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NOMENCLATURE

A Cross-section area of the channel

A e Area of the electrodes

Aw Area of the channel walls

3 Magnetic flux density

c Velocity of light

Cp Specific heat at constant pressure

C v Specific heat at constant volume

D Electric flux density (electric displacement}

d Distance between electrodes

S Electric field intensity

e Electron charge

f Friction coefficient

Collision frequency of electron

H Magnetic field intensity

H
s Total enthalpy influx

h Enthalpy per unit mass

hs Stagnation enthalpy per unit mass

I Electric current

i Electric current in the magnetizing coil

J Electric current density

K Thermal conductivity

k Boltzrnann's constant

Ratio of specific heat

I Mean length of the magnetizing coil

Mean free oath
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L Length of the generator

ra Mass

M Molscular weight

..:ach number

n Number density

Number of turns of magnetizing coil

ne Number density of electrons

n^ Number density of ions

n Number density of gas atoms

n
s Number density of seed atoms

P Electric power

p Pressure

p^ Electric power density

Q Heat

Qe Collision cross section of electrons

Q^ Collision cross section of ions

Qq Collision cross section of gas atoms

Ohmic heating loss

Q^ Heat loss through the walls

Qvq Resistance loss of the magnetizing coil

q Gas velocity

R Gas constant

Resistance

r Resistivity

S Entropy

s Entropy per unit mass

T Temperature

t Time



U Internal energy

U Velocity vector in x-direction

u Gas velocity in x-direction

V Voltage

w Width of electrode

x )

y ) Cartesian coordinate
z )

CC Degree of ionization

^ Permittivity

^ Permittivity of free space

^ Total efficiency of the MGD generator

"^ Electrical efficiency of the MGD generator

T| . Equivalent turbine efficiency of the MGD generator

*^ c
Conversion efficiency of the MGD generator

X^, Debye shielding length

H- Permeability

H Permeability of free space

v Kinematic viscosity

°" Electrical conductivity

3* Mean free time between gas particle collision

o) Electron cyclotron frequency

fe Electron charge density

P Gas density

f* Gas density of standard atmospheric conditions

$ Potential energy

Indicates the vector quantity



INTRODUCTION

Magnetogasdynamics, as applied to the magnetogasdynamic

generator, Is the study of the flow of a compressible, conduct-

ing gas in the presence of a magnetic field. When a conducting

gas moves through the magnetic field, the gas acts like a copper

bar in the conventional electric generator. An electromotive

force is induced in the body of the gas which, in turn, induces

an electric current. At the same time there are electromagnetic

forces which are caused by the induced currents and the magnetic

field intensity. These forces have components which are oppo-

site in direction to the flow of the conducting gas and tend to

retard its motion. (In the case of an accelerator, or magneto-

g asdynamic propulsion unit, these forces have components which

are in the same direction as the gas flow and tend to accelerate

the motion of the conducting gas.

)

Usually gases are not good electrical conductors except

at very high temperatures. When the temperature is higher than

10,000 degrees K, all gases will be sufficiently ionized to be

considered an electrically conducting gas. The ionized gas is

called a "plasma". In general, the plasma should be considered

as a mixture of various species—positive and negative ions,

electrons and neutral particles. In practice, the plasma may

be considered as a single gas of definite composition (1), and

also may be assumed to be a perfect gas. Then the fundamental

equations of magnet ogasdynamies will be greatly simplified. Be-

cause the high temperatures required for ionization are beyond
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the temperature limits of the materials which can be used in the

construction of magnetogasdynamic generators, it is necessary to

seed the gas with a small amount of some easily ionized alkali

metal, such as potassium or cesium. When this is done a suffi-

cient degree of electrical conductivity can be obtained at lower

temperatures, which are in the range of 4000 to 5000 degrees P

(3).

Today the conversion of heat to electricity by the method

of magnetogasdynamics is of great interest to engineers because

the thermal efficiency of the magnetogasdynamic cycle shows

promise of exceeding 50 per cent for bulk power generation (3),

and because there are no moving parts involved in the generator.

The wear and tear caused by moving parts found in the conven-

tional turbo generator will be eliminated. Besides, the magneto-

gasdynamic generator can be combined with the modern steam or

gas power plant which uses chemical fuels or nuclear reactors.

At present the estimated cost of the electricity produced by

this method is higher than that of the conventional method (3).

However, the writer expects that the magnetogasdynamic gen-

erator will be competitive in the near future.

The purpose of this report is to study the principles of

magnetogasdynamics and to investigate the application of these

principles to the design of the magnetogasdynamic generator--a

new kind of device for direct conversion of thermal energy to

electric energy by means of the interaction between electro-

magnetic fields and the conducting gases. The fundamental

equations for one-dimensional magnetogasdynamic flow are



discussed. The principle of the magnetogasdynamic generator and

its design considerations are explained. The efficiency of the

magnetogasdynamic generator is defined with an explanation of

the losses. The calculation of the generator size (both con-

stant cross-section and varying cross-section area) is also

given in this report.

PUNDAMENTAL EQUATI ONS

In a general discussion of magnetogasdynamics, the plasma

is assumed to be a single fluid. The fundamental equations are

obtained by the combination of the fundamental gasdynamic equa-

tions with the electromagnetic equations. Therefore the

equations to be considered are as follows.

1. The equations of the electromagnetic field (Max-

well's equations).

2. The conservation of mass, or continuity equation.

3. The momentum equation.

4. The conservation of energy, or energy equation.

5. The equation of state.

Electromagnetic Field Equations

The electromagnetic field is described by Maxwell's equa-

tions which apply to a system in which there are moving charges

in the magnetic field. These equations are called field equa-

tions (1, 2, 3, 13, 14). Using the mks system,
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div 3 = (3)

div D fj (4)

where H = magnetic field intensity, amp/m

S = electric field intensity, volt/m

3 = magnetic flux density, weber/m^

D = electric displacement (electric flux density),

coulomb/m^

J = electric current density, amp/mr

ft - electric charge density, coulomb/m^.

The electric field intensity, E, and the magnetic flux

density, 3, determine the electrical force on a charged particle

in the conducting field. The electric displacement, D, and the

magnetic field intensity, H, are the fields created which are

related to the electrical force exerted on a particle.

The electric flux density, E, is related to the electric

field intensity, D, by the expression

D = € E _ (5)
"dE

where € is the permittivity. (The term € in Eq. (1) is
&t

the displacement current. ) If the medium is a vacuum, or free

The term f*q, which is called the convection current, is

omitted from Eq. (1) because it is of importance only when rapid
electrical oscillations are present (23). In magnetogasdynamic
generators rapid electrical oscillations do not occur.



space, the permittivity is denoted by € q, where

£
Q

= 107/4ttc2 coulomb2 - sec2Ag - m3 (1)

or

£ = 8.854 x 10" 12 farad/m

The magnetic flux density, B, is related to the magnetic

field intensity, H, by the expression

B = ii H (6)

where n is the permeability. If the medium is a vacuum, h-q

is used instead of \l , and

lx = 4tt x 10"7 kg - m/coulomb2

or

lx = 1.257 x 10"6 henry/m

In magnetogasdynamic approximations, it is assumed that both

and la are the values in a vacuum.

The current density, J, is related to the electric field,

E, by the electrical conductivity, <T ,

J = <TE (7)

Equation (7) is a statement of Ohm's law. The electrical con-

ductivity, <T , is the reciprocal of the resistivity, which is

a scalar number. Actually the electrical conductivity of the

plasma is a tensor, but in practice the conductivity is assumed

to be a scalar quantity.

When the plasma moves with velocity q through a magnetic

field of intensity H, there is a magnetic force acting on the

plasma, and the magnitude of this force is equal to the vector

product of the velocity q and the magnetic field intensity, H.

If the system is considered by an observer moving v/ith the



ionized gas, the observer will see the gas at rest, and he will

see that the magnetic field moves with velocity q toward the

observer. The total electromagnetic force, or total electric

intensity, E', is the sum of electrical and magnetic forces act-

ing on the ionized gas when the gas is at rest and when the gas

is moving with velocity q (8).

E' = E + (xq x K (3)

or E« = E + q x B (8a)

From Eq. (7), the total electric current density is

J = fl~(E + n-q x H) (9)

or J = (T(S + q x B)

The last electromagnetic equation is the equation of con-

servation of electric charges. This may be written as

__ — o f%
,V • J + -= (10)

"b t

Conservation of Mass Equation

The equation of conservation of mass is the same as the

continuity equation in gasdynamics, which states that the rate

of mass entering a region equals the rate of mass leaving the

region plus the rate of change in mass stored within the region

This equation can be written in the differential form as

-5-£ = -div (Pi) (11)
~St

where
f>

is the density of the ionized gas.



Momentum Equation

For a given direction the net momentum efflux from a region

plus the time rate of change of momentum within the region

equals the net force acting on the fluids v/ithin the region.

This equation (1, 2, 26) can be written as

Dt
V2

q + - V( V ' q)l (12)
3 J

where p = the gas pressure

v = the kinematic viscosity

The force due to gravity per unit volume in Eq. (12) is

neglected. The term on the left side represents the rate of

change of momentum stored in the region plus the excess momentum

flux from the region. The first term on the right side is the

pressure force acting per unit volume. The second term is the

force due to the magnetic field or Lorentz force. The last term

represents the shearing force or viscosity effect of the ionized

gas.

Energy Equation for G-as

The energy equation for the gas involves the conservation

of energy principle as applied to the kinetic, potential, and

internal energies of the gas, as well as the flow of work and

heat to and from the gas.

For the kinetic energy, the equation is obtained by taking

the scalar product of Eq. (12) and the gas velocity q.
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D q*
f- - =-(q • vp) + q* ( P "^ v q }

Dt I 2 /

q • - [p
7> I

v V (V- q) + q • (p.J x H) (13)

The rate of change of internal energy per unit mass is the

sum of the rate of work done by the pressure forces, the rat©

of heat transfer by conduction and the thermal energy generated

by the electrical conduction current passing through the gas.

The equation is

DU J2
o — = -?( V • q) + V • (KVT) + —

Dt <r

(14)

where K is the coefficient of thermal conductivity. The term

J /(p is called the joule heat per unit volume per unit time

(1, 2).

If denotes the potential energy per unit volume due to

elevation, the sum of the kinetic, internal, and potential ener

gies gives the total energy of the gas.

D q2

p — (u + — + CD ) = - V(qp) + q • ( p v v 2
q)

Dt 2

1
r

+ q • - \pv V(V- q) + V • (KVTJ

+ q • (y.J x H) + — (15)
<r

The last two terms of Eq. (15) may be written as

q • (u-J x H) + J • E f = q • (|j,J x H) + J • (E + u-q x H)

= q - (M-JxH) + J.E+J-^qxH=J-E
Therefore the energy equation can be written as



D q2

j
o__(U+— + 6 ) = - V • (qp) + q • ( /> V V 2

q)
Dt 2

1 r

+ q • —
5 L

P V V ( V • q) + V • (KVT) + J • E (16)

From the first two Maxwell's equations, Eqs. (1) and (2),

the electromagnetic energy equation can be derived as follows.

_ _ "£S
E • V x E = E • J+E-e (17a)

dt

H • V x E = -K . [i (17b)
St

Subtracting Eq. (17a) from Eq. (17b) gives

"£H____ "oEH-VxE-E-V x H = -H . n E • J - E • € (17c)
h t dt

V • (E i H) s -H . |i E • J - S • €
Bt 3t

3 E _ 3 H _____
E • € + H • n- = - V • (E x H) - J • E

at at

€— + n -£- — = - V • (E x H) - J • E (18)
a t \ 2 / a t \ 2 /

The terms on the left side of Sq. (18) are the time rate of

change of the electrical and magnetic energies within the unit

volume, respectively. The first term on the right side is the

net rate of electromagnetic energy inflow to the unit volume,

and the J • E term is the electrical resistive work done per

unit volume per unit time by the field E on the charges in mov-

ing them within the unit volume.
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When the energy equation of gasdynamics, Eq. (16), is com-

bined with the electromagnetic energy equation, Eq. (18), the

rate of change of the total energy per unit volume will be ob-

tained.

D q2 - E2 K2

p — (u + — + o ) + — (€ — + y. —)=-v- (qp)
Dt 2 3 t 2 2

+ q • (PV V 2
q) + q-ff v V(V'q)|

3
L J

+ V • ( K V T) - V • (E x H) (19)

The Equation of State

As a first approximation in magnetogasdynamics, a plasma

may be considered as a single fluid and a perfect gas (1).

Therefore within this assumption, the equation of state, which

is the relation between the pressure, p, density, p , gas con-

stant, R, and temperature, T, is

p = PR t (20)

The fundamental equations of magnetogasdynamics are then

Eqs. (1), (2), (9), (10), (11), (12), (19), and (20).

ONE-DIMENSIONAL MAGNETOGASDYNAMIC FLOW

In order to bring out the essential features of the flow

of a compressible ionized gas, the one-dimensional case v/ill be

discussed first. The necessary assumptions are:

1. The flow of the gas is in the direction of the
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x-axis and has the component of velocity u only.

2. The flowing gas is assumed to be a perfect gas

with constant specific heats and chemical composition.

3. The flow is steady, all variables are functions

of coordinate x only, and all terms which are a function

of time are zero.

4. There is no shaft work.

5. The thermodynamic properties and velocity of the

gas are uniform across any given cross section of the

flow passage.

6. There is no change in potential energy.

For magnetogasdynamics there is the additional assumption:

7. The magnetic field, H, is always perpendicular to

the direction of the gas flow. (If the magnetic field, H,

is parallel to the velocity of the gas, and if the flow is

one-dimensional, the magnetic field term will be zero in

Eqs. (9), (13), and (15)}. (1) ,

8. Viscosity effects are assumed negligible (3).

In the above assumptions the flow variables are independent

of the y and z coordinates. For engineering application the

one-dimensional flow analysis is useful for the flow inside con-

duits or nozzles. Therefore one -dimensional flow can be used

to analyze the performance of the magnetogasdynamic power gen-

erator. An application to magnetogasdynamic jet propulsion is

quite similars there is a net electric power input to the system

instead of a net outflow of electric power.

Figure 1 shows the vectors involved in one-dimensional
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magnetogas dynamics. The velocity vector, U, is in the x-

direction. The magnetic flux density, B, is in the z-direction.

The induced electric field, U x B, which is produced by the

velocity vector, U, and the magnetic flux density, B, is in

the negative y-direction. The current density vector, J, ob-

tained by the conductivity, <r , and- the induced electric field,

U x B, is in the same direction as the induced electric field,

U x B. If there is an externally applied current density an

electric field will be produced, and these quantities are in the

opposite direction to the induced current density and induced

electric field, or in the positive y-direction.

Electrodynamic Equations

For steady flow all the terms with respect to time are

zero. Then Maxwell's equations are for a neutral gas

curl H = J (21)

curl E = (22)

div B = (23)

div D = fe (24)

The magnetic flux density, B, is related to the magnetic

intensity by the permeability n

.

B = txH (25)

The value of the free-space permeability is used as an

approximation for the actual value (1, 3, 5, 6, 8).

From Ohm's law, which represents the relation between the

electric field strength and the current flow per unit area,
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A Z

Induced electromotive
force P = J x B

-x

Applied
magnetic
field Applied current density

J = <TE

Applied electric field

E

Velocity of conducting fluid U

•x

Lorentz force P=JxB= <T(E + U x B) x 3

Induced electric field E = U x B

Induced current density J = (TE= (T(U x B)

Fig. 1. Vector diagram for one-dimensional
magnetogasdynamics.
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J = <r(i + U x B) (26)

Thermodynamic Equations

It is assumed that the fluid is a continuum. When the con-

ducting gas is ionized, it is composed of electrons, ions, and

neutral atoms. The electrons are mainly the current -carrying

portion of the gas. The conducting gas is assumed to be a

single phase and a perfect gas although it is a mixture of

several types of particles. Therefore the equation of state

can be applied.

p= fR t (27)

where p = pressure of the gas

p - density of the gas

R = gas constant

T = temperature.

The entropy, S, of the conducting gas is independent of the

electromagnetic fields, and is a function of the temperature and

pressure. The entropy of the conducting gas per unit mass can

be written

dT dp
dS = C p R — (28)

T p

where
Bh

C
p

= (—

)

(29)

or dh = C
p

dT

and h2 - hx = Cp (T2 - T x )
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k
As Cp = • R (30)

k - 1

k
then h2 - h1 = R(T2 - T^ (31)

k - 1

where C = specific heat at constant pressure

Cv = specific heat at- constant volume

k = specific heat ratio = Cp/C v

h = enthalpy

In gasdynamics it is very convenient to express the velocity

of the gas stream in terms of the Mach number, M, which is de-

fined as the ratio of the gas velocity, u, to the local velocity

of sound

u2
M2 = (32)

k R T

Magnetogasdynamic Equations

From the fundamental equation derived in the previous

article, the basic magnetogasdynamic equations are

Continuity V .
f> TJ = (33)

Momentum1 f (IJ • V )U + Vp = J x B (34)

Energy p U • V (h
g

- Q) = J • I (35)

where h s is the total or stagnation enthalpy defined by

u2
h Q = h + — (36)
3

2

and Q is the heat addition per unit mass of fluid.

-Viscosity effects are assumed negligible (3).



16

The continuity equation can be integrated and written as

Pi u
l

A
i = ?2 u2 A2

= m (37)

where subscripts 1 and 2 denote the initial and final conditions,

respectively, and A is the cross-section area normal to the flow.

For a rectangular cross section,

A = w d (33)

where w is the distance between the walls in the direction of

the magnetic field, B, and d is the distance between electrodes

in the direction of current density, J.

The momentum equation can be written in the differential

form as

du dp
^u — + — = JB

Z (39)
dx dx

The energy equation for steady-state conditions can be

written

d

f>u — (hs - Q) = JE (40)
dx

Ohm's law equation can be written

J = - <r(B xU-I)
J = - <TE( 7^-1) (41)

B x U uB2
where /\ = —=— = (42)

E E

is defined as the lag ratio (3) or the ratio of induced electric

field (B x U) to static electric field E. For magnet ogasdyn ami

c

propulsion X is less than unity, which means that the electric

field produced by the motion of the conducting gas is smaller

than the supplied electric field and that J and E have the same
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direction. For the magnet ogasdynamic generators X is greater

than unity, which means that the induced electric field of the

moving gas is larger than the electric field supplied to the ex-

ternal load (because of internal voltage drop between the elec-

trodes) and that J and E are in opposite directions to each

other. This explains why there is a minus sign in Ohm's lav/,

Eq. (41) above.

The electrical power supplied to or extracted from the

flow is given by

(43)

where the electrical power is positive in the case of current

generation and negative in the case of propulsion. This elec-

trical power can be expressed in terms of thermodynamic proper-

ties as

P = m (hSl
- hS2 ) + Q (44)

PRINCIPLE 0? THE MAGNETOC-ASDYNAMIC GENERATORS

The magnetogasdynamic power generator extracts electrical

current from the motion of an ionized gas heated to about 5000

degrees P (3,033 degrees K) as it passes through a magnetic

field. The process is quite the same as the electrical phenom-

enon found in the conventional generator; voltage is created

when a conductor is moved through a magnetic field.

In the conventional electrical generator, the conductor is

usually a copper wire or bar that is spun through a magnetic
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field by a turbine or engine. In the magnetogasdynamic power

generator, a very hot ionized gas, such as superheated air,

steam, argon, or helium, is used as the conductor and is moved

through the magnetic field. An induced voltage is obtained and

current is drawn off by electrodes. There are no moving machine

parts involved. The energy contained in a high temperature,

ionized gas, or plasma, which consists of ionized atoms and

electrons, is converted directly into electrical energy.

The principle of the magnetogasdynamic generator is very

simple. This generator consists of two plate electrodes, Pq_ and

?2« There is a magnetic flux density, B, between the electrodes,

and in Pig. 2 its direction is perpendicular to and pointing

into the paper. A charged particle, P , is moving in the mag-

netic field at velocity U from left to right, as shown in Fig. 2.

From electromagnetic theory, the magnetic force F acting on the

particle is

F = pQ U x 3 (45)

F
or — = U x B (45a)

f%

where F, U, and B are vectors. By definition the magnetic force

per unit charge (Sq. 45a) is called the induced electric field

intensity E. If the charged particle, P , is negatively charged,

the force acting on the particle has its direction downward. If

the charged particle, P , is positive, the force acting on the

particle has its direction upward, as shown by the broken line

arrows in Fig. 2. Therefore the positively charged particle has

a tendency to drift toward plate P n and the negatively charged

particle has a tendency to drift toward plate ?2'
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?1

V

! p

e

e

Magnetic field, H, is
applied perpendicu-
larly to, and is di-
rected into, the plane

p at the paper

?2

Pig. 2. Motions of charges particles in the
presence of a perpendicular

magnetic field.
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Instead of the two particles shown In Pig. 2, there is

actually an ionized gas, or plasma, in which the molecules are

moving at velocity U from left to right. The positive ions will

be forced toward electrode Pq_ and the negative ions will be

forced toward electrode Pp. There are many ions and nonionized

molecules in the ionized gas. Before the positive ions and

negative ions reach the electrodes P^_ and Pg, respectively, the

ions will collide with the nonionized molecules and with each

other. However, an average drift of the positive ions toward Pn

and of negative ions toward p£ is still going on between col-

lisions. If an electric conductor is connected from electrode

Pq_ to electrode ?2 through an external electrical load, an elec-

tric current will flow from P-^ through the external load to P2.

This is the basic principle of the magnetogasdynamic generator.

Thus a magnetogasdynamic generator extracts energy from the

flow of ionized gas and converts it to electrical energy. The

process can be reversed. If instead of a load, there is an ex-

ternal source of electrical power supplying the current in a

direction opposite to the direction of the current produced, the

process can be reversed, and energy is fed to the gas stream.

This is a basic principle of the magnetogasdynamic propulsion

or pump.

A simple form of a magnetogasdynamic generator is shown in

Fig. 3. It consists of a channel through which the gaseous work-

ing fluid flows, coils which produced a magnetic field across

the channel, and electrodes at the top and bottom of the channel.

These electrodes serve much the same purpose as the brushes in
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Field coil Y

X
-e»-

Pig. 3. A linear magnetogasdynamic generator
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a conventional generator. The gas moves through the magnetic

field and has an electromotive force generated in it which drives

a current through it, the electrodes, and the external load.

The magnet ogasdynamic generator can be used in a heat cycle, re-

placing both the turbine and generator in such a cycle, or it

can be combined with conventional electric power plants.

DESIGN CONSIDERATIONS

In ae signing a magnet ogasdynamic generator, the effects of

the following factors should be considered first.

1. Gas conductivity

a. Ionization method

b. Temperature requirement

c. Optimization of seed concentration.

2. Efficiency of MGD generator

a. Ohmic heating of gas

b. Eddy-current losses

c. Boundary layer losses

d. Anode and cathode voltage losses

e. Friction losses

f

.

Heat loss at the walls

g. I^R loss of magnetizing coil.

3. Hall effects.

4. Optimum flow velocity.

5. Geometric considerations

a. Constant area MGD generator

b. Varying cross section MGD generator.
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Gas Conductivity

The difference between the magnetogasdynamic generator and

the conventional generator is that the MGD generator uses an

ionized and conducting gas. One of the most important quanti-

ties in design is the electrical conductivity, <T , which is the

reciprocal of the electrical resistivity, R. The value of gas

conductivity will determine the size of the generator because

the volume of the generator varies inversely with the value of

the conductivity. If the conductivity is too low, the generator

will become large and uneconomical. The conductivity depends

upon the degree of ionization, the elastic electron-scattering

cross section, or electron-collision cross section, and tempera-

ture. The value of conductivity will be increased with an in-

crease of temperature and degree of ionization.

Ionization Method . Ionization is the separation of an elec-

tron from an atom which leaves the atom with a positive charge or

ion. In magnetogasdynamics there are two available Ionization

methods. The first one is ionization by thermal collision. This

method is obtained by heating the gas to a high temperature.

Molecules of the gas will then move with high velocities. This

means that the kinetic energies of the molecules are very high,

and this energy is sufficient to ionize these molecules when

they collide. The second method is the ionization caused by

collisions between electrons and molecules. For thermal equi-

librium the electrons have the same kinetic energy as the mole-

cules. As the mass of an electron is much smaller than that of
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a molecule, its velocity v/ill be very high. The collisions of

these electrons with neutral particles v/ill cause ionization.

The energy required to remove completely an electron from its

normal state in a neutral molecule to a distance not influenced

by the nucleus is called the ionization potential (1). Usually

the ionization potential is expressed in electron volts. For

example, the ionization potentials of potassium and cesium are

4.34 and 3.39 ev, respectively (5).

Temperature Requirement . Most gases, such as air, CO, and

CO2, have a relatively high ionization potential (14.0 electron

volts for CO and 15.7 electron volts for CO2) (5, 9), but they

do not ionize until high temperatures are reached. If about 0.1

to one per cent of some easily ionizable material, such as an

alkali metal vapor (potassium or cesium), is added zo the gas, a

sufficient degree of ionization can be obtained at a temperature

which is below the temperature limits of some materials used in

the construction of magnet ogasdynamic generators (19). (Small

laboratory units have been tested at temperatures slightly over

2500 degrees K. ) (19)

Figure 4 shows a graph of a result obtained from an estima-

tion of a 100, 000-kilowatt magnet ogasdynamic generator, in which

a linear dimension is plotted as a function of gas conductivity

and field strength (7). This graph also indicates the tempera-

tures required to obtain the conductivities in seeded gases. A

rough idea of conductivities and temperatures required may be

obtained from this graph. For example, if a practical field

strength is 10,000 gauss, or one weber per square meter, and
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the reasonable estimate for the maximum practical size is 10

feet, the gas conductivity is at least of the order of 50 mhos

per meter and the temperature of the gas is 2500 degrees K.

Optimization of Seed Concentration . The alkali metals

which are proposed (potassium, cesium, sodium, and so forth)

have only one electron in the outermost shell. This single

electron is rather loosely bound to the atom and the energy re-

quired to separate it from the atom is rather small. This is

the reason why the ionized gas used in the magnetogasdynamic

generator is either an evaporated alkali metal or an ordinary

gas seeded with a small amount of alkali metal. For instance,

by seeding air with about one per cent of potassium vapor at a

temperature of 2000 degrees K, a conductivity of about 10 mhos

per meter can be obtained. In order to get the maximum value of

the conductivity, there is an optimum value of seed concentra-

tion, which for most gases is only one per cent or less (19, 20),

The level of seed concentration will be obtained by considering

the collision cross sections of the neutral seed atoms, the neu-

tral gas atoms, and the ions in the electrical conductivity

equation.

The electrical conductivity of a gas (20) is given by

e2 n^
<T = 0.532 j ' (46)

(mekT)* niQi + nsQs + n Qo

where e = electron charge = 1.602 x 10" ^^ coulomb

me = electron mass = 9.108 x 10"31 kg

k = Boltzmann's constant

T = temperature, °K

0^ = collision cross section of ions, m2
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Q3 = collision cross section of seed atoms, rrr

Qq = collision cross section of gas atoms, m2

n^ = number density of ions, parti cles/m3

n s = number density of seed atoms, particles/m3

TiQ = number density of gas atoms, parti cles/m3

For alkali metal vapors the number density of the ions n^

(which is defined as the number of ions per unit volume) will be

quite small and is proportional to the square root of the number

density of the seed atoms (n
g
)^. The collision cross section,

Q3 , is very large as compared with the collision cross section

of an electron. Approximately the electrical conductivity (20)

can be expressed as

n sr ** (47)
n
sQs + n0%

The maximum value of the electrical conductivity, from

Eq. (47), is obtained when

nsQs = n0^0 < 48 >

or n3/n = Qq/Qs (48a)

For argon with potassium seeding, the collision cross sec-

tion of the argon atom, Qq, is about 6 x 10"^' cm . The colli-

sion cross section of the potassium atom, Qs , is about 3 x 10" 14

cm2 . For maximum electrical conductivity, the per cent of seed

gas is determined as

Qq 6 x 10" 17

— s —- x 100 =0.2 per cent
Qs 3 x 10" 14

In a simple analysis, the electrical conductivity, (T , is
l

given by the following formula (1, 5, 12).
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e2 ne
<T = (49)

f me

where f = the collision frequency of electrons.

/ 8kT \^

.

f - n Qe (50)

Substituting in Eq. (49), gives

e2 1

Jq^-L ^e8 >/mekT Q,

or

e
(51)

e2 1 ne
r = 0.532 — • — = <TC (51a)K^ ^e n

where ne = number density of electrons, particles/m3

t\q = number density of gas atoms, particles/m

Q@ = the electron atom collision cross section, m2

The ratio ne/no is defined as the degree of ionization.

Equation (51a) was given by Chapman and Cowling (22, 1, 12) for

the case of a slightly ionized gas.

For the case of a fully ionized gas, Spitzer (17) gave the

following formula for the electrical conductivity.

0.591(kT) 3/2

<T = = <Td (52)

m^e2 m{ )

b

•l

where A d = Debye shielding distance x

= [(kT)/(8ir ne e
2 )]*

bg = impact parameter e /3kT

The Debye shielding distance is "the distance from a
charge beyond which the influence of the charge becomes negli-
gible" (5).
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For the intermediate case no theoretical analysis is avail-

able. Kantrowitz suggested the following formula (1).Ill— = + (53)
<r <rc <rd

Efficiency of the MGD Generator

There are two types of efficiencies used for the magneto-

gasdynamic generator: (1) an electrical efficiency that describes

how much of the generated power is actually delivered to the

load and how much is dissipated in the internal resistance of

the generator; and (2) an equivalent turbine efficiency which is

the ratio of actual enthalpy drop to the isentropic enthalpy

drop. The equations of efficiencies are derived below with the

assumption that the velocity is constant. Actually the velocity

is not constant, but the assumption is useful in simplifying the

equation of motion. The derivation of the equations is as fol-

lows (7, 20).

Prom Eq. (37), the continuity equation,

PA = constant (54)

Prom Eq. (39), the momentum equation,

dP/dx = JB (55)

Prom Eq. (40), the energy equation,

dh
^>u — = JE (56)

dx

If Eq. (55) is multiplied by the flow velocity u, the rate

at which work is done by the ionized gas pushing itself through
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the magnetic field is obtained as

dP
u — = u J B (57)

dx

The rate at which the enthalpy of the gas is converted into

electrical energy is given by Eq. (56). Dividing Eq. (56) by

Eq. (57) gives

pu dh/dx dh E

^ e
= = f __ = _ (58)

u dp/dx dp uB

where *>o is the electrical efficiency of the magnet ogasdynamic

generator which is defined as the ratio of load voltage, E, to

the open-circuit voltage, uB, or ratio of electric power output

to electric power input. Equation (58) shows that a decrease in

electrical efficiency results in a decrease in change of enthalpy

for a given pressure drop. According to the assumption of con-

stant specific heat and velocity, the ratio of the actual pres-

sure ratio across the generator to the i sentropic pressure ratio

will be calculated as follows.

Prom Eq. (58),

? P
dp = — dh = c- dT

^e ^eRT

1 k p
dp = - dT

-r\
e k - 1 T

dp 1 k dT

p *} e k - 1 T

Integrating,

P2 T2 /T2 \
k/^e( k

- 1)

#i — = in — = In —
Pi *U. k - 1 *i ITj
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Pi \
TJ W*l/

P2 ibai^U^1 *

— = — < 59 >

pi W/
For isentropic flow r

\ e
= 1.

pi"\V

iV, .k/k-l
P2 _ /^2\

'

Pi
"
Ui/

Dividing Eq. (59) by Eq. (60),

Pl/p2 (actual) _ /h
i

\

k^ (k" 1)
^ /M

11^1

(60)

P;j/p2 (isentropic) l^/ 1^1/

Pi/PS (actual) /h^ 1"^'/^-^

Pl/P2 (i sentr °Pi c ) \ n2

(61)

where h-, and p^ are the enthalpy and pressure at the entrance of

the generator, and h2 and p2 are the same quantities at the exit.

Prom this relationship the equivalent turbine efficiency of the

magnetogasdynamic generator can be obtained.

(h^ - h2 ) (actual)
Equivalent turbine efficiency =

(h^ - b^) (isentropic)

(1 - h2/h1 )( actual )*!*-
(1 - bgAi)( isentropic)

T?
e(k-1)A

y\ t
-

1
* (P2/Pl)

(62)
• i - (p2/p1)^-DA
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The total efficiency of the magnet oga3dynamic generator will

be defined as the product of the electrical efficiency and the

equivalent turbine efficiency.

1 = "le ' °1 t < 63 >

Prom Eq. (43) and Eq. (58), the power output per unit

volume, or power density, will be written as follows:

Eq. (43) P = J • E A dx

1

Power density P, = J • E = JE

Ohm f s law J = (T (uB - E)

Therefore pd
= <T(uB - E)E d~(uBE - E2 )

But E = rr
l e uB

Pd = ^CTe u2b2 " ^e
2 u2b2)

= (Tu
2B2<7e (l - *}

e
) (64)

The maximum power density, p^, will be obtained when

dpd/d^ e equals zero.

dp1 .2.2
d ,«.„n2= ,ru2B2 C7e - V)

d le d 7e

= <r u2B2 (1 - 2 "^
e )

ru2B2 (l - 2^) =

1 - 2 Ve = °

2^e = 1

^e = V2

This means that the power density of a magnet ogasdynamic

generator is a maximum when the electrical efficiency, v> ,



33

equals 0.5, or 50 per cent. In other words, the external load,

or resistance, must be equal to the internal resistance of the

magnetogasdynamic generator.

The generator length L can be obtained by integrating

Eq. (55). Assuming (T , u, iQ
e , and B are constant,

dp = JB dx

d = <T(uB - E)B dx

dp = <T(uB - -*7
euB)B dx

dp = <T(1 -^ Q
)uB2 dx

P2

Pi

dp = r(l - «} e )uB'

= - <T(1 - ^uB'

r
xi

dx

x2
dx

P2 - Pi " " f^ 1 " 1e
)uB (x

2 " x
l )

L = x2 " xl

Pg - Pi - - <TU - ^e
)uB2L

Pl (£2 . 1) = -r(l -
^i e )uB

2L

Pi

Pld - — ) = <ra - -7
6
)ub2l

L
Pi P2

L =

(i -^ e )<ruB
2

Pi

Pi
l

,Mk/(k- l)1?e
1

(l -^e )<ruB
2

(65)

(65a)
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Losses

The equivalent turbine efficiency of the magnetogasdynamic

generator can be determined by Eq. (62). The major losses that

tend to decrease this efficiency are as follows.

Ohmic Heating of Gas. Ohmlc heating of the conducting gas,

or I2R loss inside the plasma, is caused by its electrical con-

ductivity. If Qq is the loss

r
j2

Qq = V —- dj (66)
J <r

where T = the average time interval between collisions.

Eddy-current Losses , (as the flow passes into and out of

the magnetic field). These entering and leaving losses have

been analyzed and calculated by Fishman and Sutton. It appears

that they will be roughly 10 per cent of the entrance stagna-

tion pressure (20).

Boundary Layer Losses . For viscous flow, there is a vis-

cous force that causes the stagnation pressure loss. But these

losses are small and will be neglected.

Anode end Cathode Voltage Losses . These losses occur due

to the sheath of space charges near the electrodes. The loss

due to the anode and cathode voltage drop may be given by the

ratio of this voltage drop to the voltage appearing between

electrodes. The voltage between electrodes is given by ^ uBd,

where d is the distance between electrodes. For example,

t}
euBd is of the order of 1000 volts when u = 1000 m/sec, B = 1

weber/m2 (10,000 gauss), d 1 m, and ^\ e lies between l/2 and
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1. The electrode drops should represent a loss of not more than

about one per cent (20).

Friction Loss at the Walls . If f is the coefficient of

friction, the rate of loss for a wall area A^ is (21)

F = f pu2Aw u = f fu3Aw (67)

Heat Loss at the Walls . If the allowed temperature of the

material used to construct the magnetogasdynamic generator is

equal to or lower than the static gas temperature, external

cooling is required. The heat transfer through the walls by-

conduction is

dT
Oh = "kA — (68)

dx

The heat transfer through the wall is one of the largest

sources of loss in the magnetogasdynamic generator. For effec-

tive design it is necessary to minimize this loss. For a linear

configuration generator, the duct- length-to-diameter ratio

should not be greater than 20 (20).

i
2R Loss of the Magnetizing Coil . If the coil has n turns

with total copper cross section, Ac , and mean length per turn,

I, the resistance of the coil is (21)

R =
r &rfi

Ac

where r is the resistivity of the wire material, and

C^ = i2R = _ (nl )2

Ac

If lm denotes the length of the magnetic path, then
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B Im
ni =

^0

r^m2

and % = B2 (69)

For a sufficiently large magne togasdynamic generator, the

wall friction, loss of heat at the walls, and the i^R loss in

the magnetizing coil are small compared to the energy converted.

Thus these losses can be neglected (21).

Hall Effects

The Hall effect is the effect of the magnetic field upon

the electrons. In the presence of the magnetic field, the elec-

trons no longer follow straight-line paths while they drift to

the electrode. The electrical field accelerates the electrons

in the opposite direction to the electrical field. As the elec-

trons move in this direction, the magnetic field causes them to

be accelerated in the direction normal to their trajectories,

and the electron paths become curves as shown in Fig. 5a end

Fig. 6b. The Hall effect also causes the electrical conductiv-

ity to be a tensor rather than a scalar, and the electrical con-

duction current is not in the same direction as the electric

field intensity. The product of the electron cyclotron fre-

quency, o>e , and the electron mean collision time, o*e , is used

as the measure of the Hall effect.

The magnitude of the Hall effect depends upon the magnitude

of the quantity we Te (we Te = 2tt x electron-cyclotron frequency
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Perpendicular electric and magnetic fields are
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(b)

Same as (a) but mean free path >> mean radius.

Fig. 5. Typical paths of electrons in a gaseous plasma
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times the mean free time between collisions}. This quantity

will be expressed in terms of the ratio of gas densities,

/Pq, slid the magnetic flux density, B(20).

WB
coe T& =

C7>V
where W is a function of the degree of ionization, electron tem-

perature, and the gas composition. As ue 0*
e approaches and ex-

ceeds unity, an electric field (Hall field) is parallel to the

direction of the flow. In practice, the value of u>
e

j"
e lies be-

tween 2 and 7 for a generator with continuous electrodes.

One method to overcome the Hall effect is the use of seg-

mented electrodes. Each pair of electrodes is connected through

its own load. Then the generator power is independent of the

value of coe Te and the loss due to the Hall effect is not im-

portant. This is the reason why segmented electrodes are used.

Optimum Flow Velocity

Prom the experiments of Neuringer (7) for the magnet ogas-

dynamic generator in which the entrance Mach number is less than

one, the optimum exit Mach number must be unity. For supersonic

operation, which means that the entrance Mach number is greater

than unity, the optimum exit Mach number is also unity. The

efficiency of the magnetogasdynamic generator will be increased

if the subsonic and supersonic entrance Mach number have values

far from unity, i.e., for M = 0.3 and 3, efficiencies greater

than 20 per cent were obtained by Neuringer in his experi-

ments (7).



39

Geometric Considerations

Constant-area MGD Generator . In designing the constant-

area MGD generator (Fig. 6), the following assumptions are made

1. The cross section of flow, A, of the channel

or duct is constant.

2. The pressure, p, velocity, u, and temperature, T,

of the ionized gas are functions of x only. For steady

flow all properties are independent of time, t.

3. The friction and heat losses at the walls are

negligible.

4. The magnetic flux density, B, is a constant.

(Actually B varies slightly owing to the flow of electric

current between P]_ and P2 . The variations are negligible

when compared to the magnitude of B.

)

5. 'The ionized gas obeys, the perfect gas law.

p=fRT (70)

From the continuity equation,

m = f>

1 A\x1 = p2 Au2 ( 71 ^

From the momentum equation,

p l + *°1 u
l
2 = p2 + ^2 u2

2 + ^^
I

But J = — , Ae = area of electrode
Ae

IBL
(P! + Pl^i ) - (P2

+ ^2U2 } =
Ae

o o IBL
(Pi - P2 ) + (W - f2U2

2
> - -—

wL
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Pig. 6. Constant-area MGD generator.
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(Pi - P2 )
+

( Plui
2

" P2U2
2) =

IB

w
(72)

In making an energy balance, it is assumed that the process is

adiabatic.

pu(hS2 - h
Sl ) = JEL

P*(hS2 - hSl ) = - (Tu2b2^(1 - -7
e
)L

Multiplying both sides by the cross-section area, A,

/>Au(hS2 - hsi ) = - <ru
2B2-7e (l - "?e )AL

m(hS2 - hSl ) = -VI

m(hsi - hS2 ) = VI (73)

where I is the current flow from electrode, P^, through the

load, R, to electrode, P2 , and v (
= IR ) * s tiie voltage de-

veloped across the load.

Equation (73) can be written in terms of the specific heat,

Cp, temperature, T, and velocity, u, as follows.

m

m

m

m

m

u, 2 *2
2

(hx + — ) - (hg + = VI

2ul u2
(C T1 + ) - (C T2 + )

*
2

P
2

Un 2 U22

C (TX - Tg) + ( )

*
2 2

k U;l
2 U2

= VI

R(TX - T2 ) + (

k - 1 2 2

k Pi P2 ul
2 u2

2

2 2

= VI

2 i

= VI

k - 1 ^ f2

= VI

(73a)

(73b)

(73c)

Another equation gives the current, I, as a function of

the gas variables



42

J = <r(uB - E) = <T(uB - V/d)

I = {J dA,e

AQ = area of electrode

i r
X2

w J dx - w <T(uB - V/d)dx
xl

= <T(uB - V/d)wL (74)

Equations (70), (71), (72), (73), and (74) give a complete

description of the conversion process. Given any set of initial

conditions, p, f> , u, T, and I, the subsequent values of these

variables are completely determined.

The conversion efficiency of an MGD generator is defined

as the ratio of the electric power output to the enthalpy flux

at the input end (21).

^c = Vl/HSl (75)

Px
where Hs = total enthalpy influx = m(CvT1 + — + i u-j

2
), V,

1

and I are the voltage and conduction current between the two

electrodes, P^ and P2 . Prom Eq. (73), Eq. (75) can be written

as

^st " ^sp ^so
V c = ~^ =1 (76)

hS! hsi

It is noted that hs . is the total gaseous power input to

the MGD generator, and hS2 is the unused gas energy at the ex-

haust end per unit mass. The conversion effectiveness is quite

similar to the thermal efficiency, defined as the ratio of the

useful energy output to the total energy input.

Example. An MGD generator with constant cross section uses
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argon (k = 1.67, M = 40) seeded with one per cent potassium as

the working gas. The following data are given.

B = 1 weber/m^

T
1
= 2500° K

p-, = 0. 5 atm

u^ = 2800 m/sec

p2 = 1*0 atm

e = 0.5

The output voltage is 250 volts and the required power generated

is 15 x 10° watts. Assume that the average conductivity is 100

mho/m and determine the dimensions of the generator.

%(k-l)/k

Ti"\pJ

x
,0.5(1.67-1)/!. 67

2500 \0.5

T2 = 2500 x 1.149 = 2870° K

= (2)
' 20 = 1.149

0.5 x 100 x 100 x 40
P1 = p1/RT 1

= = 0.0944 kg/m^
847 x 2500

1 x 100 x 100 x 40
Po - P2/RT2 = = °» 170 kg/m^

847 x 2870

= 1555 m/sec

F2u2 = p1u1

f>1M1 0. 0944 x 2800
u2 ~ " "" —

^2 0.17

7e = E/uB

E
5~

2800 x 1
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E = 0.5 x 2800 = 1400 volts/m

E = V/d

where d = distance between electrodes

250
d = = 0.1785 m

1400

Prom the energy equation,

m(hSl - hS2 ) - VI

hs .

k - 1

1.67

• RTX + ft ux
2

8314
x 2500 + i(2800)

2

1.67 - 1 40

= 1,300,000 + 3,920,000 = 5,220,000 joules/kg

k
hso =

k - 1

1.67 8314

RT2 + i u2
2

x 2870 + i(1555)
2

0.67 40

= 1,490,000 + 1,210,000 = 2,700,000 joules/kg

h8- - hs = 5,220,000 - 2,700,000 = 2,520,000 joules/kg

Energy equation,

m(hSl - hS2 ) = VI

m x 2.52 x 106 = 15 x 106

15 x 106

m =
2.52 x 106

m = pA u

m 5.96

= 5.96 kg/sec

A = = 0.0226 m2
P u 0.0944 x 2800

A = wd
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where w = width of flow channel

0.0226
w = A/d = s 0.1265 ra

0.1785

15 x 106

I = p/V = = 60,000 amp
250

From the current equation,

I = <ruB(l - ^ e )wL

60,000 = 100 x 2800 x (1 - 0.5) x 0.151 x L

where L = length of the generator

60
L = = 2.84 m

28 x 5 x 0.151

Therefore the generator dimensions are 0.15 x 0.151 x 2.84 m.

hsi " hso 2,520,000
10 = —i £ = = 0.483 = 48.3$

hs 5,220,000

The power density

15 x 106 15 x 106

p = = = 234 watt/cm3

17.85 x 12.65 x 284 6.42 x 104

Varying Cross-section MGD Generator . This type of generator

improves the conversion efficiency, which can be realized by al-

lowing B and the cross section of the conversion chamber to vary

in such a way that the generated emf is kept constant throughout

•the conversion path as the velocity u approaches a final value.

In considering the dimensions of the conversion path of

this type of MGD generator, the initial condition of the plasma,

or ionized gas, should be known first. The final conditions of

velocity and temperature will be selected with values that are

neither too low nor too high. A very low final temperature
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Plasma in U- Plasma out U2

Pig. 7. A conversion chamber with varying
cross section.
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results in a great variation of temperature between inlet and

outlet, which causes a large decrease in the electrical conduc-

tivity of the working fluid. A high final temperature gives a

small decrease in the enthalpy of the v/orking fluid, thus de-

creasing the power flow. If the total power to "be generated,

or the electrical efficiency, is given, the inlet and outlet

areas of the conversion path can be determined from the thermo-

dynamic properties by using the continuity and energy equations.

The given value of conductivity will determine the length of

the conversion path, and from this the power density will be

obtained.

Example. An MGD generator with variable cross section uses

the combustion gases of liquid fuel (CH2) seeded with one per

cent potassium as its working fluid. The following data are

given.

P
1

= 10 atm, ?2 ~ 1 atm

T
]_

= 2500° K (4500° F)

u-j_ = 2500 m/sec

B = 1 weber/m2

% = 0.50

The output voltage is 250 volts. Assume that the electrical

conductivity is 100 mho/m and determine the size of the

generator.

ft - lbf kg - m joules
(R = 53.45 = 29.3 = 297.5

lbm P° abs kg° K kg° K

Btu Btu
k = 1.27, C^ = 0.329 , Cv = 0.259 )

p IV P IV P
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k/(k-me

P l l
Tl/

p
^(k-D^e/k

T (1
i( 1,37-1)0. 50/1. 27

-

2500 \ 10/

T2 = 2500 (l/lO) ' 1061 = 2500 x 0.692 = 1955° K

For the maximum flow rate, the Mach number at the exit

should be unity and no shocks should occur in the chamber (7)

C2 = /kRT2 = /l.27 x 297.5 x 1955 = 860 m/sec

u2 = M2 C2 = 1 x 860 = 860 m/sec

"?
e

= E/u-jB

E = 17 e uqB = 0.50 X 2500 x 1 = 1250 volt/m

E = V/d

dx = V/E

dx = 250/1250 = 0.200 m = 0.20 x 3.28 = 0.656 ft

Let A-j_ be square cross section; therefore

w-l = 0.200 m = 0.656 ft

A 1 = (0.200) 2 = 0.04 m2 = 0.43 ft2

PlAlul
m = PiAiUx =

10.3 x 100 x 100 x 0.04 x 2500

29.3 x 2500

m = p2A2u2

= 140.5 kg/sec
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m mRT, 140.5 x 29.3 x 1955
A2 = 0.903 m<

P2U2 p2u2 1 ' 03 x 10° x 10° x S6°

= 9.77 ft2

Let A2 be a square cross section; therefore

d2 = JI2 - 0.953 m = 3.13 ft

w2 = 0.953 m = 3.13 ft

hsi =
k uV

RTX + —
k - 1 2

1.27
x 297.5 x 2500 + J(2500)

2

1.27 - 1

= 3,500,000 + 3,125,000 = 6,625,000 joules/kg

k u2
2 1

RT2 +
k - 1 2

1.27
-x 297.5 x 1955 + i(860)

1.27-1

= 2,735,000 + 370,000 = 3,105,000 joules/kg

hsi - hS2 = 6,625,000 - 3,105,000 = 3,520,000 joules/kg

Power generated,

P = m(hSl - hS2 ) = 140.5 x 3.52 x 106 = 495 x 106 watts

Length L = ^
2

(1 " ~ )

10.3 x 100,000 1
= (1 )

(1 - 0.5) x 100 x 2500 10

= 37.1/5 = 7.42 m

= 7.42 x 3.28 = 24.4 ft

Conversion efficiency 17
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hg-i " hsp 3,520,000
to = —± £ = = 0.531 = 53. 1#

hs 6,625,000

Power density P^

Pd = <ru
2B2 ^ e (l

- -?
e )

= 100 x 25002 x l2 x 0.5(1 - 0.5)

a 156.25 x 106 watt/m3

Volume of conversion chamber

495 x 106

V = = 3. 17 m3 = 112 ft3

156.25 x 106

CONCLUSIONS

Magnetogasdynamic generators are a new type of machine used

to convert heat energy into electric energy and are suitable for

large scale generation of direct-current power. The principle

of the magne togasdynamic generator is quite similar to the con-

ventional generator except that a hot ionized gas is used in-

stead of a metallic conductor. The hot ionized gas moves through

a magnetic field which is applied at right angle to the flow,

and past electrodes which are in contact with the stream of gas.

Electrons in the gas are deflected by the magnetic field, and

between collisions with other particles, such as ions and atoms

in the gas, they make their way diagonally to one of the elec-

trodes. An electric current is produced as the electrons move

from the anode, through the load, to the cathode, and back again

to the gas stream.

Magne togasdynamic power generation requires a conducting gas

or ionized gas as a working fluid. Por the gas to be
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sufficiently conducting, a certain number of free electrons must

be present together with an equal number of ions and the atoms

of nonionized gas. The most direct method to ionize a gas par-

tially, and make it conducting, is to heat it sufficiently.

However, the temperatures of partially ionized gas are still be-

yond the limits of materials used to construct the magnetogas-

dynamic generator.

When the gas is "seeded" with a small amount of an element,

such as potassium or cesium, adequate electrical conductivity

can be obtained at somewhat lower temperatures (in the range of

4000 to 5000 degrees P). The induced voltage at the terminals

of a magnet ogasdynamic generator is directly proportional to the

intensity of the magnetic field, the velocity of the gas, and

the distance between the electrodes. A generator will supply

maximum power when the external load connected to its terminals

has a voltage drop equal to one-half of the open-circuit volt-

age. In other words, the external load resistance is equal to

the internal resistance.

Reference (21) describes a disadvantage of the MGD gener-

ator with constant cross section. A part of the kinetic energy

is used to compress and heat up the gas when the entrance Mach

number is greater than unity. This happens because the velocity

of the gas decreases and the pressure of the gas increases. If

the entrance Mach number is less than unity, the constant cross

section MGD generator will speed up the gas unnecessarily owing

to the higher Mach number of the exit. In both cases the con-

version efficiency is low. This difficulty can be avoided by
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making the cross-section area increase with the length of the

MGD generator. Therefore the MGD generator with increasing cross

section is recommended. For both types of conversion chambers,

constant cross section and varying cross section, operating with

either supersonic or subsonic speeds at the entrance, the opti-

mum exit velocity (corresponding to the maximum efficiency) is

equal to the acoustic velocity. This is the lower limit of

velocity for supersonic operation and the upper limit for sub-

sonic operation. Magnetogasdynamic generators have their lowest

efficiency if the entrance Mach number is near unity, according

to the experiments of Neuringer (7). The efficiency is increased

when the entrance Mach number is far removed from unity. For

subsonic operation (M < 1), most of the electric power delivered

to the load is produced near the exit region of the MGD gener-

ator because the high velocity there increases the electromag-

netic induction. For supersonic operation (M > 1), most of the

electric power generated comes from the increased electromag-

netic induction occurring near the entrance of the MGD generator

where the velocity is high.

The conversion of thermal to electrical energy by this meth-

od is very attractive to engineers because of the predicted high

efficiencies and because there is no moving component that can

cause mechanical wear and tear. At the present, magnetogas-

dynamic generators are under development. Further research

needs to be done to obtain more reliable data on the conduction

of electricity in gases and to provide a better understanding of

this conduction. Materials used to construct magnetogasdynamic
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generators must be developed to better withstand high tempera-

tures, sudden temperature changes, and chemical interaction

with alkali metal seeding materials.
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The magne togasdynamic generator is a new kind of electrical

machine which is used to convert thermal energy into electric

energy by means of the interaction between electromagnetic fields

and a conducting gas. Usually gases are not good electrical

conductors except at very high temperature. When the tempera-

ture is higher than 10,000 degrees K, all gases will be suffi-

ciently ionized to be considered an electrically conducting gas.

The ionized gas is called a "plasma", and is composed of elec-

trons, ions, and neutral particles. In practice the plasma may

be considered as a single gas of definite composition and also

may be assumed to be a perfect gas. The conducting gas moves

through a channel or duct with a magnetic field applied in a

direction perpendicular to the flow and past electrodes which

are located at the top and bottom of the channel. The ionized

gas performs" the same function as the copper conductor in the

conventional generator. The negatively charged electrons in the

gas are deflected by the magnetic field, and between collision

with other particles, such as ions and atoms in the gas, they

make their way diagonally to one of the electrodes. An electro-

motive force is induced in the body of the gas which, in turn,

induces an electric current. An electric current is produced as

the electrons move from the anode, through the load, to the

cathode, and back again to the gas stream.

The magnet ogasdynamic power generator requires a conducting

gas or ionized gas as a working fluid. The most direct method

to ionize a gas partially, and make it conducting, is to heat it

sufficiently. However, the temperatures of partially ionized



gas are still beyond the limits of materials used to construct

the magnetogasdynamic generator. When the gas is "seeded" with

a small amount of an element, such as potassium or cesium (be-

cause of economics potassium is used more than cesium), adequate

electrical conductivity can be obtained at somewhat lower tem-

peratures, in the range of 4000 to 6000 degrees F. A generator

will supply maximum power when the external load connected to

its terminals has a voltage drop equal to one-half of the open-

circuit voltage. In other words, the external load resistance

is equal to the internal resistance.

The direct conversion of thermal to electrical energy by

this method is very attractive to engineers because the pre-

dicted thermal efficiencies of the magnetogasdynamic cycle are

better than
#
the present efficiencies of steam and gas power

cycles now used for bulk power generation. Also there are no

moving parts that can cause mechanical wear and tear as is the

case for the conventional turbo generator. The magnetogas-

dynamic cycle can be combined with the modern steam or gas power

plant, which uses chemical fuel or nuclear reactors, in order to

improve the plant efficiency. At the present, magnetogasdynamic

generators are under development. Further research needs to be

done to obtain more reliable data on the conduction of elec-

tricity in gases. Materials used to construct magnetogasdynamic

generators must be developed to better withstand high tempera-

tures, sudden temperature changes, and chemical interaction

with alkali metal seeding materials.




