol. 212, 329-340.
- Beyenbach, K.W., Piermarini, P., 2009. Osmotic and ionic regulation in insects. In: Evans, D.H. (Eds.), Osmotic and Ionic Regulation: Cells and Animals. CRC Press, Boca Raton, FL, pp. 231-293.
- Beyenbach, K.W., Wieczorek, H., 2006. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J. Exp. Biol. 209, 577-589.
- Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M.,
 Brownstein, J.S., Hoen, A.G., Sankoh, O., Myers, M.F., George, D.B., Jaenisch, T., Wint,
 G.W., Simmons, C.P., Scott, T.W., Farrar, J.J., Hay, S.I., 2013. The global distribution
 and burden of dengue. Nature 496, 504-507.

- Brady, O.J., Gething, P.W., Bhatt, S., Messina, J.P., Brownstein, J.S., Hoen, A.G., Moyes, C.L., Farlow, A.W., Scott, T.W., Hay, S.I., 2012. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760.
- Burand, J.P., Hunter, W.B., 2013. RNAi: future in insect management. J. Invertebr. Pathol. 112, S68-S74.
- Christophers, S.R., 1960. *Aedes aegypti* (L.) The Yellow Fever Mosquito: Its Life History, Bionomics and Structure. Cambridge University Press, London.
- Cidon, S., Nelson, N., 1983. A novel ATPase in the chromaffin granule membrane. J. Biol. Chem. 258, 2892-2898.
- Cipriano, D.J., Wang, Y., Bond, S., Hinton, A., Jefferies, K.C., Qi, J., Forgac, M., 2008. Structure and regulation of the vacuolar ATPases. Biochim. Biophys. Acta. 1777, 599-604.
- Cotter, K., Stransky, L., McGuire, C., Forgac, M., 2015. Recent insights into the structure, regulation and function of the V-ATPases. Trends Biochem. Sci. 40, 611-622.
- Coy, M.R., Sanscrainte, N.D., Chalaire, K.C., Inberg, A., Maayan, I., Glick, E., Paldi, N., Becnel, J.J., 2012. Gene silencing in adult *Aedes aegypti* mosquitoes through oral delivery of double-stranded RNA. J. Appl. Entomol. 136, 741-748.
- Dames, P., Zimmermann, B., Schmidt, R., Rein, J., Voss, M., Schewe, B., Walz, B., Baumann,
 O., 2006. cAMP regulates plasma membrane vacuolar-type H(+)-ATPase assembly and activity in blowfly salivary glands. Proc. Natl. Acad. Sci. USA. 103, 3926-3931.
- Davies, S.A., Goodwin, S.F., Kelly, D.C., Wang, Z., Sozen, M.A., Kaiser, K., Dow, J.A.T., 1996. Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-

subunit in *Drosophila melanogaster* reveals a larval lethal phenotype. J. Biol. Chem. 271, 30677-30684.

- Drory, O., Nelson, N., 2006. Structural and functional features of yeast V-ATPase subunit C. Biochim. Biophys. Acta. 1757, 297-303.
- Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. Nature 391, 806-811.
- Forgac, M., 2007. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917-929.
- Forgac, M., 1998. Structure, function and regulation of the vacuolar (H+)-ATPases. FEBS Lett. 440, 258-263.
- Fox, I., 1961. Resistance of *Aedes aegypti* to certain chlorinated hydrocarbon and organophosphorus insecticides in Puerto Rico. Bull. World Health Organ. 24, 489-494.
- Gay, B., Bernard, E., Solignat, M., Chazal, N., Devaux, C., Briant, L., 2012. pH-dependent entry of chikungunya virus into *Aedes albopictus* cells. Infect. Genet. Evol. 12, 1275-1281.
- Hamilton, A.J., Baulcombe, D.C., 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950-952.
- Hammond, S.M., Bernstein, E., Beach, D., Hannon, G.J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. Nature 404, 293-296.
- Harvey, W.R., Maddrell, S.H.P., Telfer, W.H., Wieczorek, H., 1998. H+ V-ATPases energize animal plasma membranes for secretion and absorption of ions and fluids. Am. Zool. 38, 426-441.

- Harwood, R.F., James, M.T., 1979. Entomology in Human and Animal Health, seventh ed. MacMillan, New York.
- Huss, M., Vitavska, O., Albertmelcher, A., Bockelmann, S., Nardmann, C., Tabke, K., Tiburcy,
 F., Wieczorek, H., 2011. Vacuolar H+-ATPases: intra- and intermolecular interactions.
 Eur. J. Cell Biol. 90, 688-695.
- Huss, M., Wieczorek, H., 2007. Influence of ATP and ADP on dissociation of the V-ATPase into its V1 and V0 complexes. FEBS Lett. 581, 5566-5572.
- Huvenne, H., Smagghe, G., 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J. Insect Physiol. 56, 227-235.
- Jentes, E.S., Poumerol, G., Gershman, M.D., Hill, D.R., Lemarchand, J., Lewis, R.F., Staples,
 J.E., Tomori, O., Wilder-Smith, A., Monath, T.P., 2011. The revised global yellow fever risk map and recommendations for vaccination, 2010: consensus of the Informal WHO Working Group on Geographic Risk for Yellow Fever. Lancet Infect. Dis. 11, 622-632.
- Jin, S., Singh, N.D., Li, L., Zhang, X., Daniell, H., 2015. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnol. J. 13, 435-446.
- Kakinuma, Y., Ohsumi, Y., Anraku, Y., 1981. Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of *Saccharomyces cerevisiae*. J. Biol. Chem. 256, 10859-10863.
- Kane, P.M., 2012. Targeting reversible disassembly as a mechanism of controlling V-ATPase activity. Curr. Protein Pept. Sci. 13, 117-123.

- Kane, P.M., 2006. The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol. Mol. Biol. Rev. 70, 177-191.
- Kane, P.M., 1995. Disassembly and reassembly of the yeast vacuolar H+-ATPase *in vivo*. J. Biol. Chem. 270, 17025-17032.
- Kang, S., Shields, A.R., Jupatanakul, N., Dimopoulos, G., 2014. Suppressing dengue-2 infection by chemical inhibition of *Aedes aegypti* host factors. PLoS Negl. Trop. Dis. 8, e3084.
- Kirshner, N., 1962. Uptake of catecholamines by a particulate fraction of the adrenal medulla. J. Biol. Chem. 237, 2311-2317.
- Leparc-Goffart, I., Nougairede, A., Cassadou, S., Prat, C., de Lamballerie, X., 2014. Chikungunya in the Americas. The Lancet 383, 514.
- Mao, J., Zhang, P., Liu, C., Zeng, F., 2015. Co-silence of the coatomer β and *v*-ATPase A genes by siRNA feeding reduces larval survival rate and weight gain of cotton bollworm, *Helicoverpa armigera*. Pestic. Biochem. Physiol. 118, 71-76.
- Maxson, M.E., Grinstein, S., 2014. The vacuolar-type H+-ATPase at a glance more than a proton pump. J. Cell. Sci. 127, 4987-4993.
- Moriyama, Y., Nelson, N., 1987. The purified ATPase from chromaffin granule membranes is an anion-dependent proton pump. J. Biol. Chem. 262, 9175-9180.
- Musso, D., Gubler, D.J., 2016. Zika virus. Clin. Microbiol. Rev. 29, 487-524.
- Nelson, N., 1992. The vacuolar H(+)-ATPase one of the most fundamental ion pumps in nature. J. Exp. Biol. 172, 19-27.
- Nelson, N., Perzov, N., Cohen, A., Hagai, K., Padler, V., Nelson, H., 2000. The cellular biology of proton-motive force generation by V-ATPases. J. Exp. Biol. 203, 89-95.

- Nishi, T., Forgac, M., 2002. The vacuolar (H+)-ATPases nature's most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3, 94-103.
- Patrick, M.L., Aimanova, K., Sanders, H.R., Gill, S.S., 2006. P-type Na+/K+-ATPase and Vtype H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito *Aedes aegypti*. J. Exp. Biol. 209, 4638-4651.
- Perreira, J.M., Aker, A.M., Savidis, G., Chin, C.R., McDougall, W.M., Portmann, J.M., Meraner,
 P., Smith, M.C., Rahman, M., Baker, R.E., Gauthier, A., Franti, M., Brass, A.L., 2015.
 RNASEK is a V-ATPase-associated factor required for endocytosis and the replication of rhinovirus, influenza A virus, and dengue virus. Cell Rep. 12, 850-863.
- Powell, J.R., Tabachnick, W.J., 2013. History of domestication and spread of *Aedes aegypti* a review. Mem. Inst. Oswaldo Cruz. 108, 11-17.
- Powell, M.E., Bradish, H.M., Gatehouse, J.A., Fitches, E.C., 2017. Systemic RNAi in the small hive beetle *Aethina tumida* Murray (Coleoptera: Nitidulidae), a serious pest of the European honey bee *Apis mellifera*. Pest Manag. Sci. 73, 53-63.
- Ranson, H., Burhani, J., Lumjuan, N., Black IV, W.C., 2010. Insecticide resistance in dengue vectors. TropIKA.net 1, 0-0.
- Saftig, P., Klumperman, J., 2009. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10, 623-635.
- Sanders, H.R., Evans, A.M., Ross, L.S., Gill, S.S., 2003. Blood meal induces global changes in midgut gene expression in the disease vector, *Aedes aegypti*. Insect Biochem. Mol. Biol. 33, 1105-1122.
- Schlaeger, D.A., Fuchs, M.S., 1974. Effect of dopa-decarboxylase inhibition on *Aedes aegypti* eggs: evidence for sclerotization. J. Insect Physiol. 20, 349-357.

- Scott, J.G., Michel, K., Bartholomay, L., Siegfried, B.D., Hunter, W.B., Smagghe, G., Zhu, K.Y.,
 Douglas, A.E., 2013. Towards the elements of successful insect RNAi. J. Insect Physiol.
 59, 1212-1221.
- Simmons, C.P., Farrar, J.J., Nguyen, V.V., Wills, B., 2012. Dengue. N. Engl. J. Med. 366, 1423-1432.
- Siomi, H., Siomi, M.C., 2009. On the road to reading the RNA-interference code. Nature 457, 396-404.
- Stevens, T.H., Forgac, M., 1997. Structure, function and regulation of the vacuolar (H+)-ATPase. Annu. Rev. Cell Dev. Biol. 13, 779-808.
- Sumner, J.P., Dow, J.A.T., Earley, F.G., Klein, U., Jäger, D., Wieczorek, H., 1995. Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J. Biol. Chem. 270, 5649-5653.
- Tabachnick, W.J., 1991. Evolutionary genetics and arthropod-borne disease: the yellow fever mosquito. Am. Entomol. 37, 14-26.
- Taugner, G., 1971. The membrane of catecholamine storage vesicles of adrenal medulla catecholamine fluxes and ATPase activity. Naunyn-Schmiedebergs Arch. Pharmak. 270, 392-406.
- Thakur, N., Upadhyay, S.K., Verma, P.C., Chandrashekar, K., Tuli, R., Singh, P.K., 2014. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of *v*-ATPase A gene. PLoS ONE 9, e87235.
- Voss, M., Vitavska, O., Walz, B., Wieczorek, H., Baumann, O., 2007. Stimulus-induced phosphorylation of vacuolar H+-ATPase by protein kinase A. J. Biol. Chem. 282, 33735-33742.

- Walker, R.R., Leigh, R.A., 1981. Characterization of a salt-stimulated ATPase activity associated with vacuoles isolated from storage roots of red beet (*Beta vulgaris L.*). Planta 153, 140-149.
- Weaver, S.C., 2014. Arrival of chikungunya virus in the new world: prospects for spread and impact on public health. PLoS Negl. Trop. Dis. 8, e2921.
- Wieczorek, H., Brown, D., Grinstein, S., Ehrenfeld, J., Harvey, W.R., 1999. Animal plasma membrane energization by proton-motive V-ATPases. Bioessays 21, 637-648.
- World Health Organization, 2016. WHO statement on the first meeting of the International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations.
 <u>http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committeezika/en/</u> (accessed 03.03.17).
- Yao, J., Rotenberg, D., Afsharifar, A., Barandoc-Alviar, K., Whitfield, A.E., 2013. Development of RNAi methods for *Peregrinus maidis*, the corn planthopper. PLoS ONE 8, e70243.
- Zhu, K.Y., 2013. RNA interference: a powerful tool in entomological research and a novel approach for insect pest management. Insect Sci. 20, 1-3.

Chapter 2 - Genome-wide Survey and Phylogenetic Analyses of the Vacuolar H⁺-ATPase Gene Family in the Yellow Fever Mosquito *Aedes aegypti* (Diptera: Culicidae)

Abstract

Vacuolar H⁺-ATPases (V-ATPase) are multi-subunit enzymes that play significant roles in higher organisms, including using ATP to transport H⁺ across biological membranes and generate electrochemical potentials. Animal knockouts of V-ATPase subunits cause lethality in insect larvae, showing that V-ATPase is an essential enzyme and potential target for insect control using RNAi. Since very little is known about V-ATPase subunits in Aedes aegypti, I performed a genome-wide survey to identify subunit genes and understand their phylogenetic relationship to those in other species. My genome-wide survey of V-ATPase genes demonstrated that this mosquito has 13 different subunits (A, B, C, D, E, F, G, H, a, c, c", d, e) encoded by 14 genes (two genes were identified for subunit a). Analysis of exon-intron arrangements for each gene revealed that each V-ATPase subunit gene has between one (subunit c) and 12 (subunit C) exons, with most genes (11) having 3 to 6 exons. Subsequent phylogenetic analysis of the deduced amino acid sequences of each subunit showed that V-ATPase subunits A, B, C, F, G, H, and a exhibited a high level of conservation among all the examined species, but subunits D, E, c, c", d, and e showed high conservation only among Dipteran species. Here, for the first time I have made a genome-wide survey of V-ATPase genes in Ae. aegypti. My results generally indicate that each subunit of V-ATPase is highly conserved among different insect species. However, the level of the conservation varies among the subunits even for the same insect species in the comparison.

Keywords: Aedes aegypti, exon-intron organization, genome-wide survey, phylogenetic

analysis, V-ATPase

2.1. Introduction

Vacuolar H⁺-ATPases (V-ATPase) are ATP-dependent proton pumps that function to acidify various intracellular compartments or transport protons from the cytoplasm to the extracellular space (Cotter et al., 2015; Marshansky et al., 2014; Nelson, 2013). In the plasma membrane, this enzyme uses ATP to transport protons outside of the cell and provides the energy for secondary active transporters that are vital for osmoregulation and the retention of ions, water, and nutrients (Bradley, 2008).

Acidification of endocytic compartments is important for dissociation of internalized ligand-receptor complexes and recycling of these unoccupied receptors back to the cell surface in endosomes, as well as protein degradation in lysosomes (Forgac, 2007). V-ATPases transport protons from the cytoplasm to the inside of the organelles including endosomes and lysosomes. In both organelles, internal pH and membrane potential are distinct from each other. Internal pH in endosomes is lower than lysosomes (Nelson, 2013). In endosomes, acidification is necessary for the entry of many envelope viruses and toxins into the cytoplasm (Gruenberg and van der Goot, 2006).

The V-ATPase is a multi-subunit complex that is composed of several subunits, which are assembled into two domains, the peripheral V₁ domain and the membrane embedded V₀ domain (Cipriano et al., 2008; Forgac, 2007; Marshansky and Futai, 2008). The peripheral V₁ domain is generally composed of eight different subunits (A, B, C, D, E, F, G, H), and is the domain responsible for ATP hydrolysis. A catalytic hexamer of six subunits (three A and three B) combine to perform the ATPase activity (Breton and Brown, 2013). In contrast, the membrane embedded V₀ domain consists of at least four subunits (a, c, d, e), and is responsible for proton transportation across the membrane (Forgac, 1998). *Aedes aegypti* is the primary vector of dengue and yellow fevers and the object of intense investigation for novel methods of control. The publication of the *Ae. aegypti* genome by Nene et al. (2007) has provided an ideal tool to research the genes encoding V-ATPase subunits in this mosquito species. In this study, I performed a genome-wide, comprehensive analysis of V-ATPase genes in the yellow fever mosquito using several databases (NCBI, VectorBase, and Flybase). As a result of this research, I found that V-ATPase is composed of 13 different subunits in *Ae. aegypti*. In addition, my results showed that each subunit of V-ATPase is generally conserved among different insect species, but the level of the conservation varies among the subunits even between the same insect species in the comparison.

2.2. Materials and Methods

2.2.1. Database searches and sequence analysis

V-ATPase sequences were downloaded from three online databases: the National Center for Biotechnology Information database (NCBI) (<u>https://www.ncbi.nlm.nih.gov/</u>); VectorBase, a bioinformatics resource for invertebrate vectors of human pathogens (<u>https://www.vectorbase.org/</u>); and FlyBase, the *Drosophila* genes and genomes database (<u>http://flybase.org/</u>). *Drosophila* V-ATPase genes (Allan et al., 2005) were used as search queries in both the VectorBase and NCBI databases to identify *Ae. aegypti* genes.

In order to determine the correct names of genes, including up to date annotation, V-ATPase sequences were downloaded from VectorBase and used on the NCBI database as BLASTP or BLASTX queries. *Drosophila* V-ATPase sequences were used to identify *Ae*. *aegypti* sequences in VectorBase and NCBI, and the accession numbers for *Ae. aegypti* were obtained from NCBI.

2.2.2. Exon-intron organizations

The gene structure display server (<u>http://gsds.cbi.pku.edu.cn/</u>) (Hu et al., 2015) was used to determine the exon-intron organization of V-ATPase genes using coding and genomic sequences. For selected subunits of V-ATPase genes (*V-ATPase A, V-ATPase D,* and *V-ATPase H*), amino acid sequences were aligned with their genomic DNA sequences to obtain the exonintron structure, and create the exon-intron maps for each selected gene.

2.2.3. Multiple alignments and phylogenetic analysis

The amino acid sequences of V-ATPase were confirmed by a homology search of other corresponding gene sequences, which are available on the GenBank database of the NCBI website (<u>https://www.ncbi.nlm.nih.gov/</u>). These sequences were blasted against other insect taxa by using the Basic Local Alignment Search Tool (BLAST) and protein BLAST (BLASTP) with standard parameters. The amino acid sequences of corresponding gene homologs from other insect species and their accession numbers were obtained from the NCBI database.

Multiple sequence alignments at the protein level were carried out using Clustal Omega software (http://www.ebi.ac.uk/Tools/msa/clustalo/) with default parameters. Alignments were then finalized to demonstrate conserved regions using BoxShade software (http://www.ch.embnet.org/software/BOX_form.html). Sequences from *Ae. aegypti* and other insect species that belong to Diptera, Coleoptera, Lepidoptera, Hemiptera and Hymenoptera were used for multiple alignment analyses.

Phylogenetic analyses were conducted using Muscle through the Molecular Evolutionary Genetic Analysis version 7 software (MEGA7) (<u>http://www.megasoftware.net/</u>) (Kumar et al., 2016). V-ATPase sequences from eight different insect species were included in the

23
phylogenetic trees. Phylogenetic trees were constructed using the maximum likelihood method (Le and Gascuel, 2008) with 1000 bootstrap replications to check for reliability of the results. Phylogenetic trees demonstrated the conservative relationship for selected V-ATPase subunits A, D, and H between *Ae. aegypti* and other holometabolous insects.

In this study, phylogenetic trees were constructed for each subunit of V-ATPase using these insect species: *Ae. aegypti, Drosophila melanogaster, Culex quinquefasciatus, Musca domestica, Bombyx mori, Tribolium castaneum, Apis mellifera,* and *Acyrthosiphon pisum*. The following accession numbers are in the order that they were mentioned in this paragraph: **V-ATPase subunit A:** XP_001659520.1 (*Ae. aegypti*), NP_652004.2 (*D. melanogaster*), XP_001849275.1 (*C. quinquefasciatus*), XP_011291042.1 (*M. domestica*), NP_001091829.1 (*B.*

mori), NP_001164361.1 (*T. castaneum*), XP_623495.1 (*A. mellifera*), NP_001119645.2 (*A. pisum*).

V-ATPase subunit D: XP_001660426.1 (Ae. aegypti), NP_651987.1 (D. melanogaster),
XP_001865673.1 (C. quinquefasciatus), XP_005180029.1 (M. domestica), NP_001040286.1 (B. mori), XP_975872.1 (T. castaneum), XP_394769.2 (A. mellifera), NP_001119691.1 (A. pisum).
V-ATPase subunit H: XP_001652018.1 (Ae. aegypti), NP_523585.2 (D. melanogaster),
XP_001844037.1 (C. quinquefasciatus), XP_005181998.1 (M. domestica), NP_001040488.1 (B. mori), NP_001280516.1 (T. castaneum), XP_003251675.1 (A. mellifera), XP_001949116.3 (A. pisum).

2.3. Results and Discussion

2.3.1. V-ATPase gene family in Aedes aegypti

Although very little information is available about different V-ATPase subunits in insects, we were able to identify genes for each V-ATPase subunit in *Ae. aegypti*. Previous studies demonstrated the genes encoding V-ATPase subunits in *Drosophila* (Allan et al., 2005). In my study, I used *Drosophila* V-ATPase genes as queries to identify the V-ATPase genes in the completed *Ae. aegypti* genome sequence (Nene et al., 2007).

Traditionally, all the genes encoding different V-ATPase subunits are characterized as the V-ATPase gene family because all these subunits form a V-ATPase protein complex. However, the concept of the family in this case is different from what is usually meant by gene family as different V-ATPase subunits are not necessarily evolutionarily related. According to my genome-wide survey, the *Ae. aegypti* V-ATPase has thirteen subunits (A, B, C, D, E, F, G, H, a, c, c", d, e) that corresponded to those identified previously in *Drosophila*. These subunits combine to form the two domains of the V-ATPase, the V₁ (peripheral domain) and V₀ (integral domain). The V₁ domain was composed of eight different subunits (A, B, C, D, E, F, G, H), whereas the V₀ domain consisted of five subunits (a, c, c", d, e) in *Ae. aegypti* (Tables 2.1. and 2.2.). The V-ATPase multigene family was encoded by 33 genes in *D. melanogaster* and most of the V-ATPase subunits are encoded by more than two genes (Allan et al., 2005). In contrast, my results indicated that the V-ATPase gene family in *Ae. aegypti* was encoded by 14 genes and each subunit was encoded by single gene except for subunit a (encoded by 2; Table 2.1.).

2.3.2. Genomic distribution of V-ATPase genes

The genomic location of each V-ATPase subunit gene is difficult to identify in *Ae*. *aegypti*. The genes encoding the different subunits of the V-ATPase enzyme are spread throughout the genome. Only three genes *V-ATPase a*, *V-ATPase D*, and *V-ATPase H* were positively identified as being located on chromosome 1, 3, or 2, respectively. The chromosomal location of the other 13 genes remains unknown.

After identification of the V-ATPase genes in *Ae. aegypti*, their deduced amino acid sequences were blasted against the insect taxa to identify their homologs. As a result of the database search, I found that there was a close relationship of V-ATPase subunits among insects (Tables 2.3. and 2.4.). Specifically, the V-ATPase genes in *Ae. aegypti* have a very high amino acid sequence identity level to those of *C. quinquefasciatus* and *D. melanogaster*.

The identity levels of the deduced amino acid sequence for each selected subunit (A, D and H) among the dipteran species were extremely high. For example, subunit A in *Ae. aegypti* showed 97 and 94% identities to the orthologs of *C. quinquefasciatus* (Diptera: Culicidae) or *D. melanogaster* (Diptera: Drosophilidae), respectively. Similarly, subunit D in *Ae. aegypti* showed 97 and 89% identities to the orthologs of *C. quinquefasciatus* or *D. melanogaster*, respectively. Meanwhile, subunit H in *Ae. aegypti* showed 96 and 80% identities to the orthologs of *C. quinquefasciatus* or *D. melanogaster*, respectively. Interestingly, the two genes encoding subunit a, a part of the V₀ domain, showed only a 56% identitiy to each other when their deduced amino acid sequences were compared.

2.3.3. Exon-intron organizations

In *Ae. aegypti*, the V-ATPase enzyme was encoded by 14 genes which have various exon-intron organizations. The number of exons for each subunit gene ranged from one to 12, with the majority of genes having three to six exons (Table 2.1.). The gene encoding V-ATPase subunit C had 12 exons, the highest number of exons, whereas the gene encoding V-ATPase subunit c'' had only one exon. In this study, I chose three subunits (*V*-*ATPase A*, *V*-*ATPase D*, and *V*-*ATPase H*) for further analyses to diagram their exon-intron organizations. My results showed that the genes encoding V-ATPase subunit A or D had five exons whereas the gene for subunit H had six exons (Figures 2.1., 2.4., and 2.7.).

2.3.4. Phylogenetic analysis

Phylogenetic trees were constructed using the maximum likelihood method (Le and Gascuel, 2008) in order to examine the evolutionary relationship of V-ATPase subunits among different insect taxa. Phylogenetic analysis of the deduced amino acid sequences from different insect species and orders including Diptera, Coleoptera, Lepidoptera, Hemiptera and Hymenoptera showed that V-ATPase subunits from *Ae. aegypti* were closely related to those from *C. quinquefasciatus* and *D. melanogaster*.

The analysis showed *Ae. aegypti* subunit A clustered with other dipteran insects, including *C. quinquefasciatus*, *D. melanogaster*, and *M. domestica*, with two distinct subgroups: Cyclorrhapha (*D. melanogaster* and *M. domestica*) and Orthorrhapha, (*C. quinquefasciatus* and *Ae. aegypti*) (Figure 2.2.). The *Ae. aegypti* subunits D and H also clustered with other Dipterans, including *C. quinquefasciatus*, *D. melanogaster*, and *M. domestica* (Figures 2.5. and 2.8.). Furthermore, based on my phylogenetic analyses the molecular relativeness of *V-ATPase A* and *V-ATPase H* genes exhibited a high levels of conservation among selected species. However, *V-ATPase D* gene only showed high conservation among dipteran species.

Multiple alignments of the deduced amino acid sequences of each of the three selected V-ATPase subunits (A, D and H) showed that the amino acid sequences of these subunits are highly conserved among different insect species (Figures 2.3., 2.6., and 2.9.). I observed only a few amino acid differences among the sequences of each selected subunit. In addition, multiple sequence alignments at the protein level and phylogenetic analyses were performed for the rest of the V-ATPase subunits in *Ae. aegypti* (Figures A.1.-A.20), and like subunits A, D, and H, these comparisons showed high similarity between the amino acid sequences of *Ae. aegypti* with those of the other insects included in the analysis.

In conclusion, for the first time I have made a genome-wide survey of V-ATPase genes in *Ae. aegypti*. The results generally demonstrated that each subunit of V-ATPase was highly conserved among different insect species. However, the level of the conservation varied among the subunits even for the same insect species in the comparison. For instance, the amino acid identity level of subunit A is 94% between *Ae. aegypti* and *D. melanogaster* whereas the amino acid identity level of subunit e is 66% between the two species.

References

- Allan, A.K., Du, J., Davies, S.A., Dow, J.A.T., 2005. Genome-wide survey of V-ATPase genes in *Drosophila* reveals a conserved renal phenotype for lethal alleles. Physiol. Genomics 22, 128-138.
- Bradley, T.J., 2008. Active transport in insect recta. J. Exp. Biol. 211, 835-836.
- Breton, S., Brown, D., 2013. Regulation of luminal acidification by the V-ATPase. Physiol. 28, 318-329.
- Cipriano, D.J., Wang, Y., Bond, S., Hinton, A., Jefferies, K.C., Qi, J., Forgac, M., 2008. Structure and regulation of the vacuolar ATPases. Biochim. Biophys. Acta 1777, 599-604.
- Cotter, K., Stransky, L., McGuire, C., Forgac, M., 2015. Recent insights into the structure, regulation and function of the V-ATPases. Trends Biochem. Sci. 40, 611-622.
- Forgac, M., 2007. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917-929.
- Forgac, M., 1998. Structure, function and regulation of the vacuolar (H+)-ATPases. FEBS Lett. 440, 258-263.
- Gruenberg, J., van der Goot, F.G., 2006. Mechanisms of pathogen entry through the endosomal compartments. Nat. Rev. Mol. Cell Biol. 7, 495-504.
- Hu, B., Jin, J., Guo, A., Zhang, H., Luo, J., Gao, G., 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31, 1296-1297.
- Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874.

- Le, S.Q., Gascuel, O., 2008. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307-1320.
- Marshansky, V., Futai, M., 2008. The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr. Opin. Cell Biol. 20, 415-426.
- Marshansky, V., Rubinstein, J.L., Grüber, G., 2014. Eukaryotic V-ATPase: novel structural findings and functional insights. Biochim. Biophys. Acta 1837, 857-879.
- Nelson, N., 2013. Organellar Proton-ATPases, Springer science and Business Media, Texas.
- Nene, V., Wortman, J.R., Lawson, D., Haas, B., Kodira, C., Tu, Z., Loftus, B., Xi, Z., Megy, K., Grabherr, M., Ren, Q., Zdobnov, E.M., Lobo, N.F., Campbell, K.S., Brown, S.E., Bonaldo, M.F., Zhu, J., Sinkins, S.P., Hogenkamp, D.G., Amedeo, P., Arensburger, P., Atkinson, P.W., Bidwell, S., Biedler, J., Birney, E., Bruggner, R.V., Costas, J., Coy, M.R., Crabtree, J., Crawford, M., deBruyn, B., DeCaprio, D., Eiglmeier, K., Eisenstadt, E., El-Dorry, H., Gelbart, W.M., Gomes, S.L., Hammond, M., Hannick, L.I., Hogan, J.R., Holmes, M.H., Jaffe, D., Johnston, J.S., Kennedy, R.C., Koo, H., Kravitz, S., Kriventseva, E.V., Kulp, D., LaButti, K., Lee, E., Li, S., Lovin, D.D., Mao, C., Mauceli, E., Menck, C.F.M., Miller, J.R., Montgomery, P., Mori, A., Nascimento, A.L., Naveira, H.F., Nusbaum, C., O'Leary, S., Orvis, J., Pertea, M., Quesneville, H., Reidenbach, K.R., Rogers, Y., Roth, C.W., Schneider, J.R., Schatz, M., Shumway, M., Stanke, M., Stinson, E.O., Tubio, J.M.C., VanZee, J.P., Verjovski-Almeida, S., Werner, D., White, O., Wyder, S., Zeng, Q., Zhao, Q., Zhao, Y., Hill, C.A., Raikhel, A.S., Soares, M.B., Knudson, D.L., Lee, N.H., Galagan, J., Salzberg, S.L., Paulsen, I.T., Dimopoulos, G., Collins, F.H., Birren, B., Fraser-Liggett, C., Severson, D.W., 2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316, 1718-1723.

Smith, A.N., Lovering, R.C., Futai, M., Takeda, J., Brown, D., Karet, F.E., 2003. Revised nomenclature for mammalian vacuolar-type H+-ATPase subunit genes. Mol. Cell 12, 801-803.

Table 2.1. V-ATPase gene family in Aedes aegypti.

Most V-ATPase genes shown here demonstrated high similarity ($e < 10^{-10}$) to V-ATPase genes in *Drosophila*. BLAST was used to identify the genes in *Ae. aegypti*. Light blue cells represent the selected subunits of V-ATPase analyzed in this study.

	Subunit	Genes in Ae. aegypti	Exon number	Length	E-value	Genes in D. melanogaster
	А	AAEL008787	6	3108	0	vha68-1 (CG12403)
nain						vha68-2 (CG3762)
						vha68-3 (CG5075)
	В	AAEL005798	3		0	vha55 (CG17369)
	С	AAEL005173	12	2088	1e-166	vha44 (CG8048)
	D	AAEL009808	5	1140	2e-160	vha36-1 (CG8186)
Oor						vha36-2 (CG13167)
71 I						vha36-3 (CG8310)
-	Е	AAEL012035	6	3027	3e-86	vha26 (CG1088)
	F	AAEL002464	5	567	7e-81	vha14-1 (CG8210)
					8e-27	vha14-2 (CG1076)
	G	AAEL007184	3	1251	4e-33	vha13 (CG6213)
	Н	AAEL006516	6	2166	0	vhaSFD (CG17332)
	а	AAEL003743	10	3201	0	vha100-1 (CG1709)
		AAEL014053	5	2743	0	vha100-2 (CG7679)
Domain					5e-174	vha100-3 (CG30329)
					0	vha100-4 (CG7678)
					0	vha100-5 (CG12602)
	с	AAEL000291	3	2972	4e-90	vha16-1 (CG3161)
					1e-54	vha16-2 (CG32089)
					4e-63	vha16-3 (CG32090)
					2e-39	vha16-4 (CG9013)
					2e-38	vha16-5 (CG6737)
N	c''	AAEL012113	1	636	9e-95	vhaPPA1-1 (CG7007)
					4e-57	vhaPPA1-2 (CG7026)
	e	AAEL010819	3	1105	2e-32	vhaM9.7-1 (CG1268)
					2e-31	vhaM9.7-2 (CG7625)
					7e-17	vhaM9.7-3 (CG11589)
					6e-10	vhaM9.7-4 (CG14909)
	d	AAEL011025	3	1680	0	vhaAC39-1 (CG2934)
					2e-117	vhaAC39-2 (CG4624)

Subunits in Ae.		Database			
aegypti		NCBI	VectorBase		
	А	XP_001659520.1	AAEL008787		
	В	XP_001651458.1	AAEL005798		
uin	С	XP_001650489.1	AAEL005173		
3mi	D	XP_001660426.1	AAEL009808		
Ď	Е	XP_001655825.1	AAEL012035		
Š	F	XP_001655376.1	AAEL002464		
	G	XP_001652605.1	AAEL007184		
	Н	XP_001652018.1	AAEL006516		
ц	а	XP_001657232.1	AAEL003743		
nai		XP_001657344.1	AAEL014053		
lon	с	XP_001654757.1	AAEL000291		
0 L	c''	XP_001662256.1	AAEL012113		
	d	XP_001661299.1	AAEL011025		

Table 2.2. Accession numbers of the V-ATPase genes in Ae. aegypti by database.

Table 2.3. Comparisons of the V-ATPase genes of the V1 domain in Ae. aegypti and other insects. Light blue cells represent the selected subunits of V-ATPase analyzed in this study.

Genes identified	Most similar genes found in	Proposed Function/Location				
in Ae. aegypti	Species	Accession number Amino acid identity (%)		E-value	(Smith et al., 2003)	
AaV-ATPaseA	Drosophila melanogaster	NP_652004.2	94	0.0	Catalytic ATP binding	
	Culex quinquefasciatus	XP_001849275.1	97	0.0		
	Musca domestica	XP_011291042.1	93	0.0		
	Bombyx mori	NP_001091829.1	91	0.0		
	Tribolium castaneum	NP_001164361.1	28	1e-28		
	Apis mellifera	XP_623495.1	92	0.0		
	Acyrthosiphon pisum	NP_001119645.2	28	1e-27		
AaV-ATPaseB	Drosophila melanogaster	NP_476908.1	98	0.0	Non catalytic ATP binding	
	Culex quinquefasciatus	XP_001845188.1	98	0.0		
	Musca domestica	XP_005181053.1	98	0.0		
	Bombyx mori	NP_001091828.1	96	0.0		
	Tribolium castaneum	NP_001164361.1	26	2e-28		
	Apis mellifera	XP_624112.1	96	0.0		
	Acyrthosiphon pisum	NP_001280473.1	98	7e-153		
AaV-ATPaseC	Drosophila melanogaster	NP_477266.1	85	7e-177	Peripheral stator	
	Culex quinquefasciatus	XP_001843335.1	76	0.0		
	Musca domestica	XP_005174884.1	86	2e-177		
	Bombyx mori	NP_001040138.1	83	2e-169		
	Tribolium castaneum	XP_015836982.1	91	0.0		
	Apis mellifera	XP_006562159.1	81	1e-173		
	Acyrthosiphon pisum	XP_001946227.1	83	0.0		
AaV-ATPaseD	Drosophila melanogaster	NP_651987.1	89	1e-158	Central rotor	
	Culex quinquefasciatus	XP_001865673.1	97	2e-172		
	Musca domestica	XP_005180029.1	90	5e-163		
	Bombyx mori	NP_001040286.1	86	2e-136		
	Tribolium castaneum	XP_975872.1	85	2e148		
	Apis mellifera	XP_394769.2	83	2e-141		
	Acyrthosiphon pisum	NP_001119691.1	81	1e-138		
AaV-ATPaseE	Drosophila melanogaster	NP_524237.1	74	1e-118	Peripheral stator	
	Culex quinquefasciatus	XP_001849126.1	89	2e-149		
	Musca domestica	XP_005178098.1	77	1e-123		
	Bombyx mori	NP_001040451.1	75	2e-116		
	Tribolium castaneum	XP_970621.1	73	3e-118		
	Apis mellifera	XP_625098.1	75	2e-117		
	Acyrthosiphon pisum	NP_001155650.1	68	3e-99		
AaV-ATPaseF	Drosophila melanogaster	NP_476969.1	91	4e-80	Central rotor	
	Culex quinquefasciatus	XP_001866561.1	98	8e-91		
	Musca domestica	XP_005179584.1	91	6e-82		
	Bombyx mori	NP_001040448.1	90	9e-79		
	Tribolium castaneum	XP_975016.1	89	5e-77		
	Apis mellifera	XP_624852.1	86	8e-74		
	Acyrthosiphon pisum	NP_001119690.1	84	2e-72		

Drosophila melanogaster	NP_477437.1	75	7e-55	Peripheral stator
Culex quinquefasciatus	XP_001864556.1	93	2e-73	
Musca domestica	XP_005180412.1	77	1e-59	
Bombyx mori	NP_001040287.1	78	2e-60	
Tribolium castaneum	XP_973974.1	79	1e-59	
Apis mellifera	XP_624346.1	76	2e-57	
Acyrthosiphon pisum	NP_001119628.1	80	1e-60	
Drosophila melanogaster	NP_523585.2	80	0.0	Peripheral stator
Culex quinquefasciatus	XP_001844037.1	96	0.0	
Musca domestica	XP_005181998.1	83	0.0	
Bombyx mori	NP_001040488.1	73	0.0	
Tribolium castaneum	NP_001280516.1	74	0.0	
Apis mellifera	XP_003251675.1	76	0.0	
Acyrthosiphon pisum	XP_001949116.3	70	0.0	
	Drosophila melanogaster Culex quinquefasciatus Musca domestica Bombyx mori Tribolium castaneum Apis mellifera Acyrthosiphon pisum Drosophila melanogaster Culex quinquefasciatus Musca domestica Bombyx mori Tribolium castaneum Apis mellifera Acyrthosiphon pisum	Drosophila melanogasterNP_477437.1Culex quinquefasciatusXP_001864556.1Musca domesticaXP_005180412.1Bombyx moriNP_001040287.1Tribolium castaneumXP_973974.1Apis melliferaXP_624346.1Acyrthosiphon pisumNP_001119628.1Drosophila melanogasterNP_523585.2Culex quinquefasciatusXP_001844037.1Musca domesticaXP_005181998.1Bombyx moriNP_001040488.1Tribolium castaneumNP_001280516.1Apis melliferaXP_003251675.1Acyrthosiphon pisumXP_001949116.3	Drosophila melanogaster NP_477437.1 75 Culex quinquefasciatus XP_001864556.1 93 Musca domestica XP_005180412.1 77 Bombyx mori NP_001040287.1 78 Tribolium castaneum XP_973974.1 79 Apis mellifera XP_624346.1 76 Acyrthosiphon pisum NP_001119628.1 80 Drosophila melanogaster NP_523585.2 80 Culex quinquefasciatus XP_001844037.1 96 Musca domestica XP_005181998.1 83 Bombyx mori NP_001040488.1 73 Tribolium castaneum NP_001280516.1 74 Apis mellifera XP_003251675.1 76 Acyrthosiphon pisum XP_001949116.3 70	Drosophila melanogaster NP_477437.1 75 7e-55 Culex quinquefasciatus XP_001864556.1 93 2e-73 Musca domestica XP_005180412.1 77 1e-59 Bombyx mori NP_001040287.1 78 2e-60 Tribolium castaneum XP_973974.1 79 1e-59 Apis mellifera XP_624346.1 76 2e-57 Acyrthosiphon pisum NP_001119628.1 80 1e-60 Drosophila melanogaster NP_523585.2 80 0.0 Culex quinquefasciatus XP_005181998.1 83 0.0 Musca domestica XP_001040488.1 73 0.0 Tribolium castaneum NP_001280516.1 74 0.0 Apis mellifera XP_003251675.1 76 0.0

Genes identified	Most similar genes found in	Proposed Function/Location				
in A.aegypti	Species	Accession number Amino acid identity (%)		E-value	(Smith et al., 2003)	
AaV-ATPase-a	Drosophila melanogaster	NP_001163768.1	80	0.0	H+ translocation	
	Culex quinquefasciatus	XP_001847258.1	89	0.0		
	Musca domestica	XP_005182099.1	82	0.0		
	Bombyx mori	XP_012550179.1	76	0.0		
	Tribolium castaneum	XP_008200809.1	78	0.0		
	Apis mellifera	XP_016769523.1	80	0.0		
	Acyrthosiphon pisum	XP_008183003.1	78	0.0		
AaV-ATPase-a	Drosophila melanogaster	NP_650722.1	74	0.0	H ⁺ translocation	
	Culex quinquefasciatus	XP_001845000.1	85	0.0		
	Musca domestica	XP_005182534.1	76	0.0		
	Bombyx mori	XP_004931128.1	74	0.0		
	Tribolium castaneum	XP_968579.1	72	0.0		
	Apis mellifera	XP_016768513.1	70	0.0		
	Acyrthosiphon pisum	XP_016663159.1	68	0.0		
AaV-ATPase-c	Drosophila melanogaster	NP_476801.1	94	2e-101	H ⁺ translocation	
	Culex quinquefasciatus	XP_001861266.1	95	7e-99		
	Musca domestica	XP_005184512.1	95	5e-98		
	Bombyx mori	NP_001091762.1	93	4e-100		
	Tribolium castaneum	NP_001161226.1	33	2e-15		
	Apis mellifera	NP_001011570.1	92	1e-97		
	Acyrthosiphon pisum	NP_001155531.1	94	1e-101		
AaV-ATPase-c''	Drosophila melanogaster	NP_652010.1	77	2e-101	H ⁺ translocation	
	Culex quinquefasciatus	XP_001846404.1	96	5e-131		
	Musca domestica	XP_005178527.1	83	2e-108		
	Bombyx mori	NP_001040169.1	79	4e-98		
	Tribolium castaneum	NP_001161226.1	68	3e-82		
	Apis mellifera	XP_392599.1	83	1e-116		
	Acyrthosiphon pisum	NP_001155679.1	75	1e-105		
AaV-ATPase-d	Drosophila melanogaster	NP_570080.1	95	0.0	Nonintegral membrane	
	Culex quinquefasciatus	XP_001870744.1	99	0.0	component	
	Musca domestica	XP_005180381.2	95	0.0		
	Bombyx mori	NP_001040429.1	93	0.0		
	Tribolium castaneum	XP_974905.1	92	0.0		
	Apis mellifera	XP_393438.2	93	0.0		
	Acyrthosiphon pisum	NP_001191854.1	90	0.0		
AaV-ATPase-e	Drosophila melanogaster	NP_649327.2	64	1e-33	Membrane sector-	
	Culex quinquefasciatus	XP_001863465.1	89	1e-58	associated	
	Musca domestica	XP_005187210.1	65	3e-33		
	Bombyx mori	XP_004933731.1	65	3e-36		
	Tribolium castaneum	XP_971898.1	72	2e-39		
	Apis mellifera	XP_624787.1	73	2e-37		
	Acyrthosiphon pisum	XP_003242132.1	78	6e-41		

Table 2.4. The comparison of V-ATPase genes of the V_0 domain in *Ae. aegypti* and other insects.

Figure 2.1. Exon-intron organization of the V-ATPase subunit A gene (V-ATPase A) in Ae. aegypti.

Figure 2.2. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase A* genes.

This rooted phylogenetic tree was constructed using the maximum likelihood method. Nodes indicate bootstrap values calculated with 1000 replications. The green branches represent the order Diptera, orange branch shows the outgroup, and blue branches represent other orders. The accession numbers for the sequences are as follows: AaV-ATPaseA (XP_001659520.1, *Aedes aegypti*); DmV-ATPaseA (NP_652004.2, *Drosophila melanogaster*); CqV-ATPaseA (XP_001849275.1, *Culex quinquefasciatus*); MdV-ATPaseA (XP_011291042.1, *Musca domestica*); BmV-ATPaseA (NP_001091829.1, *Bombyx mori*); TcV-ATPaseA (XP_976188.1; *Tribolium castaneum*); AmV-ATPaseA (XP_623495.1; *Apis mellifera*); ApV-ATPaseA (XP_008179407.1; *Acyrthosiphon pisum*).

ApV-ATPaseA BmV-ATPaseA TcV-ATPaseA AmV-ATPaseA AaV-ATPaseA CqV-ATPaseA DmV-ATPaseA MdV-ATPaseA	1 1 1 1 1 1 1	MISLNAFEDEECESSYGVVFAVSGPVVTAEKMSGSAMYELVRVGYFQLVGEIIRLEG MASKGGLRTIANEENEEFGYVFAVSGPVVTAEKMSGSAMYELVRVGYNELVGEIIRLEG MISLPKMGDEERENKFGYVFAVSGPVVTAEKMSGAMYELVRVGYSELVGEIIRLEG -MTSQGLLKISNEEREIKFGYVFAVSGPVVTAEOMSGSAMYELVRVGYYELVGEIIRLEG MSTLKKISDEDRESKFGYVFAVSGPVVTAEMSGSAMYELVRVGYYELVGEIIRLEG MSNLKKIADEDRESKFGYVFAVSGPVVTAEKMAGSAMYELVRVGYYELVGEIIRLEG MSNLKKIADEDRESKFGYVFAVSGPVVTAEAMSGSAMYELVRVGYYELVGEIIRLEG MSNLKRFDDEERESKYGRVFAVSGPVVTAEAMSGSAMYELVRVGYYELVGEIIRLEG MSNLKRFDDEERESKYGRVFAVSGPVVTAEAMSGSAMYELVRVGYYELVGEIIRLEG
ApV-ATPaseA	58	DMATIQVYEDTSGVTVGDPVSRTGKPLSVELGPGILGSIFDGIQRPLKDINELTQNIYIP
BmV-ATPaseA	61	DMATIQVYEETSGVTVGDPVLRTGKPLSVELGPGILGSIFDGIQRPLKDINELTQSIYIP
TcV-ATPaseA	58	DMATIQVYEETSGVTVGDPVLRTGKPLSVELGPGILGSIFDGIQRPLKDINELTSSIYIP
AmV-ATPaseA	60	DMATIQVYEETSGVTVGDPVLRTGKPLSVELGPGILGSIFDGIQRPLKDINELTSSIYIP
AaV-ATPaseA	58	DMATIQVYEETSGVTVGDPVLRTGKPLSVELGPGIMGSIFDGIQRPLKDINELTSSIYIP
CqV-ATPaseA	58	DMATIQVYEETSGVTVGDPVLRTGKPLSVELGPGIMGSIFDGIQRPLKDINELTESIYIP
DmV-ATPaseA	58	DMATIQVYEETSGVTVGDPVLRTGKPLSVELGPGIMGSIFDGIQRPLKDINELTESIYIP
MdV-ATPaseA	58	DMATIQVYEETSGVTVGDPVLRTGKPLSVELGPGIMGSIFDGIQRPLKDINELTSSIYIP
ApV-ATPaseA	118	KGVNI PALGRNVSWDYNSSNI KI GSHITGGDLFGLVHENTLVKHKLMI PPKAKGTVVFQA
BmV-ATPaseA	121	KGINVPSLAREVDWEFNPLNVKVGSHITGGDLYGIVHENTLVKHRMLVPPKAKGTVTYIA
TcV-ATPaseA	118	KGVNVPSLSRTTKWEFAPLNI KI GSHITGGDLYGIVHENTLVKHKMI PPKAKGTVTYIA
AmV-ATPaseA	120	KGINVPALSRTAAWEFNPSNI KNGSHITGGDLYGVYENTLVKHKMI PPKSKGTVTYIA
AaV-ATPaseA	118	KGVNI PCLSRTQSWGFNPLNVKVGSHITGGDLYGLVHENTLVKHKI LVPPRAKGTVRYIA
CqV-ATPaseA	118	KGVNVPSLSRTQSWGFNPMNVKVGSHITGGDLYGLVHENTLVKHKI LVPPRAKGTVRYIA
DmV-ATPaseA	118	KGVNVPSLSRVASWEFNPLNVKVGSHITGGDLYGLVHENTLVKHKMI V <mark>N</mark> PRAKGTVRYIA
MdV-ATPaseA	118	KGVNVPCLSRTATWEFNPLNVKVGSHITGGDLYGLVHENTLVKHKMI V <mark>N</mark> PRAKGTVRYIA
ApV-ATPaseA	178	PPGNYKVDDIILETEFDGEKSSFTMLQVWPVRQPRPVTEKLPANYPLLTGQRVLDSLFPC
BmV-ATPaseA	181	PAGNYKVTDVILETEFDGERCKYSMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFPC
TcV-ATPaseA	178	DPGNYTVDEVVLETEFDGERTKYTMLQVWPVRQPRPVSEKLPANHPLLTGQRVLDSLFPC
AmV-ATPaseA	180	PAGNYTVSDVILETEFDGERHKYTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFPC
AaV-ATPaseA	178	PPGNYTVDDIILETEFDGEINKWSMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFPC
CqV-ATPaseA	178	PPGNYTVEDIILETEFDGEVNKYSMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFPC
DmV-ATPaseA	178	PSGNYKVDDVILETEFDGEIKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFPC
MdV-ATPaseA	178	PAGNYHVDDVILETEFDGEVIKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFPC
ApV-ATPaseA BmV-ATPaseA TcV-ATPaseA AmV-ATPaseA AaV-ATPaseA CqV-ATPaseA DmV-ATPaseA MdV-ATPaseA	238 241 238 240 238 238 238 238 238	VQGGTTAIPGAFGCGKTVISQALSKYSNSDVIVYVGCGERGNEMAEVLGDFPELSIEMDG VQGGTTAIPGAFGCGKTVISQALSKYSNSDVIIYVGCGERGNEMSEVLRDFPELTVEIEG VQGGTTAIPGAFGCGKTVISQSLSKYSNSDVIIYVGCGERGNEMSEVLRDFPELTVEIEG VQGGTTAIPGAFGCGKTVISQALSKYSNSDVIIYVGCGERGNEMSEVLRDFPELSVEIDG VQGGTTAIPGAFGCGKTVISQALSKYSNSDVIIYVGCGERGNEMSEVLRDFPELSVEIDG VQGGTTAIPGAFGCGKTVISQALSKYSNSDVIIYVGCGERGNEMSEVLRDFPELSVEIDG VQGGTTAIPGAFGCGKTVISQALSKYSNSDVIIYVGCGERGNEMSEVLRDFPELSVEIDG VQGGTTAIPGAFGCGKTVISQALSKYSNSDVIIYVGCGERGNEMSEVLRDFPELSVEIDG
ApV-ATPaseA BmV-ATPaseA TcV-ATPaseA AmV-ATPaseA AaV-ATPaseA CqV-ATPaseA DmV-ATPaseA MdV-ATPaseA	298 301 298 300 298 298 298 298 298	VTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMADSTSRWAEALRE VTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMADSTSRWAEALRE OTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMADSTSRWAEALRE TESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMADSTSRWAEALRE VTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMADSTSRWAEALRE VTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMADSTSRWAEALRE VTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMADSTSRWAEALRE VTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMADSTSRWAEALRE VTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMADSTSRWAEALRE
ApV-ATPaseA	358	ISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDP
BmV-ATPaseA	361	ISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPDREGSVSIVGAVSPPGGDFSDP
TcV-ATPaseA	358	ISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPDREGSVSIVGAVSPPGGDFSDP

AmV-ATPaseA	360	ISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPDREGSVSIVGAVSPPGGDFSDP
AaV-ATPaseA	358	ISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDP
CqV-ATPaseA	358	ISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDP
DmV-ATPaseA	358	ISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDP
MdV-ATPaseA	358	ISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDP
ApV-ATPaseA BmV-ATPaseA TcV-ATPaseA AmV-ATPaseA AaV-ATPaseA CqV-ATPaseA DmV-ATPaseA MdV-ATPaseA	418 421 418 420 418 418 418 418	VTSATLGIVQVFWGLDKKLAQRKHFPSINWLISYSKYTRALDDFYDKNFPEFVPLRTKVK VTAATLGIVQVFWGLDKKLAQRKHFPSINWLISYSKYTRALDDFYDKNFQEFVALRTKVK VTSATLGIVQVFWGLDKKLAQRKHFPSINWLISYSKYTRALDDFYDKNFAEFVPLRTKVK VTSATLGIVQVFWGLDKKLAQRKHFPSINWLISYSKYTRALDDFYDKNFQEFVPLRTKVK VTSATLGIVQVFWGLDKKLAQRKHFPSINWLISYSKYMRALDDFYDKNFQEFVPLRTKVK VTSATLGIVQVFWGLDKKLAQRKHFPSINWLISYSKYMRALDDFYDKNFQEFVPLRTKVK VTSATLGIVQVFWGLDKKLAQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVK
ApV-ATPaseA BmV-ATPaseA TcV-ATPaseA AmV-ATPaseA AaV-ATPaseA CqV-ATPaseA DmV-ATPaseA MdV-ATPaseA	478 481 478 480 478 478 478 478 478	EILQEEEDLSEIVQLVGKASLAESDKITLEVAKLLKDDFLQQNSYSPYDRFCPFYKTVGM EILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSYSSYDRFCPFYKTVGM EILQEEEDLSEIVQLVGKASLAETDKITLETAKLLKDDFLQQNSYSSYDRFCPFYKTVGM EILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSYSPYDRFCPFYKTVGM EILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSYSPYDRFCPFYKTVGM EILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSYSPYDRFCPFYKTVGM EILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSYSSYDRFCPFYKTVGM EILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSYSSYDRFCPFYKTVGM
ApV-ATPaseA	538	LRNTIAFYDMARHAVESTAQSENKITWSVIRDSMGNILYQLSSMKFKDPVKDGEAKIRAD
BmV-ATPaseA	541	LKNIITFYDMSRHAVESTAQSDNKVTWNVIRDAHGHVLYQLSSMKFKDPVKDGEPKIKAD
TcV-ATPaseA	538	LKNMICLYDMSRHAVESTAQSDNKITWTVIRDSMSNILYQLSSMKFKDPVKDGEAKIKAD
AmV-ATPaseA	540	LRNMIAFYDMARHAVESTAQSDNKITWNVIKDSMYNILYQLSSMKFKDPVKDGEAKIKAD
AaV-ATPaseA	538	LRNMIGFYDMARHAVETTAQSDNKITWNVIRDSMGNILYQLSSMKFKDPVKDGEAKIKAD
CqV-ATPaseA	538	LRNIIGFYDMARHAVETTAQSENKITWNVIRDSMGNILYQLSSMKFKDPVKDGEAKIKAD
DmV-ATPaseA	538	LRNIIGFYDMARHAVETTAQSENKITWNVIRDAMGNILYQLSSMKFKDPVKDGEAKIKAD
MdV-ATPaseA	538	LRNIIGFYDMARHAVETTAQSENKITWNVIRDAMGNILYQLSSMKFKDPVKDGEAKIKAD
ApV-ATPaseA	598	FDQLYDDIQQAFRNLED
BmV-ATPaseA	601	FDQLYEDIQQAFRNLED
TcV-ATPaseA	598	FDQLYEDIQQAFRNLED
AmV-ATPaseA	600	FDQLYEDIQQAFRNLED
AaV-ATPaseA	598	FDQLYEDLQQAFRNLED
CqV-ATPaseA	598	FDQLYEDLQQAFRNLED
DmV-ATPaseA	598	FBQLHEDLQQAFRNLED
MdV-ATPaseA	598	FBQLHEDLQQAFRNLED

Figure 2.3. Multiple alignments of deduced amino acid sequences of V-ATPase subunit A (*Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum*).

Figure 2.4. Exon-intron organization of the V-ATPase subunit D gene (V-ATPase D) in Ae. aegypti.

Figure 2.5. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase D* gene.

This rooted phylogenetic tree was constructed using the maximum likelihood method. Nodes indicate bootstrap values calculated with 1000 replications. The green branches represent the order Diptera, orange branch shows the outgroup, and blue branches represent other orders. The accession numbers for the sequences are as follows: AaV-ATPaseD (XP_001660426.1, *Aedes aegypti*); DmV-ATPaseD (NP_651987.1, *Drosophila melanogaster*); CqV-ATPaseD (XP_001865673.1, *Culex quinquefasciatus*); MdV-ATPaseD (XP_005180029.1, *Musca domestica*); BmV-ATPaseD (NP_001040286.1, *Bombyx mori*); TcV-ATPaseD (XP_975872.1; *Tribolium castaneum*); AmV-ATPaseD (XP_394769.2; *Apis mellifera*); ApV-ATPaseD (NP_001119691.1; *Acyrthosiphon pisum*).

AmV-ATPaseD		MSGKDALFTFPSKGAQTMMKGKLMGAQKGHSLLKKKADALQMKFKLTLGKTIQTKTLMGE
	1	MSGKEKL <mark>A</mark> IFPSRGAQMLMK <mark>S</mark> RL <mark>H</mark> GAQKGHGLLKKKADALQMRFRLIL <mark>G</mark> KIIETKTLMGE
BmV-ATPaseD	1	MSGKDRLAIFPSRGAQMLIKCRLAGAVKGHGLLKKKADALQVRFRMIL <mark>S</mark> KIIETKTLMGE
TcV-ATPaseD	1	MS <mark>S</mark> KDRLAIFPSRGAQMLMKARL <mark>K</mark> GAQKGH <mark>S</mark> LLKKKADALQMRFRMIL <mark>S</mark> KIIETKTLMGE
AaV-ATPaseD	1	MS <mark>S</mark> KDRIPIFPSRGAQM <mark>Q</mark> MKARLAGA <mark>H</mark> KGHGLLKKKADALQMRFRMIL <mark>S</mark> KIIETKTLMGE
CqV-ATPaseD	1	MS <mark>S</mark> KDRIPIFPSRGAQMQMKARLAGA <mark>H</mark> KGHGLLKKKADALQMRFRMIL <mark>S</mark> KIIETKTLMGE
DmV-ATPaseD	1	MSGKDRLPIFPSRGAQMLMKARLAGAQKGHGLLKKKADALQMRFR L IL <mark>C</mark> KIIETKTLMGD
MdV-ATPaseD	1	MSGKDRLPIFPSRGAOMLMKARLAGAOKGHGLLKKKADALOMRFRMIL <mark>G</mark> KIIETKTLMGE
	C 1	
Apv-ATPaseD	61 61	VMKEAAFSLAEAKFTTGDFNQVVLQNVTKAQIKIRTKKDNVAGVTLPVFESYQDGTDTYE
Amv-ATPaseD	61 61	VMKEAAFSLAEAKF <mark>A</mark> TGDFNQVVLQNVTKAQIKIRSKKDNVAGV <mark>N</mark> LPVFESYQDGTDTYE
BmV-ATPaseD	61	VMKEAAFSLAEAKFTTGDFNQVVLQNVTKAQIKIRSKKDNVAGVTLPIFESYQDGSDTYE
TCV-ATPaseD	61	VMKEAAFSLAEAKFATGDFNQVVLQNVTKAQIKIRTKKDNVAGVTLPVFE <mark>O</mark> YQDGIDTYE
AaV-ATPaseD	61	VMKEAAFSLAEAKFLSGDFNQVVLQNVTKAQIKIRTKRDNVAGVTLPVFESYQDGSDTYE
CqV-ATPaseD	61	VMKEAAFSLAEAKF <mark>L</mark> SGDFNQVVLQNVTKAQIKIRTKRDNVAGVTLPVFESYQDGSDTYE
DmV-ATPaseD	61	VMKEAAFSLAEAKFTSGD <mark>I</mark> NQVVLQNVTKAQIKIRTKKDNVAGVTLPVFESYQDGSDTYE
MdV-ATPaseD	61	VMKEAAFSLAEAKFTTGDFNQVVLQNVTKAQIKIRTKKDNVAGVTLPVFESYQDG <mark>A</mark> DTYE
ApV-ATPaseD	121	LAGLARGGQQLAKLKKNYQ <mark>T</mark> AIKLLVELASLQTSFVTLD <mark>D</mark> VIKITNRRVNAIEHVIIPRI
AmV-ATPaseD	121	LAGLARGGQQLAKLKKNYQ <mark>R</mark> AIKLLVELASLQTSFVTLDEVIKITNRRVNAIEHVIIPRI
BmV-ATPaseD	121	LAGLARGGQQLAKLKKNEQSAVKLLVELASLQTSFVTLDEVIKITNRRVNAIEHVIIPRL
TcV-ATPaseD	121	LAGLARGGQQLAKLKKNYQSAVKLLVELASLQTSFVTLDEVIKITNRRVNAIEHVIIPRI
AaV-ATPaseD	121	LTGLAKGGOOMCKLKKNYOSAVKLLVELASLOTSFVTLDEVIKITNRRVNAIEHVIIPRI
CqV-ATPaseD	121	LTGLAKGGOOMCKLKKNYOSAVKLLVELASLOTSFVTLDEVIKITNRRVNAIEHVIIPRI
DmV-ATPaseD	121	LAGLARGGOOLAKLKKNYOSAVKLLVELASLOTSFVTLDEVIKITNRRVNAIEHVIIPRI
MdV-ATPaseD	121	LAGLARGGQQLAKLKKNYQSAVKLLVELASLQTSFVTLDEVIKITNRRVNAIEHVIIPRI
AnV-ATPaseD	181	EKTLAYTISELDELEBEEFYRLKKTODKKKTSNKKKEOIKKDMKEANAKYCNMLDE
ApV-ATPaseD	181 181	EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKE <mark>QLK</mark> KDMKEANAKYGNMLDE EKTLAYIISELDELEREEFYRLKKIODKKKOAKAKLEAARAEMIASCKDVEAANMLDE
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD	181 181 181	EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKE <mark>QIK</mark> KDMKEANAKYSNMLDE EKTLAYIISELDELEREEFYRLKKIQDKKK <mark>Q</mark> AKAKLEAARAEMIAS <mark>C</mark> KDVEAANMLDE ERTLAYIISELDELEREEFYRLKKIODKKKIIKDKAFAKKAALLAACNDURGGYTNLLDE
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD	181 181 181 181	EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKOMKEANAKYSNMLDE EKTLAYIISELDELEREEFYRLKKIQDKKKQAKAKLEAARAEMIASCKDVEAANMLDE ERTLAYIISELDELEREEFYRLKKIQDKKKIIKDKAEAKKAALLAACND RGGVTNLLDE
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD	181 181 181 181 181	EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKOMKEANAKYSNMLDE EKTLAYIISELDELEREEFYRLKKIQDKKKQAKAKLEAARAEMIASCKDVEAANMLDE ERTLAYIISELDELEREEFYRLKKIQDKKKIIKDKAEAKKAALLAACNDERGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKKVARAKADAIKADNKAR-EQAAVANLLDE
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD	181 181 181 181 181	EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKOMKEANAKYGNMLDE EKTLAYIISELDELEREEFYRLKKIQDKKKQAKAKLEAARAEMIASGKDVEAANMLDE ERTLAYIISELDELEREEFYRLKKIQDKKKIIKDKAKAALLAAGNDIRGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKKVARAKADAIKADNKAR-EQAAS-VANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKKEEARKAALLEKGVDVRD-HANLLDE
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD	181 181 181 181 181 181	EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKOMKEANAKYGNMLDE EKTLAYIISELDELEREEFYRLKKIQDKKKQAKAKLEAARAEMIASGKDVEAANMLDE ERTLAYIISELDELEREEFYRLKKIQDKKKIIKDKAKAALLAAGNDIRGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKKVARAKADAIKADNKAR-EQAAC-VANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKKEEARKAALLEKGVDVRD-HANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKKEEVRKAALLEKGVDVRD-QANLLDE
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD DmV-ATPaseD	181 181 181 181 181 181 181	EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKOMKEANAKYONMLDE EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKOMKEANMLDE ERTLAYIISELDELEREEFYRLKKIQDKKKIKKAAALLAAGND RGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKKVARAKADAIKAONKAR-EQAAS-VANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEARKAALLEKGVDVRO-HANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEVRKAALLEKGVDVRO-HANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIARKKEEVRKAALLEKGIDVRO-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIARKKEEVRKAALLEKGIDVRO-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIARKKEEVRKAALLEKGIDVRO-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIARKKEEVRKAALLEKGIDVRO-QANLLDE
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD DmV-ATPaseD MdV-ATPaseD	181 181 181 181 181 181 181 181	EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKDMKEANAKYONMLDE EKTLAYIISELDELEREEFYRLKKIQDKKKQAKAKLEAARAEMIASCKDVEAANMLDE ERTLAYIISELDELEREEFYRLKKIQDKKKIIKDKAEAKKAALLAACNDLRGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKKVARAKADAIKADNKAR-EQAAS-VANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEARKAALLEKGIDVRD-HANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEVRKAALLEKGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKAELLQGGIDVRQ-QANILDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKAAELLQGGIDVRQ-QANILDE
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD DmV-ATPaseD MdV-ATPaseD	181 181 181 181 181 181 181 181	EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKDMKEANAKYCNMLDE EKTLAYIISELDELEREEFYRLKKIQDKKKOAKAKLEAARAEMIASCKDVEAANMLDE ERTLAYIISELDELEREEFYRLKKIQDKKKIIKDKAEAKKAALLAACND RGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKKVARAKADAIKADNKAR-EQAAS-VANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEARKAALLEKGVDVRD-HANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEVRKAALLEKGVDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLQGGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLQGGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLQGGIDVRD-VANILDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLQGGIDVRD-VANILDE
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD MdV-ATPaseD ApV-ATPaseD	181 181 181 181 181 181 181 181 237	GDEDLLF
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD DmV-ATPaseD MdV-ATPaseD ApV-ATPaseD AmV-ATPaseD	181 181 181 181 181 181 181 181 237 239	EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKDMKEANAKYCNMLDE EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKAALLAACNDEGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKKIIKDKAEAKKAALLAACNDEGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKKVARAKADAIKADNKAE-EQAAS-VANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEARKAALLEKGVDVRD-HANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEVRKAALLEKGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKAALLEKGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLEKGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLQOGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLQOGIDVRD-VANILDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKABLLKGIDVRD-VANILDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKABLLKGIDVRD-VANILDE
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD MdV-ATPaseD ApV-ATPaseD ApV-ATPaseD BmV-ATPaseD	181 181 181 181 181 181 181 181 237 239 241	EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKDMKEANAKYCNMLDE EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKAALLAACNDEGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKKIIKDKAEAKKAALLAACNDEGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKKVARAKADAIKADNKAE-EQAAS-VANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEARKAALLEKGIDVRD-HANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEVRKAALLEKGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKAALLEKGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLEKGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLQQGIDVRQ-QANTLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLQGGIDVRQ-VANTLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARSKQEAHKABLLKKGIDVRD-VANTLDE GDEDLLF
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD MdV-ATPaseD ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD	181 181 181 181 181 181 181 181 237 239 241 239	GDEDLLF GDEDLLF
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD MdV-ATPaseD MdV-ATPaseD ApV-ATPaseD BmV-ATPaseD BmV-ATPaseD TcV-ATPaseD	181 181 181 181 181 181 181 181 237 239 241 239 240	GDEDLLF GDEDLLF
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD MdV-ATPaseD MdV-ATPaseD ApV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD	181 181 181 181 181 181 181 181 237 239 241 239 240 240 240	CKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKDMKEANAKYCNMLDE CKTLAYIISELDELEREEFYRLKKIQDKKKQAKAKLEAARAEMIASCKDVEAANMLDE CRTLAYIISELDELEREEFYRLKKIQDKKKIIKDKAEAKKAALLAACND RGGVTNLLDE CRTLAYIISELDELEREEFYRLKKIQDKKKVARAKADAIKADNKAR-EQAAS-VANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEARKAALLEKGIDVRD-HANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEVRKAALLEKGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLEKGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLEKGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLEKGIDVRD-VANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKABLLEKGIDVRD-VANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARSKQEAHKABLLKKGIDVRD-VANTLDE GDEDLLF
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD DmV-ATPaseD MdV-ATPaseD ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD DmV-ATPaseD	181 181 181 181 181 181 181 181 237 239 241 239 240 240 240 240	CKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQLKKDMKEANAKYCNMLDE CKTLAYIISELDELEREEFYRLKKIQDKKKQAKAKLEAARAMIASCKDVEAANMLDE CRTLAYIISELDELEREEFYRLKKIQDKKKIIKDKAEAKKAALLAACND RGGVTNLLDE CRTLAYIISELDELEREEFYRLKKIQDKKKVARAKADAIKADNKAF-EQAAS-VANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEARKAALLEKGIDVRD-HANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKRIARKKEEVRKAALLEKGIDVRD-QANLLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLQQGIDVRQ-QANLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKABLLQQGIDVRQ-QANLDE DRTLAYIISELDELEREEFYRLKKIQDKKREARSKQEAHKABLLKKGIDVRD-VANILDE DRTLAYIISELDELEREEFYRLKKIQDKKREARSKQEAHKABLLKKGIDVRD-VANILDE GDEDILF GDEDILF GDEDILF
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD DmV-ATPaseD MdV-ATPaseD ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD DmV-ATPaseD MdV-ATPaseD	181 181 181 181 181 181 181 181 181 237 239 241 239 240 240 240 240 240	GDEDLF GD
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD MdV-ATPaseD MdV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD DmV-ATPaseD MdV-ATPaseD	181 181 181 181 181 181 181 181 237 239 241 239 241 239 240 240 240 240	GDEDILF GDEDILF
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD MdV-ATPaseD MdV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD CqV-ATPaseD CqV-ATPaseD MdV-ATPaseD MdV-ATPaseD	181 181 181 181 181 181 181 181 237 239 241 239 241 239 240 240 240 240	GDEDILF GDEDILF
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD MdV-ATPaseD MdV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD CqV-ATPaseD CqV-ATPaseD MdV-ATPaseD MdV-ATPaseD	181 181 181 181 181 181 181 181 237 239 241 239 240 240 240 240	EKTLAYIISELDELEREEFYRLKKIQDKK ISNKKKEQLKKDMKEANAKYGN LDE EKTLAYIISELDELEREEFYRLKKIQDKK QAKAKLEAARAAMIASGKDVEAANMLDE ERTLAYIISELDELEREEFYRLKKIQDKK IKKAAALAAGND RGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKVARAKAAAIKADNKAR-EQAA-VANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEARKAALLEKGVDVRO-HANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKRIARKKEEVRKAALLEKGVDVRO-QANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKREARKAALLEKGIDVRO-QANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKREARKAALLEKGIDVRO-QANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKREARKAALLEKGIDVRO-QANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKREARSKQEAKAALLEKGIDVRO-VANILDE ERTLAYIISELDELEREEFYRLKKIQDKKREARSKQEAKAALLEKGIDVRO-VANILDE GDDDILF
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD MdV-ATPaseD MdV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD CqV-ATPaseD MdV-ATPaseD MdV-ATPaseD MdV-ATPaseD MdV-ATPaseD MdV-ATPaseD	181 181 181 181 181 181 181 181 237 239 241 239 240 240 240 240	EKTLAYIISELDELEREEFYRLKKIQDKK ISNKKKEQLKKDMKEANAKYONLDE EKTLAYIISELDELEREEFYRLKKIQDKK QAKAKLEAARAAMIASGKDVEAANMLDE ERTLAYIISELDELEREEFYRLKKIQDKK IIKDKAAAALAAGND RGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKVARAKAAAIKADNKAR-EQAA-VANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEARKAALLEKGVDVR -HANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKRIARKKEEVRKAALLEKGIDVR -QANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKRIARKKEEVRKAALLEKGIDVR -QANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKALLQQGIDVRQ-QANLDE ERTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKALLQQGIDVRQ-QANLDE ERTLAYIISELDELEREEFYRLKKIQDKKREARIKADAKKALLQQGIDVRQ-VANLDE ERTLAYIISELDELEREEFYRLKKIQDKKREARSKQEAKKALLKKGIDVR -VANLDE GDDDLF GDDDLF GDDDLF SSSSSKQNPAQFQCWLPRRSLVLSSACVRVRRVFSKRIGCLSLSLRSLIPFRSGKVHYG GDDDVF
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD AaV-ATPaseD CqV-ATPaseD MdV-ATPaseD MdV-ATPaseD AmV-ATPaseD TcV-ATPaseD CqV-ATPaseD AaV-ATPaseD MdV-ATPaseD MdV-ATPaseD MdV-ATPaseD MdV-ATPaseD MdV-ATPaseD SmV-ATPaseD AmV-ATPaseD	181 181 181 181 181 181 181 181 237 239 241 239 240 240 240 240	GDEDLE GENER GEN
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD CqV-ATPaseD DmV-ATPaseD MdV-ATPaseD AaV-ATPaseD BmV-ATPaseD CqV-ATPaseD CqV-ATPaseD CqV-ATPaseD MdV-ATPaseD MdV-ATPaseD MdV-ATPaseD AaV-ATPaseD AmV-ATPaseD AmV-ATPaseD AmV-ATPaseD AmV-ATPaseD AmV-ATPaseD	181 181 181 181 181 181 181 181 237 239 240 240 240 240 240	CLAYITSELDELEREEFYRLKKIQDKKKISNKKEQLKKOMKEANAKYGN LDE EKTLAYITSELDELEREEFYRLKKIQDKKKIAKAALLAAGNAGNORGGVTNLLDE ERTLAYITSELDELEREEFYRLKKIQDKKKVARAKAALLAAGNORGGVTNLLDE ERTLAYTSELDELEREEFYRLKKIQDKKKVARAKAALLEGGVDVRQANLLDE ERTLAYTSELDELEREEFYRLKKIQDKKRIARKKEEVKAALLEGGVDVRQANLLDE ERTLAYTSELDELEREEFYRLKKIQDKKREARIKAAAKAALLEGGVDVRQANLLDE ERTLAYTSELDELEREEFYRLKKIQDKKREARIKAAAKAALLEGGVDVRQANLLDE ERTLAYTSELDELEREEFYRLKKIQDKKREARIKAAAKAALLEGGVVRQANTLDE ERTLAYTSELDELEREEFYRLKKIQDKKREARIKAAAKAALLEGGVVRVANTLDE ERTLAYTSELDELEREEFYRLKKIQDKKREARIKAAAKAALLEGGVVRVANTLDE ERTLAYTSELDELEREEFYRLKKIQDKKREARSKQEAKAALLKGGVVRVANTLDE GDDDLF GDDDLF GDDDLF GDDDLF GDDDLF GDDDLF GDDDLF
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD CqV-ATPaseD DmV-ATPaseD MdV-ATPaseD MdV-ATPaseD BmV-ATPaseD CqV-ATPaseD CqV-ATPaseD DmV-ATPaseD MdV-ATPaseD MdV-ATPaseD MdV-ATPaseD BmV-ATPaseD BmV-ATPaseD SmV-ATPaseD CqV-ATPaseD CqV-ATPaseD CqV-ATPaseD CqV-ATPaseD CqV-ATPaseD CqV-ATPaseD	181 181 181 181 181 181 181 181 181 237 239 241 239 240 240 240 240 240	EKTLAYIISELDELEREEFYRLKKIQDKKKISNKKEQIKKOMKEANAKYGNMLDE ERTLAYIISELDELEREEFYRLKKIQDKKKISNKKOAAAMIAAGND RGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKVARAKAAAIAAGND RGGVTNLLDE ERTLAYIISELDELEREEFYRLKKIQDKKVARAKAAAILEKGVDVR-HANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKRIAKKEEAKAALEKGVDVR-HANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKREARIKAAAKAALEKGVDVR-HANLLDE ERTLAYIISELDELEREEFYRLKKIQDKKREARIKAAAKAALEKGIDVR-VANILDE ERTLAYIISELDELEREEFYRLKKIQDKKREARIKAAAKAALEKGIDVR-VANILDE ERTLAYIISELDELEREEFYRLKKIQDKKREARIKAAAKAALEKGIDVR-VANILDE ERTLAYIISELDELEREEFYRLKKIQDKKREARIKAAAKAALEKGIDVR-VANILDE ERTLAYIISELDELEREEFYRLKKIQDKKREARIKAAAKKAALEKGIDVR-VANILDE GDEDLLF GDEDLLF GDEDLLF GDEDLLF GDEDLLF GDEDLLF GDEDLLF
ApV-ATPaseD AmV-ATPaseD BmV-ATPaseD TcV-ATPaseD CqV-ATPaseD MV-ATPaseD MV-ATPaseD MV-ATPaseD BmV-ATPaseD CqV-ATPaseD CqV-ATPaseD MV-ATPaseD MV-ATPaseD MV-ATPaseD MV-ATPaseD BmV-ATPaseD CqV-ATPaseD BmV-ATPaseD CqV-ATPaseD CqV-ATPaseD CqV-ATPaseD BmV-ATPaseD CqV-ATPaseD CqV-ATPaseD	181 181 181 181 181 181 181 181 181 237 239 240 240 240 240 240 240 240	LKTLAYIISELDELEREEFYRLKKIQDKKKISNKKKEQIKKOAAAAMIASGKDVEAANALDE KTLAYIISELDELEREEFYRLKKIQDKKKQAAAKALBAAAAMIASGKDVEAANALDE RTLAYIISELDELEREEFYRLKKIQDKKKIIKAAAALAACND GGVTNLLDE RTLAYIISELDELEREEFYRLKKIQDKKRIAAKKEBAAALLAACND AGVTNLLDE RTLAYIISELDELEREEFYRLKKIQDKKRIAAKKEBA KAALLEKGVDVR -HANLLDE RTLAYIISELDELEREEFYRLKKIQDKKRIAAKKEBV KAALLEKGVDVR -QANLLDE RTLAYIISELDELEREEFYRLKKIQDKKREARIKA AKAALLEKGIDVR -QANLLDE RTLAYIISELDELEREEFYRLKKIQDKKREARIKA AKAALLEKGIDVR -QANLLDE RTLAYIISELDELEREEFYRLKKIQDKKREARIKA AKAALLEKGIDVR -QANLLDE RTLAYIISELDELEREEFYRLKKIQDKKREARSKOEA KAALLEKGIDVR -VANILDE GDDILF GDDILF GDDILF GDDILF GDDILF GDDILF GDDILF VYPSRVDRFLAGTGHSIAVFVVIFKVPVWKRMKCCPPVSCV

Figure 2.6. Multiple alignments of deduced amino acid sequences of V-ATPase subunit D (*Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum*).

Figure 2.7. Exon-intron organization of the V-ATPase subunit H gene (V-ATPase H) in Ae. aegypti.

Figure 2.8. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase H* gene.

This rooted phylogenetic tree was constructed using the maximum likelihood method. Nodes indicate bootstrap values calculated with 1000 replications. The green branches represent the order Diptera, orange branch shows the outgroup, and blue branches represent other orders. The accession numbers for the sequences are as follows: AaV-ATPaseH (XP_001652018.1, *Aedes aegypti*); DmV-ATPaseH (NP_523585.2, *Drosophila melanogaster*); CqV-ATPaseH (XP_001844037.1, *Culex quinquefasciatus*); MdV-ATPaseH (XP_005181998.1, *Musca domestica*); BmV-ATPaseH (NP_001040488.1, *Bombyx mori*); TcV-ATPaseH (XP_966693.3; *Tribolium castaneum*); AmV-ATPaseH (XP_003251675.1; *Apis mellifera*); ApV-ATPaseH (XP_001949116.3; *Acyrthosiphon pisum*).

BmV-ATPaseH	1	MANVSEENVSQLIPILGDEKIDMIAATSVLQIRASEIROTQINWQSYLQSQMITQ
ApV-ATPaseH	1	MTKTANMKEILPAFPEENIDMFAATSVLQQQAAEIRNLNPNWSSYLQSQMISQ
AaV-ATPaseH	1	MSD <mark>VQDLM</mark> SSLPDDKIDMIAATSVLQQQAGDIRQNKPNWSSY <mark>K</mark> QSQMISQ
CqV-ATPaseH	1	MSD <mark>VQDLM-SLPDD</mark> KIDMIAATSVLQQQAGDIRQNKPNWAPYVQSQMISQ
DmV-ATPaseH	1	MTTA-LYLPEENIDMIAATSVLQQQAADIRTRTINWASYMQSQMISE
MdV-ATPaseA	1	MSDVADL-MKMPEE <mark>SIDMIAATSVLQQQAADIR</mark> TKTINW <mark>A</mark> SYMQSQMISQ
TcV-ATPaseH	1	MSSSQVPAGADPKIKEIITSLDDEKIDMLAATSVLQQRATDIRAQKVNWQSYFQSQMISQ
AmV-ATPaseH	1	MVDRVNIKEMIPALPDEKIDMLAATSILQQQAADIRNQQIKWQSYLQSHMISK
BmV-ATPaseH	56	RDHDFIVNLDQRGQKDLPDKNPDACAEVFLNLLTHISKDHTIQYILVIIDDILSEDK
ApV-ATPaseH	54	DVFDFISAYDVTDTKGQFLNDNRQQSAKAFFSLLEHISKESTIQYVLVLIDDLLTEDR
AaV-ATPaseH	51	EDY <mark>ACVS</mark> SLD <mark>KDKK-SQAQ</mark> YLQENP <mark>G</mark> QCAKTFLNLLSHVSKDQTIQYILVMIDDLLQEDR
CqV-ATPaseH	50	EDY <mark>NCVSALD</mark> KDKK-SQ <mark>A</mark> QYLQENP <mark>G</mark> QCAKTFLNLLSHVSKDQTIQYILVMIDDLLQEDR
DmV-ATPaseH	47	EDYKA <mark>ISALD</mark> KSRASFLAQNSSQVVKTLLNLVSHLSKDSTIQYILVLLDDLLQEDR
MdV-ATPaseA	50	EDYQCISALD <mark>NSKAAYLQSNPAQ</mark> AVKTLLNLLSHVSKD <mark>S</mark> TIQYIMVMIDDLLQEDR
TcV-ATPaseH	61	DDHQFIAAFDVSDSAKREKLLQTDRLQCAQTFLNLLGHVSKDQTLQYILVLIDDMLQEDR
AmV-ATPaseH	54	EDHDFIVAFDTNDPNVRDAKLKENPHQAAKTFLNLLGHISKDQTIQYILTMIDDMLQEDR
BmV-ATPaseH	113	SRV <mark>KIFRE</mark> TKFSGNVWQPFLNLLNRQD <mark>E</mark> FVQHMTA <mark>RIIAKLACW</mark> HPQLMDKSDLHFYL
ApV-ATPaseH	112	SRVEIFHEYALKKNEPVCCNFLNLLNAADGFINNMSARIIAKFACYSTDLINQTDLQFYL
AaV-ATPaseH	110	SRV <mark>QLFHDYAN</mark> KRKESVWAPFLNLLNRQDGFIVNMASRVVGKLACWG <mark>Q</mark> ELMPKSDLHFYL
CqV-ATPaseH	109	TRV <mark>Q</mark> IFHDYA <mark>IKRKESVWA</mark> PFLNLLNRQDGFIVNM <mark>A</mark> SRVVGKLACWG <mark>O</mark> ELMPKSDLHFYL
DmV-ATPaseH	103	SRVDLFHDTAG <mark>KLKQCI</mark> WGPFLNLLNRQDGFIVNMSSRILAKFACWGHETMPKSDLNFYL
MdV-ATPaseA	106	SRVDIFHEYCAKRKECVWGPFLNLLNRQDGFIVNMSSRILAKLACWGHEMMPKSDLNFYL
TcV-ATPaseH	121	SRVEIFHEYANKKKESVWGPFLNLLNRODGFITNMTSRIIAKIACWSOTPMERSDLHFYL
AmV-ATPaseH	114	SRVEIF <mark>REHS</mark> NRKRESVWGPFLNLLNRÔDGFIMNMTSRIIAKLACWSHDLME <mark>KTDLO</mark> FYL
BmV-ATPaseH	171	SWLKDQL <mark>KTNNNDYIQSVARCLQMMLRIDEYRFAFL</mark> SVDGISTLLSIL <mark>A</mark> SRVNFQVQYQL
ApV-ATPaseH	172	NWIKEQLLSANNEYMQSVARCLOMLLRRDEYRTAFISVDGISTLLSILSGRVNFQIQYQL
AaV-ATPaseH	170	QWLKDQLTVANNEYIQSVARCLQMMLRVDEYRFAFVTVDGISTLISILSSRVNFQVQYQL
CqV-ATPaseH	169	OWLKDOLTVANNEYIOSVGRCLOMMLRVDEYRFAFVTVDGISTLISILSSRVNFOVOYOL
DmV-ATPaseH	163	ŐFLKDŐLASNNNEYIŐSVARCLŐMMLRVDEYRFAFVGVDGISTLI <mark>R</mark> ILSTRVNFŐVŐYŐL
MdV-ATPaseA	166	ŐFLKDŐLTVOSNEYIŐSVARCLŐMMLRIDEYLFAFVGVDGISTLVRILSSRVNFŐVŐYŐL
TcV-ATPaseH	181	TWLKDQLKMONNEYIQSVCRCLOMMLRIDEYRFAFVSVDGISTLLSVLSGRVNFQVQYQL
AmV-ATPaseH	174	TWLKDQL <mark>KLS</mark> NNEYIQSVARCLQMMLRIDEYRFAFVSVDGISTLISVLS <mark>G</mark> RVNFQVQYQL
BmV-ATPaseH	231	VFCLWVLTFNPLLAEKMNKFNVIPILADILSDS <mark>V</mark> KEKVTRI V LAVFRNLIEKPED <mark>QQVA</mark> K
ApV-ATPaseH	232	IFCVWVMTFNP <mark>R</mark> LAERMNKFNVIPILADILSDS <mark>V</mark> KEKVTRIILAVFRNLIEKPED <mark>NTTS</mark> K
AaV-ATPaseH	230	VFCLWVLTFNPLLAEKMNKFNVIPILADILSDS <mark>A</mark> KEKVTRIILAVFRNMIEKPEDAQVAK
CqV-ATPaseH	229	VFCLWVLTFNPLLAEKMNKFNVIPILADILSDSAKEKVTRIILAVFRNMIEKPEDAQVAK
DmV-ATPaseH	223	IFCLWVLTFNPLLA <mark>AKMNKFS</mark> VIPILADILSDCAKEKVTRIILAVFRNLIEKPED <mark>SS</mark> VAK
MdV-ATPaseA	226	VFCLWVLTFNPLLA <mark>T</mark> KMNKF <mark>T</mark> VIPILADIL <mark>NDCA</mark> KEKVTRIILCVFRNLIEKP <mark>T</mark> DAQVAK
TcV-ATPaseH	241	IFCLWVLTFNPLLAEKMNKFNVIPILADILSDS <mark>V</mark> KEKVTRIILAVFRNLIEKPEDAQVAK
AmV-ATPaseH	234	IFCIWVLTFNPLLAEKMNKF <mark>SVIPILADILSDSV</mark> KEKVTRIILAVFRNLIEKVEDCQVAK
	201	
BmV-ATPaseH	291	EHCIAMVQCKVLKQLSILEQKRSDDEDIMNDVEYLNERLQASVQDLSSFDQYATEVKSGR
Apv-ATPaseH	292	EHCIAMVQSKVLKQLSIFEQKKFDDEDIVEDIQFLNERLQASVQDLSSFDEYATEVKSGR
Aav-A'I'PaseH	290	EHCIAMVQCKVMKQLQILEQRKFDDEDISADIEFILEKLQNSVHDLSSFDEYATEIKSAR
cqv-ATPaseH	289	EHCIAMVQCKVMKQLQILEQKKFDDEDISADIEFILEKLQSSVQDLSSFDEYATEVKSAR
UmV-A'I'PaseH	283	DHCIAMVQCKVLKQLSILEQRRFDDEDITADVEYISEKLQNSVQDLSSFDEYATEVRSGR
MdV-A'I'PaseA	286	EHCIAMVQCKVLKQLSILEQRRFDDEDISADVEFITEKLQNSVQDLSSFDEYATELRSAR
TCV-ATPaseH	301	EHCIAMVQCKVLKQLNILEQRKFDDEDVAGDVEFLTEKLQNSVQDLSSFDEYATEVKSGR
AmV-A'I'PaseH	294	EHCIAMVQCKVLKQLSILGQRKFDDEDIIDDIEFLNDKLQASVQDLSSFDEYSTEVKSGR
BmV-ATDOCOT	3 5 1	
	331 351	LEWSEVINGANEWRENAARDNERGQEDDAT LVHLLENSKDEVVLAVACIDIGEIVRHIPR
APV-AIPASEH	320 320	IEWSTVINSA <mark>S</mark> EWRENASEINERNIETETERIEVITETERIETENEETSKUPEVESVASEUVGETVRHTPR
AAV AIFASER	550	HEWST VIRGARTWREINAGREINERNIESELUNTEVIELE ISRDPLVESVASIDIGEIVRHIPR

Figure 2.9. Multiple alignments of deduced amino acid sequences of V-ATPase subunit H (*Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum*).

Chapter 3 - Molecular Characterization of Selected V-ATPase Genes in the Yellow Fever Mosquito *Aedes aegypti*

Abstract

Vacuolar ATPase (V-ATPase) is an important enzyme responsible for transportation of protons across membranes and acidification of intracellular compartments in eukaryotic cells. Although V-ATPases and their subunits have been widely studied in model organisms such as yeast and Drosophila, our understanding of their structure, function, and patterns of expression in mosquitoes is still very limited. In this study, I used RT-PCR to amplify partial sequences of selected V-ATPase subunits (A, D, and H) in the yellow fever mosquito, Aedes aegypti. Sequence analysis showed that these partial cDNAs covered approximately 30%, 76%, or 42% of the complete cDNA sequences of V-ATPase A, V-ATPase D, or V-ATPase H, respectively. Analyses of developmental and tissue-specific gene expressions using RT-qPCR showed that the selected V-ATPase genes had similar expression patterns across developmental stages (eggs; 1st, 2^{nd} , 3^{rd} , and 4^{th} instar larvae; pupae; or adults), with highest expression in larval stages for each subunit. Similarly, V-ATPase subunits A, D, or H showed similar expression patterns in the different tissues examined in fourth instar larvae, with Malpighian tubules having the highest expression of all three. Interestingly, expression of subunits A, D, or H in different tissues of adults was highest in male hindgut versus Malpighian tubules in females. My results show the expression levels of different V-ATPase subunit genes vary in different genders, tissues and developmental stages.

Keywords: Aedes aegypti, gene expression patterns, sequence analysis, V-ATPase

3.1. Introduction

Vacuolar-ATPase (V-ATPase) is a multi-subunit enzyme that hydrolyzes ATP and transports H⁺ across various biological membranes, generating electrochemical potentials (Beyenbach and Wieczorek, 2006). V-ATPases are widely distributed on intracellular vesicular membranes and at the plasma membrane in specific cell types (Forgac, 2007; Nishi and Forgac, 2002). Intracellular V-ATPases function to acidify endocytic and secretory organelles that are essential for endocytosis, receptor-ligand dissociation, and protein degradation (Maxson and Grinstein, 2014).

V-ATPases consist of as many as 12 different polypeptides that assemble to form two main ring structures, called the V₁ and V₀ domains (Beyenbach and Wieczorek, 2006). The V₁ domain is a peripheral complex of ~500 kDa that includes eight subunits (A, B, C, D, E, F, G, H) (Forgac, 1998) which interact with and hydrolyze ATP (O'Donnell, 2008). The catalytic ATP binding sites are located at the interfaces between the A and B subunits. Hydrolysis of ATP powers the rotation of the central stalk which includes subunits D and F. The peripheral stalk, which is composed of subunits C, E, G and H, prevents the movement of the A and B subunits during ATP hydrolysis (Maxson and Grinstein, 2014).

The V₀ domain is a membrane embedded complex of 150-250 kDa (O'Donnell, 2008) composed of at least four different subunits (a, d, c, e) (Forgac, 1998). Subunit c and its isoform c" form a ring, called the c-ring, where each subunit has a H⁺ binding site on it (Beyenbach and Wieczorek, 2006). Subunit a is thought to allow the H⁺ to reach and bind to one subunit of the c-ring (Meier et al., 2005). Subunit c functions as a rotor in the V₀ complex; however, the functions of subunits d and e remain to be elucidated. Hydrolysis of ATP causes rotation of V₀

and transports H^+ across the membrane. When the V₁ domain hydrolyzes only one ATP, this energy powers the 360° rotation of the V₀ domain (Cross and Müller, 2004).

In insects, most efforts have focused on V-ATPases in the model organisms, *Manduca sexta* or *Drosophila melanogaster*. The plasma membrane V-ATPase from *M. sexta* consists of at least 12 subunits (Wieczorek et al., 1999), with several subunits, G, a, c, d and e, being encoded by multiple genes in *M. sexta*. In contrast, subunits A, C, D, E, F, and H are to be encoded only by single genes. Moreover, multiple transcripts were identified for subunits B, G, c, and d suggesting that these subunits exist as multiple isoforms that could provide specialized functionality or be expressed in different tissues (Merzendorfer et al., 2000).

In *D. melanogaster*, genome-wide surveys have revealed that this V-ATPase has 14 subunits that are encoded by thirty-three genes in total (eight subunits are encoded by multiple genes). In addition, these subunits showed tissue-specific patterns of expression. Thirteen genes are specialized for epithelial roles and the disruption of any gene encoding a subunit of the tubule plasma membrane V-ATPase showed a transparent Malpighian tubule phenotype (Allan et al., 2005).

Aedes aegypti is one of the most important vectors of deadly diseases such as yellow fever, dengue fever, chikungunya, and Zika (Jentes et al., 2011; Leparc-Goffart et al., 2014; Musso and Gubler, 2016; Simmons et al., 2012). More than 3.5 billion people in over 125 countries are at risk of infection with dengue fever alone (Brady et al., 2012). Unfortunately, vaccines are not available for these diseases, thus, insecticide-based control of vectors is the most common practice for preventing disease. Insecticides are widely used to control *Ae. aegypti*; however, mosquitoes have developed resistance against many of the most common insecticides, including organophosphates and pyrethroids (Ranson et al., 2010). The rise in resistance in

50

vector mosquitoes requires the search for new target sites and new strategies to control vector mosquitoes. One such strategy, RNA interference, uses exogenous double-stranded RNA to suppress the transcript level of a specific target gene in the insect pest and has potential as a new control measure for mosquito vectors.

The mosquito V-ATPase functions to acidify endosomes, which is a crucial process for the entry of viruses such as dengue virus and the release of the viral genome from endosomes to the cytoplasm (Clyde et al., 2006; Nishi and Forgac, 2002). Another important function of V-ATPase in *Ae. aegypti* is providing the energy for secondary active transporters that are essential for osmoregulation and for the retention of ions, water, and nutrients (Bradley, 2008). Studies showed that V-ATPase is highly expressed in Malpighian tubules, which are essential for ion and water homeostasis at every stage of the mosquito life-cycle and are the major organ of salt and fluid balance (Beyenbach et al., 2010; Weng et al., 2003). These important functions showed that V-ATPase might be a good target for vector control strategies; however, there is very little information available on the expression patterns of V-ATPase in different tissues or different life stages that are critical for successful application of RNAi in pest control schemes.

I performed a detailed literature review in order to select the candidate V-ATPase genes in *Ae. aegypti*. Several subunits of V-ATPase, including subunits A, D, and H, were widely studied, which showed that targeting these genes in different insects using RNAi resulted in mortality or significant phenotypical changes. Subunits A, D, and H serve critical roles in the function of V-ATPases in binding and hydrolysis of ATP, coupling of ATP hydrolysis and proton translocation, and activation of ATP hydrolysis, respectively (Arata et al., 2002; Liu et al., 1997; MacLeod et al., 1998; Parra et al., 2000), and so may serve as excellent targets for RNAi experiments. However, V-ATPases have mostly been studied in *M. sexta* (Wieczorek et al., 1999) or *D. melanogaster* (Allan et al., 2005), and very little information is available on the developmental and tissue-specific expression patterns in *Ae. aegypti*. Therefore, I analyzed the transcript levels of V-ATPase subunits A, D, and H in various tissues and developmental stages of *Ae. aegypti* in order to enhance future efforts focused on targeting these genes with RNAi.

3.2. Materials and Methods

3.2.1. Mosquito rearing and maintenance

Ae. aegypti, Liverpool-IB12 strain (MRA-735), a sub-strain of the Liverpool strain (LVP), were reared under standard insectary conditions at 27°C and 80% relative humidity, with a 12/12 h day/night light cycle, which was previously described by Clemons et al. (2010). This strain originated from West Africa and has been maintained at the Liverpool School of Tropical Medicine (LSTM) since 1936 in the United Kingdom. The Liverpool-IB12 strain was used in the genome sequencing project of *Ae. aegypti* (Nene et al., 2007).

Ae. aegypti mosquito eggs were obtained from BEI Resources (NIAID, NIH, Manassas, VA, USA). Eggs were received on a slice of filter paper and this paper was cut into small pieces of about 3-5 mm per side. These small papers were dipped into a 23 cm by 33 cm glass tray containing 500 ml of distilled water to allow the eggs to hatch. When the eggs hatched, the larvae were daily fed with finely ground dog food (Braga et al., 2005). Second instar larvae were split into a new tray filled with fresh water to reduce the larval density. Pupation occurred after the fourth instar larvae, and pupae were collected and transferred into screened cages to allow the adults emerge.

Adult mosquitoes were maintained on a 10% sucrose solution soaked into cotton balls. When female mosquitoes became three days old, they were fed with defibrinated sheep blood in a glass feeder sealed with parafilm. The glass feeder was placed on top of the cage containing the adult mosquito and connected to a pump, circulating water at 37°C to keep the blood warm. Egg cups, filled with water and covered with filter paper, were placed into cages, allowing the females to lay eggs. Eggs were collected and placed into a dry petri dish and stored for up to three months.

3.2.2. RNA isolation and cDNA synthesis

I chose three subunits of V-ATPase (*V-ATPase A*, *V-ATPase D* and *V-ATPase H*), located in the V₁ domain, to explore their expression in *Ae. aegypti* tissues and developmental stages. Total RNA was isolated from seven different stages of *Ae. aegypti*, including egg, larvae (first-, second-, third- and fourth-instar), pupae, and adults. RNA was extracted using the TRIzol total RNA isolation kit (Invitrogen, Carlsbad, CA, USA) to study stage-specific expressions of V-ATPase genes.

Total RNA was also isolated from five different tissues (midgut, Malpighian tubule, hindgut, reproductive organ, and carcass) and one body part (head) of female, male, and larval *Ae. aegypti* for studying tissue-specific expression profiles using a similar protocol as above. Tissues were dissected from fourth-instar larvae, and three-day-old female and male adults in phosphate-buffered saline (1x PBS) solution. All isolated RNAs were quantified using a Nanophotometer P330 (Implen GmbH).

After quantification, one microgram of total RNA was treated with DNase I (Life Technologies, Carlsbad, CA, USA) to remove possible genomic DNA contamination. First strand cDNA was synthesized using the EasyScript[™] cDNA Synthesis Kit (Applied Biological Materials, Richmond, Canada) with random primers and oligo (dT) in a 20-µl reaction. First

53

strand cDNA was subsequently used as a template to generate cDNA templates of each specific gene using PCR and gene-specific primers.

3.2.3. Molecular cloning and sequencing of selected V-ATPase subunits

Total RNA was isolated from third-instar Ae. aegypti larvae and first strand cDNA was prepared as above. The Primer Blast tool (NCBI) was used to design specific primers (Table 3.1.) for each of the selected genes based on their published mRNA sequences (CDS, Nene et al., 2007). PCR was performed using 2X PCR Taq Master Mix, (Applied Biological Materials) with thermal cycling conditions of an initial denaturation at 94°C for 10 min followed by 34 cycles at 94°C for 30 s, 55°C for 30 s, 72°C for 3 min, with a final extension at 72°C for 5 min. PCR products were resolved on a 1.5% agarose gel and visualized by staining the gel with SafeViewTM (Applied Biological Materials) to determine the size of the amplicon and confirm that only a single band was present. The PCR products, which had the expected sizes, were directly purified from the gel using a PCR/Gel Extraction Kit (IBI Scientific, Peosta, IA, USA). Purified PCR products were ligated into pCRTM 2.1 TA cloning vectors (Life Technologies, Carlsbad, CA, USA). The ligation mixtures were used to transform *E. coli* cells using the Z-Competent E. coli transformation kit (Zymo Research, Orange, CA, USA). Plasmids were isolated from the bacterial culture and used for sequencing at Genewiz, LLC (South Plainfield, NJ, USA). The Molecular Evolutionary Genetics Analysis (MEGA7) software was used for analyzing the sequencing results. All sequences were aligned using Muscle alignment with default settings and then phylogenetic trees (shown in the previous chapter) were constructed using the maximum likelihood method.

3.2.4. Quantitative PCR analysis

To determine the relative expression levels of *V-ATPase A*, *D*, or *H* genes in different developmental stages or tissues, cDNA prepared from each above-mentioned sample was used as a template for quantitative PCR (qPCR) analysis. For each gene, 20-µl reactions were prepared with 1 µl cDNA, 0.6 µL each of forward and reverse primers (5 µM), and 10 µl Eva Green Master Mix, (Applied Biological Materials) on an iCycler iQ real-time PCR detection system (Bio-Rad Laboratories, Hercules, CA). qPCR primers used in this study were designed using NCBI- Primer Blast and are shown in Table 3.2. *Ae. aegypti* ribosomal protein 17 (*Rps17*) was used as a reference gene, which was previously tested for suitability by Soumaila Issa (2014). qPCR was performed with three biological replicates (each with two technical replicates) for each gene. The relative expression levels of the genes were analyzed using $\Delta\Delta$ Ct method (Livak and Schmittgen, 2001).

3.3. Statistical analysis

For analyzing the relative expression levels of *V*-*ATPase A*, *D*, or *H* genes from different tissues and developmental stages of *Ae. aegypti*, I used one-way analysis of variance (ANOVA) followed by Tukey's HSD multiple comparisons tests to compare the means among the tissues or developmental stages. In this study, all statistical analyses were performed using MiniTab 17 statistical software (MiniTab, Inc., State College, PA). Additionally, SigmaPlot software was used as a graph creator.

3.4. Results

3.4.1. Sequencing of partial cDNAs of V-ATPase A, D, and H genes

In this study, I amplified the partial sequences of *V*-*ATPase A*, *V*-*ATPase D*, and *V*-*ATPase H* genes. Sequence analysis showed that the cDNA sequences were consistent with those available on NCBI. The partial cDNAs covered approximately 30%, 76%, or 42% of the full cDNAs of *V*-*ATPase A*, *V*-*ATPase D*, or *V*-*ATPase H*, respectively (Figures 3.1., 3.2., and 3.3.) (NCBI database accession numbers *XM_001659470.1*, *XM_001660376.1*, *XM_001651968.1*, for *V*-*ATPase A*, *D*, or *H*, respectively). When these partial sequences were blasted against all insect taxa, my results showed high identity to *Drosophila*, around 86, 76, or 80% for *V*-*ATPase A*, *D*, or *H* genes, respectively.

3.4.2. Developmental stage expression patterns

Stage-specific expression patterns of *V-ATPase A*, *V-ATPase D*, and *V-ATPase H* genes were determined in eggs (embryos), four different larval instars (1st, 2nd, 3rd and 4th), pupae, and adults by using RT-qPCR (Figure 3.4.). All selected V-ATPase genes were expressed in all developmental stages examined, and showed similar expression patterns. The relative transcript levels of the *V-ATPase A* gene was significantly higher in 1st and 3rd instar larvae when compared to pupae or adults. For *V-ATPase D*, transcript levels were significantly higher in 3rd instar larvae compare to 1st and 4th instar larvae. In addition, the transcript levels of *V-ATPase H* were significantly higher in 1st and 3rd instar larvae than in embryos, pupae, or adults.

3.4.3. Tissue specific expression patterns in larvae

Tissue-specific expression profiles of *V-ATPase A*, *D*, or *H* genes were determined in four different larval tissues (midgut, Malpighian tubule, hindgut and carcass) and head of fourth instar larvae (Figure 3.5.). Although head is generally considered as a body part, I showed its relative expression along with the tissue types due to the technical difficulties associated with dissecting specific tissues from the mosquito head. All three V-ATPase genes showed similar expression patterns across the different tissues analyzed, but there were some significant differences in expression between specific tissues. The relative expression level of each selected V-ATPase genes was significantly higher in Malpighian tubule than in carcass or head, but was not significantly different compared to midgut or hindgut.

3.4.4. Tissue specific expression patterns in adults

Expression patterns of *V*-*ATPase A*, *D*, or *H* genes in adult female and male *Ae. aegypti* were analyzed in each of five different tissues including midgut, Malpighian tubule, hindgut, reproductive organs, and carcass (Figure 3.6.). Both in female and male, the selected V-ATPase genes showed similar expression patterns in different tissues. However, when I compared transcript levels of these subunits in female versus male *Ae. aegypti*, I observed a different pattern of expression in different tissues based on sex. In adult males, the relative transcript level of *V*-*ATPase A* gene was significantly higher in hindgut compared to midgut, reproductive organs, carcass, and head. Similarly, the relative transcript level for subunit H was higher in the hindgut than in any of the other tissues, whereas the relative transcript levels for the *V*-*ATPase D* gene were significantly higher in hindgut than carcass. In contrast, the relative transcript levels of

V-ATPase A, *D*, or *H* genes were significantly higher in Malpighian tubules than in any of the other tissues analyzed in adult females.

3.5. Discussion

V-ATPase is a critical multi-subunit enzyme that utilizes ATP to pump H⁺ across biological membranes (Marshansky et al., 2014). Not surprisingly, each subunit has its own role in making this enzyme functional. V-ATPases have been widely studied in yeast and mammals; however, we know very little about the tissue or developmental stage-specific expression of each subunit or their specific functions in insects. These studies are critical in understanding their role in insect development and survival as well as in evaluating the suitability of V-ATPase genes as targets for RNAi-based insect control strategies.

In this study, I evaluated the relative transcript levels of *V-ATPase A*, *V-ATPase D*, and *V-ATPase H* genes at different developmental stages and in different tissues. My results showed that these three V-ATPase genes are expressed in all developmental stages in *Ae. aegypti*. In addition, high transcript levels of V-ATPase genes were observed in larval stages compared to other developmental stages. Expression patterns were similar for each subunit in different larval tissues, but the highest expression for each selected V-ATPase subunit was observed in Malpighian tubule when compared to carcass or head in fourth instar larva. Similar expression patterns were also observed for each subunit in female or male adult tissues, but when I compared expression patterns in female versus male mosquitoes, my data showed that for each selected V-ATPase subunit, the highest expression level was observed in Malpighian tubule versus other tissues in female adults, whereas in male adults the highest expression was observed in hindgut when compared to carcass.

Larval and adult mosquitoes live in different environments with varying requirements, particularly those surrounding osmoregulation and excretion (Li et al., 2017). Larval and pupal developmental stages of the mosquito occur in water where they are immersed in a hypotonic environment (Bradley, 1987; Marusalin et al., 2012). In contrast, adult mosquitoes are terrestrial organisms that have to deal with rapid dehydration. In addition, adult females feed on blood and excrete about 40% of the blood within 1-2 hours (Drake et al., 2010; Williams et al., 1983). My results showed that the highest expression of V-ATP subunits was obtained in larval stages of Ae. aegypti. Similar results were reported for Drosophila larval stages (Allan et al., 2005). Previous studies showed that V-ATPase enzymes are localized at the apical membrane of principal cells and energized the membrane and secondary transporters in Malpighian tubules of the mosquito, Ae. aegypti (Beyenbach, 2001; Beyenbach and Piermarini, 2011). Another study also showed that V-ATPase subunits A, B, a, c" were highly expressed in larval midgut of Drosophila (Overend et al., 2016). Here, I found that each V-ATPase subunit examined in this study showed high expression in larval tissues; midgut, Malpighian tubule, and hindgut. In addition, my results showed that the highest expression of selected V-ATPase genes was observed in Malpighian tubules in female adults. Similar results were reported previously for V-ATPase subunit B in Malpighian tubules of Ae. aegypti (Weng et al., 2003).

V-ATPases are found in the plasma membrane and within the membranes of many organelles in every eukaryotic cell (Forgac, 2007; Kane, 2006). Here, I found that all selected V-ATPase genes were expressed in different tissues in larval, male, and female mosquitoes. In *Drosophila*, the V-ATPase subunit A is encoded by three genes (*vha68-1*, *vha68-2*, *vha68-3*) that showed different expressions in different tissues. *Vha68-2* is expressed in gut, Malpighian tubules, ceaca, and muscles, whereas the *vha68-1* is restricted to hindgut (Allan et al., 2005). In
my study, I showed that subunit A, which is encoded by a single gene, was highly expressed in Malpighian tubules of female *Ae. aegypti* as compared with the other two genes. Furthermore, in female mosquito, the highest transcript levels of V-ATPase genes were observed in Malpighian tubules. This expression pattern is consistent with the need of female mosquitoes to excrete large amounts of urine through their Malpighian tubules after blood feeding (Clements, 1992). Similarly, male mosquitoes do not feed on blood and likely instead rely on V-ATPase expression in the hindgut to satisfy their excretory needs.

References

- Allan, A.K., Du, J., Davies, S.A., Dow, J.A.T., 2005. Genome-wide survey of V-ATPase genes in *Drosophila* reveals a conserved renal phenotype for lethal alleles. Physiol. Genomics 22, 128-138.
- Arata, Y., Baleja, J.D., Forgac, M., 2002. Localization of subunits D, E, and G in the yeast V-ATPase complex using cysteine-mediated cross-linking to subunit B. Biochemistry 41, 11301-11307.
- Beyenbach, K.W., 2001. Energizing epithelial transport with the vacuolar H+-ATPase. News Physiol. Sci. 16, 145-151.
- Beyenbach, K.W., Piermarini, P.M., 2011. Transcellular and paracellular pathways of transepithelial fluid secretion in Malpighian (renal) tubules of the yellow fever mosquito *Aedes aegypti*. Acta Physiol. 202, 387–407.
- Beyenbach, K.W., Skaer, H., Dow, J.A.T., 2010. The developmental, molecular, and transport biology of Malpighian tubules. Annu. Rev. Entomol. 55, 351-374.
- Beyenbach, K.W., Wieczorek, H., 2006. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J. Exp. Biol. 209, 577-589.
- Bradley, T.J., 2008. Active transport in insect recta. J. Exp. Biol. 211, 835-836.
- Bradley, T.J., 1987. Physiology of osmoregulation in mosquitoes. Annu. Rev. Entomol. 32, 439–462.
- Brady, O.J., Gething, P.W., Bhatt, S., Messina, J.P., Brownstein, J.S., Hoen, A.G., Moyes, C.L.,
 Farlow, A.W., Scott, T.W., Hay, S.I., 2012. Refining the global spatial limits of dengue
 virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760.

Braga, I.A., Mello, C.B., Peixoto, A.A., Valle, D., 2005. Evaluation of methoprene effect on *Aedes aegypti* (Diptera: Culicidae) development in laboratory conditions. Mem. Inst. Oswaldo Cruz. 100, 435-440.

Clements, A.N., 1992. The Biology of Mosquitoes. Chapman and Hall, London.

- Clemons, A., Mori, A., Haugen, M., Severson, D.W., Duman-Scheel, M., 2010. *Aedes aegypti*: culturing and egg collection. Cold Spring Harbor Protoc. 2010: pdb.prot5507.
- Clyde, K., Kyle, J.L., Harris, E., 2006. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J. Virol. 80, 11418-11431.
- Cross, R.L., Müller, V., 2004. The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio. FEBS Lett. 576, 1-4.
- Drake, L.L., Boudko, D.Y., Marinotti, O., Carpenter, V.K., Dawe, A.L., Hansen, I.A., 2010. The Aquaporin gene family of the yellow fever mosquito, *Aedes aegypti*. PLoS ONE 5, e15578.
- Forgac, M., 2007. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917-929.
- Forgac, M., 1998. Structure, function and regulation of the vacuolar (H+)-ATPases. FEBS Lett. 440, 258-263.
- Jentes, E.S., Poumerol, G., Gershman, M.D., Hill, D.R., Lemarchand, J., Lewis, R.F., Staples,
 J.E., Tomori, O., Wilder-Smith, A., Monath, T.P., 2011. The revised global yellow fever risk map and recommendations for vaccination, 2010: consensus of the Informal WHO Working Group on Geographic Risk for Yellow Fever. Lancet Infect. Dis. 11, 622-632.
- Kane, P.M., 2006. The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol. Mol. Biol. Rev. 70, 177–191.

- Leparc-Goffart, I., Nougairede, A., Cassadou, S., Prat, C., de Lamballerie, X., 2014. Chikungunya in the Americas. The Lancet 383, 514.
- Li, Y., Piermarini, P.M., Esquivel, C.J., Drumm, H.E., Schilkey, F.D., Hansen, I.A., 2017. RNAseq comparison of larval and adult Malpighian tubules of the yellow fever mosquito *Aedes aegypti* reveals life stage-specific changes in renal function. Front. Physiol. 8, 283.
- Liu, Q., Leng, X., Newman, P.R., Vasilyeva, E., Kane, P.M., Forgac, M., 1997. Site-directed mutagenesis of the yeast V-ATPase A subunit. J. Biol. Chem. 272, 11750-11756.
- Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402-408.
- MacLeod, K.J., Vasilyeva, E., Baleja, J.D., Forgac, M., 1998. Mutational analysis of the nucleotide binding sites of the yeast vacuolar proton-translocating ATPase. J. Biol. Chem. 273, 150-156.
- Marshansky, V., Rubinstein, J.L., Gruber, G., 2014. Eukaryotic V-ATPase: novel structural findings and functional insights. Biochim. Biophys. Acta 1837, 857–879.
- Marusalin, J., Matier, B.J., Rheault, M.R., Donini, A., 2012. Aquaporin homologs and water transport in the anal papillae of the larval mosquito, *Aedes aegypti*. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 182, 1047–1056.
- Maxson, M.E., Grinstein, S., 2014. The vacuolar-type H+-ATPase at a glance more than a proton pump. J. Cell. Sci. 127, 4987-4993.
- Meier, T., Polzer, P., Diederichs, K., Welte, W., Dimroth, P., 2005. Structure of the rotor ring of F-Type Na+-ATPase from *Ilyobacter tartaricus*. Science 308, 659-662.

- Merzendorfer, H., Reineke, S., Zhao, X., Jacobmeier, B., Harvey, W.R., Wieczorek, H., 2000. The multigene family of the tobacco hornworm V-ATPase: novel subunits a, C, D, H, and putative isoforms. Biochim. Biophys. Acta 1467, 369-379.
- Musso, D., Gubler, D.J., 2016. Zika virus. Clin. Microbiol. Rev. 29, 487-524.
- Nene, V., Wortman, J.R., Lawson, D., Haas, B., Kodira, C., Tu, Z., Loftus, B., Xi, Z., Megy, K., Grabherr, M., Ren, Q., Zdobnov, E.M., Lobo, N.F., Campbell, K.S., Brown, S.E., Bonaldo, M.F., Zhu, J., Sinkins, S.P., Hogenkamp, D.G., Amedeo, P., Arensburger, P., Atkinson, P.W., Bidwell, S., Biedler, J., Birney, E., Bruggner, R.V., Costas, J., Coy, M.R., Crabtree, J., Crawford, M., deBruyn, B., DeCaprio, D., Eiglmeier, K., Eisenstadt, E., El-Dorry, H., Gelbart, W.M., Gomes, S.L., Hammond, M., Hannick, L.I., Hogan, J.R., Holmes, M.H., Jaffe, D., Johnston, J.S., Kennedy, R.C., Koo, H., Kravitz, S., Kriventseva, E.V., Kulp, D., LaButti, K., Lee, E., Li, S., Lovin, D.D., Mao, C., Mauceli, E., Menck, C.F.M., Miller, J.R., Montgomery, P., Mori, A., Nascimento, A.L., Naveira, H.F., Nusbaum, C., O'Leary, S., Orvis, J., Pertea, M., Quesneville, H., Reidenbach, K.R., Rogers, Y., Roth, C.W., Schneider, J.R., Schatz, M., Shumway, M., Stanke, M., Stinson, E.O., Tubio, J.M.C., VanZee, J.P., Verjovski-Almeida, S., Werner, D., White, O., Wyder, S., Zeng, Q., Zhao, Q., Zhao, Y., Hill, C.A., Raikhel, A.S., Soares, M.B., Knudson, D.L., Lee, N.H., Galagan, J., Salzberg, S.L., Paulsen, I.T., Dimopoulos, G., Collins, F.H., Birren, B., Fraser-Liggett, C., Severson, D.W., 2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316, 1718-1723.
- Nishi, T., Forgac, M., 2002. The vacuolar (H+)-ATPases nature's most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3, 94-103.

- O'Donnell, M., 2008. Insect excretory mechanisms, in: Simpson, S.J. (Eds.), Advances in Insect Physiology. Vol. 35. Academic Press, New York, pp. 1-122.
- Overend, G., Luo, Y., Henderson, L., Douglas, A.E., Davies, S.A., Dow, J.A., 2016. Molecular mechanism and functional significance of acid generation in the *Drosophila* midgut. Sci. Rep. 6, 27242.
- Parra, K.J., Keenan, K.L., Kane, P.M., 2000. The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. J. Biol. Chem. 275, 21761-21767.
- Ranson, H., Burhani, J., Lumjuan, N., Black IV, W.C., 2010. Insecticide resistance in dengue vectors. TropIKA.net 1, 0-0.
- Simmons, C.P., Farrar, J.J., Nguyen, V.V., Wills, B., 2012. Dengue. N. Engl. J. Med. 366, 1423-1432.
- Soumaila Issa, M., 2014. Molecular characterization and functional analysis of cytochrome P450 genes in the yellow fever mosquito *Aedes aegypti* (Diptera: Culicidae). MSc thesis, Manhattan, Kansas State University.
- Weng, X., Huss, M., Wieczorek, H., Beyenbach, K.W., 2003. The V-type H+-ATPase in Malpighian tubules of *Aedes aegypti*: localization and activity. J. Exp. Biol. 206, 2211-2219.
- Wieczorek, H., Grüber, G., Harvey, W.R., Huss, M., Merzendorfer, H., 1999. The plasma membrane H+-V-ATPase from tobacco hornworm midgut. J. Bioenerg. Biomembr. 31, 67-74.

Williams, J.C., Hagedorn, H.H., Beyenbach, K.W., 1983. Dynamic changes in flow rate and composition of urine during the post blood meal diuresis in *Aedes aegypti*. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 153, 257–266.

Gene Name	Primer 5' - 3'	Primer Length (base)	Tm (°C)	Product size (bp)
V ATD and	F:CAGCGTCCACTGAAGGACAT	20	61	012
v-AIF useA	R:GACGATGGACACCGAACCTT	20	62	912
V-ATPaseD	F:AAAGGTCACGGGTTGCTGAA	20	63	012
	R:ACGTCCTCCAAACCACGAAG	20	62	912
V-ATPaseH	F:CCATGTCCGACGTTCAGGAT	20	63	974
	R:GCTGCTTCATGACCTTGCAC	20	62	824

Table 3.1. RT-PCR primers used for sequencing in this study.

>V-ATPaseA

GCACCTAAGAGCAGAAGGAAGCAGAGCAGGAGGAACGGATCGTAACA**ATG**TCCACCCTGAAGAA GATCTCCGATGAGGACCGCGAGTCCAAATTCGGATATGTGTTCGCCGTATCCGGTCCTGTCGTC ACGGCCGAGCGGATGTCCGGTTCGGCTATGTACGAGTTGGTCCGCGTCGGTTACTACGAGCTGG TCGGTGAGATCATCCGTTTGGAAGGTGACATGGCCACCATCCAGGTATACGAGGAAACCTCCGG TGTCACCGTCGGCGATCCCGTGCTGCGTACCGGCAAGCCCCTCTCCGTCGAACTCGGTCCAGGT ATTATGGGTAGCATCTTTGACGGTATCCACGGCGTCCACTGAAGGACATTAACGAACTGACCAGCT CGATCTACATCCCGAAGGGTGTGAACATTCCCTGCTTGTCCCGTACCCAGAGCTGGGGATTCAA CCCCTTGAACGTAAAGGTTGGCTCTCACATCACCGGAGGAGATCTGTACGGTTTGGTGCACGAG AATACCCTGGTCAAGCACAAGCTGTTGGTCCCGCCACGCGCCAAGGGTACAGTTCGTTACATTG CTCCACCCGGCAACTACACCGTCGACGACATCATTCTGGAGACGGAATTCGACGGTGAGATCAA CAAGTGGTCTATGTTGCAGGTGTGGGCCCGTGCGTCAGCCACGTCCAGTGACTGAGAAGTTGCCC GCCAATCATCCTCTGCTGACTGGTCAGCGTGTGTGTGGATTCGCTGTTCCCTTGTGTCCAGGGTG GTACCACTGCCATCCCCGGAGCTTTCGGTTGCGGTAAGACTGTCATCTCGCAGGCCCTGTCCAA GTACTCCAACTCCGATGTCATTATCTACGTCGGTTGCGGAGAACGTGGTAACGAAATGTCTGAA GTATTGCGTGATTTCCCTGAGCTGTCGGTTGAGATTGACGGTGTTACGGAGTCCATCATGAAGC GTACCGCGCTGGTTGCCAACACCTCCAACATGCCTGTCGCTGCTCGTGAAGCTTCCATCTACAC CGGTATTACCTTGTCCGAGTACTTCCGTGATATGGGTTACAACGTATCCATGATGGCTGACTCG CCGGTTATCCTGCCTACCTGGGTGCACGTTTGGCCTCCTTCTACGAGCGTGCCGGTCGTGTCAA GTGTCTCGGTAACCCTGAACGTGAAGGTTCGGTGTCCATCGTCGGTGCCGTATCGCCCCCTGGT GGTGATTTCTCCGATCCCGTCACATCCGCCACCCTTGGTATCGTACAGGTGTTCTGGGGTCTGG ACAAGAAACTGGCCCAGCGTAAGCATTTCCCCTCGATCAACTGGTTGATCTCCTACAGCAAGTA CATGCGCGCCCTTGATGACTTCTACGATAAGAACTTCCAGGAGTTTGTCCCACTGCGTACCAAG GTTAAGGAGATCCTGCAGGAGGAAGAAGATTTGTCCGAAATTGTGCAGCTGGTCGGTAAGGCAT CGCTGGCAGAAACCGATAAGATCACCCTTGAGGTAGCCAAGCTGCTCAAGGATGATTTCCTGCA AACATGATCGGATTCTACGATATGGCTCGCCACGCCGTCGAAACCACCGCCCAGTCGGAGAACA AGATCACCTGGAACGTGATCCGTGACTCGATGGGCAACATCCTGTACCAGCTGTCGTCGATGAA GTTCAAGGACCCAGTGAAGGATGGCGAAGCGAAGATCAAGGCCGATTTCGACCAACTGTACGAA GACCTGCAGCAGGCGTTCCGCAACCTGGAAGAT**TAA**ATTCTCCCGCACATTCGTGGTCTCTTCA ATGCGAAATTCCTTGAAACAGTTTTATTGTTTTCAGTAAACATAGCAAAGAAATGTTCGTAGCA TAGTGCAAACAAAACATCAAAATGAGAAACACGAAACACAGCAAAAGTGTAGGGCCCTCCTTGG CATCATGATCAACCAACAACATCCATTAAGTAAAATGCTTCTAGGTCACCATTTTACAGGCGTA TTTAGGTTGAAACATTTATTTACACAAATTATTGCAAGAAAAAGATTAAGAGAACAAATCTAT AAAGCGAGTGTAACATATACATTTAGAAACGGCGAAACACTACAACAACTACAGAACACGGC AGAACAGAAACAAATTTTAGTAGGTAAGTGATATTGCAAGTGTTGTCCGACGGCGTAGGAAAAG GTTAGCGAACGGAATAACGTTCAATCGGAAATTGTCTTCGAAAGTTTTCCGCTTGCATGCGTGT CTCAAATGCGAATAAAACGTATAAACAATCGTGGTGAAACTTAACATCAGTGATGATATAATCA

Figure 3.1. Nucleotide sequence of the cDNA encoding V-ATPase subunit A.

The sequence represents the full-length cDNA. The partially sequenced cDNA is highlighted in bold, pink letters. PCR and qPCR primers are marked with yellow and green, respectively. Start and stop codons are shown in bold, red letters.

>V-ATPaseD

TTCGCGGACCGAAAGAAATAATAAACTTGCAAAAA**ATG**TCGTCCAAGGATCGAATCCCGATTTTC CCATCCCGAGGTGCCCAGATGCAGATGAAGGCCCGTCTGGCAGGAGCCCACAAAGGTCACGGGT **TGCTGAA**GAAGAAGGCCGATGCCCTCCAGATGAGGTTCCGGATGATCCTTAGCAAAATTATCGA TTGTCCGGAGACTTCAACCAGGTGGTGCTGCAGAATGTCACCAAGGCTCAAATCAAGATCCGCA CCAAGAGGGACAACGTGGCGGGAGTCACGCTACCAGTTTTCGAGTCATACCAGGATGGCAGCGA TACCTATGAGCTGACCGGTCTAGCCAAGGGTGGCCAACAGATGCAGAAGCTGAAGAAAAACTAC CAGAGCGCCGTGAAGCTGCTGGTGGAGCTTGCGTCGCTGCAGACGTCCTTCGTGACTTTGGATG AAGTCATCAAAATTACCAACAGACGAGTTAACGCCATCGAGCACGTTATTATCCCTCGCATTGA TCGTACTTTGGCTTACATTATCTCGGAGTTAGATGAACTGGAACGTGAAGAATTCTACCGTTTG AAGAAGATTCAGGACAAAAAACGAATTGCAAAGAAAAAGGAAGAGGCTCGCAAAGCAGCCCTTT **TEGAAAAGGGAGTTGATGTACGA**GATCATGCTAATCTCCTCGACGAAGGCGATGATGACATTTT **GTTCTAA**GATGTTTATTCCCAACGGGCAGCGGCGTACAAGTTCGGTGAAAGCATGGGACAGTCG CAACTTCTAACAAAGCGGATTGTGAATGCTTTTATGAAAAGTTCATTCCCTTCTAAGTGTAGAT **CAACAGTAAACGGTTTTGAGTAGCTTCGTGGTTTGGAGGACGT**ATATGTAACAAGTGTATTTT TTTTTGTTTTCTTTTTCAATCTAGGTTAGATGATTCTATTTGCGTATTATGCGCAAAAAATACA GCATATAAATTATAAACGGATTATTATAGAATAAATGTTATCGATAAGCATA

Figure 3.2. Nucleotide sequence of the cDNA encoding V-ATPase subunit D.

The sequence represents the full-length cDNA. The partially sequenced cDNA is highlighted in bold, pink letters. PCR and qPCR primers are marked with yellow and green, respectively. Start and stop codons are shown in bold, red letters.

>V-ATPaseH

GCAAGTCATATGACATTCAGCTGCGACGGGGAATTTTTCACTGTCGACTGTCTCTGGCTTGCGAG GTCCTCTGTCTAATCGAACGAAAAGAAATCGGAAAATCTGTCCATTTTACCAGCGTTTGTGAAC TTTTTTCTGTTCCATCGTAAGCTCGACCACTACCGGAAACCATGTCCGACGTTCAGGATCTGAT GTCGTCCCTGCCGGACGACAAAATTGATATGATCGCTGCGACCAGCGTTTTGCAGCAGCAGCA GGAGATATCCGCCAGAACAAGCCAAACTGGTCCTCATACAAGCAGTCCCAGATGATCTCCCAGG AGGACTATGCCTGCGTGAGCAGTCTGGACAAGGACAAGAAGTCCCAGGCTCAGTACCTGCAGGA GAATCCAGGTCAATGCGCCAAGACGTTCCTGAATCTGCTGTCGCACGTTTCCAAGGACCAGACG ATCCAGTACATCCTGGTCATGATCGATGATCTGCTGCAGGAGGACCGTTCCCGGGTACAGCTGT TCCACGACTACGCCAACGAAGGGAAAGCGTCTGGGGCCCCGTTCCTGAATCTGCTGAACCG CCAGGACGGATTCATTGTGAATATGGCCTCGCGTGTTGTTGGCAAGTTGGCTTGCTGGGGGCCAG GAGCTGATGCCCAAATCCGATCTGCACTTCTATCTGCAGTGGCTGAAGGATCAGCTGACCGTTG CGAACAATGAATATATCCAATCGGTGGCCCGTTGCCTGCAGATGATGCTTCGCGTTGACGAGTA CCGCTTTGCGTTCGTTACAGTTGATGGAATCAGCACGTTGATCAGCATCCTGTCATCTCGGGTG AACTTCCAGGTTCAATACCAGCTGGTGTTCTGCTTGTGGGTGCTCACGTTCAACCCACTGCTGG CGGAGAAGATGAACAAGTTCAACGTGATTCCGATCCTGGCCGACATCCTGAGCGACAGTGCCAA GGAGAAGGTCACCCGTATCATCTTGGCCGTGTTCCGCAACATGATCGAAAAAACCGGAAGACGCG CAGGTCGCCAAGGAGCACTGCATTGCCATGGTCCAGTGCAAGGTCATGAAGCAGCTGCAGATTC TGGAGCAGCGCCGTTTCGACGACGAGGACATCAGTGCCGATCTGGAGTTCCTCATCGAGAAGCT GCAGAACTCCGTGCATGATCTGAGCTCGTTCGATGAGTACGCCACGGAGATCAAGAGCGCCCGC TTGGAGTGGTCGCCGGTGCACAAATCGGCCAAGTTCTGGCGCGAGAATGCCCAGCGCTTGAACG AGAAGAACTACGAACTGCTCCGTATTCTGGTGCATTTGCTGGAGACTTCCAAGGACCCCCTGGT GCTGTCCGTTGCTAGCTACGACATCGGAGAATACGTTCGTCACTACCCGAGAGGAAAGCACGTT ATTGAACAACTGGGTGGAAAACAGTTGGTCATGCTTCTGCTCGGCCATGACGACCCGAATGTTC GCTATGAGGCCCTGCTTGCCGTCCAGAAGCTGATGGTGCACAACTGGGAATACCTCGGCAAACA GCTGGAGAAGGAAAGCGAGAAGACACCCCAATCCGGGGCCGCTATCAGTGGAAAGGCT**TAG**AAA GCTTCCTGCCGCAATTTCGGAACTCGTTGTTAAATCTGTTCGTGAGTTTAGTTTTGTTGTTGAC AATTTTAGTTAAAATCCCTTACCGATCGAAATTTATTGCGCGTATTCAGCTTGCGTATGGAAGC ATTACATTCCCTTTAGCTTCAGTTTTTTTACTCGTTTGTCATGTTCTGGAATATATGAGAAGGT TCTTTGGATACGTTGGAGAAGAAAAAGATTGTATATATCAAATTGCGTGAAAACTAACACAATT GTGCAAAAAAAAAAACAGCTTCGGCTGTTTATAAGAAATATGTATTTATAAGAATGATGTATTA TTGATCAAAATGATGTTTTAGTGGTAAGCTTTTGTCTGGTGGAATGTGTAGTTTTAAAGAACAT CCGTAATGGTAATAGAAACAGCTTATTAAAAACTACGCCCAACACCTAGAAACATATTACATAA AAATAATCGTGAGCAACAAACTGTATTGCCGTAATAAAGTATCGTTGTACGATG

Figure 3.3. Nucleotide sequence of the cDNA encoding V-ATPase subunit H.

The sequence represents the full-length cDNA. The partially sequenced cDNA is highlighted in bold, pink letters. PCR and qPCR primers are marked with yellow and green, respectively. Start and stop codons are shown in bold, red letters.

Gene Name	Primer 5' - 3'	Primer Length (base)	Tm (°C)	Product size (bp)
V ATDaseA	F: CTCCAACTCCGATGTCATTATC	22	60.00	124
v-AIP aseA	R: CTTCATGATGGACTCCGTAAC	21	60.00	124
V-ATPaseD	F:GCACGTTATTATCCCTCGCATTG	23	60.36	175
	R:TCGTACATCAACTCCCTTTTCCA	23	59.67	175
V-ATPaseH	F:GATCTGAGCTCGTTCGATGAGTA	23	59.75	150
	R:CTCCAGCAAATGCACCAGAATAC	23	60.18	150

 Table 3.2. qPCR primers used for expression profiles in this study.

Figure 3.4. The relative transcript levels of *V*-*ATPase A*, *V*-*ATPase D* and *V*-*ATPase H* genes in different developmental stages of the mosquito.

Ae. aegypti Rps17 was used as a reference gene. Transcript levels were expressed as relative fold changes as compared to the levels in eggs. Data are presented as the mean \pm standard error. Different letters on the bars indicate statistically significant differences as evaluated by ANOVA followed by Tukey's multiple comparison test (P < 0.05).

Figure 3.5. The relative transcript levels of *V*-*ATPase A*, *V*-*ATPase D* and *V*-*ATPase H* genes in different tissues or head from fourth-instar larvae.

Ae. aegypti Rps17 was used as a reference gene. Transcript levels were expressed as relative fold changes as compared to the levels in midgut. Data are presented as the mean \pm standard error. Different letters on the bars indicate statistically significant differences as evaluated by ANOVA followed by Tukey's multiple comparison test (P < 0.05).

Figure 3.6. The relative transcript levels of V-ATPase A, V-ATPase D and V-ATPase H genes in different tissues from male or female adults.

Ae. aegypti Rps17 was used as a reference gene. Transcript levels were expressed as relative fold changes as compared to the levels in midgut. Data are presented as the mean \pm standard error. Different letters on the bars indicate statistically significant differences as evaluated by ANOVA followed by Tukey's multiple comparison test (P < 0.05).

Chapter 4 - Suppression of Selected V-ATPase Subunit Transcripts in *Aedes aegypti* Larvae by Oral Delivery of dsRNA/Chitosan Nanoparticles

Abstract

Vacuolar-ATPase (V-ATPase) is an essential enzyme that is located in the plasma membrane for pumping protons and regulating the pH in various cell types. In insects, V-ATPase energizes epithelial transport that permits the retention of ions, water, and nutrients, and has been used as an efficacious target for RNAi in insects other than Aedes aegypti. In this study, I examined the efficiency of RNAi of V-ATPase subunits A, D, or H in Ae. aegypti larvae through feeding with dsRNA/chitosan nanoparticles. My results showed that transcript levels of the selected V-ATPase subunit genes were significantly suppressed (by 27.3 to 70.4%) as compared with those of the larvae fed dseGFP/chitosan nanoparticles. Peak suppression of V-ATPase A, D, or H transcripts occurred on the fifth day, where transcript levels were suppressed by 66.0, 27.3, or 70.4%, respectively, as compared with those of the control. Additionally, I examined the mortality for all selected V-ATPase subunits, but mortality was only observed in larvae fed dsRNA/chitosan nanoparticles targeting V-ATPase D. Mortality after feeding of subunit D dsRNA/chitosan nanoparticles was observed beginning on day 3 and increased to to a total of 14.8% mortality on day 6. These results showed that oral delivery of dsRNA/chitosan nanoparticles significantly suppressed target gene transcript levels in Ae. aegypti larvae, but further increases in RNAi efficiency appear to be necessary in order to see higher larval mortality using oral delivery of dsRNA/chitosan nanoparticles.

Keywords: Aedes aegypti, chitosan nanoparticles, mortality, RNA interference, V-ATPase

4.1. Introduction

Vacuolar H⁺-ATPases (V-ATPase) are ATP-dependent proton pumps that acidify various intracellular compartments such as lysosomes, secretory vesicles, and endosomes in eukaryotic cells. They also pump protons across the plasma membrane and regulate pH in various cell types (Beyenbach and Wieczorek, 2006; Cotter et al., 2015; Nishi and Forgac, 2002; Wieczorek et al., 1999). Furthermore, V-ATPases energize epithelial transport aiding in the retention of ions, water, and nutrients in insects (Beyenbach and Piermarini, 2009; Bradley, 2008).

Aedes aegypti is an important vector that transmits deadly diseases, including Zika, dengue fever, yellow fever, and chikungunya (Jentes et al., 2011; Leparc-Goffart et al., 2014; Musso and Gubler, 2016; Simmons et al., 2012), which affect more than 3.5 billion people in over 125 countries (Brady et al., 2012). Since vaccines are not available for any of these diseases except yellow fever, insecticide-based vector control is the most common and effective practice for preventing disease. As a result, *Ae. aegypti* has developed resistance against many of the most common insecticides, including organophosphates and pyrethroids (Ranson et al., 2010). This rise in resistance to traditional control schemes for mosquitoes necessitates the development of new target sites and control strategies to continue to manage vector mosquito populations.

RNA interference (RNAi) is an innate post-transcriptional process that uses complementary double-stranded RNA (dsRNA) to suppress expression of messenger RNA (mRNA) transcripts (Fire et al., 1998). Used as a genetic tool, RNAi has allowed modulation of expression of specific mRNA transcripts and elucidate the biological, developmental, or physiological functions of their resulting proteins in many experimental systems, including insects (Bellés, 2010). In addition to its utility in experimental applications, RNAi also has enormous potential for use in novel and sustainable pest management strategies for control of specific insect pests with little or no non-target effects (Burand and Hunter, 2013; Huvenne and Smagghe, 2010). Accordingly, I examined using RNAi to suppress expression of selected V-ATPase genes (*V-ATPase A*, *V-ATPase D*, and *V-ATPase H*) in *Ae. aegypti* in order to determine the suitability of these targets for use in pest control.

4.2. Materials and Methods

4.2.1. Mosquito rearing

Ae. aegypti Liverpool-IB12 strain (MRA-735), the sub-strain of the Liverpool strain (LVP), was reared under standard insectary conditions at 27°C and 80% relative humidity, with a 12/12 h day/night light cycle, which was previously described by Clemons et al. (2010). Mosquito eggs were purchased from BEI Resources (NIAID, NIH, Manassas, VA, USA). These eggs were received on a slice of filter paper and this paper was cut into small pieces of about 3-5 mm per side. These small papers were dipped into a 23 cm by 33 cm glass tray containing 500 ml of distilled water to allow the eggs to hatch. When the eggs hatched, the larvae were daily fed with finely ground dog food (Braga et al., 2005). Second instar larvae were split into a new tray filled with fresh water to reduce the larval density. Pupation occurred after the fourth instar larvae, and pupae were collected and transferred into screened cages to allow the adults emerge.

While mosquito larvae were fed on ground dog food, adult mosquitoes were fed either on 10% sucrose or on defibrinated sheep blood. When female mosquitoes became three days old, they were fed with defibrinated sheep blood in a glass feeder sealed with parafilm. The glass feeder was placed on top of the cage containing the adult mosquito and connected to a pump, circulating water at 37°C to keep the blood warm. Egg cups, filled with water and covered with filter paper, were placed into cages, allowing the females to lay eggs. Eggs were collected and placed into a dry petri dish and stored for up to three months.

4.2.2. dsRNA synthesis

pCRTM 2.1 TA clones containing *Ae. aegypti V-ATPase A*, *V-ATPase D*, or *V-ATPase H* cDNA fragments were used as templates for synthesis of dsRNA using the HiScribeTM T7 RNA synthesis kit (*New England Lab*, Woburn, MA, USA) following the manufacturer's instructions. PCR amplification was performed using 95°C for 2 min followed by 30 cycles of 95°C for 30 s, 59°C for 30s, and 72°C for 5 min, with a final 10 min extension time at 72°C. dsRNA targeting V-ATPase subunits or eGFP transcripts were produced using gene specific primers which also included T7 promoter sequences (Table 4.1.). Primers were designed using the E-RNAi web server (<u>http://www.dkfz.de/signaling/e-rnai3/</u>) (Horn and Boutros, 2010). The synthesized dsRNAs were resuspended in nuclease-free water and quantified with a Nanophotometer P330 (Implen GmbH) before being stored at −20°C until use. Five microliters of 10-fold dilutions of each dsRNA were examined on a 1% agarose gel to check dsRNA size.

4.2.3. Preparation of dsRNA/chitosan nanoparticles and larval feeding

Since feeding dsRNA directly to mosquitoes had not been successfully used to significantly silence gene expression, Zhang et al. (2010b) developed a technique for feeding the mosquito larvae (*Anopheles gambiae*) dsRNA/chitosan-based nanoparticles to increase the RNAi efficiency. This procedure was used in the current study for preparation of dsRNA/chitosan nanoparticles and larval feeding with little modification, and will only be briefly described here. Chitosan from crab shells (Cat. No. C3646-25G, \geq 75 deacetylated; Sigma-Aldrich, Milwaukee, WI, USA) was dissolved in 0.1 M sodium acetate buffer (0.1 M sodium acetate, 0.1 M acetic acid, pH 4.5) to make a 0.02% (w/v) working chitosan solution. In order to produce the dsRNA/chitosan based complexes, 100 μ l chitosan solution was mixed with 32 μ g dsRNA (in 100 μ L 100 mM sodium sulfate buffer, pH 4.5). The mixture was heated to 55°C for one min, and then vortexed for 30 s and centrifuged at 13,000 g for 10 min. After discarding the supernatant, the nanoparticles were mixed with 6 mg of ground larval food and subsequently coated with pre-melted 2% agarose in deionized H₂O. This mixture was left to set at room temperature to form a gel containing the larval food and nanoparticles. The gel was subsequently cut into small pieces prior to feeding the mosquito larvae.

Feeding assays were performed using 15-20 newly-hatched, age-synchronized larvae that were fed with whole diet containing dsRNA/chitosan nanoparticles daily, for six consecutive days. Chitosan-based nanoparticles containing eGFP dsRNA were prepared and fed to the mosquito larvae as a control. Total RNA was isolated 1, 3, 5, and 6 days after initiation of feeding from 15-20 larvae per treatment, and used to assess the effects of dsRNA feeding on gene transcript level. The experiments were performed with three biological replicates for each gene.

4.2.4. RNA isolation and cDNA synthesis

Total RNA was isolated from 3 mosquito larvae per treatment at each time point (1, 3, 5, or 6 days) using TRIzol total RNA isolation kit (Invitrogen, Carlsbad, CA, USA). All isolated total RNAs were quantified using a Nanophotometer P330 (Implen GmbH). After quantification, 1.0 µg of total RNA were treated with DNase I (Life Technologies, Carlsbad, CA, USA) to remove possible genomic DNA contamination. First strand cDNA was synthesized using the

EasyScript[™] cDNA synthesis kit (Applied Biological Materials, Richmond, Canada) with random primers and oligo (dT) in a 20-µl reaction according to the manufacturer's instructions.

4.2.5. Quantitative PCR analysis

cDNAs synthesized above were used as a template for quantitative PCR (qPCR) analysis. The PCR reactions contained 1 μ l of cDNA, 0.6 μ L each of forward and reverse primers (5 μ M), 10 μ l Eva Green Master Mix, (Applied Biological Materials) in a total volume of 20 μ l. The *Ae*. *aegypti* ribosomal protein 17 (*Rps17*) was used as a reference gene and was previously validated by Soumaila Issa (2014). For negative controls, larvae were fed on eGFP dsRNA/chitosan nanoparticles. qPCR was performed with three biological and two technical replicates for each gene. The relative transcript levels of each gene were analyzed using the $\Delta\Delta$ Ct method (Livak and Schmittgen, 2001).

4.3. Results

4.3.1. RNAi of V-ATPase subunits A, D, or H in mosquito larvae

To examine the efficiency of RNAi in *Ae. aegypti* larvae, dsRNA/chitosan nanoparticles targeting V-ATPase subunits A, D, or H were fed to mosquito larvae in ground dog food. My results showed that transcript levels of the selected V-ATPase subunits were significantly reduced to 27.3 to 70.4% of that of control (Figure 4.1.). Peak suppression of V-ATPase A, D, or H transcripts occurred on the fifth day, where transcript levels were suppressed by 66.0, 27.3, or 70.4%, respectively, as compared with the control. Interestingly, the decrease in V-ATPase A or D transcripts were sharply reduced on the sixth day compared to the fifth day, but the reductions in transcript levels were still significant when compared with that of control.

In addition to gene expression, larvae fed dsRNA/chitosan nanoparticles were also evaluated for mortality and phenotypical changes. Whereas no mortality or other phenotypes were observed in larvae fed dsRNA/chitosan nanoparticles targeting V-ATPase A or H gene, feeding of dsRNA/chitosan nanoparticles targeting subunit D caused mortality starting on day 3, with cumulative mortality by the sixth day of 14.8% (Table 4.2.). After dsRNA feeding against *V-ATPase D*, I observed phenotypic changes on some of the dead larvae. These changes were mainly seen as color changes throughout the body. For instance, dark color was observed in the last four segments, where the Malpighian tubules and hindgut are located, in eight of the larvae that died (Figure 4.2.).

4.4. Discussion

The critical roles of V-ATPase in endocytosis, protein degradation, acidification and other cellular processes, as well as its expression in gut and Malpighian tubules (Patrick et al., 2006) make it a potential target for developing RNAi-based strategies for insect pest management. Accordingly, we set out to determine if we could suppress the transcripts of V-ATPase subunits A, D, or H in *Ae. aegypti* by feeding larvae with dsRNA/chitosan nanoparticles to target each of these genes. I found that the transcripts at 1, 3, 5, and 6 days were decreased by 9.2, 26.5, 66, and 41.4%, respectively, for subunit A; 3.7, 18.6, 27.3, and 17.6% for subunit D; and 6.7, 8, 70.4, and 32.4% for subunit H. Peak suppression of transcript levels occurred after larvae were fed for five days for all three genes examined. However, levels of suppression decreased on day 6. It is not known why the suppression levels decreased even though the larvae had been continuously fed with the dsRNA/chitosan nanoparticles targeting each of these genes.

This change in suppression of transcript level may be associated with 4th instar larvae preparing for the pupal moult, which can occur soon as early as day 5 or as late as day 10.

To our knowledge, this is the first study to show that the expression of several V-ATPase subunit genes can be suppressed by feeding *Ae. aegypti* larvae with dsRNA/chitosan nanoparticles. Other researchers have suppressed other genes in mosquitoes or V-ATPase subunit genes in other insect species. For instance, previous studies showed that V-ATPase transcript levels can be successfully suppressed through oral delivery or injection of dsRNA and this caused mortality or phenotypical changes in different insects including *Diabrotica virgifera virgifera* (Baum et al., 2007), *Tribolium castaneum* (Whyard et al., 2009), *Ae. aegypti* (Coy et al., 2012), *Peregrinus maidis* (Yao et al., 2013), *Bemisia tabaci* (Thakur et al., 2014), *Helicoverpa armigera* (Mao et al., 2015), and *Aethina tumida* (Powell et al., 2017).

Previous studies showed that chitin synthase gene expression was suppressed around 60% in *Anopheles gambiae* after dsRNA/chitosan nanoparticles feeding and this caused significant mortalities in the presence of an insecticide or another chemical (Zhang et al., 2010b). Another study demonstrated that *V-ATPase A* transcripts were significantly suppressed after feeding with sucrose meal which included dsRNA in adult female *Ae. aegypti*, but they did not observe increased mortality associated with dsRNA feeding (Coy et al., 2012). In my study, I did not observe any mortality for V-ATPase subunits A or H. Larval mortality was observed after dsRNA feeding against V-ATPase subunit D, but this effect was not statistically significant from control (Table 4.2.).

This preliminary study showed that it is feasible to suppress the expression of selected V-ATPase subunit genes in *Ae. aegypti* larvae by feeding dsRNA/chitosan nanoparticles for a relatively extended period of time (e.g., 5 days). Whereas suppression of transcripts for subunits

83

A or H was similar (around 70%), only limited reduction in transcript levels was observed with dsRNA targeting V-ATPase subunit D, and very little larval mortality was observed in any of the treatments. These results are similar to those previously obtained in *Anopheles gambiae* larvae, where RNAi by feeding dsRNA targeting chitin synthase 1 (*AgCHS1*) caused a 62.8% depletion of target transcripts (Zhang et al., 2010b). No direct mortality was observed as a result of dsRNA treatment unless an insecticide or other chemical was used to challenge the larvae. In contrast, injection of dsRNA in 2nd instar nymphs of the migratory locust (*Locusta migratoria*) caused an 80% decrease in chitin synthase 1 transcript levels with 95.6% mortality (Zhang et al., 2010a). These results suggest that the difference in mortality after RNAi targeting chitin synthase 1 gene between *L. migratoria* nymphs and *An. gambiae* larvae is potentially caused by different levels of suppression of the target gene transcripts, and that significantly higher suppression of transcript levels is necessary in *Ae. aegypti* to induce larval mortality. Accordingly, further research is necessary to improve the efficiency of RNAi in *Ae. aegypti* to improve larval mortality and use V-ATPase subunit genes as targets in mosquito vector control.

References

- Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S.,
 Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., Roberts, J., 2007. Control of
 coleopteran insect pests through RNA interference. Nat. Biotech. 25, 1322-1326.
- Bellés, X., 2010. Beyond *Drosophila*: RNAi in vivo and functional genomics in insects. Annu. Rev. Entomol. 55, 111-128.
- Beyenbach, K.W., Piermarini, P., 2009. Osmotic and ionic regulation in insects. in: Evans, D.H. (Eds.), Osmotic and Ionic Regulation: Cells and Animals. CRC Press, Boca Raton, FL, pp. 231-293.
- Beyenbach, K.W., Wieczorek, H., 2006. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J. Exp. Biol. 209, 577-589.
- Bradley, T.J., 2008. Active transport in insect recta. J. Exp. Biol. 211, 835-836.
- Brady, O.J., Gething, P.W., Bhatt, S., Messina, J.P., Brownstein, J.S., Hoen, A.G., Moyes, C.L., Farlow, A.W., Scott, T.W., Hay, S.I., 2012. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760.
- Braga, I.A., Mello, C.B., Peixoto, A.A., Valle, D., 2005. Evaluation of methoprene effect on *Aedes aegypti* (Diptera: Culicidae) development in laboratory conditions. Mem. Inst. Oswaldo Cruz. 100, 435-440.
- Burand, J.P., Hunter, W.B., 2013. RNAi: future in insect management. J. Invertebr. Pathol. 112, S68-S74.
- Clemons, A., Mori, A., Haugen, M., Severson, D.W., Duman-Scheel, M., 2010. *Aedes aegypti*: culturing and egg collection. Cold Spring Harbor Protoc. 2010: pdb.prot5507.

- Cotter, K., Stransky, L., McGuire, C., Forgac, M., 2015. Recent insights into the structure, regulation and function of the V-ATPases. Trends Biochem. Sci. 40, 611-622.
- Coy, M.R., Sanscrainte, N.D., Chalaire, K.C., Inberg, A., Maayan, I., Glick, E., Paldi, N., Becnel, J.J., 2012. Gene silencing in adult *Aedes aegypti* mosquitoes through oral delivery of double-stranded RNA. J. Appl. Entomol. 136, 741-748.
- Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. Nature 391, 806-811.
- Horn, T., Boutros, M., 2010. E-RNAi: a web application for the multi-species design of RNAi reagents—2010 update. Nucleic Acids Res. 38, W332-W339.
- Huvenne, H., Smagghe, G., 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J. Insect Physiol. 56, 227-235.
- Jentes, E.S., Poumerol, G., Gershman, M.D., Hill, D.R., Lemarchand, J., Lewis, R.F., Staples,
 J.E., Tomori, O., Wilder-Smith, A., Monath, T.P., 2011. The revised global yellow fever risk map and recommendations for vaccination, 2010: consensus of the Informal WHO Working Group on Geographic Risk for Yellow Fever. Lancet Infect. Dis. 11, 622-632.
- Leparc-Goffart, I., Nougairede, A., Cassadou, S., Prat, C., de Lamballerie, X., 2014. Chikungunya in the Americas. The Lancet 383, 514.
- Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402-408.
- Mao, J., Zhang, P., Liu, C., Zeng, F., 2015. Co-silence of the coatomer β and *v*-ATPase A genes by siRNA feeding reduces larval survival rate and weight gain of cotton bollworm, *Helicoverpa armigera*. Pestic. Biochem. Physiol. 118, 71-76.

- Musso, D., Gubler, D.J., 2016. Zika virus. Clin. Microbiol. Rev. 29, 487-524.
- Nishi, T., Forgac, M., 2002. The vacuolar (H+)-ATPases nature's most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3, 94-103.
- Patrick, M.L., Aimanova, K., Sanders, H.R., Gill, S.S., 2006. P-type Na+/K+-ATPase and Vtype H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito *Aedes aegypti*. J. Exp. Biol. 209, 4638-4651.
- Powell, M.E., Bradish, H.M., Gatehouse, J.A., Fitches, E.C., 2017. Systemic RNAi in the small hive beetle *Aethina tumida* Murray (Coleoptera: Nitidulidae), a serious pest of the European honey bee *Apis mellifera*. Pest Manag. Sci. 73, 53-63.
- Ranson, H., Burhani, J., Lumjuan, N., Black IV, W.C., 2010. Insecticide resistance in dengue vectors. TropIKA.net 1, 0-0.
- Simmons, C.P., Farrar, J.J., Nguyen, V.V., Wills, B., 2012. Dengue. N. Engl. J. Med. 366, 1423-1432.
- Soumaila Issa, M., 2014. Molecular characterization and functional analysis of cytochrome P450 genes in the yellow fever mosquito *Aedes aegypti* (Diptera: Culicidae). MSc thesis, Manhattan, Kansas State University.
- Thakur, N., Upadhyay, S.K., Verma, P.C., Chandrashekar, K., Tuli, R., Singh, P.K., 2014.
 Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded
 RNA of *v*-ATPase A gene. PLoS ONE 9, e87235.
- Whyard, S., Singh, A.D., Wong, S., 2009. Ingested double-stranded RNAs can act as speciesspecific insecticides. Insect Biochem. Mol. Biol. 39, 824-832.

- Wieczorek, H., Grüber, G., Harvey, W.R., Huss, M., Merzendorfer, H., 1999. The plasma membrane H+-V-ATPase from tobacco hornworm midgut. J. Bioenerg. Biomembr. 31, 67-74.
- Yao, J., Rotenberg, D., Afsharifar, A., Barandoc-Alviar, K., Whitfield, A.E., 2013. Development of RNAi methods for *Peregrinus maidis*, the corn planthopper. PLoS ONE 8, e70243.
- Zhang, J., Liu, X., Zhang, J., Li, D., Sun, Y., Guo, Y., Ma, E., Zhu, K.Y., 2010a. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, *Locusta migratoria manilensis* (Meyen). Insect Biochem. Mol. Biol. 40, 824-833.
- Zhang, X., Zhang, J., Zhu, K.Y., 2010b. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (*Anopheles gambiae*). Insect Mol. Biol. 19, 683-693.

Gene Name	Primer 5' - 3'	Primer Length (base)	Tm (°C)	Product size (bp)
V ATDaseA	F: taatacgactcactatagggAGCGTCCACTGAAGGACATT	20	59.73	226
v-AIPaseA	R: taatacgactcactatagggGGGTGGAGCAATGTAACGAA	20	60.89	230
VATPaseD	F: taatacgactcactatagggGAGGTGCCCAGATGCAGAT	19	61.22	266
v-AIF useD	R: taatacgactcactatagggCACGTTGTCCCTCTTGGTG	19	60.14	200
V-ATPaseH	F: taatacgactcactatagggGTTGCCTGCAGATGATGCT	19	59.97	228
	R: taatacgactcactatagggGTGACCTTCTCCTTGGCACT	20	59.31	230

Table 4.1. Double-stranded RNA primers used in this study. T7 promoters are underlined.

Table 4.2. Mortality rate of larvae after feeding with dsRNA/chitosan nanoparticles.

		Cumulative	mortality (%)	
Day	1	3	5	6
dseGFP	0	0	0	0
dsV-ATPase D	0	5.7 ± 3.3	13.2 ± 7.6	14.8 ± 8.6

There is no significant difference between mortality caused by dseGFP and dsV-ATPase D treatments. Two-tailed student t-test was performed (P=0.09).

Figure 4.1. Suppression of *V*-*ATPase A*, *D*, or *H* subunit transcript levels in *Ae. aegypti* larvae fed dsRNA/chitosan nanoparticles.

Data are presented as the mean \pm SE of three biological replicates (each with two technical replicates). 1, 3, 5, or 6 on the x-axis generally include 1st-, 2nd-, 3rd-, or 4th-instar larvae, respectively. * indicates significant differences in transcript levels of V-ATPase subunit genes between larvae fed dsRNA/chitosan nanoparticles targeting V-ATPase subunit genes (treatment) and dsRNA/chitosan nanoparticles prepared with dseGFP (control) according to Student's *t*-test (P<0.05).

Figure 4.2. The phenotypic effects of dsRNA/chitosan nanoparticles specific to *V-ATPase D* or eGFP on *Ae. aegypti* larvae.

Mosquito larvae were continuously fed with dseGFP, or dsV-ATPaseD nanoparticles for 5 days. All mosquito larvae fed with dseGFP developed normally, but larvae fed with dsV-ATPaseD showed 14.8% cumulative mortality after 6 days and showed phenotypical changes such as color change throughout the body.

A. aegypti (XP 001651458.1)Subunit B C. quinquefasciatus (XP 001845188.1)Subunit B D. melanogaster (NP 476908.1)Subunit B 48 75 M. domestica (XP 005181053.1)Subunit B 51 6. mori (ACE78271.1)Subunit B T. castaneum (XP 967844.1)Subunit B

Appendix A - Bioinformatic and Phylogenetic Data

Figure A.1. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase B* gene.

A. pisum (XP 003246082.1)Subunit B

This rooted phylogenetic tree was constructed using the maximum likelihood method. Nodes indicate bootstrap values calculated with 1000 replications.

ApV-ATPaseB	1	-MTFGTMNTQQAHKEHVLAVSRDFISQPRLTYKTVSGVNGPLVILDDVKFPKYAEIVQLR
TcV-ATPaseB	1	MSYQN <mark>SISSKQAAREHVLAVSRDFVSQPRLTYKTVTGVNGPLVILDDVKFPKF</mark> NEIVQLK
AmV-ATPaseB	1	-MYPK <mark>SIGERQAN</mark> KEHVLAVSRDFISQPRLTYKTVSGVNGPLVILDEVKFPKFAEIVQLK
BmV-ATPaseB	1	MAKV <mark>ISHAQAT</mark> KEHVLAVSRDFISQPRLTYKTVSGVNGPLVILDEVKFPKF <mark>S</mark> EIVQLK
DmV-ATPaseB	1	MNAQQAQREHVLAVSRDFISQPRLTYKTVSGVNGPLVILDEVKFPKFAEIVQLR
MdV-ATPaseB	1	M <mark>SITASQAQREHVLAVSRDFISQPRLTYKTVSGVNGPLVILDEVKFPKFAEIVQLR</mark>
AaV-ATPaseB	1	MSVNRTISAHQAAKEHVLAVSRDFISQPRLTYKTVSGVNGPLVILDEVKFPKFAEIVQLR
CqV-ATPaseB	1	M <mark>SINRAQAT</mark> KEHVLAVSRDFISQPRLTYKTVSGVNGPLVILDEVKFPKFAEIVQLR

ApV-ATPaseB	60	LHDGTLRSG <mark>K</mark> VLEVSGSKAVVQVFEGTSGIDAK <mark>H</mark> TLCEFTGDILRTPVSEDMLGRVFNGS
TcV-ATPaseB	61	L <mark>S</mark> DG <mark>SI</mark> RSGQVLEVSGSKAVVQVFEGTSGIDAK <mark>H</mark> TVCEFTGDILRTPVSEDMLGRVFNGS
AmV-ATPaseB	60	LADGSTRSGQVLEVSGSKAVVQVFEGTSGIDAKNTLCEFTGDTLRTPVSEDMLGRVFNGS
BmV-ATPaseB	59	LADGTIRSGQVLEVSGSKAVVQVFEGTSGIDAKNTLCEFTGDILRTPVSEDMLGRVFNGS
DmV-ATPaseB	55	LADGTVRSGQVLEVSGSKAVVQVFEGTSGIDAKNTLCEFTGDILRTPVSEDMLGRVFNGS
MdV-ATPaseB	57	LADGTVRSGQVLEVSGSKAVVQVFEGTSGIDAKNTLCEFTGDILRTPVSEDMLGRVFNGS
AaV-ATPaseB	61	LNDGTVRSGQVLEVSGSKAVVQVFEGTSGIDAKNTVCEFTGDILRTPVSEDMLGRVFNGS
CqV-ATPaseB	57	LADGTIRSGQVLEVSGSKAVVQVFEGTSGIDAKNTVCEFTGDILRTPVSEDMLGRVFNGS

ApV-ATPaseB	120	GKPIDKGPPILAED <mark>Y</mark> LDI <mark>E</mark> GQPINPYSR <mark>TYPQ</mark> EMIQTGISAID <mark>I</mark> MNSIARGQKIPIFSAA
TcV-ATPaseB	121	GKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAA
AmV-ATPaseB	120	GKPIDKGPPILAEDFLDI <mark>E</mark> GQPINPWSRIYP <mark>K</mark> EMIQTGISAIDVMNSIARGQKIPIFSAA
BmV-ATPaseB	119	GKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAA
DmV-ATPaseB	115	GKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAA
MdV-ATPaseB	117	GKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAA
AaV-ATPaseB	121	GKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAA
CqV-ATPaseB	117	GKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAA

ApV-ATPaseB	180	GLPHNEIAAQICRQAGLVK <mark>Q</mark> PGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSM
TcV-ATPaseB	181	GLPHNEIAAQICRQAGLVK <mark>V</mark> PGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSM
AmV-ATPaseB	180	GLPHNEIAAQICRQAGLVK <mark>L</mark> PGKSVLD <mark>S</mark> HEDNFAIVFAAMGVNMETARFFKQDFEENGSM
BmV-ATPaseB	179	GLPHNEIAAQICRQAGLVK <mark>V</mark> PGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSM
DmV-ATPaseB	175	GLPHNEIAAQICRQAGLVK <mark>L</mark> PGKSVLDDH <mark>T</mark> DNFAIVFAAMGVNMETARFFKQDFEENGSM
MdV-ATPaseB	177	GLPHNEIAAQICRQAGLVK <mark>V</mark> PGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSM
AaV-ATPaseB	181	GLPHNEIAAQICRQAGLVK <mark>HT</mark> GKSVLDEHEDNFAIVFAAMGVNMETARFFKQDFEENGSM
CqV-ATPaseB	177	GLPHNEIAAQICRQAGLVK <mark>HT</mark> GKSVLDDHE <mark>E</mark> NFAIVFAAMGVNMETARFFKQDFEENGSM

ApV-ATPaseB	240	${\tt ENVCLFLNLANDPTIERIITPRLALTAAEFLAYQCEKHVLVILTDMSSYAEALREVSAAR}$
TcV-ATPaseB	241	ENVCLFLNLANDPTIERIITPRLALTAAEFMAYQCEKHVLVILTDMSSYAEALREVSAAR

ApV-ATPaseB	300	EEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPNDDITHPIPDLTGYITE
TcV-ATPaseB	301	EEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPNDDITHPIPDLTGYITE
AmV-ATPaseB	300	EEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPNDDITHPIPDLTGYITE
BmV-ATPaseB	299	EEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPNDDITHPIPDLTGYITE
DmV-ATPaseB	295	EEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPNDDITHPIPDLTGYITE
MdV-ATPaseB	297	EEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPNDDITHPIPDLTGYITE
AaV-ATPaseB	301	EEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPNDDITHPIPDLTGYITE
CqV-ATPaseB	297	EEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPNDDITHPIPDLTGYITE

ApV-ATPaseB	360	GQIYVDRQLHNRQIYPPINVLPSLSRLMKSAIGEGMTRKDHSDVSNQLYACYAIGKDVQA
TcV-ATPaseB	361	GQIYVDRQLHNRQIYPPINVLPSLSRLMKSAIGEGMTRKDHSDVSNQLYACYAIGKDVQA
AmV-ATPaseB	360	GQIYVDRQLHNRQIYPPVNVLPSLSRLMKSAIGEG <mark>W</mark> TRKDHSDVSNQLYACYAIGKDVQA
BmV-ATPaseB	359	GQIYVDRQLHNRQIYPPVNVLPSLSRLMKSAIGEGMTRKDHSDVSNQLYACYAIGKDVQA
DmV-ATPaseB	355	GQIYVDRQLHNRQIYPPVNVLPSLSRLMKSAIGEGMTRKDHSDVSNQLYACYAIGKDVQA
MdV-ATPaseB	357	GQIYVDRQLHNRQIYPPVNVLPSLSRLMKSAIGEGMTRKDHSDVSNQLYACYAIGKDVQA
AaV-ATPaseB	361	${\tt GQIYVDRQLHNRQIYPPVNVLPSLSRLMKSAIGEGMTRKDHSDVSNQLYACYAIGKDVQA}$
CqV-ATPaseB	357	GQIYVDRQLHNRQIYPPVNVLPSLSRLMKSAIGEGMTRKDHSDVSNQLYACYAIGKDVQA
ApV-ATPaseB	420	$\tt MKAVVGEEALTPDDLLYLEFLTKFEKNFITQGNYENRTVFESLDIGWQLLRIFPKEMLKR$
TcV-ATPaseB	421	MKAVVGEEALTPDDLLYLEFL <mark>S</mark> KFEKNFI T QG <mark>S</mark> YENRTVFESLDIGWQLLRIFPKEMLKR
AmV-ATPaseB	420	MKAVVGEEALTPDDLLYLEFL <mark>S</mark> KFEKNFISQG <mark>S</mark> YENRTVFESLDIGWQLLRIFPKEMLKR
BmV-ATPaseB	419	MKAVVGEEALTPDDLLYLEFLTKFEKNFI <mark>T</mark> QGNYENRTVFESLDIGWQLLRIFPKEMLKR
DmV-ATPaseB	415	$\tt MKAVVGEEALTPDDLLYLEFLTKFEKNFISQGNYENRTVFESLDIGWQLLRIFPKEMLKR$
MdV-ATPaseB	417	$\tt MKAVVGEEALTPDDLLYLEFLTKFEKNFISQGNYENRTVFESLDIGWQLLRIFPKEMLKR$
AaV-ATPaseB	421	$\tt MKAVVGEEALTPDDLLYLEFLTKFEKNFISQGNYENRTVFESLDIGWQLLRIFPKEMLKR$
CqV-ATPaseB	417	MKAVVGEEALTPDDLLYLEFL <mark>S</mark> KFEKNFISQGNYENRTVFESLDIGWQLLRIFPKEMLKR

ApV-ATPaseB	480	V <mark>PA</mark> AT <mark>LAEFYPRDSR</mark> PK
TcV-ATPaseB	481	IPA <mark>AT</mark> LAEFYPRDSRH-
AmV-ATPaseB	480	IP <mark>TN</mark> ILAEFYPRDSRH-
BmV-ATPaseB	479	IPAS <mark>T</mark> LAEFYPRDSRH-
DmV-ATPaseB	475	IPASILAEFYPRDSRH-
MdV-ATPaseB	477	IPASILAEFYPRDSRH-
AaV-ATPaseB 481 IPASILAEFYPRDSRH-CqV-ATPaseB 477 IPASILAEFYPRDSRH-

Figure A.2. Multiple alignments of amino acid sequences of V-ATPase subunit B (Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum).

Figure A.3. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase C* gene.

BmV-ATPaseC	1 -MTEYWVISAPGDKTCQQTWDTINNAT-KSGNLSVNYKFPIPDLKVGTLDQLVGLSDDLC
ApV-ATPaseC	1 -MSEYWLISAPGDKTCQQTWETINNVTSKQN <mark>SL</mark> SINYKFHIPDLKVGTLDQLVGLSDDLO
AmV-ATPaseC	1 -MTEYWLISAPGDKTCQQTWETMNNLTSKQ <mark>HS</mark> LSVNYKFHIPDLKVGTLDQLVGLSDDLC
CqV-ATPaseC	1 -MSEYWLISAPGDKTCQQTWETMNNLTSKQNNLCENEKFHIPDLKVGTLDQLVGLSDDLC
TcV-ATPaseC	1 -MTEYWLISAPGDKTCQQTWETMNNLTSKQNNLSVNYKFHIPDLKVGTLDQLVGLSDDLC
AaV-ATPaseC	1 -MSEYWLISAPGDKTCQQTWETMNNLTSKQNNLCENEKFHIPDLKVGTLDQLVGLSDDLC
DmV-ATPaseC	1 MMSEYWIISAPGDKTCQQTYDTMNNLTSKQHNLCNNYKFHIPDLKVGTLDQLVGLSDDLC
MdV-ATPaseC	1 -MSEYWLISAPGDKTCQQTFDTMNNLTSKQNNLCNNFKFHIPDLKVGTLDQLVGLSDDLC

BmV-ATPaseC	59 <mark>kldt ve</mark> gvtrkva <mark>q</mark> ylgevledqrdklhenlmann
ApV-ATPaseC	60 KLDSFVDQVTHKVASYLGEVLEDQRDKLQENLMANN
AmV-ATPaseC	60 KLDTYVEQITRKVATYLGEVLEDQRDKLHENLLANN
CqV-ATPaseC	60 KLD<mark>AYVEQ</mark>S<mark>TRKIASYLG</mark>DVLEDQRDKLY<mark>ENLQANN</mark>NEVDPDE
TcV-ATPaseC	60 KLDA VEQ VTRKVSSYLGEVLEDQRDKLQENLMANNSGRPP
AaV-ATPaseC	60 KLD<mark>AYVEQ</mark>S<mark>TRKIASYLG</mark>DVLEDQRDKLY<mark>ENLQANN</mark>SNFIFMGVFDTVFCIELNYIRPR
DmV-ATPaseC	61 KLDTYVEQITRKVANYLGEVLEDQRDKLHENLMANN
MdV-ATPaseC	60 KLDTYVEQITRKVAAYLGEVLEDQRDKLHENLLANN

BmV-ATPaseC	95	
ApV-ATPaseC	96	
AmV-ATPaseC	96	
CqV-ATPaseC	103	
TcV-ATPaseC	101	
AaV-ATPaseC	120	${\tt DFSEEFSTIIASKPMIGRLSIAPNFHNCCIPCFLKFYLSNQLNLIKCYSFKIGDDDLLIF}$
DmV-ATPaseC	97	
MdV-ATPaseC	96	

95	95	BmV-ATPaseC
96	96	ApV-ATPaseC
96	96	AmV-ATPaseC
03QNNSCEQLQRQF	103	CqV-ATPaseC
01EDEGGGGGGSE	101	TcV-ATPaseC
80 IYKLFFSSFHFKVIELYQIQLTFCFRPGPPDESPLNDPGDNCFNTLSSTSQQQLQQRF	180	AaV-ATPaseC
97	97	DmV-ATPaseC
96	96	MdV-ATPaseC

BmV-ATPaseC	95	
ApV-ATPaseC	96	

AmV-ATPaseC	96	
CqV-ATPaseC	126	$\verb+VDDCSHGTNSPSCCCSQktrssasgserdadslacvyprsgsvidspvtievteqtsnis$
TcV-ATPaseC	112	DKNNDSESSSGVYVTPL
AaV-ATPaseC	240	$\tt TDLSNHGTNSSCGYCSHHTNSSASGSERDMDSSSCVCVASGSMPDSPVIVEITDSLECQK$
DmV-ATPaseC	97	
MdV-ATPaseC	96	

BmV-ATPaseC	95	
ApV-ATPaseC	96	
AmV-ATPaseC	96	
CqV-ATPaseC	186	GHDVQ-TKSSNGPSISFGSRKRSYSINCNVLTPDAETEVDR-EDHESSFEWWFHR
TcV-ATPaseC	129	-QS
AaV-ATPaseC	300	$\verb"QQSPHPQSTTANVPLFFGARKRSHSSNCNVLSSDPEPDHDRDHDHESSFEWWFHRRKSSH"$
DmV-ATPaseC	97	
MdV-ATPaseC	96	

BmV-ATPaseC	95	SDLPTYLTRFQWDM
ApV-ATPaseC	96	GDLAVYITHFQWDM
AmV-ATPaseC	96	SDLPSYITRFQWDM
CqV-ATPaseC	239	HDLTTYITRFQWDL
TcV-ATPaseC	131	PADSASSTPDQTPTDMFLLPLGPA <mark>DLPTY</mark> I <mark>TRFQWD</mark> I
AaV-ATPaseC	360	KSRYWQSMRQPSLYKKCVPKMFPHTVNNFLALTLIPVLFPFSYLSLD <mark>DL</mark> T TYITRFQWD L
DmV-ATPaseC	97	TELPQYLTRFQWDM
MdV-ATPaseC	96	IDLPNYITRFQWDM
BmV-ATPaseC	109	AKYPIKQSLRNIADIISKQVGQIDADLK <mark>V</mark> KS <mark>S</mark> AYN <mark>A</mark> LKGNL <mark>H</mark> NLEKKQTGSLLTRNLADL
ApV-ATPaseC	110	AKYPIKQSLRNIADIISKQVGQIDADLKTKS <mark>SV</mark> YNNLK <mark>SS</mark> LQN <mark>MEKKQTGSLLTRNLADL</mark>
AmV-ATPaseC	110	AKYPIKQSLRNIADIISKQVGQIDADLKTKS <mark>IT</mark> YNNLKG <mark>S</mark> LQNLEKKQTGSLLTRNLADL
CqV-ATPaseC	253	AKYP <mark>T</mark> KQSLRNIADIISKQVGQIDADLKTKS <mark>A</mark> AYNNLKGNLQNLEKKQTGSLLTRNLADL
TcV-ATPaseC	168	AKYPIKQSLRNIADIISKQVGQIDADLKTKSTAYNNLKGNLQNLEKKQTGSLLTRNLADL
AaV-ATPaseC	420	AKYP <mark>T</mark> KQSLRNIADIISKQVGQIDADLKTKS <mark>A</mark> AYNNLKGNLQNLEKKQTGSLLTRNLADL
DmV-ATPaseC	111	AKYPIKQSLRNIADIISKQ <mark>I</mark> GQID <mark>G</mark> DLKTKS <mark>Q</mark> AYNNLKGNLQNLEKK <mark>K</mark> TGSLLTRNLADL
MdV-ATPaseC	110	AKYPIKQSLRNIADIISKQVGQIDADLKTKS <mark>N</mark> AYNNLKG <mark>S</mark> LQNLEKKQTGSLLTRNLADL

BmV-ATPaseC	169	VKKEHFILDSEYLTTLLVIVPK <mark>S</mark> MFNDWNANYEKITDMIVPRS <mark>TQLVH</mark> QDNDYGLFTVTL
ApV-ATPaseC	170	VRKEHFIQDSEYLTTLLVVVPK <mark>SGF</mark> SDWNQNYEKLTDMIVPRSSQLVSQDNDYGLFTVTL
AmV-ATPaseC	170	VKKEHFILDSEYLTTLLVIVPRAN <mark>FQDW</mark> YSG <mark>YEKITKMVVPRTTQLITQD</mark> SEYGLFTVTL
CqV-ATPaseC	313	VKREHFILDSEYLTTLLVIVPK <mark>QM</mark> INDWN <mark>VNYEKITDMIVPRSSQMITQDNDYALC</mark> TVTL
TcV-ATPaseC	228	VKKEHFILDSEYLTTLLVIVPK <mark>SS</mark> FNEWNANYEKITDMIVPRSSQLITQDNEYGLYTVSL
AaV-ATPaseC	480	VKREHFILDSEYLTTLLVIVPK <mark>Q</mark> MVNDWNANYEKITDMIVPRSSQLITQDNDYAL <mark>C</mark> TVTL

DmV-ATPaseC	171	VKKEHFILDSEYLTTLLVIVPK <mark>VM</mark> ANDWLTNYEKITDMIVPRSSQLIQEDADYCLFNVTL
MdV-ATPaseC	170	VKKEHFILDSEYLTTLLVIVPK <mark>MLA</mark> NDW <mark>M</mark> ANYEKITDMIVPRSS <mark>T</mark> LITQDNDY <mark>C</mark> LYN <mark>VTL</mark>
BmV-ATPaseC	229	FKKV <mark>ADEFKLHARERKFVVREF</mark> AYNE <mark>ADLL</mark> AGKNEITKLVTDKKKQFGPLVRWLKVNFSE
ApV-ATPaseC	230	FKKV <mark>AEEFK</mark> HARERKFIVRE FTYNE <mark>V</mark> ELAAGKNEISKLVTDKKKQFGPLVRWLKVNFSE
AmV-ATPaseC	230	FKKVTEEFKLHAREKKFIVRDFTYNEEELAAGKNEITKLVTDKKKQFGPLVRWLKVNFSE
CqV-ATPaseC	373	FKKVVDEFKLHARERKFVVREFTYNEEELAAGKNEITKLVTDKKKQFGPLVRWLKVNFSE
TcV-ATPaseC	288	FKKVVEEFKLHARERKFIVRDFTYNEEELAAGKNEITKLVTDKKKQFGPLVRWLKVNFSE
AaV-ATPaseC	540	FKKVVDEFKLHARERKFVVREFTYNEEELAAGKNEITKLVTDKKKQFGPLVRWLKVNFSE
DmV-ATPaseC	231	FKKV <mark>AEEFKLHARERKFIVRDF</mark> VYNEEELAAGKNEMTKLMTDKKKQFGPLVRWLKVNFSE
MdV-ATPaseC	230	FKKVVEEFKLHAREKKFIVRDF <mark>V</mark> YNEEELAAGKNE <mark>R</mark> TKLITDKKKQFGPLVRWLKVNFSE
BmV-ATPaseC	289	CFCAWIHVKALRVFVESVLRYGLPVNFQAVVM <mark>VP</mark> ARKSMKKLRDLLNQLYAHLD <mark>H</mark> SAHAH
ApV-ATPaseC	290	CFCAWIHVKALRVFVESVLRYGLPVNFQAMLLHPNKK <mark>NT</mark> KRLRDVLHQLYGHLD <mark>SSA</mark> QQG
AmV-ATPaseC	290	CFCAWIHVKALRVFVESVLRYGLPVNFQAILLHP <mark>HRK</mark> CARRLRDVLNQHYAHLD <mark>S</mark> SATAS
CqV-ATPaseC	433	CFCAWIHVKALRVFVESVLRYGLPVNFQAILIHPNKK <mark>NT</mark> KRLRDVLNQLYGHLDGSAA
TcV-ATPaseC	348	CFCAWIHVKALRVFVESVLRYGLPVNFQAILIHPNKK <mark>IM</mark> KRLRDVLNQLYGHLD <mark>S</mark> SAA
AaV-ATPaseC	600	CFCAWIHVKALRVFVESVLRYGLPVNFQAILIHPNKK <mark>NT</mark> KRLRDVL <mark>M</mark> QLYGHLDGSAA
DmV-ATPaseC	291	AFCALIHVKALRVFVESVLRYGLPVNFQAILIEPNKKSVKRLRDVLNQLYGHLDGASACG
MdV-ATPaseC	290	AFCALIHVKALRVFVESVLRYGLPVNFQAILI <mark>E</mark> PNKKSIKRLRD <mark>C</mark> LNQLYGHLDG <mark>AS</mark> ACG
BmV-ATPaseC	349	SAAAPDSVELAGLGFGQSEYFPYVFYKINIDMIE <mark>K</mark> SSA
ApV-ATPaseC	350	GAT- <mark>G</mark> AH <mark>DS</mark> VDIPGLGFGQ <mark>A</mark> EYFPYVYYKINIDMVDS <mark>K</mark> A-
AmV-ATPaseC	350	SAAQ <mark>G</mark> TQ <mark>DSVDIPGLGFGQ</mark> NDYFPYVYYKINVDMVDNK <mark>V-</mark>
CqV-ATPaseC	491	-SSGGNADNVDIPGLGFGQSEYYPYVYYKINIDMVENKV-
TcV-ATPaseC	406	-ISGSNADSVDIPGLGFGQSEYYPYVYYKINVDMIECTKV
AaV-ATPaseC	658	-SSGGNADNVDIPGLGFGQSEYYPYVYYKLNIDMVENKV-
DmV-ATPaseC	351	AV <mark>SSAD</mark> NVDIPGLGFGQSEYFPYVFYKVNIDMVECAKV
MdV-ATPaseC	350	QL <mark>SGSGADN</mark> VDIPGLGFGQ <mark>AEYFPYVF</mark> YKINIDMVEAAKM

Figure A.4. Multiple alignments of amino acid sequences of V-ATPase subunit C (Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum).

Figure A.5. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase E* gene.

TCV-ATPaseE1MALSDVDVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAAV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKCqV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKDMV-ATPaseE1MALSDADVQKQIKHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKMV-ATPaseE1MALSDADVQKQIKHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKBMV-ATPaseE1MALSDADVQKQIKHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAMV-ATPaseE1MALSDADVQKQIKHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAMV-ATPaseE1MALSDADVQKQIKHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAMV-ATPaseE1MALSDADVQKQIKHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAMV-ATPaseE1EKQVELQKKIQSSNMLNQARLKVLKVREDHVSDVLDEARKRLVKVTNNEELYREVIRKLICqV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVSDVLDEARKRLGEVTRDARYGE USALICqV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVSDVLD ARKRLGEVTRDSEYETVITKLIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVSDVLD ARKRLGEVTNDSEYETVITKLIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVTND SEYETVITKLIMdV-ATPaseE121IQILQLEKNVTIRVREIDSIVEELVEEVAAEYMAA-SNKDVLLKIDTDSEIAPCTCGCqV-ATPaseE121IQILQLEKNVTIRVRCQARSIGIENVLDARKRLASTS-GKDVVTIDTEHYLEBETTGApV-ATPaseE121IQILQLEKNVTIRVRCQARSIGIENVLDARAKRLGEVTNDISENLSTUTLIApV-ATPaseE121IQILQLEKNVTIRVRCQARSIGIENVLDARKRLASTS-GKDVVTIDTEHYLEBETTGApV-ATPaseE121IQILQLEKNVTIRVRCADAQUTUNIEAAVQYKKSS-GKDVVTIDTEHYLEBETTG<	ApV-ATPaseE	1	MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQ <mark>H</mark> QRLKIMEY <mark>E</mark> ERK
AAV-ATPase1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKCqV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKDmV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKMdV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKBmV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAmV-ATPaseE1MALSDADVQKQIKHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAmV-ATPaseE1MALSDADVQKQINHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAmV-ATPaseE1EKQVELQKKIQSSNMLNQARLKVLKVREDHVSDVLDEARKRLVKVTNNEELYREVIRKLICqV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVSDVLDEARKRLGETNDOARYSQUTESLIAav-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVSDVLDEARKRLGEVTRDESRYSEVILALIDmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLDEARKRLGEVTRDESRYSEVILALIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLDEARKRLGEVTRDESRYSEVILALIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLDEARKRLGEVTRDESRYSEVILALIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLDEARKRLGEVTRDESRYSEVILALIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLDEARKRLGEVTRDESRYSEVILTKLIMdV-ATPaseE10EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLDEARKRLGEVTRDESRYSEVILTLIMdV-ATPaseE121LOSILQI BENVYRRQQDRSIGGLEVVATKYEDA-TKNDVLKKIDD SHLPSTTGApV-ATPaseE121LOSILQI BENVYRRQQDRSIGGLEVVATKYEDA-TSGKDVVTIDTDEYLERATGMV-ATPaseE121LOSILQI BENVYRRQQADACI ONILESAVEAKAST-SGKDVVTIDTDEYLERAT	TcV-ATPaseE	1	MALSD <mark>V</mark> DVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK
CqV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKDMV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKMdV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKBmV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAmV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAmV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAmV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVSDVLDEARKRLGETTNEQARYSQLIESLIAaV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLDECRERLGEVTENDERSYSEVILALIDmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLDECRERLGEVTENDERSYSEVILALIDmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLDEARKRLGEVTENDERSYSEVILALIDmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLDEARKRLGEVTENDERSYSEVILALIBmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVTENDERSYTENTApV-ATPaseE11IQALQUEEKNVTIRVREIDISVEELVEEVAAEYKAA-SNKDVLLKApV-ATPaseE121IQALQUEENNVTIRVRQQDRSLIGGILEVVATKYRDA-GKDVHLKIDDSFLAPQTCGCqV-ATPaseE121IQALQUEENNVTIRVRQQDRSLIGGILEVVATKYRDA-GKDVHLKIDDSFLAPQTCGApV-ATPaseE121IQGLQIMEANVVYGRQADAGLIONILESAVEAYKST-GCKDVVTIDTDHYLEGCTGDmV-ATPaseE121IQGLQIMEANVVYGRQADAGLIONILEAAVESILGKQTNOGS DIDTDHYLEGCTGDmV-ATPaseE121IQGLQIMEPTVTIRVRDTDKALVESILGKQONAYKOT-NCNEESIDAVESUKAQTINNEESICG <td>AaV-ATPaseE</td> <td>1</td> <td>MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK</td>	AaV-ATPaseE	1	MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK
DmV-ATPase1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKMdV-ATPase1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKBmV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAmV-ATPaseE1MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAmV-ATPaseE1MALSDADVQKQINHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKAmV-ATPaseE1EKQVELQKKIQSSNMLNQARLKVLKVREDHVSDVLDEARKRLGEITNDQARYSQIESLIAaV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLDECRREGEVT DEARYGEILSALICqV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLDECRREGEVT NDQARYSQIESLIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLDECRREGEVT NEAEKVVLEKLIDmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLDEARKRLGEVT NGSEYETVLTKLIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLDEARKRLGEVT NGAEKVVTEKLIBmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVT DISFLAPQTCGCCV-ATPaseE121IQSLYQEFENNTV RVRQQDRS LIGELEVVATKYRDA- GKDVHLKIDD SHLFSTTGAaV-ATPaseE121IQGLQI EENVINGRQADACLION LESAVEAYKST- GKDVVT DIDHYLEGCTGDmV-ATPaseE121IQGLQI EENVINGRQADACLION LEAAVQNYKES- GKDVVT DIDHYLEGCTGDmV-ATPaseE121IQGLQI EENVINGRQADACLION LEAAVEQYKAQI-NQNVELF DEKDFISADTCGMdV-ATPaseE121IQGLQI EENVINGRQADACLION LEAAVEQYKAQI-NQNVELF DEKDFISADTCGMdV-ATPaseE121IQGLQI EENVINGRQADACLION LEAAVEQYKAQI-NQNVELF DEKDFISADTCGMdV-ATPaseE121IQGLQI MEPFVIIRCREVDYDEVENELEAAVESIKAQHNNGGNS DINTNIBATCG	CqV-ATPaseE	1	MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK
MdV-ATPaseE 1 MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK BmV-ATPaseE 1 MALSDADVQKQIKHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK AmV-ATPaseE 1 MALSDADVQKQINHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK ApV-ATPaseE 1 MALSDADVQKQINHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK ApV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLQTLKVREDHVSDVLDEARKRLVKVTNNPELINEVIRKLI CQV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVSDVLDEARKRLQEVT DPARYGE ISALI CqV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLECRRRLGEVT DPARYGE ISALI CqV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLECRRRLGEVT NDERYSEVILALI DmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVSSVLD ARKRLGEVT NDSEYETVLTKLI MdV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVSSVLD ARKRLGEVT NDSEYETVLTKLI MdV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVSSVLD ARKRLGEVT NDSEYETVLTKLI MdV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLE DARRRLGEVT NDSEYETVLTKLI MdV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEDARKRLEEVT NDSEYETVLTKLI ApV-ATPaseE 11 EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEDARKRLEEVT NDSEYETVLTKLI ApV-ATPaseE 12 LQAILQLKKIQSSNMLNQ	DmV-ATPaseE	1	MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK
BmV-ATPaseE 1 MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK AmV-ATPaseE 1 MALSDADVQKQINHMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK ApV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLQTLKVREDHVSDVLDEARKRLVKVTNNEELMREVLRKLI TCV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVNVLD FARKRLGETNDQARVSQTLESLI Aav-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLFECRARLGEVT DPARVGTISALI CqV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLFECRARLGEVT DPARVGTISALI DmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVSVLFECRARLGEVT NDARVGTISALI DmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVSVLFECRARLGEVT NDARVGTIKLI MdV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVSVLFECRARLGEVT NDARVGTVKL MdV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVSVLFECRARLGEVT NDARVKVLEKLI BmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVT NDARVKVLEKLI ApV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLAEVPKDTKLYSEITUTLI ApV-ATPaseE 11 QALQLEKNYTI RVRETD SVEETVEEVAAEYKAA-SNKDVLKI DTSFLAPQTCG CV-ATPaseE 121 IQALQLEKNYTI RVRETD SVEETVEEVAAEYKAA-SNKDVLKI DTSFLAPQTCG CV-ATPaseE 121 IQGLQLEENNTVRRCQADAQLION LPAAVQNYKE	MdV-ATPaseE	1	MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK
AmV-ATPaseE 1 MALSDADVQKQINHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK ApV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLQTLKVREDHVSDVLDEARKRLVKVTNNEELYREVLRKLI CV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVSDVLDEARKRLGEITNEQARYSQLESLI AaV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLEECRRLGEVTRDPARYGEISALI CqV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLEECRRRLGEVTRDPARYGEISALI DmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLEECRRRLGEVTRDPARYGEISALI DmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVSVLDEARKRLGEVTRDPSYSETVLTKLI MdV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVSVLDARRRLGEVTRDSYSETVLTKLI MdV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVSVLDARRRLGEVTRDSYSETVLTKLI MdV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVRSVLDARRRLGEVTRDISKILVLK AmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVTRDISKLKLI Mdv-ATPaseE 121 LQALLQLKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVTRDISKLKLI AmV-ATPaseE 121 LQLLEKNVTIRVREIDISVEELVEEVAAEYKAA-SNKDVLK AmV-ATPaseE 121 LQLLEKNVTIRVREIDISVEELVEEVAAEYKAA-SNKDVLK CqV-ATPaseE 121 LQLLEKNVTIRVREIDISVEELVEEVAAEYKAA-SNKDVLK <tr< td=""><td>BmV-ATPaseE</td><td>1</td><td>MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK</td></tr<>	BmV-ATPaseE	1	MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK
ApV-ATPaseE61EKQVELQKKIQSSNMLNQARLQTLKVREDHVSDVLDEARKRLVKVTNNEELYREVLRKLITCV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVHNVLD ARKRLGE TNDQARYSQLLESLIAaV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLE CRERLGEVTRDPARYGEILSALICqV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLE CRERLGEVTRDPSRYSEVLLALIDmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLE CRERLGEVTNDSRYSEVLLALIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLE DARKRLGEVT NDSAEYKVVLEKLIBmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLE DARKRLGEVT NDSAEYKVVLEKLIBmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVT NDSEYETVLTKLIAmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVT ND SFLAPCTCGTCV-ATPaseE121LQAILQLEKNVTI RVREIDISVVEELVEEVAAEYKAA-SNKDVLLKLDDSFLAPCTCGApV-ATPaseE121LQAILQLEKNVTI RVREIDISVVEELVEEVAAEYKAA-SNKDVLLKLDDSFLAPCTCGCqV-ATPaseE121LQAILQLEKNVTI RVREIDISVVEELVEEVAAEYKAA-SNKDVLLKLDDSFLAPCTCGCqV-ATPaseE121LQAILQLEKNVTI RVREIDISVVEELVEEVAAEYKAA-SNKDVLLKLDDSFLAPCTCGCqV-ATPaseE121LQAILQLEENVVVRGRQADACLI ON LESAVEAYKST-SGKDVVTI DTDFYLPADATGCqV-ATPaseE121VQGLQLEQIMEPKVI RCRQADACLI ON LEAAVQNYKES-SGKDVVTI DTDFYLPADATGDmV-ATPaseE121VQGLQIMEPKVI RCRQADACLI ON LEAAVQNYKES-SGKDVVTI DTDHYLPEGCTGDmV-ATPaseE121VQGLQIMEPKVI RCRQVDVGLVNCVKOCVKNKES LGKAQTDVKNKS VDVDTDN LEAATCGMdV-ATPaseE121VQGLQIMEPTVI RCRQVDVGLVFS LGKAQTDVKNKUBmV-ATPaseE121VQGLCUTTENHVT RVRQTDKALVES LGKAQTDVKNKU	AmV-ATPaseE	1	MALSDADVQKQI <mark>N</mark> HMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKK
ApV-ATPaseE61EKQVELQKKIQSSNMLNQARLQTLKVREDHVSDVLDEARKRLVKVTNNBELMREVLRKLITCV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVHNVLDDARKRLGETNDQARYSQLESLIAaV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLEECRRLGEVTRDPARYGETLSALICqV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEECRRLGEVTRDPSRYSEVLLALIDmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEECRRLGEVTRDPSRYSEVLLALIDmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEECRRLGEVT NDSEYETVLTKLIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEARRLGEVT NDSEYETVLTKLIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEARRLGEVT NDSEYETVLTKLImW-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEARRLGEVT NDSEYETVLTKLIAmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEARRLGEVT NDSEYETVLTKLIAmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLEVP KDTKLYSELLVTLIAmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLEVP KDTKLYSELLVTLIAmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVT NDSEYETVLTKLIApV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVT NDSEYETVLTLIAmV-ATPaseE121IQALQUEKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLEVP KDTLYSELLVLIApV-ATPaseE121IQALQUEKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLEVP KDTLYSELLVLIApV-ATPaseE121IQALQUEKKIQSSNMLNQARLKVLKVREDHVRNVLTURARLEVP KDAAPAKEApV-ATPaseE121IQALQUEKKIQSSNMLNQARLKVLKVREDHVRNVLTURARLEVP KDAAPAKEApV-ATPaseE121IQALQUEKKIQSSNMLNQARLKVLKVREDHVRNVLTURARLEVPKApV			
Apv-ATPaseE61EKQVELQKKIQSSNMLNQARLQTLKVREDHVSDVLDEARKRIVKVTNNBELYREVIRKLITcv-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVNVLDDARKRLGETTNDQARYSQLLESLIAav-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLEECRERLGEVT DPARYGELISALICqv-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLEECRERLGEVT DPSRYSEVLLALIDmv-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVSSVLDDARKRLGEVT NDSEYETVLTKLIMdv-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVSSVLDDARKRLGEVT NDSEYETVLTKLImdv-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVSVLDDARKRLGEVT NDSEYETVLTKLIamv-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVT NDSEYETVLTLIAmv-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVT NDSEYETVLTLIAmv-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVT NDSEYETVLTLIAmv-ATPaseE121IQATLQLEKNVT NVREIDISVVEELVEEVAAEYKAA-SNKDVILKLIDDISFLAPQTCGCqv-ATPaseE121IQATLQLEKNVV RCRQADAQLION LPSAVEAYKST-SCKDVVT IDTDFYLPADATGCqv-ATPaseE121IQGLQLEPNVV RCRQADAQLION LPSAVEAYKST-SCKDVVT IDTDFYLPADATGCqv-ATPaseE121IQGLQLEPNVV RCRQADAQLION LPAAVQNYKES-SCKDVVT IDTDFYLPADATGDmv-ATPaseE121IQGLQLEPNVV RCRQADAQLION LPAAVQYKAQI-NQNVELFIDEKDFISADTCGMdv-ATPaseE121IQALFQTMEFTVIIRCREVDVDVPVRVLPAAVEQYKAQI-NQNVELFIDEKDFISADTCGBmV-ATPaseE121IQALFQTMEFTVIIRCREVDVDVPVRVLPAAVEQYKAQI-NQNVELFIDEKDFISADTCGBmV-ATPaseE121IQALFQTMEFTVIIRCREVDVDVDVFVRVLPAAVESILGKAQTDYKNK-IKKDVIK VTIDTNFISPDTCGBmV-ATPaseE121IQALFQTMEFTVIIRCREVDVDVDVDVICG			
TcV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVHNVLDDARKRLGETINDQARYSQLLESLIAaV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLEECRRRLGEVTRDFARYGETLSALICqV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEECRRRLGEVTRDFSRYSEVTLALIDmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEDARRLGEVTRNQSEYETVTTKLIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEDARRLGEVTRNASEYETVTTKLImdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEDARRLGEVTRNASEYETVTTLIamV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVTRDISRYRETLKLLImv-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVTRDISRYRETLKLLIamV-ATPaseE121LQATLQTEKNVTIRVREIDSVEELVEEVAAEYKAA-SNKDVILKIDDSFLAPQTCGrcv-ATPaseE121LQATLQTEKNVTIRVREIDSVEELVEEVAAEYKAA-SNKDVILKIDDSFLAPQTCGrcv-ATPaseE121LQATLQTERNNVVRGQARSIIGGILPVVATKYRDA-TGKDVHLKIDDSFLAPQTCGrdv-ATPaseE121TQGLQIMEANVVRGQADAQLIONILPSAVEAYKST-SGKDVVTIDTDFYLPADATGrqv-ATPaseE121TQGLQIMEPKVIIRGEVDVPLVRNVLPAAVQNYKES-SGKDVVTIDTDHYLPEGCTGrdv-ATPaseE121LQALQIMEPKVIIRGEVDVPLVRNVLPAAVEYKAQI-NQNVEFTDEKDFISADTCGrdv-ATPaseE121LQALQIMEPTVIIRGEVDVPLVRNVLPAAVESKLGMNQGVS DVDTDNYLPADTCGrmv-ATPaseE121VQALQIMEPTVIIRVRQTDKALVESILGKAQTDYKNK-IKKDVVLKVDTNYLPADTCGrmv-ATPaseE121VQALQIMEPTVIRVRQTDKALVESILGKAQTDYKNK-IKKDVVLKVDTNYLPADTCGrmv-ATPaseE121VQALQIMEPTVIRVRQDDATERSDCG	ApV-ATPaseE	61	EKQVELQKKIQSSNMLNQARL <mark>QT</mark> LKVREDHV <mark>SD</mark> VLDEARKRL <mark>VK</mark> VTNNPELYREVLRKLI
AAV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVGSVLEECRRRLGEVTRDFARYGELLSALICqV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEECRRRLGEVTRDFSRYSEVLLALIDmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLDDARKRLGEVTRNQSEYETVLTKLIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLDDARKRLGEVTRNEAEYKVVLEKLIBmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLDDARKRLGEVTRNEAEYKVVLEKLIAmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVTRDISRYREILKLLIAmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVTRDISRYREILKLLIAmV-ATPaseE121LQAILQLEKNVTIRVREIDSVVEELVEEVAAEYKAA-SNKDVILKIDDSFLAPQTCGTCV-ATPaseE121LQAILQLEKNVTIRVREIDSVVEELVEEVAAEYKAA-SNKDVILKIDDSFLAPQTCGAav-ATPaseE121LQSLYQLFENNIVVRQODRSIIOGILPVVATKYRDA-TGKDVHLKIDDSHLPSTTGAav-ATPaseE121TQGLLQLMEANVVRGRQADAQLIONILPSAVEAYKST-SGKDVVTIDTDFYLPADATGCqV-ATPaseE121VQGLQIMEPKVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVEEFIDEKDFISADTCGMdV-ATPaseE121LQAILQTMEPTVIIRCROVDVGLVNEVLPAAVEEYKKQMMNQGVS DYDTDNYLPADTCGBmV-ATPaseE121VQGLQIMEPTVIIRCROVDVGLVNEVLPAAVESILGKAQTDYKNK-IKKDVVLKVDTNYLPADTCGAmV-ATPaseE121VQGLQIMEPTVIIRVRQTDKALVESILGKAQTDYKNKIKVKOI-KKDVVKKUDTNEPSDCGAmV-ATPaseE121VQGLQIMEPTVIIRVRQTDKALVESILGKAQTDYKNKIKKUDVLKVDIDNTPSDCGAmV-ATPaseE121VQGLQIMEPTVIIRVRQTDKALVESILGKAQTDYKNKIKKOVIKKUDTNEPSDCG	TcV-ATPaseE	61	EKQVELQKKIQSSNMLNQARLKVLKVREDHV <mark>HN</mark> VLDDARKRLGEITND <mark>QA</mark> RY <mark>SQLLES</mark> LI
CqV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEECRERLGEVTEDESRYSEVLALIDmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLDDARKRLGEVTENNSEYETVLTKLIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLDDARKRLGEVTEN PAEYKVVLEKLIBmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPEDTKLYSELLVTLIAmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPEDTKDISRYREILKLLIAmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPEDTRDISRYREILKLLIApV-ATPaseE121LQATLQLEEKNVTIRVREIDSVVEELVEEVAAEYKAA-SNKDVILKIDDSFLAPQTCGTCV-ATPaseE121LQATLQLEEKNVTIRVREIDSVVEELVEEVAAEYKAA-SNKDVILKIDDSFLAPQTCGAav-ATPaseE121LQSLYQLFENNIVVRVRQQDRSIIGGILPVVATKYRDA-TGKDVHLKIDDESHLPSTTGAav-ATPaseE121TQGLLQLMEANVVRGRQADAQLIONILPSAVEAYKST-SGKDVVTIDTDFYLPADATGCqV-ATPaseE121VQGLQIMEPKVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVEEFIDEKDFISADTCGMdV-ATPaseE121VQGLQIMEPTVIIRCRQVDVGLVNEVLPAAVEEYKKQMMNQGVS DVDTDNVLPADTCGBmV-ATPaseE121VQGLQIMEPTVIIRCRQVDVGLVNEVLPAAVESILGKAQTDYKNK-IKKDVVLKVDTNVLPADTCGAmV-ATPaseE121VQGLQIMEPTVIIRVRQTDKALVESILGKAQTDYKNK-IKKDVVKKVDDNETSDDCG	AaV-ATPaseE	61	EKQVELQKKIQSSNMLNQARLKVLKVREDHV <mark>G</mark> SVLEECRRRLGEVTRDP <mark>ARYG</mark> EIL <mark>SA</mark> LI
DmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVSSVLDDARKRLGEVTKNQSEYETVLTKLIMdV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEDARRRLGEVTKNPAEYKVVLEKLIBmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPKDTKLYSELLVTLIAmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPKDTKLYSELLVTLIAmV-ATPaseE61EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPKDTKLYSELLVLLIApV-ATPaseE121LQATLQLEKNVTIRVREIDLSVVEELVEEVAAEYKAA-SNKDVILKIDTDSFLAPQTCGTCV-ATPaseE121LQSLYQLFENNIVVRVRQODRSIIGGILPVVATKYRDA-TGKDVHLKIDDE SHLPSTTGAaV-ATPaseE121TQGLLQLMEANVVRGRQADAQLIONILPSAVEAYKST-SGKDVVTIDTDFYLPADATGCqV-ATPaseE121TQGLLQLMEPKVIIRCREVDVPLVRNVLPAAVQNYKES-SGKDVVTIDTDHYLPEGCTGDmV-ATPaseE121LQALQTMEPKVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFISADTCGMdV-ATPaseE121LQALQTMEPTVIIRCRQVDVGLVNEVLPAAVEEYKKQMMNQGVS DVDTDNVLPADTCGBmV-ATPaseE121VQALQTMEPTVIIRVRQTDKALVESILGKAQTDYKNK-IKKDVVLKVDTNTDNVLPADTCGAmV-ATPaseE121VQALQTMEPTVIIRVRQTDKALVESILGKAQTDYKNK-IKKDVVKKVDTNTDNTDNTSPDTCGAmV-ATPaseE121VQALQTMEPTVIIRVRQTDKALVESILGKAQTDYKNK-IKKDVVKKVDDNTDNTSPDCG	CqV-ATPaseE	61	EKQVELQKKIQSSNMLNQARLKVLKVREDHV <mark>A</mark> SVLEE <mark>CRRRLGEVTRDPSRYSEVL</mark> LALI
MdV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVASVLEDARRRLGEVTKNPAEYKVVLEKLI BmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPKDTKLYSELLVTLI AmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPKDTKLYSELLVTLI AmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPKDTKLYSELLVTLI AmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPKDTS ApV-ATPaseE 121 LQATLQLTEKNVTTRVREIDLSVVEELVEEVAAEYKAA-SNKDVTLKIDTDSFLAPQTCG Aav-ATPaseE 121 LQATLQLTEKNVTTRVREIDLSVVEELVEEVAAEYKAA-SNKDVTLKIDDESHLPSDTTG Aav-ATPaseE 121 LQATLQLTEKNVTRRREIDLSVVEELVEEVAAEYKAA-SNKDVTLKIDDESHLPSDTTG Aav-ATPaseE 121 LQATLQLMEANVVRGQARSIIGGTLPVVATKYRDA-TGKDVHLKIDDESHLPSDTTG Aav-ATPaseE 121 TQGLQLMEANVVRGRQADAQLIONTLPSAVEAYKST-SGKDVVTIDTDFYLPADATG CqV-ATPaseE 121 TQGLQLMEPKVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFISADTCG MdV-ATPaseE 121 LQALQTMEPTVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFISADTCG BmV-ATPaseE 121 LQALQTMEPTVIIRCREVDVPLVRVLESILGKAQTDYKNK-IKKDVVLKVTKVDDNVLPADDTG BmV-ATPaseE 121 VQALQTMEPTVIIRCREVDVPLVPLESILGKAQTDYKNK-IKKDVVLKVDDNVLPADDTG	DmV-ATPaseE	61	EKQVELQKKIQSSNMLNQARLKVLKVREDHV <mark>S</mark> SVLDDARKRLGEVTK <mark>NQSE</mark> YETVL <mark>TK</mark> LI
BmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPFDTKLYSELVTLI AmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPFDTKLYSELVTLI AmV-ATPaseE 121 EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLÆVPFDTSRYRETEKLI ApV-ATPaseE 121 LQATLQLEKNVTTRVRETDLSVVEELVEEVAAEYKAA-SNKDVTLKTDTSFLAPQTCG TCV-ATPaseE 121 LQATLQLEKNVTTRVRETDLSVVEELVEEVAAEYKAA-SNKDVTLKTDTSFLAPQTCG Aav-ATPaseE 121 LQSLYQLFENNTVRVRQODRSTIGGTLPVVATKYRDA-TGKDVHLKTDDESHLPSTTG Aav-ATPaseE 121 TQGLQLMEANVVRGRQADAQLIONTLPSAVEAYKST-SGKDVVTTDTDFYLPADATG CqV-ATPaseE 121 TQGLQLMEPNVVRGRQADAQLIONTLPAAVQNYKES-SGKDVVTTDTDHYLPEGCTG DmV-ATPaseE 121 VQGLQTMEPKVITRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFTDEKDFISADTCG MdV-ATPaseE 121 LQALQTMEPTVITRCRQVDVGLVNEVLPAAVEEYKKQMMNQGVS DVDTDNVLPADTCG BmV-ATPaseE 121 VQALQTMEPTVITRVRQTDKALVESILGKAQTDYKNK-IKKDVVLKVDTNTDNFLSPDTCG AmV-ATPaseE 121 VQALQTMEPTVITRVRQTDKALVESILGKAQTDYKNK-IKKDVVLKVDDNFLSDSDCG	MdV-ATPaseE	61	EKQVELQKKIQSSNMLNQARLKVLKVREDHV <mark>A</mark> SVLEDARRRLGEVTKNPAEYKVVLEK <mark>LI</mark>
AmV-ATPaseE 61 EKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLGEVTEDISRYREICKLLI ApV-ATPaseE 121 LQAILQLEKNVTIRVREIDISVEELVEEVAAEYKAA-SNKDVILKIDTDSFLAPQTCG TCV-ATPaseE 121 LQSIYQLFENNIVVRVRQODRSIIGGILPVVATKYRDA-TGKDVHLKIDDESHLPSTTG AaV-ATPaseE 121 TQGLQLMEANVVRGRQADAQLIONILPSAVEAYKST-SGKDVVTIDTDFYLPADATG CqV-ATPaseE 121 TQGLQLMEANVVRGRQADAQLIONILPSAVEAYKST-SGKDVVTIDTDHYLPADATG DmV-ATPaseE 121 VQGLQIMEPKVIIRCREVDVPLVRNVLPAAVQNYKES-SGKDVVTIDTDHYLPADATG MdV-ATPaseE 121 VQGLQIMEPKVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFLSADTCG MdV-ATPaseE 121 VQGLQIMEPTVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFLSADTCG mV-ATPaseE 121 VQGLQIMEPTVIIRCREVDVPLVRNVLPAAVESILGKAQTDYKNK-IKKDVVLKVDTENFLSPDTCG amV-ATPaseE 121 VQGLQIMEPTVIIRVRQTDKALVESILGKAQTDYKNK-IKKDVVLKVDTENFLSPDTCG	BmV-ATPaseE	61	EKQVELQKKIQSSNMLNQARLKVLKVREDHV <mark>RN</mark> VLDEARKRLAEV <mark>PKDTKLYSELLVT</mark> LI
ApV-ATPaseE 121 LQAILQLIEKNVTIRVREIDLSVVEELVEEVAAEYKAA-SNKDVILKIDTDSFLAPQTCG TcV-ATPaseE 121 LQSLYQLFENNIVVRVRQQDRSIIGGILPVVATKYRDA-TGKDVHLKIDDESHLPSETTG AaV-ATPaseE 121 TQGLLQLMEANVVRGRQADAQLIONILPSAVEAYKST-SGKDVVTIDTDFYLPADATG CqV-ATPaseE 121 TQGLLQLMEANVVRGRQADAQLIONILPSAVEAYKST-SGKDVVTIDTDFYLPADATG DmV-ATPaseE 121 TQGLLQLMEANVVRGRQADAQLIONILPSAVEAYKST-SGKDVVTIDTDFYLPADATG DmV-ATPaseE 121 TQGLLQLMEPNVVRGRQADAQLIONILPAAVQNYKES-SGKDVVTIDTDHYLPEGCTG DmV-ATPaseE 121 VQGLQIMEPKVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFLSADTCG MdV-ATPaseE 121 LQALFQTMEPTVIIRCROVDVGLVNEVLPAAVEEYKKQMMNQGVS DVDTDNYLPADTCG BmV-ATPaseE 121 VQALFQLMEPTVIIRVRQTDKALVESILGKAQTDYKNK-IKKDVVLKVDTENFLSPDTCG AmV-ATPaseE 121 VQGLCOITENHVT RVRQTDKALVESILGSVONAYKOI-KKDVT KVDODNELSDSCG	AmV-ATPaseE	61	EKQVELQKKIQSSNMLNQARLKVLKVREDHV <mark>RN</mark> VLDEARKRLGEVTRD <mark>IS</mark> RY <mark>REIL</mark> KLLI
ApV-ATPaseE121LQAILQLIEKNVTLRVREIDLSVVEELVEEVAAEYKAA-SNKDVLLKIDTDSFLAPQTCGTCV-ATPaseE121LQSLYQLFENNIVVRVRQQDRSIIQGILPVVATKYRDA-TGKDVHLKIDD SHLPSTTGAaV-ATPaseE121TQGLQLMEANVVRGRQADAQLIONILPSAVEAYKST-SGKDVVTIDTDFYLPADATGCqV-ATPaseE121TQGLQLIEPNVVRGRQADAQLIONILPSAVEAYKST-SGKDVVTIDTDHYLPEGCTGDmV-ATPaseE121VQGLQIMEPKVIIRCREVDVPLVRNVLPAAVQNYKES-SGKDVVTIDTDHYLPEGCTGMdV-ATPaseE121LQALFQTMEPTVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFLSADTCGBmV-ATPaseE121VQALFQTMEPTVIIRCRQVDVGLVNEVLPAAVEEYKKQMMNQGVSVDVDTDNYLPADTCGBmV-ATPaseE121VQALFQLMEPTVIIRVRQTDKALVESILGKAQTDYKNK-IKKDVLKVDTENFLSPDTCGAmV-ATPaseE121VQGLCOITENHVT RVRQTDKALVESILGSVONAYKOI-TKKDVT KVDODNELESDSCG			
Apv-ATPaseE 121 LQAILQLIEKNVTIRVEIDISVEELVEEVAAEYKAA-SNKDVILKIDTISFIAPQICG TcV-ATPaseE 121 LQSIYQIFENNIVVRVRQQDRSIIGGILEVVATKYRDA-TGKDVHLKIDDESHLESSTIG Aav-ATPaseE 121 TQGLLQLMEANVVVRGRQADAQLIONILESAVEAYKST-SGKDVVTIDTDFYLPADATG CqV-ATPaseE 121 TQGLLQLMEANVVVRGRQADAQLIONILESAVEAYKST-SGKDVVTIDTDFYLPADATG CqV-ATPaseE 121 TQGLQLTEPNVVRGRQADAQLIONILESAVEAYKST-SGKDVVTIDTDHYLPEGCTG DmV-ATPaseE 121 VQGLFQTMEPKVIIRCREVDVPLVRNVLPAAVQYKES-SGKDVVTIDTDHYLPEGCTG MdV-ATPaseE 121 VQGLFQTMEPKVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFLSADTCG BmV-ATPaseE 121 VQALFQTMEPTVIIRCREVDVGLVNEVLPAAVEEYKKQMMQGVSVDVDTDNYLPADTCG BmV-ATPaseE 121 VQALFQLMEPTVTIRVRQTDKALVESILGKAQTDYKNK-IKKDVLKVDTENFLSPDTCG AmV-ATPaseE 121 VQALFQLMEPTVTIRVRQTDKALVESILGKAQTDYKNK-IKKDVLKVDTENFLSPDTCG		1.0.1	
TCV-ATPaseE 121 LQSLYQLFENNI V RVRQQDRSIIGGILPVVATKYRDA-TGKDVHLKIDDSHLPSTIG AaV-ATPaseE 121 TQGLLQLMEANVVVRGRQADAQLIONILPSAVEAYKST-SGKDVVVTIDTDFYLPADATG CqV-ATPaseE 121 TQGLLQLIEPNVVVRGRQADAQLIONVLPAAVQNYKES-SGKDVVVTIDTDHYLPEGCTG DmV-ATPaseE 121 VQGLFQTMEPKVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFLSADTCG MdV-ATPaseE 121 LQALFQTMEPTVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFLSADTCG BmV-ATPaseE 121 VQALFQTMEPTVIIRCRQVDVGLVNEVLPAAVEEYKKQMMNQGVSVDVDTDNYLPADTCG BmV-ATPaseE 121 VQALFQLMEPTVTIRVRQTDKALVESILGKAQTDYKNK-IKKDVLKVDTENFLSPDTCG AmV-ATPaseE 121 VQGLCOLTENHVTIRVRQTDLALVESILGSVONAYKOI-TKKDVLKVDTENFLSDSCG	ApV-ATPaseE	121	IQA LQLEKNVT RVREIDISVVEELVEEVAAEYKAA-SNKDVILKIDTDSELAPQTCG
Aav-ATPaseE 121 TOGLLOLMBANVVVRGROADAQLIONILPSAVEAYKST-SGKDVVVTIDTDFYLPADATG CqV-ATPaseE 121 TOGLLOLIEPNVVVRGROADAQLIONILPSAVEAYKST-SGKDVVVTIDTDFYLPADATG DmV-ATPaseE 121 TOGLLOLIEPNVVVRGROADAQLIONILPSAVEAYKST-SGKDVVVTIDTDFYLPADATG DmV-ATPaseE 121 VQGLFQIMEPKVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFLSADTCG MdV-ATPaseE 121 LQALFQTMEPTVIIRCROVDVGLVNEVLPAAVEEYKKQMMNQGVSVDVDTDNYLPADTCG BmV-ATPaseE 121 VQALFQLMEPTVTIRVRQTDKALVESILGKAQTDYKNK-IKKDVVLKVDTENFLSPDTCG AmV-ATPaseE 121 VOGLCOITENHVTIRVROVDIPLVESILDSVONAYKOI-KKDVTIKVDODNELSDSCG	TCV-ATPaseE	121	LQSLYQLFENNLVVRVRQQDRSLIQGILPVVATKYRDA-TGKDVHLKIDDESHLPSETTG
Cqv-ATPaseE 121 TOGLLOILEPNVVVRGRQADAQLIONVLPAAVQNYKES-SGKDVVVTLDTDHULPEGCIG DmV-ATPaseE 121 VQGLFQIMEPKVIIRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFISADTCG MdV-ATPaseE 121 LQALFQTMEPTVIIRCRQVDVGLVNEVLPAAVEQYKAQI-NQNVELFIDEKDFISADTCG BmV-ATPaseE 121 LQALFQTMEPTVIIRCRQVDVGLVNEVLPAAVEQYKAQI-NQNVELFIDEKDFISADTCG BmV-ATPaseE 121 LQALFQTMEPTVIIRCRQVDVGLVNEVLPAAVEEYKKQMMNQGVSVDVDTDNYLPADTCG BmV-ATPaseE 121 VQALFQLMEPTVTIRVRQTDKALVESLLGKAQTDYKNK-IKKDVVLKVDTENFLSPDTCG AmV-ATPaseE 121 VQGLCOITENHVTIRVRQVDIPLVESLLDSVONAYKOI-KKDVTIKVDODNELSDSCG	Aav-ATPaseE	121	TQGLLQLMEANVVVRGRQADAQLIONILPSAVEAYKST-SGKDVVVTLDTDFYLPADATG
Dmv-ATPasee 121 VQGLFQIMEPRVI IRCREVDVPLVRNVLPAAVEQYKAQI-NQNVELFIDEKDFISADICG MdV-ATPasee 121 LQALFQIMEPTVIIRCRQVDVGLVNEVLPAAVEEYKKQMMNQGVSVDVDTDNYLPADICG BmV-ATPasee 121 VQALFQIMEPTVTIRVRQTDKALVESLLGKAQTDYKNK-IKKDVVLKVDTENFLSPDICG AmV-ATPasee 121 VQGLCQITENHVTIRVRQVDPLVESLLDSVONAYKQI-KKDVTKKVDQDNFLSDSCG	CqV-ATPaseE	121	TQGLLQLLEPNVVRGRQADAQLLQNVLPAAVQNYKES-SGKDVVVTLDTDHYLPEGCTG
MAV-ATPASEE 121 LOALEGIMEPTVIIRGROWDWGLVNEWLPAAVEEYRROMMNOGVSWDWDTEN LEADICG BmV-ATPaseE 121 VQALEQIMEPTVTIRVRQTDKALVESIIGRAQTDYKNK-IKKDVVLKVDTENEISPDTCG AmV-ATPaseE 121 VOGLCOLTENHVTIRVROVDIPINESIIDSVONAYKOI-IKKDVTIKVDODNFLESDSCG	Dmv-ATPaseE	121	
Amv-ATPaseE 121 VOGLCOLTENHUT RVRVIDALVES LOSVONAYKOI- KKOVT KUDODNELSSOSCG	MOV-ATPASEE	121	IQALFQIMEPTVLLKOKQVDVGLVNEVLPAAVEEYKKQMINQGVSVDVDTDNYLPADTCG
	ATPASEE	121	
	AllV-AlPaser	IZI	WQGLCQLIENHVIIKVKQVDLPHVESLLDSVQNAHQI-IKKDVIIKVDQDNELPSDSCG
ADV-ATPASEE 180 GTELLAHKNKIKICNTLESRLELIAOOLVPAVRTALEGRNPNRKEAE	ApV-ATPaseE	180	GTELLAHKNKTKTCNTLESRLELTAOOLVPAVRTALEGRNPNRKFAE
TCV-ATPASEE 180 GVVIYAOKG TKI DNTLEARIDLIAOOLVPEIRTALEGRNVNRKETD	TcV-ATPaseE	180	GVVLYAOKGKIKIDNTLEARLDLIAOOLVPEIRTALFGRNVNRKFTD
AaV-ATPaseE 180 GVELVTOSSRIKVSNTLESRLELIAOOLIPEIRNALFGRNINRKFTD	AaV-ATPaseE	180	GVELVTOSSRIKVSNTLESRLELIAOOLIPEIRNALFGRNLNRKFTD
CgV-ATPaseE 180 GVDMITOSGRIKISNTLESRLELIAMOLIPAIRNALFGRNINRKFTD	CqV-ATPaseE	180	GVDMITOSGRIKISNTLESRLELIAMOLIPAIRNALFGRNINRKFTD
DmV-ATPaseE 180 GVELLAINGRIKVPNTLESRLDLISOOLVPEIRNALFGRNVNRKFTD	DmV-ATPaseE	180	GVELLAINGRIKVPNTLESRLDLISQQLVPEIRNALFGRNVNRKFTD
MdV-ATPaseE 181 GIELLALNGRIKVPNTLESRLELISOOLVPEIRNALFGRNVNRKFAD	MdV-ATPaseE	181	GIELIALNGRIKVPNTLESRLELI <mark>S</mark> QQLVPEIRNALFGRNVNRKFAD
BmV-ATPaseE 180 GIELVAARGRIKISNTLESRLELIAQQL PEIRNALFGRNPNRKFTD	BmV-ATPaseE	180	GIELVAARGRIKISNTLESRLELIAQQLIPEIRNALFGRNPNRKFTD
AmV-ATPaseE 180 GVDLFAAKGRIKVSNTLETRLELIAQQLIPDIRSALFGCNPNRKFID	AmV-ATPaseE	180	GVDL <mark>FA</mark> AKGRIKVSNTLEIRLELIAQQLIPDIR <mark>S</mark> ALFG <mark>C</mark> NPNRKFID

Figure A.6. Multiple alignments of amino acid sequences of V-ATPase subunit E (Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum).

Figure A.7. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase F* gene.

TcV-ATPaseF	1	MALHSAMKGKLISVIGDEDTCVGFLLGGVGEINKNRHPNFLVVDK <mark>GTP</mark> VSEIEECFKRFM
BmV-ATPaseF	1	MALHAAVKGKLISVIGDEDTCVGFLLGGIGEINKNRHPNFMVVDKNTPVSEIEECFKRFV
DmV-ATPaseF	1	MALHSALKGKLISVIGDEDTCVGFLLGGVGEINKNRHPNFMVVDKNTAVSELEDCFKRFL
MdV-ATPaseF	1	MALHSAIRGKLISVIGDEDTCVGFLLGGVGEINKNRHPNFMVVDKNTAVSEIEDCFKRFL
AaV-ATPaseF	1	MAL <mark>L</mark> SAVKGKLISVIGDEDTCVGFLLGGI <mark>GEINKNRHPNFMVVDKNTAVSEIEDCFKRF</mark> I
CqV-ATPaseF	1	MALLSAVKGKLISVIGDEDTCVGFLLGGIGEINKNRHPNFMVVDKNTAVSEIEDCFKRFL
AmV-ATPaseF	1	MALHSA <mark>G</mark> KGKLLAVIGDEDTCVGFLLGGVGEINKH <mark>RQ</mark> PNFMVVDKNTAVSDIED <mark>T</mark> FKRFI
ApV-ATPaseF	1	MAMHSAVKGKLLA <mark>VIGDEDTCVGFLLGGVGEINK</mark> HRHSNFMVVDKNTALIDIEECFK <mark>G</mark> FV
TcV-ATPaseF	61	KRDDIDIILINQNIAELIRHVIDCHTSPIPAVLEIPSKDHPYDASKDSILRRAKGMFNPD
BmV-ATPaseF	61	KRDDIDIILINQN <mark>I</mark> AELIRHVIDAHSAPVPSVLEIPSKDHPYDASKDSILRRAKGMFNPD
DmV-ATPaseF	61	KRDDIDIILINQN <mark>C</mark> AELIRHVIDAHTSPVPAVLEIPSKDHPYDASKDSILRRA <mark>R</mark> GMFNPE
MdV-ATPaseF	61	KRDDIDIILINQN <mark>C</mark> AE <mark>LIRHVIDAHTSPV</mark> PAVLEIPSKDHPYDASKDSILRRAR <mark>GMFNP</mark> E
AaV-ATPaseF	61	KRDDIDIILINQN <mark>Y</mark> AE <mark>MIRHVIDAHTSPT</mark> PAVLEIPSKDHPYDASKDSILRRAKGMF <u>N</u> PD
CqV-ATPaseF	61	KRDDIDIILINQN <mark>Y</mark> AE <mark>MIRHVIDAHTSPT</mark> PAVLEIPSKDHPYDASKDSILRRAKGMF <mark>S</mark> PD
AmV-ATPaseF	61	KRDDIDIILINQNVAEMIRHVID <mark>S</mark> HTQPIP <mark>S</mark> VLEIPSKDHPYDA <mark>I</mark> KDSILRRAKGMFNPE
ApV-ATPaseF	61	KRDDIDIILINQN <mark>VAEM</mark> IRHVIEGHT <mark>Q</mark> PIPAVLEIPSKDHPYDASKDSILRRAKGMFNPE
		_
TcV-ATPaseF	121	EMM
BmV-ATPaseF	121	DIVR
DmV-ATPaseF	121	DIVR
MdV-ATPaseF	121	

Adv-Alpasef 121 DrwAnrG Adv-ATPaseF 121 DrwAnrG CqV-ATPaseF 121 DrIAnrG Amv-ATPaseF 121 DIH----Apv-ATPaseF 121 DV-----

Figure A.8. Multiple alignments of amino acid sequences of V-ATPase subunit F (Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum).

Figure A.9. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase G* gene.

DmV-ATPaseG	1	MASQTQGIQQLLAAEKKAAEKVAEARKRKARRLKQAKDEA <mark>TE</mark> EIEKFRQERER <mark>A</mark> FKEFEA
MdV-ATPaseG	1	M <mark>T</mark> SQTQGIQQLLAAEKKAAEKVAEARKRKARRLKQAK <mark>DEA</mark> TEEIEKYRQERERQFKEFEA
AaV-ATPaseG	1	MASQTQGIQQLLAAEKRAAEKVGEARKRK <mark>Q</mark> RRLKQAKEEAQ <mark>E</mark> EIERYRQERERQFKEFEA
CqV-ATPaseG	1	MASQTQGIQQLLAAEKRAAEKV <mark>G</mark> EARKRK <mark>Q</mark> RRLKQAKEEAQ <mark>E</mark> EIERYRQERERQFKEFEA
BmV-ATPaseG	1	MASQTQGIQQLLAAEKRAAEKV <mark>S</mark> EARKRKAKRLKQAKEEAQDEVEKYRQERERQFKEFEA
TcV-ATPaseG	1	MASQTQGIQQLLAAEKRAAEKV <mark>S</mark> EARKRKARRLKQAKEEAQD <mark>EIEKYR</mark> KERERQFRDFEA
AmV-ATPaseG	1	MASQTQGIQQLLAAEKRAAEKVAEARKRKARRLKQAKEEAQ <mark>D</mark> EIEKYRQERE <mark>K</mark> QFREFEA
ApV-ATPaseG	1	MASQTQGIQQLLAAEKRAAEKVAEAKKRKARRLKQAKEEAQ <mark>D</mark> EIEKYRQEREKQFKEFE <mark>I</mark>
DmV-ATPaseG	61	KHMGSREGVAAKIDADIRVKLADMDRAIQTRKDPFTLEILQYVYNISPEVHKNYNHK
MdV-ATPaseG	61	KHMGSREGVAAKIDADTRVKLADMDRAIGSRKEPVIREILQYVYNIKPEIHKNYHHKK
AaV-ATPaseG	61	KHMGSREGVAAKIDADT <mark>VLKIEEMNR</mark> SISTNKAALIN <mark>EILKLVYDIKPQLHKNY</mark> QFMIKK
CqV-ATPaseG	61	KHMGSREGVAAKIDADT <mark>VIKIEEMNR</mark> TISTSKAGLIE <mark>EIL</mark> TLVYDIKPQLHQNFIDSTKK
BmV-ATPaseG	61	KHMGTREGVAAKIDAETKVKIEEMNKMVQTQKEAVIKDVLNLVYDIKPELHINYRLN
TcV-ATPaseG	61	KHMGSKEGVAAKIEADTK <mark>QRIEEMNKAIS</mark> SQKGPVIE <mark>EIL</mark> ALVYDIKPEIHRNYRA
AmV-ATPaseG	61	KHMGSKE <mark>DVAARIEADTKIK</mark> TEEMNQTVS <mark>MH</mark> KDSVVHT <mark>ILELVYDIK</mark> AELHKNYRAEI
ApV-ATPaseG	61	KHMGSRE <mark>DVAARIDADTKIKIEEMNKA</mark> VIVNKQAVIDQILELVYDIKPELHKNFKATANK
DmV-ATPaseG		-
MdV-ATPaseG		-
AaV-ATPaseG		-
CqV-ATPaseG		-
BmV-ATPaseG		-
TcV-ATPaseG		-

AmV-ATPaseG -ApV-ATPaseG 121 E

Figure A.10. Multiple alignments of amino acid sequences of V-ATPase subunit G (Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum).

Figure A.11. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase-a* gene.

TcV-ATPase-a	1 MASLFRSAEMTLCQLFLQSEAAYACVSELGELGLVQFRDLNPDVNVFQRKFVNEVRRCDE
ApV-ATPase-a	1 MGSLFRSEEMALCQLFLQSEAAYACVSELGELGLVQFRDLNPDVNAFQRKFVSEVRRCDE
BmV-ATPase-a	1 MGSLFRSEQMTLCQLFLQSEAAYACVSELGELGLVQFRDLNPDVNAFQRKFVNEVRRCDE
AmV-ATPase-a	1 MGSLFRSEEMTLCQLFLQSEAAYACVSELGELGLVQFRDLNPDVNAFQRKFVNEVRRCDE
AaV-ATPase-a	1 MGSLFRSEEMTLCQLFLQSEAAYACVSELGELGLVQFRDLNPDVNAFQRKFVNEVRRCDE
CqV-ATPase-a	1 MGSLFRSEEMTLCQLFLQSEAAYACVSELGELGLVQFRDLNPDVNAFQRKFVNEVRRCDE
DmV-ATPase-a	1 MGSLFRSEEMALCQLFLQSEAAYACVSELGELGLVQFRDLNPDVNAFQRKFVNEVRRCDE
MdV-ATPase-a	1 MGSLFRSEEMTLCQLFLQSEAAYACVSELGELGLVQFRDLNPDVNAFQRKFVNEVRRCDE

TcV-ATPase-a	61	MERKLRYLEKEIKKDGIPMLDTGE <mark>N</mark> PEAPQPREMIDLEATFEKLENELREVNQNAEALKR
ApV-ATPase-a	61	MERKLRYLEKEIKKDGIPMLDTGE <mark>N</mark> PEAPQPREMIDLEATFEKLENELREVN <mark>H</mark> NAEALKR
BmV-ATPase-a	61	MERKLRYLEKEIKKDGIPMLDTGE <mark>N</mark> PEAPQPREMIDLEATFEKLENELREVNQNAE <mark>T</mark> LKR
AmV-ATPase-a	61	MERKLRYLEKEIKKDGIPMLDTGE <mark>N</mark> PEAPQPREMIDLEATFEKLENELREVNQNAE <mark>T</mark> LKR
AaV-ATPase-a	61	MERKLRYLEKEIKKDGIPMLDTGE <mark>S</mark> PEAPQPREMIDLEATFEKLENELREVNQNAEALKR
CqV-ATPase-a	61	MERKLRYLEKEIKKDGIPMLDTGE <mark>S</mark> PEAPQPREMIDLEATFEKLENELREVNQNAEALKR
DmV-ATPase-a	61	MERKLRYLEKEIKKDGIPMLDTGE <mark>S</mark> PEAPQPREMIDLEATFEKLENELREVNQNAEALKR
MdV-ATPase-a	61	MERKLRYLEKEIKKDGIPMLDTGE <mark>S</mark> PEAPQPREMIDLEATFEKLENELREVNQNAEALKR

TcV-ATPase-a	121	NFLELTELK <mark>QILRKTQVFFDE</mark> H <mark>E-GG</mark> ANPTESMTRALISDD <mark>SIAR</mark> QSTL <mark>GPVQLGF</mark> PEKQ
ApV-ATPase-a	121	NFLELTELKHILRKTQVFFDEQE-GGLHPTESMTRALISDDSIARQVNAGPVQLGF
BmV-ATPase-a	121	NFLELTELKHILRKTQVFFDEQE <mark>HAG</mark> LNPTESMTRALISDD <mark>NI</mark> ARQTALGPVQLGF
AmV-ATPase-a	121	NFLELTELKHILRKTQVFFDEQE <mark>HAG</mark> LNPTESMTRALISDD <mark>NIAR</mark> QTALGPVQLGF
AaV-ATPase-a	121	NFLELTELKHILRKTQVFFDEQE <mark>GG</mark> MH-T <mark>TESMTRALITDE</mark> SRTGGKTMGPVQLGE <mark>L</mark> EKS
CqV-ATPase-a	121	NFLELTELKHILRKTQVFFDEMADSHR-EEEQV-NLUGDEGIRAGGAG
DmV-ATPase-a	121	NFLELTELKHILRKTQVFFDEQE <mark>G</mark> GLNHT <mark>TESMTRALITDE</mark> VRTAGASMGPVQLGEM <mark>EK</mark> S
MdV-ATPase-a	121	NFLELTELKHILRKTQVFFDEQE <mark>G</mark> GLNTTTESMTRALITDEVRT-GHSMGPVQLGEM <mark>EK</mark> S

TcV-ATPase-a	80 FESEEFFPCFVAGVILRERIPAFERMLWRACRGNVFLRQAEIEIPLEDPSTGDQVYKSVF
ApV-ATPase-a	76VAGVILRER PAFERMLWRACRGNVFLRQAEIE PLEDPSTGDQVHKSVF
BmV-ATPase-a	77VAGVILRER PAFERMLWRACRGNVFLRQAEIE PLEDPSTGDQVFKSVF
AmV-ATPase-a	77VAGVILRER PAFERMLWRACRGNVFLRQAEIE PLEDPSTGDQVFKSVF
AaV-ATPase-a	80 QEPEEYLPCFVAGVILRERLPAFERMLWRACRGNVFLRQAMIESPLEDPSTGDKVYKSVF
CqV-ATPase-a	67 AQGQNLKLG <mark>FVAGVILRER PAFERMLWRACRGNVFLRQA</mark> VIDS <mark>ALEDPS</mark> NGDKVYKSVF
DmV-ATPase-a	81 IEREDYLPCFVAGVISREKIPAFERMLWRACRGNVFLRQAMIESPLEDPINGDQVYKSVF
MdV-ATPase-a	80 NEREDYYPCFVAGVISREKLPAFERMLWRACRGNVFLRQAMIESPLEDPSNGDQVYKSVF

TcV-ATPase-a	240	$\tt IIFFQGDQLKTRVKKICEGFRATLYPCPEAP CORREMAMGVMTRIEDLNTVLGQTQDHRHSpace{constraint} \label{eq:constraint} \label{eq:constraint} $
ApV-ATPase-a	226	IIFFQGDQLK <mark>S</mark> RVRKICEGFRATLYPCPEAP <mark>SQ</mark> RREMAMGVMTRIEDLNTVLGQTQDHRH

BmV-ATPase-a	227	$\tt IIFFQGDQLKTRVKKICEGFRATLYPCPEAPADRREMAMGVMTRIEDLNTVLGQTQDHRH$
AmV-ATPase-a	227	${\tt IIFFQGDQLKTRVKKICEGFRATLYPCPEAPADRREMAMGVMTRIEDLNTVLGQTQDHRH}$
AaV-ATPase-a	240	IIFFQGDQLKTRVKKICEGFRATLYPCPEAPTDRREMAMGVMTRIEDLNTVLGQTQDHRH
CqV-ATPase-a	227	IIFFQGDQLKTRVKKICEGFRATLYPCPEAPTDRREMAMGVMTRIEDLNTVLGQTQDHRH
DmV-ATPase-a	241	${\tt IIFFQGDQLKTRVKKICEGFRATLYPCPEAPADRREMAMGVMTRIEDLNTVLGQTQDHRH}$
MdV-ATPase-a	240	${\tt IIFFQGDQLKTRVKKICEGFRATLYPCPEAPADRREMAMGVMTRIEDLNTVLGQTQDHRH}$

TcV-ATPase-a	300	RVLVAAAKNI	KNWFVKVI	RKIKAIYH	TLNLFNLD	VTQKCLI	AECWVP	/LDFEN	IQLA	LRRG
ApV-ATPase-a	286	RVLVAAAKN	IKNWFIKV	VKIKAIYH	TLNLFNLD	VTQKCLI	AECWVP	LDIET	IQLA	LRRG
BmV-ATPase-a	287	RVLVAAAKN	KNWFVKVI	RKIKAIYH	TLNLFNLD	VTQKCLI	AECWVP	LDIEI	IQLA	LRRG
AmV-ATPase-a	287	RVLVAAAKN	KNWFVKVI	RKIKAIYH	TLNLFNLD	VTQKCLI	AECWVP	/LDIEI	IQLA	LRRG
AaV-ATPase-a	300	RVLVAAAKNI	KNWFVKVI	RKIKAIYH	TLNLFNLD	VTQKCLI	AECWVPI	LDIEI	IQIA	LRRG
CqV-ATPase-a	287	RVLVAAAKN	KNWFVKVI	RKIKAIYH	TLNLFNLD	VTQKCLI	AECWVP	LDIET	'IQIA	LRRG
DmV-ATPase-a	301	RVLVAAAKN	KNWFVKVI	RKIKAIYH	TLNLFNLD	VTQKCLI	AECWVPI	LDIET	IQLA	LRRG
MdV-ATPase-a	300	RVLVAAAKNI	KNWFVKVI	RKIKAIYH	TLNLFNLD	VTQKCLI	AECWVP	LDIEI	IQLA	LRRG

TcV-ATPase-a	360	TERSGSSVPPILNRMET <mark>M</mark> EDPPTYN <mark>H</mark> TNKFT <mark>TCFQ</mark> TLIDAYGLASYREMNPAPYTIITFP
ApV-ATPase-a	346	TERSGSSVPPILNRMDTFEDPPTYNRTNKFT <mark>SAFQ</mark> NLVDAYGLASYREINPTPYTIISFP
BmV-ATPase-a	347	TERSGSSVPPILNRM <mark>A</mark> TFEDPPTYNRTNKFTKCFQAL <mark>V</mark> DAYGVASYREMNP <mark>S</mark> PYTIITFP
AmV-ATPase-a	347	TERSGSSVPPILNRM <mark>V</mark> TFEDPPTYNRTNKFTK <mark>C</mark> FQALIDAYGVASYREMNP <mark>S</mark> PYTIITFP
AaV-ATPase-a	360	TERSGSSVPPILNRMETFEDPPTYNRTNKFT <mark>S</mark> AFQALI <mark>N</mark> AYGVASYREMNPAPYTIITFP
CqV-ATPase-a	347	TERSGSSVPPILNRMETFEDPPTYNRTNKFTNAFQALINAYGVASYREMNPAPYTIITFP
DmV-ATPase-a	361	TERSGSSVPPILNRM <mark>O</mark> TFE <mark>N</mark> PPTYNRTNKFTKAFQALIDAYGVASYREMNPAPYTIITFP
MdV-ATPase-a	360	TERSGSSVPPILNRM <mark>Q</mark> TFE <mark>N</mark> PPTYNRTNKFTKAFQALIDAYGVA <mark>T</mark> YREMNPAPYTIITFP
TcV-ATPase-a	420	FLFAVMFGDLGHG <mark>LIMAIFG</mark> AWMVLKEKPLAAKKSDNEIWNIFFGGRYIVLLMGLFSMYT
ApV-ATPase-a	406	FLFAVMFGDLGHGCLMFLFAGFLVLREKPLAAKKTDNEVWNIFFAGRYIILLMGLFSMYT
BmV-ATPase-a	407	FLFAVMFGD <mark>TGHGLIMFLFG</mark> GWMVLKEKPLAAKKSDNEIWNIFFGGRYIIFLMGLFSMYT
AmV-ATPase-a	407	FLFAVMFGD <mark>TGHGLIM</mark> FLFG <mark>GWMVLKEKPLAAKKS</mark> DNEIWNIFFGGRYIIFLMGLFSMYT
AaV-ATPase-a	420	${\tt FLFAVMFGDLGHGAIMALFGLWMVLKEKPLAAKKTDNEIWNIFFGGRYIIFLMGVFSMYT}$
CqV-ATPase-a	407	${\tt FLFAVMFGDLGHGAIMALFGLWMVLKEKPLAAKKTDNEIWNIFFGGRYIIFLMGVFSMYT}$
DmV-ATPase-a	421	FLFAVMFGDLGHGAIMALFGLWMIR <mark>KEK</mark> GLAA <mark>Q</mark> KTDNEIWNIFFGGRYIIFLMGVFSMYT
MdV-ATPase-a	420	FLFAVMFGDLGHGAIMALFGLWM <mark>UR</mark> KEK <mark>G</mark> LAA <mark>Q</mark> KTDNEIWNIFFGGRYIIFLMG <mark>V</mark> FSMYT

TcV-ATPase-a	480 GFIYNDVFSKSLNIFGSNWVVNNLTADYVLKVDDVMLDPAEGDYLHHPYPIGIDPVWQLA
ApV-ATPase-a	466 GFIYNDIFSKSLNLFGSHWHTNYNESTVMNNKDLQINPSLSSDYDQVPYPVGLDPVWQLA
BmV-ATPase-a	467 GLIYNDIFSKSLNIFGSYWRINYNISTIVTNKELQLNPSDTEQYLQIPYPLGMDPVWQLA
AmV-ATPase-a	467 GLIYNDIFSKSLNIFGSYWRINYNFSTIDSNKELQLNPSDKEQYLQIPYPIGMDPVWQLA
AaV-ATPase-a	480 GFVYNDIFSKSLNVFGSAWSINYNTSTVMENKALQLDPG-SKDYSGTPYPIGLDPVWQVA
CqV-ATPase-a	467 GFVYNDIFSKSLNVFGSTWSINYNTSTVMTNKALQLDPA-S-DYDGTPYPIGLDPVWQVS

DmV-ATPase-a	481 GLIYNDIFSKSLNIFGSHWHISYNKSTVWNNNYLQLSPA-TSDYEGTPYPFGMDPIWQVA
MdV-ATPase-a	480 GLIYNDIFSKSLNIFGSHWEVNYNKSTVLENKYLQLNPE-ISDYLGTPYPFGMDPIWQVA
TcV-ATPase-a	540 K-NKIIFQNSFKMKISIILGIIHMLFGVSMSLFNFTYFKNKLSIFCEFIPQVIFLVFLFF
ApV-ATPase-a	526 L-NKIVFLNAYKMKISII <mark>IGVLHML</mark> SGVSLSLYNYRYFKDRLSIYCDFIPQVIFLVFLFF
BmV-ATPase-a	527 E-NKIIFLNSYKMKISIIFGVIHMLFGVIIGLWNHMYFRRQLSIICEFVPQIIFLIFLFL
AmV-ATPase-a	527 E-NKIIFLN <mark>SYKMKISIIFGVIHMLFGV</mark> VIGLWNHMYFK <mark>RKLNIT</mark> CEFIPQLIFLVFLFL
AaV-ATPase-a	539 E-NKIIFLNAYKMKISIIFGVIHMLFGV <mark>FVG</mark> LENHRYFKNKLAIYCEFIPQVIFLVFLFF
CqV-ATPase-a	525 D-NKIIFLNAYKMKISIIFGVVHMLFGVFVGLFNHRYFKNKLAIYCEFIPQVIFLVFLFS
DmV-ATPase-a	540 SS <mark>NKIVFQNAYKMKISIIFGVLHMIFGV</mark> IMSWHNHTYFRNRLSLLYEFIPQLLFLVVLFF

MdV-ATPase-a 539 GA<mark>NKIIFQNAYKMKISIIFGVIHMIFGV</mark>AMSYH<mark>NHTYFKNRLSLIFEFIPQLIFLLFLFF</mark>

TcV-ATPase-a	599 <mark>ymvllmfikw</mark> fm <mark>y</mark> yp <mark>tn</mark> vrayiky <mark>sp</mark> rcapsilitfinmvlnketiv-dp <mark>ec</mark> datmyag
ApV-ATPase-a	585 YMVLLMFIKWVSYGPQNFFPDSPACAPSILITFINMVLFKDAVALENCNIVYMFSG
BmV-ATPase-a	586 <mark>YMVLLMFIKWI</mark> SYGPNSDNTDPAHG <mark>P</mark> F <mark>CAPSVLITFINMVLFK</mark> PGV <mark>A</mark> PAK <mark>ECSPWM</mark> YSG
AmV-ATPase-a	586 YMVLLMFIKWIKYGPDSDKIDPEHG <mark>P</mark> SCAPSVLITFINMVLFKPGT <mark>A</mark> P-KP <mark>CSPWMYG</mark> G
AaV-ATPase-a	598 YMTLMMFMKWTKYSADSEDVRFSAGCAPSILITFINMVLFKAPE-KGVECSPFMFAG
CqV-ATPase-a	584 YMTILMFIKWVKYSATNEETRFQPACAPSILITFINMVLFKSVE-QTGECSPFMFAG
DmV-ATPase-a	600 YLVLLMFIKWNRYAATN-AFPMTEACAPSILITFIDMVLFKNSKAPGKDCNIYMFAG
MdV-ATPase-a	599 <mark>YMVLLMFIKW</mark> NRYAA <mark>IN</mark> -KPPYSASCAPSILITFIDMVLFNTPKPVPEG <mark>C</mark> EVYMFGG

TcV-ATPase-a	658 IPIQKLLFVCAVICVPWMLLAKPVYIMRNRRKMNYSVSHQQMQQATGNGDAEQPM
ApV-ATPase-a	642 GAVQKFLVIVALLCVPIMLLAKPIYIMROQKEKHVQLVNGH-ATTENGDAEGAG
BmV-ATPase-a	646 NGFQSFLVVVAVLCIPWMLLAKPVSMMYNRKKQHYQLNNHGTENGDIEGAV
AmV-ATPase-a	645 SGFQSFLVVIAVLCIPWMLLAKPIM MNRKKQHYQLNNHGTENGDVEGAV
AaV-ATPase-a	655 EGLQKFLVIIALLCVPWMLLAKPIMIMRSRKEAAHQPMVPYSNENGDAETGINQQN
CqV-ATPase-a	641 QGLQKFLVIIALICVPWMLLAKPIMIMRSRKEAAHQPIAPYSNENGDAEGA NPNNA
DmV-ATPase-a	657 SFFQTIFVLIALACIPVMLLCKPIKIMQARKLANVQPITGASDAEV
MdV-ATPase-a	656 HF <mark>FQ</mark> VVF <mark>VLVAL</mark> SCIPVMLLCKPLQIMKORKHANVQPITGSDA-E

TcV-ATPase-a	713 -HNNTAQPVAPHGGGHDEEDLGEMFIHQGIHTIEYVLGSVSHTASYLRLWALSLAHAQ
ApV-ATPase-a	695 -RVVQQPPPPPPAG-GHDENEIGELFIHQGIHTIEYVLGSVSHTASYLRLWALSLAHAQ
BmV-ATPase-a	697 -DAIQPVSGIPQG-GHKELEEDMSEVFIHQGIHTIEYVLGSVSHTASYLRLWALSLAHAQ
AmV-ATPase-a	696 - DAIQPANGVPQGGGHKEEEEDMAEVFIHQGIHIEYVLGSVSHTASVIILWALSLAAA
AaV-ATPase-a	712 TQCGAAVQQGACGGGHGHDNEEMSEIFIHQGIHTIEYVLGSVSHTASYLRLWALSLAHAQ
CqV-ATPase-a	698 AGAPAGCAQQGCGAGHGHDNEEMSEIFIHQGIHTIEYVLGSVSHTASYLRLWALSLAHAQ
DmV-ATPase-a	703 -GGMSNCGGSHCGGGEHHDEEEMSEIFIHQGIHTIEYVLGSVSHTASYLRLWALSLAHAQ
MdV-ATPase-a	700 -VGMSNGQPAAHGAGGHHDEEEMSEIFIHQGIHTIEYVLGSVSHTASYLRLWALSLAHAQ

TcV-ATPase-a	770	LSEVLWNMVL <mark>NKGLVFDGWEGGVILYIIFAFWAC</mark> LTV <mark>S</mark> ILVLMEGLSAFLHTLRLHWVEF
ApV-ATPase-a	751	LSEVLWSMVMTKGLILNSWIGGVWLWFVFGFWAILTVGILVLMEGLSAFLHTLRLHWVEF
BmV-ATPase-a	755	L <mark>SEVLWNMVMR</mark> NGL <mark>T</mark> QEGW <mark>S</mark> GGI I LWAVFAFWAVLTVGILVLMEGLSAFLHTLRLHWVEF
AmV-ATPase-a	755	L <mark>SEVLWNMVMR</mark> NGL <mark>T</mark> QEGW <mark>AGGIII</mark> WAVFA <mark>L</mark> WAVLTVGILVLMEGLSAFLHTLRLHWVEF
AaV-ATPase-a	772	L <mark>AEVLWNMVLKNGLQQG</mark> GWIGGIALWAIFCFWAVLTVGILVLMEGLSAFLHTLRLHWVEF
CqV-ATPase-a	758	L <mark>AEVLWNMVLKNGLSO</mark> GGWIGGIALWAIFCFWAVLTVGILVLMEGLSAFLHTLRLHWVEF
DmV-ATPase-a	762	LAEVLWSMVLSLGLNKEGWLGGIFLTVVFAFWAVLTVGILVLMEGLSAFLHTLRLHWVEF
MdV-ATPase-a	759	LAEVLWNMVLSIGLKQEGWFGGIMLTIVFAFWAILTVGILVLMEGLSAFLHTLRLHWVEF
TcV-ATPase-a	830	QSKFYSGQGYAFLPFSFENLLDSASQTPEE
ApV-ATPase-a	811	QSKFY <mark>KGLGYAF</mark> APFSFEVILNTASTAV <mark>EE</mark>
BmV-ATPase-a	815	QSKFYAGQGYGFQPFSFEIILDAAQSTAED
AmV-ATPase-a	815	QSKFY <mark>SGLGYGFQPFSFEIILDAAQ</mark> STAED
AaV-ATPase-a	832	QSKFY <mark>AGLGYAFQPFSFEVILE</mark> TG <mark>SSST</mark> EE
CqV-ATPase-a	818	QSKFY <mark>SGLGYAFQPFSFELMLETS</mark> SSSTEE
DmV-ATPase-a	822	QSKFYMGHGYAFQPFSFDTIIENGGAVTETE
MdV-ATPase-a	819	QSKFYQGTGYAFQPFSFDA <mark>IIE</mark> NG <mark>S</mark> AASSAENE

Figure A.12. Multiple alignments of amino acid sequences of V-ATPase subunit a (*Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum*).

Figure A.13. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase-c* gene.

Figure A.14. Multiple alignments of amino acid sequences of V-ATPase subunit c (Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum).

Figure A.15. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase- c*" gene.

Figure A.16. Multiple alignments of amino acid sequences of V-ATPase subunit c" (Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum).

Figure A.17. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase-d* gene.

ApV-ATPase-d	1	MVDTGCFFNIDGGYLEGLCRGFKCGILRHADYLNLEQCETLDDLKLHLQSTDYGQFLANE
AaV-ATPase-d	1	MPGFMFNIDGGYLEGLCRGFKCGILKQADYLNLVQCETLEDLKLHLQGTDYGQFLANE
CqV-ATPase-d	1	MPGYMFNIDGGYLEGLCRGFKCGILKQADYLNLVQCETLEDLKLHLQGTDYGQFLANE
DmV-ATPase-d	1	MNSSGFMFNID <mark>N</mark> GYLEGLCRGFKCGILKQADYLNLVQCETLEDLKLHLQGTDYGSFLANE
MdV-ATPase-d	1	MTGSCFMFNIDGGYLEGLCRGFKCGILKQSDYLNLVQCETLEDLKLHLQSTDYGSFLANE
BmV-ATPase-d	1	MKGCLFNIDAGYLEGLCRGFKCGILKQSDYLNLVQCETLEDLKLHLQGTDYGLFLANE
AmV-ATPase-d	1	MKGCMFNIDAGYLEGLCRGFKCGILQQSDYLNLVQCETLEDLKLHLAGTDYGSFLANE
TcV-ATPase-d	1	MKGCLFNIDAGYLEGLCRGFKCGILKQSDYLNLVQCETLEDLKLHLQGTDYGSFLANE
	6.1	
ApV-ATPase-d	61	PSPLAVSVIDDKLREKLVIEFQHMRNHAVEPLSTFLDMITYSYMIDNIILLITGTLHQRP
Aav-ATPase-d	59	PSPLAVSVIDDKLREKLVIEFQHMRNHAVEPLSTFLDFITYSYMIDNIILLITGTLHQRP
CqV-ATPase-d	59	PSPLAVSVIDDKLREKLVIEFQHMRNHAVEPLSTFLDFITYSYMIDNIILLITGTLHQRP
DillV-ATPase-d	61 C1	PSPLSVSVIDDKLKEKLVIEFQHMRNHAVEPLSNFLDFITYGIMIDNIILLITGTLHQKP
Mav-ATPase-a	61 E 0	
Billy-ATPase-d	59	
Anv-Arpase-d	59	PSPLSVSVIDDKLKEKLVIEFQHMRNHSVEPLSQFLDFITTSIMIDNIILLITGTLHQKP
TCV-ATPase-d	59	PSPL <mark>AVSTID</mark> NKLREKLVIEFQHMKN <mark>Q</mark> AVEPLSTFLDFITYSIMIDNIILLITGTLHQRP
ApV-ATPase-d	121	ISELIPKCHPLGSFEOMEAIHVAATPAELYNAVLVDTPLAPFFVDCISEODLDEMNIEII
AaV-ATPase-d	119	ISELIPKCHPLGSFEOMEAIHVAATPAELYNAVLVDTPLAPFFVDCISEODLDEMNIEII
CqV-ATPase-d	119	ISELIPKCHPLGSFEOMEAIHVAATPAELYNAVLVDTPLAPFFVDCISEODLDEMNIEII
DmV-ATPase-d	121	ISELIPKCHPLGSFEOMEAIHVA <mark>S</mark> TPAELYNAVLVDTPLAPFFVDCISEODLDEMNIEII
MdV-ATPase-d	121	ISELIPKCHPLGSFEQMEAIHVAATPAELYNAVLVDTPLAPFFVDCISEQDLDEMNIEII
BmV-ATPase-d	119	ISELIPKCHPLGSFEQMEAIHVAATPAELYNAVLVDTPLAPFFVDCISEQDLDEMNIEII
AmV-ATPase-d	119	ISELIPKCHPLGSFEQMEAIHVAATPAELYNAVLVDTPLAPFFVDCISEQDLDEMNIEII
TcV-ATPase-d	119	I <mark>G</mark> ELIPKCHPLGSFEQMEAIHVA <mark>S</mark> TPAELYNAVLVDTPLAPFFVDCISEQDLDEMNIEII
ApV-ATPase-d	181	RNTLYKAYLE <mark>SFYDFCK</mark> KLGG <mark>ITADT</mark> MCEIL <mark>SFEADRRAIN</mark> ITINSFGTELTKDDRAKLY
AaV-ATPase-d	179	RNTLYKAYLEAFYEFCKNIGGTTADVMCEILAFEADRRAIIITINSFGTELSKDDRAKLY
CqV-ATPase-d	179	RNTLYKAYLEAFYE <mark>FCK</mark> GIGGTTAD <mark>A</mark> MCEILAFEADRRAIIITINSFGTELSKDDRAKLY
DmV-ATPase-d	181	RNTLYKAYLEAFY <mark>N</mark> FCK <mark>NM</mark> GG <mark>A</mark> TADVMCEILAFEADRRAIIITINSFGTELSKDDRAKLY
MdV-ATPase-d	181	RNTLYKAYLEAFYDFCKNMGGSTADVMCEILAFEADRRAIIITINSFGTELSKDDRAKLY
BmV-ATPase-d	179	RNTLYKAY <mark>W</mark> EAFY <mark>D</mark> FCK <mark>O</mark> IGGTTADVMCEILAFEADRRAIIITINSFGTELSKDDRAKLY
AmV-ATPase-d	179	RNTLYKAYLEAFY <mark>K</mark> FCK <mark>D</mark> IGGTTAD <mark>T</mark> MCEILAFEADRRAIIITINSFGTEL <mark>G</mark> KDDRAKLY
TcV-ATPase-d	179	RNTLYKAYLEAFY <mark>A</mark> FCK <mark>E</mark> IGGTTAD <mark>C</mark> MCEILAFEADRRAIIITINSFGTELSKDDRAKLY
	0 / 1	
Apv-Airase-Q	∠4⊥ 230	PROGRETE DELARLARADDI DUVRAVALITALISALE DGAGINEGANI LEDEFELEVAL
CaV-ATPasa-d	220 230	PRCGRMNPDCLAALARADDYEQVKAVAEYYAEYAALEDGOGNNPGDKTLEDKFTEHEVKL
DmV-ATPase-d	233	PNCGKMVPDGLAAIARADDIEQVKAVAEIIAEIAADIGGGNNPGDKILEDKFFFHFVKI
MdV-ATPaso-d	241	PROGRATE DOLLADIAND DE OVERVAEVAAL ED CORRECTED KEEVEL
BmV-ATPase-d	239	PROGRAME DELIGATION ADDIE OVRAVAEVAEVAEVAEVAEVAEVAEVAEVAEVAEVAEVAEVAE
AmV-ATPase-d	239	PROGREME DELEADERAND DE OVRAVAETTE ISALFEGAGNNOODRI LEDREFEHEVEL
TCV-ATPasa-d	239	PROCKINDOLAAIWRAHDYDOVKAVAFYYAFYSKI.FECACSNDCDKTI.FDKFFFHFWRI.
iev Airase u	235	
ApV-ATPase-d	301	NV <mark>N</mark> AFMRQFHYGVFYSYLKLKEQECRNVVWISECV <mark>S</mark> QKHRARMDNYIPIFK
AaV-ATPase-d	299	NVYAFMQQFHFGVFYSYLKLKEQECRNIVWIAECVAQKHRAKIDNYIPIF
CqV-ATPase-d	299	NV <mark>Y</mark> AFMQQFHFGVFYSYLKLKEQECRNIVWIAECVAQKHRAKIDNYIPIF-
DmV-ATPase-d	301	D <mark>VY</mark> AFLQQFHFGVFY <mark>A</mark> YLKLKEQECRNIVWIAECVAQKHRAKIDNYIPIF-
MdV-ATPase-d	301	NV <mark>F</mark> AFLQQFHFGVFY <mark>A</mark> YLKLKEQECRNIVWIAECVAQKHRAKIDNYIPIF-
BmV-ATPase-d	299	NV <mark>H</mark> AFLQQFHFGVFYSYLKLKEQECRNIVWI <mark>S</mark> ECVAQKHRAKIDNYIPIF-
AmV-ATPase-d	299	NV <mark>H</mark> AFLQQFHFGVFYSYLKLKEQECRNIVWIAECVAQKHRAKIDNYIPIF-
TcV-ATPase-d	299	NV <mark>H</mark> AFLQQFHFGVFYSYLKLKEQECRNIVWIAECVAQKHRAKIDNYIPIF-
	AT 14.	

Figure A.18. Multiple alignments of amino acid sequences of V-ATPase subunit d (Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum).

Figure A.19. Phylogenetic relationship of the deduced amino acid sequences of *V*-*ATPase-e* gene.

DmV-ATPase-e MdV-ATPase-e BmV-ATPase-e	1 1 1	MVSEWVAPIVITSIWAFIGIICPFFA-RGPNRGVTQCCLILTAATCWLFWLCCYMTQLNP MVEAYVAPTVITCIWAFIGIICPFFA-RGPNKGITQCCLMLTAATCWLFWLCCYMTQMNP MGYSLIPIFVFSILWGVVGILCPIFAPKGPNRGIICVVLILTAATCWLFWLCAYMAOMNP
AmV-ATPase-e	1 1	MGASLIPILIFTIFWGVIGIVLPFFVPKGTNRGILQVMLMLTAFTCWLFWLCCYMAQMNP MGASALPETVFTV WCCVGIVLPILVPKGPNRGITOVILMLTOVCCWLFWLCCYVAQMNP
ApV-ATPase-e	1	MGAAALPVLIFTAFWGVVGIVLPFIIPKGPDRGVQQLVLMTAATCYLFWLCCYMAQMNP MCASALBITTAFAAUCUUCIU BIJABCONBCIDOCUUTTAATCWLFWLCCYMAQMNP
CqV-ATPase-e	1	MGASALFIIIFSAIFGVIGIVLFIIAFKGFNKGIVQCVLILIAATCWLEWLCCIMAQMNF MGASALFIIIFSAIFGVIGI <mark>ALF</mark> IIAFKGFNRGIVQCVLILTAVTCWLFWLCCIMAQMNF
DmV-ATPase-e	60	LIGPKLSMNEIMIMAREWGNEIKDTMAVTV
MdV-ATPase-e	60	LIGPKLSMNEILIVAKEWGNPI <mark>ED</mark> TIDITYY
BmV-ATPase-e	61	LIGPRLSNETLIWISRTWGNKINNTQA
AmV-ATPase-e	61	LIGPKLPRNTILVMAREWSHVQFAATDEM
TcV-ATPase-e	61	LIGPRLDKHTLLVMAKEWGNPLK
ApV-ATPase-e	61	LVGPKLNOHTILIMAREWGNLIQ
AaV-ATPase-e	61	LIGPKLHQNTILIMAREWGNPLPDMDNYHPEPHSVAEH
CqV-ATPase-e	61	LIGPKL <mark>HONTILIMAREWGNP</mark> LP <mark>D</mark> MDSWTPPAEHTDH-

Figure A.20. Multiple alignments of amino acid sequences of V-ATPase subunit e (Ae. aegypti, D. melanogaster, C. quinquefasciatus, M. domestica, B. mori, T. castaneum, A. mellifera, A. pisum).