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Abstract 

The lack of effective post-emergence weed control options is often highlighted as one of the major 

factors behind dwindling acreage under sorghum (Sorghum bicolor (L.) Moench) in the United 

States. The discovery of herbicide resistance sources in wild sorghum population and subsequent 

efforts to incorporate them into cultivated sorghum was received with much optimism to change 

weed management practices in sorghum. As the development of the technology advances, 

especially of the Acetolactate synthase (ALS) resistance, concerns over the temporary interveinal 

chlorosis and reduced seedling vigor in some of the resistant families became heightened. This 

thesis research is designed to shed light on the genetic basis of seedling chlorosis and assess its 

impacts on yield potential.  

The study has three parts; the first part is focused on identifying the genetic causes and 

plant mechanisms associated with the chlorotic phenotype.  ALS herbicide resistant sister-lines 

expressing normal and chlorotic phenotypes were analyzed via RNA sequencing at four time 

points during seedling growth. The study identified several variants of genes coding chloroplast 

precursors and those that cause epigenetic modifications. Once confirmed, genetic markers can be 

developed to track these gene variants in the breeding population and eliminate segregates 

genetically prone to chlorosis/yellowing.  

The second part of the study focuses on assessing the effect of ALS resistance associated 

chlorosis on agronomic and nutritional parameters of sorghum inbred lines. A set of ALS resistant 

lines expressing different levels of the chlorotic phenotype were evaluated in replicated field trials 

and laboratory methods. Results showed that interveinal chlorosis delays flowering but does not 

have negative effect on yield and nutritional parameters with and without herbicide treatment. The 

last part addresses whether there is any yield drag that may be associated with herbicide resistance 



  

traits and foliar interveinal chlorosis. For this, we synthesized a large set (182) of hybrids from 

ALS resistant, ACCase resistant and regular (susceptible) seed and pollinator parents. The hybrids 

were then evaluated in three sets at multiple locations during the 2014 and 2015 crop seasons along 

with commercial checks.  The results revealed that resistance to both herbicides do not cause any 

drag to grain yield. The traits also do not have any negative impact on grain and nutritional quality 

of resistant hybrids.  
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and laboratory methods. Results showed that interveinal chlorosis delays flowering but does not 
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ALS resistant, ACCase resistant and regular (susceptible) seed and pollinator parents. The hybrids 
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General Introduction 

 Sorghum (Sorghum bicolor (L.) Moench) ranks fifth among the major cereal crops grown 

in the world. Because of its unique adaptation to low input marginal growing conditions, sorghum 

remains the primary source of energy, protein, vitamins and minerals for millions of impoverished 

people in the world (Unger and Baumhardt, 1999; Khalil et al., 2015). It also remains the second 

most important feed source and biofuel feedstock in the developed world. Sorghum's distinct 

biology that allows the crop to conserve water while still producing high grain and biomass yields 

on marginal lands have made it an ideal crop for the dry and arid regions in the world (Lux et al., 

2002). Thus, as compared to other major crops such as maize (Zea mays), wheat and rice (Oryza 

sativa), sorghum stands out as a very promising cereal crop that could survive a range of stressful 

environmental conditions. These unique characteristics of the crop make sorghum one of the most 

viable food grains that is capable of reliable production where other crops fail (Dendy, 1995). 

Thus, sorghum plays a significant role in meeting ever-increasing demand for food and feed for 

millions of the most vulnerable and food insecure people worldwide.   

Enhancing the competiveness of sorghum and realization of its potential as the 21st century 

food and feed grain will require bridging key gaps that kept the productivity and utilization of the 

crop at bare minimum for the past half century.  Among the many such gaps is the lack of effective 

post-emergence weed control options for the crop. Commercial sorghum production in the United 

States met several setbacks in the past decades both from the dwindling acreages and the difficulty 

in crop management primarily attributable to poor post-emergence grass weed control.  While 

recent advancements in sorghum has proven potential for deployment of the resistance based weed 

control technologies (Tesso et al., 2011, Kershner et al., 2012) two important concerns that draw 

attention of sorghum farmers as well as the industries are the possible consequences of the yellow 
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seedling phenotype that is observed in many of the Acetolactate synthase (ALS) inhibitor herbicide 

resistant lines and the potential yield penalty due to linked deleterious genes dragged from the wild 

herbicide resistance gene donor. This study is aimed at addressing these prominent concerns of the 

sorghum growers and research community. The study encompasses various disciplines including 

plant breeding and genetics, molecular biology, bioinformatics, and weed science to determine the 

cause and biological impacts of seedling chlorosis on sorghum and the possible yield compromise 

that may be caused as a result of deployment of the herbicide resistance trait.  

This thesis is organized in to three parts. The first part which follows a thorough review of 

the state of sorghum production in the U.S. and the world and, the major gaps undermining 

sorghum productivity is focused on determining the genetic causes and mechanisms behind the 

interveinal chlorosis and associated reduced seedling vigor that is observed in many ALS herbicide 

resistant sorghums.  Here various techniques and analytical approaches including RNA-

sequencing, gene ontology and metabolic pathway analysis and gene variant discovery approaches 

were used to identify the associated genes. The results of this experiment is discussed with an 

emphasis of significantly altered genes, plant metabolic pathways and mechanisms in relation to 

observed unusual seedling phenotype. The second part describes results of experiments performed 

to assess the physiological and agronomic characteristics of ALS herbicide resistant lines varying 

for seedling interveinal chlorosis with and without and herbicide treatment. The possible effects 

on nutritional attributes of the resistant genotypes was also investigated. The last part describes 

the results of the study aimed at addressing the real concerns of the growers, the possible yield 

penalty that may be caused by genes dragging along with the herbicide resistance gene. This part 

reports on data obtained from evaluation of series of hybrids with homozygous or heterozygous 
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resistance to ALS, ACCase or both ALS and ACCase as well as normal susceptible hybrids grown 

at multiple locations over two years.  

These studies together provide important information both to growers and producers alike 

in choosing strategies for herbicide resistance breeding and also to provide experimental evidence 

to assist farmers make sound production decisions. 
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Chapter 1 - Literature Review 

 Sorghum production in the United States 

 Originated in Africa thousands of years ago, sorghum is grown as one of the world’s major 

cereal grains. While it is used as food and beverages throughout Africa and Asia, sorghum is 

primarily used as animal feed in the United States and other parts of the world. The emergence of 

sorghum as a widely grown cereal crop in the United States is the culmination of three distinct 

events over the last century, the introduction of the crop during the latter part of the nineteenth 

century followed by cultivar improvement through selection and selective hybridization and the 

discovery of the commercial hybrid technology (Smith and Frederiksen, 2000). Sorghum 

introduction in the United States has been reported to have coincided with western rail road 

developments where the crop was grown on the marginal ranch lands on which any other crop 

could not be grown due to extreme hot and dry conditions. Successful performance on land areas 

with such poor conditions led the shift of ranch lands to intensive farming systems directed towards 

expanded feed grain production.  The first improved sorghum cultivar in the U.S. was released in 

1916 by H. Willets from Kansas (Quinby and Martin, 1954) which was followed by the 

development of relatively short cultivars with stable but low yields. The sorghum industry in the 

U.S. expanded during the 1950’s with the development of mechanized agriculture and eventually 

gained popularity as an important cereal crop which could be grown in rotation with wheat. 

However, sorghum’s inherent self-pollinated nature remained a bottleneck to the development of 

the hybrid system until the revolutionary discovery of cytoplasmic male sterility (CMS) system 

during the latter part of the twentieth century (Stephens and Holland, 1954). CMS offered 

enormous opportunity to plant breeders to exploit heterosis, which led to yield increases as much 

as three times as that of an open pollinated cultivar. Thus sorghum acquired a considerable 
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commercial interest during the decades that followed the discovery of CMS leading to increased 

private investment on research, seed production and distribution. Increased crop yields achieved 

following the deployment of the hybrid system and other improved management practices led to 

increase in acreages and thus to surplus production that opened up export opportunities for the 

sorghum growers. By 1960’s 95% of the total sorghum production in the U.S. was from hybrids 

(Smith et al., 1999). The rapid acceptance of the hybrids by the growing community and further 

improvement in crop resistance/tolerance to various stress conditions were the key ingredients for 

increased production and the unprecedented increase in export market. However, with 

development of technologies in other disciplines, it became easier to grow other crops in areas 

where sorghum was once the only viable crop. This disproportionate investment and undue 

preference for alternative crops reduced sorghum acreage eventually leading to the dwindling of 

acreage grown to the crop. In the last three decades, sorghum acreage has reduced by about 70%. 

The U.S. is the largest producer and exporter of sorghum in the global grain market. At present, 

the United States accounts for just about 9% of the world's sorghum acreage but contributes about 

25% to the global grain sorghum output with over half of this coming from the state of Kansas 

(Hamman et al., 2001). The crop is grown in 14 states in the U.S. on a total of 8.46 million acres 

with the total production is valued at $2.08 billion in 2015 (NASS, 2015).  

 

 Utilization and nutritional attributes of sorghum 

 Sorghum is used in various feed formulations and food applications throughout the world. 

It is also the major ingredient for production of various beverages in the developing world. Because 

of its versatility in utilization, adaptation to marginal conditions and its inherent high yield 

potential, sorghum is poised as a key source of food and energy in the 21st century. In the developed 

world, sorghum grains are commonly fed to cattle, poultry and swine, while sorghum stalks and 
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leaves remain important source of feed in developing countries providing a vital feed alternative 

during dry season. The importance of the crop is growing beyond these traditional uses that it has 

become the second major feedstock for ethanol production in the United States and elsewhere. The 

crop also has gained wide recognition as gluten free and non-GM food alternative for millions of 

people living in various parts of the world. In terms of nutrient content, sorghum is generally 

comparable to many other cereals such as maize and wheat (FAO, 1972) while it is believed to be 

richer in several essential nutrients including iron and zinc, vitamin B1, B2 and niacin 

(Parthasarathy Rao and Basavaraj, 2015). There are tremendous opportunities for improving the 

nutrient content of sorghum both for animal and human food including its protein content while 

the availability of sorghum proteins continue to present significant challenge that needs more 

research emphasis (Singh and Axtell, 1973). Moreover, sorghum is also praised for enormous 

health benefits it offers primarily due to the unique phytochemicals that it carries in its bran layer 

including tannins, phenolic acids, anthocyanins, phytosterols and policosanols. These chemicals 

have been shown to reduce the risk of certain cancers and promote cardiovascular health (Awika 

and Rooney, 2004).  

 

 Weed infestation as a key constraint to sorghum production 

 Like many other crops, sorghum suffers from various production constraints in different 

parts of the world. Among the many factors affecting sorghum production, especially in 

mechanized agriculture, is infestation by grass weeds. No effective weed control options are 

available for controlling post emergence grass weeds in sorghum. While 2,4-D has been used to 

manage post emergence broad leaved weeds, grass weeds remained difficult to control in sorghum 

fields. While Concep III TM treatment of sorghum seeds allowed the use of pre-emergence 
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herbicides which is critical for controlling early emerging weeds, the slow growing habit of 

sorghum seedlings have made it a weak competitor to post emergence weeds, thus, even a mild 

weed infestation during early growth stage can have marked impacts on yields (Peng, 2012). 

Therefore, early-season weed management is the most critical management step for successful 

sorghum production. Experimental evidences show that a single pigweed plant (Amaranthus spp.) 

per three feet of row if left uncontrolled until sorghum reaches the three-leaf stage can reduce 

yields by 10% (Smith and Scott, 2010). Though not specifically recommended for sorghum, 

broadleaf weeds in sorghum fields could be managed by several different chemicals used for other 

crops. The biggest challenge for sorghum, however, is on management and control of post 

emergence grass weeds. The abundance of wild and weedy relatives of sorghum such as 

Johnsongrass (Sorghum halepense (L.) Pers.) and Shattercane (Sorghum bicolor) which both 

morphologically and physiologically mimic sorghum, further complicate efforts to manage grass 

weeds. The presence of these weeds obviously have imposed restrictions to identification and 

utilization of new over the top herbicides for sorghum. Heavy infestation of grass weeds during 

early weeks of germination have reported to account for up to 20% yield reduction (Smith and 

Scott, 2010). Though late emerging weeds have less effect on yield, they impact harvesting 

efficiency, reduce harvestable yields and may further increase the weed seed bank in the soil.  

 While the problem with weed infestation is not unique to sorghum, the development and 

deployment of glyphosate resistance has made this problem a history in crops that benefited from 

the technology. Today the most problematic weeds in glyphosate resistant crops are glyphosate 

resistant volunteers from previous season crop or glyphosate resistant weeds that seem to be on 

the rise in several states (Chahal and Jhala, 2015). While this technology obviously resolved weed 

management issues for crops such as maize, soybean, sunflower, cotton, etc., it had negative 

http://en.wikipedia.org/wiki/L.
http://en.wikipedia.org/wiki/Pers.
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effects on sorghum production and seriously undermined its competitiveness. Sorghum acreages 

continuously dropped over the last two decades with majority of lost acres picked up by glyphosate 

resistant maize. The better weed control option that glyphosate resistant maize offers and the 

existing farm policy that favors maize over sorghum seem to be the major incentive for farmers to 

switch from sorghum to maize even when this does not necessarily translate to increased profit, 

especially under dryland production. Though, the same technology could be deployed for sorghum, 

the agricultural community seems reluctant to grow glyphosate resistant sorghum due to the well-

founded fear of resistance gene escape to wild and weedy relatives. While the concern may be 

valid especially in the absence of effective stewardship mechanisms, the move has greatly 

undermined traditional sorghum growers and unfairly affected the sorghum industry not only by 

enhancing the productivity of the competing crops but also by slashing acreages from sorghum. 

The apparently little or no investment to develop alternative technology for enhancing sorghum 

may eventually lead to further reduction in acreage under the crop despite the enormous benefit it 

can offer in the face of dwindling irrigation water resources and increasing drought and high 

temperature stress that could be detrimental to the future of global agriculture. In order to remain 

a viable alternative as food and feed source, sorghum needs to benefit from modern production 

technologies. Among others, effective and low cost grass weed control technology is needed to 

curb losses incurred due to grass weed infestation and change the current seemingly unsustainable 

trend of declining acreage under sorghum.  

 

 The role of herbicides in modern agriculture 

 Weeds primarily interfere with the quality and quantity of agricultural produce. The 

presence of weeds in crop fields has been a serious issue since around 10,000 BC (Hay, 1974) and 
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represents one of the major restraining factors in agriculture (Avery, 1997). The United States is 

not exceptional to this problem; almost 70% of the world’s invasive weeds are reported to have 

found in the country (Zimdahl, 2013). To date, there are around 30,000 weed species identified 

worldwide which accounts for about 10% of all plant species (Kostov and Pacanoski, 2007). 

Among these, around 1,800 are known to cause severe economic losses and of those about 300 

species interfere with cultivated crops throughout the world (Ware and Whitacre, 2004). The 

difficulty of practicing mechanical weed control methods in large scale production systems is the 

major driving force that led to the discovery of chemical weed killers or herbicides. 

  The first used chemical herbicide was copper sulphate to control charlock (Sinapis 

arvensis) in oats (Cobb and Reade, 2010). Historical accounts of chemical herbicides to abet 

agricultural production dates back to the end of the 19th century where weed control using organic 

chemicals which are substances containing carbon and its derivatives, commenced in 1932 with 

the use of 4,6-dinitro-o-cresol (DNOC) as a weed-controlling agent. This was followed by 

phenoxyacetic acids such as 2, 4-D and MCPA that was introduced in 1940s (Hay, 1974). 

However, the chemical weed control in crop production was not widely put into use until the 

availability of ureas (1951), triazines (1955) and bipyridiniums (1960). From there onwards, 

agricultural production took a huge step forward in terms of production, profitability and 

minimized labor use for weed control (Van Rensen, 1989). At present, in countries where intensive 

and highly mechanized agriculture is practiced chemical weed killers have largely substituted 

mechanical means of weed control. It is projected that the reported growth in herbicide market 

worldwide between 2002 and 2011 has been 39% while the projected growth by 2016 is expected 

to be further 11% (McDougall, 2013).  
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 Herbicides contribute to crop production in a number of ways. Primarily, they help increase 

the crop yield by reducing competition by weeds, improve crop management operations during 

harvesting, reduce the risk of pest and disease outbreaks and reduce soil erosion due to reduced 

tillage, this ultimately leads to reduced fuel consumption and thus reduced emission of greenhouse 

gases. For example, a row-crop cultivator and a moldboard plow requires four times and 17 times 

more diesel fuel per unit area, respectively, than a herbicide sprayer per trip across a field 

(Gianessi, 2013). On the other hand, increased use of herbicides in turn promotes fertilizer use, 

which eventually leads to yield increases (Manda, 2011). Hence, the use of herbicides has become 

a crucial factor for worldwide increase in agricultural production. Herbicide use in the U.S. has 

contributed 20% increase in maize yields and 62% increase in soybean yields from 1964 to 1979 

(Manda, 2011; Schroder et al., 1981; Schroder et al., 1984). On the other hand, the increased use 

of herbicides has created considerable concern for human health and environment (Pacanoski, 

2007). Further research to develop new herbicide products needs to heighten emphasis on 

addressing concerns about increased use of the chemical on humans and environment and devise 

ways of mitigating the risks.  

Since the commercialization of herbicides in mid-1940s, extensive studies conducted on 

herbicide research led to discovery of a variety of modes of action for selective as well as non-

selective herbicides. Numerous herbicides representing each mode of action have been developed 

and commercialized. However, resistance development of weeds with the continuous use of 

herbicides was unavoidable, thus more advanced weed control options are needed. With the 

availability of the novel biotechnological tools in early 1980s, the major breakthrough technology 

came into picture and deployed under a variety of nomenclature such as genetically modified 

(GM), transgenic or biotech crops. Scientists in both public and private sectors embraced this 
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technology as an advanced tool which would create opportunities towards increased profits. So 

far, there is no other technique considered equivalent to this modern biotechnological approach of 

GM crops which brought about a breakthrough to weed control strategies.  

 The deployment of GM crops which was initially focused on virus resistance in tobacco 

quickly expanded to insect resistance (BT crops) and glyphosate resistance to rapidly revolutionize 

weed control in several crops. Of all GM based technologies, glyphosate resistance (roundup 

ready) technology received the greatest market and was widely deployed (Nap et al., 2003). The 

technology offered enormous advantage to the farmer by offering simple but very effective weed 

control during the entire growing season (Stein and Rodríguez-Cerezo, 2009). This was achieved 

through the exogenous gene constructs introduced into the crop that either enabled fast degradation 

of the active ingredient in the herbicide or made the target site insensitive to the herbicide, thus, 

rendering it harmless to crops carrying this construct.  Soybean was among the first 

commercialized herbicide tolerant crop in the USA (1996), which was followed by cotton 

(Gossypium spp.) (1997), maize (Zea mays) (1998) and oilseed rape (Brassica napus) (1998). After 

few years of its introduction, farmers worldwide picked up this technology basically owing to the 

numerous benefits it carries. As compared to traditional weed control strategies, this technology 

offers excellent broad spectrum weed control for a wide range of grasses including, annuals to 

perennial grasses, broad leaved weeds as well as invasive species. It offers a long-term control 

thus a single application may be sufficient to control weeds for entire season making it far more 

cost-effective than any other approach. Nevertheless, the popularity and rapid adoption of this 

technology is partly due to the characteristics of the active ingredient of the “Roundup” 

(glyphosate) herbicide itself which offers a broad spectrum control of weed in a field grown with 

Roundup-ready crops, the minimal toxicity to humans, high absorbance with no or little mobility 

https://en.wikipedia.org/wiki/Gossypium_hirsutum
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in the soil, low persistence in the soil and little or no movement from target area by factors such 

as run-off as compared to other herbicides in the market (Henderson et al., 2010).  Thus, ground 

and surface water pollution through glyphosate is limited as it is readily degradable by soil 

microbes into a non-toxic aminomethylphosphonic acid (AMPA) and carbon dioxide (Peltier et 

al., 1985). GM crop technology also offers easy plant establishment and improves harvesting 

efficiencies which in turn save labor and reduce fuel cost.  

 To date, glyphosate resistance remains the most widely adopted GM crop technology with 

90% of the all GM crops grown in the world carrying glyphosate resistant trait (Duke and Powles, 

2008). In the 16 years since its introduction, the technology is  in 29 countries worldwide (James, 

2010). Reports indicate that globally the total area cultivated to GM crops during 2013 accounted 

for about 175.2 million hectares with a recorded annual growth rate of 3%. The acreage allocated 

to GM crops in 2013 was higher by 5 million hectares than the previous year 2012 and the great 

majority of these are located in developed countries in four crops, soybean, maize, cotton and 

canola (Brief, 2013). Of the total area planted to these four crops, around 16% fall under the two 

dominating GM traits that are insect resistance and herbicide tolerance (Sateesh, 2010). In 

addition, according to the USDA's National Agricultural Statistics Service, the reported land area 

grown with GM crops in the USA included 94% of soybeans, 96% of cotton and 93% of maize 

(NASS, 2013) while no GM crop releases have been reported for sorghum yet. Conversely, biotech 

crops have not been well received in several other parts of the world including North and South 

America, owing to the consumer perception about genetic modification. On the other hand, there 

has been a major boost in adaption of this technology by developing countries and approximately 

18 million farmers worldwide contribute to GM crop production (Brief, 2013).  

https://en.wikipedia.org/wiki/Aminomethylphosphonic_acid
https://en.wikipedia.org/wiki/Carbon_dioxide
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 Encouraged by widespread adoption of the technology, seed companies have expanded 

their research horizon and are seeking to develop crop varieties into which genes conferring 

resistance to multiple non-selective herbicides are incorporated. This initiative if successfully 

deployed will bring even more flexibility to farmers in choosing herbicides and will reduce 

dependence on glyphosate which is the single most important herbicide widely used by farmers 

growing Roundup-ready crops (Duke and Powles, 2008). Moreover, the herbicide rotation that 

will be possible through this approach will help reduce selection pressure and will markedly reduce 

probability of resistance development in the weeds.  However, as any other technology, this may 

also carry its own risks and with time, a need may arise for more reliable means for preventing 

multiple resistance development in weeds.    

 

 Can sorghum benefit from resistance based weed control technology?  

 

 Exploiting herbicide resistance in sorghum 

 Considered an orphan crop (NRC, 1996), sorghum has always been either left out or never 

received full package of technological breakthroughs that benefited other crops. Soil fertility 

management, irrigation water supply, seed treatment packages, weed control practices, etc., were 

used only at half rate of that of maize or soybean or were never developed for sorghum at all. As 

a result of these and the persistent neglect on its utilization, the interest to grow sorghum has always 

been low except in areas where other crops do not fit. Thus sorghum acreage in the U.S. has 

steadily declined over the past few decades with much of the lost acreage picked up by maize 

(Smith and Frederiksen, 2000).  
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 One of the areas where sorghum trails behind other crops is weed control. Sorghum suffers 

from weed infestation as bad as any other crop. Yet not enough efforts were made by both public 

and private institutions to develop post emergence weed control tools for sorghum. The tools 

currently used are primarily adapted from related crops such as maize and none of them are 

effective against grass weeds. The two major problematic grasses that haunt sorghum fields are 

johnsongrass (Sorghum halepense (L.)  Pers.) and shattercane (Sorghum bicolor spp.) (Hoffman 

and Buhler, 2009). Both weeds cause damage to other crops as well but the peculiar morphological 

similarity of the weeds with sorghum makes them particularly important in sorghum fields.  

Johnsongrass is increasingly becoming the major weed in the southern United States (McWhorter, 

1989) which is also known in more than 58 countries throughout the world (Holm et al., 1979). 

The major morphological characteristics that make these weeds difficult to control are the 

underground vegetative propagules (rhizomes) of johnsongrass and the dormant seeds of 

shattercane (Mallory-Smith and Sanchez Olguin, 2010). It has been reported that, the major driver 

for the switch from sorghum to maize is due to a better grass weed control option that the Roundup 

technology accorded to the latter (Wishart, 2004). While sorghum has never enjoyed any post 

emergence weed control practices targeted to benefit the crop, its way towards Roundup 

technology is also discouraged by the industries that are concerned about the potential risk of 

roundup ready volunteer sorghums becoming a weed in other roundup ready crop fields. 

Development of new herbicides for sorghum is mainly challenged by the presence of wild weedy 

relatives that closely resemble sorghum both morphologically and physiologically. As a result, 

there is not a single herbicide that can be used to control grass weeds in sorghum fields without 

harming the sorghum itself. Unlike for other crops, the development of transgenic herbicide 

resistant sorghum did not attract much enthusiasm due to the possible risk of gene flow from the 

https://en.wikipedia.org/wiki/L.
https://en.wikipedia.org/wiki/Pers.
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transgenic plants to the wild and weedy relatives. There is not a genetic barrier between cultivated 

sorghum and its wild relatives, thus pollen mediated transgene escape from cultivated sorghum is 

possible if the field is close enough to wild or weedy relatives. The fact that sorghum is recalcitrant 

to tissue culture and plant regeneration makes transformation more difficult (Zhu et al., 1998). 

Though selection of the potent tissues and cultivars with better potential has eased this problem, 

the general public concern about transgenic sorghum left out the crop from capturing the benefits 

that modern science offers. With transgenic herbicide resistance being not an option, efforts over 

the last several years focused on identification of natural sources of resistance within sorghum and 

its wild relatives to develop a non-GM but resistance based weed control option for sorghum. 

Efforts to that end enabled identifying two sources with strong resistance to completely different 

herbicide chemistries. One of the sources that confer resistance to acetolactate synthase (ALS) 

inhibitor herbicides was discovered among a shattercane population in a maize field in Kansas that 

was treated with ALS herbicides (Tuinstra and Al-Khatib, 2007). The other source that provides 

resistance to Acetyl Co-enzyme-A carboxylase (ACCase) inhibitor herbicides was discovered in 

Bolivia in a sudangrass population. Both resistance traits have been effectively incorporated into 

cultivated sorghum genome, and several elite seed and pollinator parental lines possessing 

resistance to these herbicides have been developed and tested. 

 

 ALS inhibitor herbicides 

 Acetolactate synthase (EC 2.2. 1.6) which is also referred to as acetohydroxyacid synthase 

(AHAS), is the first common enzyme in the branched-chain amino acid biosynthetic pathway. It 

is a thiamin diphosphate dependent protein that acts by catalyzing reactions whose initial step is 

decarboxylation of pyruvate and condensation of 2-ketoacid molecules with pyruvate leading to 
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the formation of acetolactate and acetohydroxybutyrate, respectively (Chipman et al., 1998; 

McCourt and Duggleby, 2006). Thus, it leads to the production of three main amino acids, valine, 

leucine, and isoleucine. Encoded by nuclear genes, the ALS enzyme contains both catalytic and 

regulatory subunits (Yu et al., 2010). The enzyme once synthesized in the cytosol moves to the 

chloroplast where it involves in the biosynthesis of these three key amino acids. In order to be 

functional the transit peptide is cleaved once it enters the chloroplast (Smith et al., 1999). 

Molecular investigations have looked at interactions between ALS enzyme of Arabidopsis 

thaliana, enzyme cofactors and various ALS herbicides and elucidated that herbicide binding site 

of ALS enzyme lies deep within a channel and therefore the herbicide binds across the binding 

domain that spans the channel entry blocking substrate access to the catalytic site (McCourt and 

Duggleby, 2006).  

ALS acts as the common target site for five different herbicide chemistries which involves 

sulfonylurea, imidazolinone, triazolopyrimidine, pyrimidinyl-thiobenzoates, and sulfonyl-

aminocarbonyl-triazolinones (Powles and Yu, 2010; Yu et al., 2010). Thus, there is also evidence 

of overlapping between the binding sites for sulfonylurea and imidazolinone (McCourt et al., 

2005).  The first commercialized sulfonylurea herbicide, chlorosulfuron came in to the market in 

early 1980s followed by the introduction of the first imidazolinone, imazaquin which was 

recommended for soybeans. The capability of the ALS inhibitor herbicides to offer a broad 

spectrum control of weed species that commonly interfere with crops at very low use rates 

(Kershner, 2010) coupled with its very low mammalian toxicity (Brown, 1990; Newhouse et al., 

1991) have triggered intensive use of ALS herbicide chemistries in many different crops over huge 

land areas. Additionally, ALS herbicides demonstrate excellent crop safety over a wide range of 

crop growth stages while they do not pose a considerable risk to human health. 
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 Resistance to ALS inhibitor herbicides 

 For nearly three decades, ALS inhibiting herbicides have been in widespread commercial 

use in global agriculture. There are several reports on resistance development in weeds due to the 

persistent use of ALS inhibitor herbicides (Tardif et al., 2006; Tranel et al., 2004; Warwick et al., 

2008). In circumstances where weeds evolved resistance, target site resistance is the most 

predominant type which occurs due to one or more specific point mutations in the ALS gene. The 

resistance conferring amino acid substitutions give rise to structural changes in the ALS protein 

leading to effective prevention of herbicides binding to the protein (Duggleby et al., 2008; 

McCourt and Duggleby, 2006).  To date, a total of 22 mutations conserved at seven amino acid 

residues have been identified to confer resistance to ALS-inhibitor herbicides in a number of weed 

biotypes (Powles and Yu, 2010; Tranel and Wright, 2002; Tranel et al., 2004; Yu et al., 2010).  

These mutations occurred at alanine 122 (Ala122), proline 197 (Pro197), alanine 205 (Ala205), 

aspartate 376 (Asp376), tryptophan 574 (Trp574), serine 653 (Ser653), and glycine 654 (Gly654) 

(Ashigh and Tardif, 2009; Délye et al., 2009; Imaizumi et al., 2008; Kolkman et al., 2004; Laplante 

et al., 2009; Patzoldt et al., 2001; Patzoldt and Tranel, 2009; Powles and Yu, 2010; Sales et al., 

2008; Tranel and Wright, 2002; Warwick et al., 2010). Among these, Trp574 substitutions grant 

strong resistance to both sulfonylurea and imidazolinone herbicides (Duggleby et al., 2008; Tranel 

and Wright, 2002). Table 1.1 presents summary of the ALS herbicide resistance mutations found 

in different weed species under natural conditions. Based on the results of the international survey 

conducted during 1995/1996, 33 ALS inhibitor herbicide resistant biotypes have been reported in 

11 different countries (Heap, 2016).   

Resistance mutations are common among cultivated crops as well. Spontaneous mutations 

followed by selection for ALS resistance  have resulted in identification of ALS resistant variants 
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in maize (Zea mays L), wheat (Triticum aestivum L), rice (Oryza sativa L), oilseed rape (Brassica 

napus L) and sunflower (Helianthus annuus L) eventually resulting in development and 

commercialization of cultivars of these crops that are resistant to ALS inhibitor herbicides (Al-

Khatib and Miller, 2000; Bernasconi et al., 1995; Gealy et al., 2003; Newhouse et al., 1991; Shaner 

et al., 1996; Swanson et al., 1989; Tan et al., 2005).  Furthermore, few other crops that have been 

identified as prospective for the development of ALS resistant trait include sugarbeet (Beta 

vulgaris L), cotton (Gossypium hirsutum L), soybean (Glycine max (L) Merr), lettuce (Lactuca 

sativa L), tomato (Lycopersicon esculentum Mill.) and tobacco (Nicotiana tabacum L) (Tan et al., 

2005). While non-target-site resistance to ALS inhibitor herbicides is also found, the resistance is 

mainly endowed via enhanced rates of herbicide metabolism often involving P450 (Yu and 

Powles, 2014). 

 

 ACCase inhibitor herbicides 

 The other major herbicide for which resistant sorghums are being developed is the Acetyl-

Coenzyme-A Carboxylase (ACCase) inhibitor herbicides. ACCase is an enzyme involved in the 

first step de novo lipid biosynthesis that occurs in the chloroplast stroma (Page et al., 1994). It is 

a high molecular weight, multifunctional protein that carries three distinct functional regions.  

ACCase inhibitors mainly act by inhibiting the chloroplastic ACCase and preventing the synthesis 

of fatty acids (Délye, 2005). This limits cell growth and disrupts the cell membrane integrity 

allowing metabolite leakage followed by rapid plant death. ACCase inhibitors were introduced to 

the market in the late 1970s (Heap, 1997). Two important families of herbicides belonging to 

ACCase inhibitors are aryloxyphenoxypropionates (APPs) and cyclohexanediones (CHDs). Both 

these families exhibit effective grass weed control with concurrent safety to broadleaf crops and 
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thus have been used extensively for controlling many monocotyledoneous species since their 

introduction in mid 1970s. During 2006, another chemical family which is phenylpyrazoline (PPZ) 

was introduced to this group with the herbicide pinoxaden (Hofer et al., 2006). Though all these 

herbicides are structurally different (Délye, 2005) their biochemical activity with regards to 

inhibiting the ACCase enzyme is similar (Hamdani, 2013). They all act through inhibiting 

chloroplastic ACCase thus averting the synthesis of fatty acids (Délye, 2005) which may lead to 

restricted cell growth and concession of cell membrane integrity and eventually plant death.  

 

 Resistance to ACCase inhibitor herbicides 

 Like the ALS, several resistance developments to ACCase inhibiting herbicides have been 

reported in several species. The first report of resistance to ACCase came just five years after the 

release of APP and CHD herbicides (Heap, 2016). It appears that several mutations at different 

locations of the ACCase gene are capable of conferring resistance. Mutations conferring resistance 

in wild oats were shown to have resulted from five amino acid substitutions; Ile-1,781 to Leu, Trp-

1,999 to Cys, Trp-2,027 to Cys, Ile-2,041 to Asn, and Asp-2,078 to Gly. One of these substitutions, 

Ile-1,781 to Leu was known to grant resistance to both group of ACCase inhibitor herbicides (APPs 

and CHDs) in wheat (Liu et al., 2007). At the same time, though mechanistic basis was not 

characterized, there are several reports on non-target-site resistance to ACCase inhibitor herbicides 

which may be due to enhanced capacity to metabolize herbicides (Délye et al., 2007). According 

to the 1995/1996 international survey on herbicides resistant weeds, about 13 ACCase inhibitor 

herbicide resistant biotypes have been reported in 11 different countries (Heap, 2016).   
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 The ALS and ACCase inhibitor herbicide resistance mutations in sorghum 

 Genetic segregation studies for resistance to ALS inhibitor herbicides have shown that 

resistance is controlled by one major locus and two modifier loci (Tuinstra and Al-Khatib, 2007). 

Efforts to identify the DNA sequence of the sorghum ALS gene had been carried out via aligning 

the DNA sequence reads of the ALS resistant sorghums to the amino acid residues corresponding 

to the Arabidopsis thaliana AHAS gene (GenBank accession X51514). The only sequence close 

to the A. thaliana AHAS gene reported in the sorghum genome is the Sb04g020680 which is 

reported to have two exons separated by an intron (Kershner, 2010). Based on the DNA sequencing 

results, the resistant ALS gene has been identified to carry two point mutations at Val-560 and 

Trp-574 which converted these residues into isoleucine and leucine, respectively. Val-560 is a 

non-factor mutation where residue 560 is not conserved and is of unknown importance, however, 

Trp-574 is a conserved residue where its mutated form (Leu-574) is known to provide strong cross 

resistance to both sulfonylurea and imidazolinone herbicides (Yu and Powles, 2014). 

 As reported in other species, the ACCase herbicide resistance was reported in wild relatives 

of sorghum as well. The most stable resistance source reported to date is the one discovered in 

Sudangrass population in Bolivia. A further greenhouse evaluation and dose response studies have 

indicated that this source is highly stable at a very high application rates which was later confirmed 

under multiple environments in the field. Genetic segregation studies on resistance to APP 

herbicides from this source provided strong evidence for a single major gene providing ACCase 

herbicide resistance. Although APP and/or CHD herbicide resistance is known to be associated 

with multiple mutation sites in the carboxyl transferase domain of the ACCase gene (Délye, 2005), 

sequence analysis of the resistance gene in wild sorghum identified a single causal mutation that 

rendered the substitution of amino acid tryptophan to cysteine (Trp-2027-Cys) in the ACCase 
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gene. This mutation is previously known to provide resistance to APPs but not to CHDs (Kershner, 

2010). This mutation located in the sorghum gene Sb06g003090 closely corresponded with the 

amino acid residue 2027 of ACCase gene in A. myosuroides (GenBank accession AJ310767).  

 

Table 1.1. Major point mutations conferring resistance to ALS inhibitor herbicides in crop 

plants. 

  

Amino Acid 

Position 
Resistance Substitution 

Reported 

Resistance 
Source 

Alanine-122 Threonine/Tyrosine IM (Powles and Yu, 2010) 

Proline-197 
Methionine/Lysin/ 

Typtophan 
SU 

(Délye et al., 2009; Kolkman et al., 

2004; Warwick et al., 2008) 

 

Alanine-205 Val IM 
(Ashigh and Tardif, 2009; Kolkman 

et al., 2004; Powles and Yu, 2010) 

Aspartate-376 Glu SU and IM (Imaizumi et al., 2008) 

Tryptophan-574 Leu SU and IM 
(Patzoldt et al., 2001; Patzoldt and 

Tranel, 2009; Warwick et al., 2010) 

Serine-653 
Threonie/Asparagine/ 

Isoleucine 
IM (Laplante et al., 2009) 

Glycine-654 Glutamine/Asparagine IM 
(Laplante et al., 2009; Sales et al., 

2008) 
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 Potential risks associated with deployment of herbicide resistance in crop 

plants  

 The use of any technology or product has risks associated with it. The risk level should be 

determined and weighed against the benefits before such products are made accessible for general 

public use. Deployment of herbicide resistant genes in every crop has certain level of risk and so 

is with sorghum. Since there is no herbicide resistant commercial sorghum on the market yet, risks 

associated with the technology is not known. However, based on the biology of the crop and 

experience from other crops, there are certain level of risks anticipated with the deployment of 

herbicide resistant traits in the crop. Some of the potential risk factors commonly raised by 

sorghum stakeholders include environmental risk from expanded use of the chemicals, yield drag 

associated with the resistance mutation, resistant development in weeds, and escape of the 

resistance gene (gene flow) to wild and weedy relatives. These risk factors should not be 

considered minor and appropriate stewardship mechanisms need to be in place to mitigate the risks 

or prevent them from happening.  

 

 Environmental risk 

 Even though a substantial benefit can be gained through the use of herbicides to control 

unwanted vegetation in crop fields, herbicide application on crops pose certain risks to the 

environment (Fletcher et al., 1993; Madsen and Streibig, 2003). Important risks may arise due to 

the direct toxic effect of certain herbicides on humans during chemical application process or may 

affect both humans and wildlife alike through indirect exposure such as through drift and water 

contaminations. Generally there are two ways by which herbicide use due to the introduction of 

herbicide resistant crops may increase environmental risks. The first is that herbicide resistant 
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crops may enable farmers to use herbicides on their crops by adding more chemicals to 

environment. The second reason is the issue of development of resistant weeds which may compel 

farmers to use increased doses of herbicides on the crop fields in order to suppress the resistant 

weeds (Madsen and Streibig, 2003). On the other hand, there can also be several indirect effects 

that include inadvertent damages occurring on the sprayed site as well as offsite. The change in 

vegetation caused due to spraying of the herbicide may alter the habitat of animals such as birds 

and mammals which leads to disruption of biodiversity, particularly in the areas near natural 

vegetation (Taylor et al., 2006). Herbicides sprayed using a tractor or an aircraft  may frequently 

deposit the chemicals on sites beyond the intended spray zone mainly due to drift (Marrs et al., 

1989). This may also bring unintended damages to the vegetation.  Therefore, a lot of controversy 

does exist with considerable amount of negative opinions about the broadcast spraying of 

herbicides.  

 In the past few decades, the amount of chemical applied to obtain weed control has been 

significantly reduced and this may be cited as one of the major successes of the GM industry in 

the recent decades. Some of this reduction amounts from kilograms to grams of active ingredients 

per hectare. But it is not clear how much contribution this may have in terms of reducing potential 

risks. It appears that reduction in the amount should be coupled with other properties of the 

chemical such as interaction with soils and low persistence in order to reduce risks.  

 

 Development of resistance in weeds 

 Modern crop production is heavily reliant on herbicide use. This has tremendously 

increased in recent years perhaps due to the no till production option that the use of herbicides 

offer which in turn was acclaimed for its perceived positive role in protecting soil erosion and 

http://science.jrank.org/pages/167/Aircraft.html
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minimizing energy use (Papendick and Parr, 1997). Although herbicides offer great flexibility in 

crop weed management acting as an integral part of the agricultural systems for more than 30 

years, it also poses the potential risk of selection for herbicide resistant weeds (Heap, 2016). In 

crop production system based on chemical weed control, the susceptible weeds are killed due to 

the herbicide effect while weed plants resilient to herbicides may survive and produce seed (Prather 

et al., 2000). Repeated occurrence of this process would lead to shift of weed population resulting 

in the buildup of hard-to-control weeds. This phenomenon will eventually result in a situation 

where the weeds will no longer respond to herbicide application. The International Survey of 

Herbicide Resistant Weeds  recorded 388 unique cases of herbicide-resistant weeds  in 210 

different species (Heap, 2016). However, due to the reliability that herbicides offer as a tool for 

weed management, herbicides are likely to remain as the most effective weed management option. 

But if not managed with proper attention and vigilance, herbicides can worsen the weed problem 

by increasing the population of resistant weeds. Herbicide resistance occurs either due to genetic 

mutations that are induced by the herbicide effect itself or shifts that occur in weed biotypes 

(Prather et al., 2000) both of which can occur as a result of improper use of a rather effective 

herbicide.   

 The continuous buildup of resistant weed populations against a particular herbicide renders 

the herbicide ineffective and will eventually lead to termination of its use.  In order to overcome 

this, researchers have come up with alternative weed control strategies that would prolong the field 

life of herbicides. Many of such strategies advocate for integrated weed management which 

involved combined or sequential deployment of several control options including biological 

control agents, use of allelopathy, mulching, cover crops, manipulation of the soil fertility, crop 

rotation and rotation of herbicides of different mode of action (Buhler, 2009; Swanton et al., 2009). 
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Combination of these techniques with chemical herbicides would provide effective and sustainable 

control of weeds, delay or prevent development of resistant weeds thereby ensuring long term use 

of the herbicides.  

 

 Gene flow 

 Increasing popularity of herbicide resistant crops has created widespread concern about the 

resistant gene escaping from cultivated fields to the wild relatives. Gene flow through pollen has 

been documented in both traditional and transgenic herbicide resistant crops (Ellstrand, 2003; 

Rieger et al., 2002). Under a typical situation where pollen mediated gene flow is likely, the wild 

relative receives a resistant gene which was naturally absent in the wild population, resulting in 

rapid replacement of the wild type allele in the weeds by resistant allele eventually creating 

herbicide resistant weeds (Haygood et al., 2003). A field investigation in Canada has reported the 

presence of crop seed residue of oilseed rape with multiple herbicide-resistance in an area where 

oilseed rape with resistance to different herbicides had been grown on neighboring fields (Hall et 

al., 2009).   

Sorghum is not immune to such conflict between technology and nature. In fact when the 

relative abundance of wild and weedy relatives that do not seem to have genetic barriers with 

cultivated sorghum is high, the risk of pollen mediated gene flow from sorghum crop to wild 

relatives is likely. Several reports indicated evidence for hybridization between cultivated sorghum 

and different species of wild relatives under experimental conditions (Arriola and Ellstrand, 1996; 

Paterson et al., 1995). Therefore, the deployment of herbicide resistant sorghum should weigh in 

to such risks and put forward effective educational programs and stewardship mechanisms to 

prevent unwanted spread of the resistance gene.   
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In addition to the risk of pollen mediated resistance gene escape, the increased use of 

herbicide resistant crops raised significant concern about herbicide-resistant crops themselves 

becoming resistant weeds in other crop fields. It is very common to see Roundup-ready maize 

growing as volunteers (weeds) in soybean fields throughout the mid-west.  

 

 Next generation sequencing (NGS) platforms and gene expression analysis 

 Genetic variability observed at the DNA sequence level is the causal factor for changes in 

gene expression which leads to phenotypic variability in individuals. The very first investigation 

on rapid determination of DNA sequence was published in 1970's by Fred Sanger and Alan 

Coulson (Sanger and Coulson, 1975; Sanger et al., 1977). This technique ascribed as Sanger 

sequencing method, involves DNA sequencing based on the selective incorporation of di-

deoxynucleotides by DNA polymerase during in vitro DNA replication that causes a chain-

termination reaction (Sanger et al., 1977). Sanger sequencing remained the only method used for 

DNA sequencing for almost 30 years following its invention. However, owing to the 

unprecedented developments in the past decade primarily driven by the interest to understand and 

manipulate human genome, numerous high throughput sequencing technologies have been 

developed. Such developments essentially included laboratory automation and parallelization of 

processes and significant cost reduction leading to the establishment of sequencing facilities in 

several public institutions to accommodate the growing interest in human, animal and plant 

functional genomic studies.  

The power of NGS along with novel molecular tools have also enabled gene expression 

profiling. Just like DNA sequencing technology, gene expression profiling also evolved overtime 

growing both in accuracy and depth in terms of number of genes that can be investigated at a time. 

https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/DNA_polymerase
https://en.wikipedia.org/wiki/In_vitro
https://en.wikipedia.org/wiki/DNA_replication
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The very first gene expression profiling method, microarray technology, relied on DNA 

hybridization. Hybridization-based techniques involve incubation of fluorescently labeled cDNA 

with custom-made or commercial high-density oligo microarrays. These hybridization-based 

approaches are high throughput and fairly low cost, however, these techniques offered limited 

capacity to obtain the complete set of transcripts representing expressed RNA molecules at a given 

condition due to its heavy reliance upon the existing knowledge about the organism's genome 

sequence and possible cross-hybridization (Okoniewski and Miller, 2006; Royce et al., 2007). On 

the other hand, depending on the nature of the experiment, the expression level comparisons 

between experiments can require complicated normalization methods. The most recent sequence-

based approaches provide a better alternative to the hybridization based gene expression analysis. 

The first sequencing-based high-throughput method for gene expression analysis is called Serial 

Analysis of Gene Expression (SAGE). This was followed by Massively Parallel Signature 

Sequencing (MPSS) (Chu and Corey, 2012; Morin et al., 2008) which employs a series of 

considerably different biochemical and sequencing steps. These techniques which were, however, 

less popular as compared to microarrays were followed by NGS technologies that revolutionized 

sequence oriented molecular research. Owing to their exceptional level of sensitivity and high-

throughput nature, NGS technologies have become the method of choice for gene expression 

analysis (Ozsolak and Milos, 2011; Wang et al., 2009). To date, the power of NGS technologies 

together with novel molecular biological and computational tools have allowed researchers to 

conduct gene expression profiling at an unprecedented pace and scale. Thus, NGS technologies 

have been gaining popularity in the scientific research arena through enabling researchers to 

answer several biological questions relating to the transcriptional complexity of organisms’ 

genomes that were never possible before. However, there is limited research conducted on plant 
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transcriptomes as compared to human and animal research but this too have shown a significant 

boost in the recent past.  

 

 RNA sequencing (RNA-seq) 

 RNA-seq is a widely used high-throughput deep sequencing technology that allows deep 

sampling of the transcriptome of an organism at a specific time point (Chu and Corey, 2012). To 

date, this technology has gained enormous popularity in the scientific community that deal with 

functional genomics. The transcriptome is the complete set of expressed transcripts in a cell of an 

organism. Therefore, a complete interpretation and understanding of the functional elements of the 

genome that is associated with a certain phenotype requires detailed analysis and understanding of 

the transcriptome. RNA-seq combined with appropriate bioinformatics tools can provide a better 

approach to study gene expression profiles of organisms under different biological conditions. 

Several published studies based on RNA-seq technique attest to the power of the technique for 

studying gene expression dynamics over the microarray technique (Garg et al., 2011; Morozova 

et al., 2009; Weber et al., 2007). Nevertheless, this technique is still under active development and 

has capacity to improve.  

 Typically, the workflow involved in an RNA-seq experiment requires isolation of mRNA 

from the extracted total RNA which is then converted to libraries of complementary DNA (cDNA) 

fragments with attached adaptors.  Each cDNA library is then sequenced on a high-throughput 

NGS platform to obtain millions of short sequences from one end (single-end sequencing) or both 

ends (pair-end sequencing). The length of these sequence reads could generally range from 30–

400 bp depending on the sequencing platform used. For the sequencing step in a regular RNA-seq 

experiment, any high-throughput sequencing technology such as Illumina IG and Life Ion Torrent 
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can be used. Figure 1 provides a simplistic summary of how gene expression profiling experiment 

is conducted.   

 

RNA-seq in sorghum 

 The recently completed whole genome sequence and comprehensive annotation of the 

sorghum genome in 2009 (Paterson et al., 2009) along with the developments in functional 

genomics resources have played a key role in deployment of RNA-seq technology for sorghum. 

Introduced in 2009, RNA-seq technology (Wang et al., 2009) was rapidly taken up by the scientific 

community. However,  animal research that applied RNA-seq technology took precedence over 

plant studies and was largely used in medical research (Feng et al., 2013; Martens-Uzunova et al., 

2014; Miyamoto et al., 2015; Oshlack et al., 2010; Raghavachari et al., 2012; Ren et al., 2012). 

The very first study on transcriptome profiling in sorghum appeared in 2011 which focused on 

revealing the transcriptional changes associated with adaptations and plant responses under abiotic 

and biotic stresses (Dugas et al., 2011). This investigation which involved RNA-seq of plants 

subjected to abscisic acid (ABA) or polyethylene glycol treatments at different developmental 

stages was able to discover more than 50 gene orthologs that associate with plant drought response 

and are in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis. 

Another study on comparison of transcriptomes between nitrogen stress tolerant and sensitive 

sorghum genotypes revealed several common differentially expressed genes that showed higher 

expression levels in tolerant genotypes (Gelli et al., 2014). Sorghum RNA-seq study linked to a 

sorghum disease condition included the transcriptomic analysis of sorghum infected by the fungus 

Bipolaris sorghicola which elucidated high resolution expression information on plant responses 

to pathogens (Yazawa et al., 2013) while a different study on genes responsible for the gradual 
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variation of colors in sorghum leaves infected with B. sorghicola revealed  a flavonoid 3′-

hydroxylase gene on chromosome 4 to have likely caused the observed variability (Mizuno et al., 

2014).  However, many of these studies show the need of further proteomics studies in sorghum 

due to the considerable number of the differentially expressed genes being currently annotated as 

proteins that are either predicted, similar to expressed or putative uncharacterized (Dugas et al., 

2011). Thus, sorghum transcriptome analysis carries much potential as a powerful impetus towards 

mining the genetic causes underlying numerous abnormal conditions that occur within the 

sorghum genome. 

 

 

Figure 1.1. A simplistic summary of a gene expression analysis experiment using RNA-seq. 

 

 

 

 

 



31 

 

 References 

Al-Khatib, K., and J. F. Miller. 2000. Registration of four genetic stocks of sunflower resistant to 

imidazolinone herbicides. Crop science 40: 869-869. 

 

Arriola, P.E., and N.C. Ellstrand. 1996. Crop-to-weed gene flow in the genus sorghum 

(poaceae): Spontaneous interspecific hybridization between johnsongrass, sorghum 

halepense, and crop sorghum, S. bicolor. Am. J. Bot. 1153-1159.  

 

Ashigh, J., and F. Tardif. 2009. An amino acid substitution at position 205 of acetohydroxyacid 

synthase reduces fitness under optimal light in resistant populations of solanum 

ptychanthum. Weed Res. 49:479-489.  

 

Avery, D. 1997. Saving the planet with pesticides, biotechnology and european farm reform. 

volume 1.  

 

Awika, J.M., and L.W. Rooney. 2004. Sorghum phytochemicals and their potential impact on 

human health. Phytochemistry 65:1199-1221.  

 

Brief, I. S. A. A. A. 2013. Brief 46-2013: Executive summary. Global Status of Commercialized 

Biotech/GM Crops.  

 

Brown, H.M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea 

herbicides. Pestic. Sci. 29:263-281.  

 

Buhler, D.D. 2009. 50th Anniversary—Invited article: Challenges and opportunities for 

integrated weed management.  

 

Chahal, P.S., and A.J. Jhala. 2015. Herbicide programs for control of glyphosate-resistant 

volunteer corn in glufosinate-resistant soybean. Weed Technol. 29:431-443.  

 

Chipman, D., Z. Barak, and J.V. Schloss. 1998. Biosynthesis of 2-aceto-2-hydroxy acids: 

Acetolactate synthases and acetohydroxyacid synthases. Biochimica Et Biophysica Acta 

(BBA)-Protein Structure and Molecular Enzymology 1385:401-419.  

 

Chu, Y., and D.R. Corey. 2012. RNA sequencing: Platform selection, experimental design, and 

data interpretation. Nucleic Acid Therapeutics 22:271-274.  

 

Cobb, A.H., and J.P. Reade. 2010. Herbicide discovery and development. Herbicides and Plant 

Physiology, Second Edition, Second Edition 27-49.  

 

Crop Production Annual Summary 2013, National Agricultural Statistical Service (NASS), 

USDA.  

 



32 

 

Délye, C., K. Boucansaud, F. Pernin, and V. Le Corre. 2009. Variation in the gene encoding 

acetolactate‐synthase in lolium species and proactive detection of mutant, herbicide‐resistant 

alleles. Weed Res. 49:326-336.  

 

Délye, C. 2005. Weed resistance to acetyl coenzyme A carboxylase inhibitors: An update. Weed 

Sci. 53:728-746.  

 

Délye, C., Y. Menchari, J. Guillemin, A. Matéjicek, S. Michel, C. Camilleri, and B. Chauvel. 

2007. Status of black grass (alopecurus myosuroides) resistance to acetyl-coenzyme A 

carboxylase inhibitors in france. Weed Res. 47:95-105.  

 

Dendy, D. 1995. Sorghum and the millets: Production and importance in sorghum and millets 

chemistry and technology. american association of cereal chemists. Inc., St.Paul, MN.USA.  

 

Dugas, D.V., M.K. Monaco, A. Olsen, R.R. Klein, S. Kumari, D. Ware, and P.E. Klein. 2011. 

Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress 

and abscisic acid. BMC Genomics 12:514-2164-12-514.  

 

Duggleby, R.G., J.A. McCourt, and L.W. Guddat. 2008. Structure and mechanism of inhibition 

of plant acetohydroxyacid synthase. Plant Physiology and Biochemistry 46:309-324.  

 

Duke, S.O., and S.B. Powles. 2008. Glyphosate: A once‐in‐a‐century herbicide. Pest Manag. Sci. 

64:319-325.  

 

Ellstrand, N.C. 2003. Current knowledge of gene flow in plants: Implications for transgene flow. 

Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358:1163-1170.  

 

Fao. 1972. Improvement and production of maize, sorghum and millets. Roma (Italia). FAO.  

 

Feng, H., Z. Qin, and X. Zhang. 2013. Opportunities and methods for studying alternative 

splicing in cancer with RNA-seq. Cancer Lett. 340:179-191.  

 

Fletcher, J.S., T.G. Pfleeger, and H.C. Ratsch. 1993. Potential environmental risks associated 

with the new sulfonylurea herbicides. Environ. Sci. Technol. 27:2250-2252. 

  

Garg, R., R.K. Patel, S. Jhanwar, P. Priya, A. Bhattacharjee, G. Yadav, S. Bhatia, D. 

Chattopadhyay, A.K. Tyagi, and M. Jain. 2011. Gene discovery and tissue-specific 

transcriptome analysis in chickpea with massively parallel pyrosequencing and web 

resource development. Plant Physiol. 156:1661-1678.  

 

Gelli, M., Y. Duo, A.R. Konda, C. Zhang, D. Holding, and I. Dweikat. 2014. Identification of 

differentially expressed genes between sorghum genotypes with contrasting nitrogen stress 

tolerance by genome-wide transcriptional profiling. BMC Genomics 15:1.  

 

Gianessi, L.P. 2013. The increasing importance of herbicides in worldwide crop production. Pest 

Manag. Sci. 69:1099-1105.  



33 

 

Hall, L., K. Topinka, J. Huffman, L. Davis, and A. Good. 2009. Pollen flow between herbicide-

resistant brassica napus is the cause of multiple-resistant B. napus volunteers1. Weed 

science 48: 688-694. 

 

Hamdani, M.S.A. 2013. Biochemical and Molecular Basis of Resistance to ACCase-Inhibiting 

Herbicides in Wild Oat (Avena spp.) Populations in the Western Australian Grain Belt.  

 

Hamman, L., K.C. Dhuyvetter, and M. Boland. 2001. Economic issues with grain sorghum. 

Agricultural Experiment Station and Cooperative Extension Service, Kansas State 

University.  

 

Hay, J. 1974. Gains to the grower from weed science. Weed Sci.439-442.  

 

Haygood, R., A.R. Ives, and D.A. Andow. 2003. Consequences of recurrent gene flow from 

crops to wild relatives. Proc. Biol. Sci. 270:1879-1886.  

 

Heap, I.  The International Survey of Herbicide Resistant Weeds.  Available online 

at www.weedscience.org. Accessed [08/07/2016]. 

 

Heap, I.M. 1997. The occurrence of herbicide‐resistant weeds worldwide. Pestic. Sci. 51:235-

243. 

 

Hofer, U., M. Muehlebach, S. Hole, and A. Zoschke. 2006. Pinoxaden-for broad spectrum grass 

weed management in cereal crops. zeitschrift fur pflanzenkrankheiten und pflanzenschutz-

sonderheft- 20:989.  

 

Hoffman, M.L., and D.D. Buhler. 2009. Utilizing sorghum as a functional model of crop–weed 

competition. I. establishing a competitive hierarchy. Weed Science 50: 466-472. 

 

Holm, L., J.V. Pancho, J.P. Herberger, and D.L. Plucknett. 1979. A geographical atlas of world 

weeds. John Wiley and Sons.  

 

Henderson, A. M., Gervais, J. A., Luukinen, B., Buhl, K., Stone, D. 2010. Glyphosate General 

Fact Sheet; National Pesticide Information Center, Oregon State University Extension 

Services. Available online at http://npic.orst.edu/factsheets/glyphogen.html. Accessed 

[07/22/2016]. 

 

Imaizumi, T., G. Wang, T. Ohsako, and T. Tominaga. 2008. Genetic diversity of sulfonylurea‐
resistant and‐susceptible monochoria vaginalis populations in japan. Weed Res. 48:187-196.  

 

James, C. 2010. Global status of commercialized biotech/GM crops: 2010. International Service 

for the Acquisition of Agri-biotech Applications (ISAAA) Ithaca, NY, USA.  

 

Kershner, K.S. 2010. Herbicide Resistance in Grain Sorghum.  

 



34 

 

Kershner, K. S., K. Al-Khatib, K. Krothapalli and M.R. Tuinstra 2012. Genetic resistance to 

acetyl-coenzyme A carboxylase-inhibiting herbicides in grain sorghum. Crop science, 52(1), 

64-73. 

 

Khalil, S.R., A. Abdelhafez, and E. Amer. 2015. Evaluation of bioethanol production from juice 

and bagasse of some sweet sorghum varieties. Annals of Agricultural Sciences. 

  

Kolkman, J.M., M.B. Slabaugh, J.M. Bruniard, S. Berry, B.S. Bushman, C. Olungu, N. Maes, G. 

Abratti, A. Zambelli, and J.F. Miller. 2004. Acetohydroxyacid synthase mutations 

conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor. Appl. 

Genet. 109:1147-1159.  

 

Kostov, T., and Z. Pacanoski. 2007. Weeds with major economic impact on agriculture in 

republic of macedonia. Pak.J. Weed Sci.Res 13:227-239.  

 

Laplante, J., I. Rajcan, and F.J. Tardif. 2009. Multiple allelic forms of acetohydroxyacid synthase 

are responsible for herbicide resistance in setaria viridis. Theor. Appl. Genet. 119:577-585.  

 

Liu, W., D.K. Harrison, D. Chalupska, P. Gornicki, C.C. O'donnell, S.W. Adkins, R. Haselkorn, 

and R.R. Williams. 2007. Single-site mutations in the carboxyltransferase domain of plastid 

acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc. Natl. Acad. Sci. 

U. S. A. 104:3627-3632.  

 

Lux, A., M. Luxová, T. Hattori, S. Inanaga, and Y. Sugimoto. 2002. Silicification in sorghum 

(Sorghum bicolor) cultivars with different drought tolerance. Physiol. Plantarum 115:87-92. 

  

Madsen, K., and J. Streibig. 2003. Benefits and risks of the use of herbicide-resistant crops. FAO 

Plant Production and Protection Paper (FAO).  

 

Mallory-Smith, C.A., and E. Sanchez Olguin. 2010. Gene flow from herbicide-resistant crops: 

Itʼs not just for transgenes. J. Agric. Food Chem. 59:5813-5818.  

 

Manda, P. 2011. Evaluation report on the impact of spray service technology uptake on small-

scale farmer livelihoods in zambia. CARE, Zambia.  

 

Marrs, R., C. Williams, A. Frost, and R. Plant. 1989. Assessment of the effects of herbicide spray 

drift on a range of plant species of conservation interest. Environmental Pollution 59:71-86.  

 

Martens-Uzunova, E.S., R. Böttcher, C.M. Croce, G. Jenster, T. Visakorpi, and G.A. Calin. 

2014. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur. Urol. 65:1140-

1151.  

 

McCourt, J., and R. Duggleby. 2006. Acetohydroxyacid synthase and its role in the biosynthetic 

pathway for branched-chain amino acids. Amino Acids 31:173-210.  

 



35 

 

McCourt, J., S. Pang, J. King-Scott, L. Guddat and R. Duggleby. 2005. Overlapping sulfonylurea 

and imidazolinone herbicide binding sites in arabidopsis thaliana acetohydroxyacid 

synthase. p. Abstract. In Overlapping sulfonylurea and imidazolinone herbicide binding 

sites in arabidopsis thaliana acetohydroxyacid synthase. East coast protein meeting, 2005.  

 

McDougall, P. 2013. R&D trends for chemical crop protection products and the position of the 

european market. Phillips McDougall Ltd, Suite 2.  

 

McWhorter, C.G. 1989. History, biology, and control of johnsongrass. Reviews of Weed Science 

(USA).  

 

Miyamoto, D.T., Y. Zheng, B.S. Wittner, R.J. Lee, H. Zhu, K.T. Broderick, R. Desai, D.B. Fox, 

B.W. Brannigan, and J. Trautwein. 2015. RNA-seq of single prostate CTCs implicates 

noncanonical wnt signaling in antiandrogen resistance. Science 349:1351-1356.  

 

Mizuno, H., T. Yazawa, S. Kasuga, Y. Sawada, J. Ogata, T. Ando, H. Kanamori, J. Yonemaru, J. 

Wu, M.Y. Hirai, T. Matsumoto, and H. Kawahigashi. 2014. Expression level of a flavonoid 

3'-hydroxylase gene determines pathogen-induced color variation in sorghum. BMC Res. 

Notes 7:761-0500-7-761.  

 

Morin, R.D., M. Bainbridge, A. Fejes, M. Hirst, M. Krzywinski, T.J. Pugh, H. McDonald, R. 

Varhol, S.J. Jones, and M.A. Marra. 2008. Profiling the HeLa S3 transcriptome using 

randomly primed cDNA and massively parallel short-read sequencing. BioTechniques 

45:81.  

 

Morozova, O., M. Hirst, and M.A. Marra. 2009. Applications of new sequencing technologies 

for transcriptome analysis. Annual Review of Genomics and Human Genetics 10:135-151. 

  

Nap, J., P.L. Metz, M. Escaler, and A.J. Conner. 2003. The release of genetically modified crops 

into the environment. The Plant Journal 33:1-18.  

 

National Research Council (US). Board on Science, and Technology for International 

Development, eds. Lost Crops of Africa: Volume I: Grains. Vol. 1. National Academy 

Press, 1996. 

 

Newhouse, K., T. Wang, and P. Anderson. 1991. Imidazolinone-tolerant crops. The 

Imidazolinone Herbicides.Boca Raton, FL: CRC139-150.  

 

Okoniewski, M.J., and C.J. Miller. 2006. Hybridization interactions between probesets in short 

oligo microarrays lead to spurious correlations. BMC Bioinformatics 7:276.  

 

Oshlack, A., M.D. Robinson, and M.D. Young. 2010. From RNA-seq reads to differential 

expression results. Genome Biol. 11:220.  

Ozsolak, F., and P.M. Milos. 2011. RNA sequencing: Advances, challenges and opportunities. 

Nature Reviews Genetics 12:87-98.  

 



36 

 

Pacanoski, Z. 2007. Herbicide use: Benefits for society as a whole-a review. Pakistan Journal of 

Weed Science Research 13:135-147.  

 

Papendick, R., and J. Parr. 1997. No-till farming: The way of the future for a sustainable dryland 

agriculture. Annals of Arid Zone 36:193-208.  

 

Parthasarathy Rao, P., and G. Basavaraj. 2015. Status and prospects of millet utilization in india 

and global scenario. 197-209. 

 

Paterson, A.H., J.E. Bowers, R. Bruggmann, I. Dubchak, J. Grimwood, H. Gundlach, G. 

Haberer, U. Hellsten, T. Mitros, and A. Poliakov. 2009. The Sorghum bicolor genome and 

the diversification of grasses. Nature 457:551-556.  

 

Paterson, A.H., K.F. Schertz, Y.R. Lin, S.C. Liu, and Y.L. Chang. 1995. The weediness of wild 

plants: Molecular analysis of genes influencing dispersal and persistence of johnsongrass, 

sorghum halepense (L.) pers. Proc. Natl. Acad. Sci. U. S. A. 92:6127-6131.  

 

Patzoldt, W.L., and P.J. Tranel. 2009. Molecular analysis of cloransulam resistance in a 

population of giant ragweed. Weed science 50:299-305. 

 

Patzoldt, W.L., P.J. Tranel, A.L. Alexander, and P.R. Schmitzer. 2001. A common ragweed 

population resistant to cloransulam-methyl. Weed Sci. 49:485-490.  

 

Peltier, W.H., C.I. Weber, and E. Monitoring. 1985. Methods for measuring the acute toxicity of 

effluents to freshwater and marine organisms. Environmental Monitoring and Support 

Laboratory, Office of Research and Development, US Environmental Protection Agency 

Cincinnati, Ohio. 

 

Peng, S. Y., 2012. The biology and control of weeds in sugarcane. Elsevier. 

 

Powles, S.B., and Q. Yu. 2010. Evolution in action: Plants resistant to herbicides. Annual 

Review of Plant Biology 61:317-347.  

 

Prather, T., J. Ditomaso, and J. Holt. 2000. Herbicide resistance: Definition and management 

strategies. UCANR Publications.  

 

Quinby, J., and J. Martin. 1954. Sorghum improvement. Adv. Agron. 6:305-359.  

 

Raghavachari, N., J. Barb, Y. Yang, P. Liu, K. Woodhouse, D. Levy, C.J. O’Donnell, P.J. 

Munson, and G.J. Kato. 2012. A systematic comparison and evaluation of high density exon 

arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle 

cell disease. BMC Medical Genomics 5:1.  

 

Ren, S., Z. Peng, J. Mao, Y. Yu, C. Yin, X. Gao, Z. Cui, J. Zhang, K. Yi, and W. Xu. 2012. 

RNA-seq analysis of prostate cancer in the chinese population identifies recurrent gene 



37 

 

fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell 

Res. 22:806-821.  

 

Rieger, M.A., M. Lamond, C. Preston, S.B. Powles, and R.T. Roush. 2002. Pollen-mediated 

movement of herbicide resistance between commercial canola fields. Science 296:2386-

2388.  

 

Royce, T.E., J.S. Rozowsky, and M.B. Gerstein. 2007. Toward a universal microarray: 

Prediction of gene expression through nearest-neighbor probe sequence identification. 

Nucleic Acids Res. 35:e99.  

 

Sales, M.A., V.K. Shivrain, N.R. Burgos, and Y.I. Kuk. 2008. Amino acid substitutions in the 

acetolactate synthase gene of red rice (oryza sativa) confer resistance to imazethapyr. Weed 

Sci. 56:485-489.  

 

Sanger, F., and A.R. Coulson. 1975. A rapid method for determining sequences in DNA by 

primed synthesis with DNA polymerase. J. Mol. Biol. 94:441-448.  

 

Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating 

inhibitors. Proc. Natl. Acad. Sci. U. S. A. 74:5463-5467.  

 

Sateesh, M. 2010. Bioethics and biosafety. IK International Pvt Ltd.  

 

Schroder, D., J.C. Headley, and R.M. Finley. 1984. The contribution of herbicides and other 

technologies to corn production in the corn belt region, 1964 to 1979. North Central Journal 

of Agricultural Economics 95-104.  

 

Schroder, D., J.C. Headley, and R.M. Finley. 1981. The contribution of herbicides and other 

technologies to soybean production in the corn belt region, 1965 to 1979. Paper-University 

of Missouri-Columbia, Dept.of Agricultural Economics (USA).  

 

Singh, R., and J.D. Axtell. 1973. High lysine mutant gene (hl that improves protein quality and 

biological value of grain sorghum. Crop Sci. 13:535-539.  

 

Smith, C.W., and R.A. Frederiksen. 2000. Sorghum: Origin, history, technology, and production. 

John Wiley & Sons.  

 

Smith, C.W., R. Cantrell, H. Moser, and S. Oakley. 1999. History of cultivar development in the 

united states. Cotton: Origin, History, Technology, and Production.John Wiley & Sons, 

New York 99-171.  

 

Smith, K., and B. Scott. 2010. 7-weed control in grain sorghum.  

 

Stein, A.J., and E. Rodríguez-Cerezo. 2009. The global pipeline of new GM crops. Implications 

of Asynchronous Approval for International Trade.European Commission, Joint Research 

Centre.  



38 

 

 

Stephens, J., and R. Holland. 1954. Cytoplasmic male sterility for hybrid sorghum seed 

production. Agron. J. 46:20-23.  

 

Swanton, C.J., K.J. Mahoney, K. Chandler, and R.H. Gulden. 2009. Integrated weed 

management: Knowledge-based weed management systems. Weed Science 56:168-172. 

 

Tan, S., R.R. Evans, M.L. Dahmer, B.K. Singh, and D.L. Shaner. 2005. Imidazolinone‐tolerant 

crops: History, current status and future. Pest Manag. Sci. 61:246-257.  

 

Tardif, F.J., I. Rajcan, and M. Costea. 2006. A mutation in the herbicide target site 

acetohydroxyacid synthase produces morphological and structural alterations and reduces 

fitness in amaranthus powellii. New Phytol. 169:251-264.  

 

Taylor, R.L., B.D. Maxwell, and R.J. Boik. 2006. Indirect effects of herbicides on bird food 

resources and beneficial arthropods. Agric. , Ecosyst. Environ. 116:157-164.  

 

Tesso, T.T., K. Kershner, N. Ochanda, K. Al-Khatib, and M.R. Tuinstra. 2011. Registration of 

34 sorghum germplasm lines resistant to acetolactate synthase–inhibitor herbicides. Journal 

of Plant Registrations 5:215-219.  

 

Tranel, P.J., and T.R. Wright. 2002. Resistance of weeds to ALS-inhibiting herbicides: What 

have we learned? Weed Sci. 50:700-712.  

 

Tranel, P., T. Wright, and I. Heap. 2004. ALS mutations from herbicide-resistant weeds. 

Available online at http://www.Weedscience.Com. Accessed [05/14/2015].  

 

Tuinstra, M.R., and K. Al-Khatib. 2007. Acetolactate Synthase Herbicide Resistant Sorghum. 

U.S. Patent Application No. 11/951,629. 

        

Unger, P.W., and R.L. Baumhardt. 1999. Factors related to dryland grain sorghum yield 

increases: 1939 through 1997. Agron. J. 91:870-875.  

 

Van Rensen, J. 1989. Herbicides interacting with photosystem II. Herbicides and Plant 

Metabolism. 38: 21.  

 

Wang, Z., M. Gerstein, and M. Snyder. 2009. RNA-seq: A revolutionary tool for transcriptomics. 

Nature Reviews Genetics 10:57-63.  

 

Ware, G., and D. Whitacre. 2004. The pesticide book MeisterPro information resources. 

Willoughby, OH.  

 

Warwick, S.I., C.A. Sauder, and H.J. Beckie. 2010. Acetolactate synthase (ALS) target-site 

mutations in ALS inhibitor-resistant russian thistle (Salsola tragus). Weed Sci. 58:244-251. 

  



39 

 

Warwick, S.I., R. Xu, C. Sauder, and H.J. Beckie. 2008. Acetolactate synthase target-site 

mutations and single nucleotide polymorphism genotyping in ALS-resistant kochia (Kochia 

scoparia). Weed Sci. 56:797-806.  

 

Weber, A.P., K.L. Weber, K. Carr, C. Wilkerson, and J.B. Ohlrogge. 2007. Sampling the 

arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol. 144:32-42.  

 

Wishart, D.J. 2004. Encyclopedia of the great plains. University of Nebraska Press.  

 

Yazawa, T., H. Kawahigashi, T. Matsumoto, and H. Mizuno. 2013. Simultaneous transcriptome 

analysis of sorghum and Bipolaris sorghicola by using RNA-seq in combination with de 

novo transcriptome assembly. PLoS One 8:e62460.  

 

Yu, Q., and S.B. Powles. 2014. Resistance to AHAS inhibitor herbicides: Current understanding. 

Pest Manag. Sci. 70:1340-1350.  

 

Yu, Q., H. Han, M.M. Vila-Aiub, and S.B. Powles. 2010. AHAS herbicide resistance endowing 

mutations: Effect on AHAS functionality and plant growth. J. Exp. Bot. 61:3925-3934.  

 

Zhu, H., J. Jeoung, G. Liang, S. Muthukrishnan, S. Krishnaveni, and G. Wilde. 1998. Biolistic 

transformation of sorghum using a rice chitinase gene [Sorghum bicolor (L.) moench-oryza 

sativa L.]. Journal of Genetics & Breeding (Italy).  

 

Zimdahl, R.L. 2013. Fundamentals of weed science. Academic Press.  

 

 

 

 

 

 

 

 

 

 

 

 



40 

 

Chapter 2 - RNA-seq analysis of ALS resistant sorghums (Sorghum 

bicolor) with contrasting seedling chlorotic phenotypes  

 

 Abstract 

Acetolactate synthase (ALS) inhibitor herbicides are among widely marketed herbicide 

chemistries that act both against grass and broad-leaved weeds. ALS resistant sorghums (Sorghum 

bicolor (L.) Moench) were developed as a viable post-emergence weed control option in sorghum. 

However, many of the lines resistant to ALS herbicides show marked interveinal chlorosis during 

early stages of growth causing reduced seedling vigor. Though affected genotypes green-up at 

advanced seedling stage, the persistence of this unusual phenotype may undermine adoption of 

ALS resistant sorghums.  The objective of this study was to identify genes, metabolic pathways 

and mechanisms associated with the reduced vigor and yellow seedling phenotype. Two ALS 

resistant genotypes expressing yellow and normal (green) phenotypes were grown and tissues were 

harvested at four time points with the fourth sampling conducted after the genotypes have fully re-

greened. RNA was extracted from the tissues and subjected to RNA-seq analysis. Differential gene 

expression analysis was performed using DESeq2 software package. Gene Ontology enrichment 

and SorghumCyc pathway analysis revealed significant regulatory activity in several genes related 

to chloroplast and plant defense responses in chlorotic genotypes. Variant analysis on chloroplast 

genes resulted in one high impact variant and several other variants that showed moderate effects 

on gene expression. The high impact variant and majority of moderate impact variants represented 

genes linked to chlorophyll metabolism and chloroplast precursors while few others represented 

genes with a role in epigenetic modifications. The color transformation in affected genotypes 

appears to be due to altered regulation in chloroplast linked genes.  The stress condition created 
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due to low leaf chlorophyll content provoked defense response mechanisms that are often reflected 

under abiotic stress. Once confirmed, the identified SNP variants would serve as valuable markers 

for early elimination of affected backgrounds from the breeding population.  

 

Key words: Sorghum bicolor, RNA-seq, gene variants, ALS herbicide resistance, interveinal 

chlorosis. 

 

 Introduction 

 The United States accounts for about 9% of the world's sorghum (Sorghum bicolor (L.) 

Moench) acreage but contributes 25% to the global grain sorghum production with over half of 

this produced in Kansas (Hamman et al., 2001). Despite the tremendous progress in genetic 

improvement of the crop over the last several decades, numerous bottlenecks still remain and 

present challenges to global sorghum production. One of the outstanding bottlenecks in 

mechanized sorghum production system is the lack of effective post emergence grass weed control 

options.  

In the United States, post emergence weeds, particularly grasses, cause a significant 

management problem for sorghum. Farmers consistently ranked weed management as priority 

research area (Tuinstra and Al-Khatib, 2007). Apart from causing considerable economic loss, the 

lack of effective post-emergence weed control options has forced farmers to switch production to 

riskier crops such as maize because it offers better weed control tools. As a result sorghum acreage 

has been halved over the last two decades. Though glyphosate resistance technology has been 

available for major crops including maize, sorghum has not benefitted from such technology due 
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to the concern about the possible escape of resistance genes to the wild and weed relatives (Arriola 

and Ellstrand, 1996).    

The discovery of the Acetolactate synthase (ALS) resistance brought some optimism for 

addressing weed control issues in sorghum. Hybrids with resistance to ALS inhibitor herbicides 

are poised to provide viable post-emergence weed control option (Tesso et al., 2011) and efforts 

are underway to make the technology available to growers. ALS inhibitor herbicides are among 

widely marketed herbicide chemistries that act both on grass and broad-leaved weeds. They act by 

inhibiting the activity of ALS enzyme, the first enzyme in the branched-chain amino acid 

biosynthetic pathway which leads to the production of amino acids, valine, leucine, and isoleucine. 

In 2007, a strong source of resistance to ALS inhibitor herbicides which carries double mutations 

in the gene coding for the ALS enzyme was discovered among a shattercane (Sorghum bicolor) 

population in Kansas. The point mutations on amino acid residues Val-560 and Trp-574 resulted 

in the change of these amino acids to Ile and Leu, respectively, however, only the latter substitution 

prevents the binding of ALS inhibitor herbicides. Thus resistant plants continue to function and 

produce branched chain amino acids while susceptible plants with wild type ALS protein suffer 

from loss of function when treated with ALS inhibitor herbicides.  Of these mutations, only Trp-

574 is a conserved residue thus Leu-574 was found to be associated with strong resistance to ALS 

inhibitor herbicides (Kershner, 2010; Tuinstra and Al-Khatib, 2007). Over the past few years, 

breeders have been able to successfully incorporate the resistant gene into adapted sorghum 

backgrounds. Hence, a large number of sorghum germplasm and parent lines with strong resistance 

to all classes of ALS inhibitor herbicides have been developed. These resistant sorghums can 

tolerate herbicide concentrations that are 6 to 10x the normal use rate (Kershner, 2010). 
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However, many ALS resistant lines tend to show variable degree of leaf yellowing and 

reduced seedling vigor at early stages of growth. Even though, the plants eventually turn green and 

effectively grow out of these symptoms after few weeks, such yellow and stunted seedlings may 

be unpleasant to human eyes and may undermine adoption of the ALS resistance technology. The 

expression of such phenotype is variable with some genotypes displaying intense yellowing and 

stunting while others show moderate chlorosis. Few of the resistant genotypes seem to be not 

affected at all indicating that expression of the phenotype may be dependent on background. Field 

scoring of chlorosis conducted on families derived from different backgrounds confirmed this 

variability (Weerasooriya et al., 2012). While traditional selection against yellow phenotypes was 

successful in eliminating the extreme undesirable phenotypes, the genetic causes for expression of 

these phenotypes remain unclear. Knowledge of the underlying cause for the phenotype will help 

eliminate parental genotypes with extreme yellowing tendency from breeding programs.  

The availability of the whole genome sequence of sorghum and the advent of new 

molecular techniques such as RNA-seq have facilitated development of better tools to address 

complex problems similar to this one.  The recent release of sorghum draft genome sequence which 

revealed ~34, 500 sorghum genes including ~27,640 bona-fide protein coding genes (Paterson et 

al., 2009) is a remarkable improvement in sorghum genetic studies using next generation 

sequencing platforms (Dugas et al., 2011; Johnson et al., 2014; Mizuno et al., 2012; Olson et al., 

2014).  The objective of this study was to identify genes, metabolic pathways and mechanisms 

associated with the reduced vigor and yellow seedling phenotype using the RNA-seq technique.   
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 Materials and Methods 

 This study will explore the potential of RNA-seq technique to track gene expression 

profiles of genetically related yellow and green ALS resistant genotypes to elicit gene expression 

differences in seedlings. The gene expression result will be combined with the Gene Ontology 

(GO) and metabolic pathway analysis to characterize the sorghum transcriptome and locate genes 

functionally related to the expression of yellow seedling phenotypes.  

 

 Genetic materials 

 ALS resistant sister lines of sorghum derived from several F4 families representing the two 

extremes for seedling phenotype (green and yellow) were grown in 2012 main crop season for 

further phenotyping. A sister line pair derived from a pedigree family ‘Berhan × 

(Macia//Macia/Tw) – 3 that express the most extreme seedling color was selected for this study. 

Berhan is a tropically adapted Striga resistant variety developed and released (release No. 

PSL5061) by Purdue University. Macia (PI 565121) is another tropical variety with broad 

adaptation to sub-Saharan Africa preferred for its white bold seeds. Tailwind (Tw) is an ALS 

resistant wild sorghum (shattercane) discovered in 2003 in an ALS treated maize field in Kansas.  

Seeds from the sister lines representing green and yellow phenotypes were harvested from the 

2012 crop. Following standard seed treatment (Maxim, Apron XL, Concep III) the seeds were 

planted side by side in Puerto Rico the following winter to increase the seeds and also confirm the 

phenotypes under a different environment. The sister lines maintained clear differences with all 

plants from the yellow plot (PR12/13-764) expressing yellow phenotype and the sister line grown 

on the nearby plot (PR12/13-763) expressing normal green phenotype. The use of such genetically 
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related genotypes was found to be useful in reducing background noise during gene expression 

studies that may occur due to variation in genomic regions other than the target loci.  

 

 Experimental design, tissue sampling and RNA extraction 

 Seeds representing the yellow and green sister lines from the selected pedigree family were 

grown in the field during 2013 main season at Ashland Bottoms KSU agronomy research farm, 

Manhattan. Field grow out was preferred to greenhouse as it represents the actual production 

condition and also offers better expression of the phenotypes. Plants from each sister line showed 

uniform seedling phenotype in terms of the degree of observed leaf yellowing (Figure 2.1a).  For 

RNA-Seq analysis, replicated tissue samples were collected at four stages in weekly intervals 

starting on day 14 after planting (S0) and subsequent samplings made on 21, 28 and 35 days after 

planting representing S1, S2 and S3 stages, respectively (Figure 2.1b).  Since the greatest 

dynamism in seedling vigor and leaf chlorosis occurs until four weeks after emergence, sampling 

during this time was assumed to capture most of the genes that are differentially expressed between 

green and yellow sister lines. The first (S0) sampling was done prior to herbicide application to 

mimic actual production conditions while this would allow comparison of gene expression profiles 

between yellow and green backgrounds before and after herbicide application. The subsequent 

three samplings were done after herbicide treatment. A control (non ALS resistant) genotype was 

included as a check in the first sampling but not for subsequent samplings since the genotype died 

by ALS herbicide treatment.  After the first sampling (on day 15 after planting) the plants were 

sprayed with ALS inhibitor herbicide Accent® (Dupont Pioneer, USA) at the rate of 105.08 g a.i. 

ha-1 15 days after planting.  Accent contains nicosulfuron which is a sulfonylurea that works mainly 

by systemic action where susceptible plants die within two weeks after application.  At each 
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sampling stage, three plants were randomly tagged and approximately 100 mg of leaf tissue 

samples were collected from each tagged plant.  The tissues were immediately frozen in liquid 

nitrogen to prevent mRNA degradation and stored at -80˚C until use. Total RNA extraction was 

performed using RNeasy Plant Mini isolation Kit (Qiagen Inc., Valencia, CA, USA) and extracted 

total RNA was treated with Amplification Grade DNAse I (Invitrogen Corporation, 

Carlsbad, CA, USA) before further analysis. RNA samples were diluted with RNase free water to 

obtain samples with required concentration (100-200ng/ul). RNA integrity and quantity were 

checked using Agilent 2100 Bioanalyzer (Agilent Technologies Genomics, Palo Alto, CA, USA).  

In addition, several other ALS resistant genotypes expressing variable levels of leaf 

chlorosis were grown alongside the two sister lines used for RNA-seq analysis. Leaf chlorophyll 

content was measured using SPAD 502 chlorophyll meter (Spectrum Technologies, Aurora, IL) at 

all sampling stages in all genotypes to monitor changes in leaf greenness as additional evidence.  

 

 cDNA library construction and sequencing  

 cDNA libraries were constructed using the Illumina TruSeqTM RNA sample preparation kit 

according to the manufacturer’s protocol (Illumina Inc., San Diego, CA, USA). RNA from each 

genotype was subjected to two rounds of enrichment for poly-A mRNAs using “oligodT” attached 

magnetic beads. Purified mRNA was chemically fragmented and converted to single-stranded 

cDNA according to the manufacturer’s protocol (Illumina Inc., San Diego, CA, USA). cDNA 

samples from each genotype was separately barcoded with adapter indexes and pooled. 

Sequencing was performed on a HiSeq 2000 platform (Illumina Inc., San Diego, CA, USA) at 

Genome Sequencing Facility of Kansas University Medical Center using 100bp single-end 

sequencing runs and 15x multiplex. 

http://www.qiagen.com/products/catalog/sample-technologies/rna-sample-technologies/total-rna/rneasy-plant-mini-kit


47 

 

 

 Differential gene expression analysis and gene clustering  

 Single-end sequencing reads obtained from HiSeq 2000 runs were subjected to adapter 

trimming and quality filtering with “Cutadapt” which is a stand-alone adapter trimmer (Martin, 

2011). The Sorghum bicolor reference genome (Sbicolor_v1.4) (Paterson et al., 2009) was used to 

perform read alignment using Genomic Short-read Nucleotide Alignment Program (GSNAP) (Wu 

and Watanabe, 2005). Read counting per gene in each sample was conducted using an in-house 

script. Differential gene expression among yellow and normal genotypes was analyzed using 

‘DESeq2’ which employs a method based on the negative binomial distribution, with variance and 

mean linked by local regression. A q-value (Benjamini and Hochberg, 1995) was determined for 

each gene to account for multiple tests. To control false discovery rate (FDR) at 5%, the 

differentially expressed genes were required to have q-values smaller than 0.05. Additionally, we 

only included genes shown at least two fold-change in the list of significantly differentially 

expressed genes. The RPKM value per gene in each sample represents read counts per kilobase of 

transcribed region per million reads (Mortazavi et al., 2008). The analysis was further extended to 

test the null hypothesis, no interaction between genotypes and sampling stages, in order to identify 

patterns of changes in differential gene expression among sampling stages between the two 

genotypes using DESeq2 software package. The 5% FDR was used as a threshold to obtain a set 

of genes with significant interaction between genotypes and sampling stages. The Log2 expression 

ratios between green and yellow genotypes of this set of genes were used as input for cluster 

analysis with the R package “mclust” (Fraley et al., 2012) using the model “VVV”.  The 

differentially expressed genes were functionally annotated using current sorghum gene annotations 

in Phytozome (Goodstein et al., 2012). 



48 

 

 

 Gene Ontology (GO) enrichment  

 The Gene Ontology (GO) enrichment analysis was performed to identify over-represented 

GO terms in the differentially expressed gene lists using an R software package, goseq. GO 

functional annotations for sorghum gene products were downloaded from Agrigo 

(http://bioinfo.cau.edu.cn/agriGO/). GO categories were considered significantly enriched based 

on the p-value cutoff of 0.05. Based on the results for the GO analysis, the genes related to 

significant GO terms were extracted and the expression pattern of related genes in log2 fold change 

at each stage were visualized using a heatmap generated via R package Heatplus (Figure 2.4). 

 

 SorghumCyc pathway analysis followed by visualization via Mapman 

 Metabolic pathway enrichment using SorghumCyc genome database was performed for 

each differentially expressed gene using the Z-score method suggested by (Dugas et al., 2011) in 

order to derive functional annotations to infer metabolic pathways of sorghum (Youens-Clark et 

al., 2011). Pathways were considered significantly enriched if the following criteria were met; Z-

score ≥ 2 and the expected number of genes for a family >1. Mapman has the capability of 

lightening the redundancy that occurs in other commonly used ontologies. Hence, Mapman was 

used to collect and classify the calculated fold change values in to a set of hierarchical functional 

categories called ‘bin’s which then were organized and displayed according in a desired format. 

Herein, using Mapman alone was not preferred as it may not provide a holistic view of the 

significant pathways in order of significance as would a Z-core method. However, Mapman 

provides a better graphical output of the expression under a certain cell component/pathway of 

choice.  Thus, a combination of two methods was used for visualization of results.  
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 Discovery of gene variants  

 Based on the gene expression results, variant analysis was performed for 31 chloroplast 

genes that had elevated expression levels during S0, S1 and S2. For the selected set of genes, 

variants between sequence reads and reference genome were identified using  Genome Analysis 

Toolkit (GATK) (McKenna et al., 2010) and SnpEff variant annotation and effect prediction tool 

(Cingolani et al., 2012). This analysis displayed the effect of each SNP variants on all related 

genes. All of the SNP calls were filtered based on the quality of base calls and SNP effect on the 

gene models were determined using SnpEff (Cingolani et al., 2012). The SNP variants were further 

filtered to remove non-homologous variants throughout sampling stages that only true SNP 

variants were used for interpretations. Variant annotation was used to remove the variants with 

synonymous effect. 

 

 Results 

 Physiological measurements 

 Phenotypic differences between yellow and normal genotypes monitored using chlorophyll 

meter (SPAD-502) parallel to RNA-seq analysis showed significant difference between yellow 

and green genotypes during first three stages of sampling while no difference was observed at 

stage 3 (S3) when most of the affected genotypes have recovered from the phenotypic disorder 

(Table 2.1, Figure 2.1a and 2.1c). The difference in seedling phenotype was highest and most 

significant at S0 stage and progressively reduced but resulted significant at S1 and S2 stages with 

the difference virtually disappearing at S3 stage. 
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 Mapping of transcriptome to the sorghum genome   

 Out of the 34,496 gene models reported earlier (Paterson et al., 2009), this study revealed 

activity for 27,608 unique sorghum gene models. Approximately 512.6 million reads were 

generated across all three biological replicates for yellow and green genotypes. Of those, 497.2 

million (~95-98%) passed quality filtering standards and about 461.8 million (~88-91%) of those 

uniquely mapped to the sorghum reference genome.  The read mapping summary for all yellow 

and normal samples used in the study can be found in appendix Table 1. Pearson’s correlation 

analysis for quality assessment of quantile normalized reads showed significant positive 

correlations with an average of 0.98 between biological replicates belonging to a specific genotype 

at each sampling stage (Figure 2.2a). This, analysis provided a clear picture of high correlations 

between samples from S0 and S1 vs. S2 and S3. P-value histograms for the normalized read counts 

for each comparison showed acceptable read count distribution (Figure 2.2b). The differential 

expression analyses for the comparison between yellow and green genotypes performed separately 

for each growth stage from S0 through S3 stages resulted in 7510, 6787, 5709 and 3575 

differentially expressed genes, respectively.  

 

 Clustering pattern of differentially expressed (DE) genes and resulted GO terms 

and pathways linked to significant DE genes 

           Out of the total of 27,608 gene models resolved in this study, 5321 were identified to 

possess significant interactions between genotype and sampling stages. Clustering performed 

based on the Log2 expression ratio between green and yellow genotypes identified 11 major gene 

clusters (groups) (Figure 2.6). The clustering patterns varied from stable expression ratios to 

irregular patterns. However, major consideration was drawn towards gene clusters that showed 
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change in expression ratios from high to low or low to high along the sampling stages. Thus, 

clusters 9, 10 and 11 that contained 327, 46 and 28 genes which comprised stable, increasing and 

decreasing gene expression ratios were excluded from further consideration based on the 

assumption that they may either comprise genes that contribute to plant developmental processes 

or genes that do not relate seedling color dynamics that is the focus of this study. The rest of the 

clusters were divided into two major groups based on their patterns. Thus, clusters 1, 5 and 7 that 

showed initial decrease followed by an increase in gene expression ratio (from S0 through S3) 

were considered as cluster set1, while clusters 2, 3, 4, 6 and 8 that showed more or less opposite 

pattern of variability to the first set of clusters were considered as cluster set 2. The variability seen 

in the genes captured in cluster set1 reflected up-regulated activity in yellow genotypes during 

early sampling stages and down regulated at the later sampling stages. Common functions of the 

genes captured in cluster set 1, in general, were related to photosystem I and II reaction centers, 

chlorophyll binding proteins, chloroplast precursors, signal transduction involving calmodulin, 

plant hormones such as auxin, cytokinin and ethylene, oxidative stress response genes involving 

glutamate cycle genes, heatshock proteins, cytochrome P450, oxidoreductases and specifically 

chlorophyll catabolic genes and drought induced proteins. In contrast, cluster set 2 which showed 

increased initial expression ratios that decreased at later stages generally involved; expansins, 

anthocyanins, aquaporins and UDP-glucosyltransferases. Few other genes that were commonly 

found in both sets of clusters included heatshock proteins, cytochrome P450, oxidoreductases, 

peroxidase precursors. At the same time, a large number of genes could not be classified under a 

specific cluster due to their intermediary involvement in protein synthesis, transcription, cellular 

transport, signal transduction and other cellular processes.  
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 The GO term enrichment based on differentially expressed genes identified 136 – 174 GO 

categories throughout the sampling stages based on involvement of each differentially expressed 

genes to specific molecular functions, cellular components and biological processes. The 

significance of each GO category was declared by considering significant activity of both up and 

down regulated genes grouped under each category. These enriched GO categories primarily 

included chloroplast and its structural components, response to abiotic stresses, substrate 

metabolism and numerous pathways related to toxic catabolite detoxification. Pathway enrichment 

using SorghumCyc annotations throughout the sampling stages revealed significant regulatory 

activity in 34 - 49 metabolic pathways based on the Z-score analysis. This analysis facilitated 

filtering and identification of pathways exhibiting high confidence differentially expressed genes. 

Pathways with significant regulatory activity in yellow backgrounds accounted for phenotypic 

changes in leaf tissues, defense responses, hormonal networks and other processes perhaps due to 

the significantly low chlorophyll content.   

GO term analysis in combination with pathway analysis was useful to identify pathways 

with higher regulatory activity. Thus it was evident that a considerable number of genes linked to 

chlorophyll degradation pathway showed altered regulation. At the same time, a large number of 

differentially expressed genes captured under the GO term, chloroplast, were not categorized under 

a specific pathway due to deficiencies in pathway annotation. Therefore, despite the considerably 

increased regulatory activity observed for genes coding chloroplast precursors, photosynthesis, 

chlorophyll binding proteins, they were not assigned to a specific pathway via SorghumCyc.  

Apart from GO terms related to chloroplast, each stage comprised a large number of abiotic 

stress related GO terms such as oxidative stress due to reactive oxygen species (ROS), singlet 

oxygen, response to oxidative stress, response to hydrogen peroxide, protein kinases and toxin 
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catabolic processes involving glutathione S-transferase (GST) activity. Pathway analysis further 

supported this through significant activity in chlorophyll degradation, betanidin degradation, 

glutathione (GSH) mediated detoxification, gamma glutamyl cycle (which involves GSTs), 

nicotine degradation, phospholipases which were relatively common to all sampling stages. Thus, 

most prominent among pathways that linked with detoxification processes were processes 

mediating antioxidant molecules. Simultaneously, GO terms linked to stress response hormonal 

networks were observed throughout the sampling stages. Thus, a lot of variability in transcript 

abundance was observed in hormonal networks related to defense responses (Figure 2.4). This was 

reflected through altered regulation of genes coding abscisic acid (ABA), gibberellin (GA), 

brassinosteroid (BRs), jasmonate (JA), ethylene (ET) and cytokinin (CK) biosynthesis. Overall, 

differentially expressed transcripts between yellow and green genotypes at stage S0 and stage S1 

based on the GO categories and pathways showed a large overlap. These overlapped categories 

commonly comprised chloroplast, thylakoid membrane, thylakoid lumen, electron carrier activity, 

and several terms related to toxin catabolic processes. Phospholipid biosynthesis, phospholipases 

and triacylglycerol degradation, starch degradation and sucrose biosynthetic process were also 

among the important GO terms observed under first two samplings. On the other hand, gene 

expression profiles between S2 and S3 stages showed more or less similar patterns while a 

considerable number of genes linked to chloroplast were both up and down regulated throughout 

the sampling stages as also revealed via GO enrichment (Figure 2.3a).  

 The procedure utilized for data analysis helped create a bigger picture that could be 

dissected to different areas based on the significance. However, many pathways that comprised 

less number of annotated genes than what is required to declare the significance in the Z-score 

limited our capacity to draw conclusions primarily based on the pathway analysis. Thus, GO term 
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analysis in combination with pathways could provide a better view of the results. At the same time, 

a considerable number of clustered genes annotated as “expressed proteins” limited their 

usefulness in drawing inferences.  

While SNP variants are known to carry important functional roles via changing the genetic 

code through point mutations at certain genomic regions, SNP variant analysis deployed in this 

study primarily allowed identifying single base polymorphisms in different genomic loci related 

to expression of chloroplast related genes in tested genotypes. Overall, SNP variant analysis for 

chloroplast related genes revealed SNP variant calls affecting expression of 21 genes (Table 2.2). 

Though not all genes tested contained SNP variants, some of the resulted variants showed impacts 

on the gene containing the SNP as well as on adjacent genes. In general, the SNP variants contained 

one high impact variant and, few moderate and low impact variants while rest of the variants that 

included the majority had only modifier effects. 

 

 Chloroplast related genes with modified expression levels 

 A total of 308 active genes related to chloroplast were resolved out of which 274 were 

associated with chlorophyll metabolism and showed differential expression in at least one of the 

sampling stages. The differentially expressed genes list was higher for S0 (39) followed by S1 

(19), S2 (19) and S3 (14). Stages S0 and S2 shared the highest (39) number of differentially 

expressed genes while the least (7) differentially expressed genes were shared between S0 and S3 

stages. There were several genes that were consistently expressed at two or more of the sampling 

stages including S3 which are likely not related to the phenotype of interest. Some 31 genes were 

over-expressed during S0, S1 and S2 stages while few genes were activated in all four stages. S0 

and S3 stages contained the highest (187) and lowest (95) differentially expressed gene counts, 
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respectively (Figure 2.3a). The lower differentially expressed counts at S3 agree with the 

phenotypic measurement on leaf chlorophyll content which was the lowest at S3 stage (Figure 

2.1b). Overall, variability in expression profiles of the chloroplast related genes seemed to have 

reduced from stage S0 to S3. Genes that were up and down regulated between S0 and S3 during 

the photosynthesis light reaction (Tables 2.3b and 2.3c indicating the marked difference in gene 

expression levels between the two stages.  

Furthermore, a closer inspection of 31 chloroplasts related genes that showed significantly 

altered expression during first three sampling stages using variant discovery revealed several 

important variants including a high impact variant which acts both as a splice donor and an intron 

variant located on chromosome 3 position 11194286-11202586 bp (Table 2.2). Gene coding 

geranylgeranly reductase (Sb03g010330), which contained this variant is involved in chlorophyll 

biosynthesis pathway (Wang et al., 2014) and carried two other missense variants with moderate 

effects and another low impact variant in both a splice region and an intron region.  

Other chlorophyll biosynthesis genes which carried SNP variants included 

coproporphyrinogen III oxidase (Sb06g028140) that contained a  moderate effect gene variant, 

two other genes coding for FAD binding domain containing proteins (Sb03g010340 and 

Sb04g028050), a cysteine proteinase inhibitor precursor protein (Sb09g024230), and a 

magnesium-protoporphyrin O-methyltransferase (Sb10g002100)  that carried several variants with 

modifier effects. Among the genes involved in chlorophyll degradation, pheophorbide a oxygenase 

(Sb01g047120) and red chlorophyll catabolite reductase gene (Sb01g029900) contained several 

SNPs. No variants affecting chlorophyllase gene involved in chlorophyll catabolism were obtained 

while variants for Mg-dechelatase gene could not be tested as the structure and sequence of this 

gene still remains elusive to researchers.  
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Figure 2.1. (a) Variability in leaf color between yellow (left) and green (right) genotypes during 

four sampling stages (S0-S3); (b) RNA-seq experimental design with replicated tissue samples 

collected at S1 through S3 stages (color charts represent change of leaf phenotypes at different 

growth stages); (c) Variation in leaf chlorophyll content between yellow and green genotypes at 

four sampling stages. 
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Figure 2.2. (a) Pearson’s correlation matrix of the whole dataset. Pair-wise Pearson correlation 

coefficients were calculated from the gene expression values of the whole transcriptome (27,608 

genes) in all 24 samples. The color scale indicates the degree of correlation. Sample names are in 

the sequence of genotype yellow (Y) or normal (G), stage (S0 through S3) and sample number (1 

through 3); (b) P-value histograms of the read counts after normalization for yellow and green 

genotypes for comparisons at all stages. 
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Figure 2.3. (a) Venn diagram showing DE genes involved in chlorophyll metabolism between 

yellow and green genotypes at each sampling stage. Up and down-regulated gene bins involved 

in photosynthesis light reaction occurring within chloroplast (b) at S0 and, (c) at S3 stages. The 

altered regulation of chloroplast genes at S0 are reflected by higher number of down regulated 

gene bins as compared to S3 showing majority of not differentially expressed gene bins lead 
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towards recovery of chlorosis symptom (Blue = up-regulated, Green = down-regulated, white = 

not DE). 

 

 

 
 

Figure 2.4. Heatmap showing clustering pattern of the genes related to chloroplast and stress 

response mechanisms (Green= down-regulated, Blue = up-regulated, Black= not DE) at four 

sampling stages from S0 through S3. 
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Figure 2.5. Selected abiotic stress response mechanisms that showed altered gene regulation 

between yellow and green genotypes during S0 and S3 stages. Defense response gene bins that 

were significantly up or down-regulated during S0 stage including glutathione-S-transferase, 

peroxidases, heat shock proteins and some defense related hormonal pathways have shown 

recovery of altered gene regulation by S3 stage (Green= down-regulated, Blue = up-regulated, 

white= not DE). 
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Figure 2.6. Clustering pattern of significant DE genes based on Log2 fold expression ratio 

between yellow and green genotypes. The total number of significant genes that had significant 

interactions with the sampling stage were grouped into 11 basic clusters. Clusters 9, 10 and 11 

that contained 327, 46 and 28 genes which comprised stable, increasing and decreasing gene 

expression ratios were excluded from further considerations. 
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Table 2.1. Summary of pairwise t-test comparisons for leaf chlorophyll content between yellow 

and normal genotypes at each stage of sampling from S0 through S3. 

 

Stage 
Mean of 

yellow genotype 

Mean of 

green genotype 

Estimated difference 

between G vs. Y 
P value 

S0 (14D) 17.14 25.44 8.30 4.35E-08 

S1 (21D) 21.40 27.88 6.48 1.93E-06 

S2 (28D) 32.50 36.40 3.90 4.00E-03 

S3 (35D) 39.75 41.19 1.44 0.18 

 

 

 

 

 

 

 

 



63 

 

Table 2.2. Summary of protein coding gene variants of chloroplast related genes differentially expressed from S0 through S3.  

Gene containing or 

adjacent to SNP 
SNP physical position (bp) Effect and number of variants 

Impact 

Type 

†Gene 

Annotation 

Related metabolic 

pathway, cellular 

component or biological 

process 

Sb01g047120   Chr1: 70232083-70240223 3' UTR variant (1) Modifier PAO Chlorophyll degradation 

  upstream gene variant (1) Modifier   

Sb01g029900 Chr1:  52020259-52030063 5’ UTR variant (2) Modifier RCCR Chlorophyll degradation 

  intron variant (2) Modifier   

  downstream gene variant (14) Modifier   

Sb01g029910 Chr1: 52028751-52030063  missense variant (4) Moderate PPR RNA editing 

  upstream gene variant (1) Modifier   

Sb03g010330 Chr3: 11194286-11202586 splice donor variant & intron variant (1) High GGR Chlorophyll biosynthesis 

   missense variant (2) Moderate   

  splice region variant & intron variant (1) Low   

  3' UTR variant (5) Modifier   

  downstream gene variant (3) Modifier   

Sb03g010340 Chr3: 11194286-11203488 upstream gene variant (29) Modifier FAD  Chlorophyll biosynthesis 

  downstream gene variant (2) Modifier   

Sb03g046660 Chr3: 73748631-73755943  missense variant (1) Moderate CAO  Chloroplast precursor 

  5’ UTR variant (4) Modifier   

  intron variant (1) Modifier   
  downstream gene variant (8) Modifier   

Sb04g028050 Chr4: 57992915-57994773 downstream gene variant (1) Modifier FAD  Chlorophyll biosynthesis 

Sb06g028140 Chr6: 56988353-56992081 missense variant (1) Moderate CPOX Chlorophyll biosynthesis 

   upstream gene variant (1) Modifier   

Sb06g033030 Chr6: 61063154-61067556 downstream gene variant (1) Modifier POR_A  Chloroplast precursor 

Sb08g018560 Chr8: 48758696-48777519  missense variant (2) Moderate DAPE   Chloroplast precursor 

  upstream gene variant (23) Modifier   

  intron variant (1) Modifier   

  downstream gene variant (1) Modifier   

Sb09g023130 Chr9: 52782099-52789596  missense variant (1) Moderate IF-2   Chloroplast precursor 

  upstream gene variant (3) Modifier   
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Gene containing or 

adjacent to SNP 
SNP physical position (bp) Effect and number of variants 

Impact 

Type 

†Gene 

Annotation 

Related metabolic 

pathway, cellular 

component or biological 

process 

Sb09g023140 Chr9: 52786439- 52789596  missense variant (1) Moderate MT  Epigenetic modifications 

  downstream gene variant (2) Modifier   

Sb09g024220 Chr9: 53767326- 53771188  missense variant (2) Moderate HIL-TF  Regulate Gene expression  

  splice region variant (1) Low   

  
3' UTR variant (1) Modifier 

  
downstream gene variant (4) Modifier 

Sb09g024230 Chr9: 53767326-53771188 upstream gene variant (3) Modifier CPI Chlorophyll biosynthesis 

  downstream gene variant (13) Modifier   

Sb09g029170 Chr9: 57931700-57934815 upstream gene variant (1) Modifier KARI Chloroplast precursor 

Sb10g000400 Chr10: 163724-175981 upstream gene variant (1) Modifier GARS  Chloroplast/mitochondrial   

 precursor   downstream gene variant (2) Modifier  

Sb10g001390 Chr10: 1139316-1150458 upstream gene variant (2) Modifier DAG  Chloroplast precursor 

  downstream gene variant (22) Modifier   

Sb10g001410 Chr10: 1148096-1148761 missense variant & splice region variant (1)     Moderate DnaJ Heatshock chaperone  

  3' UTR variant (2) Modifier   

  intron variant (1) Modifier   

  downstream gene variant (16) Modifier   

Sb10g002100 Chr10: 1772503-1774438 downstream gene variant (7) Modifier ChlM 
Chlorophyllide a 

biosynthesis 

Sb10g003480 Chr10: 3052061-3067638  missense variant (1) Moderate CSase 
 Chloroplast/chromoplast   

  precursor 
  intron variant (8) Modifier  

  upstream gene variant (3) Modifier  

Sb10g029300 Chr10: 59141483-59145440 splice region variant (1) Low TL-16.5  Chloroplast precursor 

  upstream gene variant (1) Modifier   

  downstream gene variant (1) Modifier   

 
†CAO= chlorophyllide a oxygenase, ChlM =magnesium-protoporphyrin O-methyltransferase, CPI= cysteine proteinase inhibitor precursor protein, CPOX= coproporphyrinogen III oxidase, CSase = 

cysteine synthase, DAG=diacylglycerol protein,  DAPE=  diaminopimelate epimerase, DnaJ = chaperone protein DnaJ, FAD= FAD binding domain containing protein, GARS= glycyl-tRNA 

synthetase 2, GGR = geranylgeranlyl reductase,  HIL-TF= histone-like transcription factor,  IF-2= translation initiation factor IF-2,  PAO= pheophorbide a oxygenase, KARI= ketol-acid 
reductoisomerase, MT=methyltransferase, POR_A= protochlorophyllide reductase A,  PPR= Pentatricopeptide repeat domain containing protein, RCCR= red chlorophyll catabolite reductase, TL-

16.5= thylakoid lumenal 16.5 kDa protein.  

https://en.wikipedia.org/wiki/Epigenetics


65 

 

 Discussion 

 The total number of gene models revealed in our study was relatively lower compared to 

the number revealed through the sorghum draft genome sequence reported in 2009 (Paterson et 

al., 2009). Apart from lack of strand-specific information in cDNA alignments, this could perhaps 

be due to low transcriptional activity of some of the genes during seedling stages. Many of the 

undetected genes could be expressed late thus are activated at adult plant stage or even further later 

around physiological maturity. However, percentage of uniquely mapped reads observed in the 

present study was higher as compared to some earlier RNA-seq studies that reported 67.1% (Dugas 

et al., 2011) and 83.1% (Lu et al., 2010). The p-value distributions for read count comparisons at 

each stage (Figure 2.2b) and markedly high Pearson correlations for gene expression results 

between biological replicates (Figure 2.2a) well agreed with previous RNA-seq studies (Dugas et 

al., 2011; Guo et al., 2013; Lu et al., 2010). This result attested the high reproducibility of the data 

and further validated the quality of the data set. 

 On the other hand, interaction of gene expression between genotypes and sampling stages 

was evident. Gene cluster set 1 that contained genes related to chloroplast and plant defense 

responses showed increased early expression ratios that decreased towards last sampling, the 

opposite behavior was observed in cluster set 2. Cluster set 2 genes included expansins and 

aquaporins, which are expressed under drought stress towards proper water channeling (Jones and 

McQueen-Mason, 2004; Maurel et al., 2002), UDP-glucosyltransferases, which that help in 

sucrose synthesis (Singh et al., 1978), anthocyanins, which reduce photo-oxidative damage due to 

degenerating chloroplasts under stress and promote nitrogen recovery from senescing leaves (Hoch 

et al., 2001) provided initial clues on an activated stress condition within yellow genotype. The 

occurrence of some genes with similar functions in both sets of clusters could be explained in two 
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ways. First, this kind of observation may be possible when certain pathways show both up and 

down regulated genes throughout the sampling stages. Secondly, genes in a particular pathway 

may comprise variability in expression profiles, thus some genes could be highly expressed while 

others are low expressed to assist the recovery process form the stress condition. For instance, 

considering a particular stress response pathway, while majority of the genes are up regulated, few 

genes could still be down regulated (Figure 2.5). These genes that are down regulated may 

probably possess a repressor activity on one or more up regulated genes.  

 Plant response to different types of stresses has been shown to be associated with the 

generation of ROS. ROS which is a common signal of plant stress responses (Xia et al., 2009) can 

damage cellular components through disturbing cellular redox homeostasis (Cruz de Carvalho, 

Maria Helena, 2008). Over-reduction of various molecules is frequently accompanied with rapid 

increases in superoxide, hydrogen peroxide and hydroxyl radicals that belong to ROS (Cruz de 

Carvalho, 2008). In the present study, enriched GO terms related to oxidative stress, phospholipid 

and starch degradation, and observed over-reduced redox state (Figure 2.5) suggested generation 

of ROS due to early chlorophyll breakdown. While glutathione-s-transferase (GST) is considered 

as a ROS scavenging system that carries high antioxidant properties (Alscher, 1989; Grant et al., 

1996) owing to its redox-active thiol group that conjugates with potentially dangerous xenobiotics 

(Marrs, 1996), significant up regulation in GST in current study seemed to have helped alleviate 

oxidative damage caused by generated ROS (Cruz de Carvalho, Maria Helena, 2008). 

Nevertheless, our interpretation was further supported by the observed increased activity of several 

other strong antioxidants such as betanidin (Wybraniec and Michałowski, 2011), Cytochromoe 

450 (Sahoo et al., 2013; Saijo et al., 2000), ascorbate peroxidases (Triantaphylides et al., 2008), 

and glycein betain (Lv et al., 2007; Quan et al., 2004) that are well known to play an important 
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role in acquired tolerance to abiotic stresses such as drought and salinity. The effectiveness of 

these antioxidants is well reflected in Figure 2.5 that shows reduced redox states during S0 and S3 

stages. Heatshock proteins (HSPs) has an important role in assisting proper protein folding (Borges 

and Ramos, 2005; Walter and Buchner, 2002) and expression of HSPs  is one of the most common 

immediate responses to plant stress. Thus, simultaneous expression of HSPs in current study 

implied possible misfolding of proteins in yellow genotype. The resultant heatshock gene variant 

in Sb10g001410 coding for DnaJ chaperone in the current study implied possible variant effect 

towards increased heatshock protein expression upon created stress condition.  

 Because hormones play vital role in abiotic stress responses in plants (Wilkinson and 

Davies, 2002) promoting survival or escape mechanisms through modifying signal transduction 

(Franklin, 2008), changes to hormonal networks was investigated. The result showed wide 

variability in transcript abundance tied to hormonal networks in current study evidenced a series 

of defense responses activated due to yellow seedling phenotype. Rapid increases in endogenous 

ABA levels is characteristic to abiotic stresses (Goda et al., 2008; Kilian et al., 2007; Zeller et al., 

2009) and  up to 10% of protein-encoding genes are transcriptionally regulated by ABA 

(Nemhauser et al., 2006). ET on the other hand, has shown to play a significant role in response to 

heat and osmotic stress on Arabidopsis (Suzuki et al., 2005) and salinity stress in soybean  (Ma et 

al., 2012). Accordingly, increased ET and ABA signaling in yellow genotype in current study 

assented induced stress tolerance mediated by these hormones. Several previous studies have 

reported altered CK levels and mutants lacking functional CK receptors expressing resistance to 

abiotic stresses (Jeon et al., 2010; Kang et al., 2012; O’Brien and Benková, 2013; Tran et al., 

2007). This matched with significant number of down regulated genes CK biosynthetic genes in 

our study. SA is required for inducing stress resistance proteins such as antioxidants and HSPs and 
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therefore SA-deficient plants cannot create an effective abiotic stress defense system (Clarke et 

al., 2004; Nawrath et al., 2002). Though not listed among pathways with significant activity, 

probably due to reduced representation of the genes involved, up-regulated HSPs confirmed the 

involvement of SA pathway in stress response (Figure 2.5). GA signaling has shown to be quite 

variable depending on the type of stress abiotic condition on plants (Colebrook et al., 2014) where, 

in species such as rice (Oryza sativa) under submergence stress (Bailey-Serres and Voesenek, 

2010),  arabidopsis (Arabidopsis thaliana) and maize (Zea maize) under salinity,  have shown to 

trigger reduced GA signaling towards stress escape (Achard et al., 2006; Magome et al., 2008; 

Wang et al., 2008)  while there is emerging evidence that GA may integrate multiple hormone 

pathways in response to stress (Achard et al., 2006). Thus, altered regulation in GA biosynthesis 

pathway genes observed during early stages suggested involvement of GA towards stress escape. 

BRs carry a prospective role towards induced stress tolerance under elevated hydrogen peroxide 

levels (Xia et al., 2009), drought, high or low temperature, salinity and heavy metals (Bajguz and 

Hayat, 2009; Hayat and Ahmad, 2010), BRs have also been described as a booster of net 

photosynthetic rate (Hasan et al., 2011). Observed increased BR levels in our study further 

confirmed its role towards stress tolerance. The overall hormonal coordination observed in present 

study corroborated several studies on plant hormonal cross-talk (Jaillais and Chory, 2010; Santner 

and Estelle, 2009; Xiong and Yang, 2003) suggesting their imperative role directed towards stress 

escape through modifications in gene regulation.  

 The gene expression profile between genotypes of contrasting leaf phenotype reveals some 

gene expression mechanism that either support increased activity of chlorophyll degradation or 

poor chlorophyll biosynthesis in yellow genotype during early samplings. Generally, ALS 

herbicide injury symptoms are slow thus upon herbicide application, takes up to two weeks to 
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develop (Gunsolus and Curran, 2007). The large overlap in DE transcripts between yellow and 

green genotypes observed at S0 and S1 stages (Figure 2.2a and 2.4) implied no interaction between 

seedling leaf color and herbicide treatment thus plant mechanisms activated towards leaf yellowing 

seems to be similar to the responses to herbicide treatment. Thus, it's obvious that yellow genotype 

has undergone a stress condition that provoked more or less similar transcriptional activity as in a 

plant sprayed with the ALS herbicide. Conversely, similar expression profiles resulted for S2 and 

S3 stages (Figure 2.2a and 2.4) implied recovery processes to have initiated during S2 stage. Thus, 

it is apparent that observed plant responses are consequences of a “domino effect” created due to 

altered regulation in genes specifically linked to chloroplast (Figure 2.3a). Among the resultant 

SNP variant calls, variants on geranylgeranyl reductase (Sb03g010330) that carry high, moderate, 

low and modifier effects on protein function seems to play a central role in reduced chlorophyll 

production. Geranylgeranyl reductase (GGR) involves in a key step in chlorophyll a biosynthesis 

and provides phytol for chlorophyll (Chl) synthesis (Wang et al., 2014). Two other genes coding 

FAD binding domain containing proteins (Sb03g010340 and Sb04g028050), that resulted with 

several variants also catalyzes GGR in two major steps in chlorophyll biosynthesis (Keller and 

Bouvier, 1998) thus carry a high likelihood of contributing to leaf yellowing symptom. Moderate 

and modifier variants resulted for Coproporphyrinogen III oxidase (CPOX) gene (Sb06g028140) 

which is a major enzyme in chlorophyll a biosynthesis pathway I and II and, chlorophyll cycle 

suggests an important role of this gene towards chlorotic symptom development. Cysteine 

proteinase inhibitor precursors (CPI) in chlorophyll biosynthesis involved in the reaction which 

gives rise to coproporphyrinogen III from uroporphyrinogen III while magnesium-protoporphyrin 

O-methyltransferase (ChlM) gene is involved in chlorophyllide a biosynthesis. Thus variants for 

CPI (Sb09g024230) and ChlM (Sb10g002100) may also pose a negative effect on initial steps of 
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chlorophyll biosynthesis. The reaction involving pheophorbide a oxygnase (PAO) and red 

chlorophyll catabolite reducates (RCCR) complex is responsible for loss of green color in leaves 

thus is considered a key step in chlorophyll catabolic pathway. These two enzymes are also known 

to physically interact with each other during chlorophyll catabolism (Pruzinska et al., 2007; Rodoni 

et al., 1997). Typically PAO and RCCR are highly up-regulated when plants enter senescence 

while their increased activity is restricted to senescence (Hörtensteiner et. al., 1995). Conversely, 

stay-green genotypes of certain plant species are known to carry defective PAO activity which 

delays chlorophyll catabolism (Roca and Mínguez-Mosquera, 2006; Thomas and Howarth, 2000; 

Vicentini et al., 1995). Modifier effect variants of PAO (Sb01g047120) and RCCR (Sb01g029900) 

genes (Table 2.2) resulted in current study suggests that chlorotic phenotype may partly be due to 

altered PAO-RCCR regulation. 

Thylakoid luminal 16.5 kDa protein coding gene (Sb10g029300) which carried a low 

impact splice variant, the gene coding chloroplast/chromoplast precursor (Sb10g003480) that 

carried one moderate and few missense variants, and other chloroplast precursor genes 

Sb03g046660, Sb06g033030, Sb08g018560, Sb09g023130, Sb09g029170, Sb10g001390, 

Sb10g000400 with several variants perhaps could be associated with chloroplast structural 

transformations throughout the sampling stages. For instance, when over-expressed, 

chlorophyllide a oxygenase (CAO) is known to enlarge the antenna size of photosystem II in 

Arabidopsis (PSII) (Tanaka et al., 2001). The missense variant and few other variants resulted for 

CAO gene (Sb03g046660) in present study suggests a possibility for altered PSII antenna size 

leading to decreased capacity for chlorophyll production in yellow genotype. Proteins containing 

PPR motifs are important for expression of organelle genomes and organelle biogenesis (Delannoy 

et al., 2007). PPR motifs, histone-like transcription factors, Methyltransferases independently help 
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regulate gene expression through creating epigenetic modifications (Burley et al., 1997; Manna, 

2015). Thus, moderate effect variants on PPR repeat domain containing protein (Sb01g029910), 

Sb09g023140 coding for methyltransferase, and gene coding histone-like transcription factors 

(Sb09g024220) perhaps have initiated or aggravated the regulation of chloroplast related genes via 

gene editing events. Though, not on grounds similar to conditions observed in the present study, 

temporary yellowing followed by re-greening has been observed in various plant species due to 

transient differentiation stages of the chloroplasts (Egea et al., 2010; Mayfield and Huff, 1986; 

Prebeg et al., 2008; Zavaleta-Mancera et al., 1999). Thus, gradual re-greening of chlorotic leaf 

tissues mirrored through changes in leaf chlorophyll contents in yellow genotype (Figure 2.1a and 

2.1b) suggests developmental shifts in chloroplasts directed towards re-greening process.  

 

 Conclusion 

 Grower satisfaction and cultivar stability are important considerations in the development 

and deployment of new hybrids. The current study addressed concerns (seedling chlorosis and 

stunting) that may arise following the deployment of herbicide resistant sorghum hybrids. The 

result provided some clue on the pattern of gene expression in sorghums suffering from leaf 

chlorosis that the bizarre phenotype was implicated to be the result of mutations in major 

chloroplast associated genes that resulted in their altered expression levels. Corroborating results 

from GO term and pathway analysis, some of the SNP variants were directly associated with genes 

responsible for chlorophyll metabolism and chloroplast structural components resulting in 

modified gene expression in yellow genotypes that is similar to plant defense responses under 

abiotic stress. Other SNP variants appeared to occur in genes responsible for regulating gene 

expression. The study laid groundwork on understanding the genetic basis behind unusual 
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chlorotic phenotype observed in ALS herbicide resistant sorghums. Once confirmed, the SNP loci 

associated with unique expression pattern in affected genotypes may be targeted for marker 

assisted elimination from breeding populations.   
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Chapter 3 - Agronomic adaptability, yield components and 

nutritional attributes of ALS herbicide resistant sorghum genotypes 

 Abstract 

Resistance to Acetolactate synthase (ALS) inhibitor herbicides is anticipated to offer an effective 

post-emergence weed control option in sorghum (Sorghum bicolor (L.) Moench). Introgression of 

the resistance trait from a wild relative into cultivated sorghum resulted in the development of 

numerous ALS resistant parental lines. Depending on the genetic background, many resistant lines 

show various levels of interveinal chlorosis at seedling stages. The objective of this study was to 

examine the effects of leaf yellowing and herbicide treatment on plant performance. Thirty-three 

ALS resistant lines expressing varying degree of chlorosis were evaluated for agronomic, yield 

and nutritional attributes along with three checks from 2013 through 2015. The study consisted of 

two experiments separately focused on evaluating the physiological and yield performance of the 

tested breeding lines both with and without the herbicide treatment. Data were collected on 

seedling height, leaf chlorophyll content and biomass 14 days after planting. At later stages, data 

were recorded on days to anthesis, adult plant chlorophyll content, height and biomass, panicle 

length, panicle width, panicle weight, panicle yield, 1000 kernel weight and grain yield. Additional 

analysis on grain nutritional attributes included grain protein, starch, fat and ash. Based on the 

results, interveinal chlorosis on ALS resistant inbreds appears to delay flowering and perhaps 

maturity. But, both chlorotic phenotype and herbicide treatment did not seem to have negative 

effects on final yield and other crop parameters. While a few of the resistant parents have higher 

protein content, the majority have nutritional attributes comparable to that of regular lines.  
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Key words: Sorghum bicolor, ALS herbicide resistance, interveinal chlorosis, chlorophyll 

content, yield, nutritional traits. 

 

 Introduction 

 Ranked fifth among the major world cereals, sorghum (Sorghum bicolor (L.) Moench) is 

considered an important food, feed and bio-energy crop of global importance. Sorghum feeds 

millions of people in more than 30 countries in Africa and Asia while it is used as the second 

largest source of animal feed and bio-fuel feedstock in the United States. As the number one 

sorghum producer and exporter in the world, the U.S. contributes to the global grain sorghum 

production of about 25% (Hamman et al., 2001). However, the area planted with sorghum in the 

United States accounts only for about 9% of the total land area cultivated to sorghum worldwide. 

While this seems to indicate a very positive achievement in improving sorghum productivity, there 

has been a sharp decline in sorghum acreage in the U.S. over the past few decades. Evaluation of 

crop production trends in one of the largest sorghum producing states, Kansas, indicated that much 

of the lost sorghum acres were picked up by maize. According to local farmers, the major driver 

for the switch from sorghum to maize was due to a better weed control option that the latter offers 

(pers. comm.). Thus the key issue in sorghum production in the United States that hasn't long been 

answered is the lack of effective post-emergence weed control options.  

Continued research in this area led to identification of sources of resistance to “Acetolactate 

Synthase (ALS) inhibitor herbicides” among wild sorghum population which was expected to 

provide resistance based post-emergence weed control option for sorghum (Tesso et al., 2011). 

ALS herbicides are amongst the broadly marketed herbicide chemistries that act both on grass and 

broad-leaved weeds. Resistance gene from the wild sorghum was successfully introgressed into 
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cultivated sorghum with the derivates expressing stable resistance as strong as in the original 

resistance gene donor. Over the last few years, large number of sorghum germplasm and parent 

lines (inbreds) with strong resistance to all classes of ALS inhibitor herbicides have been 

developed by sorghum breeding program at Kansas State University. These resistant sorghums 

have shown to tolerate herbicide doses that are 6 to 10x the normal use rate.  Despite their relatively 

long persistence in the soil, residual activity, ALS inhibitor herbicides have made them widely 

popular in the farming communities due to their potency against both grass and broad-leaved 

weeds, low cost and very low use rates (Kershner, 2010). As the technology awaits 

commercialization, one key concern among both the industry and producers is the interveinal 

chlorosis commonly observed in ALS resistant lines. 

Many of the ALS resistant lines tend to show reduced seedling vigor and variable degree 

of leaf yellowing at seedling stages. But the expression of such phenotype seems to be dependent 

on genetic backgrounds and is heritable. This was confirmed from evaluation of families derived 

from backgrounds expressing different levels of the phenotype (Weerasooriya et al., 2012). 

Though, the chlorotic plants turn green and effectively grow out of these symptoms after few 

weeks of emergence, this abnormal seedling phenotype may become disturbing to growers and 

undermine adoption of the ALS resistance technology.  

Previous studies have shown that chlorophyll loss under biotic and abiotic stresses can lead 

to  major yield and biomass reductions in crops (Hayatu and Mukhtar, 2010) perhaps due to 

compromised photosynthesis (Rharrabti et al., 2001). Although the yellowing phenotype observed 

in ALS resistant sorghums is not the result of biotic or abiotic stresses, the significant reduction in 

leaf chlorophyll content may be reflected in overall biomass accumulation or yield formation. 

While such phenotype is expressed even without herbicide treatment, the yellowing intensity 
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seems to increases when herbicides are applied. Therefore, the objectives of this study were, 1) to 

evaluate the extent of leaf chlorophyll loss among ALS resistant lines derived from diverse genetic 

backgrounds and, 2) to investigate the effect the of seedling chlorosis and herbicide spray treatment 

on plant physiological activities, yield components and nutritional properties of sorghum grains. 

 

 Materials and Methods 

 Two experiments were conducted in this study with both experiments consisting of the 

same set of genetic materials. Experiment I was conducted in single row plots during 2013 and 

2014 season and was aimed at evaluating the impacts of ALS gene induced early season leaf 

chlorosis on seedling dry matter accumulation and plant growth characteristics with and without 

herbicide treatment. Whereas Experiment II was carried out in two row plots during 2014 and 2015 

seasons in order to evaluate the agronomic and yield parameters with and without herbicide 

application.  

 

 Genetic materials 

 A total of 36 sorghum inbred lines resistant to ALS inhibitor herbicides were included in 

the study. The test genotypes comprised 27 ALS resistant B-lines (female parents), 6 ALS resistant 

R-lines (male parents) and another 3 ALS resistant lines from the 2007 releases. Selection of the 

entries was primarily based on the variation in the degree of leaf chlorosis that the materials suffer 

and, not on their fertility reaction. Thus the entries selected for the study captured the spectrum of 

the interveinal seedling chlorosis observed in the larger nursery. Figure 3.1a depicts the phenotypic 

appearance of the typical yellow and green genotypes grown side by side. As a negative control, 

ALS herbicide susceptible standard pollinator parent Tx430 was also included. The list of test 
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entries is provided in Table 3.1 and the same test genotypes were used in both experiments I and 

II.  

 

 Experimental design and field management 

 Prior to planting, seeds were cleaned and surface-sterilized using standard sorghum seed 

treatment (a mixture of Maxim 4FS TM, Apron XL TM, Concep III TM, and colorant). In preparation 

for planting, three grams of seeds enough to plant 5 m long single row were packeted for 

Experiment I.  A plot was represented by a single 5 m long row in Experiment I and by a double 

row in Experiment II.  The design in both experiments was split-plot with randomized complete 

block replicated two and three times in Experiment I and II, respectively. The herbicide treatment 

was assigned to the main plot whereas the 36 genotypes were assigned to the sub-plot unit.  

 At planting, the seeds were drilled into 5-meter-long rows spaced 0.75 m apart using a cone 

planter. Fertilizer nitrogen (urea) and phosphorous (di-ammonium phosphate, DAP) were applied 

at the rate of 90 kg ha-1 and 40 kg ha-1, respectively. Pre-emergence weeds were controlled with 

0.55 kgha-1 Atrazine TM, 0.76 kg ha-1 Dual II Mg TM, and, 0.16 kg ha-1 Callisto TM while post-

emergence weeds were removed manually. Three weeks after planting, whole plot units designated 

for herbicide treatment in Experiment I and II were treated with 2x rate (105.08 g a.i. ha-1) of 

herbicide accent.  

 

 Data collection 

 Data were collected on a number of agronomical, physiological and yield parameters in 

both experiments. In Experiment I, leaf chlorophyll content, plant height, days to flowering and 

above ground biomass were measured at seedling and adult plant stage (at 4 and 10 weeks after 
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planting, respectively). Visual ratings of leaf coloration was recorded using a “1-4” scale with 

1=extreme yellow, 2= greenish yellow, 3= yellowish green, 4= normal green. Chlorophyll 

measurements were taken using SPAD-502 chlorophyll meter (Spectrum Technologies Inc.) using 

three plants per plot. At seedling stage, chlorophyll reading was made on the second fully expanded 

leaf from top whereas the pre-flag leaf was used later at grain filling. Seedling height was recorded 

as the length of the plant measured from the soil level to the tip of the most top leaf and from the 

base to the tip of the panicle in adult plants. Total above ground biomass was measured using 

destructive sampling of three plants per plot at both early and adult plant stages. Fresh plants were 

harvested at the base, and weighed on a tabletop balance and oven dried at 70°C for three days. 

The biomass was then adjusted to 14% moisture content for statistical analysis. Days to flowering 

was recorded on plot basis as the number of days from planting to when half of the plants in a plot 

reached half-bloom stage.  

The main parameters collected under Experiment II include adult plant chlorophyll content, 

days to flowering, adult plant height and, grain yield and yield components, panicle weight, yield 

per panicle, kernel number per panicle, thousand kernel weight, panicle length, and panicle width. 

The following outlines the procedures for determination of yield components under Experiment 

II. Panicle samples (three from each plot) were harvested after maturity and oven dried at 65°F for 

three days. Panicle weight on plot basis was determined as the average weight of three individual 

panicles harvested. The dry panicles were then threshed using a belt thresher (Model SVPT, 

Almaco). Kernel weight per panicle was measured as the weight of kernels threshed per individual 

panicle. Number of kernels per panicle was determined by counting the kernels threshed from each 

panicle using a seed counter (Model 850-3, International Marketing and Design Corp.). Thousand 

kernel weight was estimated by dividing the panicle yield by the number of kernels per panicle 
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multiplied by 1000. The mean yield component data from three panicles was used to represent a 

plot for statistical analysis. Additional samples were collected from the herbicide treated whole 

plot unit for determining the nutritional profile of herbicide treated ALS resistant genotypes. Seeds 

from three panicles harvested in each plot were bulked to pool large enough sample (40g or more). 

The nutritional quality analysis was performed using near infrared spectroscopy (NIR) system 

(Perten Instruments Inc.) pre-calibrated for use on sorghum grain. The seed samples were carefully 

cleaned to remove chaffs and broken seeds and the intact seed samples were scanned to obtain 

protein, fat, starch, ash, and moisture content from the intact seed samples. The results were 

adjusted to 12.5% moisture before statistical analysis.   

 

 Statistical analysis 

 For both experiments, statistical analysis was performed using SAS software version 9.4 

(SAS Institute, 2008). Analysis of variance (ANOVA) was performed using a mixed model (PROC 

GLIMMIX) procedure with environments and replicates treated as random effects. Significant 

means between herbicide treatments and genotypes were separated using Fischer’s protected LSD 

in SAS. The data in both experiments was re-arranged to test the effects of seedling color on both 

seedling growth parameters and adult plant performance including yield and yield components. 

Pearson correlation coefficient was run using PROC CORR procedure to determine the degree of 

correlation between measured parameters.  
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 Results 

 Figure 3.1a shows the visually observable variability in seedling phenotype between the 

yellow and green genotypes while Figure 3.1b shows the appearance of the same genotypes after 

the leaves were re-greened. A close-up of a seedling leaf bearing interveinal yellowing symptom 

is shown in Figure 3.1c. Figure 3.2a presents variability for leaf chlorophyll content observed 

between herbicide treated genotypes expressing chlorotic and normal phenotypes under each 

environment. Based on the results of the t-tests, during seedling stage, the difference between 

SPAD values under both environments were highly significant. However, at the adult plant stage 

SPAD value difference between yellow and normal genotypes was not significantly different as 

inferred from the p-values. On the other hand, above ground biomass showed significant 

differences between chlorotic and normal genotypes during seedling stage under environment 1 

but was not significant under environment 2 (Figure 3.2b). Differences between two groups of 

genotypes for adult plant biomass and chlorophyll content were non-significant under both 

environments.  

 

 The effect of herbicide treatment and interveinal chlorosis on plant growth 

characteristics  

 Tables 3.2 and 3.3 present the analysis of variance for the effect of herbicide treatment and 

seedling chlorosis across the range of genotypes on crop growth and phenology evaluated under 

Experiment I.  Herbicide treatment had significant effect on seedling height, seedling and adult 

plant biomass, while the effect on other parameters was not significant (Table 3.2). On the other 

hand, the effect of genotypes was significant for all parameters collected while the interaction 

between herbicide treatment × genotype, genotype × environment and the three way interaction 
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(herbicide treatment × genotype × environment) were also significant for all parameters except for 

seedling and adult plant height (Table 3.2).  The effect of environment was significant for all 

parameters except adult plant chlorophyll content and seedling height. When ANOVA was run 

after the data was rearranged by seedling color, the analysis revealed that herbicide treatment again 

has significant effect on all parameters except on adult plant chlorophyll content, adult plant height 

and days to flowering (Table 3.3). The effect of seedling color on these parameters, on the other 

hand, was highly significant except for adult plant height and adult plant biomass.  The effect of 

environment was again significant for all parameters except for seedling height. The interaction 

between seedling color and herbicide treatment was not significant except for seedling chlorophyll 

content and seedling biomass while seedling color × environment interaction effect was significant 

for seedling biomass and days to flowering. The three way interaction between these factors 

(seedling color × herbicide treatment × environment) was significant only for seedling biomass. 

The herbicide treatment, genotype and seedling color effects for individual environment analysis 

was fairly consistent with the combined data for most of the parameters (Tables 3.2 and 3.3).  

Mean seedling chlorophyll content between herbicide treated and untreated plots was 28.3 

and 29.1 SPAD units, respectively, and was virtually the same (55.4 and 54.4) in adult plant 

showing that ALS herbicides do not have any effect on chlorophyll biosynthesis in ALS resistant 

genotypes (Table 3.4). Herbicide treatment also did not have an effect on days to flowering and 

adult plant height. However, seedling height, seedling and adult plant biomass were significantly 

lower in herbicide treated plots (Table 3.4).  On the other hand, genotypes with conspicuous 

seedling chlorosis tended to have reduced seedling growth characteristics. Accordingly 

chlorophyll content, height and biomass in genotypes with yellow seedling phenotype were 

significantly lower than those not affected by yellowing. Mean seedling chlorophyll content in 
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yellow genotypes was 25.4 units compared 35.2 in normal green genotypes. Also seedling height 

and biomass in affected genotypes was 16.8cm and 32.4g as compared to 18.2cm and 43.6 g, 

respectively, in genotypes not affected by yellowing. However, all of these characteristics were 

not affected in adult plant except days to flowering which took an average of 73 d in yellow 

genotypes vs. 71 d in normal green genotypes.  

The mean performance of the 36 genotypes for various parameters with and without 

herbicide treatment is presented in Table 3.5. Seedling chlorophyll content was markedly different 

between genotypes ranging from the lowest of 13.4 units in herbicide treated yellow background 

(PR12/13-764-6) to 40.4 units in MN13-7450 also under herbicide treatment. The non-ALS 

resistant check Tx430 had mean seedling chlorophyll 38.3 SPAD units in untreated control which 

was comparable with 39.1 units in MN13-7450, 35.9 units in MN13-7458 and few other resistant 

genotypes. No comparison of chlorophyll content was made between the herbicide treated and 

untreated control of the susceptible check as it died after being treated with the herbicide (Figure 

3.1d). Chlorophyll content was generally low in yellow backgrounds than the normal and near 

normal green genotypes. While the majority of the entries had lower chlorophyll contents, the 

chlorophyll content of a large portion of the herbicide treated entries were slightly higher than the 

untreated control after treated with the herbicide and this is especially true in the green 

backgrounds while chlorophyll content in many of the yellow genotypes was either reduced or 

remained the same after herbicide treatment resulting in significant seedling color × herbicide 

treatment interaction for the trait.  

Days to flowering among the entries ranged from as early as 59 d in MN13-7838 to 84 d 

in PR11/12-851 in untreated plots. The check entry Tx430 took 68 d to bloom. Herbicide treatment 

appear to have caused a little delay in flowering which was consistent across genotypes except a 
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handful of entries with yellow backgrounds that seem to have been not affected by herbicide 

treatment or even had accelerated flowering under herbicide treatment. Seedling height and 

biomass were visibly affected by herbicide treatment with treated plots having reduced height and 

lower biomass and this was consistent across all genotypes (Table 3.5).    

The centerpiece of this study was to determine if the yellow seedling phenotype has an 

impact on growth and adult plant performance. Hence correlation analysis was run between 

seedling chlorophyll content and various seedling and adult plant characteristics.  The result shows 

that seedling chlorophyll content was positively and significantly correlated with seedling height 

and seedling biomass under herbicide treated and untreated conditions in both test seasons (Table 

3.6). Whereas, it was negatively correlated with days to flowering and adult plant height in 

environment 1 and the correlation was not significant in environment 2. Other adult plant 

characteristics including biomass and adult plant chlorophyll content were not correlated with 

seedling chlorophyll content indicating that the effect of this phenotype was limited to seedling 

growth only (Table 3.6) 

 

 Effect of herbicide treatment and interveinal chlorosis on adult plant performance 

 The analysis of variance on the effects of herbicide treatment and seedling chlorosis on 

phenology, yield and yield components tested under Experiment II are presented in Tables 3.7 and 

3.8. The analysis shows that both herbicide treatment and seedling chlorosis had significant effect 

on days to flowering and panicle length while the effect on all other parameters was not significant. 

On the other hand, the genotype, environment and genotype × environment interaction effects were 

significant for all parameters studied except the genotype effect on grain yield and environment 

on chlorophyll content were not significant (Table 3.7). Genotype × herbicide treatment effect was 
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significant for days to flowering and panicle length while genotype × herbicide treatment × 

environment interaction effect was significant only for days to flowering. The effect of these 

factors under individual environment analysis was generally consistent with the combined 

analysis.  Further analysis was conducted after sorting the genotypes by seedling color and the 

result shows that herbicide treatment effect was again significant for days to flowering and panicle 

length whereas seedling color effect was significant only for days to flowering, panicle width 

(diameter) and TKW and not significant for all other traits. All interaction effects were not 

significant for all traits except seedling color × environment effect for grain yield (Table 3.8). 

Again the individual environment ANOVA was similar to the combined analysis except few traits 

showed significant for seedling color effect. 

 The combined mean for the various traits of genotypes subjected to herbicide treatment 

and untreated control is presented in Table 3.9. As indicated in the ANOVA in Table 3.8, only 

days to flowering and panicle length were significantly affected by herbicide treatment. That is 

herbicide treatment delayed flowering by an average of 3 days while panicle length was 1.2cm 

longer in the treated plots. Individual location analysis shows that the difference for these traits 

between treated and untreated plots was significant only under environment 1 and not under 

environment 2 (Tables B.5 and B.6). All other traits were not affected by herbicide treatment with 

grain yield, though not significant, was slightly higher under herbicide treatment (3.3 vs. 3.5 

tons/ha). The effect of seedling color on adult plant performance was not significant for most of 

the traits except days to flowering that was delayed in the chlorotic genotypes by an average of 2 

days and panicle width that was slightly larger in the normal green genotypes (Table 3.9).  

The effect of genotypes on all traits measured was significant under both herbicide treated and 

untreated conditions except grain yield. Mean plant height of ALS resistant genotypes ranged from 
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89 to 138cm in the control and 90 to 131 in herbicide treated plots of genotypes MN07-2165 and 

MN13-7500, respectively (Table 3.10). The check genotype Tx430 was about 116cm tall without 

herbicide treatment. Similar variability was observed for all other traits. The longest maturing 

genotype flowered 14 days after the normal check genotype Tx430. However, 13 genotypes out 

36 were earlier than this check. For the yield components, out of the total of 36 ALS resistant 

genotypes included, 16, 18, 20 and 33 of them had mean panicle width, panicle length, panicle 

weight and KN larger or equivalent to the check genotype Tx430 (Table 3.10).  However, only 

three and six genotypes had mean panicle length and grain yield higher than the check while none 

were superior to the check for TKW. Comparison with the check was not possible under herbicide 

treatment, but except for days to flowering, herbicide did not affect any other trait measured. The 

result was fairly consistent across locations as well though few genotypes apparently showing 

differential response for some of the traits. Correlation between the different yield components is 

presented in Table 3.11.  All measured yield components as well as chlorophyll content and pant 

height showed positive and significant correlations with the grain yield across environments except 

for days to flowering that showed significant inverse correlations with all measured parameters 

except with panicle length. No correlations were observed for chlorophyll content with plant height 

or kernel number. At the same time, kernel number per panicle did not show any correlations with 

thousand kernel weight. All correlations between other parameter pairs were significant and 

positive across environments.  

Because the resistance trait is introduced from wild background, it is possible that 

undesirable alleles can drag with the resistance genes that may compromise productivity or 

utilization of the crop. Hence, in addition to the agronomic parameters, tests were conducted to 

evaluate nutritional profile of the ALS resistant materials. The results are presented in Tables 3.12-
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3.14).  The combined analysis of variance showed significant genotype effect for all nutritional 

parameters including protein, starch, fat and ash content (Table 3.12). Protein content among 

genotypes ranged from 12.4 to 17.0 while starch ranged from 71.6 to 76.8%. As expected the 

genotype with the highest protein content had the lowest starch. The fat content ranged from 4.8 

to 5.2 % while ash was between 1.33 and 1.7% (Table 3.14). There was no significant difference 

between yellow and green genotypes for any of these traits both in the combined as well as 

individual location analysis (Table 3.13).   
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Figure 3.1. ALS resistant genotypes expressing yellow (left) and green (right) seedling 

phenotypes (a) at seedling stage (three weeks old) and (b). after recovery of the yellowing 

symptom (six weeks old). (c). A close-up of interveinal yellowing symptom on leaves. (d).  

Appearance of an ALS herbicide resistant genotype (left) and herbicide susceptible check 

(Tx430) one week after the herbicide treatment.  

 

(a) (b) 

(c) (d) 
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Figure 3.2. A modified version of multiple boxplots displaying variability between genotypes showing seeding yellow and normal 

phenotypes for (a) seedling and adult plant chlorophyll content and (b) above ground biomass measured in herbicide treated conditions 

under two environments. The ‘+’ sign denotes the sample mean and the notch represents 95% confidence interval for the median. The 

table shows results of each two sample t-test performed between yellow and normal genotypes for each stage and environment. X axis 

labels read as, E1 and E2=Environment 1 and 2, Y and N = genotypes showing yellow and normal seedling phenotypes, S and A = 

seedling and adult stage of growth.   †Y mean=mean of yellow genotypes, ‡N mean=mean of normal genotypes

Pair tested t value P-value †Y mean ‡N mean 

E1_Y_S vs. E1_N_S -11.89 <0.0001 22.06 35.22 

E1_Y_A vs. E1_ N_A -0.50 0.62 56.24 56.66 

E2_Y_S vs. E2_ N_S -12.16 <0.0001 22.12 37.58 

E2_Y_A vs. E2_ N_A 0.58 0.56 55.85 55.33 

Pair tested t value P-value †Y mean ‡N mean 

E1_Y_S vs. E1_ N_S -5.41 <0.0001 25.59 39.02 

E1_Y_A vs. E1_ N_A 1.34 0.18 358.39 329.09 

E2_Y_S vs. E2_ N_S -1.83 0.07 32.51 37.34 

E2_Y_A vs. E2_ N_A -0.91 0.37 251.95 269.59 
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Table 3.1. List and some of the characteristics of the ALS resistant breeding lines included in the 

study.  

 

Genetic Material 
Fertility Reaction with 

A1 cytoplasm 
Seedling Color 

Resistance to ALS 

Herbicides 

PR12/13-764-4 Maintainer (B) Yellow Resistant 

MN13-7450 Maintainer (B) Green Resistant 

MN07-2118 Maintainer (B) Yellow Resistant 

PR12/13-763-5 Maintainer (B) Yellow Resistant 

PR12/13-762-2 Maintainer (B) Yellow Resistant 

MN13-7455 Maintainer (B) Yellow Resistant 

PR12/13-763-3 Maintainer (B) Yellow Resistant 

PR11/12-873 Restorer (R) Yellow Resistant 

MN13-7458 Maintainer (B) Green Resistant 

PR12/13-764-6 Maintainer (B) Yellow Resistant 

PR12/13-763-1 Maintainer (B) Green Resistant 

PR12/13-761 Maintainer (B) Yellow Resistant 

MN07-1916 Restorer (R) Green Resistant 

MN13-7840 Restorer (R) Yellow Resistant 

MN13-7498 Maintainer (B) Green Resistant 

MN13-7462 Maintainer (B) Green Resistant 

PR9/10-4720-1 Maintainer (B) Yellow Resistant 

PR11/12-984 Maintainer (B) Yellow Resistant 

PR12/13-764-1 Maintainer (B) Yellow Resistant 

MN11-10362 Restorer (R) Yellow Resistant 

PR12/13-762-1 Maintainer (B) Yellow Resistant 

PR11/12-850 Restorer (R) Yellow Resistant 

PR11/12-1026 Maintainer (B) Green Resistant 

MN13-7499 Maintainer (B) Yellow Resistant 

PR12/13-763-4 Maintainer (B) Yellow Resistant 

MN13-7463 Maintainer (B) Yellow Resistant 

PR11/12-851 Restorer (R) Green Resistant 

PR12/13-764-2 Maintainer (B) Yellow Resistant 

PR12/13-764-3 Maintainer (B) Yellow Resistant 

MN13-7838 Restorer (R) Yellow Resistant 

MN13-7500 Maintainer (B) Yellow Resistant 

MN07-2165 Maintainer (B) Yellow Resistant 

PR12/13-763-2 Maintainer (B) Green Resistant 

MN13-7439 Maintainer (B) Green Resistant 

PR11/12-852 Restorer (R) Yellow Resistant 

MN13-7923 Restorer (R) Green Resistant 

Tx430 Restorer (R) Green Susceptible 
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Table 3.2. Analysis of variance for physiological and agronomic characteristics of ALS 

herbicide resistant sorghum (Sorghum bicolor (L.) Moench) genotypes evaluated with and 

without herbicide treatment.  

 

* and ** statistically significant at P  0.05 and 0.01, respectively.

Source of variation df 

Chlorophyll Content 

(SPAD) 
Plant height Biomass 

Days to 

flowering 
Seedling 

Adult 

plant 
Seedling 

Adult 

plant 
Seedling 

Adult 

plant 

Combined analysis                 

Environment (E) 1 1360.6** 98.0 3.1 5191.5* 3476.53* 188616** 606.6* 

Block/E 2 7.7 22.8 1.3 5.9 42.3 1656.4 18.7 

Herbicide treatment 

(T) 
1 54.0 69.5 430.3* 33 1790.9* 41744* 203.3* 

T x E 1 115.3 82.1 18.3 99.1 54.3 7753 11.6 

Error a 2 22.2 9.1 5.4 42.1 86.3 97.7 10.8 

Genotype (G) 35 401.2** 108.5** 23.7** 152** 811.6** 35774** 337.5** 

G x T 35 25.1** 41.7** 5.3 101* 180.6** 7774.6** 14.6** 

G x E 35 22.2** 42.7** 7.3 53.2 358.7** 5792.5** 65.3** 

G x T x E  35 25.4** 34.3** 4.4 9.9 137.5** 4392.3** 21.2** 

Error b 
14

0 
9.3 6.3 4.5 5.3 54.8 55.2 4.0 

Environment 1         

Block 1 11.3 5.84 1.9 0.6 6.2 2756.2 5.4 

T 1 746.7** 153.4 318.8** 265.5** 6836.8** 2777.2 58.7 

Error a 1 0.92 4.0 3.6 0.1 188.2 2916 1.4 

G 35 226.0** 117.8** 21.5** 158.9** 879.3** 21875** 129.2** 

G x T 35 12.8** 64.2** 8.47 8.2 153.7* 7063** 8.2** 

G x Block 35 3.4 2.6 6.9 0.9 68.5 2314.7 1.6 

Error b 35 3.0 2.4 7.6 0.7 102.1 2462 0.7 

Environment 2         

Block 1 3.9 54.2 0.55 11.1 57.7 556.5 32.1 

T 1 1422.5* 0.3 134.4* 66.7 757.1* 116719* 156.2 

Error a 1 43.2 7.1 7.3 64.0 46.2 2753.6 20.2 

G 35 197.4** 32.5** 8.8** 46.3** 281.0** 19692** 273.6** 

G x T 35 37.6** 12.2 1.3 11.8 161.0* 5104.1** 27.6** 

G x Block 35 13.6 14.0 1.5 9.8 28.8 743.1 10.5 

Error b 35 17.5 6.5 1.9 9.9 22.4 1183.8 7.3 
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Table 3.3. Analysis of variance for physiological and agronomic characteristics of ALS 

herbicide resistant sorghum (Sorghum bicolor (L.) Moench) genotypes of contrasting seedling 

color (yellow vs. green) evaluated with and without herbicide treatment. 

 

 

* and ** statistically significant at P ≤ 0.05, and 0.01, respectively. 

 

 

Sources of variation df 

Chlorophyll 

content Days to 

flowering 

Plant height Biomass 

Seedling 
Adult 

plant 
Seedling 

Adult 

plant 
Seedling 

Adult 

plant 

Combined analysis               

Environment (E) 1 1130.0** 149.2* 838.5** 9.2 4157.5** 5508.7** 140997** 

Block/E  2 7.6 21.6 18.7 1.3 5.8 35.5 38883 

Herbicide treatment (T) 1 163.2* 80.0 181.1 399.8** 49.9 2633.6* 1656.4* 

T x E 1 13.0 81.3 30.7 10.0 23.5 325.8 546 

Error a 2 22.0 10.0 10.8 5.2 42.0 91.0 2834.8 

Color(C) 1 6087.9** 23.7 192.5* 122.6** 109.1 8043.2** 16071 

C x T 1 305.9** 14.2 0.001 0.7 24.4 1176.0** 187.1 

C x E 1 12.1 67.3 296.1* 15.8 107.3 2685.2** 10383 

C x T x E  1 20.5 0.8 48.4 5.5 25.2 741.9* 80.9 

Error b 4 41.5 31.5 56.2 6.8 30.3 170.8 7567.3 

Environment 1         

Block 1 12.7 5.7 2.1 0.6 0.7 138.9 2462.2 

T 1 514.9** 62.6 31.3 270.2** 313.9** 9338.8** 1966.1 

Error a 1 0.9 4.0 1.3 3.6 0.09 135.9 2916.0 

C 1 2778.2** 5.6 483.0** 114.2** 216.4* 9938.3* 309.3 

C x T 1 83.9 11.0 23.9 1.1 49.7 1886.3 257.0 

C x Block 1 1.3 0.1 4.7 2.6 0.1 662.7 0.1 

Error b 1 41.7 47.6 31.9 10.5 41.1 219.5 8609.1 

Environment 2         

Block 1 3.8 42.3 32.0 0.5 5.8 48.0 520.0 

T 1 1661.2* 23.5 180.5 140.4* 59.5 589.3* 104463** 

Error a 1 43.2 4.9 20.2 6.9 84.0 46.2 2753.6 

C 1 3321.8** 84.2 5.5 24.9** 0.003 719.4* 26144* 

C x T 1 242.5 4.2 24.5 5.0 0.003 24.9 10.9 

C x Block 1 0.08 15.8 0.8 0.03 4.7 0.5 2.8 

Error b 1 42.0 15.8 81.2 3.2 19.8 120.6 6636.0 
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Table 3.4. The combined mean of the effect of herbicide treatment and seedling phenotype on physiological and agronomic characteristics of 

ALS herbicide resistant sorghum (Sorghum bicolor (L.) Moench) genotypes evaluated with and without herbicide treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

†LSD = Least significant difference; ns = not significant.    

Treatment effect 

Chlorophyll content 

(SPAD units) 
Days to 

Flowering 

Plant height 

(cm) 
Biomass(g) 

Seedling Adult Plant Seedling Adult plant Seedling Adult plant 

Herbicide        

Untreated 28.3 (±0.32) 55.4 (±0.46) 71.6 (±0.32) 18.5 (±0.22) 116.0 (±1.45) 38.7 (±1.5) 326.8 (±7.6) 

Treated 29.1 (±0.32) 54.4 (±0.46) 73.2 (±0.32) 16.0 (±0.22) 114.3 (±1.45) 33.7 (±1.5) 302.7 (±7.6) 

Mean 28.7 54.9 72.4 17.3 115.2 36.2 314.8 
†LSD ns ns ns 0.62 ns 3.65 21.2 

Seedling color       

Yellow 25.4 (±0.52) 54.7 (±0.4) 73.0 (±0.55) 16.8 (±0.20) 116.3 (±1.25) 32.4 (±1.3) 309.5 (±6.6) 

Normal 35.2 (±0.74) 55.3 (±0.6) 71.1 (±0.78) 18.2 (±0.29) 113.0 (±1.77) 43.6 (±1.8) 325.4 (±9.3) 

Mean 30.3 55.0 72.1 17.5 114.7 38.0 317.5 
†LSD 1.80 ns 1.88 0.71 ns 3.69 ns 
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Table 3.5. Combined data for phenology and growth characteristics of ALS herbicide resistant sorghum genotypes evaluated with and 

without herbicide treatment during the 2013 and 2014 seasons.  

 

Genotype 

Chlorophyll content (SPAD units) 
Days to flowering 

Plant height (cm) Biomass (g) †Seedling 

color 
Seedling Adult plant Seedling Adult plant Seedling Adult plant 

Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated 

MN13-7450 39.1 40.4 56.3 57.2 69.0 69.0 19.9 17.3 105.8 99.0 22.7 19.1 477.2 345.7 G 

MN07-1916 34.4 38.8 63.0 60.9 65.3 66.5 19.0 17.6 111.0 103.5 44.5 41.4 248.0 253.7 G 

PR11/12-1026 34.6 38.6 55.0 58.7 68.3 68.5 19.8 16.9 119.3 108.8 47.0 58.8 256.0 302.2 G 

PR12/13-763-4 34.4 33.4 48.2 41.9 77.5 76.3 17.5 16.6 99.5 112.3 37.1 35.0 404.0 256.9 Y 

MN13-7462 34.5 38.3 57.6 58.7 66.0 65.8 19.3 16.8 110.8 104.0 29.4 15.8 322.7 215.2 G 

MN13-7458 35.9 37.9 50.3 54.7 68.3 66.8 20.9 18.3 111.0 112.5 42.6 38.1 328.2 209.0 G 

MN11-10362 31.4 33.2 56.5 56.1 74.8 79.5 19.0 17.8 131.3 132.0 40.6 32.2 417.5 461.2 Y 

PR12/13-763-1 31.1 37.9 52.6 45.1 78.5 75.0 17.8 15.0 107.8 108.0 41.7 38.3 460.0 374.3 G 

PR12/13-763-2 31.8 37.1 51.6 45.0 78.5 83.8 17.0 14.4 112.0 114.5 58.8 54.9 246.4 248.5 G 

PR12/13-763-5 33.1 32.9 55.3 38.1 73.8 80.3 17.9 16.2 111.0 113.0 23.2 22.4 332.3 285.8 Y 

MN13-7439 29.2 36.8 56.1 55.9 67.5 66.8 21.4 17.4 128.8 123.3 46.4 29.8 356.7 297.9 G 

PR12/13-763-3 28.4 31.5 52.7 55.0 77.5 81.0 17.6 16.2 108.0 112.8 20.8 20.6 388.8 249.3 Y 

MN13-7923 34.3 35.3 57.3 49.0 63.3 71.0 19.9 16.8 105.8 103.8 26.6 34.2 325.7 293.1 G 

MN13-7498 32.8 34.6 55.3 54.1 63.0 65.0 20.9 19.2 116.3 107.0 49.6 31.8 293.7 344.8 G 

MN07-2118 29.7 33.1 55.0 53.6 65.0 65.5 18.0 16.1 114.8 108.5 62.1 41.3 245.1 214.0 Y 

PR11/12-851 31.2 32.2 62.6 59.0 84.0 89.0 19.5 16.2 120.8 118.5 56.0 38.7 331.1 401.1 G 

MN13-7463 34.8 31.7 54.3 57.7 67.0 67.0 19.7 18.0 115.5 111.0 22.2 30.6 321.5 273.4 Y 

PR11/12-852 30.4 31.4 54.9 55.4 83.3 88.5 18.5 16.2 125.5 126.3 41.4 26.6 315.2 367.2 Y 

MN13-7838 29.6 31.4 57.4 59.3 59.5 63.0 18.6 16.5 107.3 99.0 22.7 28.7 215.1 209.9 Y 

MN13-7840 30.7 30.3 58.2 57.2 61.5 63.5 20.7 18.0 106.3 103.3 50.1 33.3 279.3 220.6 Y 

PR11/12-873 28.2 29.0 56.1 58.8 75.3 79.0 24.5 16.0 113.3 113.0 24.1 26.8 438.8 408.2 Y 

PR11/12-850 28.3 29.5 58.5 58.7 76.8 84.3 18.6 16.1 125.0 134.5 38.0 37.1 390.2 355.0 Y 

PR11/12-984 28.6 28.7 61.4 51.1 67.8 69.0 17.1 15.3 110.0 111.8 61.9 41.9 275.5 300.4 Y 

MN13-7455 26.8 26.4 56.0 60.1 67.3 66.8 20.4 17.6 106.3 107.0 32.1 44.1 329.3 272.9 Y 

MN13-7499 29.1 26.0 56.5 56.9 62.8 64.0 19.7 17.9 106.3 106.0 35.8 32.1 292.8 273.2 Y 

MN07-2165 22.3 21.8 56.6 61.1 74.8 73.5 18.3 14.2 92.3 96.0 48.5 38.7 295.5 271.4 Y 

PR12/13-762-2 23.3 21.3 56.1 55.2 74.3 78.3 15.4 14.3 109.3 110.3 43.7 22.3 339.0 330.1 Y 

PR12/13-762-1 22.6 20.6 56.2 56.4 73.0 73.3 16.5 14.5 114.5 118.3 20.0 18.1 293.8 273.5 Y 

PR12/13-764-2 18.9 18.9 52.5 53.2 72.5 73.0 16.8 13.8 134.5 129.5 25.7 20.8 295.7 276.8 Y 

MN13-7500 19.9 17.9 52.3 55.3 74.3 76.0 18.7 15.8 138.5 131.3 39.6 44.5 496.1 471.9 Y 

PR9/10-4720-1 19.4 17.8 56.0 57.6 76.5 78.8 15.6 15.1 127.5 124.5 33.0 34.6 321.2 426.6 Y 

PR12/13-764-3 22.0 17.7 49.1 52.4 73.0 71.8 18.2 14.6 128.5 134.5 34.5 27.6 295.4 251.5 Y 
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Genotype 

Chlorophyll content (SPAD units) 
Days to flowering 

Plant height (cm) Biomass (g) †Seedling 

color 
Seedling Adult plant Seedling Adult plant Seedling Adult plant 

Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated 

PR12/13-761 19.4 17.2 53.8 53.5 79.0 79.3 13.8 12.6 106.0 104.0 31.4 38.2 295.2 265.6 Y 

PR12/13-764-4 18.2 15.9 53.6 53.4 75.3 75.5 16.7 15.1 142.8 128.8 50.9 43.7 250.9 239.7 Y 

PR12/13-764-1 19.4 14.3 58.3 52.7 74.0 74.5 15.7 14.9 133.8 128.5 31.5 30.7 269.4 321.7 Y 

PR12/13-764-6 20.7 13.4 53.2 51.9 73.0 72.8 16.8 13.8 124.5 121.8 56.3 40.3 325.0 238.7 Y 

Tx430 38.3 - 57.3 - 67.8 - 17.8 - 108.3 - 37.6 - 352.6 - G 

Mean 28.3 29.1 55.4 54.4 71.6 73.3 18.5 16 116 114.2 38.7 33.7 327.5 300.0 - 
‡LSD 4.8 4.2 4.5 5.1 5.7 5.8 4.03 3.8 20.2 18.4 12.5 11.3 24.0 26.4 - 

 

†Seedling color Y= yellow and G = Green. 
‡ LSD = Least significant difference. 
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Table 3.6. The correlation between the seedling chlorophyll contents and physiological 

parameters measured at seedling and adult plant stage.   

 

Parameter tested against 

Seedling chlorophyll content 

Environment 1 Environment 2 

Untreated Treated Untreated Treated 

Seedling height 0.41** 0.71** 0.34** 0.27* 

Seedling biomass 0.69** 0.72** 0.29* 0.25* 

Days to flowering -0.52** -0.50** -0.11 -0.15 

Adult plant height -0.58** -0.50** -0.05 -0.04 

Adult plant biomass -0.13 -0.25 -0.12 -0.15 

Adult plant chlorophyll content 0.13 0.16 0.29 0.30 

      

 * and ** statistically significant at P  0.05 and 0.01, respectively. 
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Table 3.7. Mean squares for agronomic characteristics and yield components of ALS herbicide resistant sorghum (Sorghum bicolor (L.) 

Moench) genotypes evaluated with and without herbicide treatment under Experiment II.  

 
†KN = Kernel number per panicle; ‡TKW = thousand kernel weight; * and ** statistically significant at P ≤ 0.05 and 0.01, respectively. 

Sources of variation df 
Chlorophyll 

content 

Plant 

height 

Days to 

flowering 

Panicle 

length 

Panicle 

width 

Panicle 

weight 

Panicle 

yield †KN ‡TKW 

Grain 

yield 

Combined analysis                    

Environment (E)  1 127.1 6348.0** 569.4* 952.6* 44.2** 220237** 66035** 54373** 896.1** 952711* 

Block/E  4 51.0 33.2 67.5 6.4 0.30 453.0 374.4 1567 11.7 11522 

Herbicide Treatment (T) 1 47.8 3.0 675.0** 142.9* 0.02 436.4 0.2 205.2 6.0 42986 

T x E 1 4.0 149.3 37.0 2.4 0.7 324.3 0.8 5690 3.9 40401 

Error a 4 16.7 39.3 16.4 10.7 1.0 295.0 157.6 3174 1.7 29270 

Genotype (G) 35 38.0** 150.5** 433.2** 41.8** 4.1** 3476.2** 1849.7** 30130** 75.1** 36202 

G x T 35 7.8 8.2 44.7* 6.3* 0.4 493.9 298.2 3545 11.6** 54478** 

G x E 35 18.3* 38.8 107.3** 9.8* 1.1** 1679.1** 826.2** 12310** 12.2** 54372** 

G x T x E  35 8.3 8.0 48.2** 7.2 0.38 447.0 267.5 3556 8.6** 54372 

Error b 136 8.7 6.6 20.1 3.8 0.47 381.1 212.5 2963 4.7 30373 

Environment 1            

Block 2 59.9 27.3 98.2 13.2 0.5 623.2 296.2 119056 9.8 26105 

T 1 15.9 97.3 856.0** 222.1* 2.6 4.6 4.3 216230 54.5** 55972 

Error a 2 4.6 59.0 0.7 19.4 0.8 224.5 146.7 211682 2.7 24642 

G 35 36.9** 73.5** 410.4** 30.7** 2.0** 1926.8** 1088.9** 1410415** 42.7** 151073* 

G x T 35 11.3 11.3* 64.6 9.6 0.4 544.8* 288.3 367180 16.8** 48387 

G x Block 70 9.8 9.0 18.7 4.9 0.4 378.3 230.3 374295 7.0 32262 

Error b 70 12.1 6.2 18.6 3.6 0.5 436.1 223.5 347011 7.3 45544 

Environment 2            

Block 2 43.6 39.1 36.9 0.02 0.1 268.5 445.5 180260 11.9 106426 

T 1 40.1 55.0 56.0* 22.7* 3.2 764.8 0.08 277924 17.7 2119.0 

Error a 2 30.6 19.6 32.2 1.0 1.1 392.6 169.3 444663 1.3 466089 

G 35 18.5** 115.7** 130.1** 21.0** 3.2** 3217.6** 1582.0** 2813183** 44.1** 3616335* 

G x T 35 5.1 74.9* 48.3 12.8 0.3 314.7 237.0 291438 3.2 441975 

G x Block 70 6.6 4.9 22.0 3.1 0.4 316.8 183.5 215840 2.4 195551 

Error b 70 6.6 6.4 21.1 3.5 0.5 395.7 213.4 251142 2.1 270025 
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Table 3.8. Mean squares for agronomic characteristics and yield components of ALS herbicide resistant sorghum (Sorghum bicolor (L.) 

Moench) genotypes with contrasting seedling color evaluated with and without herbicide treatment under Experiment II. 

 

†KN = Kernel number per panicle; ‡TKW = thousand kernel weight; * and ** statistically significant at P ≤ 0.05 and 0.01, respectively. 

 

Sources of variation df 
Chlorophyll 

content 

Plant 

height 

Days to 

flowering 

Panicle 

length 

Panicle 

width 

Panicle 

weight 

Panicle 

yield †KN ‡TKW 

Grain 

yield 

Combined analysis                    

Environment 1 106.8** 5964.0** 663.2* 825.4** 36.0** 185031** 55613** 4289522** 840.8** 992194* 

Block/E  4 51.2 33.2 67.5 7.4 0.3 504.1 392.3 160946 11.6 123020 

Herbicide Treatment (T) 1 32.1 4.4 585.0** 108.1** 0.02 329.9 3.0 1308.2 4.2 23377 

T x E 1 1.7 111.2 33.3 81.1 4.7 167.8 6.2 746830 60.8 69935 

Error a 4 16.9 39.3 16.4 12.1 1.0 335.0 193.8 367695 1.9 31382 

Color(C) 1 57.1 23.3 321.4* 0.2 4.9* 2774.5 667.1 157753 159.0** 3842 

C x T 1 8.3 2.0 0.8 3.1 0.05 11.2 1.2 719.0 1.1 13583 

C x E 1 0.2 40.0 95.3 4.6 0.9 2228.7 726.9 2361440* 6.1 24384 

C x T x E  1 15.8 8.5 5.1 0.4 0.2 408.8 226.1 400246 0.2 55944 

Error b 8 11.7 21.6 65.8 8.0 0.8 756.8 411.4 612431 11.9 35789 

Environment 1            

Block 2 42.3 10.6 99.2 21.3 1.2 1116.1 488.9 209496 11.9 2753638 

T 1 3.2 80.0 778.7** 185.0* 2.1 8.5 0.2 299127 38.1 7713986 

Error a 2 3.3 59.0 0.7 23.3 0.9 282.5 237.4 313044 2.4 1781969 

C 1 53.7 1.1 33.3 3.2 5.0* 429.4 149.4 1727806 50.3* 89186 

C x T 1 23.3 1.1 0.9 0.7 0.2 247.5 98.6 169965 1.2 490706 

C x Block 2 3.9 30.0 9.7 17.6 1.5 1819.3 279.4 1146043 0.8 5738478 

Error b 2 15.3 19.3 93.1 9.8 0.7 667.8 378.5 542189 15.1 4322051 

Environment 2            

Block 2 44.2 27.6 43.5 1.0 0.2 392.7 549.7 239630 16.7 1187869 

T 1 38.8 35.5 39.7 0.9 2.7 487.6 9.1 410515 16.7 650567 

Error a 2 30.6 19.6 32.2 1.0 1.1 392.6 169.3 444663 1.3 4660897 

C 1 43.7 62.2 383.4** 1.3 0.7 15.0 97.3 657306 115.2** 2482073 

C x T 1 0.6 9.4 5.1 3.0 0.01 143.2 97.9 185796 0.1 6502150 

C x Block 2 2.7 7.5 11.3 6.9 0.2 203.9 119.6 96173 7.8 611853 

Error b    2 8.2 23.9 39.6 6.2 0.9 839.5 441.8 681141 8.9 2897860 
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Table 3.9. The combined mean of the effect of herbicide treatment and seedling phenotype on agronomic parameters and yield components of 

ALS herbicide resistant sorghum (Sorghum bicolor (L.) Moench) genotypes evaluated with and without herbicide treatment.  

 
†TKW = Thousand kernel weight; ‡KN = Kernel number per panicle;  
§LSD = Least significant difference; ns = not significant.  

 

 

 

Treatment 

Effects 

Chlorophyll 

content 

Adult plant 

Height 

Days to 

flowering 

Panicle 

length 

Panicle 

width 

Panicle 

weight 

Panicle 

yield 
†TKW ‡KN Grain yield 

Herbicide            

Untreated 55.9(±0.39) 115.3(±1.0) 72(±0.45) 27.2(±0.16) 5.8(±0.04) 98.8(±1.34) 65.2(±1.15) 25.5(±0.20) 2563(±36.62) 3334.7(±136.60) 

Treated 56.6(±0.39) 114.0(±1.0) 75(±0.45) 28.4(±0.14) 5.9(±0.05) 100.8(±1.44) 65.1(±1.21) 25.3(±0.19) 2567(±37.94) 3509.7(±137.49) 

Mean 56.3 114.7 73.5 27.8 5.8 99.8 65.1 25.4 2565 3422.2 

§
LSD ns ns 1.55 0.61 ns ns ns ns ns ns 

Seedling color          

Yellow 55.9(±0.20) 114.3(±0.82) 74(±0.48) 27.7(±0.19) 5.8(±0.06) 98.0(±1.61) 63.8(±1.40) 24.95(±0.20) 2548(±50.76) 3457.1(±118.36) 

Normal 56.9(±0.29) 114.1(±1.01) 72(±0.68) 27.8(±0.27) 6.0(±0.08) 103.4(±2.29) 68.0(±1.99) 26.26(±0.28) 2588(±72.04) 3397.4(±168.29) 

Mean 56.4 114.2 73 27.7 5.9 100.7 65.9 25.6 2568 3427.2 

§
LSD ns ns 1.65 ns 0.19 ns ns 0.75 ns ns 
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Table 3.10. Combined mean for agronomic characteristics and yield components of ALS herbicide resistant sorghum genotypes evaluated 

with and without herbicide treatment.  

 

 Genotype  
Plant height 

Days to 

flowering 
Panicle length Panicle width Panicle yield Panicle weight ‡KN †TKW Grain yield §

SC 

 
Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt 

MN07-2165 88.8 90.5 75.7 72.5 24.0 26.7 5.1 5.5 43.4 52.1 68.4 79.2 2234 2160 20.5 24.0 2076.1 4502.9 Y 

PR11/12-984 113.8 112.5 67.8 69.7 24.6 27.8 5.7 6.3 55.1 63.6 84.1 95.9 2230 2603 24.7 24.3 3481.5 5092.5 Y 

MN13-7450 107.0 105.0 76.5 74.3 26.7 28.7 6.8 6.9 72.5 72.3 113.7 119.8 2772 2738 26.2 25.7 3914.0 3414.4 G 

PR11/12-851 108.8 118.3 74.7 85.8 28.2 29.1 5.2 4.4 57.0 35.3 85.6 61.4 2024 1327 28.3 26.2 3109.0 3296.7 G 

PR11/12-873 110.0 114.5 75.7 81.2 30.4 31.6 5.3 5.4 67.2 75.1 97.7 109.0 2314 2545 29.2 29.0 3558.7 4278.3 Y 

PR11/12-1026 122.0 114.5 71.2 70.7 29.1 28.4 6.9 7.0 85.5 80.8 125.0 115.0 2895 3029 29.5 26.6 3081.0 4924.5 G 

MN07-1916 110.5 109.5 59.8 67.7 24.0 24.9 5.3 5.2 40.0 38.0 66.1 67.2 1632 1516 24.5 25.3 3691.2 3619.1 G 

MN13-7455 113.0 109.3 70.2 68.7 32.4 33.2 6.4 7.0 75.6 79.5 117.2 124.8 3227 3353 23.4 23.6 4143.2 3722.4 Y 

MN11-10362 126.3 127.5 75.5 81.2 29.6 30.9 5.3 5.4 70.9 64.8 102.9 106.0 2504 2817 24.9 22.5 3501.9 3312.2 Y 

MN13-7439 124.5 123.8 70.2 73.7 29.9 29.1 6.6 6.2 89.2 74.7 129.1 107.4 3446 2945 25.8 25.3 3027.9 4205.0 G 

PR9/10-4720-1 120.0 119.5 75.3 80.3 27.9 28.1 5.9 5.9 78.8 65.7 112.4 106.8 3321 2647 23.5 24.2 2769.8 3384.2 Y 

PR11/12-850 125.5 128.3 78.5 86.7 26.1 30.1 5.3 4.7 63.3 53.6 81.0 80.1 2160 1927 28.6 27.0 2522.6 5154.5 Y 

MN13-7923 112.5 110.5 69.0 69.5 29.0 27.7 5.3 5.0 54.2 52.2 84.6 80.6 2254 2116 24.1 24.4 2859.0 2970.5 G 

MN13-7463 120.5 116.8 64.5 69.8 32.6 31.5 6.3 6.0 80.5 78.2 120.4 120.2 3476 3339 23.1 23.3 3348.0 2950.7 Y 

MN13-7840 106.3 101.8 67.2 71.0 24.6 25.7 5.7 5.6 53.4 54.0 82.0 81.5 2154 2272 24.5 23.9 2993.0 5889.9 Y 

PR12/13-763-3 107.0 107.0 78.0 83.8 26.5 26.8 5.8 5.2 68.2 60.7 102.7 97.2 2945 2584 22.6 22.7 2679.1 4074.1 Y 

PR11/12-852 114.3 121.3 85.8 89.8 25.5 29.2 4.4 4.4 38.8 27.5 48.1 59.8 1126 1334 24.9 22.5 2882.3 4506.3 Y 

MN13-7838 111.8 103.8 58.8 66.7 24.0 25.9 5.2 5.1 50.8 52.8 78.0 80.3 1894 1834 26.5 28.5 3640.5 4102.6 Y 

MN13-7462 116.8 115.8 68.5 68.7 28.3 28.1 7.0 6.5 86.5 75.3 131.8 120.8 3698 3074 23.2 24.6 3697.8 2757.4 G 

PR12/13-762-2 102.0 103.3 74.3 78.2 25.6 27.1 5.9 5.7 60.6 58.7 94.7 95.0 2442 2455 24.8 23.4 4264.5 2349.4 Y 

MN13-7499 118.3 118.0 64.0 65.3 28.2 28.8 6.2 5.6 71.8 76.2 105.6 107.1 2534 2630 28.5 28.8 2740.1 2526.8 Y 

PR12/13-764-1 125.0 122.0 71.8 72.5 27.4 27.6 6.3 5.9 73.7 73.4 113.9 110.5 3024 2956 24.4 24.7 4257.0 3544.6 Y 

MN13-7500 138.3 131.3 72.0 73.3 29.3 30.7 5.7 5.9 77.1 73.6 112.3 103.7 2242 2534 34.4 29.0 2724.7 2383.5 Y 

PR12/13-763-2 113.3 120.8 74.5 84.7 27.7 28.3 5.7 6.2 70.2 78.0 104.9 119.4 2806 3252 24.6 23.1 3493.5 3007.7 G 

PR12/13-762-1 109.3 113.0 73.3 73.7 27.8 28.4 5.9 6.2 67.8 62.2 105.2 103.2 2724 2593 24.7 24.0 4891.1 2613.1 Y 

PR12/13-761 96.3 100.8 76.8 80.2 26.1 29.8 5.7 6.4 57.8 72.0 90.9 118.3 2429 3014 23.0 23.2 3417.6 2621.1 Y 

MN07-2118 110.0 114.5 69.3 69.5 26.7 27.4 5.6 5.9 53.1 55.6 88.6 89.7 2042 2103 26.1 26.3 2999.5 3457.1 Y 

PR12/13-763-4 113.3 115.5 78.0 81.5 27.6 27.6 5.7 5.6 69.8 58.4 106.0 92.2 2771 2520 25.7 22.7 4028.0 2459.9 Y 

PR12/13-763-1 104.5 109.5 79.8 76.3 25.6 30.4 5.3 6.2 56.6 87.0 89.9 129.6 2631 3424 21.1 25.4 3533.1 3949.6 G 

MN13-7458 115.5 119.5 69.8 68.7 26.1 28.7 6.3 7.1 61.2 83.3 90.2 120.1 2141 2550 28.4 32.4 3122.9 2814.1 G 

PR12/13-764-4 126.8 127.0 73.5 78.8 27.4 28.3 6.1 5.7 68.4 67.8 105.2 100.5 2764 2740 24.6 24.0 3720.2 2903.9 Y 

PR12/13-764-6 113.8 112.5 72.8 73.0 27.2 26.1 6.0 6.0 73.4 59.9 110.0 96.7 3005 2390 24.3 24.6 4080.7 3865.4 Y 
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 Genotype  
Plant height 

Days to 

flowering 
Panicle length Panicle width Panicle yield Panicle weight ‡KN †TKW Grain yield §

SC 

 
Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt 

PR12/13-764-2 126.3 124.5 73.2 70.7 28.1 28.4 6.4 6.5 74.5 76.5 119.5 118.5 3113 3103 23.5 24.4 2445.3 3208.0 Y 

PR12/13-764-3 118.8 123.0 73.3 71.3 25.6 27.7 6.3 6.2 61.6 71.2 100.4 111.0 2526 2921 24.2 24.1 2960.2 2683.2 Y 

PR12/13-763-5 110.0 112.0 81.7 85.0 25.6 27.0 5.4 5.5 57.8 57.0 87.0 90.1 2543 2483 22.4 22.5 2774.6 2482.1 Y 

MN13-7498 118.0 115.5 65.5 62.3 24.3 25.8 5.9 6.2 70.6 78.8 102.3 113.4 2223 2480 31.8 31.8 3610.1 3321.0 G 

Tx430 115.8 - 72.3 - 30.0 - 5.9 - 68.1 - 99.4 - 1974 - 35.0 - 3956.0 - G 

Mean 115.3 114.0 72.4 74.9 27.2 28.4 5.8 5.9 65.2 65.1 98.8 100.8 2562 2563 25.4 25.2 3334.7 3509.7 - 
¶LSD 16.5 13.8 5.8 5.3 3.58 3.75 0.8 1.0 23.8 25.2 36.9 39.9 192 184 3.09 3.68 504.9 510.2 - 

 

†KN = kernel number per panicle; ‡TKW = thousand kernel weight;  
§

SC= Seedling color Y = Yellow G = Green;  
   ¶ LSD = Least significant difference.  

Untrt.= without herbicide treatment, Trt. = Herbicide treated. 
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Table 3.11. Correlation coefficients between all tested parameters across environments under Experiment II.  

 

 

 

 

 

 

 

 

 

†KN = kernel number per panicle; ‡TKW = thousand kernel weight;  

* and ** statistically significant at P  0.05, and 0.01, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Parameter 
Chlorophyll 

content 

Plant 

height 

Days to 

Flowering 

Panicle 

length 

Panicle 

width 

Panicle 

weight 

Panicle 

yield 
†KN ‡TKW 

Plant height 0.08                 
Days to Flowering -0.13* -0.12*               

Panicle length 0.18** 0.51** -0.04             
Panicle width 0.11* 0.27** -0.31** 0.37**           
Panicle weight 0.12* 0.55** -0.27** 0.64** 0.79**         
Panicle yield 0.12* 0.51 ** -0.29** 0.59** 0.77** 0.96**       
†KN 0.08 0.39** -0.21** 0.56** 0.76** 0.90** 0.92**     
‡TKW 0.12* 0.38** -0.32** 0.25** 0.23** 0.36** 0.43** 0.04   
Grain yield 0.14* 0.39** -0.21** 0.33** 0.26** 0.48** 0.45** 0.42** 0.19** 
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Table 3.12. Analysis of variance for nutritional parameters among ALS resistant genotypes 

subjected to herbicide treatment.  

 

 

 

* and ** statistically significant at P  0.05, and 0.01, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sources of Variation df Protein% Fat% Starch% Ash% 

Combined analysis      

Environment (E) 1 421.3* 1.39 171.47** 0.39* 

Block/E  4 0.5 0.10 0.16 0.02 

Genotype (G) 35 5.10** 0.05** 9.27** 0.04** 

G x E 35 25.93** 0.03* 1.28** 0.01** 

Error 130 0.36 0.01 0.463837 0.01 

Environment 1      

Block 2 0.42 0.03 0.003 0.01 

G 35 3.26** 0.04* 5.46** 0.02** 

Error 70 0.39 0.02 0.46 0.002 

Environment 2      

Block 2 0.65 0.003 0.32 0.004 

G 35 2.58** 0.04*** 5.09** 0.02** 

Error 70 0.33 0.02 0.45 0.005 
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Table 3.13. Analysis of variance for nutritional parameters among ALS resistant sorghum 

expressing normal and yellowish seedling phenotypes following herbicide treatment. 

 

 

* and ** statistically significant at P  0.05, and 0.01, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sources of Variation df Protein% Fat% Starch% Ash% 

Combined analysis      

Environment (E) 1 349.6** 1.4* 153.8** 0.4* 

Block/E  4 0.5 0.1 0.2 0.02 

Seedling Color(C) 1 7.8 0.03 0.03 0.01 

C x E 1 0.3 0.05 0.7 0.02 

Error 4 1.6 0.03 2.9 0.01 

Environment 1      

Block 2 0.4 0.2 0.02 0.01 

C 1 2.6 0.08 0.2 0.03 

Error 2 1.8 0.03 3.0 0.01 

Environment 2      

Block 2 0.6 0.003 0.3 0.04 

C 1 4.6 0.002 0.5 0.01 

Error 2 1.3 0.02 2.8 0.02 
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Table 3.14. Mean protein content, starch, fat and ash among ALS resistant sorghum genotypes 

subjected to herbicide treatment. 

Breeding line Protein% Fat% Starch% Ash% Seedling color 

PR11/12-851 17.0 5.0 71.6 1.70 Green 

MN07-2118 16.7 5.1 73.1 1.51 Yellow 

MN13-7838 16.1 4.8 70.4 1.69 Yellow 

PR11/12-852 15.7 5.1 71.7 1.61 Yellow 

MN07-1916 15.6 4.8 72.5 1.66 Green 

PR12/13-762-2 14.8 5.0 74.1 1.67 Yellow 

PR11/12-1026 14.8 4.9 75.1 1.53 Green 

MN13-7458 14.7 5.3 76.8 1.38 Green 

MN11-10362  14.7 5.0 74.2 1.44 Yellow 

MN13-7923 14.6 5.0 73.9 1.62 Green 

PR12/13-764-2 14.5 5.1 74.2 1.52 Yellow 

PR11/12-850 14.3 5.1 72.8 1.53 Yellow 

PR12/13-764-4 14.2 5.1 74. 1.54 Yellow 

MN13-7439 14.2 5.1 73.9 1.45 Green 

PR11/12-984 14.1 4.8 73.8 1.62 Yellow 

MN13-7499 14.1 5.0 74.5 1.50 Yellow 

PR11/12-873 14.0 5.0 73.2 1.41 Yellow 

PR12/13-762-1 13.8 5.1 74.8 1.58 Yellow 

MN13-7462 13.8 5.0 74.1 1.53 Green 

MN13-7498 13.7 5.1 76.5 1.38 Green 

PR12/13-763-1 13.6 4.9 71.6 1.47 Green 

MN13-7500 13.6 5.2 76.1 1.33 Yellow 

MN13-7840 13.6 4.9 73.8 1.63 Yellow 

PR12/13-763-3 13.4 4.9 71.6 1.48 Yellow 

MN13-7450 13.4 4.9 73.7 1.47 Green 

PR12/13-764-1 13.3 5.1 74.7 1.46 Yellow 

PR12/13-764-6 13.3 5.1 74.6 1.43 Yellow 

PR12/13-764-3 13.2 5.0 74.6 1.47 Yellow 

PR12/13-763-5 13.0 4.9 71.7 1.51 Yellow 

MN13-7455 12.9 5.0 74.0 1.35 Yellow 

PR12/13-763-4 12.9 4.9 71.8 1.47 Yellow 

PR12/13-761 12.9 5.1 75.1 1.47 Yellow 

MN07-2165 12.8 5.2 76.0 1.35 Yellow 

PR12/13-763-2 12.8 4.9 72.5 1.46 Green 

MN13-7463 12.5 4.9 74.7 1.41 Yellow 

PR9/10-4720-1 12.4 5.1 74.9 1.41 Yellow 

Tx430 13.9 4.9 72.9 1.58 Green 

Mean 14.0 5.0 73.8 1.5     - 
†LSD 2.9 0.3 2.1 0.14     - 

 

†LSD = Least significant difference. 
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 Discussion 

 Crop establishment is an important prerequisite for successful crop production. This includes 

optimum germination and vigorous seedling growth (Brar and Stewart, 1994; Maulana and Tesso, 

2013; Yu and Tuinstra, 2001). In sorghum, some of the yield components are determined as early as 

30 d after germination (Maman et al., 2004; Wrather, 2009) hence in addition to fixing the crop stand 

and reducing weed competition, timely germination and seedling vigor have important agronomic 

implications. While germination is not an issue in herbicide resistant sorghums, reduced seedling 

vigor and low photosynthetic efficiency of chlorotic plants observed in some of the ALS resistant 

genotypes have been a source of concern (Weerasooriya et al., 2012). These characters are visible 

before herbicides are applied hence the concern about yield drag associated with ALS resistance 

seems real.  

In this study we investigated the effects of both herbicide application and reduced seedling 

growth associated with interveinal chlorosis in some of the ALS resistant genotypes. In general, 

herbicide treatment markedly reduced seedling growth which appears to have interfered with biomass 

accumulation in adult plants (Table 3.4). Though our speculation was that the effect of herbicide on 

adult plant biomass may also be reflected on grain production, the second experiment showed not 

significant effect of herbicide treatment on grain yield. Nevertheless, not all genotypes are equally 

sensitive to herbicide treatment that some 30% of the treated entries had higher or comparable adult 

plant biomass with the untreated plots while 33% of the entries have higher or similar seedling 

biomass (Table 3.5). The significant herbicide treatment × genotype interaction observed in this study 

(Table 3.2) perhaps arises from differential response of genotypes. This result agrees with previous 

observations with other chemicals (atrazine and mesotrione) where sorghum genotypes respond 

differently to herbicide treatments (Abit et al., 2009; Ahrens et al., 1981). In addition, the arbitrary 

chemical dose used in this study may also be partly responsible for the current result. Since ALS 
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herbicides are not labeled for use on sorghum, the current rates, which is twice the recommended use 

rate for maize, may be too high that crop recovery from herbicide injury was not fast enough. ALS 

herbicides can kill susceptible sorghums at 35.03 g a.i. ha-1 (Anonymous., 1993) whereas the rate 

used in this experiment was 105.08 g a.i. ha-1. In addition, this sampling is conducted on individual 

plant basis which introduces some sampling bias, and the result needs to be confirmed on larger plot 

experiments on non-inbred genotypes.  

On the other hand, seedling chlorosis had a significant effect on seedling growth and biomass 

(Table 3.4). Reduction in leaf chlorophyll content (chlorosis) is often considered as an indicator of 

plant stress (Tjoelker et al., 1993). Thus, plants subjected to various types of abiotic stresses express 

different degree of chlorophyll breakdown (Jnandabhiram and Sailen Prasad, 2012; Sanchez et al., 

1983). However, the chlorotic phenotypes being studied in this experiment are not caused by any of 

these stresses. As compared to the normal (green) genotypes, the chlorotic genotypes were 28, 8 and 

26% less in seedling chlorophyll content, seedling height and biomass, respectively (Table 3.4). 

Perhaps due to the effect on seedling growth, flowering in chlorotic plants is delayed by two days. 

All these parameters were not affected in adult plant indicating that the yellowish seedling phenotype 

is a temporary growth phenomena that may not have any effect on adult plant performance.  

The effect of herbicide treatment and seedling color on yield components and other adult plant 

characteristics was markedly different from that of the seedlings. Despite its significant effect on adult 

plant biomass as tested under Experiment I (Table 3.4), all agronomic and yield parameters were not 

affected except days to flowering for both seedling color and herbicide treatment, panicle length for 

herbicide treatment and, panicle width and thousand kernel weight for seedling color, grain yield and 

yield components were not affected by herbicide treatment under Experiment II (Tables 3.7-3.9). The 

data on Table 3.4 where adult plant biomass was affected by herbicide treatment was collected on 

individual plant as opposed to Table 3.9 where grain yield was recorded on whole plot basis. The 
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yellowish phenotype in ALS resistant lines express in different ways. Most genotypes emerge yellow 

and the phenotypes persist for a substantial period of seedling growth before it disappears which again 

is different in different backgrounds, whereas others emerge fairly green but suffer from yellowing at 

later stage. This phenomenon is further complicated by herbicide treatment. Thus it is possible that 

some genotypes may continue to express the yellow phenotype until later seedling growth stage that 

there was a concern this phenomenon might affect some of the yield components. However, the 

current result removes some of these worries. Grain yield in 50% of the tested genotypes was higher 

in treated plots than in the untreated and over 60% of these are genotypes from yellow background 

(Table 3.10) showing that herbicide treatment does not compromise yield and yield components even 

in genotypes that are suffering from yellowing. Therefore, despite the fact that seeing sorghum field 

turning yellow is not pleasant, the phenomena has no impact on yield potential thus though other 

genes dragging from the wild resistance gene donor may compromise yield, the yellow phenotype in 

itself do not seem to cause a yield penalty. Moreover, not all genotypes are sensitive to seedling 

chlorosis thus selection for backgrounds expressing little or no yellow phenotype can eliminate the 

undesirable characteristics. Moreover, neither herbicide treatment nor seedling color has impact on 

nutritional composition of ALS resistant sorghums. Although, there is significant difference among 

the genotypes for all nutritional attributes measured, the values are within published range of normal 

sorghum not subjected to herbicide treatment (Deosthale et al., 1970; Deyoe and Shellenberger, 1965; 

Edwards, 1943; Hubbard et al., 1950; Jambunathan and Subramanian, 1988; Mohan, 1968; Singh and 

Axtell, 1973b; Wall and Blessin, 1970). Moreover, genotypes of yellow seedling background as well 

as the susceptible normal sorghums were not different from the green background types for grain 

nutritional composition.  
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 Conclusion 

 Loss of greenness upon stress conditions is a general tendency observed in crop plants. Despite 

the unattractive appearance and delayed flowering associated with growth retardation observed 

during seedling stages, ALS resistant genotypes carrying leaf chlorosis symptom did not seem to 

cause any substantial effect on plant performance in terms of both yield and yield components, 

agronomic and nutritional attributes. Though, the tested genotypes showed differential response to 

the herbicide treatment, majority of the genotypes that showed improved yield performance upon 

herbicide treatment implied potential for practicing selection among the backgrounds with ALS 

herbicide resistance. While, further research is needed for correcting the observed abnormal seedling 

phenotype towards timely delivery of the ALS resistant technology to the industries, current results 

revealed considerable capacity of ALS resistant genotypes towards improved agronomic and yield 

traits accompanied by reduced season-long weed competition.  
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Chapter 4 - Agronomic performance of sorghum hybrids resistant 

to ALS and ACCase inhibitor herbicides  

 

 Abstract 

Though still placed second among the major feed crops grown in the U.S., Sorghum (Sorghum 

bicolor (L.) Moench) acreage took a sharp decline over the past few decades. Among the many 

factors responsible for this decline include better weed control options that competing crops have 

offered. Sorghum farmers craved for years for an effective post-emergence weed control option. 

The discovery of the ALS and ACCase resistance traits in feral relatives of sorghum opened the 

way for breeding herbicide resistance in to cultivated sorghum. These developments have been 

received with much optimism for improving management of grass weeds in sorghum. The ALS 

trait offers resistance to a wide range of ALS herbicide chemistries, but many resistant plants tend 

to show interveinal chlorosis and reduced seedling vigor during seedling stages. While this 

phenotype persist for only few weeks, it is obviously not desirable. Moreover, the phenotype may 

possibly harm yield potential and grain quality. Moreover, because the resistance gene donors for 

both ALS and ACCase inhibitors come from wild relatives, there is a growing concern that some 

wild characteristics may drag in to the cultivated types to undermine yield potential. The industry 

is already speculating on how much yield penalty farmers are willing to accept while at the same 

time paying more for the resistance technology. It will be of significant interest to both growers 

and industries to clear these to facilitate the deployment of herbicide resistant hybrids in production 

fields. The objective of this study was to evaluate the agronomic adaptability, yield potential and 
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grain and nutritional quality attributes of ALS and ACCase resistant hybrids as compared to 

regular grain sorghum hybrids. 

 

Key words: Sorghum bicolor, ALS herbicide resistance, ACCase herbicide resistance, yield drag, 

nutritional attributes. 

 

 Introduction  

            In the commercial agriculture of the western world, use of herbicides has become the major 

production input. Almost all major crops have benefited from the revolution that discoveries in 

herbicide chemistry have brought to weed management in farmers’ fields. Unfortunately, despite 

the second most important feed grain in the world, sorghum was almost left out of any major 

breakthroughs that transformed the production of other crops. Hence, regardless of its inherent 

high yield potential, sorghum trails other crops in productivity. One of the technologies where 

sorghum was left behind is the technology that facilitate weed control.  

 Sorghum is naturally resilient to marginal growing conditions but due to its slow growth at 

crop establishment phase sorghum is relatively a poor competitor against early season weed 

flushes. Grass weed infestation, in particular is the greatest constraint to sorghum production in 

the mechanized world. While the adoption of modified rate of pre-plant weed control options from 

other crops have helped to control pre-emergence weeds in sorghum (Phillips and Ross, 1964; 

Wiese and Rea, 1962), the lack of post emergence weed management options have severely 

undermined the productivity of the crop.  

Grass weeds such as crab grass, rye grass, shattercane and johnsongrass are among the 

most problematic weeds in sorghum fields. The morphological similarity of these weeds to the 
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sorghum crop make their management even more complicated as herbicides effective against these 

weeds can equally harm the crop. The development of glyphosate resistance has made these 

problems a history in many other major crops. The technology allowed over the top use of the 

“Roundup” to burn any vegetation in crop fields without harming the resistant crops. In 2015, 89% 

of maize, 94% of soybeans, and 89% of cotton produced in the United States were glyphosate 

resistant (roundup-ready) (USDA-ERS, 2015). Sorghum failed to benefit from this technology 

both due to its recalcitrance to genetic transformation (Zhu et al., 1998) and simple reluctance to 

deploy the technology in sorghum. The technology did not only leave out sorghum from benefiting 

but also put it at a disadvantage by increasing the fitness of the competitive crops and as result led 

to its displacement by others causing unfair harm to growers whose livelihoods are largely 

dependent on sorghum.  

A limited grower funded research support at Kansas State University provided to study 

weed management options in sorghum led to the discovery of resistance sources to Acetolactate 

synthase (ALS) inhibitor herbicides among shattercane population. A parallel effort elsewhere also 

identified sources of resistance to acetyl co-enzyme-A carboxylase (ACCase) inhibitor herbicides. 

Both sources expressed stable resistance to all families of the ALS chemistry and the FOP family 

of the ACCase chemistry by tolerating the chemicals up 10 times the recommended use rates. This 

discovery attracted so much enthusiasm because of the possibility to develop and deploy herbicide 

resistant sorghum on to which over the top grass and broad-leaf killer herbicides can be applied. 

If successful this will be the first non-GM herbicide resistant sorghum ever developed. The 

resistance traits were quickly intorgressed into cultivated sorghum and by 2007 partially 

introgressed families of both B- and R-line backgrounds were transferred to the industry.  
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 The ALS is the first enzyme in the biochemical pathway that leads to the synthesis of 

branched chain amino acids, valine, leucine, and isoleucine (McCourt and Duggleby, 2006; Shaner 

et al., 1984; Yu et al., 2010). It is the target of five ALS-inhibiting herbicide chemistries, namely 

sulfonylurea (SU), imidazolinone (IMI), triazolopyrimidine, pyrimidinyl-thiobenzoates, and 

sulphonyl-aminocarbonyltriazolinone (Oard et al., 2006; Yu et al., 2010). Resistance to these 

herbicides is resulted from a mutation that caused a tryptophan residue to be replaced by leucine  

(Trp-574-Leu) in the ALS protein. ACCase on the other hand, catalyzes the first step in lipid 

biosynthesis in plants by adding a carboxyl group onto the common metabolite Acetyl-coenzyme-

A to form Malonyl-coenzyme-A (Délye, 2005; Ohlrogge and Browse, 1995).  There are three 

distinct chemical families that are known to inhibit ACCase, namely aryloxyphenoxypropionate 

(APP), cyclohexanedione (CHD), and phenylpyrazolin (PPZ) (Hofer et al., 2006; Yu et al., 2007). 

Resistance in the new sources was conferred by a mutation at 2027 residue of the of ACCase 

protein resulting in replacement of tryptophan by cysteine (Trp-2027-Cys) (Petit et al., 2010; 

Raghav et al., 2016; Yu et al., 2007). Resistance to both herbicide families was due to altered 

chemical property of the ALS and ACCase proteins caused by the mutations which prevented the 

chemicals from binding effectively countering their inhibitory activity.  

 While the deployment of ACCase resistance trait is awaiting clearance from the country 

where the source originated, efforts to deploy the ALS resistance trait is in progress. Due to the 

fact that both resistance traits were introduced from a wild species of no agronomic desirability, 

there is concern that unwanted wild traits may have dragged along that can compromise yield 

potential. Though target site-based genetic mutations endowing herbicide resistance like these 

ones have not been shown to negatively affect plant fitness and growth (Délye, 2005; Yu et al., 

2010). The low seedling vigor and interveinal chlorosis observed in ALS resistant sorghums have 
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elevated this concern that this phenomenon may translate into lower yields.  Seed producers are 

speculating how much yield penalty farmers are willing to accept in addition to the premium price 

they are expected to pay for the trait. Thus this study was initiated to address these concerns by 

evaluating the agronomic adaptability, yield potential and grain and nutritional quality attributes 

of hybrids carrying the ALS, ACCase and both ALS and ACCase resistance traits as compared to 

regular grain sorghum hybrids. 

 

 Materials and Methods 

 The study involved evaluation of different sets of hybrids (ALS resistant, ACCase resistant, 

ALS and ACCase resistant as well as ALS and ACCase susceptible hybrids) at three locations, in 

three replications during the 2014 and 2015 crop seasons. In 2014 the tests were conducted at the 

Ashland Bottoms KSU agronomy research farm located approximately 10 miles south of the city 

of Manhattan. Tests in the 2015 season were conducted at four locations: the Ashland Bottoms 

KSU agronomy research farm, the north campus agronomy research farm, the KSU Agricultural 

Research Center Hays and the East Central Kansas Experiment Field at Ottawa, Kansas. The soils 

at Ashland bottoms are Chase silty clay loam while the north campus agronomy research farm is 

a Wymore silty clay loam. Soils at Hays is a Harney-Carlson silt loams while Ottawa is Woodson 

silt loam (Web Soil Survey, 2016).  Soils at all locations have moderately fine texture and high 

cation exchange capacity (CEC).  

  

 Genetic materials and hybrid synthesis  

            Test entries included in these studies were derived among elite breeding lines from Kansas 

State University sorghum breeding program. The entries comprised of hybrids that are 
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homozygous or heterozygous resistant to ALS and ACCase herbicides and those that are 

susceptible to these chemicals including two commercial checks. A set of advanced ALS resistant, 

ACCase resistant and susceptible regular R- and A-lines were randomly selected among the 

advanced nursery of the KSU sorghum breeding program. Crosses were made in all possible 

combinations during the 2013/14 wintery nursery season in Puerto Rico generating large number 

of hybrids of the following categories: ALS × ALS, ALS × ACCase, ALS × Regular, ACCase × 

ACCase, ACCase × ALS, ACCase × Regular, Regular × Regular, Regular × ALS, and Regular × 

ACCase. Depending on success with seed set, the number of hybrids in each category was 

different. Similar crosses were made during the 2014/15 winter nursery to synthesize additional 

hybrids of similar category for testing during 2015 season. In both seasons the crosses were 

manually harvested and threshed using head thresher and the seeds shipped to Kansas State 

University. Up on arrival, the seeds were placed in a dryer to remove excess moisture and carefully 

cleaned and treated using standard experimental seed treatment protocol (a mixture of Maxim 4FS 

TM, Apron XL TM, Concep III TM, and colorant). Three grams (approximately 100 seeds) of the 

treated seeds were then packeted in to a seed envelop in preparation for planting. The list of hybrids 

grouped by herbicide resistance categories is presented in Tables 1 and 2.  

 

 Experimental design and management 

            The entries were grouped into eight categories based on the kind and dose of herbicide 

resistance alleles they carry. These categories include: ALS × ALS, ALS × Regular, ACCase × 

ACCase, ACCase × Regular, Regular × Regular, Regular × ALS, Regular × ACCase and 

commercial checks. The study consisted of three sets of experiments with each set consisting 

different categories. Set I and II consisted of 68 and 62 entries, respectively, that included all eight 
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categories whereas set III consisted of 56 entries that included seven of the eight categories. Set I 

experiment was conducted at one location during 2014 season and two locations during 2015 

season whereas sets II and III were conducted at two locations during 2015 season. Altogether a 

total of 189 hybrids including two check entries were evaluated in three sets over two seasons.   

 All experiments were laid out in randomized complete block design with three replications. 

Seeds were sown into 5 m long double row plots spaced 0.75 m apart. Fields at Manhattan and 

Hays were prepared following the standard tillage practices while Ottawa was strip tilled after 

burning the weeds with glyphosate. Fertilizer  nitrogen in the form of urea and phosphorous in the 

form of DAP were applied at the rate of 100 kg ha-1 N and 45 kg ha-1 P2O5 at Manhattan; and 78 

kg ha-1 N and 33.5 kg ha-1 P2O5 at Hays. At Ottawa, fertilizer was applied at the rate of 42.5 kg ha-

1 N and 13.5 kg ha-1 P2O5. Pre-emergence weeds at Manhattan were controlled with 1.34 kg ha-1 

AtrazineTM, 1.94 L ha-1 Dual II MgTM and, 0.42 L ha-1 CallistoTM and 4.67 L ha-1 AtrazineTM and 

1.17 L ha-1 MetolachlorTM at Hays. At Ottawa, weeds were burned down using GlyphosateTM at 

the rate of 1.75 L ha-1 and 2,4-Dichlorophenoxyacetic acid (2,4-D LV6TM) at the rate of 0.39 L ha-

1 followed by AtrazineTM, LibertyTM and CallistoTM at the rates of 3 L ha-1, 1.6 L ha-1and, 0.22 L 

ha-1, respectively prior to planting. Post-emergence weeds at all locations were removed manually 

as necessary.  

 

 Data collection 

            Data were collected on a range of physiological, phenological and yield parameters at all 

locations and testing seasons. Because the entries in experiment set I included homozygous ALS 

resistant hybrids, leaf chlorophyll content was measured on the seedlings and adult plants using 

SPAD-502 chlorophyll meter (Spectrum Technologies Inc.) on ALS resistant hybrids and the 
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commercial checks at all locations and test seasons. The chlorophyll readings were taken on day 

14 after planting on the second fully expanded leaf from the top and recorded as the mean of 

readings from three plants in a plot. As quantitative indicators of seedling vigor, height and 

biomass of seedlings were also measured from the same three plants on day 14 after planting. To 

avoid impact on grain yield destructive sampling of seedling dry matter was not taken.  

  In order to determine whether the effect of seedling yellowing at early growth stage had 

persisted to have impact on photosynthesis and grain development, chlorophyll fluorescence was 

measured at grain fill stage on pre-flag leaves in all test entries in set I. The measurements were 

made on three plants per plot using OS30p+ hand held chlorophyll fluorometer (Opti-Sciences, 

Inc.).  

 A number of agronomic and yield parameters were measured on the hybrids in all 

experiments including days to flowering, plant height, panicle length, panicle width, panicle 

weight, kernel weight per panicle (panicle yield), kernel number per panicle, thousand kernel 

weight and grain yield per plot basis. Seedling height was measured from the soil level to the leaf 

whorl and adult plant height was recorded as the length of the plant from the base to the tip of the 

panicle on plot basis.  

Days to flowering was measured as the number of days from planting to when half of the 

plants reached half-bloom stage. Yield components were determined based on measurements taken 

on three panicles sampled from each plot at physiological maturity. After harvest, the panicles 

were dried at 65°F for three days and their weight, length and width were taken before threshing. 

After threshing, the weight of the kernels was taken for individual panicles and kernel numbers 

per panicle was determined using the seed counter (Seed Counter Model 850-3, International 
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Marketing and Design Corp.). Thousand kernel weight was determined by dividing panicle yield 

by the number of kernels per panicle and multiplying by 1000.  

 About 40g seeds of the bulked samples from the three panicles in each plot were saved for 

grain and nutritional quality analysis. The grain hardness and diameter were determined using 

single kernel characterization procedure (Perten SKCS 4100 (Perten Instruments Inc, Chatham, 

IL). The nutritional quality parameters were determined using NIR methods (Perten Instruments 

Inc, Chatham, IL) after adjusting the grain moisture content to 12.5% (Miller et al., 1964). Major 

nutritional parameters determined include:  protein, starch, fat and ash contents from whole grains.  

Grain mineral contents including Nitrogen (N), Phosphorous (P), Potassium (K), Calcium (Ca), 

Magnesium (Mg), Zinc (Zn), Iron (Fe), Copper (Cu) and Manganese (Mn) were also determined. 

Nitrogen content was determined from flour samples using an indophenol blue colorimetric 

procedure (Lindner, 1944) using the Rapid Flow Analyzer (Model RFA-300, Alpkem Corporation, 

Clackamas, OR). For determining mineral composition, perchloric digestion method described by 

(Gieseking et al., 1935) was performed using an inductively coupled plasma (ICP) optical emission 

spectrometer (Model 720-ES ICP, Varian Austrailia Pty Ltd, Victoria, Australia). Samples for the 

physical grain quality and mineral profiles were determined only for ALS resistant hybrids and the 

commercial checks while other nutritional parameters were determined for all entries.   

 

 Statistical analysis 

            Statistical analysis for all experiments was performed using SAS software version 9.4 

(Institute, 2008). The analysis of variance for hybrid entries was performed across environments 

for each experimental set and also for individual environment. The data were then rearranged in 

to hybrid groups and the analysis was re-run to obtain the comparison between hybrid groups for 
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all traits. In all cases PROC GLM was used with hybrid entries and hybrid groups treated as fixed 

effects and environment and block as random effects. Test of significance was performed using 

appropriate error terms for each effect which was specified using the random statement in GLM. 

Significant means were separated using the LSD test.   

 In additional multivariate analysis performed for nutrient composition among the entries, 

Principal Component Analysis (PCA) and Agglomerative Hierarchical Clustering procedure were 

conducted using XLSTAT software version 2014. XLSTAT analysis was used for clustering the 

hybrids as well as for visualization of the clusters in the principal component space. 

 

 Results 

            The analysis of the variance on the physiological and yield parameters for hybrids and 

hybrid groups evaluated under Experiment I is presented in Table 4.2. The hybrid effect and hybrid 

× environment interaction effect were significant for all measured traits except for seedling and 

adult plant height, adult plant chlorophyll content and panicle width for hybrid × environment 

effect (Table 4.3). Similarly, the hybrid group and hybrid group × environment interaction effects 

in Experiment set I was significant for all parameters except seedling height and panicle length 

(Table 4.2). The environment effect was highly significant both in entire hybrid and hybrid group 

analysis.  Individual environment analysis revealed similar result with hybrid group effect being 

significant for all parameters under all environments except for seedling height and adult plant 

chlorophyll content (Table C.1).  

 Analysis of variance for Experiment set II and set III are also presented in tables 4.3 and 

4.4. In Experiment set II, the hybrid effect was significant for most of the parameters measured 

except panicle width, panicle yield and TKW. Whereas, hybrid × environment interaction effect 
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was significant for grain yield, panicle length, plant height and days to flowering (Table 4.3). The 

effect of hybrid group, on the other hand, was significant for grain yield, panicle length, panicle 

weight and plant height while the interaction between hybrid group and environment was 

significant only for days to flowering and panicle weight (Table 4.3).  

 The results from Experiment set III were fairly similar to that of Experiment sets I and II 

that the hybrid effect was again significant for all parameters while hybrid × environment 

interaction effect was significant only for days to flowering and panicle length (Table 4.4). This 

was similar for hybrids groups as well except the effect of panicle length and panicle width was 

not significant. The interaction between hybrid groups and environment was significant only for 

plant height, days to flowering and panicle length (Table 4.4).  

 Summary of the mean performance of the hybrids tested under Experiment set I is 

presented in Table 4.5. As expected, the lowest seedling chlorophyll content of 35.3 SPAD units 

was recorded in ALS resistant hybrid while the highest (43.4 SPAD unit) was recorded in the 

herbicide susceptible commercial check. But some of the ALS × ALS hybrids had mean 

chlorophyll contents that were comparable with that of the heterozygous hybrids indicating that 

the traits can be improved through selection. Seedling height was not affected by the seedling 

chlorosis. Nevertheless, the seedling chlorosis does not seem to have effect on photosynthetic 

efficiency of adult plants and other parameters. Although there is significant difference among 

hybrids for several other parameters, none of them seem to be associated with the ALS resistant 

trait. The homozygous ALS resistant entries were among the highest yielding hybrids with seven 

out of the eight ALS × ALS entries out yielding the top commercial check (Table 4.5). Similar 

result was obtained for yield components as well. The trend was the same for other yield 

components including TKW, panicle weight, panicle yield and number of kernels per panicle 
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where few entries among the ALS × ALS hybrids were among the top among the entire entries. 

Among the hybrid groups, the ALS × ALS hybrids apparently had the lowest seedling chlorophyll 

content of 37.9 vs. 42.6 in the susceptible commercial check (Table 4.6). The ALS × Regular and 

Regular × ALS hybrids had 40.9 and 41.1 SPAD units which was not significantly different from 

42.6 in the susceptible check showing that unlike the herbicide resistance which was controlled by 

a partially dominant gene, the seedling chlorosis appear to be a recessive trait that it only displays 

itself under a homozygous condition. Furthermore, the absence of apparent difference between the 

ALS × Regular and Regular × ALS hybrids indicate that maternal effect has little or no role in 

determining seedling chlorosis. Most of the parameters were significantly different between the 

different hybrid groups but none of them appear to be associated with herbicide resistance. Grain 

yield was highest (5133 kg ha-1) among the Regular × ACCase group followed by the ALS × ALS 

group (4999 kg ha-1) while the lowest was in the Regular × Regular and Regular × ALS group. 

The commercial checks had mean grain yield of 4482 kg ha-1.  On tests conducted on inbred parents 

as well as from common field observations ALS resistant materials tend to have delayed flowering. 

Such phenomena was not observed in the current study where all ALS resistant hybrids were found 

to be earlier than the commercial checks by an average of 3-4 days.  

 Results from Experiment set II are similar to that of set I (Tables 4.7 and 4.8). Four entries 

out yielded the commercial checks while 11 of them were statistically the same as the checks. All 

of the hybrids that topped the highest check are from the ALS × Regular group while many from 

the other groups were in a statistical tie with the checks (Table 4.7). Comparison of the commercial 

checks with the different hybrid groups showed that the checks significantly out yield the other 

groups (Table 4.8). However, a scrutiny to the different yield components does not show any trait 

that was particularly high in the commercial checks. This may be due to a poor stand caused by 
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low stand establishment in 2015 season. Likewise, in the set III experiment, about sixteen hybrids 

were found to have out yielded either of the commercial checks and they represent all of the 

categories indicating that yield potential is not specific to a certain category (Table 4.9). The 

highest yield (5748 kg ha-1) among the hybrid groups under Experiment set III was obtained in the 

ACCase × Regular group followed by the commercial checks (5378 kg ha-1) which was not 

significantly different from that of ALS × Regular, ACCase × ACCase and Regular × ACCase 

groups (Table 4.10). Again the specific yield component that contributed to higher yield in one 

group vs. the other is not clear. It may have to do with other parameters that were not accounted 

for in this experiment. The Pearson correlation analysis between many of the measured traits 

showed some significant association between the traits. Chlorophyll florescence of the leaves was 

significantly correlated with chlorophyll content (Table 4.11).  It is also significantly correlated 

with yield components including panicle weight, kernel number and grain yield. Correlation 

among yield components is similar to what is generally expected.   

 Analysis of the nutritional composition of the herbicide resistant hybrids revealed that the 

new hybrids have similar nutritional composition with that of the check hybrids. The major 

nutrients (protein, starch and fat) were similar among all hybrids groups and the checks. But there 

was significant location effect with the 2014 tests having higher content of these nutrients than 

those recorded from the 2015 samples. Measurement of mineral profile and physical grain quality 

parameters was conducted only in set I Experiment from the 2014 samples. Phosphorus, calcium 

and magnesium tend to be higher among the herbicide resistant groups compared to the 

commercial check. Similarly micronutrients such as zinc copper and manganese are higher in 

herbicide resistant groups compared to the checks whereas iron content was similar among all 

hybrid groups. Among physical grain quality characteristics measured, grain hardness appear to 
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be uniquely high in the ALS resistant group while measured grain size and grain diameter was 

higher in the commercial check group. Correlation analysis among these traits showed fat content 

as negatively correlated with all other nutritional parameters while all other parameters have either 

near zero or positive correlation with each other except that of potassium with copper, iron, protein 

and nitrogen. Starch was also negatively correlated with potassium, calcium and ash (Figure 4.1). 

Principal component analysis based on the nutritional parameters sorted the hybrids according to 

their nutritional profile. Hybrids with higher fat content were clearly separated in the principal 

component space while those with similar micronutrient profile converged (Figure 4.2). This 

agrees with summary results in Table 4.12.  
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Figure 4.1. Grain yield is not affected by seedling chlorophyll content: a) variability for seedling 

chlorophyll content among hybrid categories; b) Variation for grain yield among the hybrid 

categories.   Check1= P84-G62, Check 2 = Dekalb54-00. 
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Figure 4.2. Correlations observed between seed nutrient content of ALS herbicide resistant 

hybrid groups tested under Experiment Set I. Size of the circle represents the magnitude of 

correlation and color of the circles (red and green) represents positive and negative relationships, 

respectively. * Statistically significant at P  0.05. 
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Figure 4.3. The distribution based on nutritional profile of the ALS herbicide resistant hybrids 

and commercial checks in the principal component space. KD = kernel diameter, KH = kernel 

hardness, Check1= P84-G62, Check 2 = Dekalb54-00, AA = ALS × ALS resistance, AR = ALS 

× regular , RA = Regular × ALS.  
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Table 4.1. Different groups of hybrids developed and tested under each experimental set.  

†Hybrid Groups 
Category based  

on herbicide resistance 

Number of hybrids 
Seed parent Pollinator parent 

Set I Set II Set III 

Homozygous ALS ALS × ALS 08 - - ALS resistant ALS resistant 

Heterozygous ALS ALS × REG 10 21 04 ALS resistant Herbicide susceptible 

Heterozygous ALS 

and ACCase 
ALS × ACCase 00 21 27 ALS resistant ACCase resistant 

Heterozygous ALS REG × ALS 10 - 03 Herbicide susceptible ALS resistant 

Homozygous ACCase ACCase × ACCase 08 03 02 ACCase resistant ACCase resistant 

Heterozygous ACCase ACCase × REG 10 08 07 ACCase resistant Herbicide susceptible 

Heterozygous ALS 

and ACCase 
ACCase × ALS 00 02 05 ACCase resistant ALS resistant 

Heterozygous ACCase REG × ACCase 10 05 06 Herbicide susceptible ACCase resistant 

Regular hybrids REG × REG 10 - - Herbicide susceptible Herbicide susceptible 

Commercial checks Checks 02 02 02 Herbicide susceptible Herbicide susceptible 

Total  68 62 56   
  

†Homozygous ALS=Homozygous for ALS resistance trait, Heterozygous ALS= Heterozygous for ALS resistance trait, Homozygous 

ACCase= Homozygous for ACCase resistance trait, Heterozygous ACCase= Heterozygous for ACCase resistance trait.  
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Table 4.2. Combined ANOVA for entire hybrids (a) and hybrid groups (b) for physiological, agronomic traits and yield components 

of sorghum (Sorghum bicolor (L.) Moench) hybrids carrying different combinations of herbicide resistance genes as evaluated at three 

environments under Experiment set I. 

 

Source of variation 
 

df 

Seedling Adult plant 
Days to 

flowering 

†
Chl. Fluo. 

(Fv/Fm) 

Panicle 

weight 

Panicle 

length 

Panicle 

width 

Panicle 

yield 

‡
KN 

§
TKW Grain yield Chlorophyll 

content 
Height 

Chlorophyll 

content 
Height 

a) Entire hybrids 

Environment (E) 2 2509.1** 881.4** 4383.7** 4674.8** 1329.1** 0.07** 8934.1** 1152.3** 32.4** 4823.0** 2228155** 126.1** 123159514** 

Block/E 6 19.1 11.3 29.6 45.0 67.1 0.0005 782.0 10.1 1.1 1678.1 1632440 15.1 2631970 

Hybrid 67 41.2** 3.8 16.7 64.4* 87.3** 0.002** 958.7** 17.5** 1.3** 618.3** 757070** 20.6** 3535708** 

Hybrid x E 134 34.2** 4.5 18.6 27.6 21.6** 0.001 845.9** 8.0** 1.1 485.7** 522834** 6.7** 3906045** 

Error 402 14.7 3.3 13.1 14.8 9.2 0.0004 607.0 6.2 0.7 313.4 346717 4.7 2299406 

b) Hybrid groups 

Environment (E) 2 1208.1** 541.6** 3463.0** 3332.8* 957.1** 0.05** 6396.3 923.4** 27.0* 3581.0 1486358 122.5** 80700689 

Block/E 6 18.2 11.1 29.8 43.7 67.8 0.001 2791.9 10.1 1.0 1626.2 1561081 14.6 26017649 

Hybrid group (HG) 7 210.7** 6.0 24.0 171.7** 335.7** 0.02** 2628.6** 54.9** 2.7** 1848.7** 1770781** 73.0** 13147599** 

HG x E 14 193.3** 6.8 48.5** 55.4** 61.3** 0.007** 2339.0** 8.7 4.7** 1524.0** 1398640** 19.5** 16168829** 

Error 42 15.7 3.6 13.8 20.8 16.1 0.004 638.4 7.3 0.7 340.7 393713 5.8 2356403 

 

†Chl. Fluo.= chlorophyll fluorescence; ‡KN = kernel number per panicle, §TKW = thousand kernel weight; 

* and ** statistically significant at P  0.05 and 0.01, respectively. 
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Table 4.3. Combined ANOVA for entire hybrids (a) and hybrid groups (b) for agronomic and yield components of sorghum (Sorghum 

bicolor (L.) Moench) hybrids with varying combinations of herbicide resistant traits as evaluated under Experiment set II.  

 

Source of variation 

df 

Adult 

plant 

height 

Days to 

flowering 

Panicle 

weight 

Panicle 

length 

Panicle 

width 

Panicle 

yield †KN ‡TKW Grain yield 

a) Entire hybrids           

Environment (E) 2 4704.2** 15490** 222457** 286.0** 28.2 160090** 10576319** 1816.8* 69807524** 

Block/E 6 31.5 10.1 5649.7 7.9 15.1 2039.4 1872180 197.1 7780558 

Hybrid 61 36.5** 23.4** 2893.7 29.1** 7.2 1167.7 1556281 163.6 3887164** 

Hybrid × E 122 17.3** 19.5** 2314.7 9.6** 6.4 1240.1 777839 165.3 3371029** 

Error 366 5.1 8.6 2305.2 6.4 6.9 1018.2 658515 154.7 2443732 

b) Hybrid groups           

Environment (E) 2 2373.2** 5710.0** 38142.0** 112.6** 7.7 52991.0** 31946837** 696.1* 19690556** 

Block/E 6 31.6 39.9 5738.9 8.2 15.1 2054.0 1915791 196.4 7648441 

Hybrid group (HG) 6 50.8** 23.1 16844.0** 60.0** 2.2 437.6 1611949 228.1 6911120* 

HG × E 12 34.3 47.8** 14934.0** 10.7 3.1 928.0 392875 174.6 2592525 

Error 36 10.2 11.6 1847.8 8.9 7.0 1097.2 784962 156.7 2762342 

 
†KN = kernel number per panicle, ‡TKW = thousand kernel weight;  

* and ** statistically significant at P  0.05 and 0.01, respectively. 
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Table 4.4. Combined ANOVA for entire hybrids (a) and hybrid groups (b) for agronomic and yield components of sorghum (Sorghum 

bicolor (L.) Moench) hybrids with different combinations of herbicide resistant traits as evaluated under Experiment set III. 

 

Source of variation 
df 

Plant 

height 

Days to 

flowering 

Panicle 

weight 

Panicle 

length 

panicle 

width 

panicle 

yield †KN ‡TKW Grain yield 

a) Entire hybrids           

Environment (E) 1 10859** 1491.0* 102883* 34.4 28.3** 72500** 36378217* 981.3** 207139489* 

Block/E 4 5.6 17.1 1124.1 7.6 0.2 611.5 450229 5.5 4853941 

Hybrid 55 162.7** 34.8** 1257.5** 13.3* 0.8* 655.9** 806319** 15.5** 1782251** 

Hybrid × E 55 84.5 29.9* 594.7 8.9* 0.7 361.9 360817 5.6 1383500 

Error 220 30.1 3.9 458.5 5.4 0.5 242.2 281473 2.1 1051068 

b) Hybrid groups           

Block 2 5.6 16.0 1.0 0.4 0.07 8.2 10042 0.03 1837292 

Environment (E) 1 427.5** 322.2** 46738** 19.8 6.9** 32168** 5079586** 535.7** 36388292** 

Block/E 4 4.6 13.5 504.7 6.9 0.2 594.5 206299 4.4 3622057 

Hybrid group (HG) 7 191.6* 145.1** 3113.2** 10.2 0.6 1864.1** 2303551** 42.5** 5517284** 

HG × E 7 213.3** 21.4* 987.8 17.2* 0.9 583.2 643454 1.7 1796385 

Error 28 68.7 8.3 608.8 7.7 0.6 316.6 361836 5.4 1137322 
 

†KN = kernel number per panicle, ‡TKW = thousand kernel weight;  

* and **statistically significant at P  0.05 and 0.01, respectively. 
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Table 4.5. Mean performance of each of tested sorghum (Sorghum bicolor (L.) Moench) hybrid across the environments for all 

physiological and yield characteristics evaluated under Experiment set I. 

 

Entry 

Code 

Seedling Adult plant 
Days to 

flowering 

†Chl. 

Fluo. 

(Fv/Fm) 

Panicle 

length 

Panicle 

width 

panicle 

weight 

panicle 

yield 

 
§TKW Grain yield Hybrid group chlorophyll 

content 
height 

chlorophyll 

content 
height 

‡KN 

132 35.3 15.3 58.3 124.7 64.7 0.76 34.5 6.3 124.1 77.3 2842 27.3 4798.8 ALS x ALS 

131 35.5 14.0 55.0 123.0 66.0 0.74 33.0 5.9 110.4 72.7 2677 26.9 4991.1 ALS x ALS 

135 36.1 15.6 56.1 120.0 66.2 0.75 33.1 6.0 123.4 79.6 2775 28.4 5536.3 ALS x ALS 

130 37.5 14.9 57.6 118.0 70.2 0.75 32.0 6.7 133.0 84.8 3215 26.0 5636.1 ALS x ALS 

136 38.2 15.2 58.1 113.5 69.2 0.74 30.2 6.8 137.7 91.0 3331 27.3 4442.8 ALS x ALS 

133 38.0 14.6 54.7 123.5 67.4 0.77 31.6 5.9 112.6 72.1 2692 26.6 4690.6 ALS x ALS 

129 39.1 16.4 57.9 125.7 65.2 0.74 33.8 6.5 120.7 78.0 2904 26.4 4959.2 ALS x ALS 

137 39.6 15.2 55.1 126.0 68.6 0.76 31.6 6.0 125.5 90.0 3123 28.6 4920.5 ALS x ALS 

147 39.5 14.2 56.3 122.0 66.2 0.73 32.3 6.6 134.7 88.9 3268 26.9 4481.5 ALS x Regular 

151 39.9 15.3 57.3 128.5 64.0 0.73 31.2 6.7 122.9 78.7 3062 25.6 5067.2 ALS x Regular 

149 39.0 14.4 57.4 133.2 64.3 0.72 32.0 6.4 109.6 67.5 2544 26.3 5613.0 ALS x Regular 

152 40.4 15.1 57.1 126.0 66.6 0.74 32.2 6.3 114.0 68.4 2448 27.7 5747.8 ALS x Regular 

143 40.5 15.7 58.2 126.0 62.0 0.74 31.8 6.2 117.2 75.3 2952 25.6 4367.6 ALS x Regular 

145 41.7 15.6 56.5 127.7 64.0 0.72 33.1 6.4 110.8 68.7 2680 25.3 4628.4 ALS x Regular 

146 41.0 15.8 56.7 125.7 65.2 0.73 33.9 6.7 128.5 82.8 3019 27.4 5697.3 ALS x Regular 

144 42.1 15.9 57.6 126.7 63.7 0.75 32.5 6.3 126.2 83.7 2995 27.9 4107.3 ALS x Regular 

150 42.4 15.9 59.8 130.5 63.3 0.73 33.7 6.3 132.1 85.6 2917 29.2 5158.7 ALS x Regular 

148 42.7 15.6 59.0 125.7 65.6 0.73 33.7 6.8 127.4 91.6 3287 27.5 4407.7 ALS x Regular 

164 38.6 16.1 55.8 124.2 64.3 0.75 29.8 6.2 106.2 67.0 2461 26.6 4483.9 Regular x ALS 

163 39.2 15.7 57.4 126.5 65.8 0.75 31.3 6.6 108.8 68.9 2937 23.6 4444.4 Regular x ALS 

167 39.5 14.8 55.5 123.5 67.3 0.76 33.8 6.1 95.6 56.6 2453 22.6 4784.7 Regular x ALS 

160 41.4 16.3 59.7 125.2 60.9 0.76 30.6 5.9 112.5 71.5 2652 26.5 4608.3 Regular x ALS 

165 41.5 15.6 58.7 127.7 66.6 0.76 30.5 7.1 135.6 88.7 3496 25.3 4512.3 Regular x ALS 

162 41.8 15.3 61.2 128.5 61.4 0.75 30.2 6.3 107.9 68.7 2553 26.8 4431.3 Regular x ALS 

161 42.1 15.9 55.8 131.7 66.3 0.75 30.5 6.2 106.7 68.9 2728 25.7 4365.7 Regular x ALS 

158 42.2 15.6 56.3 131.5 61.2 0.75 32.6 6.1 114.2 72.1 2883 25.1 3645.2 Regular x ALS 

166 42.0 15.5 57.3 126.5 62.8 0.76 32.7 6.7 110.0 66.5 2867 23.2 3622.8 Regular x ALS 

159 43.2 15.3 56.8 127.0 65.1 0.75 31.3 6.4 118.0 79.0 3234 24.3 4134.2 Regular x ALS 

114 - - 59.8 116.2 68.3 0.76 31.6 6.3 118.8 73.8 2927 25.0 4290.0 Regular x ACCase 

107 - - 59.3 129.7 62.6 0.77 32.1 7.0 127.2 79.6 2903 27.3 5402.8 Regular x ACCase 

112 - - 58.9 120.2 63.0 0.76 27.3 7.2 111.0 63.9 2723 23.2 4770.1 Regular x ACCase 

111 - - 58.4 127.2 60.7 0.77 30.6 6.6 106.6 65.1 2504 25.8 3819.0 Regular x ACCase 

116 - - 58.4 120.0 67.0 0.76 32.2 6bc 103.6 67.1 2703 24.4 4696.4 Regular x ACCase 

115 - - 58.3 130.0 61.8 0.77 31.8 6.3 112.0 72.1 2771 26.0 5451.4 Regular x ACCase 

110 - - 58.2 123.0 66.3 0.77 31.3 7.7 127.2 76.5 3253 23.5 4592.4 Regular x ACCase 

108 - - 57.9 125.2 69.4 0.76 31.7 7.4 124.4 79.1 3004 25.7 5064.0 Regular x ACCase 
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Entry 

Code 

Seedling Adult plant 
Days to 

flowering 

†Chl. 

Fluo. 

(Fv/Fm) 

Panicle 

length 

Panicle 

width 

panicle 

weight 

panicle 

yield 

 
§TKW Grain yield Hybrid group chlorophyll 

content 
height 

chlorophyll 

content 
height 

‡KN 

113 - - 57.5 131.0 61.9 0.77 33.2 6.7 127.6 79.4 3087 25.7 4488.6 Regular x ACCase 

109 - - 56.7 125.0 60.9 0.78 31.9 7.3 122.7 75.2 2950 25.4 4283.3 Regular x ACCase 

080 - - 58.7 136.2 64.5 0.78 33.0 6.6 127.9 84.6 3426 24.8 5211.3 ACCase x ACCase 

073 - - 58.5 126.0 60.4 0.78 29.0 5.9 93.3 55.4 2269 24.4 5514.9 ACCase x ACCase 

074 - - 58.0 130.0 61.8 0.78 30.6 6.1 117.5 68.2 2568 26.4 4173.0 ACCase x ACCase 

075 - - 57.1 135.2 68.0 0.78 30.9 6.8 114.1 72.3 2718 26.2 4485.5 ACCase x ACCase 

079 - - 56.2 126.7 68.1 0.78 30.3 6.3 122.6 78.5 3171 24.7 5187.9 ACCase x ACCase 

078 - - 56.0 133.0 65.4 0.79 30.2 6.5 119.5 76.4 2923 26.1 5450.2 ACCase x ACCase 

077 - - 55.5 123.0 64.2 0.78 29.0 6.1 107.4 69.7 2646 26.3 5602.0 ACCase x ACCase 

082 - - 54.2 123.2 63.9 0.78 30.2 5.9 103.6 63.6 2540 24.6 5288.2 ACCase x ACCase 

098 - - 59.4 128.2 64.1 0.76 31.8 6.5 109.1 65.9 2712 24.3 4818.5 ACCase x Regular 

099 - - 58.2 124.7 64.1 0.77 31.9 6.7 124.4 79.2 3288 24.1 4884.4 ACCase x Regular 

102 - - 58.2 119.5 69.2 0.76 31.6 6.6 119.7 75.3 2883 26.0 6369.2 ACCase x Regular 

094 - - 57.9 128.0 62.2 0.77 31.2 6.0 98.8 59.9 2556 23.5 5122.9 ACCase x Regular 

100 - - 57.1 138.2 65.7 0.77 30.5 6.5 111.4 71.2 2835 25.0 4191.0 ACCase x Regular 

095 - - 57.1 124.2 65.3 0.76 28.8 6.3 115.0 70.2 2934 23.9 5872.9 ACCase x Regular 

096 - - 56.9 125.0 63.8 0.77 32.2 6.8 126.6 80.5 3256 24.7 5559.4 ACCase x Regular 

101 - - 56.8 117.5 65.9 0.77 33.2 6.9 129.5 80.4 3030 26.3 4434.6 ACCase x Regular 

093 - - 56.3 132.5 64.9 0.77 31.2 6.3 103.0 63.3 2640 23.6 5559.9 ACCase x Regular 

097 - - 56.3 114.2 66.3 0.76 29.4 6.1 107.2 64.4 2635 24.5 4709.2 ACCase x Regular 

051 - - 59.5 117.2 73.6 0.77 29.9 6.6 116.1 73.5 2789 26.6 3574.4 Regular x Regular 

053 - - 58.5 126.5 67.7 0.76 32.2 6.6 115.2 72.4 2519 28.4 4047.8 Regular x Regular 

052 - - 58.2 130.0 62.3 0.76 31.7 6.1 98.0 62.5 2209 28.5 3326.4 Regular x Regular 

046 - - 57.6 113.2 67.1 0.77 30.3 6.6 110.0 69.7 2827 24.7 4271.2 Regular x Regular 

047 - - 56.9 107.5 73.0 0.76 31.1 5.6 99.4 62.8 2768 22.6 3885.6 Regular x Regular 

055 - - 56.8 120.7 70.7 0.76 30.8 6.1 102.2 63.8 2394 26.4 4335.5 Regular x Regular 

050 - - 56.5 124.5 67.2 0.75 31.3 6.5 104.4 65.0 2569 25.3 4269.5 Regular x Regular 

048 - - 56.2 111.7 66.1 0.76 29.8 6.8 109.8 65.6 2627 24.7 4596.5 Regular x Regular 

049 - - 55.7 110.2 73.7 0.76 29.7 6.6 102.1 61.4 2361 25.6 3275.9 Regular x Regular 

054 - - 55.4 132.0 66.7 0.76 31.6 6.5 112.5 71.9 2548 27.9 4239.9 Regular x Regular 

C1 43.4 15.4 57.1 109.7 70.9 0.76 30.2 6.2 105.5 65.6 2347 27.6 4261.5 Check1 

C2 41.8 14.9 55.3 119.7 72.4 0.76 29.8 6.9 117.6 67.8 2488 27.0 4639.3 Check2 

Mean 40.2 15.3 57.3 124.7 65.7 0.8 31.4 6.4 115.3 72.8 2808 25.8 4700.9 - 
¶
LSD 5.9 ns ns 14.25 4.1 0.03 3.1 0.9 25.07 18.4 226 2.2 435.3 - 

 
†Chl. Fluo.= chlorophyll fluorescence; ‡KN = kernel number per panicle, §TKW = thousand kernel weight; 
¶LSD = Least Significant difference; ns = not significant.  
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Table 4.6. Mean performance of each sorghum (Sorghum bicolor (L.) Moench) hybrid group across environments for all 

physiological and yield characteristics evaluated under Experiment set I. 

Parameter 

Hybrid Group 

Mean ¶LSD 
ALS × ALS 

ALS × 

Regular 

Regular × 

ALS 

ACCase × 

ACCase 

ACCase × 

Regular 

Regular × 

ACCase 

Regular × 

Regular 
Checks 

Seedling 

chlorophyll 

content 

37.9(±0.5) 40.9(±0.4) 41.1(±0.4)  -  -  -  - 42.6(±0.9) 40.6 2.8 

Seedling height 14.9(±0.3) 15.3(±0.2) 15.6(±0.2)  -  -  -  - 15.2(±0.4) 15.3 ns 

Adult plant 

chlorophyll 

content 

56.7(±0.5) 57.6(±0.4) 57.5(±0.4) 56.9(±0.5) 57.4(±0.4) 58.3(±0.4) 57.1(±0.4) 56.2(±0.8) 57.2 ns 

Adult plant 

height 
122.0(±1.5) 127.3(±1.2) 127.2(±1.2) 128.8(±1.5) 126.3(±1.2) 125.0(±1.2) 119.3(±1.2) 114.8(±2.5) 123.7 4.8 

Days to 

flowering 
67.2(±0.6) 64.5(±0.5) 64.2(±0.5) 64.5(±0.6) 65.2(±0.5) 64.1(±0.5) 68.8(±0.5) 71.7(±0.9) 66.2 1.5 

†Chl. Fluo. 

(Fv/Fm) 
0.8(±0.002) 0.7(±0.002) 0.8(±0.002) 0.8(±0.002) 0.8(±0.002) 0.8(±0.002) 0.8(±0.002) 0.8(±0.005) 0.7 0.1 

Panicle length 32.5(±0.3) 32.6(±0.2) 31.3(±0.2) 30.2(±0.3) 31.2(±0.2) 31.4(±0.2) 30.8(±0.2) 30(±0.6) 31.2 1.2 

Panicle width 6.3(±0.3) 6.5(±0.2) 6.4(±0.2) 6.2(±0.3) 6.5(±0.2) 6.8(±0.2) 6.4(±0.2) 6.5(±0.9) 6.4 0.4 

Panicle weight 123.3(±3.4) 122.1(±3.2) 111.4(±3.2) 111.5(±3.4) 114.4(±3.2) 118.2(±3.2) 106.9(±3.2) 111.5(±6.4) 114.9 9.2 

Panicle yield 80.6(±2.5) 78.9(±2.4) 70.7(±2.4) 69.5(±2.5) 71.0(±2.4) 73.6(±2.4) 66.9(±2.4) 66.7(±2.6) 72.2 6.5 

‡KN 2946(±85.4) 2914(±79.6) 2821(±79.6) 2703(±85.4) 2877(±79.6) 2893(±79.6) 2561(±79.6) 2418(±154.2) 2766 207.8 

§TKW 27.2(±0.3) 26.9(±0.2) 25(±0.2) 25.6(±0.3) 24.6(±0.2) 25.3(±0.2) 26.1(±0.2) 27.3(±0.5) 26 0.8 

Grain yield 4999(±271.5) 4927(±256.2) 4286(±256.2) 4964(±271.5) 5133(±256.2) 4696(±256.2) 3997(±256.2) 4482(±422.3) 4686 633 

 
†Chl. Fluo. = chlorophyll fluorescence; ‡KN = kernel number per panicle, §TKW = thousand kernel weight; 
¶LSD = Least Significant difference; ns = not significant.   
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Table 4.7. Mean performance of each of tested sorghum (Sorghum bicolor (L.) Moench) hybrid across the environments for 

agronomic and yield characteristics evaluated under Experiment set II.  

 

Entry 

code 

Plant 

height 

Days to 

flowering 

Panicle 

length 

Panicle 

width 

Panicle 

weight 

Panicle 

yield 
†KN ‡TKW 

Grain 

yield 
Hybrid group 

04 138.1 58.1 31.2 6.9 138.7 87.7 3243.0 26.6 5207.0 ACCase × ACCase 

40 153.1 63.4 34.3 5.8 124.7 77.0 3081.4 24.7 5951.5 ACCase × ACCase 

23 150.6 62.2 34.9 6.8 140.9 89.9 3383.7 26.2 5833.9 ACCase × ALS 

41 152.8 63.6 34.4 6.2 135.0 85.9 3209.6 26.8 4643.2 ACCase × ALS 

11 145.3 60.4 35.1 6.6 116.6 70.7 2890.7 24.0 5828.4 ACCase × Regular 

16 147.5 63.0 35.0 6.5 136.1 81.1 3131.8 25.4 6316.0 ACCase × Regular 

17 144.7 61.6 32.3 6.5 123.4 76.4 2695.9 28.3 6677.6 ACCase × Regular 

24 142.5 59.3 34.7 7.3 141.6 89.6 3027.4 28.8 5648.2 ACCase × Regular 

27 142.8 60.9 34.7 7.0 149.1 98.3 3497.1 27.7 5880.6 ACCase × Regular 

39 143.6 60.6 31.7 6.9 124.3 78.0 2680.3 28.7 6189.6 ACCase × Regular 

42 147.2 59.6 34.3 6.2 123.9 105.5 2742.6 57.9 5849.0 ACCase × Regular 

43 151.4 62.9 35.6 6.9 134.8 84.2 2984.4 28.1 5768.5 ACCase × Regular 

13 148.1 62.0 34.2 6.5 139.8 84.9 3178.4 26.2 6887.4 ACCase × ACCase 

02 151.1 63.8 32.1 7.4 148.6 96.1 3318.1 27.9 4256.6 ALS × ACCase 

03 143.1 59.6 29.1 6.6 120.1 73.6 2794.4 26.2 5819.1 ALS × ACCase 

12 142.2 61.4 32.4 6.8 129.6 81.9 3152.6 25.8 5493.5 ALS × ACCase 

18 146.9 61.7 34.8 6.6 134.9 89.9 3188.1 28.1 5187.8 ALS × ACCase 

25 156.7 63.3 34.3 6.1 133.9 87.1 3272.1 26.3 5132.8 ALS × ACCase 

26 143.6 61.0 31.5 6.6 131.6 84.4 2971 27.9 6680.1 ALS × ACCase 

28 145.8 62.9 31.1 6.9 150.6 98.6 3729.1 26.1 6195.7 ALS × ACCase 

30 151.7 60.1 34.8 6.4 140.9 95.1 3422.7 28.0 6151.3 ALS × ACCase 

31 142.8 60.1 33.4 6.3 120.4 79.3 2893.0 26.9 6097.4 ALS × ACCase 

35 143.1 59.4 34.9 6.4 121.3 73.7 3203.0 22.7 5930.1 ALS × ACCase 

36 144.4 60.0 34.2 6.2 135.2 90.7 3370.9 26.7 5397.4 ALS × ACCase 

47 156.4 64.2 37.9 6.1 137.6 87.5 3547.9 24.7 5706.6 ALS × ACCase 

49 156.9 65.3 33.3 6.8 123.7 78.6 2717.1 28.1 6083.6 ALS × ACCase 

50 147.5 59.8 35.6 7.5 134 89.9 5423.7 22.1 5942.7 ALS × ACCase 

52 156.1 63.6 33.3 6.5 147.8 91.4 3616.1 24.7 5153.8 ALS × ACCase 

54 143.1 62.1 33.4 6.7 136.4 86.5 3338.1 25.8 5009.9 ALS × ACCase 

55 158.1 63.0 35.6 6.9 149.2 99.5 3735.6 26.4 5103.7 ALS × ACCase 

56 143.2 59.6 33.0 6.0 109.1 67.5 2702.3 24.7 5737.0 ALS × ACCase 

57 144.2 60.6 33.3 6.1 112.8 69.5 2761.9 24.9 5602.6 ALS × ACCase 

59 144.4 63.3 30.1 7.2 140.5 86.8 3235.9 26.3 4567.7 ALS × ACCase 
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Entry 

code 

Plant 

height 

Days to 

flowering 

Panicle 

length 

Panicle 

width 

Panicle 

weight 

Panicle 

yield 
†KN ‡TKW 

Grain 

yield 
Hybrid group 

60 150.8 58.9 36 6.5 137.4 90.7 3552.6 25.2 5668.6 ALS × ACCase 

01 148.1 62.0 31.8 7.1 143.8 91.2 3526.1 25.6 5916.5 ALS × Regular 

05 141.9 59.8 33.7 6.0 123.2 81.3 3030.6 26.6 6823.1 ALS × Regular 

07 143.9 59.3 33.2 6.8 142.4 89.6 3365.6 26.3 5761.2 ALS × Regular 

08 149.2 61.2 33.6 6.5 112.7 67.6 2452.2 27.4 5353.1 ALS × Regular 

09 147.2 63.3 35.7 6.7 153.3 96.4 3562.7 26.5 5041.3 ALS × Regular 

14 152.8 62.9 36.2 6.8 143.3 90.4 3642.8 24.6 5135.4 ALS × Regular 

15 147.8 61.9 33.5 6.7 127.4 81.9 3108.7 26.0 6036.1 ALS × Regular 

20 150.3 60.3 36.5 6.1 117.1 73.6 3025.3 24.3 5712.9 ALS × Regular 

21 148.1 62.8 36.8 6.5 148.0 94.8 3518.4 26.3 5239.9 ALS × Regular 

22 144.2 60.9 35.2 7.1 137.0 83.8 3271.2 25.3 7091.4 ALS × Regular 

29 142.2 62.2 32.8 6.3 125.1 82.6 3191.9 25.8 5714.3 ALS × Regular 

32 147.5 61.1 34.9 7.0 156.1 100.3 3906.7 25.4 5479.4 ALS × Regular 

34 146.7 59.7 33.9 6.3 134.2 89.2 3053.3 28.7 7027.5 ALS × Regular 

37 143.3 61.1 36.5 7.3 147.8 97.7 3570.6 27.1 5711.1 ALS × Regular 

44 145.6 60.1 33.4 6.4 129.9 79.7 3136.4 25.3 5695.8 ALS × Regular 

45 156.1 62.7 33.8 6.6 142.5 86.7 3163.7 27.5 5831.7 ALS × Regular 

46 143.9 60.6 33.7 6.4 125.0 77.7 3014.9 25.8 5666.1 ALS × Regular 

48 147.8 59.4 35.4 6.6 140.5 92.0 3233.1 27.9 6993.2 ALS × Regular 

51 154.4 61.6 34.4 6.5 136.4 89.1 3022.1 28.9 6281.4 ALS × Regular 

53 152.8 61.6 34.1 6.8 139.9 87.2 3306.6 25.7 5721.3 ALS × Regular 

58 158.3 64.1 34.4 6.7 138.4 86.9 3111.4 27.1 4178.6 ALS × Regular 

06 149.7 61.4 34.1 6.6 128.1 83.2 3047.1 27.0 6052.2 Regular × ACCase 

10 155.0 61.6 35.0 7.4 137.2 91.2 3464.1 25.8 6657.2 Regular × ACCase 

19 148.3 62.1 33.4 6.6 139.3 89.7 3369.8 26.2 5477.2 Regular × ACCase 

38 156.1 63.7 35.1 6.4 143.0 89.2 3377.4 25.6 5133.9 Regular × ACCase 

33 147.5 63.7 37.2 7.3 149.3 96.9 3789.9 25.1 6100.1 Regular × ACCase 

C1 137.5 60.8 31.1 6.5 123.1 78.9 2756.6 28.0 6990.2 Check 

C2 147.8 64.0 29.3 7.3 147.9 91.4 3129.6 28.6 6846.2 Check 

Mean 148 61.6 34 6.7 134.8 87 3239.4 26.9 5778.5 - 
§LSD 12.2 6.4 2.7 ns ns ns ns ns 732.4 - 

 
†KN = kernel number per panicle, ‡TKW = thousand kernel weight; 
§LSD = Least Significant difference; ns = not significant.   
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Table 4.8. Mean performance of each sorghum (Sorghum bicolor (L.) Moench) hybrid group across environments for all agronomic 

and yield characteristics evaluated under Experiment set II. 

 

Parameter 

Hybrid Group 

Mean §LSD ALS × 

ACCase 

ACCase × 

ALS 

ALS × 

Regular 

ACCase × 

ACCase 

ACCase × 

Regular 

Regular × 

ACCase 

Checks 

Adult plant 

height 
148.2 (±0.3) 151.6(±0.8) 148.2(±0.3) 146.3(±0.7) 145.6(±0.4) 151.3(±0.5) 142.6(±0.7) 147.7 6.2 

Days to 

flowering 
61.6(±0.4) 62.8(±0.8) 61.3(±0.4) 61.1(±0.7) 61.0(±0.5) 62.4(±0.6) 62.3(±0.8) 61.7 ns 

Panicle length 33.5(±0.2) 34.6(±0.7) 34.4(±0.2) 33.2(±0.5) 34.1(±0.3) 34.9(±0.4) 30.1(±0.7) 33.5 1.4 

Panicle width 6.6(±0.2) 6.5(±0.6) 6.8(±0.2) 6.4(±0.5) 6.7(±0.3) 6.8(±0.4) 6.8(±0.6) 6.6 ns 

Panicle weight 133.2(±4.2) 137.9(±11.2) 136.3(±4.2) 134.3(±9.3) 131.2(±6.0) 139.3(±7.4) 135.5(±11.2) 135.3 5.9 

Panicle yield 85.8(±2.7) 87.9(±7.9) 86.6(±2.7) 83.2(±6.4) 91.1(±4.1) 90.0(±5.0) 85.1(±7.9) 87.1 ns 
†KN 3336(±78) 3296(±213) 3248(±78) 3167(±176) 2956(±113) 3409(±139) 2943(±213) 3193.6 ns 
‡TKW 25.9(±1.0) 26.5(±3.0) 26.3(±0.9) 25.8(±2.4) 31.1(±1.5) 25.9(±1.9) 28.3(±3.0) 27.1 ns 

Grain yield 5514(±153) 5238(±402) 5829(±152) 6015(±332) 6019(±216) 5884(±264) 6918(±402) 5917 624 
 

†KN = kernel number per panicle, ‡TKW = thousand kernel weight; 
§LSD = Least Significant difference; ns = not significant.   
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Table 4.9.  Mean performance of each of tested sorghum (Sorghum bicolor (L.) Moench) hybrid across environments for all 

agronomic and yield characteristics evaluated under Experiment set III.  

Entry 

Code 

Adult plant 

height 

Days to 

flowering 

Panicle 

length 

Panicle 

width 

Panicle 

weight 

Panicle 

yield 
†KN ‡TKW 

Grain 

yield 
Hybrid Group 

077 141.3 62.5 35.5 6.6 145.7 92.3 3475.8 26.4 5273.6 ACCase × ACCase 

082 130.0 61.8 35.0 7.4 161.2 104.7 3672.8 28.5 4530.2 ACCase × ACCase 

074 125.6 64.0 33.9 6.6 144.8 90.3 3657.0 24.6 4516.5 ACCase × ALS 

093 128.8 61.3 35.8 7.6 159.8 105.0 3774.0 27.9 4123.0 ACCase × ALS 

095 121.3 66.5 30.1 6.8 130.0 88.8 3256.8 27.1 5207.8 ACCase × ALS 

096 140.6 66.5 33.6 5.9 132.2 85.7 3330.0 25.5 4486.5 ACCase × ALS 

109 138.1 64.0 34.5 5.5 124.7 81.6 2977.0 27.1 4572.7 ACCase × ALS 

070 140.6 61.0 33.5 6.3 131.8 83.1 3099.5 26.6 5791.0 ACCase × Regular 

075 131.3 64.5 31.5 6.6 139.3 88.1 3013.8 28.4 5641.2 ACCase × Regular 

081 131.3 62.8 31.8 6.1 133.2 85.2 3045.0 27.8 5620.9 ACCase × Regular 

083 139.4 60.8 33.8 6.8 161.8 103.4 3217.3 32.0 5724.6 ACCase × Regular 

092 141.3 61.5 35.8 6.6 132.3 82.5 3047.8 27.0 6076.9 ACCase × Regular 

097 145.6 66.5 37.0 6.1 141.8 89.1 3249.8 27.0 5700.9 ACCase × Regular 

112 114.4 63.0 29.3 6.2 108.2 68.3 2597.0 26.3 5684.7 ACCase × Regular 

061 135.6 65.0 32.9 6.8 140.4 87.5 3601.0 24.2 4234.4 ALS × ACCase 

062 131.9 60.5 35.4 6.8 151.8 93.8 3418.8 27.3 4084.1 ALS × ACCase 

063 142.5 60.0 36.0 6.2 148.9 97.1 3789.3 25.5 4269.0 ALS × ACCase 

065 137.5 64.0 35.5 7.4 154.1 99.4 3855.5 25.6 3120.1 ALS × ACCase 

066 126.3 63.3 33.5 6.1 134.9 81.5 3171.8 25.5 4626.0 ALS × ACCase 

068 138.1 59.0 34.0 6.4 131.6 84.5 3580.0 23.5 4285.0 ALS × ACCase 

069 130.0 62.5 36.0 6.4 139.6 89.3 3347.8 26.6 5657.6 ALS × ACCase 

072 135.6 63.8 31.5 6.6 150.5 98.9 3575.3 27.2 4529.9 ALS × ACCase 

073 140.6 63.5 32.1 6.2 124.9 80.4 3309.5 24.3 3930.5 ALS × ACCase 

076 143.1 67.0 32.1 7.8 191.6 129.8 4517.3 28.1 6178.1 ALS × ACCase 

078 133.1 63.0 34.8 6.6 146.0 100.3 3794.3 26.2 4541.6 ALS × ACCase 

079 131.9 62.0 36.1 6.4 140.3 90.8 3353.8 26.9 4324.0 ALS × ACCase 

080 135.0 61.0 31.5 6.2 119.6 78.0 2903.0 26.3 4861.5 ALS × ACCase 

085 140.0 60.5 35.8 6.5 153.4 103.2 4066.3 25.0 3775.5 ALS × ACCase 
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Entry 

Code 

Adult plant 

height 

Days to 

flowering 

Panicle 

length 

Panicle 

width 

Panicle 

weight 

Panicle 

yield 
†KN ‡TKW 

Grain 

yield 
Hybrid Group 

086 136.3 65.0 30.0 7.3 150.2 97.8 3567.3 27.1 4979.1 ALS × ACCase 

087 125.6 63.5 30.9 6.7 133.8 87.3 3063.0 28.5 5454.8 ALS × ACCase 

088 136.9 64.5 34.6 6.9 172.1 111.9 4228.0 26.4 4225.4 ALS × ACCase 

089 136.9 63.5 34.0 5.8 136.4 90.3 3317.8 26.9 4576.3 ALS × ACCase 

091 141.9 64.0 35.0 6.6 164.6 108.2 4021.5 26.6 5007.5 ALS × ACCase 

099 124.4 63.5 30.1 7.4 151.6 104.2 3571.3 28.4 4406.8 ALS × ACCase 

100 132.5 64.5 32.8 6.4 148.0 94.5 3761.8 25.1 5025.8 ALS × ACCase 

103 132.5 59.8 31.8 6.2 127.8 85.0 3443.0 24.2 4407.1 ALS × ACCase 

104 141.3 64.8 34.4 7.3 146.4 92.8 3614.3 25.3 4804.8 ALS × ACCase 

105 135.0 60.0 34.5 7.0 157.4 105.8 4244.5 24.9 4505.4 ALS × ACCase 

108 128.1 61.5 35.5 6.4 139.7 94.6 3424.5 27.3 5253.4 ALS × ACCase 

111 138.8 60.5 33.6 6.5 137.5 95.5 3323.8 28.1 4793.7 ALS × ACCase 

113 133.8 62.5 32.4 5.9 114.8 73.5 2777.5 26.0 4271.6 ALS × ACCase 

094 138.1 61.3 33.9 6.6 161.6 104.9 3556.0 28.7 5216.4 ALS × Regular 

101 143.8 67.5 34.8 6.6 170.2 110.2 4091.8 26.7 4391.0 ALS × Regular 

106 134.6 64.1 32.5 6.3 128.2 89.3 2607.8 34.5 5904.3 ALS × Regular 

107 140.0 65.8 33.1 6.1 137.0 92.0 2923.8 31.0 5601.5 ALS × Regular 

064 132.5 64.5 33.9 6.4 150.2 98.0 3731.8 26.3 4419.8 Regular × ACCase 

067 136.3 72.5 33.1 6.5 166.2 114.3 4120.8 27.6 5610.2 Regular × ACCase 

071 137.5 68.5 33.1 6.9 158.4 108.2 4204.5 25.2 4194.6 Regular × ACCase 

098 139.4 68.3 35.8 6.7 175.7 119.8 3905.3 30.5 4388.7 Regular × ACCase 

102 132.5 70.0 30.9 7.1 190.6 129.7 4130.8 30.8 4710.0 Regular × ACCase 

110 125.6 66.5 32.0 7.0 187.3 122.7 4587.8 26.5 4833.2 Regular × ACCase 

084 138.8 70.8 33.1 7.3 151.4 99.9 3651.0 26.8 4087.3 Regular × ALS 

090 135.6 69.5 32.6 6.2 130.3 88.0 3113.5 27.6 4815.9 Regular × ALS 

114 131.9 66.0 32.3 6.5 128.3 85.4 3373.5 25.0 3580.9 Regular × ALS 

C1 121.3 67.0 31.8 6.6 139.8 94.3 3077.3 30.4 5058.9 Check 

C2 129.4 65.5 31.4 6.7 153.0 100.7 3774.3 26.8 5698.9 Check 

Mean 134.5 64 33.4 6.6 146.1 95.7 3516.1 27 4814.1 - 
§LSD 14.7 5.4 3.6 1.2 46.8 37.4 324 4.2 783 - 

†KN = kernel number per panicle, ‡TKW = thousand kernel weight; §LSD = Least Significant difference.  
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Table 4.10. Mean performance of each sorghum (Sorghum bicolor (L.) Moench) hybrid group across environments for all agronomic 

and yield characteristics evaluated under Experiment set III.  

Parameter 

Hybrid Group 

Mean §LSD ALS × 

ACCase 

ACCase × 

ALS 

ALS × 

Regular 

ACCase × 

ACCase 

ACCase × 

Regular 

Regular × 

ACCase 

Regular × 

ALS 
Checks 

Plant 

height 
135.0(±0.8) 130.9(±1.8) 139.2(±2.1) 135.6(±2.9) 134.8(±1.6) 134.0(±1.7) 135.4(±2.4) 125.3(±2.9) 133.8 7.6 

Days to 

flowering 
62.7(±0.4) 64.5(±0.6) 64.5(±0.7) 62.1(±1.0) 62.9(±0.6) 68.4(±0.6) 68.8(±0.8) 66.3(±1.0) 65 2.3 

Panicle 

length 
33.6(±0.3) 33.6(±0.6) 33.9(±0.7) 35.3(±0.9) 33.2(±0.5) 33.1(±0.5) 32.7(±0.8) 31.6(±0.9) 33.4 ns 

Panicle 

width 
6.6(±0.1) 6.5(±0.2) 6.4(±0.2) 7.0(±0.3) 6.4(±0.2) 6.8(±0.2) 6.6(±0.2) 6.7(±0.3) 6.6 ns 

Panicle 

weight 
144.7(±2.9) 138.3(±5.7) 151.4(±6.4) 153.4(±8.8) 135.5(±4.9) 171.4(±5.3) 136.7(±7.3) 146.4(±8.8) 147.2 16.2 

Panicle 

yield 
94.6(±2.0) 90.3(±4.1) 101.0(±4.6) 98.5(±6.3) 85.7(±3.5) 115.4(±3.7) 91.1(±5.2) 97.5(±6.4) 96.8 10.3 

†KN 3579(±62) 3399(±136) 3362(±152) 3574(±212) 3038(±115) 4113(±214) 3379(±174) 3425(±212) 3484 194 
‡TKW 26.1(±0.2) 26.4(±0.5) 30.1(±0.6) 27.4(±0.8) 27.8(±0.4) 27.8(±0.5) 26.4(±0.7) 28.5(±0.8) 27.6 1.6 

Grain  

yield 
4597(±168) 4581(±274) 5277(±301) 4901(±401) 5748(±242) 4692(±256) 4161(±336) 5378(±401) 4917 702 

 
†KN = kernel number per panicle, ‡TKW = thousand kernel weight. 
§LSD = Least Significant difference; ns = not significant.  
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Table 4.11. Pearson correlation coefficients between evaluated yield components for all hybrids tested under Experiment set I. 

 
†Chl. Fluo. = chlorophyll fluorescence; ‡KN = kernel number per panicle, §TKW = thousand kernel weight; 

* and **statistically significant at P  0.05 and 0.01, respectively. 

Parameter 
Chlorophyll 

content 

Plant 

height 

Days to 

flowering 

†Chl. Fluo. 

(Fv/Fm) 

Panicle 

length 

Panicle 

width 

Panicle 

weight 

Panicle 

yield 
‡KN §TKW 

Plant height 0.134**          

Days to 

flowering 
0.048 -0.026         

†Chl. Fluo. 

(Fv/Fm) 
0.370** 0.126** 0.103*        

Panicle 

length 
0.006 0.526** 0.071 0.089       

Panicle 

width 
0.143 0.241** -0.044 0.041 0.345**      

Panicle 

weight 
0.008 0.281** -0.016 0.036 0.445** 0.631**     

Panicle 

yield 
0.138** 0.104* -0.089* 0.154** 0.216** 0.449** 0.871**    

‡KN 0.111** 0.117** -0.093* 0.164** 0.241** 0.506** 0.844** 0.927**   

§TKW 0.090 -0.079 -0.079 0.016 -0.002 0.059 0.395** 0.548** 0.211**  

Grain yield 0.181** 0.028** -0.240** 0.110** 0.0290** 0.217** 0.159** 0.221** 0.194** 0.144** 
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Table 4.12. Nutritional and physical grain quality traits of sorghum (Sorghum bicolor (L.) Moench) hybrids evaluated under all 

experimental sets.  

Set I 

Unit 

Hybrid group 
Mean †LSD 

Parameters ALS × ALS ALS × Regular Regular × ALS Checks 

Protein  % 14.9(±0.3) 14.1(±0.3) 15.9(±0.3) 13.5(±0.8) 14.6 1.80 

Starch    73.6 (±0.2) 73.5 (±0.2) 72.6(±0.2) 72.8 (±0.7) 73.2 0.94 

Fat    4.4 (±0.1) 4.3 (±0.1) 4.1 (±0.1) 4.6 (±0.2) 4.40 0.24 

Ash    1.7 (±0.02) 1.7 (±0.02) 1.7 (±0.02) 1.5 (±0.06) 1.65 0.17 

Nitrogen (N)   2.0 (±0.03) 1.8 (±0.03) 2.1 (±0.03) 1.9 (±0.09) 1.95 0.16 

Phosphorus (P)    0.36 (±0.01) 0.34 (±0.01) 0.37 (±0.01) 0.29 (±0.02) 0.34 0.09 

Potassium (K)    0.28 (±0.01) 0.34 (±0.01) 0.31 (±0.01) 0.28 (±0.02) 0.30 0.05 

Calcium (Ca)    0.017 (±0.001) 0.019 (±0.001) 0.018 (±0.001) 0.014 (±0.002) 0.017 0.004 

Magnesium (Mg)    0.16 (±0.003) 0.15 (±0.003) 0.17 (±0.003) 0.14 (±0.009) 0.16 0.02 

Iron (Fe)  ppm 36.9 (±0.78) 33.1 (±0.78) 40.9 (±0.78) 34.2 (±2.5) 36.3 3.70 

Zinc (Zn)    23.7 (±0.7) 21.6 (±0.7) 26.1 (±0.7) 19.9 (±2.3) 22.8 2.17 

Copper (Cu)    3.30 (±0.13) 2.60 (±0.13) 3.40 (±0.13) 2.00 (±0.39) 2.80 0.65 

Manganese (Mn)   14.2 (±0.4) 14.2 (±0.4) 14.5 (±0.4) 11.0 (±1.3) 13.5 3.20 

Kernel hardness  ‡HI 84.8 (±1.5) 74.6 (±1.5) 77.7 (±1.5) 76.5 (±3.8) 78.4 7.10 

Kernel diameter  mm 2.5 (±0.02) 2.6 (± 0.02) 2.5 (±0.02) 2.7 (±0.06) 2.60 0.08 

Set II ACCase × 

ACCase 

ACCase × 

Regular 

Regular × 

ACCase 

ALS × 

ACCase 

ACCase × 

ALS 

ALS × 

Regular 

Regular × 

ALS 
Checks Mean †LSD 

Protein (%) 11.4 (±0.3) 11.6(±0.2) 12.0 (±0.2) 11.8(±0.2) 11.6(±0.3) 11.6(±0.2) - 11.5 (±0.5) 11.6 ns 

Starch (%) 74.9(±0.3) 75.1(±0.2) 75.4(±0.2) 74.9(±0.1) 75.6(±0.4) 75.1(±0.1) - 74.9(±0.5) 75.1 ns 

Fat (%) 4.9(±0.05) 5.0 (±0.03) 4.8(±0.04) 4.9(±0.02) 5.0 (±0.06) 4.8(±0.02) - 5.0(±0.08) 4.9 0.22 

Ash (%) 1.5(±0.03) 1.5(±0.02) 1.5(±0.02) 1.5(±0.01) 1.5(±0.04) 1.5(±0.01) - 1.4(±0.05) 1.5 ns 

Set III           

Protein (%)  11.8 (±0.3) 10.8(±0.2) 11.1(±0.2) 11.1(±0.1) 11.1 (±0.2) 11.1(±0.2) 11.2(±0.2) 10.7(±0.4) 11.1 ns 

Starch (%)    76.6(±0.3) 75.9(±0.2) 75.3(±0.2) 75.5(±0.1) 76.7(±0.2) 75.8(±0.2) 76.7(±0.3) 75.8(±0.5) 76.0 0.91 

Fat (%)    5.0 (±0.04) 5.0 (±0.02) 5.0 (±0.03) 5.0 (±0.01) 5.1(±0.03) 5.0(±0.03) 5.2(±0.03) 5.0 (±0.06) 5.0 0.20 

Ash (%) 1.5(±0.03) 1.4(±0.02) 1.4(±0.02) 1.4(±0.01) 1.4(±0.02) 1.4(±0.02) 1.3(±0.03) 1.3(±0.04) 1.4 0.10 
 

†LSD = Least Significant difference; ‡HI = Hardness index; ns = not significant.  
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 Discussion 

            Resistance based weed control options stand out as one of the most viable approaches 

towards effective weed management in agronomic crops. In its short existence, the glyphosate 

resistance has revolutionized weed control where cultivars bred for resistance to the herbicide have 

taken over the largest share of acreage planted. Many crops including sorghum, however, have 

been left out from benefiting from this or similar technology. Owing to the difficulty and cost in 

discovering new herbicide chemistries and finding novel mode of actions being even more difficult 

(Gressel, 2002), it's unlikely that any new herbicide chemistries solely targeting sorghum or other 

relatively minor crops would be introduced to the market in the recent future. Therefore, 

development of novel varieties resistant to one or more of the existing herbicide chemistries is 

plausible and can offer growers more herbicide choices and mixtures if resistance to more than 

one herbicide becomes available (Green et al., 2008).  Following the discovery of resistant mutants 

to ALS and ACCase inhibitor herbicides among wild sorghum populations, significant efforts were 

made to incorporate these traits into cultivated grain sorghum. These efforts are bearing fruits that 

several seed companies and Kansas State University have developed series of agronomically 

desirable parental lines into which the resistance traits were incorporated.  One outstanding 

concern raised by growers and the industry alike is the possible yield drag that may be caused 

either by the unusually yellow seedling phenotype associated with ALS resistance trait or by the 

wild genes that may drag along the resistance gene.  Industries speculate about how much yield 

penalty farmers are willing to accept while at the same time expect to pay a premium price for the 

technology at least during the initial years of its deployment. This study was aimed at answering 

these questions and attempts to determine how much yield drag, if any, is associated with herbicide 

resistance.  
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 The result showed that hybrids resistant to ALS inhibitor herbicides tend to express 

seedling chlorosis which eventually disappears at later stages of growth (Table 4.5) and that 

photosynthetic efficiency in adult ALS resistant hybrids was the same as in the susceptible 

commercial checks (Table 4.6). Though the early season chlorosis may certainly reduce 

photosynthetic efficiency at early stage, it appears to have no or little effect on phenology and 

agronomic characteristics of the adult plant (Figure 4.1). In one of the experimental sets (set I), the 

mean grain yield of eight ALS resistant hybrids was 4999 kg ha-1 compared to the mean of 

commercial checks which was 4696 kg ha-1 (Table 4.6). Other yield components such as grain 

weight panicle yield, TKW were not affected suggesting that photosynthetic stress caused by 

seedling chlorosis at early growth stages has little impact on these traits. This agrees with previous 

studies where much of the assimilate contributing to grain yield and yield components was 

reported to come from current photosynthesis (Richards, 2000). Results from experimental sets II 

and III were also similar to set I (Tables 4.7-4.10) except that mean grain yield of commercial 

checks was superior to that of the herbicide resistant groups in set II Experiment though there are 

several herbicide resistant hybrids that had yields higher than or comparable to the checks (Table 

4.7). The early season chlorosis and the associated reduced seedling vigor is obviously undesirable 

and the hybrids may compete poorly against early season weed flushes. However, since they are 

resistant to herbicides over the top chemicals can be applied to eliminate any damage that these 

weeds may cause.  

 The effect of herbicide treatment was not studied in this experiment because some of the 

entries are herbicide susceptible. But the result from previous chapter shows that though flowering 

may be delayed by 2-3 days, herbicide treatment does not have any effect on yield of inbred lines. 

Based on that and previous observations we expect that yield potential in ALS resistant hybrids 



152 

 

will not be affected by herbicide treatment. In fact in fields where pre-emergence weed control is 

not effective, ALS herbicide application is expected to maintain high yield by reducing weed 

competition. Since the herbicides do not bind with the ALS enzyme in resistant plants to 

compromise their function, the typical herbicide damage response seen in susceptible plants such 

as leaf browning or bottle brush roots (University of Missouri, 2016) are not visible in resistant 

sorghums.   

 Similar to the agronomic parameters, nutritional profiles of ALS resistant hybrids were 

comparable to that of susceptible commercial checks. The major nutrients such as protein, starch 

and fat in herbicide resistant groups was the same as that of the checks under all environments. 

Nevertheless, some of the mineral nutrients such as phosphorus and calcium as well as micro 

nutrients such as copper, zinc and manganese appear to be higher in herbicide resistant hybrids by 

an order of 17 to 21% for macro nutrients and 8-30% for micro nutrients compared to the checks. 

But the concentration of other minerals such as iron and potassium is similar to that of the checks. 

The difference in the mineral profiles between the herbicide resistant and susceptible hybrids may 

be either the result of genes that may have inadvertently introduced along with the resistance genes 

or is simply the background effect as the susceptible checks may be likely distant from the public 

herbicide resistant hybrids.  

 

 Conclusion 

            With concerns over yield drags possibly caused by the ALS mutation still hanging, the 

ALS resistant hybrids are making their way to farmers’ field. The first batch of resistant seeds 

were sold for 2016 planting and farmers will see, for the first time not just the effects of the yield 

drag but also the prospect of over the top herbicide use in sorghum. This study showed that though 
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ALS resistance genes are associated with seedling yellowing which is the basis for the concerns, 

yield drag as a result of such phenomena is unlikely. Moreover, the wide difference in leaf 

chlorophyll content among ALS resistant hybrids shows that proper selection after and before 

herbicide application can reduce the occurrence of such phenotypes. Likewise, both the ALS and 

ACCase resistant hybrids also do not have negative effect on nutritional profile of the grains that 

these resistant hybrid crops can be used in all food, feed and industrial applications that sorghum 

has been traditionally used for. 
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Appendix A - Supplemental information for chapter 2 

Table A.1. The read mapping summary for yellow and normal samples at each stage of 

sampling.  

 

Sample 

Trimmed 

Reads 

Mapped 

Reads Mapped% 

Confident 

Mapped Reads 

Confident 

Mapped % 

Green-S0 stage-replicate1 17100000 16717481 97.8 15489374 90.6 

Green-S0 stage-replicate2 11386966 10314346 90.6 9478054 83.2 

Green-S0 stage-replicate3 8138406 7919657 97.3 7302557 89.7 

Green-S1 stage-replicate1 12544645 11972499 95.4 11094164 88.4 

Green-S1 stage-replicate2 11304313 11009385 97.4 10188836 90.1 

Green-S1 stage-replicate3 12367994 12098903 97.8 11261965 91.1 

Green-S2 stage-replicate1 12715191 12151177 95.6 11236344 88.4 

Green-S2 stage-replicate2 11345117 10851960 95.7 10078756 88.8 

Green-S2 stage-replicate3 15031984 14694783 97.8 13570020 90.3 

Green-S3 stage-replicate1 12185823 11838370 97.1 10975077 90.1 

Green-S3 stage-replicate2 10549889 10096828 95.7 9352468 88.6 

Green-S3 stage-replicate3 10053833 9774332 97.2 9048876 90 

Yellow-S0 stage-replicate1 12932513 12585942 97.3 11656006 90.1 

Yellow-S0 stage-replicate2 14913289 14551466 97.6 13512155 90.6 

Yellow-S0 stage-replicate3 14578395 14244619 97.7 13222902 90.7 

Yellow-S1 stage-replicate1 8850648 8598795 97.2 7995057 90.3 

Yellow-S1 stage-replicate2 11699313 11428736 97.7 10566808 90.3 

Yellow-S1 stage-replicate3 11271245 10928415 97 10133689 89.9 

Yellow-S2 stage-replicate1 14450551 14051613 97.2 13064471 90.4 

Yellow-S2 stage-replicate2 13050379 12460776 95.5 11593536 88.8 

Yellow-S2 stage-replicate3 11872101 11542378 97.2 10755236 90.6 

Yellow-S3 stage-replicate1 11241136 10989004 97.8 10182955 90.6 

Yellow-S3 stage-replicate2 11541148 11235620 97.4 10434927 90.4 

Yellow-S3 stage-replicate3 12012777 11625966 96.8 10759674 89.6 
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Appendix B - Supplemental information for chapter 3 

Table B.1. The effect of herbicide treatment and seedling phenotype on physiological and 

agronomic characteristics of ALS herbicide resistant sorghum (Sorghum bicolor (L.) Moench) 

genotypes evaluated with and without herbicide treatment (Environment 1). 

 

Treatment Effects 

Chlorophyll content 

Days to 

Flowering 

Plant height Biomass 

(SPAD units) (cm) (g) 

Seedling 
Adult 

Plant 
Seedling 

Adult 

plant 
Seedling 

Adult 

plant 

Herbicide        

Untreated 
33 55.3 70.4 18.8 129.3 46.9 336.0 

(±0.31) (±0.26) (±0.21) (±0.31) (±0.25) (±1.1) (±6.3) 

Treated 
28.6 53.3 71.7 15.9 122.3 32.3 344.8 

(±0.31) (±0.26) (±0.21) (±0.31) (±0.25) (±1.1) (±6.3) 

Mean 30.8 54.3 71.1 17.4 125.8 39.6 340.4 
†LSD 2.56 ns ns 1.09 5.25 5.76 ns 

Seedling Color        

Yellow 
27.8 54.5 72.3 16.7 128 33.8 339.4 

(±0.65) (±0.69) (±0.57) (±0.32) (±0.67) (±1.8) (±9.3) 

Normal 
37.1 54 68.4 18.6 97.2 51.5 342.5 

(±0.92) (±0.98) (±0.80) (±0.46) (±0.92) (±2.4) (±13.2) 

Mean 32.5 54.3 70.4 17.7 112.6 42.7 340.9 

†LSD 2.37 ns 1.96 1.23 5.65 5.92 ns 

 
†LSD = Least significant difference; ns = not significant. 
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Table B.2. The effect of herbicide treatment and seedling phenotype on physiological and 

agronomic characteristics of ALS herbicide resistant sorghum (Sorghum bicolor (L.) Moench) 

genotypes evaluated with and without herbicide treatment (Environment 2). 

 

Treatment effect 

Chlorophyll content 

Days to 

Flowering 

Plant height Biomass 

(SPAD units) (cm) (g) 

Seedling 
Adult 

Plant 
Seedling 

Adult 

plant 
Seedling 

Adult 

plant 

Herbicide        

Untreated 
23.4 55.4 72.9 18.1 106.3 30.3 317.71 

(±0.57) (±0.63) (±0.60) (±0.24) (±2.0) (±0.84) (±4.79) 

Treated 
29.7 55.5 75 16.2 102.8 34.9 260.7 

(±0.57) (±0.63) (±0.60) (±0.24) (±2.0) (±0.84) (±4.79) 

Mean 26.6 55.4 73.9 17.1 104.6 32.6 289.2 
†LSD 2.67 ns ns 0.61 ns ns 26.8 

Seedling Color        

Yellow 
23.2 55.1 73.8 16.8 104.5 31.0 279.7 

(±0.65) (±0.56) (±0.91) (±0.19) (±1.57) (±1.11) (±8.2) 

Normal 
33.4 56.6 74.2 17.7 104.4 35.7 308.3 

(±0.92) (±0.69) (±1.29) (±0.27) (±1.92) (±1.57) (±11.6) 

Mean 28.3 55.8 74.0 17.3 104.5 33.4 294.0 
†LSD 2.53 1.39 ns 0.73 ns 3.86 ns 

 
†LSD = Least significant difference; ns = not significant.  
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Table B.3. Phenology and growth characteristics of ALS herbicide resistant sorghum genotypes evaluated with and without herbicide 

treatment during the 2013 and 2014 seasons (Environment 1). 

  

Genotype 

Chlorophyll content (SPAD units) 
Days to flowering 

Plant height (cm) Biomass (g) 
†Seedling 

color 
Seedling Adult plant Seedling Adult plant Seedling Adult plant 

Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated 

MN13-7458 38.0 40.4 51.1 55.2 67.5 64.5 21.3 18.1 129.2 116.2 83.5 55.8 376.9 256.4 G 

MN07-1916 42.2 40.2 63.8 63.5 68.5 65.5 18.5 16.6 120.5 100.7 36.9 35.5 273.0 303.6 G 

MN13-7450 39.7 39.3 54.5 54.7 65.0 66.0 20.3 18.0 116.2 105.5 74.0 51.0 468.2 345.1 G 

PR12/13-763-2 35.2 37.8 46.5 35.9 76.5 71.5 18.5 16.3 133.7 118.7 34.5 35.6 231.2 311.5 G 

PR12/13-763-4 30.5 33.5 47.1 32.4 71.5 72.0 19.5 17.2 109.0 118.2 62.2 37.6 424.4 234.6 Y 

MN13-7498 38.4 36.6 53.5 57.8 64.5 62.5 21.8 19.3 123.7 108.7 79.5 43.0 293.2 389.8 G 

MN11-10362 38.9 36.4 58.1 57.1 74.0 75.0 20.0 17.1 143.7 137.5 55.2 30.1 431.8 519.2 Y 

PR12/13-763-1 39.8 36.3 55.1 36.5 71.5 73.0 18.6 16.5 131.5 117.0 59.7 33.9 381.0 396.5 G 

MN13-7462 38.1 36.3 55.1 57.6 64.0 62.5 20.0 17.5 113.7 105.5 66.3 35.9 300.8 193.4 G 

PR12/13-763-3 34.1 34.8 54.1 54.5 71.5 75.5 18.1 17.3 130.7 121.5 54.9 40.0 455.8 317.7 Y 

MN13-7439 37.3 35.1 57.6 53.9 64.0 62.5 21.3 18.3 140.0 130.2 70.2 47.2 345.0 324.5 G 

PR12/13-763-5 30.3 34.9 55.0 31.5 71.5 72.0 18.2 16.4 127.0 125.7 41.4 38.5 401.0 314.1 Y 

PR11/12-1026 36.9 34.9 51.6 60.7 64.5 65.5 21.1 17.7 123.2 117.5 70.7 47.6 282.5 315.1 G 

MN07-2118 31.0 32.9 54.7 55.0 64.5 64.5 18.0 15.6 123.2 109.2 56.4 42.0 227.4 206.2 Y 

MN13-7840 31.4 31.7 57.8 58.3 61.0 62a 21.3 17.5 111.2 107.5 65.3 35.2 329.7 246.1 Y 

PR11/12-852 33.2 31.3 56.0 56.4 76.5 83e 19.0 15.8 142.0 131.2 41.7 36.8 350.6 414.2 Y 

MN13-7838 34.5 30.4 56.5 62.5 61.5 62.5 18.2 15.9 110.7 104.0 48.5 45.2 224.9 236.0 Y 

PR11/12-873 34.0 30.0 59.6 59.5 76.0 75.5 24.0 15.5 121.2 114.5 51.5 37.5 455.3 485.1 Y 

MN13-7463 32.6 30.0 51.9 58.0 64.5 65.5 20.8 18.4 120.7 118.2 53.7 37.5 265.6 306.9 Y 

PR11/12-850 33.6 29.3 62.3 61.9 76.5 80.0 18.1 15.7 138.7 145.2 46.1 41.2 433.2 419.8 Y 

MN13-7923 36.9 29.1 57.4 40.1 64.5 73.5 19.8 16.1 109.0 106.2 84.2 31.7 343.4 363.9 G 

PR11/12-851 38.1 28.4 61.6 58.8 76.5 80.5 19.0 15.8 139.0 128.2 53.1 22.1 352.5 427.0 G 

PR11/12-984 33.6 27.4 60.7 42.9 68.0 73.0 17.1 13.5 113.7 109.5 43.1 17.2 274.7 321.0 Y 

MN13-7455 34.2 24.5 56.0 59.5 64.5 67.0 20.3 17.7 112.5 112.5 45.8 38.1 322.8 267.4 Y 

MN13-7499 32.3 24.2 54.5 57.3 64.5 62.5 20.3 17.8 106.2 102.0 49.8 42.3 296.8 247.5 Y 

MN07-2165 27.2 22.4 59.0 59.9 73.5 78.0 19.1 13.4 105.7 107.0 27.9 19.1 314.0 317.3 Y 

PR12/13-764-3 24.8 19.6 45.5 53.3 71.5 75.5 18.8 14.2 150.7 157.5 27.3 19.8 358.7 354.1 Y 

PR12/13-762-1 25.0 19.6 56.5 56.4 73.5 75.5 15.5 13.0 130.0 129.0 20.7 16.4 248.5 330.1 Y 

PR12/13-764-2 22.6 19.3 54.0 53.1 73.0 75.0 17.0 12.5 150.2 152.5 18.9 12.1 312.6 344.8 Y 

PR12/13-762-2 25.5 19.2 57.0 54.7 74.5 78.5 14.8 14.0 125.7 116.5 26.2 12.4 302.6 426.4 Y 

PR9/10-4720-1 22.7 18.1 58.0 56.5 76.0 80.0 15.1 15.2 150.0 141.2 23.1 18.9 377.9 472.5 Y 

MN13-7500 19.5 17.9 52.6 55.2 76.5 78.5 16.3 14.0 163.2 155.0 32.5 32.3 510.0 537.8 Y 
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Genotype 

Chlorophyll content (SPAD units) 
Days to flowering 

Plant height (cm) Biomass (g) 
†Seedling 

color 
Seedling Adult plant Seedling Adult plant Seedling Adult plant 

Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated 

PR12/13-764-4 19.2 17.1 52.0 54.0 77.0 76.0 16.3 14.7 166.7 142.5 15.3 15.0 162.9 338.6 Y 

PR12/13-761 21.1 16.5 55.3 53.2 76.5 77.5 12.6 12.2 123.2 115.2 23.5 18.6 327.3 363.0 Y 

PR12/13-764-6 23.3 15f 52.4 52.2 74.0 74.0 16.0 13.1 139.0 134.5 25.6 21.5 346.2 272.5 Y 

PR12/13-764-1 21.1 14.4 59.0 53.3 76.5 75.5 14.8 14.3 156.2 144.5 21.4 17.4 293.7 399.1 Y 

Tx430 40.3 - 57.7 - 65.3 - 18.0 - 102.5 - 32.5 - 390.9 - G 

Mean 33.2 28.6 55.4 53.4 70.4 71.7 18.6 15.9 129 122.25 47 32.3 336.0 342.0 - 
‡
LSD 3.38 3.95 3.35 3.17 3.4 3.09 3.4 2.81 4.7 4.5 12.8 11.7 66.1 58.29 - 

 
†Seedling color Y= yellow G = Green; 
‡LSD = Least significant difference. 
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Table B.4. Phenology and growth characteristics of ALS herbicide resistant sorghum genotypes evaluated with and without herbicide 

treatment during the 2013 and 2014 seasons (Environment 1).  

Genotype 

 

Chlorophyll content (SPAD) 
Days to flowering 

Plant height (cm) Biomass (g) 
†Seedling 

color 
Seedling Adult plant Seedling Adult plant Seedling Adult plant 

Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated 

PR11/12-1026 32.2 42.2 58.4 56.7 72.0 71.5 18.5 16.0 115.0 100.0 53.1 36.0 229.4 289.3 G 

MN13-7923 31.5 41.5 57.1 57.8 62.0 68.5 20.0 17.5 102.5 101.3 28.5 48.8 307.9 222.1 G 

MN13-7450 35.3 41.5 58.0 59.7 73.0 72.0 19.5 16.5 95.0 92.5 15.1 31.7 486.0 346.2 G 

MN13-7462 30.9 40.1 60.0 59.8 68.0 69.0 18.5 16.0 107.5 102.5 45.7 41.4 344.5 237.0 G 

PR12/13-763-1 22.4 39.4 50.0 53.5 85.5 77.0 17.0 13.5 83.8 98.8 33.1 25.7 538.9 352.1 G 

MN11-10362 23.7 34.3 54.8 55.1 75.5 84.0 18.0 18.5 118.8 126.3 44.9 36.4 403.2 409.5 Y 

PR12/13-763-4 30.3 33.2 49.3 51.4 83.5 80.5 15.5 16.0 90.0 106.3 13.5 26.5 383.4 279.1 Y 

PR12/13-763-5 25.8 31.7 55.6 48.5 76.0 88.5 17.5 16.0 95.0 100.0 32.7 31.4 263.5 257.5 Y 

MN13-7439 21.1 38.4 54.5 57.7 71.0 71.0 21.5 16.5 117.5 116.3 31.6 40.2 368.2 271.2 G 

MN07-1916 26.5 37.3 62.1 58.2 62.0 67.5 19.5 18.5 101.3 106.3 16.3 32.9 223.0 203.7 G 

PR12/13-763-2 38.4 36.3 56.6 54.0 80.5 96.0 15.5 12.5 90.0 110.0 28.3 40.7 261.5 195.0 G 

PR11/12-851 34.1 36.0 63.5 59.2 91.5 97.5 20.0 16.5 102.5 108.8 34.3 22.5 309.6 375.2 G 

MN13-7458 33.8 35.4 49.5 54.1 69.0 69.0 20.5 18.5 92.5 108.8 34.0 53.9 279.3 195.0 G 

PR12/13-763-3 18.6 34.9 51.2 55.5 83.5 86.5 17.0 15.0 85.0 103.8 26.2 24.3 321.6 195.0 Y 

MN13-7463 31.0 33.2 56.7 57.3 69.5 68.5 18.5 17.5 110.0 103.8 43.3 39.7 377.3 239.0 Y 

MN07-2118 28.4 33.2 55.3 52.2 65.5 66.5 18.0 16.5 106.3 107.5 37.5 65.6 262.7 221.7 Y 

MN13-7498 27.2 32.5 57.1 50.4 61.5 67.5 20.0 19.0 108.8 105.0 44.6 39.5 294.0 299.8 G 

MN13-7838 18.6 32.3 58.3 56.1 57.5 63.5 19.0 17.0 103.8 93.8 30.6 43.7 205.3 195.0 Y 

PR11/12-852 24.6 31.5 53.7 54.3 90.0 94.0 18.0 16.5 108.8 121.3 21.3 24.5 279.7 320.1 Y 

PR11/12-984 20.5 29.9 61.9 59.2 67.5 65.0 17.0 17.0 106.3 113.8 39.7 31.2 276.3 262.2 Y 

PR11/12-850 19.9 29.7 54.5 55.4 77.0 88.5 19.0 16.5 111.3 123.8 29.8 32.9 347.2 290.2 Y 

MN13-7840 23.9 28.8 58.5 56.1 62.0 65.0 20.0 18.5 101.3 98.8 33.9 28.3 228.8 195 Y 

MN13-7455 19.3 28.3 55.9 60.7 70.0 66.5 20.5 17.5 100.0 101.3 39.4 38.0 335.7 278.3 Y 

PR11/12-873 20.2 27.9 52.6 58.0 74.5 82.5 19.0 16.5 105.0 111.3 31.9 39.1 422.2 331.3 Y 

MN13-7499 21.7 27.7 58.4 56.5 61.0 65.5 19.0 18.0 106.3 110.0 14.3 45.7 288.6 298.8 Y 

PR12/13-762-2 20.9 23.3 55.1 55.6 74.0 78.0 16.0 14.5 92.5 103.8 32.5 19.2 375.2 233.7 Y 

PR12/13-762-1 20.1 21.6 55.9 56.3 72.0 71.0 17.5 16.0 98.8 107.5 27.5 37.2 339.0 216.8 Y 

MN07-2165 17.3 21.0 54.1 62.3 76.0 69.0 17.5 15.0 78.8 85.0 41.1 36.0 276.9 225.4 Y 

PR12/13-764-2 15.2 18.4 50.9 53.2 72.0 71.0 16.5 15.0 118.8 106.3 21.0 24.1 278.7 208.7 Y 

PR12/13-761 17.5 17.8 52.3 53.7 81.5 81.0 15.0 13.0 88.8 92.5 18.0 22.5 263.0 195.0 Y 

MN13-7500 20.2 17.8 51.9 55.3 72.0 73.5 21.0 17.5 113.8 107.5 33.3 36.7 482.2 505.8 Y 
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†Seedling color Y= yellow G = Green; 
‡LSD = Least significant difference. 

 
 

 

 

                

Genotype 

 

Chlorophyll content (SPAD) 
Days to flowering 

Plant height (cm) Biomass (g) 
†Seedling 

color 
Seedling Adult plant Seedling Adult plant Seedling Adult plant 

Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated Untreated Treated 

PR9/10-4720-1 16.1 17.4 54.0 58.5 77.0 77.5 16.0 15.0 105.0 107.5 21.4 42.2 264.4 380.6 Y 

PR12/13-764-3 19.1 15.8 52.6 51.5 74.5 68.0 17.5 15.0 106.3 111.3 24.0 21.7 232.0 195.0 Y 

PR12/13-764-4 17.1 14.6 55.0 52.7 73.5 75.0 17.0 15.5 118.8 115.0 30.1 23.1 338.9 195.0 Y 

PR12/13-764-1 17.7 14.1 57.6 52.0 71.5 73.5 16.5 15.5 111.3 112.5 23.9 40.0 244.9 244.2 Y 

PR12/13-764-6 18.0 11.8 53.9 51.6 72.0 71.5 17.5 14.5 110.0 108.8 20.7 23.1 303.7 204.8 Y 

Tx430 36.4 - 57.0 - 70.3 - 17.5 - 114.3 - 35.0 - 314.4 - G 

Mean 23.3 29.7 55.5 55.6 72.9 75 18.2 16.2 102.7 106.2 30.5 34.6 317.6 266.4 - 
‡LSD 4.3 4.5 3.2 3 3.6 3.7 2.9 2.5 16.2 17 10.9 9.6 57.1 69.3 - 
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Table B.5. Mean of the effect of herbicide treatment and seedling phenotype on agronomic parameters and yield components of ALS 

herbicide resistant sorghum (Sorghum bicolor (L.) Moench) genotypes evaluated with and without herbicide treatment (Environment 1). 

 

Treatment 

Effects 

Chlorophyll 

content 

Adult plant 

Height 

Days to 

flowering 

Panicle 

length 

Panicle 

diameter 

Panicle 

weight 

Panicle 

yield 
†KN ‡TKW Grain yield 

Herbicide            

Control 55.4(±0.56) 103.3(±1.6) 73(±0.73) 25.2(±0.39) 5.6(±0.08) 76.9(±2.19) 52.8(±1.57) 2169(±57.7) 24.4(±0.29) 3713.4(±363.4) 

Treated 55.9(±0.56) 106.5(±1.6) 78(±0.73) 27.3(±0.40) 5.4(±0.08) 77.3(±2.22) 52.6(±1.55) 2243(±58.5) 23.4(±0.30) 4139.1(±365.8) 

Mean 55.7 104.9 76 26.3 5.5 77.1 52.7 2206 23.9 3926.3 

§LSD ns ns 2.55 0.85 ns ns ns ns 1.04 ns 

Seedling color           

Yellow 55.3(±0.56) 105.0(±1.52) 75(±1.01) 26.1(±0.39) 5.4(±0.08) 73.5(±2.4) 50.1(±1.90) 2129(±71.4) 23.5(±0.36) 3907.2(±357.3) 

Normal 56.0(±0.67) 104.7(±1.80) 74(±1.44) 26.4(±0.50) 5.7(±0.11) 83.5(±3.5) 57.1(±2.70) 2328(±92.50) 24.6(±0.52) 4017.4(±401.4) 

Mean 55.7 104.9 75 26.3 5.6 78.5 53.6 2229 24.1 3962.3 

§LSD ns ns ns ns 0.25 7.42 5.60 ns ns ns 

 
†TKW = thousand kernel weight; ‡KN = kernel number per panicle.  
§LSD = Least significant difference; ns = not significant. 
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Table B.6. The effect of herbicide treatment and seedling phenotype on agronomic parameters and yield components of ALS herbicide 

resistant sorghum (Sorghum bicolor (L.) Moench) genotypes evaluated with and without herbicide treatment (Environment 2). 

 

Treatment 

Effects 

Chlorophyll 

content 

Adult plant 

Height 

Days to 

flowering 

Panicle 

length 

Panicle 

diameter 

Panicle 

weight 

Panicle 

yield 
†KN ‡TKW Grain yield 

Herbicide           

Control 56.3(±0.58) 125.2(±1.3) 72(±0.56) 29.1(±0.17) 6.0(±0.07) 120.6(±1.81) 77.5(±1.72) 2956(±53.7) 26.5(±0.25) 2957.0(±162.8) 

Treated 57.2(±0.58) 122.9(±1.3) 73(±0.56) 29.3(±0.17) 6.2(±0.07) 124.4(±1.81) 77.6(±1.72) 2884(±53.7) 27.1(±0.25) 2954.0(±162.8) 

Mean 56.8 124.1 73 29.2 6.1 122.5 77.6 2920 26.8 2955.5 
§

LSD ns ns ns ns ns ns ns ns 0.82 ns 

Seedling Color           

Yellow 56.5(±0.47) 123.2(±1.2) 73(±0.52) 29.3(±0.20) 6.1(±0.07) 122.3(±2.3) 77.1(±1.75) 2959(±71.4) 26.3(±0.27) 3026.7(±141.3) 

Normal 57.4(±0.52) 126.0(±1.6) 70(±0.73) 29.1(±0.29) 6.2(±0.11) 122.9(±3.3) 78.5(±2.47) 2842(±92.5) 27.8(±0.37) 2799.3(±199.8) 

Mean 56.9 124.6 72 29.2 6.1 122.6 77.8 2901 27.1 2913.0 
§

LSD ns ns 1.78 ns ns ns ns ns 0.84 ns 

 
†KN = kernel number per panicle; ‡TKW = thousand kernel weight;  
§LSD = Least significant difference; ns = not significant. 
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Table B.7. Agronomic characteristics and yield components of ALS herbicide resistant sorghum genotypes evaluated with and without 

herbicide treatment (Environment 1). 

 

 Genotype  
Plant height 

Days to 

flowering 
Panicle length Panicle width Panicle weight Panicle yield        †KN ‡TKW Grain yield §Seedling 

color 

 Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt 

MN07-2165 80.7 83.2 74.3 69.0 22.3 25.7 5.0 5.7 54.6 77.6 35.4 56.3 2277 2286 17.6 24.5 2548 4059 Y 

PR11/12-984 108.2 111.7 67.0 66.0 22.9 28.8 5.7 5.9 72.1 78.7 48.9 56.0 2056 2418 23.9 23.1 4085 4525 Y 

MN13-7463 108.2 101.7 68.7 69.7 31.1 29.8 6.4 5.9 102.3 102.7 69.0 70.0 3062 3108 22.6 22.5 3231 3319 Y 

MN13-7455 104.2 103.2 70.7 67.3 33.0 32.6 6.6 6.3 106.5 101.6 69.8 66.9 2979 2877 23.4 23.1 4079 4087 Y 

MN13-7439 118.2 118.2 71.3 75.7 31.3 29.7 6.1 5.3 106.9 78.9 73.8 62.3 2956 2669 24.9 23.3 3620 4102 G 

PR11/12-873 105.0 113.2 75.0 85.0 29.8 31.0 5.4 4.9 95.2 77.5 67.8 52.2 2488 2009 27.4 26.2 4212 4055 Y 

PR11/12-1026 113.2 100.7 72.3 70.3 28.8 27.0 7.1 6.7 117.6 107.1 77.5 81.7 2694 3019 28.8 27.0 3144 4279 G 

MN07-1916 100.7 109.2 61.7 65.7 22.4 24.4 5.4 5.0 56.2 61.1 39.1 38.9 1710 1661 22.8 23.4 4160 4115 G 

MN13-7923 105.0 101.7 63.0 69.7 27.1 26.7 5.6 4.9 77.9 64.0 52.4 44.4 2262 1932 23.1 22.8 3248 3669 G 

PR9/10-4720-1 106.7 109.2 76.0 83.7 25.9 26.1 5.3 5.0 71.6 58.5 58.8 36.8 2649 1617 22.3 22.7 2987 3775 Y 

MN13-7838 104.2 94.2 59.7 65.7 22.7 23.6 4.9 4.7 55.8 57.2 38.2 42.2 1622 1567 23.8 26.8 4039 3945 Y 

MN13-7462 105.7 102.5 68.3 68.7 26.9 26.8 6.8 6.0 106.1 104. 71.9 73.9 3227 3174 22.2 23.4 3120 3659 G 

PR11/12-850 116.7 122.5 76.0 95.0 23.9 29.6 4.6 4.1 48.2 53.5 38.6 35.6 1419 1572 27.0 22.6 2895 3228 Y 

MN13-7499 107.5 114.2 61.3 64.7 25.6 27.3 6.6 5.2 101.4 83.6 75.2 66.5 2854 2542 26.4 26.0 2599 3330 Y 

PR11/12-851 99.2 108.2 81.0 98.7 25.0 28.2 5.3 4.1 82.2 45.9 59.7 26.0 2149 1190 27.7 21.9 4010 3322 G 

MN13-7450 94.2 90.7 76.3 72.0 25.2 27.6 6.3 6.4 97.7 96.6 66.3 61.2 2419 2338 27.2 25.4 4157 2576 G 

PR12/13-762-1 99.2 108.2 73.3 72.0 27.1 28.3 6.2 6.2 95.8 98.6 61.1 65.9 2498 2785 24.3 23.7 4578 3513 Y 

MN11-10362 120.0 126.7 75.3 85.0 27.3 29.0 5.2 5.3 79.4 82.4 55.5 46.8 2213 2825 25.3 17.8 3740 3568 Y 

PR12/13-762-2 90.7 102.5 76.3 81.0 22.4 25.1 5.4 4.7 62.1 52.7 43.5 34.9 1758 1638 24.7 21.6 4402 2179 Y 

MN13-7840 100.0 99.2 63.3 64.3 22.9 26.2 5.2 5.4 61.1 75.2 42.5 57.4 1843 2518 23.0 22.8 3867 4356 Y 

MN13-7500 117.5 114.2 71.7 74.3 28.2 32.0 6.2 5.9 109.0 96.5 75.8 73.0 2017 2739 37.1 26.4 2998 3219 Y 

PR12/13-761 90.0 93.2 79.7 85.3 22.1 29.6 4.9 5.2 43.2 71.9 35.0 42.0 1258 1951 21.4 21.4 3316 2733 Y 

PR12/13-764-1 110.7 112.5 72.0 73.0 25.9 25.2 6.3 5.2 103.2 83.8 69.7 62.1 2970 2628 23.5 23.7 4509 4034 Y 

PR12/13-764-6 110.0 111.7 72.7 71.7 25.0 23.6 5.7 5.0 84.2 58.2 61.7 39.4 2627 1663 23.5 23.7 4346 3881 Y 

PR12/13-764-4 114.25 111.7 73.3 84.7 25.9 25.2 5.8 4.8 80.4 47.3 55.8 36.7 2363 1634 23.5 22.4 4106 2612 Y 

PR12/13-763-2 91.7 107.5 79.3 96.0 23.2 26.0 5.1 5.6 59.2 79.4 40.6 51.3 1835 2549 22.1 19.7 3863 2385 G 

PR12/13-763-3 89.2 98.2 82.0 92.0 22.8 24.2 5.2 4.7 59.6 55.1 42.4 32.8 2000 1605 21.1 20.5 2535 4181 Y 

PR11/12-852 107.5 120.7 86.7 95.3 22.0 28.7 4.0 4.5 38.6 57d 29.3 18.8 1118 1408 23.4 16.7 1419 2593 Y 

MN13-7458 95.0 105.0 69.3 69.3 23.8 27.4 5.4 6.4 60.1 92.4 41.2 62.7 1497 2151 27.7 29.8 2527 3417 G 

PR12/13-763-1 85.7 97.5 85.3 78.0 21.6 32.5 5.0 6.5 53.2 129. 35.6 90.5 2038 3564 18.2 25.4 4036 4383 G 

MN07-2118 101.7 108.2 67.7 68.0 24.7 26.3 5.3 5.3 65.2 66.4 42.9 40.3 1554 1610 27.3 25.1 2927 4009 Y 

PR12/13-763-4 95.7 105.0 81.0 85.3 24.8 26.4 5.3 5.4 71.3 65.9 47.0 43.3 1903 2105 25.9 20.5 4391 2970 Y 
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 Genotype  
Plant height 

Days to 

flowering 
Panicle length Panicle width Panicle weight Panicle yield        †KN ‡TKW Grain yield §Seedling 

color 

 Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt 

PR12/13-764-2 115.7 112.5 72.3 70.7 25.8 27.1 5.9 6.0 82.8 83.4 48.9 61.3 2216 2710 22.0 22.6 2116 3499 Y 

PR12/13-764-3 101.7 112.5 74.0 70.0 23.8 25.2 6.0 5.4 78.2 79.9 48.8 54.4 2122 2399 23.0 22.6 3271 3135 Y 

PR12/13-763-5 94.2 102.5 80.7 95.0 22.6 26.5 5.1 5.2 52.2 64.2 37.6 42.8 1748 2021 21.5 20.9 2238 2323 Y 

MN13-7498 110.7 105.7 62.7 67.0 23.4 25.2 6.1 6.0 89.8 96.4 61.2 69.8 2014 2280 30.5 30.8 4014 4018 G 

Tx430 102.5 - 72.3 - 30.0 - 5.9 - 99.4 - 68.1 - 1974 - 35.0 - 3956 - G 

Mean 102.5 106.5 71.6 76.7 29.3 27.3 6.4 5.4 100.4 77.3 74.9 52.6 2250 2243 33.3 23.4 4150 3529 - 
¶LSD 11.8 12.0 6.3 6.9 3.5 3.4 1.1 1.2 31.3 34.3 23.8 25.4 231.1 265.3 4.6 4.1 688.3 654.6 - 
 

†KN = kernel number per panicle; ‡TKW = thousand kernel weight; §SC= Seedling color Y = Yellow G = Green;  
¶LSD = Least significant difference; ns = not significant; Untrt.= without herbicide treatment, Trt. = Herbicide treated. 
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Table B.8. Agronomic characteristics and yield components of ALS herbicide resistant sorghum genotypes evaluated with and without 

herbicide treatment (Environment 2). 

 

 Genotype  
Plant height 

Days to 

flowering 

Panicle 

length 

Panicle 

width 
Panicle yield Panicle weight       †KN ‡TKW Grain yield §Seedling 

color 
Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt 

MN13-7450 120.0 119.3 76.7 76.7 28.2 29.8 7.3 7.3 78.7 83.4 129.7 142.9 3124 3138 25.3 25.9 3401.2 4252.7 G 

PR11/12-851 118.3 128.3 68.3 73.0 31.5 30 5.0 4.7 54.4 44.5 89.0 76.9 1899 1464 28.8 30.5 2107.4 3270.5 G 

MN11-10362 132.5 128.3 75.7 77.3 31.8 32.8 5.3 5.6 86.2 82.8 126.3 129.5 2795 2809 30.8 29.5 3263.5 3055.6 Y 

PR11/12-852 120.8 121.8 85.0 84.3 29.0 29.8 4.8 4.3 38.4 36.1 67.6 62.6 1434 1260 26.4 28.4 4345.4 4279.2 Y 

PR11/12-1026 130.8 128.3 70.0 71.0 29.3 29.8 6.8 7.3 93.5 79.9 132.2 122.9 3097 3039 30.2 26.1 3017.4 3169.4 G 

PR11/12-873 115.0 115.8 76.3 77.3 31.0 32.2 5.2 5.8 66.5 97.9 100.2 141.1 2140 3081 31.1 31.8 2504.9 3201.1 Y 

PR12/13-763-3 125.0 115.8 74.0 75.7 30.2 29.5 6.3 5.8 94.1 88.5 145.7 139.2 3890 3563 24.2 24.9 2822.4 1566.7 Y 

MN07-1916 120.0 110.0 58.0 69.7 25.5 25.3 5.2 5.3 40.9 37.2 76.0 73.3 1554 1371 26.1 27.1 2821.6 1222.3 G 

PR11/12-984 119.3 113.3 68.7 73.3 26.3 26.7 5.7 6.7 61.3 71.1 96.1 113.1 2403 2788 25.5 25.5 2877.2 2071.7 Y 

MN13-7840 112.5 104.3 71.0 77.7 26.3 25.2 6.2 5.8 64.3 50.6 102.9 87.7 2465 2026 25.9 25 2118.4 4328.5 Y 

PR11/12-850 134.3 134.3 81.0 78.3 28.3 30.7 6.1 5.3 88.0 71.5 113.8 106.4 2900 2281 30.3 31.3 2149.8 4380.7 Y 

MN07-2165 96.8 97.5 77.0 76.0 25.7 27.7 5.3 5.4 51.4 47.9 82.0 80.7 2190 2033 23.4 23.5 1603.6 3846.6 Y 

PR9/10-4720-1 133.3 130.0 74.7 77.0 29.8 30.2 6.5 6.8 99.0 94.6 153.2 153.7 4004 3676 24.7 25.6 2576.3 2993.3 Y 

MN13-7455 121.8 115.0 69.7 70.0 31.8 33.8 6.2 7.7 81.4 92.2 128.0 147.9 3475 3828 23.4 24.1 3806.6 1656.9 Y 

MN13-7439 130.8 129.3 69.0 71.7 28.5 28.5 7.1 7.0 104.0 87.1 151.3 135.9 3936 3220 26.6 27.4 2435.2 2507.6 G 

MN07-2118 118.3 120.8 71.0 71.0 28.7 28.5 5.9 6.5 63.2 70.8 112.0 113.1 2529 2596 25.0 27.6 2916.8 2105 Y 

PR12/13-763-4 130.8 125.8 75.0 77.7 30.3 28.7 6.1 5.8 92.5 73.5 140.6 118.5 3638 2935 25.4 24.9 3364.3 1949.7 Y 

PR12/13-763-2 135.0 134.3 69.7 73.3 32.2 30.5 6.3 6.8 99.8 104 150.6 154.4 3776 3955 27.1 26.5 3123.7 3630.4 G 

PR12/13-764-1 139.3 131.8 71.7 72.0 28.8 30.0 6.4 6.7 77.7 84.7 124.6 137.2 3079 3283 25.4 25.8 2704.4 3055 Y 

MN13-7500 146.8 148.3 72.3 72.3 30.3 29.3 5.2 5.9 78.3 74.1 115.1 110.8 2467 2330 31.7 31.5 2450.8 1548d Y 

PR12/13-763-1 123.3 121.8 74.3 74.7 29.7 28.2 5.7 5.8 77.5 83.5 126.6 129.9 3224 3284 24.0 25.4 3029.5 1215.5 G 

MN13-7923 120.0 119.3 75.0 69.3 30.8 28.7 5.0 5.0 56.0 59.9 91.31 97.3 2246 2299 25.1 26.1 2600.3 2271 G 

PR12/13-761 102.5 108.3 74.0 75.0 30.0 30.0 6.5 7.6 88.5 102.0 138.5 155.7 3600 4076 24.6 25.0 3518.9 2508.2 Y 

PR12/13-764-3 135.8 133.3 72.7 72.7 27.3 30.2 6.7 7.0 74.5 88.0 122.5 142.1 2931 3442 25.3 25.5 2648.8 2230.7 Y 

PR12/13-764-2 136.8 136.8 74.0 70.7 30.5 29.7 7.0 7.1 100.0 91.7 156.1 153.5 4010 3496 25.0 26.2 2905.2 2916.1 Y 

MN13-7458 135.8 134.3 70.3 68.0 28.3 30.0 7.1 7.8 81.2 103 120.3 147.9 2785 2949 29.0 35.1 3818.1 2210.6 G 

PR12/13-762-2 113.3 104.3 72.3 75.3 28.8 29.2 6.4 6.8 77.8 82.6 127.1 137.3 3126 3272 24.8 25.3 2926.2 2519 Y 

PR12/13-763-5 125.8 121.8 82.7 75.0 28.7 27.5 5.7 5.8 78.0 71.2 121.7 116 3338 2945 23.4 24.2 3310.5 2640.5 Y 

PR12/13-762-1 119.3 117.5 73.3 75.3 28.5 28.5 5.7 6.2 74.5 58.4 114.6 107.7 2949 2402 25.1 24.3 2503.5 1713.3 Y 

MN13-7499 129.3 121.8 66.7 66 30.8 30.3 5.8 6.1 68.5 85.8 109.7 130.6 2214 2718 30.7 31.6 2881.2 1723.3 Y 

PR12/13-764-4 139.3 142.5 73.7 73.0 29.0 31.3 6.3 6.5 81.0 99.0 130.0 153.6 3165 3846 25.6 25.7 2965.3 3195.7 Y 
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 Genotype  
Plant height 

Days to 

flowering 

Panicle 

length 

Panicle 

width 
Panicle yield Panicle weight       †KN ‡TKW Grain yield §Seedling 

color 
Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt Untrt Trt 

MN13-7838 119.3 113.3 58.0 67.7 25.3 28.2 5.6 5.5 63.5 63.4 100.1 103.4 2166 2100 29.3 30.2 3041.5 4259.8 Y 

MN13-7462 127.5 129.3 68.7 68.7 29.7 29.3 7.3 7.1 101.0 76.6 157.5 137.1 4170 2973 24.3 25.8 4274.9 1855.2 G 

MN13-7498 125.0 125.0 68.3 57.7 25.2 26.3 5.8 6.5 80.0 87.7 114.7 130.4 2431 2679 33.1 32.7 2705.8 2024.0 G 

PR12/13-764-6 117.5 113.3 73.0 74.3 29.5 28.7 6.3 7.0 85.0 80.5 135.7 135.2 3384 3117 25.1 25.5 3215.1 3849.8 Y 

MN13-7463 132.5 131.8 60.3 70.0 34.2 33.2 6.1 6.2 91.9 86.4 138.5 137.7 3890 3569 23.5 24.2 3464.4 2581.6 Y 

Tx430 114.0 - 73.0 - 30.6 - 5.4 - 61.3 - 98.4 - 1698 - 34.6 - 4453.8 - G 

Mean 124.8 123.0 72.0 73.0 29.2 29.4 6.0 6.3 77.2 77.6 120.0 124.0 2922 2884 26.8 27.1 2991.2 2775.1 - 
¶LSD 10.0 12.0 5.9 5.0 3.2 3.5 1.0 1.2 29.8 33.2 22.4 25.4 210.2 202.1 2.5 4.2 665.3 607.5 - 

 
 

†KN = kernel number per panicle; ‡TKW = thousand kernel weight; §SC= Seedling color Y = Yellow G = Green;  
¶LSD = Least significant difference; ns = not significant; Untrt. = without herbicide treatment, Trt. = Herbicide treated. 
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Table B.9. Correlation coefficients between all tested parameters under Experiment II. Correlations for environment 1 and 2 are shown above 

and below diagonal separately.  

 

 
†KN = kernel number per panicle; ‡TKW = thousand kernel weight;  

* and ** statistically significant at P  0.05, and 0.01, respectively. 

 

 

 

 

 

 

Environment 1 

Chlorophyll 

content 

Plant 

height 
Days to 

Flowering 

Panicle 

length 

Panicle 

width 

Panicle 

weight 

Panicle 

yield 
†KN ‡TKW 

Grain 

yield 

Chlorophyll content 0.59** 0.08 -0.13** 0.18** 0.11* 0.12* 0.12* 0.08 0.12* 0.05 

Plant height 0.10 0.45** -0.12** 0.51** 0.27** 0.55** 0.51** 0.39** 0.38** 0.40** 

Days to Flowering -0.25** 0.001 0.44** 0.01 -0.43** -0.36** -0.39** -0.28** -0.35** -0.15* 

Panicle length 0.17* 0.38** 0.09 0.31** 0.39** 0.61** 0.55** 0.55** 0.12 0.13 

Panicle width 0.16* 0.03 -0.11 0.10 0.26** 0.87** 0.81** 0.78** 0.27** 0.14* 

Panicle weight 0.15* 0.18** -0.09 0.40** 0.75** 0.17* 0.95** 0.88** 0.34** 0.19** 

Panicle yield 0.16* 0.17* -0.12 0.37** 0.69** 0.95** 0.18** 0.88** 0.44** 0.20** 
†KN 0.16* 0.13 -0.05 0.37** 0.67** 0.93** 0.92** 0.20** -0.02 0.17* 
‡TKW 0.05 0.13 -0.17* 0.04 0.08 -0.05 0.11 -0.29** 0.46** 0.09 

Grain yield 0.19** -0.03 -0.20** 0.09 0.09 0.25** 0.27** 0.31** 0.05 0.14* 

 Environment 2 
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Table B.10. Mean genotype performance for nutritional parameters in tested ALS resistant 

parental lines under environment 1.  

 

†LSD = Least significant difference.  

 

Genotype Protein% Fat% Starch% Ash% 
Seedling  

Color 

MN07-2118 19.1 4.8 71.6 1.55 Yellow 

PR11/12-851 18.7 4.7 69.9 1.84 Green 

PR12/13-762-2 17.7 4.8 72.2 1.80 Yellow 

MN13-7838 17.7 4.8 69.6 1.74 Yellow 

PR12/13-764-4 17.2 5.0 72.7 1.71 Yellow 

PR11/12-852 17.1 4.8 71.7 1.53 Yellow 

MN07-1916 16.8 4.7 71.8 1.72 Green 

PR11/12-1026 16.8 5.3 74.6 1.59 Green 

MN13-7458 16.8 5.0 75.1 1.55 Green 

PR12/13-764-2 16.3 4.8 73.1 1.53 Yellow 

PR11/12-984 16.2 4.8 72.9 1.72 Yellow 

MN11-10362  16.1 4.8 73.6 1.51 Yellow 

MN13-7923 16.1 5.1 73.3 1.74 Green 

MN13-7439 16.0 5.0 73.3 1.44 Green 

PR11/12-850 16.0 5.0 72.0 1.53 Yellow 

PR12/13-762-1 15.9 4.8 73.3 1.60 Yellow 

MN13-7462 15.7 4.9 72.4 1.59 Green 

MN13-7498 15.6 5.0 75.7 1.43 Green 

PR11/12-873 15.3 5.0 72.4 1.41 Yellow 

MN13-7499 15.3 4.8 74.5 1.60 Yellow 

PR12/13-763-1 15.2 4.8 69.9 1.54 Green 

MN13-7840 15.2 5.1 73.2 1.61 Yellow 

PR12/13-764-1 15.1 4.9 73.6 1.50 Yellow 

PR12/13-761 14.9 4.8 73.4 1.56 Yellow 

PR12/13-763-5 14.8 4.9 70.2 1.61 Yellow 

PR12/13-764-3 14.8 4.9 73.3 1.50 Yellow 

PR12/13-764-6 14.8 5.2 73.5 1.46 Yellow 

MN13-7500 14.8 5.1 76.3 1.31 Yellow 

MN13-7455 14.7 4.6 72.9 1.41 Yellow 

MN13-7450 14.7 4.8 72.0 1.49 Green 

PR12/13-763-3 14.6 5.0 70.1 1.53 Yellow 

MN07-2165 14.4 4.8 74.5 1.37 Yellow 

MN13-7463 14.3 4.9 73.9 1.46 Yellow 

PR12/13-763-4 14.1 4.8 70.7 1.55 Yellow 

PR12/13-763-2 14.0 5.0 70.9 1.50 Green 

PR9/10-4720-1 14.0 5.0 73.8 1.42 Yellow 

Tx430 14.7 1.5 4.7 71.7 Green 

Mean 15.7 4.9 72.7 1.6 - 

LSD 1.27 0.32 1.36 0.1 - 



171 

 

Table B.11. Mean genotype performance for nutritional parameters in tested ALS resistant 

parental lines under environment 2.  

 

           †LSD = Least significant difference.  

Genotype Protein% Fat% Starch% Ash% Seedling color 

PR11/12-851 15.4 5.1 73.2 1.57 Green 

MN13-7838 14.6 4.8 71.1 1.63 Yellow 

MN07-1916 14.4 4.9 73.1 1.60 Green 

PR11/12-852 14.4 5.2 71.7 1.68 Yellow 

MN07-2118 14.3 5.1 74.6 1.48 Yellow 

MN11-10362  13.3 5.3 74.8 1.36 Yellow 

MN13-7923 13.1 5.1 74.6 1.50 Green 

MN13-7499 12.8 5.0 74.5 1.40 Yellow 

PR11/12-873 12.7 4.9 74.0 1.42 Yellow 

PR11/12-1026 12.7 5.2 75.6 1.47 Green 

PR11/12-850 12.7 5.2 73.5 1.52 Yellow 

MN13-7458 12.7 5.3 78.5 1.21 Green 

PR12/13-764-2 12.6 5.2 75.4 1.51 Yellow 

MN13-7500 12.4 5.2 75.8 1.36 Yellow 

MN13-7439 12.4 5.1 74.4 1.46 Green 

PR12/13-763-3 12.1 5.0 73.2 1.44 Yellow 

PR12/13-763-1 12.0 5.0 73.3 1.40 Green 

PR11/12-984 12.0 4.8 74.8 1.52 Yellow 

MN13-7450 12.0 5.2 75.5 1.46 Green 

MN13-7840 12.0 4.9 74.5 1.66 Yellow 

PR12/13-762-2 11.9 5.2 76.0 1.55 Yellow 

MN13-7462 11.9 5.1 75.7 1.46 Green 

PR12/13-764-6 11.8 5.2 75.8 1.40 Yellow 

MN13-7498 11.8 5.3 77.2 1.33 Green 

PR12/13-762-1 11.8 5.2 76.3 1.57 Yellow 

PR12/13-763-4 11.7 5.0 72.9 1.40 Yellow 

PR12/13-763-2 11.7 5.0 74.1 1.42 Green 

PR12/13-764-1 11.6 5.2 75.7 1.42 Yellow 

PR12/13-764-3 11.5 5.2 76.0 1.44 Yellow 

MN07-2165 11.3 5.3 77.4 1.34 Yellow 

PR12/13-763-5 11.2 5.0 73.2 1.41 Yellow 

PR12/13-764-4 11.2 5.3 76.8 1.37 Yellow 

MN13-7455 11.1 5.0 75.1 1.29 Yellow 

PR9/10-4720-1 10.9 5.2 76.1 1.41 Yellow 

PR12/13-761 10.8 5.2 76.7 1.37 Yellow 

MN13-7463 10.7 4.9 75.4 1.36 Yellow 

Tx430 13.1 5.1 74.2 1.62 Green 

Mean 12.3 5.1 74.9 1.5 - 
†LSD 1.18 0.23 1.36 0.16 - 
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Appendix C - Supplemental information for chapter 4 
Table C.1. Mean performance of all hybrid groups for parameters evaluated at adult plant stage under Experiment set I. Results for 

each environment is presented separately.  

Parameter ¶
Env 

Hybrid Group   

ALS × ALS ALS × 

Regular 

Regular × 

ALS 

ACCase × 

ACCase 

ACCase × 

Regular 

Regular × 

ACCase 

Regular × 

Regular 

Checks Mean #
LSD 

Seedling 

chlorophyll 

contnet 

E1 30.3(±0.6) 38.3(±0.5) 37.5(±0.5) - - - - 45.7(±1.3) 37.9 3.6 

E2 36.8(±1.0) 38.5(±0.9) 39.9(±0.9) - - - - 36.9(±1.9) 38.0 3.0 

E3 44.9(±0.7) 45.9(±0.6) 46.0(±0.6) - - - - 46.6(±1.5) 45.9 3.4 

Seedlnig 

height 

E1 17.9(±0.6) 18.6(±0.6) 19.1(±0.6) - - - - 17.3(±0.6) 18.2 ns 

E2 12.3(±0.6) 12.5(±0.5) 12.2(±0.5) - - - - 11.6(±0.8) 12.2 ns 

E3 14.5(±0.6) 14.9(±0.6) 15.4(±0.6) - - - - 16.5(±0.6) 15.3 ns 

Adult plant 

chlorophyll 

contnet 

E1 57.8(±0.9) 59.2(±0.8) 57.1(±0.8) 60.2(±0.8) 59.7(±0.8) 61.8(±0.8) 58.2(±0.8) 59.0(±2.1) 59.2 ns 

E2 59.7(±0.9) 61.2(±0.8) 62.6(±0.8) 60.7(±0.9) 59.8(±0.8) 60.5(±0.8) 61.6(±0.8) 59.7(±1.5) 60.7 ns 

E3 52.6(±0.8) 52.5(±0.7) 52.7(±0.7) 49.9(±0.8) 52.8(±0.7) 52.6(±0.7) 51.6(±0.7) 49.8(±1.5) 51.8 ns 

†Chl. Fluo. 

(Fv/Fm) 

E1 0.73(±0.005) 0.74(±0.005) 0.75(±0.005) 0.79(±0.005) 0.79(±0.005) 0.78(±0.005) 0.77(±0.005) 0.78(±0.01) 0.76 0.01 

E2 0.79(±0.03) 0.77(±0.01) 0.77(±0.01) 0.79(±0.03) 0.77(±0.01) 0.77(±0.01) 0.75(±0.03) 0.76(±0.05) 0.77 0.01 

E3 0.73(±0.005) 0.69(±0.005) 0.73(±0.005) 0.75(±0.005) 0.74(±0.005) 0.74(±0.005) 0.74(±0.005) 0.74(±0.01) 0.73 0.01 

Adult plant 

height 

E1 110.3(±1.4) 117.3(±1.3) 114.0(±1.3) 115.3(±1.4) 109.3(±1.3) 113.5(±1.3) 111.3(±1.3) 105.5(±1.8) 112.1 5.8 

E2 134.0(±1.1) 139.5(±1.0) 144.0(±1.0) 139.3(±1.1) 143.3(±1.0) 136.5(±1.0) 126.3(±1.0) 120.0(±2.2) 135.4 7.2 

E3 121.3(±2.0) 124.8(±1.8) 123.5(±1.8) 131.8(±2.0) 126.0(±1.8) 124.8(±1.8) 120.5(±1.8) 118.8(±1.6) 123.9 5.8 

Days to 

floewring 

E1 64(±1.2) 63(±1.2) 62(±1.2) 61(±1.2) 65(±1.2) 61(±1.2) 68(±1.2) 72(±3.0) 64.5 3.9 

E2 69(±0.8) 67(±0.8) 67(±0.8) 68(±0.8) 66(±0.7) 68(±0.8) 72(±0.8) 75(±2.2) 69.0 2.8 

E3 68(±0.6) 63(±0.5) 63(±0.5) 64(±0.6) 64(±0.5) 64(±0.5) 65(±0.5) 68(±1.6) 64.8 2.3 

Panicle 

length 

  

E1 30.1(±0.5) 30.0(±0.4) 28.2(±0.4) 27.5(±0.5) 28.3(±0.4) 28.9(±0.4) 28.3(±0.4) 26.5(±1.3) 28.4 1.7 

E2 34.5(±0.6) 35.1(±0.6 33.9(±0.6) 32.4(±0.6) 32.6(±0.6) 32.2(±0.6) 32.5(±0.6) 33.5(±1.8) 33.3 2.4 

E3 32.7(±0.5) 32.9(±0.5) 31.9(±0.5) 30.9(±0.5) 32.6(±0.5) 32.9(±0.5) 31.8(±0.5) 31.0(±1.5) 32.1 2.0 

Panicle 

width 

  

E1 5.9(±0.1) 6.1(±0.1) 6.0(±0.1) 6.1(±0.1) 5.8(±0.1) 6.5(±0.1) 5.8(±0.1) 5.9(±0.4) 6.0 0.5 

E2 6.7(±0.2) 7.0(±0.2) 6.2(±0.2) 6.4(±0.2) 6.9(±0.2) 6.5(±0.2) 6.0(±0.2) 6.3(±0.5) 6.5 0.7 

E3 6.2(±0.2) 6.3(±0.2) 6.9(±0.2) 6.2(±0.2) 6.7(±0.2) 7.5(±0.2) 7.4(±0.2) 7.4(±0.5) 6.8 0.7 

Panicle 

weight 

E1 108.7(±6.3) 118.0(±5.8) 107.7(±5.8) 102.6(±6.0) 104(±5.8) 113.9(±5.8) 98.4(±5.8) 106.7(±9.1) 107.5 18.0 

E2 144.3(±6.4) 136.6(±5.9) 107.8(±5.9) 119.8(±6.4) 117.6(±5.8) 108.6(±6.0) 111.2(±5.8) 108.5(±8.6) 119.3 21.7 

E3 117.1(±5.6) 111.8(±5.2) 118.6(±5.2) 112.1(±5.7) 121.8(±5.2) 132.2(±5.2) 111.3(±5.2) 119.5(±8.8) 118.1 19.4 

Panicle 

yield 

 

E1 79.5(±4.7) 87.6(±4.3) 77.5(±4.3) 71.9(±4.4) 78.3(±4.3) 81.2(±4.3) 68.7(±4.3) 74.3(±6.7) 77.4 13.7 

E2 93.4(±5.0) 86.1(±4.6) 63.0(±4.6) 75.9(±5.1) 67.0(±4.6) 65.4(±4.8) 66.1(±4.6) 55.9(±9.1) 71.6 17.0 

E3 68.9(±3.9) 63.0(±3.6) 71.6(±3.6) 60.7(±3.6) 67.8(±3.6) 74.3(±3.6) 65.8(±3.6) 69.9(±9.2) 67.7 12.6 
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†Chl. Fluo. = chlorophyll fluorescence; ‡KN = kernel number per panicle, §TKW = thousand kernel weight; 
¶Env = Environment ; E1 = Environment 1, E2 = Environment 2, E3 = Environment 3 ;   
#LSD = Least Significant difference. 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter ¶
Env 

Hybrid Group   

ALS × ALS ALS × 

Regular 

Regular × 

ALS 

ACCase × 

ACCase 

ACCase × 

Regular 

Regular × 

ACCase 

Regular × 

Regular 
Checks Mean #

LSD 

‡KN 

E1 2852(±150) 3083(±134) 3023(±134) 2700(±139) 3114(±134) 3107(±134) 2560(±134) 2483(±221) 2865 464 

E2 3281(±157) 3216(±146) 2590(±146) 2880(±158) 2714(±144) 2640(±151) 2555(±145) 2242(±205) 2764 541 

E3 2704(±144) 2442(±133) 2849(±133) 2527(±146) 2802(±133) 2933(±133) 2567(±133) 2528(±240) 2669 491 

§TKW 

 

 

E1 27.8(±0.6) 28.5(±0.5) 25.6(±0.5) 26.6(±0.5) 24.9(±0.5) 26(±0.5) 26.9(±0.5) 29.7(±1.4) 27.0 1.9 

E2 28.3(±0.6) 26.5(±0.5) 24.0(±0.5) 26.1(±0.6) 24.6(±0.5) 24.3(±0.5) 25.6(±0.5) 24.6(±1.6) 25.5 2.1 

E3 25.4(±0.3) 25.7(±0.3) 25.2(±0.3) 24.1(±0.3) 24.2(±0.3) 25.4(±0.3) 25.7(±0.3) 27.6(±1.0) 25.4 1.4 

Grain yield 

E1 6614(±508) 6233(±480) 5640(±480) 5210(±508) 5317(±480) 5779(±480) 3966(±480) 4880(±706) 5454 676 

E2 4807(±485) 4723(±460) 4263(±460) 5769(±484) 5714(±460) 4756(±460) 3310(±460) 3453(±818) 4599 636 

E3 3575(±408) 3826(±383) 2956(±383) 3911(±408) 4367(±383) 3553(±383) 4713(±383) 5113(±674) 4001 622 
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Table C.2. Mean performance of all hybrid groups for all parameters evaluated under Experiment set II. Results for each environment 

is presented separately.  

 
†KN = kernel number per panicle, ‡TKW = thousand kernel weight; §Env = Environment, E1 = Environment 1, E2 = Environment 2, 

E3 = Environment 3; ¶LSD = Least Significant difference.  

Parameter §Env 

Hybrid Group 

Mean ¶LSD ALS × 

ACCase 

ACCase × 

ALS 

ALS × 

Regular 

ACCase × 

ACCase 

ACCase × 

Regular 

Regular × 

ACCase 
Checks 

Adult 

plant 

height 

E1 141.1(±0.6) 144.6(±1.6) 143.9(±0.6) 136.7(±1.3) 140.4(±0.9) 141.5(±1.1) 129.2(±1.6) 139.5 5.9 

E2 163.0(±1.3) 168.3(±2.9) 160.4(±1.3) 163.3(±2.4) 158.4(±1.7) 169.7(±2.0) 170.0(±2.9) 164.5 6.5 

E3 140.6(±1.0) 142.1(±3.1) 140.3(±0.9) 139.2(±2.5) 138.0(±1.5) 142.8(±1.9) 128.8(±3.1) 138.8 4.6 

Days to 

flowering 

E1 63(±0.9) 66(±1.8) 64(±0.9) 64(±1.5) 65(±1.1) 65(±1.3) 66.5(±2.4) 64.7 2.9 

E2 60(±0.4) 58(±1.3) 60(±0.4) 59(±1.1) 56(±0.6) 58(±0.8) 62.5(±1.9) 59.1 3.7 

E3 69(±0.4) 72(±1.1) 68(±0.4) 66(±0.9) 69(±0.6 70(±0.7) 69(±1.6) 69.0 2.4 

Panicle 

length 

 

E1 34.6(±0.3) 37.5(±1.1) 35.4(±0.3) 34.5(±0.9) 35.3(±0.5) 36.8(±0.7) 31.5 (±1.5) 35.1 3.7 

E2 32.6(±0.4) 32.2(±1.2) 33.2(±0.4) 31.6(±0.1) 31.9(±0.6) 33.3(±0.7) 30.4(±1.7) 32.2 3.5 

E3 33.3(±0.4) 33.4(±0.4) 34.7(±0.4) 33.4(±1.1) 35.2(±0.6) 34.9(±0.8) 28.5(±1.8) 33.3 2.6 

Panicle 

width 

E1 7.1(±0.1) 6.8(±0.3) 7.0(±0.1) 6.8(±0.2) 6.1(±0.1) 7.3(±0.2) 7.5(±0.4) 6.9 0.7 

E2 6.2(±0.1) 5.9(±0.4) 6.1(±0.1) 5.9(±0.3) 6.7(±0.2) 6.6(±0.2) 6.7(±0.5) 6.3 0.8 

E3 6.4(±0.6) 6.7(±1.8) 7.5(±0.6) 6.5(±1.5) 6.6(±0.9) 6.6(±1.2) 6.4(±0.5) 6.6 0.8 

Panicle 

weigth 

E1 173.7(±3.1) 176.5(±10.3) 176.7(±3.1) 172.9 (±8.4) 169.8(±5.1) 186.3(±6.5) 172.4(±14.1) 175.5 16.5 

E2 101.8(±11.3) 117.1(±27.9) 106.0(±11.2) 109.4(±23.2) 100.7(±15.7) 100.1(±18.6) 108.6(±38.8) 106.3 11.3 

E3 124.1(±3.7) 120.2(±10.1) 126.3(±3.7) 120.7(±8.4) 123.1(±5.4) 131.6(±6.6) 125.7(±14.2) 124.5 16.9 

Panicle 

yield 

E1 116.0(±6.6) 117.1(±21.2) 116.4(±6.5) 110.1(±17.3) 139.7(±10.6) 123.5(±13.5) 133.3 (±30.1) 122.3 12.5 

E2 62.5(±4.7) 70.2(±7.5) 64.3(±4.6) 65.6(±6.6) 59.7(±5.3) 60.3(±5.8) 59.5(±9.8) 63.2 10.4 

E3 78.9 (±3.1) 76.3(±7.6) 79.1(±3.1) 73.7(±6.3) 73.8(±4.2) 83.0(±5.1) 84.2(±10.6) 78.4 15.7 
†KN E1 4109(±103) 4106(±262) 4045(±102) 3831(±217) 3684(±143) 4426(±173) 3625(±365) 3975 441 

E2 2527(±149) 2749 (±259) 2567(±148) 2734(±225) 2354(±172) 2446(±193) 2372(±342) 2535 436 

E3 3372(±162) 3033(±525) 3132(±162) 2937(±428) 2830(±262) 3356 (±332) 3030(±345) 3098 482 
‡TKW E1 28.3(±2.8) 28.6(±8.7) 28.8(±2.7) 28.6(±7.1) 36.3(±0.5) 28.6 (±5.5) 32.2(±2.4) 30.2 3.2 

E2 24.6(±0.4) 25.6(±1.1) 25.0(±0.4) 23.9(±0.8) 24.9(±0.6) 24.4(±0.7) 24.9(±1.4) 24.8 2.9 

E3 24.9(±0.2) 25.2(±0.8) 25.2(±0.2) 25.0(±0.7) 26.0(±0.4) 24.7(±0.5) 27.7(±1.2) 25.5 1.7 

Grain 

yield 

E1 5907(±155) 5935(±473) 6464(±155) 6265(±388) 6777(±241) 5777(±302) 6929(±473) 6293 670 

E2 3433(±200) 3243(±522) 3696(±200) 3747(±432) 3317(±283) 4239(±344) 5451(±522) 3875 644 

E3 7204(±384) 6536(±481) 7326(±382) 8032(±413) 7964(±434) 7634(±448) 8372(±487) 7581 608 
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Table C.3. Mean performance of all measured parameters for hybrid groups evaluated under Experiment set III. Results each 

environment is presented separately.  

 

†KN = kernel number per panicle, ‡TKW = thousand kernel weight; §Env = Environment, E1 = Environment 1, E2 = Environment 2; 

¶LSD = Least significant difference. 

 

 

 

 

 

 

Parameter §Env 

Hybrid Group 

ALS × 

ACCase 

ALS × 

Regular 

ACCase × 

ACCase 

ACCase × 

ALS 

ACCase × 

Regular 

Regular × 

ALS 

Regular × 

ACCase 
Check Mean ¶LSD 

Adult 

plant 

height 

E1 129.8(±0.9) 130.5(±2.4) 128.7(±3.6) 122.2(±2.3) 124.8(±1.9) 120.8(±2.9) 127.5(±2.1) 120.0(±3.6) 125.5 7.7 

E2 140.1(±1.2) 147.8(±3.4) 142.5(±4.5) 139.5(±2.8) 144.8(±2.4) 150.0(±3.7) 140.4(±2.6) 130.6(±4.5) 141.9 8.3 

Days to 

flowering 

E1 59(±0.4) 62(±1.1) 60(±1.5) 63(±1.0) 61(±0.8) 66(±1.2) 64(±0.9) 63(±2.2) 62.3 2.7 

E2 61(±0.5) 62(±0.9) 59(±1.3) 61(±0.9) 60(±0.8) 66 (±1.1) 67 (±0.8) 65(±1.9) 62.6 2.3 

Panicle 

length 

E1 33.9(±0.3) 34.8(±0.9) 33.3(±1.2) 32.7(±0.8) 33.4(±0.6) 34.5(±1.0 34.0(±0.7) 33.1(±1.7) 33.7 2.5 

E2 33.4(±0.8) 33.1(±1.1) 37.3(±1.6) 34.6(±1.2) 33.2(±1.1) 31.0(±1.4) 32.4(±1.1) 30.3(±2.2) 33.2 3.1 

Panicle 

width 

E1 7.0(±0.1) 6.8(±0.2) 6.6(±0.3) 6.6(±0.2) 6.6(±0.2) 6.9(±0.3) 7.1(±0.2) 6.6(±0.5) 6.7 0.6 

E2 6.1(±0.1) 5.9(±0.2) 7.2(±0.4) 6.3(±0.2) 6.0(±0.2) 6.3(±0.3) 6.3(±0.2) 6.6(±0.6) 6.3 0.8 

Panicle 

weight 

E1 167.0(±3.4) 182.8(±9.6) 154.8(±12.7) 157.4(±8.0) 154.3(±6.8) 166.1(±10.4) 185.5(±7.3) 157.5(±18.0) 165.7 28.4 

E2 122.2(±4.1) 119.6(±8.1) 151.9(±12.0) 119.0(±7.9) 116.5(±6.8) 107.0(±9.9) 147.3(±7.2) 135.1(±16.8) 127.3 25.1 

Panicle 

yield 

E1 113.4(±2.6) 123.9(±7.4) 100.1(±9.8) 107.8(±6.2) 101.4(±5.2) 115.7(±8.0) 136.2(±5.6) 106.3(±13.8) 113.1 11.9 

E2 76.5(±3.4) 78.4(±5.6) 97.5(±8.2) 73.4(±5.6) 70.5(±4.9) 67.0(±6.8) 95.3(±5.0) 89.3(±11.2) 80.9 13.7 

†KN 
E1 4034(±83) 3860(±233) 3428(±398) 3848(±195) 3363(±164) 4000(±251) 4528 (±178) 3508 (±436) 3821 314 

E2 3127(±95) 2863(±197) 3724(±293) 2954(±190) 2718(±163) 2763(±241) 3704 (±173) 3346(±410) 3149 354 

‡TKW 
E1 28.1(±0.3) 32.6(±1.0) 29.0(±1.3) 28.3(±0.8) 30.1(±0.7) 28.9(±1.1) 30.1(±0.7) 30.6(±1.9) 29.7 1.9 

E2 24.3(±0.4) 27.7(±0.6) 26.0(±0.9) 24.7(±0.6) 25.7(±0.5) 24.2(±0.7) 25.6(±0.5) 26.5(±1.2) 25.5 1.2 

Grain 

yield 

E1 5560(±241) 6185(±465) 6577(±594) 5098(±402) 6757(±354) 4982(±496) 5974(±375) 5844(±594) 5872 793 

E2 3634(±235) 4370(±387) 3226 (±540) 4064(±372) 4740(±330) 3339(±454) 3411(±348) 4913(±540) 3962 752 
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Table C.4. Pearson correlation coefficients between evaluated yield components for all hybrids tested under Experiment set II and III. 

 

Parameter Days to 

flowering 

Adult plant 

height 

Panicle 

length 

Panicle 

width 

Panicle 

weight 

Panicle 

yield 

†KN ‡TKW Grain yield 

 Experiment set II 

  

Days to 

flowering 
 -0.690** -0.046 0.105 0.045 0.004 -0.081 0.0261 -0.417** 

Adult plant 

height 
-0.312**  0.119* 0.077 0.047 0.039 0.052 -0.052 0.220** 

Panicle 

length 
-0.168* 0.357**  0.119* 0.310** 0.270** 0.404** -0.0182 0.164** 

Panicle 

width 
-0.172* 0.250** 0.315**  0.153** 0.137* 0.146** 0.022 0.102* 

Panicle 

weight 
-0.215** 0.513** 0.419** 0.744**  0.441** 0.483** 0.083 0.170** 

Panicle 

yield 
-0.232** 0.544** 0.371** 0.728** 0.977**  0.485** 0.804** 0.242** 

†KN -0.165* 0.462** 0.422** 0.707** 0.909** 0.908**  -0.006 0.428** 
‡TKW -0.261** 0.427** 0.12481 0.394** 0.605** 0.651** 0.287**  0.086* 

Grain yield -0.487** 0.535** 0.134* 0.345** 0.528** 0.576** 0.419** 0.590**  

  Experiment set III 

  
 

†KN = kernel number per panicle, ‡TKW = thousand kernel weight; * and ** statistically significant at p  0.05 and 0.01, respectively. 
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Table C.5. ANOVA for nutritional and physical grain quality attributes measured on tested sorghum (Sorghum bicolor (L.) Moench) 

hybrids under all three experiments.  

 

Source of 

variation 

 †Nutritional traits ‡Physical traits 

df Protein Fat Starch Ash N P K Ca Mg Fe Zn Cu Mn KH KD 

Experiment I                 

Block 2 0.01 0.09 0.4 0.006 0.002 8.2E-6 7.7E-4 5.0E-6 1.2E-6 9.6 5.1 0.06 1.0E-5 88.6 1.4E-3 

Hybrid group 3 13.8** 0.62** 4.6** 0.05** 0.3** 0.09** 0.01* 5.5E-5** 0.002** 211.6** 87.9** 3.9** 14.5** 373.1** 3.9E-2** 

Error 6 1.34 0.09 0.9 0.007 0.017 7.7E-4 6.8E-4 7.3E-6 1.7E-4 12.2 10.8 0.31 0.3 28.3 8.2E-3 

Experiment II                 

Environment (E) 2 71.4** 4.5** 83.3** 0.5** - - - - - - - - - - - 

Block/E 6 6.0 0.07 6.3 0.03 - - - - - - - - - - - 

Hybrid group 6 1.0 0.13* 1.6 0.008 - - - - - - - - - - - 

HG × E 12 1.4 0.05 1.0 0.01 - - - - - - - - - - - 

Error 36 1.3 0.04 1.6 0.01 - - - - - - - - - - - 

Experiment III      - - - - - - - - - - - 

Environment (E) 1 323.3** 0.1 170.6** 0.06 - - - - - - - - - - - 

Block/E 4 1.8 0.3 0.9 0.01 - - - - - - - - - - - 

Hybrid group  7 1.0 0.1** 6.8** 0.04** - - - - - - - - - - - 

HG × E 7 0.6 0.2 0.7 0.006 - - - - - - - - - - - 

Error 28 0.5 0.1 0.8 0.007 - - - - - - - - - - - 

 
†Nitrogen (N), Phosphorus (P), Potassium (K), Calcium (Ca), Magnesium (Mg), Iron (Fe), Zinc (Zn), Copper (Cu), Manganese (Mn);  
‡Kernel hardness (KH), Kernel diameter (KD); * and ** statistically significant at p  0.05 and 0.01, respectively. 
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Table C.6. Pearson correlation coefficients between the tested nutritional attributes for herbicide 

resistant hybrids tested under Experiment set II and III.  

 

Parameter Protein% Fat% Ash% Starch% 

 Experiment II 

Protein%  -0.28** 0.35** -0.64** 

Fat% -0.26**  -0.48** 0.43** 

Ash% 0.37** -0.28**  -0.38** 

Starch% -0.77** 0.49** -0.39**  

 Experiment III 

 

* and ** statistically significant at p  0.05 and 0.01, respectively. 
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