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Chapter I

INTRODUCTION

The oscillator strength f and photoabsorption cross section of He and H~

1 2
have been the subject of many theoretical and experimental investigations. '

The earlier theoretical calculations carried out to determine the photo-

ionization cross sections of He using hyperspherical coordinate approach

3
were due to Miller and Starace. In this work we calculated f values of

bound-bound transitions of He, and the cross sections of photoionization

of He and photodetachment of its isoelectronic system H" in hyperspher-

ical coordinates. Also, we extend previous length form calculation to an

acceleration form (Appendix B) calculation aiming at judging if hyperspher-

ical wavefunctions in the adiabatic approximation are accurate in certain

regions of configuration space and of energy. The results show that the

disagreement of length form and acceleration form is large with an esti-

mated accuracy of 4-42% in H~ photodetachment for example. The accele-

ration form requires a more accurate wave function, and as such is subjected

to rather large errors. Both the length and acceleration forms revealed

a systematic error for large photoelectron energies. It is believed that

adiabaticity of channels breaks down at high energies.

In fact, for one-electron processes, like the one investigated here,

many theoretical calculations with better results have been carried out.

When employed in hyperspherical fashion the f values and cross sections

obtained seem to have no advantage over other approaches. However the use

of the hyperspherical approach has its own strength. Its particular merit
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rises rather from the physical interpretation that can be given to the tran-

sition pattern. The power of this technique is apparent when double-exci-

tation processes or more difficult situations like under external fields

are attacked. Thus the attempt to achieve a detailed understanding of the

systematic error of the adiabatic approximation and the improvement of the

framework continues to provide an interesting task to hyperspherical co-

ordinates formulation.



Chapter II

REVIEW OF HYPERSPHERICAL COORDINATES METHOD

The non-relativistic Schrodinger equation for two-electron systems is

(atomic units are used throughout)

where r, and r~ are two electrons' distances measured from the nucleus, r,
2

is the distance between the electrons and Z is the nuclear charge. We know

that the S0(4) symmetry holds for an object moving in a potential proportional

to 1/r. For our system the existence of l/r
12

distorts the S0(4) symmetry

of independent particles. But still a regular pattern of energy spacing and

4 5
width was observed in He photoabsorption spectrum. ' It is obvious that

there exists a certain symmetry. Following this pattern, Rydberg series and

their continua were grouped as 'channels'. Since a 'channel' is the mirror

of the existence of certain symmetry, it would be specified by the radial

joint motion of the two electrons approaching the nucleus (dynamical sym-

metry) and by the orbital angular momentum of their joint motion about the

center of mass (geometrical symmetry).

Actually the interaction l/r,
2

does not break the system's geometrical

symmetry group 0(3) generated by the angular momentum L. Also the system's

other 0(3) subgroup, the dynamical symmetry group, referred to as the 'hidden'

symmetry group, is not totally broken. The system still retains some resi-

dual hidden symmetry. The conventional configuration interaction method can-

not show this residual hidden symmetry. The hyperspherical approach intro-

duced by Macek, Fano and Lin was aimed at treating the system in such a
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way that the approximate symmetry property of the system would emerge so

that the quantum numbers associated with each channel come out naturally.

The transformation to hyperspherical coordinates from the usual spherical

coordinates is given by

R = {r\ + r\)
h

(2)

and

a = tg"
1
(ryrg) (3)

Thus spatial coordinates transform from (r, ,r2»8i .So^i » <M t0 (R.a.Sj.egi

^i »<t>2) = (^» n ) > an(^ the kinetic energy of the system

-h v\ - h vjj (4)

becomes

^frit-fr
.

(5)

where A is a grand angular momentum operator (A. 8).

The total Coulomb potential is C/R, where C is an effective nuclear

charge (A. 9). Under this transformation equation (1) becomes

2

c_1
2

+ l^ + h {_a2 + RC) + 2E] * (R,n) = ° (6)

9R R

To eliminate the first order derivatives with respect to R and to a, the

5/2
wave function nR,fl) can be renormalized by a factor R sina cosa. The

renormalized wave function ?(R,ft) satisfies

/?*vdRdn=l (7)

where
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da=da sirtadGjCl^sin^*^^ ( 8 )

and the Schrodinger equation

[-^ + -i - ^W + £ + 2E]*(R,n) = (9)

3IT 4R^ R^

The structure of the equation (9) is similar to the radial equation of

H atom except that [a
2
,C] = a

2
C-Ca

2
f

2
It is worth noticing that the non-commutation of A and C is respons-

2
ible for the broken symmetry. If they commute we would get n degeneracy of

S0(4) symmetry by the two generators l=iy+a and a 'hyper-Lenz' vector de-

fined like

A = \ (fct-fc*)- \
(10)

Of course this is not the case. Since [A
2
,C] f 0, thus [ft,H] f 0, therefore

t is not a constant of motion hence not a Lenz vector. The non-commutation

of A
2

and C also makes ? not totally separable in this coordinate. However,

we can approach the solution by first solving the adiabatic {-^ = 0)

equation

H
R=C0NST % ^ n) = V R) *y (R;n)

(U)

at each value of R, i.e., K is treated as a parameter. The eigenvalues U

are discrete; their corresponding eigenfunctions furnish a complete set {* },

where y is the label of each base *. Performing the expansion of the wave

function \p (where we have dropped the bar) in terms of such a complete set

i»(R,n) zF (R)« (R;n) (12)

V
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We then obtain from the Schrodinger equation (9) a set of coupled equations

(4^*U
ll

(R)+2E)Fw(R)*I
i

W
UM

,(R)F
vu

,(R)-0 (13)

cm fK y

V^^ u
' )+2(vfsV )3-r

(p2W +2'V m (14)

If we set the coupling term W ,
= 0, it admits a wave function of the form

4»

v
(R,^)=F

v
(R)$

v
(R^)^d

(R^) (15)

where the superscript 'ad' stands for 'adiabatic' and functions F (R) and

$ satisfy, respectively, equations

- K (-A
2

+ RC)$ = U (R)4 (16)

and

r2 y v y

.2

{-K - U' (R) + 2E} F (R) = (17)

dR
2 y y

where

U' (R) = U (R) + -X?+ W (R) (18)
y

v
' y

4R
2 yy

v

We see that equation (16) is an adiabatic channel equation (11). The

second equation (17) describes the motion of a pair of two electrons as one

particle in the central potential U*(R). We have therefore first transformed

the original two-electron problem to a problem of one particle moving in a

six-dimensional hyperspace, and then 'quasi-decoupled' the motion into two

parts, namely, that of the one-dimensional radial motion of a single electron

pair and that of the five-dimensional correlated angular motion of the pair

which depends on the hyperradius R parametrically.
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The solution F(R) of equation (17) is a typical one-particle-type

radial function. $ is, on the other hand, a two-particle function which is

properly symmetrized under interchange of electrons one and two:

• (1,2) = (1±P
12 ) £ 9, £ U

U.2> \ i
^ 2) (19)

In Equation (19), P,- is the permutation operator, 1^,1^ are chosen to

give L and -n symmetry, and the singlet and triplet states are associated

with the inclusion of the plus or minus sign, respectively. g
£ %

are

functions of a, which change gradually with R, and the function Y^
% LM

are

the usual coupled spherical harmonics.

\xp (1 ' z > " £ »
ift

(D V2

<2) 'Wftl 1-* (20)

The function $ is the channel function for channel y where y =

^
7

(N,(K,T)
A
,L,S,tt) a collective quantum number as given by Lin. From a

qiven channel potential U (R) the radial function F(R) which specifies
J

y y

each state in the Rydberg series or in the continuum is obtained from (17).

A few more remarks about this method are desirable before ending this

section. Firstly, we have mentioned at the beginning that the hyperspherical

approach would show the residual S0(4) symmetry of the system. We know that

the central potential V(r) leads to invariance of L; in the mean time, if V(r)

also has 1/r form, this would lead to another dynamical invariance, the

invariance of Lenz vector. Note that the dynamical quantum numbers (K,T)

assigned to a channel suggested by Lin are not exact quantum numbers.

Secondly, our system has been treated within the adiabatic approxima-



tion, W ,
= 0. This is equivalent to

h = ^ = F
Ey

(R)% (R;n) (21)

E = E (22)

Here the adiabatic channel function $ is the zeroth order eigenfunction

of the Hamiltonian H; adiabatic channel energy E^ is the zeroth order

approximation to the exact energy. We see that the interaction between the

states can appear explicitly only through the coupling terms W ,. Keeping

in mind the usual configuration interaction picture, one might raise a ques-

tion: Since there are no 'interchannel interactions', say, F (E) and F^(E'),

if we ignore the 'interchannel interaction' W , is this adiabatic approxi-
3 yy

mation (W ,
= 0) identical to an independent particle approximation? The

yy

answer is no, because the hyperspherical framework is based on a fundamental-

ly different picture. We seek to describe the motion of electrons in terms

of the coupled coordinates (R,a) which emphasize directly the correlation

between the two electrons. Thus almost all the interactions between the

two electrons are already included in the calculations of $ . Hence the treat-

ment rests on small deviation of the adiabatic solution from the exact one.

The magnitude of the deviation would be seen by examining the energy, if

bound, or the phaseshift, if unbound, obtained from the adiabatic calcula-

tion. Energies and phase shifts calculated by approximate wave functions

contain only errors of second order in the error in the wave function.

Therefore, even an inaccurate wave function can produce a reasonably good

energy or phase shift. On the other hand the error in the oscillator

strength is of the first order in the error in the wave function. Thus,

oscillator-strength calculations will provide a much more stringent test of



the wave function.

Traditionally, attempts to judge the accuracy of computed f values have

resorted to the argument among the agreement of 'length', 'velocity' and

'acceleration' forms of f values (Appendix B). These various forms of the

f would be equivalent if the exact wave functions were employed, but will

generally disagree when computed with approximate wave functions. We can

employ this criterion to judge if hyperspherical wave functions are accurate,

or at least if they are adequate in the regions of configuration space

(r
1
,r

2
) which are important for the oscillator strength. We know that an

approximate wave function chosen from an energy-minimization may be consider-

ably different from the true function.
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Chapter III

OSCILLATOR STRENGTH

This section is devoted to the calculation of the oscillator strength f

and photoabsorption cross section.

f is a quantum mechanical quantity derived from the classical model of

polarizability of atoms. It is introduced customarily in discussions of

transition intensities. For a state-to-state transition it is defined as

(a.u.

)

where f is the initial state and v. is the final state, w
k

is the energy

difference between the two states. For a single-electron system f. =

f . i„i_i, where m and m' refer to a given choice of z-axis. In practice,
rum,n % m

the measurement of transition intensity would deal with transitions to all

final states of equal energy E. and different orientations. Moreover, the

atoms in the initial states in general have random orientation in which case

averaging of f over all initial states of different orientations is required.

Thus it is convenient to define an average oscillator strength by averaging

over degenerate initial states \\> and sum over the orientation of final

states 4'

k
:

\i - irAr X
M

f
ka W

a M
k'
M
a

where R and a denote all the quantum numbers needed to define a state other

than magnetic quantum number M. For single-electron systems it is
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fnV,ru ~ 2i+l . m
fnVm' ,n«n (25)

m ,m

Equation (26) can be rewritten as

2w^ l<¥.lE2.1* >l
2 (26)

a

fi«-?r!rl<*kl"ilV'

In the ionization processes, that is, for states k in the continuous spectrum,

the wave function ?. is chosen to be 'energy normalized' and oscillator

strength (24) is represented by df/dE.

.

The expression for f given in (26) is called the length form. Alterna-

tive expressions of f exist, in terms of matrix elements of the electon

velocity, acceleration, etc.

-\<\\ * (P
z )i!vl

2
"

(27)
vel iL^r U|{a ,

1

<fJ £ T-l* >|
2

(28)
ace 2L +1 3 ' k 1

. 3 1 a
a w

ka
i r

i

These expressions are derived from (26) by means of operator transformation

in Appendix B.

The main purpose of this thesis is to calculate the oscillator strength

for bound-bound transitions of He, and the photoionization and the photo-

detachment cross sections of He and H~, respectively, using wave functions

calculated in hyperspherical coordinates. In terms of the length form and

the wave functions given by (21),

f
len

= 2w
l

<%l 2
l

+
hK'>\

Z

= 4.|<fJ Zl lV >|
2

(29)

4co|/dR F _(k) R F , c ,(R)/dfl<(. sinaY in (l)<j>

4a)|<F (R)|RD
£

,|F ,
,(R)>|

2

2
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where F and F , are radial wave functions of the initial and final states,

y v

respectively, with energy difference E^equal to the photon energy u.

D ,(R) is 'channel dipole moment density'
yy

nJM
.-(*,,ii1n.T10

(l)|*
1I

.) < 3 °>

where the symbol denotes integration over all the angles 8, Y
1Q

(1) is

the usual spherical harmonic function with angular coordinates of electron 1

The explicit expression of D is given in Appendix B. The quantity D

respresents the density of the 'angular' part of the dipole matrix element

as a function of the size R of the system.

Similarly, working in the acceleration form we write f as

f =2 -
|
Z +

Z
| |2

ace 3 ' y 1 3 3 ' y '

« rj r
2 ( 31 )

^ \<K.rW\K t^K •?•(*>>
2

QJ

I l

<r
yE

vrNy
'

R
2 yy-'y'E

where Z is the nuclear charge and

C-^S^M (32)

^ K sin a

is the channel dipole moment density in acceleration form.

Oscillator strength in velocity form is not attempted in this work

because it requires the derivative of the wave functions which makes the

calculation much too complicated.

In general, the extent of departure of the approximate wave function

from an exact one in different configuration space depends on the nature

of the approximate wave function. Thus when we employ different f forms the

error of the wave function contributes to the f-value calculations differently.

Comparing with the two forms in the hyperspherical coordinate the length form
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would be less prone to error. The reason is as follows.

At the boundary R=0 and at a=0, and a=ir/2 the wave function density is

required to be zero. Near these boundaries the wave function calculated

is not accurate because of its yery small amplitude at these regions. Ac-

cording to (31), the acceleration form puts a heavier weight at these inac-

curate regions. The factor 1/R in the radial integral as well as the

factor —=•*- in the angular integral introduced removable singularities at

sin a

R=0 and a=0. Thus the exact amplitudes of ?(R,fl) near boundaries become

very important. On the other hand, the length form has factors R and since

which leads to a third-order zero at boundaries. The inaccuracy of wave

functions at small-R and small-a regions becomes less important. Since

acceleration form picks up the 'wrong' regions of ^(R.a) we expect that

the result of f value from the acceleration form calculation would be less

reliable.

There is a great advantage of this method. The oscillator strengths

were calculated by isolating D , from the whole transition moment. D ,

deserves it name 'channel dipole moment density' because it is character-

istic of the entire Rydberg series, not of a particular state- to- state

transition. We have already seen that all the important properties of

electron correlation are contained in the channel function *. The angular

integral part of the f calculation, D ,, is therefore of great importance

in discussing radiative transitions. The functions D ,(R) offer a rough

representation of the oscillator strength distribution among the transi-

tions between different channels. It will exhibit whether the transition

from one channel to another is favored or not. On the other hand, the

information of f value for each particular transition line is contained in

the overlap of F (R) and F ,(R) with the weight of D ,(R). These energy-
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dependent radial integrals determine the relative oscillator strengths for

states within the channel which are always non-zero as long as D
,

is

non-zero. On the other hand, the angular integrals are only non-zero for

particular symmetry changes of the initial and the final channels, giving

rise to selection rules. In this paper, we consider the manifold of dipole

transitions from S states in the photon energy region where only single

excitation channels (channels corresponding to the first ionization limit)

1 e
are energetically accessible. Thus the non-zero D , is from S channel

to P° channel. However, if we extend photon energy up to open double-

excitation channels, N=2 for instance, there are three channels which have

P° symmetry. In the usual independent particle classification these chan-

nels correspond to 2snp P°, 2pns P° and 2pnd P°. The experimental spectrum

5 showed that one Rydberg series had strong intensity and one Rydberg series

was very weak. The third possible series was not observed. All these chan-

nels have identical L, S, and i\ and thus the selection rules for L, S, and -n-

are not enough. It would be desirable to see if the relative magnitude of

D , among these channels can explain these experimental results. Such results

would also give approximate selection rules for radiative transitions in terms

of dynamical quantum numbers. In our single excitation case here, such dy-

namical information will not show. Actually, using hyperspherical wave

functions to calculate f value for single excitation is to test the method

aiming at future further work in double excitations.

Another advantage is that when we deal with the calculations including

many energy states, hyperspherical wave functions have offered a much simpler

method which involves the major part of the calculation only once for all

energies. The rest of the calculation for each transition is very simple.
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Chapter IV

NUMERICAL CALCULATIONS

In this section, we discuss the computational procedure for calculating

oscillator strengths and photoabsorption cross sections using the wave

functions calculated in hyperspherical coordinates. First we solved Eq. 16.

The adiabatic Hamiltonian H(R = const.) was formed and diagonalized

in the basis functions of hyperspherical harmonics F„ . (a) which are the

2
eigenfunctions of the A operator (Appendix A, Eq. 23), and analytical chan-

q
nel functions , at several values of R from ZR=0.5 to ZR=14. The basis

set of as small as four or six functions for each of the three U^fcg) pairs

were compbined to give three partial channel functions g . The three

12
1

pairs were (ss), (pp), and (dd) for S
e

and (sp), (pd), and (df) for P .

Thus the channel functions $ of the form Eq. (B.8) for S
e

and Eq. (B.9) for

P° were constructed and the channel potentials (adiabatic potential) were

obtained. As an example of the structures of channel functions $ , several

partial channel functions g. . of H" are given in Fig. 1 for small R,

1 2^

intermediate R, and large R. Comparing these three graphs we could see

that at small R g has large amplitude around a-vjr/4, i.e., the two electrons

tend to be at equal distances from the nucleus when the size of the system

is small; at large R, g is squeezed into the boundary region of
1 7^

a(a=0 or a=ir/2) from the middle region corresponding to that one electron

is close to the nucleus and the other far away from it. The evolution of

g with R mirrors how the configuration of the system {r-,,r~) changes

as the size of the system R changes from the strongly correlated region to
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Figure 1: g-functions for H" at R=0.5, 6.0, and 12 a.u.

g of ground channel

g f excited P channel
1 O



g- function H" 17

R = 0.5 an

a (rad)
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the independent particle region. In the graph we could notice that after R

greater than 6, g began to have a node. These numerical errors came

1 ?^

from the 2snp analytical channel function which was used as one of the basis

functions in the calculations of P° channel. It becomes non-negligible as

R becomes large and it has a node and a small negative tail.

In Fig. 2 the lowest potential curve for S
e

and for P° are shown for

He. The corresponding curves are shown for H~ in Fig. 3. They are similar

to those displayed in Fig. 2 except that the P° curve is repulsive. Within

the adiabatic approximation, the bound state was well as continuum state

wave functions F(R) were calculated by solving Eq. (17). The resulting

lowest bound state radial wave functions F(R) of He are shown in Fig. 4 for

1
S
e

and Fig. 5 for
1
P°. We could see that the nodal structure is the same

as that of hydrogen radial wave function. For continuum state we normalize

the wave functions according to

f F , , (R) F (R) dR =6 , <5(e-e') (33)

The lowest bound state energies of He obtained using the present approach

are compared in Table I with the energies obtained by Pekeris et al . In

the latter calculation extensive variational methods with a few hundred

parameters was used. So far we have seen that the energy levels calculated

by hyperspherical wave functions agree well with those obtained by the

large-scale calculations. For H", there is only one bound state. This

ground state energy calculated in hyperspherical coordinates is -1.0508 Ry,

with an accuracy of 0.44% compared with experimentally determined -1.0555

Ry. These bound-state energies of He and H~ are also indicated in Fig. 2

and Fig. 3, respectively. Following the usual independent particle nota-

tion, these levels are labelled by (n^,, n^^u).
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Figure 2: The lowest S
6

and P° adiabatic potential curves of

the He. Energies calculated using these potentials

are shown in horizontal lines.
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Figure 3: The lowest S
e

and P° adiabatic potential curves of H"
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Figure 4: Radial wave functions F _ for the three lowest states

of the ground channel of He.
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Figure 5: Radial wave functions for the two lowest states of

the P° channel of He.



26

uoijounj 8A0M IDipDy



27

Having obtained channel functions $ and • , we calculated the channel

dipole moment density D (R) in both length and acceleration forms for He

and H~. The asymptotic values of D (R) at large R for both length and

acceleration forms were calculated using a single analytical basis function

with Uj.JuHO.O) for
1
S
e

and U^i^HO,!) for P°, since couplings with

other (a,,^) pairs are negligible in this limit. The asymptotic values of

D (R) are identical for He and H" if reduced length scale ZR is used. The
sp

results of the length and acceleration forms for D (R) are shown in Fig. 6.
sp

From the figure, we notice that the length form of D(R) is almost independent

of R, while that in acceleration form it varies significantly with R. The

final results of length and acceleration formulations for the photoionization

12 13
(or photodetachment) of He and H are compared with experiment ' in

Figures 7 and 8, respectively.

From the results exhibited in the figures of cross sections, we notice

that the disagreement between length and acceleration forms in continuum

transitions are large. It is about 4-42% in the case of H~. The result

for He is better. This is because H is very weakly bound, and an elaborate

channel wave function $ is necessary to reproduce well the potential U (R)

and hence F(R). In Fig. 9 two ground radial wave functions of He and H~ are

plotted together in scaled size ZR to show that the wave function of H" is

^ery diffuse. Also, our result shows that the cross section at higher

energy becomes too small for both length and acceleration forms.

Our results of cross section both for He and H~ are in agreement with

the recent calculations done by Park and Starace (private communication).

The f values of He photoexcitation are presented in Table II. From

Table II we note that in the length form the f values for the excitation

from ground state are reasonably good. But those values become inaccurate
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Figure 6: The channel dipole moment densities D , of H and

He as a function of hyperradius R in both acceleration

form and length form.
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Figure 7: The photoionization cross section of He. The solid

line is the result of an acceleration form calculation.

The dashed line is the length form, and the dotted

12
line is the experimental result by J. Samson.

30
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Figure 8: The photodetachment cross section of H calculated

using the adiabatic approximation in both length

form and acceleration form, compared with the

13
experimental results of Smith and Burch.
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Figure 9: The comparison of ground state radial wave functions

of H~ and He. The radial wave functions are plotted

against the hyperradius R to a charge-reduced scale.
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as initial state energy increases. The f values calculated from acceleration

form are not as good as those from length form and f values for the exci-

tation from excited initial state are not displayed in the table because

the errors of the results exceed the acceptable scale. The reason for

these bad results is that the —=-«- factor (Eq. 31) makes the f calculation^ 1 5,
very sensitive when aE is very small (e.g. for 3s-3p, ^ = 9x10 ).

(AEr
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Chapter V

DISCUSSION

In this section we discuss the merits and problems of calculating

oscillator strengths using hyperspherical coordinates. This discussion will

be divided into two parts: (1) the difference of oscillator strength in

length form and in acceleration form; and (2) the limitation of adiabatic

approximation employed in the present study.

1. Length Form vs. Acceleration Form

According to the derivation of Appendix B, the oscillator strength can be

calculated using different forms. If exact wave functions are used, the result

calculated from the acceleration form should agree with that obtained from

19
using the length form. When working in hyperspherical coordinates the

acceleration form has disadvantages. In the acceleration form, Eq. (31), a

and R dependence of the operator are inverse square power. This coordinate

dependence puts more weight on small-a and small-R regions where both *( S)

and *( P) are relatively inaccurate because of their very small amplitudes.

In the small-R region radial function F(R) is inadequate. To represent

this region more accurately, a Fock expansion (Appendix A) is necessary. In

the small-a region the channel function $ again does not represent the wave

function very well. In this region the configuration of the system corres-

ponds to that one electron is near the nucleus while the other one is far away,

the correlation effect is essentially zero, so that the advantage of hyper-

spherical wave functions is lost. On the other hand, the small-a and small-R

regions are not very important for the length form. Thus we tend to conclude
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that the result obtained from the acceleration form is less reliable. And

the disagreement between the two forms basically is not because of the poor

quality of the whole wave function employed. Rather, it is due to the poor

quality of the wave function in a limited range?

2. The Limitation of Adiabatic Approximation

In this work, we have used the adiabatic approximation in calculating

both initial and final state wave functions. Our treatment rests on the

adiabaticity of the two-electron system. The quasi-separability of R and

Q assumes that the true wave function is predominantly adiabatic wave

function. That is, the expansion of $ in the base of {$ }, Eq. (12), would be

M Mi MM M M i^ MM M \^l

where v is the leading term and the off-diagonal terms F ,
(R) are small

M MM

functions in the sense that |F , I is small.

The adiabatic approximation is to neglect all the F ,(R). In general,

the adiabaticity of .the system becomes less valid as the energy of the system

increases. In our work we see that from Figs. 7 and 8 the cross section at

higher energy becomes too small for both length and acceleration forms. Also,

the f values shown in Table II become less accurate rapidly as initial state

energy increases. The reason is that the quantum defects and the phase shifts

calculated under our approximation are getting smaller monotonically as

the energy increases. The adiabatic approximation is responsible for

this systematic error. These can be attributed to the inadequacy of adia-

batic approximation at higher energies. To get more accurate results

systematic improvement of wave functions for states of high excitation energy

is needed. To this end, one can go beyond the adiabatic approximation by
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including more terms in the wave function expansion.

The neglect of all the F.,,.(R), or all the other channels $
u , is

[n princi[

13

equivalent to setting the channel couplings W ,
equal to zero. In principle,

F ,(R) can be taken into account by solving the set of coupled equations.
w
However, the previous work of Lin in calculatin e-H scattering phase shifts

using coupled equations shows that the rate of convergence is very slow.

The same conclusion has been found by Starace in He photoabsorption cross

sections!
6

Thus, there could be a limitation in the hyperspherical method.

The limitation stems from the diverging number of channels required in the

13
coupled equations at higher energies. Therefore, in this work we did not

try to improve our results along this line of approach.

The reason for the slow convergence of the number of channels required

is that at high E, or more directly, large R the system goes to the frag-

mentation limit. In this limit the adiabatic channel function as a complete

set {$ } is not a suitable basis for the total wave function. In other words,
y

in this limit the physically appropriate coordinates are the independent

particle coordinates. It is thus better to write wave functions in terms of

the independent particle approximation. On the other hand, in the small -R

region where the two electrons are strongly correlated, the hyperspherical

coordinates have an advantage over the independent particle coordinates.

Thus it would be desirable to employ hyperspherical coordinates in the

internal region (small R) and match the solution to the external region

(large R) where the wave functions are expressed in independent particle

coordinates. So far this method has not been implemented. Also, there is

a 'post-adiabatic' method developed by Klar and Fano which in principle

can overcome the difficulty even though mathematically not simple. Develop-
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merits in the field are still going on, and the wider applicability of the

method is still to be proved.

3. Future Direction

Because of the importance of oscillator strength data in the laboratory

plasma physics and in stellar astronomy, many theoretical methods have been

developed to calculate f values. In this work we calculated oscillator

strength and photoabsorption cross sections using hyperspherical coordinates.

However, accurate determination of these data is not our present goal as we

used only first order wave functions in the adiabation approximation. In

spite of the fact that the results are not very favorable, the method does

provide deeper insight into the correlations of two electrons. For the

study of transitions to doubly excited states, the present method would

become much more appealing than other methods. Since there are many chan-

nels converging to a given, threshold for doubly excited states, with the

help of the classification scheme for these states, this method can identify

which channels are important for photoabsorption. The dipole matrix density

given in Eq. (30) should provide such information. Investigation of this

type, both experimental and theoretical, are not yet available.
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APPENDIX A

I. Schrodinger Equation

The nonrelativistic Schrodinger equation for two-electron systems is

In hyperspherical coordinates (R,a) defined by (see Fig. A.l)

r, = Rsina (2)

r
2

= Rcosa (3)

where R is the mean-square radius of the two electrons, and a is the

measure of the ratio of the magnitudes r, and r
2

- From

3 3R 3 3o_ 3_ . 3 COSa 3 (a\

3r
x

" 3rT 3R 3r
x

3a
Sina

3R R 3a
K

'

8 - r-oc 9 ' Sina 3 /c\^-- COSa^--^-— (5)

the Schrodinger equation in hyperspherical coordinates takes the form

2

(-\ + £§£ - U (R,n)+ 2E)*(R,o) =0 (6)

3 R

where

u = 4 u - Rc) (?)

R^

is the effective potential operator

where
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Figure Al: Coordinate system for a 2-electron system.
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2 2

A 2 = . (
3 + ctg 2a f-)

+ —^r- +r^ "* 3a' -2 2
3a Sin a COS a

I
2

I
2

I- sin
2
acos

2
a |- + -X- + —t- (8)

Sin aCOS a
3a 9<* Sin a COS a

and

C = R(2Z + 2Z.^_)
r
l

r
2

r
12

= -2^ + -^ 2 (9)
Sina COSa /

-, _j_o „„,- Q >*£(l-sinmcosB, 2/

is the effective Coulomb charge.

We can eliminate the first-order derivative of R by introducing a

wave function

f = R
5/h (10)

Thus wave function y satisfies the equation

2

(-^- U(R,ft) +
fa

+ 2EMR.G) = (11)

9R

The Schrodinger equation is not completely separable in these coordinates

2
because the potential operator U depends upon both R and n, and A does

not commute with C.

The wave function ¥ can be expanded in terms of the eigenfunctions of

U at each R value

y = z F (R) * (R;n) (12)

v v
y

where $ are eigenfunctions of potential operator U with eigenvalues U

U(R,n)4> (R;n) = U (R)<j> (R;n) (13)
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and F (R) is the expansion coefficient.

Equation (13) is also the adiabatic representation of the original

Schrodinger equation, namely

H
R=const*y

(R^ = -y«0*
y
<"*> (14)

Substituting (12) to (11), premulti plying by $ , and integrating over

Q leads to coupled equations

H 2 i

{5-y - U (R) + -^+ 2E} F +E , W ,(R) F, - (15)

dR
2 y

V

4R
2 V V W M

where

* <»V +
""mm- ar

(16)

The problem of solving the Schrodinger equation for two electrons

therefore reduces to that of solving the angular equation (13) at each

R and the radial one-dimensional equation (15). In a practical numerical

integration of equation (15), we can neglect the coupling term W ,. Then

the radial equation (15) is simply

A
{2-k - U' (R) + 2E} F (R) = (17)

dR^ y p

where

U' (R) - U (R) - -3L- W (R)
(18a)

y y
4 R

<: w

and the diagonal term of W , is
yy

W = P
2

(18b)
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2
since $ is real P =0. Also P is positive definite. Thus this

term would always provide a positive energy shift. Back to equation (11)

for the solution of U (R), the first-order derivative with respect to a

can be eliminated. Equation (13) is equivalent to

2 2
2 t t

{- -K + —K- + *~ - RC} K sinacosa *(R*,fl) = (19)

3a Sin a COS a R

In what follows we shall define sinacosa $ to be channel function $.

This equation can be solved numerically by the basis sets of eigenfunctions

of the asymptotic operator U.

II. The Asymptotic Behavior of $ and U

In the two limit R+0 and R-**> the channel functions $ are well known

and they become the eigenfunctions of I-,, £
2

» as tne effect of l/r,
2

disappears.

(a) Small R Region

At R->0 equation (9) becomes

2

R<

\ <t>
= U

<J> (20)

2 2
Thus U approaches the eigenvalues of A /R

U(R) - -K U, + l
?
+ 2m + 2)

2
+ (i) (21)

y R+0 2R^
X L y K

which represents a repulsive barrier arising from the centrifugal kinetic

2
energy in a. The channel function $ approaches the eigenfucntion of A

v A [V°» v 2
LH rri"2)] <22)

where
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£,+1 A 9+l 5 2 , ,

f = N (sina)
i

(cosa)
c

F(-m,£
1
+2.

2
+2m+2|£

1
+ -|| cos a) (23)

The function F is proportional to a Jacobi polynomial of degree of m in

? 2
cos a. N is a normalization constant. The operator A and its engen-

vlaues and eigenfunctions have been discussed in detail by Morse and

Feshbach.

(b) Large R Region

The limit R-*» corresponds to either r,-* or v^™. Accordingly as R+«

one electron remains in its hydrogenic orbital at energy E , the other
Vi

electron retains an angular momentum i^ and energy E-E
n %

for its motion

in R. Thus the asymptotic channel function is

„ * 'iVi'V'^ (24)

R-*»,a-HJ 1 1 c

When putting this asymptotic channel function in hyperspherical

coordinates, the analytical channel function is obtained.
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APPENDIX B

The concept of oscillator strength stems from the late 19th century

model of the electrical and optical behavior of matter.

A dilute gas containing N atoms per unit volume and f oscillators of

frequency u per atom, under the influence of an electric field E
Q

exp-itot,

has the susceptibility

2 f

xe
((o) = Na(o) = N J-

E -j
1

(1)

S u - co - iy^cj

The classical model was not developed sufficiently to determine the

characteristic (spectral) frequencies w and the corresponding numbers of

electrons f . However, quantum mechanics defines the to and f in terms

of the eigenvalues and eigenfunctions of the Schrodinger equations, but

that can only be accomplished approximately for many-electron atoms.

The f is defined in quantum mechanics as

2mw.

where

(z) = <ii I ZZ.U > oj = co - cj (3)v
's s 1

. 1
' S S

We shall assume throughout that average over the orientations of

* and f has in fact been performed.

The formulation above is called the length form for f . It can also

be expressed in other forms. Noting that
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«
s
(z

s
)-C<*

s
|H|#

s
>-<* |H|t >J<* s

|z|* >

(A)
=<*

s
|[H,z]v» >

V ;

= -i«l> |4tU >

- -'-( p
z )s

Substitutions of (4) in (2) yields

fs
= .21U)..l_|(Pz

)
s
|2 (5)

This is called the velocity form. A further transformation gives

.
s
(p

z
)
s

= «g[H,p
z
]|V

= -i(a
z

)
s

(6)

= i(^)

where

a =ra fl-i 3V
Z , z, 3z , 3Z,

and a is the z component of the acceleration of the ith electron and V
z

i

is the potential of the system hence -3V/9z. is the z component of the

force applied to the ith electron by the nucleus and the other electrons,

Substitution of (6) in the velocity form (5) yields

w
s

w
s

This is called acceleration form.

Now we shall study the formulations of oscillator strength in hyper-

spherical coordinates. Using equation (19) in the text for the channel
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function $ and writing out the initial state 4>

s
and final state a in full

we have

*
S

=
jgu (Rifl)W r

i'
r
2} (8)

with L = 0,

V^^N^^'i^'"' 1^^- 11

£
1
+^

2
-L'+s'

V2
(Rs *^ )ViL

'

M,(^2)

=— £ 9 2 ,
(RicOY

, . i'M'
(r

l'
r
2
)+g££ (R;I"a)

Y
£
2

Jl

1
L

, M
,(r

l'
r
2

)

with L'=l.

Working in the length form we write f as

2

P

2

where

D
yy

=/dn*
y
.s1noY

10
(l)^

-~ Yj ^ii (a)|sina|g (a)>
n ifai

£
1
&
2

u

(9)

f = 2a J |<*
s
|z

1
+Z

2
|¥

p
>

= 4u|/dR F
E
(R) R F ,

E
,(R)/dn<|)

s
sina^jLY

10
(r

1
)<|. |

2

(1Q)

= 4 W|<F F |R D , |F , P ,
1 yE ' yy ' y E

<V2L,M
' ( " 1, " 2)|^ Yl ° (i:i)|Y^LM(,:i,

"2)>

+<V 2

(^'a)|sina|9^ (a)><V2L,M,(
" 1, " 2)^ Yl °

( " l)l

IW ?1' ?2»>
(11)
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With the Wigner-Eckart theorem, we can calculate the matrix element of

such a tensor operator Y
1Q

in the D , .

it- h Jh 1 M ri L ' l
2

= ^<L'IIY
1
IIL>*(-1)

2
[(2^+l)(2£+l)r^o o oJ ( L I 1 %£

l
2r,„. ^M^^hl1

!
l l)h l

2\
=(-i)'[(2V i)(2*+i)r2\s 00jjS, jjv (12)

where we use the double bar matrix element as

^'IIY^U =(-D
L ' [i

7
(2K+l)(2L'+l)(2L+l)f2 [^ \ [j

(13)

With interchange i~ and i, we can get the second matrix element in the

D ,

y y

^iL'M'^l'^I^YlO^l^WM^l'^^

=(-1)
1[(^l)(2£+l)]^(

0J| \ J \; (14)
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TABLE I

Comparison of energies for several states of He and H~ computed by

this work and Pekeris et al. Energies are in atomic units,

Atom State
Energy

Eigenvalue % Error Reference

He 1
l
S -2.8951 0.3 -2.9037

2
l
s -2.1400 0.28 -2.1460

3
l
s -2.0592 0.1 -2.0613

2
l
p -2.1214 0.1 -2.1238

3
l
p -2.0540 0.05 -2.0551

4 *p -2.0301 0.02 -2.0311

H" 1
l
s -0.5254 0.4 -0.5275
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TABLE II

Comparison of f values in length and acceleration forms from this work

and from Pekeris et al . for various transitions in He.

Transition
f in

Len. Form % Error

f

Ace.

0.

in

Form

,334

% Error

21

f(Pekeris)

1
1
S-2

1
P 0.288 4 0.276

3
X
P 0.074 1 0.,084 15 0.073

4
lp

0.030 -- 0,.034 13.3 0.030

2
1
S-2

1
P 0.336 10.6 0.376

3*P 0.176 16.2 0.151

4
lp

0.055 12.2 0.049

3
1
S-2

1
P -0.131 9.6 -0.145

3
X
P 0.561 10.4 0.626

4P 0.171 18.7 0.144
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ABSTRACT

On the basis of adiabatic approximation in hyperspherical framework

the oscillator strength f and the photo-absorption cross sections of

2-electron systems, He and H", are calculated. In particular both the

length form and acceleration form of oscillator strength are computed.

The adiabatic wave functions employed in the f calculations and the dis-

agreement between the results calculated from the two f forms are discussed

qualitatively. Some details on comparison with experimental data and other

theoretical results are given.
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