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OPTIMIZATION OF SOME MULTI-STAGE STOCHASTIC MANAGEMENT SYSTEMS

1. INTRODUCTION

The scope of the field of Operations Research in its-present status,
is stated as the application of scientific methods, techniques and tools
to problems invo}ving the operation of a system so as to provide those
in control of the system the optimum solution to the problem. Omne of the
most important phase of operation in conducting an operations research
study of a management decision problem is constructing a mathematical
model to represent the system under study and deriving a solution from
the model.

The mathematical models are generally classified into two categories:
1) Deterministic models and 2) Stochastic models. All the ma?hematical
models are artificial, although some are more realistic than others. In
deterministic models, the cause and effect relationships are unequivocally
set forth. The advantage of the deterministic model is that it stresses
the principle aspects of the problem, As a result, this model often yields
equations simple enough to be handled analytically. On the other hand,
the stochastic models try to describe the problem more realistically, yet
with no attempt to examine each possible outcome of uncertainty. The sto-
chastic system analysis is based on the concepts of the probability theory
which is defined as the study of mathematical models of random phenomena (1).
A random phenomenon is defined as an empirical phenomenon that obeys p:ob—
abilistic rather than deterministic laws.

| Stochastic problems appear.in practical situations for many reasomns (2).

Some of these are stated below:



(1) The equations describing the process are only approximations,
since the "true" equations are not known. The transformations
from stage to stage are probabilistic;

(2) The state of the system can not be clearly identified;

(3) The physical, chemical and economic data in the models are
estimates of varying degrees of certainty;

(4) The stochastic variables can not be clearly identified;

(5) The probability density function is not known;

(6) The probability demsity function is known, but the parameters
vary;

(7) The objective of the pr;blems change from time to time;

(8) A great deal of uncertainty exists in the measurements taken

in the process.

The various reasons indicate the occurrence of stochastic processes
in the different fields of science and techmnology. Stochastic systems
exist in industrial and management problems involving production scheduling,
inventory control, fdrecasting, the analysis of economiec fluctuations and
the design of control systems for industrial processes. Also the concepts
of quality control and the newly developed science, Queuing Theory, which
play an important role in Operations Research are based upon the probability
theory. The products which engineers design and produce are used by various
segments of the population. Since large numbers of people differing in
many ways are always involved, the description can only be probabilistic
in nature, Thus the techniques of queuing theory and quality control deal
with the stochastic systems in all types of industries. In statistical

physics stochastic processes provide models for physical phenomena such as



thermal noise in electrical circuits and the Brownian motion of a particle
immersed in a liquid or gas. In addition, randomly varying time dependent
functions enter many engineering préblems, such as signal detections in

the presence of noise. Thus a study and analysis of stochastic systems is

seen to be important.

PURPOSE AND SCOPE

The purpose of this report is to formulate stochastic models for some
industrial management systems and to obtain a solution to these models by
the application of the discrete stochastic maximum principle. The mathe-
matical models considered include different types of models such as a linear
model, a non-linear model, with known probability distribution functions and
known parameters (the parameters being the mean and variance of the random
variables in the modei). The models solved here are taken from original
deterministic cases and are converted to stochastic models by properly in-
troducing random variables in their structure, thus making their solution
more realistiec. The main purpose of the report is an attempt to apply the
Pontryagin's maximum principle to the optimization of the discrete multi-
stage stochastic processes. For all models, a purely probabilistic mathe-
matical model will be formulated and a solution will be sought. In chapter
2 a weakened form of the local maximum principle for stochastic problems is
obtained by following the derivation presented in chapter 10 of Fan, et al.
(3). 1In the other chapters the follcwing stochastic models are solved by
applying the maximum principle algorithm,

(1) A three-stage production scheduling problem;

(2) A five-stage resource allocation problem;



(3) A hydro-electric water storage system;
(4) A production and inventory control problem with discrete

probability distribution.
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2. BASIC CONCEPTS AND THE STOCHASTIC MAXIMUM PRINCIPLE
RANDOM VARIABLES AND PROBABILITY THEORY (1)

From the mathematical tﬁeory of probability, a stochastic process is
best defined as a collection (X(t), t € T) of random variables. The set
T is called the index set of the process and no restriction is placed on
the nature of T. However, the two important cases arise when T = (0, 1,
2, ...), in which case the stochastic process is said to be a discrete
parameter process, or when T = (t; - @ < t<») or T = (t: > 0), in which
case the stochastic process is said to be a continuous process. A random
variable X is a real valued quantity, which has the property that for every
set B of real numbers, there exists a probability, denoted by P(X &€ B),
that X is a member of B. Thus X is a random variable whose wvalues are
taken randomly (that is, in accord with a probability distribution).

The expectation, or mean, p, of a random variable X, denoted by E(X),

is defined (when it exists) by

«©

f xf(x)dx for a continuously distributed random variable,

—m

L= E(X)

T (x) for a discrete type random variable,
X

where f(x) is the probability density function of X. The variance of the

random variable X is defined by

Var(x) = o2 = E(X2) - [EX)]?

The concepts of expectation (or mean) and the variance are very useful
in the stochastic models. In these models to smooth out the probabilistic

behavior of the variables, the kind of averaging procedure that is used is



the problem of expectation. As much as certainty is essential to the
deterministic model, expectation is to the stochastic model.

One morerconcept that is used in the solution of stochastic models
from the probability theory is the definition of independent random vari-
ables. A set of random variables Kl, X2’ e Xn which are defined as
functions on the same sample space are said to be independent if and omnly
if the followingrstatement is true

For all sets Bl’ B2’ e Bn of real numbers,

P(Xl is in B., X, is in B

ll 2 2, *s ey Xn iSian)

= P(Kl is in Bl}P(X2 is in BZ)"'P(Xn is in Bn)

Hence it follows that a set of n random varisbles Xl, XZ’ GHF Xn are in-
dependent if and only if their joint density is equal to the product of

their marginal densities, tﬂat is,
f(Xl, X2’ veey Xn} = fl(Xl)fz(Xz)...fn(Xn)

For a set of independent random variables, the expectation of the joint

density is equal to the product of their marginal demsities, that is,
E[£(X}, X5, +vey X)) = E[fl(Xl)]E[fz(Xz)]...E[fﬁ(xn)]

In the following section a weakened form of the local maximum prin-
. eiple for stochastic problems is presented by following the derivation pre~

sented in reference (5).



THE STOCHASTIC DISCRETE MAXIMUM PRINCIPLE FOR SIMPLE PROCESSES (3,4,5)

A schematical representation of a simple discrete process is shown in

Fig. 1.

The process consists of N stages connected in series. The trans-

formation of the process stream at the nth stage is described by a set of

performance equations.

where

x" = fn(xn_l, e“, En), n=1, 2, ..., N, (1)

W
|

= C, specified input vector, which may be a random

variable with known probability density functiom,

x 1is a s-dimensional state vector at stage n;

is a r-dimensional decision (or control vector) at

stage n;

is a g-dimensional random vector with known probability

density function at stage n.

The observation of the state vector at stage n is made and, in general,

described by

where

="M, 0™, n=1,2, ..., N (2)

is a s-simensional observation vector at stage n,

s
is a Z Py dimensional random vector (disturbance or error)
i=1 '

. : n :
where p; is the sources of error for each xi,the number of
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which may be different for each x: .

n ., -
If we assume that a perfect measurement on x is made and no disturbance

presents, equation (2) reduces to

y'=¢"x), =n=1,2, ..., N (3)

In the following development, we assume

yn = xn, n=1, 2, ..., N ’ (4)

The optimization problem associated with such a process is to choose
n
asetof 8 ,n=1, 2, ..., N, satisfying certain conditions, such that

the expected value of the scalar function (i.e., objective function)

E(S) = E((c) %) (5)

attains its maximum value. Here ¢ is a given column vector of constants

and the superscript T denotes the transpose of the column vector.

The conditions that the decision variahbles must satisfy are

n n

(1) " =¢" x"

-1 F . i
), i.e., a decision variable is a function of the
observed data; ) (6)
(2) The values that 8" can take on are subject to constraints in

the form of

™ >0, n=1,2, ..., N (7)

A set of decisions Bn, n=1, 2, ..., N, which satisfies conditions (1)
and (2), is called a control policy.

‘The method of deriving the discrete stochastic maximum principle is
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much like that used in deterministic case, It is first assumed that an
optimal solution exists. This optimal solution is then perturbed slightly
at stage n, and the resulting change in the objective functién is ob-
served. From an analysis of this variation, local conditions on the
optimal decision are obtained.
To derive the optimization algorithm for the problem, we assume that
(1) fn(xn_l, e“,'gn), n=1, 2, ..., N have continuous second order
partial derivatives with respect to xn—1 and 8" and the expected
values of these partials are assumed to be uniformly bounded.
(2) The random vectors En, n=1, 2, ..., N are assumed to be in-
dependent from stage to stage and the g-dimensional joint distribution
function P(En) is known.
(3) There exists a set of optimal decisions, denoted by 5n, n=1,
2, ..., N, satisfying the conditions (6) and (7), for which the ob-
jective function (5) is maximized.
Corresponding to these optimal 6“, the optimal trajectory is described

by

fn(x

]
]

-n-1
3

2@, M, n=1,2, ..., N - (8)

and

a0 En(ynrl) _ gn(gnwl)’

A= Ty Ly soug N (9)

The objective function then attains its maximum value, i.e.,

El(c) ) = mex B ({e) %) (10)
6™
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Suppose now that equation (1) represents a system perturbed away
from its optimal state given by equation (8), due to a small perturbation
in the state vectors. The variational equation of the perturbed system

about the optimal system is then given by

2™ 36 1 1_ ol

s = { § 5] T # ™ e (11)

n-1 -n-1
X = X

el]. - a—n—l(;n—l)

where O(Xn-l - En_l) represents terms of higher order derivatives, and
6x" = x" - X
. af of 38 ) ; :
The matrices e §§~and 3% are the Jacobian matrices of the functions f

and 6. We now define a set of adjoint vectors by

N = N, n=l, 2 ..., ¥ (12)
where
n n
P = (afn_l + Bfn BBn_l) (13)
9x 96 8x n-1 -n-1
x = X s

z =c ' (14)
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1

Let the scalar product of z" and fn(xn— " Bn, gn) be denoted by

n_ .
H; i.e.,

n n.T n xn—l n n

B, 21 0 = @O, 6, &Y (15)

Then we have the following necessary condition for-optimality.
Theorem 1

. s n ;
Let the optimal decision 67, n=1, 2, ..., N exist, and have con-
tinuous second derivative almost surely. Then there exists a solution

to equations (12), (13) and (14) with the following properties:

@ e, DL 5h

. 1 =N- *
> @ (2, &1, o8 D Daus., (16)

(2) If 1 <n<N and if 6" = 8" + 88" is allowed to lie on

boundary of the constraint, ¢n(6n) > 0, then

E(Hn(zn, ;n—l, gn) ;n—l)

> BEER, 371, 00| @D + o(eDans. (17)

Note that the almost surely relation in the above theorem and in the sequal

are stated with respect to the probability distribution induced by 8%, 1t
may then happen that the function gn(;n—l) have points at which continuity
of second derivative fail to exist but the probability associated with these

points is zero.

*
a.s. is the abreviation for almost surely.

-
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The second assertion (2) above is not a local maximum condition but
rather a stationary condition because of the appearance of higher order
terms, 0(52), if the optimal solution lies within the constraints.

If the system is linear and the optimal solution is also linear,
then the necessary condition can be formulated as a global maximum condition

on Hn, i.e., if equation (1) can be written as

# w A 2T £ BN+ 6D, 1w =i, By wess N (18)

and if the optimal solution exists and is almost surely linear, then

E@E (2", &1, 8% N > @R, @7, o® @ Y)aus. (19)
The equations which described the adjoint vectors by equations (12),
and (13) are somewhat more complicated than was the case for the analogous
quantities in a deterministic system. This is due to the effect of per-
turbations in a decision on a future decision. However in many situations,
equation (13) takes on a form identical to that of the aeterministic case.

This is stated in the following theorem.

Theorem 2.

Let the optimal decision Bn, n=1, 2, ..., N exist and have con-
tinuous second derivatives a.s.

At stage m if 6™ is not constrained or 6" lies within the constraint,

then, equation (12) of the adjoint vector can be replaced by
(zm_l)T = (zm)T i,m (20) =

where
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& m
Ix -m-1
X
o®
with the following property,
E(Hm_l(zm—l, ;m—Z, gm—l)l ;m—Z) 3_E(Hm_1(zm—1, ;m—Z’
e“"l)‘ %) + 0(e?) (22)

Theorem 1 and 2 are very useful in the solution of stochastic models.
In the following chapters, the above stated discrete stochastic maximum
principle algorithm is used to obtain the solution for some stochastic

management models.
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3. PRODUCTION SCHEDULING MODEL
INTRODUCTION

This study deals with the problem of optimal production planning.

In any industry production is the basic operation performed to fulfill the
objectives of the company. The manufactured products are sold out according
to the demand for the product from the customer population. By production
scheduling it is meant here that the rate of production of a commodity is
determined over a period of time so that a desired criterion is optimized
in the system. The criteria that are usually considered in the system an-
alysis are

(1) Maximization of the total profit derived from the system

performance.

(2) Minimization of the total cost of expenditure incurred in the

operation of the system,

Here in the present study a mathematical model is formulated to repre-
sent a multi-stage production planning process considering the factors of
production level, change in production level from time to time and the
demand for the commodity. This model has been originally formulated and
solved in detail using the discrete maximum principle by Hwang, Tillman,
and Fan (1). Here in the present investigation the demand parameter (which
was treated as a constant fixed quantity during each period in the original
deterministic version) is considered as a random variable with known dis-
tribution and with known parameters (i.e., with known values of the mean
demand during each period). The consideration of demand factor as a random

variable fits the real situation more suitably since the demand for any
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commodity from a large consumer population is always unpredictable and is
expected to vary Instantaneously from time to time. A general solution
is first obtained as an n-stage process and then a numerical solution is

presented for a four-stage process.

A PLANNING OF OPTIMUM PRODUCTION LEVEL

The problem is to'ﬁetermine the production level for a perishable com-
modity. The excess production over the actual demand is wasted at a cost
of $16 per unit. The cost of changing the production level is four times
the square of the difference between two production levels. The demand
for the product is unpredictable. It varies from time to time during each
quarter, In statistical terms we say the demand is an independent random
variable for each period. From the past history of the demand variations
during each period a demand distributionrcan be obtained and from the dis-
tribution a mean demand level (or expected value of the demand) during each
period can be estimated by the standard statistical methods (2). Hence for
the following known values of the expectation of the demand during each
period the problem is to determine the production level at each period

which minimizes the cost. The last quarter production was 140 units.

Quarter 1 2 3 4

Expectation of

Demand 115 125 100 95
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SOLUTION BY THE STOCHASTIC MAXIMUM PRINCIPLE

In order to apply the discrete stochastic maximum principle each

quarter is defined as a stage as shown in Fig. 1, and let

x; = production level at nth stage (quarter),

8" = the change in the production level form the (n-1)th
stage to the nth stage,

En = the demand at the nth stage (an independent random

variable with specified mean).

Then the production level at the nth stage can be specified as

=% o+ 8, n=1, 2, ..., N (1)
n n (0] ;
where X > & and X = 140 _ (2)
Now let
xz = the sum of costs upto and including the nth stage

(quarter).

Case 1 Linear Cost Function

Now let us consider the case when the cost function ig linear with
respect to the random variable, i.e., we consider the case when the unit
cost of wastage of excess production over the actual demand is directly

proportional to the quantity of excess producticn. Then,

x;_"l + 40M2 + 1'6(;:‘; - E™y (3)

n_
x, =
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Substitution of equation (1) into equation (3) yields

n n-1
2

n

+ae™?+ 16(x’l“1 +0" - g%

The objective function to be minimized can be written as follows

E(S) = E(xg)

with ¢y = 0 and e, =1,

According to equation (2-15), we define the Hamiltonian function as

n n _n n _n
H = z1 fl + z, f2
n, n-1 n n, n-1 n,2
= zl(xl +0) + zz[xl_ + 4(87)

+ 16(x2_1 30"~ £, B 1, % eess N

Since 6 , n =1, 2,

Thus,
?fz Efi 3
Bx;—l ’ axg—l
o - 6l
Bx?dl | Bxg—l
\ J

., N, are not constrained, we apply Theorem 2.

21

(4)

(5)

(6)
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i 01
n n
= (2], zp) )
16, 1
\ J
zn_l =z + 16 n=1, 2 N
1 %1 2 Sy ey
N —
z, == 0
(8
zg-l = zg n=1, 2, ..., N
N —_—
z, =¢,*= 1
Equation (8) can be further simplified to
z?hl = z? + 16, n=1, 2, ..., N
z? =0 | ) (9)
z, =1, i1y By owaiy B
Hence the Hamiltonian becomes
n_ n,n1 n n-1 . n-1 n n
H —zl(xl +a)+x2 +16(x1 +68 -£&)
+ 4(e™7 (10)

Then the expecting value of the Hamiltonian becomes
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n. o1 14 16(x§“1 + "

-n-1
145

E(Hn x ) =El[z o=

+8™ § g
=Y + 4™

n-1
2

E(zi)(x?"l &80 & 5 T a4 E[lﬁ(x?—l + o™ - M + 4(e™?2

n—l‘

-_-xz

+ xg—l [E(zD) + 16] + ae™? + o™ [EzD) + 16] - 164"

The stationary necessary condition for optimality is

n
Pl |21 =0, n=1,2,..,0¥ (11)
36
It follows that
aH“ -n-1 | n n
E[*— | x ] =80 + E(z,) + 16 = 0
n 1
36
. -E@z])
or 6 =—5g — - 2 (12)

Equation (12) gives the optimal decision at stage n.

From equation (9}, we obtain

E(zi) = 0
B(z2) = 16
E(zi) = 32
E(z]) = 48

Substituting these wvalues in (12), the optimal decisions are



5t = 8
52 = -6
82 = 4
5% = 2

From this, along with equation (1), the production level at each stage,

where xi.i gn, is determined as follows:

xg + ol = 140 - 8 = 132
xi = Max
ul = 115
= 132
xi + 82 =132 - 6 = 126
xi = Max
yz = 125
= 126
xi + 60 =126 - 4 = 122
3
xl = Max
e = 100

= 122

2y



25

+
@
I

122 - 2 =120

120

It is noted above thaf the determination of the optimum production level
at each stage was not effected by the restriction to meet actual demand
(2s in the deterministic case), and thus this is the optimal solution.
Using this optimal policy and according to equation (3), the minimum cost

is

xg = xg = $§1520

Case 2 Quadratic Cost Function

Here the situation when the unit cost of wastage of excess production
over the actual demand or shortage cost is proportional to the square of
the quantity of production is considered. In this case, the cost function

is quadratic with respect to the random variable and is defined by

+406™2 + 1663 - £ (13)

Then substituting equation (1) into equation (13) and simplifying, we get

x‘2‘=x‘2‘ +15(“1)2 32 ;‘lg"‘+20(e) +3ze“(“1 )
n, 2
+ 16(2™H°, n=1, 2, ..., §

The objective function to be minimized is



E(S)

]
e
~~
M
2
S

with ¢y = 0 and c2 =1

n n _n n _n
H = z1 fl + z2 f2
_ n, n-1 n np_n-1 n-1,2 n-1n
= zl(xl +87) + 32[x2 + 16(xl )° - 32xl E

+ 20(6™72 + 329“(x‘1“l < 2% + 162 ]

Since en, n=1, 2, ..., N, are not constrained, we apply Theorem 2.

adjoint vectors become

n n
of of
1 1
— , —
Bx? 1 Bxg &
n-1 -1
(2} 75 2y ) = (2], 25)
af; af‘z1
n-1 ' n-1
Bxl 3x2
~ J

26

The

(14)



zy = z; + 3222(x1_ - En + Bn), n=1, 2, ...
z? =c = 0
zg'_l = ztzl, n=1, 2, s N
zg =c, = 1
Equation (15) can be further simplified to
?”1 = z? & 32(x;" - g 4 g), n=1, 2,
z? =0
zg =1, n=1,2, ..., N

Taking expectation, from equation (16) we have

n-1
1

n-1
Xy

]

E(z. ) = E(z?) + 32( - +e6%, n=1, 2,

E(z?) =0

The Hamiltonian function becomes

27

(15)

(16)

(17)
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n_ n, n-1 n n-1 n-1 2 n-1_n
H = zl(xl +8) + x2 + 16(x 3 ) xl 3

+ 2006M7% + 326"(x]" Lo ™+ 166™2 (18)

The expecting value of the Hamiltonian becomes

E@” | 7Y = BEDGET + 6™ + <07+ 16607H

2

- 325 lg“ + 2006™72 + 326“( Bl _ 2y

+ 16(e™ 2]

n-1,2

= E(z;)(xg“l 4 4% & 5T & 16(x7 )

n-1 n

3207hY 206™72 + 326n(x2_1 ~ 4% + 1681EY %

2 n-1 n n, 2

B-1 “HEGD - 32" + 20067

_ n- 1
= 2 + 16(

+ 0"EGD + 326370 - w™) 116e[ (2D ) (19)

The stationary necessary condition for optimality is
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B2 | 27N = 406 + B + 32637 - w
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Hence it follows that

n
én = :ffflz._ ﬁ.( n-1 _ n)
40 5 \X B

or

™)

0

Equation (20) gives the optimal decision at stage n.

we obtain

E(z}) = 0

E(zi) = 42 (Ei - u&)

E(z2) = 32 & + By 2+ 8
EG) =32 G +8° -+ 3+ 8

29

(20)

From equation (17},

Substituting these values into equation (20) and simplifying, we get the

following set of equations for the optimal decisions.

4

|

|
w
=8

85t + 892 4 850 + B

1 3 4

+ .20

85t + .88%+ & =49



851 + 32 .

Solving these equations, the optimal decisions are

51 = —20
52 = o
57 = 17
5% = -6

30

From this, along with equation (1), the optimal production level at each -

n n .
stage, where X2 &, 1s determined as follows:

%

Max

120

Max

125

-0

+

]

6l

115

2
e

125

= 140 - 20 = 120

=120 + 0 = 120
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xi + 83 = 125 - 17 = 108
xi = Max
i = 100
= 108
xi + 0% = 108 - 6 = 102
xi = Max
p4 = 95
= 102

Using this optimal policy and according to equation (13), the minimum
cost is
N 4

X, = xz = $5108

DISCUSSION OF THE RESULTS

It is found that the optimal éontrol policy obtained with the linear
cost function by the stochastic maximum principle is exactly the same as
that obtained by using the deterministic maximum principle (1). This
relationship is known as the certainty equivalence principle (3), (4),
which is stated as: "The procedure to obtain control policies for sto-
chastic systems is by considering the optimal control policies for the
related deterministic systems where the random variables are replaced by
their expected values." However, this principle is true only in certain
classes of control systems, e.g., linear system equatioms with additive

random-variables (as in equation (1)) and objective functions of quadratic
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form. For example a system like

=1
x0 = ax ~ + g8",

where En is a random variable, this principle does not apply. Another
point worth noting is that equations (12) and (20) for the optimal
policies are obtained from the stationary necessary condition given by
equation (11). This means that a policy or decision determined by the
use of equation (11) is not necessarily an optimal policy. Equation (11)
only provides a "candidate or candidates" for the optimal policy. In
general, the second order variation of the objective function around the
candidate policy must be examined in order to determine if it is indeed
the optimal policy. It is very difficult, if not impossible, to do so
for any sort of a complex discrete system and we often have to resort to
other procedures.

In the case where the cost function is linear with respect to the
random variable, it is observed that the determination of the optimum
production level is independent of the expected value of the demand during
any quarter (stage); however, for the case where the cost function is
quadratic with respect to the random variable, the mean demand fixes the
optimum production level in the second quarter and thus influences the
other production levels also. The optimum production level as determined
by the optimum control policy, when it is greater than the expected value
of the demand during a stage, indicates that there is always an excess
production available over the mean demand to meet -small fluctuatioms in

the demand over the mean value during that stage.
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It is also found that for both linear and quadratic cost functions
the optimal policy and the corresponding optimal production levels are
not influenced by the demand variable when the expected values are con-
sidered. Another difference noted is that for linear cost funétion, the
optimal decisions do not depend upon the previous quarter optimal decision
but depend only on the expected demand during that quarter whereas for
the quadratic cost function, therptimal policy for any quarter is depen-
dent on both the previous quarter optimal decision and the expected demand
for the present quarter., However the wvalidity of the assumption for the
cost function as linear or quadratic should be first analyzed carefully
in any practical situation before any application of the above shown

procedures.
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4, RESOURCE ALLOCATION MODEL
INTRODUCTION

This study deals with the problem of allocating certain amount of
capital available for investment intq two different stocks. The criterion
considered is the total return or the profit earned from the money in-
vested in the two stocks. Hence the problem is to find the proportion of
the total money that is to be invested in each stock so that the totai
profit is maximized. In any capital market, the dividends from the dif-
ferent stocks fluctuate much through the years due to many different
reasons like the nature of the industry, the type of demand, the economic
conditions of the industry, etc. Hence here the rate of dividend from
each stock is considered as a random variable in agreement to the realistic
conditions. Also because of the above stated reasons, the net worth of a
stock through different periodé is subjected to change. Hence accordingly
the rate of appreciation (or depreciation) of any particular stock with
time is taken as an independently distributed random variable.

The mathematical model considered here has been originally formulated
and solved using the discrete méximum,principle by Hwang and Fan (1) in
the deterministic way (i.e., considering the dividend rate and rate of ap-
preciation for any period as fixed known values). Iﬁ the present study
a stochastic version of the above allocation system is formulated intro-
ducing properly defined random variables and is solved by the stochastic

maximum principle for a five-stage process.
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AN N-STAGE ALLOCATION PROCESS

Let us consider an N-stage allocation process for which a stage
represents one year. The first state variable is the capital available
in dollars to be invested. The decision variable is the amount of capital
at each year that will be invested in stock A, with the remaining capital
being invested in stock B. The expected dividendé from the two stocks,

denoted by d, and dB’ are considered as random variables with known prob-

A

ability distribution functions. Hence let p and Yo denote the expected

DA
value of the annual dividend rates for the stocks A and B respectively.
Similarly the expected stock appreciation of each stock, denoted by 8,
and gps for stocks A and B respectively is also considered as random

variables with known probability distribution functions and known mean

values (denoted by p_, and MR respectively for the stocks A and B). The

GA
distribution function and the expected values of the above two random
variables are obtained from the past history of the two stocks A and B.

The problem is to find the optimal policy that will maximize dividends,

if the initially available capital is a.

Let
x;_l = amount of capital available for investment at the
nth stage (year),
x; = sum of dividend up to and including the nth stage
(year),
6" = amount of capital invested in stock A at the nth

stage (year).

Then the amount of capital invested in stock B at the nth stage will be
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x§-1 - 8. The transformation equations can be written as
xi = (1 +g) e" + (1 + gy) (x;_l - 8™, n=1, 2, «e., N (1)
x; = a | (2)
x’; = x;-l + [dAe’:1 + 4, (xi'l - 8M] (3)
xg = 0 (%)

where the dividend earned at the nth stage {year) is dAan + dB(xi_l - Sn)

N . oo £
and x, 1s the total amount of dividend earmed im N years.

The objective function is the expected value of the total dividend;

that is,
N
E(S) = E(x,) (5)
Therefore, ¢y = 0,
and c, = 5

- . . y oy n
The optimization problem is to choose a set of decisions, 6 , n =1, 2,

.ses N, subject to the constraint,

0<08™< xn"l (6)

so that the objective function given by equation (5) is maximized.
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According to equation (2 - 15), the Hamiltonian function is defined

as

n_ n._n n _n
H = zl fl + z2 f2
_ .n n n-1 n
z; [A+gye + (1 +gy) (x) 87)]
n . n-1 n n-1 n
+ z, [x2 + dAe + dB(xl -6)] (7)

Since Gn, n=1, 2, ..., N, are constrained, we have to apply theorem 1.

Hence the adjoint vectors are defined by

n-1 n-1
(zl ) zz )
r \
3"
(1+ gB) + {(1+ gA) - 1+ gB)} o1 ? 0
9x
1
= (211], 212])
n
26
dB + (dA - dB) ~o-1 5 1
ax
1
\
e
Therefore,
2 Bl ooy 4 [ ) = B & )]ﬁi
1 .| Ea €a 5 n-1
X
1
n -
n : EL]
+ ZZ{dB + (dA - dB) —M_n—l} n-= 1, 2, seey H (g)

1



N -

zl =cy = 0

zg_l = zg, n=1,2, ..., N
N _ -

z, = ¢, = 1

Equation (9) can be further simplified to

n-1 _ n 20"
zl = Zl{(l-l_gA) + [(l-!-gA) - (l-l-gB)] _—n-—l}
9x
1
38"
£} {dB +(d, - dy) "“E;l}’ n=1,2, ..., N
X
1
z? = 0
z; =1, n=1,2, ..., N

Hence the Hamiltonian becomes

B = a0+ g™ + (14 gB)(xi—l - 8%}

- . n-1 n n-1 n
+ {x2 + dAe + dB (xl -6}

39

(10)

(11)
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n | -n-1, _ n n n-1 n n-1
E[H | x ]-= Bz ) (L4 up,) 687 4 (L +u ) -8} +x,
n n-1 n
+ uDAB + uDB(Xl -8)
= PHEED @ ) +ou b+ OREGED (g - u)
2 1 1 GB DB 1 GA GB
+ (uDA - uDB)} 4 th= 1y 2o weea N (12)
. n n-1 n-1
Since the values of E(zl), xl and Xy at the nth stage are con-

sidered constants in extremizing the expected value of the Hamiltonian

function Hn, the variable portion of i as given by equation (12) is

B | 227N = BGD (g, - ngg) + (i, - upy)e”] (13)

The values of p and E(zg) are constant. Therefore,

cA® "eB* "pa’ YpB
the variable portion of the Hamiltonian functionm, H:, becomes a linear

function of 8". The optimal value of 8" that makes H: maximum should occur

at a bpundary of the admissible region of Bn, (0 j_Bn f_x;—l). The sign

of qn is given by
Q" = E(2)) oy = Mag) + oy = Hoo) (14)
1°*"GA GB DA DB

decides in which one of the boundaries 8" lies. For a positive value of

qn, 8" is x;_l, which is equivalent to investing all the money in stock A, and

. n -n . ; ’ E iy ; : ;
for a negative q, 8" is zeroent which is equivalent to investing all the
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money in stock B. Summarizing, we have the optimal decisions at stage n

as

" = x;_l when qn >0
8% = 0 when qn <0
-0 n-1 ' n
0<6 <x when g =0

NUMERICAL EXAMPLE

Let us consider a mumerical example of a five-year or stage-allo-
cation process (N = 5). Let stock A be that of a growing company with

a mean stock appreciation of 15 per cent (u,, = 0.15) per year and a mean

GA
dividend of 8 per cent (uDA = 0.08). Let stock B be that of a gold mining
company whose mine is being depleted and the stock is expected to depreciate
every year, Let the expected value of stock depreciation of the stock B

be 20 perrcent (uGB = =0.20) per year, but the expected value of the
dividend is 30 per cent (UDB = 0.30) per year. Let the initial available
capital be $10,000 (a = 10,000). The problem is to find the optimal policy

that will maximize the total dividend from the two stocks.

From equation (10), we obtain

E(zi) -
E(zi) = 0.3
E(zi) = 0.54



]

E(zi) 0.732

E(zi) 0.8856

Substituting these values of E(z?) into equation (14), we obtain

q = 0.08996
q> = D.0362
q> = -0.031
q4 = -0,115
¢ = -0.22

Therefore, the optimal decisions are

51 = xg = $10,000 because
§2 = x1 because
1
63 =0 because
-4
g =0 because
=5
g” =0 because

Substituting these optimal decision values into

have

equations (1) and (3) we



43

xy = 11,500
x5 = 13,225
x} = 10,580
Xt = 8,464
x; = 6,771.2
x; = 800

xg = 1,720
x) = 5,687.5
x3 = 8,86L.5
xg = 11,400.7

Therefore the total dividend according to the optimal policy is $11,400.7.

DISCUSSION OF THE RESULTS

It is found in this example that both stochastic and detemministic
solutions agree with each other and thus the certainty equivalence prin-
ciple is again verified. In this system the performance equations and
the objective function are completely linear in random variables and in
decision variables. It is seen here that the stochastic maximum principle
is able to handle the constraints on the decision variable in a very
similar way as in the deterministic case. Also when theorem 1 is applied

for the constrained optimization problem, though the equations (14) and
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(15) describing the adjoint vectors imitially appear mére complicated,
after simplification and numerical substitution equation (16) for the
adjoint vectors takes on a form that is more identical to that of the
deterministic case. Finally it is felt here that though the numerical
values for the optimal solution are the same for both stochastic and
deterministic cases, the stochastic treatment of the problem is con-
sidered a better approach to the realistic conditions. However the ef-
fectiveness of the Stochastic approach in the practical situations is more
dependent on the proper evaluation of the expected values for the random

variables considered in the model.
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5. A HYDROELECTRIC WATER STORAGE SYSTEM
INTRODUCTION

The big storage reser&oirs of a hydroelectric system collect water
during high river flows for use during low river flows. The scheduling
of the use of this water in the storage makes an unconventional inventory
problem. Since the future river flow is not certainly known, the problem
encountered is one in which the decisions aré to be made under uncertaintf
and in which the goal of operation must be to maximize the expected return,
not the return itself. If the future river flow were known in detail a
year in advance, the operations plan for water utilization could be worked
by the calculus of variati;ns method (1). Since this advanced knowledge
about the river flow pattern is not available when decisions have to be
made, one must use the probabilistic methods.

The scientific treatment of pr&blems aésociated with water storage
systems is of recent origin. The literature about the work done in water
storage systems haé been well reviewed by Prabhu (2). The pioneering work
in this field appears to be that of Gumbel (1941}, (3) which dealt with the
return period of flood flows; this was later discussed by Moram (1957), (4).
Also in 1954, Moran (5) gafe the first probabilistic formulation of a
storage model for a water reservoir system., Empirical work on the determi-
nation of optimum storage capapity of water reservoir system was done by
Hurst (1951, 1956), (6), (7). In 1952, Dvoretsky, Kiefer and Wolfowitz
(8) presented a geaerél statement of hydroelectric problems as inventory
problems, which was later extended to the specific case of the Grand Coulee

plant on the Columbia River and a numerical solution with reference to the
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Grand Coulee Dam, by Little (9) in 1955. Little constructed a mathe-
matical model which fits into the general framework of optimization in
multistage processes as discussed by Bellman (10), (11) in his papers

on dynamic programming. Inventory problems arising in the combined storage
systems of three plants have also been studied by Cypser (1953). More
recent investigation about the hydroelectric systems is due to Koopmans
(1958), (12) and Bather (1962, 1963), (13), (14). In the present in-
vestigation, a discrete stochastic model for the single storage reservoir
system of a hydroelectric plant is formulated, making small changes from
that proposed by Little and the maximum principle is used to obtain the
solution. For the numerical example considered, the numerical values for
the distribufion function—éf the random varisbles involved in the model are

taken from the work of Cypser (1).

STATEMENT OF THE PROBLEM

A mathematical model of a hydroelectric system is constructed and it
is used in determining the optimum water use. The model chosen is as simple
as possible consistent with including the main features of the problem. It
comprises a single storage reservoir with a hydroelectric plant, a source
of supplemental power generation, and estimated power demand and river
flow characterized by probability densities. We assume that a supplementary
source exists (a thermal power station) in case the entire demand can not
be fully met, but these are available at a cost while the hydroelectric
power is available free when there is sufficient water storage.

Time is considered broken up into N intervals. At the beginning of
each a decision is made about storage use in that interval. The decision

is to be made taking into account the current reservoir level and the river
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flow in the preceding interval; The index of performance of the system
is taken to be the cost of 6perati6n. Water is free, but if it is not
available, coal must be burned in steam plants, or energy brought from out-
side the system. Thus the relevent cost is the cost of supplemental energy,
where the latter is defined as that portion of the total demand which the
system's hydroelectric-plants are not supplying. A scheduling of storage
water use that minimizes the expected cost of supplemental energy is sought.
The hydroelectric systems operating in conjunction with thermal sources
are subdivided into two categories - the long range hydrothermal systems
and the shogt range hydrothermal systems. In the short range problem load
allocations are constrained so as to consume only a specified amount of
water over a short future éime intgrval such as one week., Variations in
elevations and plant efficiencies during this short interval have small
effect on the optimum operation. In systems with large storage, where ap-
preciable cumulative changes in plant elevations and efficiencies occur,
these weekly specifications must be the results of a long range optimization.
Hence the systems iﬁ the long range category are characterized by appreci-
able influence of current operation on long range economy due to cumulative
changes in storage elevation and plant efficiencies. Thus in the long
range hydrothermal systems, the operation is not adequately described by
power generation alome, but rather by the particular combinations of ele-
vations and rate of change of elevation which, together with natural stream
flows, determine the power genération. It follows that long range pre-
diction of stream flows and system load enter the problem explicitly.
Furthermore, unilateral constraints imposed by various hydro operating
limitations must be accounted for in the mathematical model. In the fol-

lowing section, the mathematical model is constructed only for a long range
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hydrothermal system.

PROJECT AND OPERATING LIMITATIONS

One of the most important factors in the mathematical formulation of
the long range optimization problem is the operating limitations on the
system performance. The principal project limitations are the maximum
discharge of water that can pass through the turbines at the maximum gate
opening and limitations on the minimum drawdown elevation because of the
location of intakes on the limits of the storage basin. The operating
limitations'include minimum plant discharges for navigation or fish -
life purposes and maximum storage elevation as directed by flood prospects.
Many of these 1imitation§ are inequalities in form and are to be carefully

analyzed in obtaining the solution for the mathematical model.

SEASONAL VARIATIONS

The long range hydrothermal problem is characterized by the seasonal
shifts of load requirements and non - coinciding seasonal variations in
stream flows. Usually in fall and winter the river flow decreases when
precipitation in the mountains falls as snow. In spring and sumnmer the
snow melts and the river rises, filling tﬁe reservoir and satisfying all
power demands. In winter, therefore, water is drawn from storage to sup-
?lement the low river flow. If drawdown is made too soon, the hydrostatic
head at the plant drops and the power that can be generated by the natural
river flow is severely reduced. At the same time such a drawdown is a
consumption of reserves which, if the years turn out dry, can lead to power
shortagé. On the other hand, if the stored water is saved too long, it may

never be used at all for there is always more water than can be used in
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spring. Thus in spring and summer, the right decisions about water use
are obvious whereas in fall and winter such decisions require a balancing
of the benefits of future against immediate water use in the face of un-
certain future flow. Hence because of this uncertainty in the nature of
river flow and the demand for power during any period, the quantity of
river flow to the dam and the demand for electricity from the consumers
are considered as independently distributed stochastic random variables
with known distribution in the following mathematical model presented.

The probability density functions for these random variables are estimated
from the past history of.operation of the system using the standard sta-

tistical procedures (15).

ACCURACY OF FLOW FORECASTS

Of fundamental importance in the determination of long range opti-
mization is the accuracy of forecasts of stream flows and power demand.
Any one optimization can be only as accurate as the stream forecasts. Flow
records for a long time in the past and ground - water level measurements
enable flow forecasters to make predictions that flows will exceed a certain
minimum, with practically a hundred percent probability. Various tech-
niqges (16), (17), (18) can be used to predict the probabilities of the
£low exceeding levels above this minimum. Whether the operation of the
system is to be based on the expectation of just exceeding the minimum flow,
or on a lesser probability of éxceeding some higher flow, is today a manage-
ment decision., However, in the following consideration, it is assumed that
only a "best estimate" of river flow and power demand during each period

is available.
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HYDROELECTRIC STCORAGE SYSTEM MODEL

Let us consider an N-stage decision process as shown in Fig. 1 in
which each stage represents a certain interval of time, The performance

equations of the system are as follows,

n n-1 n
xp =X tE -0, m=1,2, ., N )
0 _
X, = a (2)
n_ _.n 1 . n-1 n
Xy = PO Iy + 5 (x; © + x))] (3)
0 o
Ry = 0 : (4)
where
x? = a state varlable representing the amount of water inventory
in the reservoir at the end of the nth stage
x; = a state variable representing the amount of hydroelectric power
generated during the nth stage (period)
o™ = the decision variable representing the amount of water discharge

during the nth stage

gl = an independently distributed random variable with mean “E’ repre-

senting the amount of river flow in the nth stage

a specified constant for the initial water inventory

ul
i

a specified constant for the plant

=]
I
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I0 = the amount of static head difference between the level of the

reservoir and the turbine position in the plant
In equation (3) the expression for hydrcelectric generation during the nth
stage, xg, is only approximate and the bracketed term is proportional to
the average net head and p is the constant of proportionality with an ap-
propriate value for the plant. The average net head includes the static
head difference between the reservoir and the plant location and the average

water storage head. The total cost function is defined as follows.

N
n n, 2
s= ) lag+a g +a, (g)7] (5)
0 1 2
n=1 .
where
S = Sum of cost of supplying the supplemental energy to

meet the power demand upto and including the Nth stage

gn = the supplemental energy required during the nth stage

ags 31> 3y = specified constants for the plant

The supplemental energy required is given by

n n n

where

n

&y

. . . . . n
an independently distributed random variable with mean Hos
representing the amount of demand for electricity during
the nth stage

Hence the total cost function is defined as
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N
n n n D2,
s = nzl[a0 +ay (&) - xp) +oa, (E) - x)7] (6)

The objective function which is to be minimized is given by

N
E(S) = E[ ]
o

n n n n, 2
—1{a0 + al(g2 = x2) + a, (Ez - xz) 1] D]

The optimization problem is to choose a sequence of decisions,
e, n=1, 2, ..., N, which minimizes the objective function of equation
(7) and which satisfies the following constraints om the state and decision

variables.

(8

+e)) )

where
Bmin = Mininum water storage required for navigation or fish -
life purposes
emax = Maximum discharge of water that can pass through the turbine
at the maximum gate opening
I = Maximum storage inventory
max

The solution for the above stated model by applying the discrete stochastic

maximum principle is presented in the following section.

SOLUTION BY THE STOCHASTIC MAXIMUM PRINCIPLE
In order to apply the stochastic maximum principle, a new state vari-

able is defined for the cost function as follows. Let



Xy =+ g Ty (£ = xp) il @ -’
n=1, 2, ..., N
xg =0
where
xg = Sum of the c;st of supplying the supplemental energy to meet

the power demand upto and including the nth stage

Then the objective function to be minimized becomes

E(S) = E(xg)

=0; c, = 1

where c. = ¢ 3

1 2

To reduce to the standard form as shown by equation (2-1), the state

. n n .
variables x, and x. are rewritten as follows.

2 3
xg = pe“[I0 + %-(xg"l + xi)]
Substituting for x? from equation (1), we pet
xg = pH[I0 +-% (x?ul % x?-l + g? - 8M]
= p8 [T, + X? ot E%"‘— —; , n=1,2, ..., N
xg =0

in equation (11), we get X

s n
Substituting for x 3

2
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(10)

(11)

(12)

(13)

14

in the standard form as
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n n-1 n n-1n n
Xy = Xg f a, + al{i2 - p[xl 8 + 106
n.n
£_0 ,an 2
1 () e . n-1n
+ 2 - 7 ]]‘ + 32‘[52 = pl.#:l 5]
. ©2 2
+ 108 + 5 - 5 1y, n=1, 2, ..., N (15)
xg =0

CASE 1. LINEAR COST FUNCTION

Let us first consider the case when the cost function is linear
; : n o i
with respect to the random variable, gz; that is, let a, = 0 so that the
. s . 5 i n
state variable for the cost function becomes a linear function in 52 as

shown below

n
£ n
n n-1 n n. n-1 1 6
+ay + a{g, - p0 [x tIpt 5 -5 1),

3 1 0 2

2y oey N (16)

n n _n n _n n _n
H = zl fl + z, f2 + z3 f3 |
& n
n~-1, n-1 n n n n_ n-1 1 ¢}
1 (x1 +tE; -8 )+ zzpﬂ [xl + 10 + 575
& .n
n. n-1 -n n, n-1 1 5}
+ z3{x3 + a, + al[gz = pb (Xl + 10 + 2~ ‘59]},

n=1, 2, ..., N . (17)



Since Bn, n=1, 2, ..

the adjoint vectors are defined by

, n n
_,n 10 N _ 38 L
= (21, 25, 23) | 1 L !
) &
n n
f f
5 +.a 2 38" 9y 30"
n, n-1°7’ n,. n1°?
ab Bxl a0 sz
n n
et 5 5 35 30 9%y ao"
1 1 n-1? n-1 ?
a6 Bxl o8 sz
where
n b1}
af £
2 -1 1
—n'=p(xl +IO+—2—9n)
ab
and
n n
of '
3 -1 1
o e LRI
00
Therefore
n
n of n
n-1_ n 38 n, .n 2 238
zo = n T m) el )
1 1
n
f,. . n
+ zg {—alpen +'_f%j§__;l} s m=1, 2,

.y N are constrained, we apply theorem 1.

5T

Therefore

(18)



N = —
zy = ¢ = 0 (19)
n n
_ LD ef, . n of n
zn'l = -y 28 + z0 S + z —3 26 s n=1,2, ..., N
2 1 axn—l 2 agD n-1 3 5B 2 n-1 2 2
2 3%y 98 9%,
(20)
N
Z, = ¢, = 0 (21)
n-1_  n 3" n 9Fg 5e" n 3 5"
-4 = -z, — _ + —_— o n=1,2, ..., N
3 1, n-1 2 .n_n-1 3. n_ n-1° 3 =3 2
8x3 28 ax3 a0 SXB
(22)
N -— —_
zy = cq = 1 (23)
Hence
lln n
n-n-1, _ ., n . n-1 N oMy o By B Bl S8
E[H |x "] = E(z))(x; ~ +uy - 0) 4 E(z,)p6 [x; ~+ 15+ =]
Lln n
n,; n-1 n n, n-1 1 8
+ E(z3_){x3 +ag + a; [“2 =08 (x; I g - 2—)]},
n=1, 2, ..., N (24)
Now a segquence of decisions e“, n=11, 2, ..., N, which satisfies the

constraints specified by equations (8) to (10) and which minimizes the
n;-n-1 ' A

E(H lx ) is the required optimal decision that also minimizes E(S). The

computation of optimal decisions for the numerical example of a four stage

process is presented in the following section.
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NUMERICAL EXAMPLE FOR A FOUR STAGE PROCESS

Concider a four stage process in which each stage represents a pericd

of three months so that the performence behavior of the system through

out a year is included in the four stages of the process. From the past
history of the system, a set of "best estimate" curves (Fig. 2) are ob-
tained for the river flow and power demand through out a year. From the
curves the average expected values (u's) of the two random variables are
computed and given below. The other system constants are assumed the foll-
owing values as suggested by Little (8), (according to the data obtained

from the Grand Coulee Dam on the Columbia River).

ui = 133.7 KCFS day
pi =~ 36.3 KCFS day
pi = 26.3 KCFS day
pi = 168.3 KCFS day
p% = 332.7 megawatts
p; = 345.6 megawatts
u; = 362.2 megawatts
ﬁg = 342.2 megawatts
xg = 500 KCF¥S day

I_ = 260 KCFS day
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0.00228 megawatt/(KCFS da‘y)2

p =
6 = 980 KCFS day
max
6_. = 140 KCFS day
min
1 = 8750 KCFS day
max

ag = 0

a; = 1 $/megawatt

(The unit Kefs day is a volume equal to a flow of 1000 cubic ft per
second for a day.)

With this set of numerical values, tﬁe optimal decision is calculated
as follous.

From equations (19),7(21) and (23), we get

E(zf) -0
E(zg) -0
E(zg) =1

Substituting these values in equation (24), we get

4
4
&i=3. .3 4 4 3 Y1 @Y
EH [x7) = x5 + aq -+ al[u2 -p0 (xl + IU + 5~ 3 Y]

Now the optimal decision 54 is found from the condition

4
oH =3
E[ﬁ*zlx ] =0

Hence it follows that
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4 u4
3H ' =3, _ 3, Y1ooa
E{——Zﬁx ] = -appG] + I+ -—5-0) =0
a8
ﬁé
=4 _ -3 1
or ] = xl + IO + 5
2 4
Now E[E—EZ-2]§3]= a; p > 0
3(8 )
4

This indicates that at ©

Therefore

=x+ 3

But from equation (9), 84

140 < 8% < min (

Since 54 lies outside th

=4

I

allowable

min (980,

(ii + 168
Simplifying, we get

2f . o . =4 o

B + 6" +8 +86

4
1

)

40.15

980, xi + 168.3)

is range, we take

maximum of 6

3

1 + 168.3)

X

+3)

= 1084

From equations (18) through (23), we obtain

is constrained as follows.

63
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E(zi) - Falp[Qi + 344.17] (26)
E(zg) <P
E(zg) = 5

From equation (24), the Hamiltonian function for n = 3 is

3=2, 3.2 3 3 2
E[RH |x ] = E(zl)(xl - 11 87) + X3 + ag
3
u 3
3 3, 2 1 ]
toagluy = 0070 + I 57 - ]

. , ' c s . 3 .
Row taking partial differentiation with respect to 6§ and equating to
Zero, we get
3
E(zl)

= ap + (x

53 2

1

+ 273.17)

Substituting for E(zi) from equation (26) and simplifying, we get

s + = 660.21 (27)
2.3
E[E_g“' lEZ] =ap >0 indicates that at 63 =
3.2 1
3(87) ’
E(zi) -2 3,-2
+ (x] + 273.17), E[H |x"] has a minimum value.
alp 1

From equations (18) through (23), we obtain

2 w3 '
E(zl) = —alp(xl + 273.17) (28)

E(zg) 4]



€5

E(zg) -1

From equation (24), the Hamiltonian function for n = 2 is

2,-1 2 1 2 2 1
E[H|x7] = E(2])(x] +uy - 07) + x5 + ag
g
_ 2
2 2,1 Y18
+ al[u2 - pb {xl + IO +- ~5 = —3)]

Taking partial differentiation with respect to 82 and equating to zero,

we get

E(zi) 5
= + (x7 + 278.17)
alp 1

=2
S|

Substituting for E(zi) from equation (28) and simplifying, we get

5l + 82 = 372.4 (29)
2202 m E(zi) 7
E[——~§-?1 x ] = a;p >0 indicates that at 8° = —— + (xl + 278.17),
G N a,p

E[Hzlgl] has a minimum. From equations (18) through (23), we obtain

E(zi) = —alp[;i + 278.17] (30)
E(z;) =0
E(z%) =1

From equation (24) the Hamiltonian function for n = 1 is



P Y. D QU . | 0
E[H |x]) = E(z)) (%) + 1] 7 07) + x4 + a,
1
1
1 1,0, K1 -8
+ 31[u2 - pb (xl ; IO + 7~ 2)]

1 ;
Taking partial differentiation with respect to 8 and equating to zero,

we get

E(zi)
= + 826.9
a;p

al

Substituting for E(zi) from equation (30) and simplifying, we get

5L = 165.7

Substituting for 8  in equations (25), (27) and (29) and solving the

equations, the optimal decisions are

6% = 165.7 Kefs day
=2

67 = 206.7 Kefs day
=3

8- = 247.3 Kefs day
-4 :

& = 424.3 Kcfs day

Substituting these optimal decisions into equatiomns (1), (3) and (16)

yields
-1
X) = 409.4 Kefs day
-2
x7 = 367.6 Kefs day

66



x> = 296.3 Kcfs day

X = 0
=1
X, = 268.5 megawatts
=2
X, = 291.0 megawatts
-3 '
X, = 351.7 megawatts
=4
X, = 412.0 megawatts
X = §127.34
3
= _
Xy = $294.60
X3 = $412.73
=4
Xy = $492,62

When the optimal policy is used, the supplemental energy required during

the different periods is as follows.

gl = 64.20 megawatts
2

g = 54.60 megawatts
3

g = 10.50 megawatts
4
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CASE 2. QUADRATIC COST FUNCTION -

Now the case when the cost function is quadratic with respect to the
s n ; : . ;

demand random variable, 52, is considered; that is, the state variable for
. n ., . . . n

the cost function, x3, is expressed as a quadratic function in €2 as shown

in equation (15). Therefore from equation (15), we obtain

n n-1 n n, n-1
Xy = Xg -+ ag + al[F,2 - pb (xl + I0
n n 2
£ n £ n
1 4] n n, n-1 1 0
Tt - P Hagle, -e8(x) T+ I+ 5 -],
n=1, 2, ..., N
xg =0
The Hamiltonian function becomés
n-n-1. n, , n-1 n 1, n, ,n. n-1
E[H Ix ] = E(zl)(xl + My - 6) + E(zz)pa [xl
by n
1 3] n n-1 n
+ I+ —5 ol L ]&‘.(23){x3 +ag + .al[p2
un n
n, n-1 1 8 n n, n-1
- pb (xl + IO + — 2)] + azE[g2 - pb (xl
EI:E o™ ’
+IO+_§—_2)]}’ mi= Ly 2y oeey N (31)

By thecrem 1, the adjoint vectors are defined by



€9

n, 2

( n-1 zn—l zn—l)
21 » %2 2 %3
f : 3
-—-(zr1 z0 7n) 1—?—@—11 __2_3_81 _E
1* 72 73 aXn—l 2 aXn—l ! 5 n-1
' 1 2 3
n n n
n . 2 50 25 e oty 37
T P R A
1 %9 *3
n n n n
EEQ_ s Bf3 36" 8f3 3™ 8f3 ng
—_ S 3 5 ) .
axB L ga™ ax® 1 7 g™ ax® 1 T 2e™ 5x™L
1 2 3
. J
(32)
where
n n
5f £
2 n-1 __'_l _ 5D
;’5 = D(xl Iyt -6 )
n n
of £ n
3 _ n n, .nn-1 n n I
;—5;1 = -a;pf + 2a,00 {00 x; T - [E, 0 (I +— - P} (33)
G|
and
n n n 2
of £ £
n-1 1 n : n, n-1 1
;EE“ —alp(ml tI,+—5 -8 ) + azp{ZpB (xl I+ 2)
gn
n, n-1 1 n 3 n_n n-1, n 2
—28,(x) T A Ig ) +e(e) + (2808, - 3ex; T(8) -3pTg(07)
n
3pk
2 1 2
-3910(9“) - = ™13 (34)



T0

Therefore we have

n afn n
n-1 _n a - 90 ) + n’ "2 36
o R | ! %9 sl 5,01

1 1

_n
of Qaf., ..n
n 3 330
+ z3{axn"l R an—l} ' (35)
1 26
N
zy = ¢y = 0 (36)
n n
n-1 n 30" g gpt 1983 pg"
z = -z — 4z, —— _ + g, —= —— (37)
2 1 a_n~1 2 aen 5 n-1 3 Ben 5 n-1
N
Zy = €y = 0 (38)
n n
n of n af n
-l m20_ , n_ 72036, omo, 73530 (39)
3 1 5 n-1 2 se™ 3 n-1 3 88n 5 n-1
XB X3 X3

N
23 = cq = 1 . (40)

P o n . g o e
The sequence of optimal decisions, © , n =1, 2, ..., N, which ninimizes

-n-1, °
E(Hn]x ) and which also satisfies the constraints specified by equations
(8) to (10) is found by the following computational scheme. The compu-
tational procedure is explained for the same numerical example of four stage

process as shown in case 1.
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NUMERICAL EXAMPLE

The four stage process with the same numerical values for the various
system constants as assumed previously in case 1 are considered here. The
additional constants now introduced with the quadratic terms are assumed
the following values, The values for variance, (o*i)2 of the random vari-
abie, g;; n=1, 2, 3, 4 are computed from thé best estimate curve (Fig. 2)

obtained for the river flow and power demand through out an year.

a, = 1
(01)2 = 200 Kefs day
(Ui)z = 20 Kcfs day
(oi)2 = 20 chsrday
4.2

(Ul) =180 Kcfs day

With this set of numerical values, the optimal decisiomns, en, n=1,2,34
are calculated as follows.

From equations (35) through (40), we get for N = 4

E (zi) =0
E (zg) =0
E (zg) =1

Substituting these values in equation (31), we get



T2

4
A
4,-3 3 4 4. 3 "1 g 4.2
E[H Ix ] = X + a, + al[u2 - pb (xl + IO + %5 - WEJ] + 82{E(€£)
4.2
E(E.)
2, 4.2 3 2 1 4., 3
+p7(6) [(xl + IO) t—g * ul(xl f 10)1
T Y
b & 3 S NG 4.2 & 4 3
—zpuze(xl+10+ 2)+ 4 +p(8)[u2—p9 (:st,1+10
4
oy
+ -1 (41)
where
£ 2 = wh2 s i
‘51 - Ol (]J)
and
4.2 4.2 4.2
E(Ez) = (02) + (u2)

; Loao=h oo
The optimal decision 6 dis found from the condition

4
oH -3
E["‘“‘EIX]=0

06

. . , 4
Therefore differentiating equation (41) with respect to € and equating

to zero, we get the following equation

4
4.3 4.2, 3 [ | 4 3 2
azp(e Yo - 3a2p(6 ) (xl + IO + 2) + 0 {al + Zazp[(xl + IO)

1., 4.2 4.2 4, 3 4 3
+ Z-((Ul) + (ul) ) + ul(xl + IO)] 2 2a2u2} - (xl + I

4

M1 4
+ —5)(31 + 2a2u2) =0 | (42)
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Substituting the numerical values and simplifying, we get

.00228 (94)3 - .00684 (54)2 (1040 - o% - 0% = 83)

1

+ 6L, 00656 (956 - BT = §% = 6% = 168 (5= + 6% # 8°)

2

+ 168026] + 685} - 712000 + 685 (6© + 62 + 8°) = 0 (43)

Now éd as determined from equation (43) is the optimal decision, 64, if

it satisfies the following conditions:

2 4

a(e ") 4 =4

4 3

2) 140 < 6" < min (980, x, + 168.3)

From equaticn (35) through (40), we obtain for n = 4

4 4
af 3f 4
3, <3
B(e’y Ef—d4+—2 B3 (44)
1 5 3 864 B_3
X X
3 2
E(zz) =0
3
E(z3) =1
where
_Bfg
1). —~§-is obtained from equation (33), which after simplification
ax
1

gives



Th

4
of
——%—= - 00000502 (84)3 -+ .00000502 (64)2(2015.7 - 281 - 282
ox
1 :
—283) - 1.56271204 (45)
Bfg
2) . % is obtained from equation (34), which after simplification
50 '
gives
aed
—2 = 00000502 "3 = 00001506 (6%)% (1037.9 - &F - 62 - 8)
a6 ;
b :
+ .00228 0{685.4 + .00456(1037.9 ~ T - 02 - §°)2)
- 1.562712 (1037.9 - ol — o2 - 83) (46)
'364
3). 3 is obtained by differentiating equation (42) with respect
0%
1

to xi, which after simplification gives

304 3¢6H? - 20" (2015.7 - 201 - 26% - 26%) + 300000
3 %7 A 17 .3 1.2 3 (47)
Bxl 3(67)" - 69 (1037-8"-6"-67) + 2(693.7-8"-87-67)
+ 1376.6(693.7—81—92—83) + 551423.3
From equation (31) the Hamiltonian function for n = 3 is
u3
;WL N W . B 5. 3 3,2 By
E[H ]x ] = E(zl)(xl + uy - 07) + Xg + a, + al[p2 - pbd (xl + I0 + 2
3.2
.3 E(E7)
8 : 3.2 2, 3.2 2 2 1 3, 2
-1+ adBE) T + e (07) T [(x) + I + 7 TGy
3
: 2, 3.4
33,2 Y1, . 05(87) 3,2, 3
+ Io)] - 2pu28 (xl + I0 + 2) +————7:—~— + p(07) [u2
ﬁ3
3, 2 g
- pB (xl + I0 + —E)]} (48)
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The optimal decision 63 is obtained from the condition

3

ol =2,
E[—*glx ] =0
a0

Therefore differentiating equation (48) with respect to 63 and equating to

zero, we get

3

2,.3.3 2. 3.2, 2 L PR 2 2
a,p (7)) - 332p {(67) (x1 + 10 + HEJ + po {a1,+ 2a2p[(x1 -+ 10)
1,, 3.2 3.2 3. 2 g 3
+ E'((gl) * (ul) i ul(xl + 10)] +'2a2u2} - IE(zl) + p(al
2
3,, 2 Flas o '
+ 2a2u2)(x1 + IO + —3?] =0 (49)

Substituting the numerical values and simplifying, we get

.00000502 (63)3 - .00001506 (63)2 (243,15 - 81 = 62)+ .00228 83{53.6

1

+ .00456 [(930 - 8~ - 02)2 + 24617 - 26.3 (al + az)]} - [E(zi)

1

+ .1222 (943.15 - 6% - 85)] = © (50)

where E(zi) is obtained from equations (44) through (47). Now 83 as
determined by equation (50) is the optimal decision, §3, if it satisfies
the following conditions:

82H3 ]—2

1. EJ x]1>0
3(53)2 :

2). 140 < 0 < min (980, x° + 26.3)

For n = 3, from equations (35) through (40), we obtain
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2 Bfg Bfg n93
E(z)=E + ° (51)
1 3“2 7 383 8v,'Z
2
E(zz) 0
2
E(ZB) 1
where
2t
1). 5 is obtained from equation (33), which after simplification
9%
1
gives
3
- Sy 3.3 3.2 1,2
—5 = - .00000502 (™)~ + .000005C2 (67)" (1886.3 - 28~ - 287)
X '
1
3
- .83265 o (52)
7 afg
2¥q —3 is obtained from equation (34), which after simplification
a6
gives
af>
—3 = .00000502 (6%)° - 00001506 (6% (943.15 - o7 - 0%)
a6 )
3 1 2,2
+ .00228 87 [725.4 + .00456(943 - 07 - 87)7] - .B32656(943.15
) (53)
883
3). 2 is obtained by differemtiating equation (50) with respect
ax
1

2 . . .
to %y which after simplification gives



1T

o3 30092 - 203(1886.3 - 207 - 20%) + 318000
_ (54)
Bxi 3000)2 — 662(670 — 07 - 62) + 2(670 - 8° - 822 + 466453
The Hamiltonian function for n = 2 is
2,-1. 2., 1 2 2 1 P A
E[A"|x"] = E(z)(x] +u] - 87) +xy+aj+alul - 000y + I
2 3.9
My g2 2.2 2,922 1 2 EE))
+—2-—§)] +a2{E(£2) +p7(87) [(x1+10) % 7
2
2. 2.k
2,1 22 1 Hy p“(8%)
Gy +I] - 2pp00m(x] + gt —5) + 5=
2
2.2 2 2,1 1

Differentiating equation (55) with respect to 82 and equating to zero,

we get
uz
a, p2 (62)3 - 3a2 p(62)2 (xi + I0 + —%) + pez{al + 2a2 p[(Xi + 10)2
+ 30D+ uhh +udeg + 1) + 20,000 - [EED) + o(ay
uz
+ 2a2) 60 + Iy +—3)] = 0 | (56)

Substituting the numerical values and simplifying, we get

.00000502 (92)3 - .00001506 (62)2 (912 - 81) + .0022881{692.2 + .00456

[893.7 - o1)% + 32734 - 36.3071) —'{E(zi) +1.579(912 - 69)) =0 (57)
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where E(zi) is obtained from equations (51) through (54). Now 62 as
determined by equation (57) is the optimal decision, if it satisfies

the following conditions.

2.2
. eh—]x1 s 0
362

1
2) 140 < 02 < min (980, x; + 36.3)

For n = 2, from equations (35) through (40), we obtain

E(zi) =g (58)

E(ZZ) =0
E(zy) = 1
where
Bfg
1). i 1 is obtained from equation (33), which after simplification
ox
1 .
gives
2
oty 2.3 2.2 1 2
—g - .00000502 (67)~ + .00000502 (87)" (1823.7 - 267) - 1.5782160
ax
1
(59)
Bfg
“2)s — is obtained from equation (34), which after simplification
38

gives



9

2
of :
——%-= .00000502(62)3 - .00001506(62)2(911.85 - 61)
a0
' 1.2 1
+ .00228{692.2 + .00456(911.85 - 87)"} - 1.578216(911.85 - 87) (60)
,362
3). ——1-'13 obtained by differentiating equation (56) with respect
0x :
ik

to xi, which after simplification gives

2 306572 - 202 (1190 - o1 + 303700

L3}
ax; 3697 - 6 2912 - o1 + 2(633.7 - oH)? - 1112.60" + 1163257.4
(61)
The Hamiltonian function for n = 1 is
1,-0. 1., 0 1 1 0 1 1,0
E[H lx ] = E(zl)(xl + Hy - 87) + X3 + a, + al[u2 - pb (xl + IO
1 1.2
H 1 ' E(E,)
1 8 : 1,2 2,1.2 0 2 1
1
2, 1.4
1,0 11,0 1., 09(07)
+ ]_ll(xl + IO)] - 2pp 28 (Xl + IO + —5) =+ '4—
ul
1.2, 1 1,0 1
Differentiating equation (62) with respect to 81 and equating to zero,
we get
1J.'L
2. 1.3 2.1.2, 0 1 1 0 2
a0 (8 Y - 3a,0" (8 ) (x; + I +=35) + po {al+ 2320[(}:1 - 10)
1 1.2 1,2 1,0 - 1 1., 0
+g (o™ + ) +uy(xy + L) + 2au,) - [E(z)) + plag + 2a,07) (x)
5
M3 X
+I,+3)1 =0 (63)
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Substituting the numerical values and simplifying, we get

.00000502 (61)> ~ .013459122 (61)2 + 1.52707

- [E(zi) + 1351] = 0 (64)

where E(zi) is obtained from equations (58) through (61). Now 81 as
determined by equation (64) is the optimal decision, if it satisfies the

following conditions:

21

1) E[ -BLl'E | ;0] > 0
a(e™)
-1 v 0
2) 140 < 8" < min (980, x. + 133.7)

1

Summarizing the sequence of optimal decisions, an’ n=1, 2, 3, 4,
is to be obtained from the solution of four simultaneous equations (43),
(50), (57), and (64). To obtain the optimal decision values the following
two techniques are used:

1). a numerical ecomputational method

2). the simplex search technique
The computational procedure by both methods is presented in the following

section.

COMPUTATIONAL PROCEDURE

The numerical computational method which is very useful in obtaining
the optimal values by the maximum principle is first explained. By using
equations (43) through (47), (50) through (54) and {57) through (60), the

; . . =n .
optimal sequence of decision variables, 0, can be found. The particular
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algorithm used to accomplish this is as follows:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Assume a set of wvalues Bl, 62, 83 and 64 as trial.
Use equations (1), (3) and (15) to obtain the valuc of tii state

. n
variables x?, xz and X3 at each stage of the prcecess. Start at

n = 1 and proceed to n = 4,

Calculate the values of the adjoint variables, z;, z? and zg.

Work backward at n = 4 and proceeding to n = 1.

Calculate Banaen and aZH“/a(e“)z by equations (31), (43), (50),

ng and 20 ob-

3

(57) and (64), using the values of x?, xg and z?,

tained above.

Compute a new sequence of decision variables 8" from the following
equation,

(6") revised = (6") old + Ae" (65)

where A8" is given by

n 2.n
ABn _ 9H o H (66)

36" / a(0™?

Return to step 2 and repeat the procedure until the new set of
decision variables is sufficiently close to the previous set to

indicate adequate convergence.

It is worth noting that when the optimal point is not reached, the

revised set of decision given by equation (65) are assumed and the computations

oo . ; ; n ; ;
are repeated. Yor minimization of the Hamiltonian, H ', the second derivative
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of the Hamiltonian with respect to the chosen decision wvariable,

2 2"
2
a(e™
is positive. When the first derivative of the Hamiltonian with respect

to the decision variable,

i

n
26
is negative, then the increment for the decision variable, Aen, should

be positive, and if

is positive, 26" should be negative in order that the decision variable
approaches to the optimal point. The magnitude and sign of the increment
Aen'is given by equation (66).

The computer program written for applying this algorithm, the table
of notations, the numerical results obtained for different iterations and
the optimal solution are presented in Appendix. A number of iterations
with different assumed values for 6" are needed before locating the optimal
point: The assumed values of A8" are varied at different stages, using
larger values for A8™ at the beginning and smaller values as the iteration
converges. A minimum increment of .00l is used to arrive at the optimal
point. The optimal decision values obtained from the solution of the

above equations when all



values of aHn/aa" are less than the allowable error preassigned to them

are

= 139,85
140 Kcfs day
=2
8 = 167.25 Kcfs day
53 = 240.32 Kefs day
=4
B = 494,46 Kefs day

For the optimal policy, the minimum total cost of supplying the supple-

mental energy is

Eg = $26,107.56

The second method used to find the optimal decision values of the
problem is the simplex search'technique. The details of the simplex
method for function minimization can be found from reference (19). The
computer program for the simplex search technique and the results ob-
tained are presented in the Appendix. The optimal solution obtained by

simplex method is given below.

8l = 138.639 Kefs day
52 = 167.057 Refs day
53 = 240.183 Kefs day
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8l

5% = 494.741 Kefs day
-4
x, = $26105.8

DISCUSSION OF THE RESULTS

From the solution obtained it is foﬁnd that for the linear case, the
same solution can be obtained by using the deterministic maximum principle
also when the random variables-are replaced by their expected values. 1Imn
other words, the certainty equivalence principle is found to hold good
for the linear cost function while it is found to be not applicable for
the quadratic cost function case. The reason could be due to the use
of the parameter, variance of the random variable, in the quadratic cost
function solution. Another noticeable difference between the solutions
of the two cost functions is that the expected value of the demand randoem
variable does not directly affect the optimal decision value in the linear
cost function while for the quadratic cost function, the optimal decisions
in each stage are directly influenced by the expected values of the demand
random variable in each stage.

From the results obtained it is seen that there is a wide difference
in the values for the minimum cost by the linear and quadratic cost
functions. A high value of cost is expected in the quadratic cost function
because of the squared terms involved in the cost function expression, which
have higher magnitudes at the optimal condition. _Hence it is seen that
suitability of a linear or a quadratic cost function for any specific
system depends upon its own requirements and nature of the system.

Also a proper determination of the system constants (like ajs a5, P

etc.) is needed since they considerably affect the cost values obtained.
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It is felt that in the above presented solution the effect of the system
constants a; and a, are not fully brought out on the cost values (since
they are considered equal to one), which needs more attention in any
further work. It is found from the numerical solution obtalmed that the
specified system constraints have more influence in the determination

of the decision values in the linear cost function case‘than in the case

of the quadratic cost function. On the other hand, if the optimal decisions
obtained using the stationality condition fall outside the range of the
constraints in the quadratic cost function case, the computation of optimal
decisions and the corresponding determining equations would have been
entirely different.

For the quadratic cost function case, the two methods used for the
numerical computation of optimal decisions give an opportunity to compare
the adaptability of these two methods for use in optimization problems.
With an initial assumed value of 100 for all 6's and using a step size of
unity, the number of iterations ;equired to reach the optimal point by the
simplex search technique method was 26 while the number of iterations re-
quired by the numerical computational algorithm was 39. Though the latter
method took a larger number of iterations to reach the optimum, the total
computer execution tiﬁe required by that method was only 1.25 minutes on
the IBM-1620 computer while the computer execution time required for the
simplex search technique was 1.09 minutes on the IBM-360 computer (which
is considered as at least ten times faster than the IBM-1620 computer).
However the numerical computational algorithm requires an initial judgement
of the range of optimal decisions and based on the judgement a few initial

runs are to be carried out with different base point values to locate the
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optimal point. Another point worth noting is that both methods give the
same optimal solution with reasonable accuracy. The optimal policy ob-
tained is also found to be the global optimal policy with different sets

of base point values by the search technique method.

SCOPE FOR FUTURE WORK
The hydroelectric water storage model which is considered an im-
portant optimization model can be extensively studied further with mod-

ifications on the following factors:

(1). A bigger problem formulated with more stages (probably a
twelve stage process with each stage representing one month
interval) can be considered and the solution by the maximum
principle be compared with that obtained by the dynamic pro-

gramming method (8).

(2). 1Instead of a single reservoir problem, a combined storage
system of three or more plants (as used in reference (1)
for a three plant system by gradient technique) can be in-

vestigated.

(3). Better statistical procedures can be used to determine the
mean and variance of the random variables from collecting more
information on the random variables from the past history of

the system.

(4). Cost function can be modified so that it is made to represent
realistic conditions in a better way. Presently the validity
of the assumed cost function is not known which can be analyzed

in future,
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6. A PRODUCTION AND INVENTORY CONTROL PROBLEM WITH DISCRETE PROBABILITY

DISTRIBUTION

INTRODUCTION

The maximum principle and dynsmic programming are considered to be
two most important optimization techniques which can be effectively used
for the optimization of multistage processes. Each of these two methods,
however, has comparative advantages over the other, depending on the
problem to be solved (1). Here a production and inventory control problem
with given discrete values for the cost function and a discrete probability
distribution for the random variable (demand) for which the stochastic
dynamic programming can be directly used is wmodified by fitting a regres-
sion equation for the discrete values and then the stochastic maximum prin-
ciple is applied to obtain the solution. The solution obtained by the two
methods are then compared. Hence this problem indicates how a multistage
discrete valued problem for which the dynamic programming is normally used
can be modified to obtain the solution by the maximum priﬁciple. The prob-
lem considered here is taken from reference (2) and the solution by the

two methods are presented in the following sections.

STATEMENT OF THE PROBLEM

The problem considered is a production decision problem associated
with aircraft industry. A company that produces autopilots for aircraft
can produce 0, 1, or 2 autopilots per month. The company is planning its
production schedule for the next three wmonths, (say): February, March and
April. At the beginning of February, it will have one autopilot in thé

inventory. During February, March and April it anticipates demand of
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1, 2 or 3 avtopilots respectively dﬁring ecach month with corresponding
estimated probabilities of demand as shown in Table 1., The production
and inventory costs are given in Table 2 where inventory cost refers to
the beginning of the month inventory. In addition, if demand is not met
in any month, there is a shortage cost of $10,000 per unit (shortages in
any month are not carried over to the next month). Also a certain in-
ventory cost is associated with the inventory at the end of April which
is shown in Tsble 3.

The optimization problem is to find the production schedule for the
next three months that will minimize the sum of production, inventory and
shortage costs. The formulation and solution of the above stated problem
by the stochastic dynamic programming is presented first in the next section,

followed by the maximum principle solutica.

STOCHASTIC DYNAMIC PROGRAMMING SOLUTION

In what follows, we shall present briefly the approach of the sto-
chastic dynamic programming method (3) for the optimization of multistage

decision processes as shown in Fig. 1. Suppose that we want to minimize
T 0
E(S) = E[(c) x ) (1)

with respect to

Gn = Gn(xn), n

1, 2, ..., N (2)
The system equations are

xn_l = fn(xna en: En)s =l 2y wwey N (3)



TABLE 1 -

Estimated Probability of Demand For Each Month

Demand Probability of Demand
February March April

1 2

0 Z 0 3

J: 1 1

2 7 Z 3
1 1

2 A 5 0
1

3 0 v 0

TABLE 2

The Production and Inventory Costs For the Autopilots

91

Production (autopilots/month) 0 1 2
Total Cost (in $1000) 15 20 35
Inventory (f#f of autopilots in stock) 0 1 2
Total Inventory Cost (in $1000/month) 2 5 9

TABLE 3

End of April Inventory Cost For the Autopilots

Inventory

Cost (in $1000)

10
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n , ;
where § , n =1, 2, ..., N are assumed to be mutually independent with

knowvn distribution density functioms. By defining

Rn(xn) = min E[(C)T XO|Xn], n=1,2, ..., N
(o™,0% 1, ... ,01) | (4)
we have
Rp(xn)r=_min VE[(C)T KOIXn]

S 1
TR ek o

= min E{E[(C)T x0|xn_1}]xn}
P L
= min E{miz_l 1 E[(C)T Xolxn—l]]xn}
0 (o sesesB )
8
wmin BT &0 [« (5)
n

Equation (5) is essentially the mathematical statement of the principle
‘of optimaiity.
By using the definition of equation (4) for n = N-1 and the recursive

relation of equation (5), we can express the min E(5) as follows:



oL

min E[S] = min E[(c)T xo]
'{el,ez,...,eN} '{eN,eN"l,...,ez,el}
= min E{Ro(x0)|xl]
{GN,GN-l,.. ,82}
= min E[Rl(xl)lle
eV, L eh
= min E[RN"l(anl)]xN] (6)
)

Working equation (5) backward starting with Rl(xl), we obtain a set of
optimal decisions, 8" = gn(gn)’ n=1, 2, ..., N.

Using the above stated algorithm, the solution for the problem is
obtained. Each month is defined as a stage (Fig. 1) with backward numbering.
The computation of minimum cost path in each stage for the different in-
itial inventory level at the beginning of the stage is started with the

first stage (ie, with the month of April). Let

n . . . .
X] < state vector representing the pnumber of units in the in-

ventory at the beginning of the nth stage (month)



95

D = decision vector representing the number of units produced

in the nth stage

n, n . . . . g
& (p )= an independently distributed random variable representing
the demand in number of units in the nth stage with a prob-

ability of p".
Then the performance equation for the system can be written as

x =x +D"-¢£", n=1,2,3 (7)

The expected cost function is defined as follows.

n, n - i
Let fl(xl) the minimum expected cost for the n stage process for a given

value of x?

n-1 n-1 n

: n, n _n _n
= min E[r (xl, D, £) + fl (xl )]xl],
n
D
for n=2, 3
: 1,1 .1 .1 0, 0,,1
= min E[r (xl, D,E) 4+ (Xl)lxll
for n=1 (8)
where
n,n _n _n ; =
r (xl, D, £ ) = sum of production, inventory and shortage costs for

the nth stage
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ro(xg) = End of April inventory cost for the first stage (April)
only for a given value of xg
n-1, n-1 o
fl (xl ) = The minimum expected cost for the (n-1) stage process
n-1

for a given value of X

For each stage, the possible production rates for each of the possible
initial inventory levels are calculated and the corresponding total cost
values are also computed. Then the production rate that gives minimum
expected cost is the optimal decision for the particular inventory level.

: e ; ; 1 :
For example with an initial inventory of zero (ie, %7 = 0) at the begin-

1

ning of April, the different possible production rates (Dl) and the cor-

responding total costs are shown below,

1 1,1 1 0 1 1 1 0 1
2

0 (3) 0 0 15 4+ 10 + 2 = 27

1 1 0+ 20+ 2 = 22

0 2 2 5+ 35+ 2 = 42
1 (%a 0 0 10+ 15+ 2+ 10 = 37

1 0 104+ 204 2+ 10 = 42

2 1 0+ 35+ 2+ 0= 37

Hence for xi =0,



1
the expected total cost with D

- x2S+ TR =

1
3 3

Il
o

30

W=

the expected total cost with D1 =1

=22x—32—+32x

W=

1
25 3

the expected total cost with Dl = 2

- 2 1
=42X5+37 X3

Therefore

1

fl(x1

=O)

Similarly the optimal decision, Dl, for xl

shovn below,
I 1, 1
X £ (p)

&)

163

40

Wl

; 1 .1 2 0,,.1 _
min E[rl(xl, D, &) + ro(xl)lxl = 0]

D1

25 7 with D" =1

1

L R |

D x) Ir, G, DY, ED
0 1 0+15+5+0
1 2 S% 2WFI%FD
2 3 10+354+5+0
0 0 10+ 15+ 5

+

ro(xg)IXi]
20
30
50

30
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=1, 2, and 3 is calculated as



Therefore fl(xi = 1) = min E[r

i El(pl)

0 &

13

1
Therefore fl(x1 = 2)

1 El(pl)

1

I

1

1 0+ 20+ 5
2 54+ 35+ 5
i(xi, Dl, 51) + 1,
Dl
-20x2+30x3
23 %— with D1 =0
xg [rl(xi, Dl, gl)
2 5415+ 9+ 0
3 10+ 20+ 9+ 0
1 0+ 15+ 9
2 5+ 20+ 9
3 10 + 35 + ¢
29 X %~+ 24 X-%
27 %~ with Dl =0
Xg [rl(xi, D1
3 10 + 15 + 15

0 1
(Xl)lxl

+

I

Il

25

45

N

1]

ro(xg)lxil
29
39
24

34

54

1 00 1
L £+ Ty 3]

40

98



1(%) 0 2 5+ 15 + 15 = 35
1 3 10 + 20 + 15 = 45
1 - 2 1
Therefore fl(xl =3) = 40 X 3 + 35 X 3

]

38% with DL =0

Thﬁs with these values the optimal network for the one stage process is
constructed in Fig. 2.

Now for the two stage process consisting of stages 1 and 2, the
optimal decision, D2, associated with each possible initial inventory

level (xi) at the beginning of the second stage (March) is obtained as

follows.
5 20D 00 x I, 0%, £D) 4 £ 60 [0
l(—i-) 0 0 15+2+10+25%~=52§-
1 0 20+ 2+ 0 +25-§_=47.:1¥
° 2 1 35+2+23% - 60
2 (P 0 0°  15+2+20+253 =623
1 0" 20+2+10+25%=57%
2 0 35+ 2 + 0+25%=62%

(The * symbol indicates shortage over the demand occurs.)
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1 A . 1
3 (Z) 0 0 15+ 2+ 30+ 255 = 72-§
% 1 1
1 0 20+ 2 4+ 20 + 25 5= 67 =
3 3
* 1 1
2 0 35+ 2+ 10+ 25 5 =72 %
3 3
For xi =0,
np?coosatylyalylyplyed
Expected cost with D = 0 = 52 3 X 5 + 62 3 X’Z + 72 3 X Z
1
= 62-§
il e imihe Lo cndy kool 1
Expected cost with D° = 1 = 47 3 X 5 T 57 3 X 5 1 67 3 X %
1
= 57 3
T SURVERPV N PN N P D
Expected cost with D = 2 = 60 3 X A + 62 3 X > + 72 3 X 4
= 641%

2 2 2 2. . 1.2
Therefore, fz(xl = 0) = min E[rz(xl, DT, 7)) + fl(xl)lxl]

57 % with T = 1

Similarly the optimal decision D2 and minimum expected cost, fz(xi) for

2

il

=1, 2, and 3 are obtained as shown below.
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2 3 .9 5 i 9.8 8 B 1.4 2
x] £° (D) D ¥ [r (xl,D,£)+f1(x1)I:xl]

1, 1_ 1

1(4, 0 0 5+15+0+253—453

1 1 542040+ 23 =481

3 3

1. 1

2 2 5+35+0+27 5= 673

1 - * 1 1

1 2(5) 0 0 5+15+10+25ﬁ3~_55~—3~

1 0 54+ 20+ 0+ 25% =502

3 3

2 1 TEITIY 1. IS 1

3 3

1 % ; 1 1

3 ) 0 0 5+ 15+ 20 + 25 3= 65 3

& 1 1

1 0 5+ 20+ 10 + 25 == 60 =

3 3

2 0 5+ 35+ 0 4 251 g5+

3 3

‘ . 2 _ - 1 A 1 ) o &
Thgref01e, fz(xl = 1} = 48 X 3 + 50 3 X’Z + 60 3 X Z
=52%with p? =1

2 2 2 2 1 2 .2 .3 L, 50 &
x] &£ G D xp [ryGps D7, 89 + £ G [

1@ 0 1 9415+ 04 I-wi
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1 2 94+ 204 04 27 =561
3 3
. 1
2 3 9+ 35+ 0+383=83
, 1 1,1
2 2 0 0 9+ 15+ 0+ 255 =49%
1,1
1 1 9+ 20+ 0+233=523
1_ 1
2 2 9+ 35+ 0+275=71%
1 * 1.1
3 ) 0 0 9+ 15+ 10+ 253 =59 3
" . g 3
1 0 9+ 20+ 0+ 255 =543
2 1 9+ 35+ 04 25%= g9 &
3 3
R TP W 1.1 1.1
Therefo']_e, fz(xl = 2) = 47 3 X A + 49 3 X 5 + 57 3 X i
1,
=51 = with D =0
3
2 2 2 3 2 2 2 1., 2
x] £() D x] [r,(x]s D7, 89) + £, G [x]])
1 1_..1
1(:) 0 2 15 + 15 + 0+2?§—57_,3
1 3 15420+ 0+38 =733
3 3
1 1.1
3 2 (3) 0 1 15+ 15+ 0+ 23 3=533
1 1
1 2 15+ 20+ 04275 =625
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o

15 % 35 + 0+38%=88%
15 + 15 + 0+25%-=55—§
15 + 20 + 0+23%=58%
15 + 35 + 0+27%~=77%

Thus with these values, the optimal net work for the two stage process is

constructed in Fig. 2.

Now for the three stage process consisting of stages 1, 2, and 3,

the optimal decision associated with the given initial inventory level

(xi = 1) at the beginning of the third stage (February ) is obtained as

follows.
3 3,3
X3 ET(p7)
1
OCZ
1
1
1(59

o

[r G, D7,
54+ 15+ 0
54+ 20+ O
? + 354+ 0
54+ 15+ 0

5+ 20+ 0

54+ 35+ 0

3 9w 3
£7) + fz(xl)|xll

+523 =721
+ 515 =763
+ 562 =942
+575=713
+ 523 =773
+515 =917

10k



105

2‘(—};) o o 5+15+10+57%=37%
1 0 5+20+0+57%=82%
2 1 5+ 35+ o+52%=92%
Therefore, f3(xi = 1) = 76 %-X'%'+ 77 %—X %_+ 82 % X-%
= 78 %— with D3 = I

With these calculated values, the optimal net work for the three stage
process is completed in Fig. 2. The figure gives the optimzl path to

be followed for a known inventory level at the beginning of each stage
with an assigned probability. Thus this optimal net work indicates the

optimal policy with an estimated probability of occurrence.

STOCHASTIC MAXIMUM PRINCIPLE SOLUTION

To apply the stochastic maximum principle to obtain the optimal

solution the following procedure is followed:

(1) Fit appropriate regression equations for the given discrete
values of the different costs so that the total cost functiom
equation is obtained in terms of the decision and state
variables in each stage.

(2) Calculate the expected value of the random variable (demand)
in each stage.

(3) Apply the stochastic maximum principle to the system with the
total cost function equation obtained by regression and using
the calculated expected values for the demand find the optimal

solution.
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FITTING REGRESSION EQUATION FOR THE COST FUNCTION

The method of fitting linear and multiple regression equations for

discrete valued functions can be well understood from reference (4),

Hence for the following quantities appropriate regression equations are

to be fitted to define the total cost function.

&)

(2)

(3)

Production cost: From the data given in Table By the production
cost is found to have a parabolic relationship with the number

of units producéd., Hence a quadratic regression equation can be
fitted for the given values.

Inventory cost: This can also be expressed as a quadratic function
in terms of the inventory available at the beginning of each
stage.

Inventory cost for the end of April inventory: This cost, which

is applicable only for the month of April, can also be expressed

as a quadratic function of the end of April inventory.

Before presenting the regression analysis, the performance equation

of the system (as shown in Fig. 3) for the application of the maximum prin-

ciple is explained below. Let

Then,

state variable representing the number of units in inventory

at the end of the nth stage (month)

decision variable representing the number of units produced

in nth stage

an independently distributed random varizble representing the

demand in nth stage
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= x +0 -£, n=1, 2, ..., N (9)
0 _ “
let g?(en) = the production cost in the nth stage and let
n, n n, 2
g;(@7) =a+b(e)

The values of the regression coefficients, a and b, are calculated as

follows.

Let Y =g](8") and X = 0"

Then Y = a + b X2

Let Xl = X2 so that the simple regression equation becomes
Y=a+bX

L

The deviations from regressicn are given by (Xl - il) and (Y - Y) where

Xl and Y are the average values of Xl and Y.

From Table 4, substituting for the values, we obtain

1, X)) - 1)
e Sy N .

= B 8.67
L&) - Xp)

]
Il
=1

e bil = 23,33 - 5 X 1.66 = 15.00

Therefore, gh(e™ = 15 + 5855~ (11)
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This regression equation for the production cost is found to hold good

exactly in predicting the production cost values for given values of

o,

Now let gg(x?_l) = Inventory cost in the nth stage for the

inventory at the beginning of the nth stage
(month) -

and let gg(x?—l) = a + bx?ul + c(xipl)z

The regression coefficients, a, b and ¢ are calculated as follows.

n-1

Let Y = g;(x;_l) and Xl =%

2
Let (Xl) = X, so that the multiple regression equation becomes

2

Y=a+le+cX2

The deviations from regression are given by (Xl - X Y, (X2 - 32) and

1

(Y - Y) where X,, X, and Y represent the average values of X., X, and
1 1* 72

2

Y. The normal equations for the regression are
- .2 s — - - -
bI(Xy - X)D)7 + ef(x) - X)X, - X,) = J(X,-X)) (7-¥)

2

BI(E, ~ %)%, - X)) +e(X, - X,)7 = J(x, - X,) (1-Y)

2

Substituting for the values from Table 5 in the normal equations and

solving for the constants b and ¢, we obtain

110



111

00°CT=  §76"[9=  £6'TZ=
(°x-%x) (3-8)  (&-K) 0" 6% = 00°G =
-1 G0 -7 Nnmmlmwi NhHMonuw ¢ e=Cy ¢ T-Tx SL*L=X
578 €8'6€  68°0T €°0€ z'2 5°s 6 ST € sz, ST
cz* z9* 6Z9* cz* i & 7 g Z  ST'T 6
571 889 SLE'T 79 ¢z g*z- T ¢ - T <'z- ¢
SZ*g [T°0Z  %9'8  %Z°TT 7'z g g- 0 S$T- 0 sl'e-
x-%x) (3% (G-
o & T &G D G % & Togn a

LSOO AYOLNAANI ¥04 NOIIVADE NOISSHYOEY HTAILTIAW

¢ dT14VL



112

o
Il

2.082; c¢ = 0.7414

o

I
]
|
S
|
&

7.75 - 2,082 X 1,5 - ,7414 X 3.5

2.0321

Therefore the regression equation for inventory cost is

3 n-1,2

i, -l +LTALAGETH (12)

n_
gz(xl ) = 2.0321 + 2.082>.l

The above regression equation is able to predict the specified values

of the inventory cost with an average percentage deviation between the

n-1

estimated and specified values of 3.3%Z in the specified range for X .

Now leg g?(x?) Inventory cost for the inventory at the end of the

Nth stage

N, N
Let g3(xl) = a+ bx? + c(xil)2

The regression coefficients a, b and ¢ are calculated as follows.

N

Let Y = gg(:cﬁ) and Xl =%

2
Let (XT) = X, so that the multiple regression equation becomes

2

Y=a+ le 2 ch

The deviations from the regression are given by (Xl - il), (X2 - iz) and
(Y - Y) where il’ iz and Y represent the average values of Xl, X2 and Y,

The normal equations for regression are
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I

bFo - %+ efog - D&, - %) = foxy - XD -

- - - .2 - . =
b (X; - X)X, - X)) + cf(X, - X)) = Z_(X2 - EXY - 7)

Substituting the values from Table ¢ din the normal equations and solving

for the comstants b and ¢, we obtain

o
]

-10.612; ¢ = 3.704

4}
I
d
I
S
!
(]
<

6.25 + 10.612 X 1.5 - 3,704 X 3.5 = 9,198

Therefore the regression equation is

N, N N N, 2
g3(xl) = 0,198 - 10.612xl + 3.704{xl) (13)
The above regression equation for the end of April inventory cost is able
to predict the specified values of the inventory cost at the last stage
with an average percentage deviation between the estimated and specified

values of 8.3% in the specified range for x?.

CALCULATION OF EXPECTED VALUES

The expected value of the random variable, demand, during each stage
is calculated from the discrete probability values given in Table 1 fol-
lpwing the method indicated in reference (5) as shown below.

For a discrete type random variable X, the expected value of X is

given by
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E[X] = }XP(X)
X

where P(¥X) = probability density for the particular value of X. Hence

the expected value of demand during the first stage is

gy =pl-oxi+rxiiroaxiizxo
. 4 2 4
=1 (14)
Similarly
2 _ 2 _ L 1 1
B(eH) = =0+ 1X3+2X7+3X%7
=2 (15)
E(53)=p3=UX§+1X%+2X0+3X0
1 e
=3%0 (16)

Using these values of expected demand in each stage, the optimal

decisions are computed by the stochastic maximum principle.

NUMERICAL SOLUTION
The shortage cost for the nth stage, which occurs when the demand
exceeds the sum of the units available in the inventory and the units

produced in the nth stage, can be defined as

Shortage cost for the nth stage

115



10" - x?—l -e"), if £ > xifl + 6"
0, if £" i_xT_l + 5

n=1,2, ..., N

Summing up the equations (11),(12),(13) and (17), the state variable

for the total cost function is now defined. Let

2

Therefore we obtain

n-1 n, n n, n-1, |, n n-1
X, + gl(e ) + g2(x1 )y 4+ 10(5 - X3
i =
*5
n—-1 n, n n, n-1 } n n-1
X, + gl(e )+ gz(xl Y, if <%
n=1, 2, , N-1
0
x2 =0
N-1 N, N N, N-1 N N-1
N N, N .. N N-1, K6 N
X, = + g3(x1), if £ > Xy + 8
N-1 N, N N, N-1 N, N e N
xy)  Fg(0) g0y ) A g3(§1), if £ < x

The objective function to be minimized can be written as

E[S] = E[xg]

i
o
0

I
=

with ¢

xo = Sum of total cost upto and including the nth stage

), if &7 > x7

+ 6

116

17

Bn

(18)

(19)

(20)
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The Hamiltonian function and the adjoint vectors are defined as follows.

" = z; f; + z; f; , n=1,2, ..., N (21)
[ 3
n
n-1 p-1, . n _m 88
(zl L] zz ) - (Zl: 22) 1+ n"'l 0
0X
1
9f D 92 _ n
2 2 30
1 + — . 1 (22)
an— 5aP an_l
1 1
L J
n n
n of of n
n-1 _ n 56 o 2 39
L, =HpErea | Y F e T Ral e (23)
0% ox 060 ax
1 1
n=1, 2, , N
N _ _
zl =c = 0
z;_l = zg, n=1, 2, , N
N
32 = c2 =1

_ - -
n of of n

g gl p BE_ | g 2 2738 . n=1,2, ..., N (24)

1 1 axn--l axn—l BBn 5 n-1
1 1 *1

N

zl =c = 0

zh = 1, n=1, 2, s N
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Hence the Hamiltonian reduces to

n
2’

n n, n-1

B = 20+ ot - ™) + f n=1, 2, ..., N (25)

where f; is given by equatioms (18) and (19)

Now for N = 3,

Therefore, H3 = f
3

Since p3 = 0, yu is j_(xi + 83)

“Hence from equation (19), we obtain

3 % 3,.3 3, 9 3.3
£o =%, +£3(07) + g5(x)) + Elgy(x))] (26)
Therefore,
3,-2. 2 3..3 3,2 3.3
E[H|x") = x; + g](87) + g3 (x)) + E[g3(x])] (27)

’ oom . B3 : . i o
The optimal decision 8~ is obtained from the stationality condition as

follows.
3
|2 |3°| = 0 yields
96
8% = .61 - .4252 % (28)
23
¥ow E E—E3 2] 7%= 10> 0 indicates that at 53 = (.61 - .4252§i),

a(e”)
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E[HSIQZ] has a minimum,
2 1 2
For n = 2, let us assume that p > (xl + 87).

- Then from equation (18), we obtain

2 _ 1 2,2 2.1 2 2 2 ’
f2 =%, + gl(ﬁ b gz(xl) + 10(¢" - Xy - 87) (29)
Therefore,
2,-1. 2.: 1 - 1 2,.2
E[H {x ] = E(zl)(xl + 8 ) + X, + gl(e )
2,1 2 1 2
+ gz(xl) + 100" - x; - 87) (30)
2 . .
where E(zl) is obtained as shown below.
From equation (24), we have
3 3
of of 3
2
E(z) .—4__gﬁ+_ﬁg.g.e__ (31)
1 sz 383 3 2
! 1

From equation (26),

3
of, 2 3
—2 - .53 + 8.890.8 x) + 7.408
3x

1
afg 3 2
2 17.408 82 + 7.408 x% - 10.612
I 1

From equation (28),
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Substituting these values in equation (31) and simplifying, we get

3

' E(zi) = 15.39 + 5.7348 gi + .006 © (32)

6H2 -1
_fpw x

692

Now E = 0 gives

(33)

where E(zi) is obtained from equation (32).

9 E(z])

1 = 10 > 0 indicates that at 8 = 1 -

) 82H2 _
E — 5 ! X
a(e™)

E[H2|§1] has a minimum.

_ 11 .1 1.1
For n =1, H = z, £+ z, i (34)

1
Since pl = 1 and xg =1, ul is f_(xg + 87)

Then from equation (18), we obtain

0
2

1.0

£ = %) + g1 (00) + g3 () (35)

2

Therefore,

EfC R = E(z})(xg +ol -y +gleh) + gé(xg) (36)

vhere E(zi) is obtained as follows.

From equation (24),
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1 ) |
- ——, (
E(zl) E(zl) + 3 .37)
ox
1
From equation (29),
o) 1
— = 2.082 + 1.428 x= - 10
5 1 1
*1
w2
Substituting in equation (37) for —7 > E(zl) is calculated.
ax
1
1
Now E §§1-|£0 = 0 gives
a6
_1 "E(zi)
0 = —35 - G
L. ; :
where E(zl) is obtained from equation (37).
: 1
2.1 -E(z))
E[2E | 20 = 10 > 0 indicates that at Bt = ——=—
1.2 10
3(e™)
E[Hllxo] has a minimum.
Simplifying equations (28), (33) and (38), we get the following three
simultaneous equations for the optimal decisioms.
425 BY 4+ .425 82 + 83 = 1.46 (39)
574 8% 41,574 82 + .001 8° = .608 (40)
1.722 81 + .574 82 + 001 8° = .4 (41)

Solving these equations, we get
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é'l = 117820
82 = .343 %~ 0
52 =1.2643 ~ 1

For the optimal policy, the corresponding inventory level and total cost

at the end of each stage are

xi=0
xi =0
xi=1
x; = 19,8554
x; = 56.8874
x3 = 81.2094
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DISCUSSION OF THE RESULTS

The minimum cost obtained by stochastic dynamic programming method
is 78.333 while that by the stochastic meximum principle approach is
80.2094, the costs being shown in $1000. This difference in the optimal
values by the two methods is expected due to the approximation in fitting
the quadratic regression equations. The optimal net work obtained by
stochastic dynamic programming indicates the different optimal policies
for the different values of starting inventory levels while the stochastic
maximum principle gives the optimal policy for one particular value of
initial inventory level. TFor different initial inventory Jevels, the same
procedure is to be repeated to cbtain the optimal solution.

An advantage in the stochastic dynamic programming method is found
to be that it gives integer optimal decision values needed in the problem
while in the stochastic maximum principle solution the optimal decision
is to be rounded to the nearest integer value for use. The consequence
of this procedure and the effect of this approximation on the optimal
solution is yet to be investigated in the future. From the procedure
followed it is expected that for a problem with many stages and with more
number of discrete cost values specified the solution by the stochastic
dynamic programming may involve considerable amount of numerical compu-
tation. On the other hand, the solution by the stochastic maximum prin-
ciple may have comparatively less computation except for little additional
calculation in the regression analysis. Also where there are more state
variables (more than three or four) the stochastic dynamic programming ap-
proach becomes extvemely difficult and complicated even for a computer with

a large memory capacity. On the other hand, the stochastic maximum
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principle applicatien for many state variables is essentially the same
as that followed in the above problem with one state variable.

Finally it is concluded that for discrete valued stochastic function
optimization, the stochastic dynamic programming can be directly used
while the optimization can also be effectively done by the stochastic
maximum principle with some additional computation and approximation in-
volved in fitting regression equations for the discrete values of the ob-

jective function.
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FURTHER DISCUSSION

The dynamic programming solution (Figure 2) indicates the different
optimal policies associated with each possible inventory level at the
beginning of each stage whereas the maximum principle solution obtained
gives only one optimal policy for the specified inventory at the beginning
of the process (first stage). The same optimal solution of dynamic pro-
gramming can be shown obtainable by the maximum principle also for the
lést stage (April) as given below,

The expected value of the Hamiltonian for the last stage (Fig. 3)

can be expressed as

3= 2 3.3 1
E[H Ile = %-[x2 % gl(O ) + gg (xi)+ gg (xi)|£3=o] t3 [xg + gi(e3)

- 83) Ul - x2 - 83)]

1 1

3 2 3 3 2
+ gy (x))+ B3 (:::1)|£3=1 + 10 (1 - x
(42)

2

3 y
1 - 87) represents a unit step function for the shortage

where U(1l - x

cost and is defined as

1, if x5 + 67 <1

Ukl — %y — @) =

[l oS}

o, if xi + 83 >1

The optimal decision, 53, is to be determined such that E(H3|§2) is mini-
. ; 2 2 ; s i . 3,-2
mized. Since % and x, are given values, minimization of E(H ]x ) depends

on the value of 93 only. Hence the variable portion of the Hamiltonian

can be written as follows.



-2 %
E[H3|x2] = gi(SB) +

= 83) u(l - -

- 63)]

L 33

3 ! =
g3 DI 353 + 30100 - =

126

(43)

Now the optimal decision 53 can be calculated for minimizing equation (43)

for the various possible values of x2

xi 5 Efr]x2)"
0 26.8559
0 1 22.133
2 38.11
0 20.788
11 23.11
2 43.028
0 22.4162
2 1 23.1362
2 60.0231
0 13.163
| 40.94
2 76.15

1

win E[H° |72

22,133

20.788

22,4162

13.163

as shown below.



The optimal decision values shpwn above for the different starting
inventory levels are the same as that obtained previousiy by dynamic
programming. Thus the net work of optimal policies can also be con-
structed for the last stage by therstochastic maximum principle method,
But unfortunately the above procedure is not possible to apply for the
second and first stages. The difficulty is caused in the calculation of
the adjoint variable. For example, for the second stage the expected

valus of the Hamiltonian function can be written as

2¢=1. .2, 1 2 2 1.1 g .2 7.1 A
E[H ]|x ] = Elzy(x] + 07 - gD + 7 [x;, + g7 (07) + g, (x) +10 (1 - x]

2 1 2 1 1 2 2 2 1 1
- 87) p(l - Xy - 7)) + E'[xz -+ g1 (™) + 3 (xl) + 10 (2 - x]
2 12 1.1, 2 2 2 1 (8 =
—6)U(Z—xl—e)]+z[x2+g1(6)+g2(xl)+10 1

- 6H UG - % - 89)

2, ; :
where z is to be obtained from equation (23) as

1
3f3 8f3 333
22 -2 + | =2
1 .2 3 i ?
Frloz -3 | 88 9% | 1o _3
X ,0 X ,6

. . 2 . ;

In the above expression for zys 2 possible procedure is not yet found to
; : o 3 2 3 .

evaluate the partial derivatives of f2 with respect to e and 87 at their

optimal values. At the optimal point the function fg is expressed as a

set of discrete values (it is integer here) for different xi values and so

f; is not easily differentiable with respect to xi and 83. Thus this re-

quirement of differentiable functions limits the use of the stochastic
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maximum principle. However, a successful procedure is yet to be found

out in future work for differentiation of discrete functions.
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APPENDIX

Computer flow diagrams, programs, symboel table and results obtained for
the numerical computational method and the simplex search technique

for the hydroelectric water storage system,
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Fig. 1. Computer flow diégram for the numerical computational
method
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TABLE le CCHMPUTER PROGRAM FCR THE NUMERICAL
CCMPUTATICNAL METHCD

CPTIMIZATICN BY MAXIMUM PRINCIPLE

PUNCH 100

PUNCH 101

THE1=139.86

THEZ2=167426

THE3=240a33

THE4=494 647

DELTA=U01

DFT1=,000C0502% (THE4*#3)
DFT2=ce00UU150E* (THE4*%2)% (103769~ THEI-THE2-THE3)
DFT3=,0U228%THE4* (68564+e00456% ((1U3T9~-THELI~THE2-THE3)%%2))
DFT4=-1562712%(1U37.9-THE1-THEZ2~THE3)

DF4T4=DF T1+DFT2+DF T34DF T4

DFT5=—e0UGUUBU2* (THE4%%3)~1e56712%Tht4
DFT6=,0000CE02%(THE4%%2 )% (2015 T=2e#THE1 =2 *THE2=2¢#THE3)
DF4X3=DFT5+DFT6

DFT7=2e% (THE4*%2)4300000

DFT8=—2e ¥ THE4* (20156 T-2 ¢ ¥THE1 -2 o ¥ THE2-2 e # THE3 )

DFT9=3e % (THE4#%2) 6 %THE4* (1037 85-THE1-THE2-THE3)
DFT10=2e% (693 7-THE1-THE2-THE3)
DFT11=1376e6%(693e7~THE1-THE2-THE3}+551423.3
DT4X3=(DFTT+DF T8I/ (DFT9+DFT1G+DFT11)
Z13=DF4X3+{UF4T4*DT4X3)
DFT12==eCUUUUD0Z¥ (THES*¥%3) ~e5326056%THES
DFT13=e0UCOUBU2% (THE3#%2 )% (1686e3=2e%THE1-2e%THEZ)
DF3X2=DFT12+DFT13

DFT14=e0000U502% (THE3%%3)~.8326506% (943,15~-THE1~THE2)
DFT15==¢000C1506% (THE3%%2) % (943415~THEL-THEZ2)
DFT16=e0022B%¥THE3¥ (72544 00C456%((943,15-THE1-THE2}%%2})

-DF3T3=DFT14+DFT15+DFT16

DFT17=3e% (THE3%%2)~24%THE3%(1886e3~2¢%THE1=-2.%¥THE2)+318000.
DFT18=3e % (THE3%%2)~6*THE3*(6T7C+~THE1~-THEZ2)
DFT19=2e#{(6T0Ce~THE1-THEZ) ¥%2 4466453,
DT3X2=DFT17/(DFT18+DFT19)

L12=DF3X2+{(DF3T73%DT3X2)

DFT2U=—eUCLU0BC2¥(THEZ2%%3)

DFT21=eCU00LOUR(THEZ%#%2)% (1823672 *THEL)-1.578216%THEZ
DF2X1=DFT20+DFT21
DFT22=e0000C5U2%(THE2%%3) - 0C001506% (THE2%%2)%(911.,85-THE1)
DFT23=eC0228%THE2%(6922+:00456%{(911.85-THE1)%%¥2))
DFT24=—1e578216%(911.85-THE1)

DF2T2=DFT22+DFT23+DFT24

DFT25=3e % (THEZ2#¥#2) =2 #THE2%¥(11%Ce—~THE1)+303700.

DFT26=3% (THEZ2¥%2)-6e%¥THEZ2X¥(G512-THEL)
DFT27=2¢%({633¢7~-THE1)%%2)-1112.6%THE1+1163257.1
DT2X1=DFT25/{DFT26+DFT27) '
£11=DF2X1+(DF2T72*%0T2X1)

133
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TABLE 1 (CCNTINUED])

DFT28=e00228%{ THE4*#3 )= C068B4% (THEG&##2 )% (1040e~THE1-THE2=-THE3 )
DFT29=({(S56e—THE1-THEZ-THE3)}*%2) - 168 % (THE1+THE2+THE3)+168026.)
DFT30=THE4* (s 0D456%DFT29+685.) :
DFT31=—-712000+685e% ({THE1+THEZ2+THE3)
F1=DF7128+DFT30+DFT31-146%4.
DFT32=e000005U2%(THE3®%3)
DFT33=-e0CuUl506%(THE3#%2)%(943.15-THE1-THEZ)
DFT34=((930Ce—THE]1-THE2)%¥2)+24E1 T —20e 3% (THE1+THEZ)
DFT35=e00228%¥THE3%#(53e6+(00456%DFT1341})
DFT36=-(Z213+:1222%(943,15-THE1-THL2})
F2=DFT132+DFT334DFT35+DFT36-55%9.3
DFT37=eCGO0COSUH(THEZ%¥3 )~ U00C15UGHR{ THEZ#*2)%{912~THE1}
DFT38=({893. 7T-THE1 ) ¥¥2432734,-306.3%THE])
DFT39=6e00228%THEZ2%{6922+.C0456%%DFT38)
DFT40=-(Z12+1:579%(912-THE1) )
F3=DFT37+DFT394+DFT40+41231.4
DFT41=eUCU0UHU2H (THELI#%3)-.013459122%(THE1#%2)
DFT42=1:527%THE1-({Z211+1351.)
F4= DFTQI+uFT42+l3b7 31
A=THE1
B=THE>
C=THE?>
D=THE4
E=Z11
F=212
G=213 ) .
PUNCH 1sAsBsCsDsEsFsGesFlsF2eF3:F4
IF{F1)3:3246
IF(F2y4s446
IF(F3)5:5s6
IF{F4)6s848
THE1=THE1+DELTA
THEZ2=THEZ+DELTA
THE3=THE3+DELTA
THE4=THE4+DELTA
GZ TC 11
6 THEl=THE1-DELTA
THEZ2=THEZ-DELTA
THE3=THE3-DELTA
THE4=THE4-DELTA
. GZ TC 11
1 FCRMAT(4F9e393F10e2s4(1XeF12a2) :
1C0 FCRMATU(4X s 4HTHEL s 5X e 4HTHEZ2 o DX e 4HTHES s SX s GHTHEL s TXs3HZ13 97X s3HZ12)
1¢1 F“RVAT(IHI11X!3H211911X92HF198X92HF236YsZHF55679£hF4)
8 STCP
END

[RS IS L EL ]
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TABLE 2 Notations Used in the Computer Program By the Numerical
Computational Method

1 3
THEL = © DT3X2 = 3_65
. 8%
THE2 = 62
712 = E(zi)
THE3 = o°
4
THE4 = ¢ 7 af§
s DF2X1 = —
1
axl
DELTA = A0
afg
DFT4 = *—4 af§
a0 DFZTZ = ——2‘
' 36
afg
DF4X3 = —3 2
By pr2x1 = 28
Bxl
4
pr4x3 = 28
5 1
ax] 211 = E(2))
3 =
z1 E(z]) | 1 _ E[aﬂl
30
3
of 2
DF3X2 = —3 2 - upE
axl 382
3
3f3 36
DF3T3 = ——5
90 h
F4 = E[-—Z'



THE1
145.850
}4"!‘0850
143.85C
142.850
141.850
140.85C
139.850
138,850
137.850
- 136.850

135850
124.85C
133850
132,850

THE )
140,850
140750
140965()
140.55U
140450
140350
].405250

1406150

140,050
139,950
136.75C
139.65C

139.550

139e!~}5U
139.350
139.25C
139,150
139.050
138.95C
138.650
138750
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TABLE 3. SCLUTICN C3TAIMNED BY NUMERICAL COMPUTATICRAL

THE3 THE4

THE?2
1736250 246.32C 500.46U
172¢250 245320 499,460
171250 244.320 458460
17ne250 243.320 497.46C
169250 242320 496460
168250 241320 495,460
167250 240320 &£94.460
166250 239.320 493.460
165250 238320 4924560
164250 237320 491460
162250 23603220 490460
162250 235320 489460
16]'25U 23‘*0326 488946\)
16ne250 233.320 487460
THE?Z. THE?3 THE4
1682506 241320 495,460 .
168:150 241220 495,360
168,050 24161206 695,260
167956 241.020 495160
167850 24C.920 495,060
167750 2400820 494,960
167650 240720 494,860
167550 240620 494,760
167450 240.520 494660
167350 2404206 494.560
167250 240320 494,460
167150 240220 494,360
167050 240120 494,260
166950 240.020 494160
1656850 239920 494.060
166750 23%9:.820 493.96C
166650 239720 493.860
166550 239620 493.760
166450 239520 493.66C
166.350 239420 493:.5560
166250 239320 493,460
166150, 239220 493.360

T ~-78.73

212
"19-02
~20e25
"21-‘&5
=22.62
~23:76
~-24.88
—-25.97
-27.03
"‘28005
-29.05
~30:02
—-30:96
-31:86

-32:74

212
‘24088
-24.99
“25010
-25.21
~25.32
2543
—25¢53
~25e64
—-25715
"25086
-25.97
-26:07
~26+18
'“260 29
“'26039
~26¢50
"26561
"26:1 71
“2&082
—26:92
'"27003

—27¢13

211
—~158.92
=149¢41
-138.99
-12740
~-114.28

-9%.07

—-80.92

~58:35-

—28465

13.72
8224
22047
69105
—3365.61

211
-99.07
“970{41
-95.72

"93:\99
3 "‘92:}23
-%0s44
-88:61
8675
-84 85
"82»91
_80092
- “78&90
7683
~T471
~T72:54
~70.32
-68.C4
-65¢71
_63532 )
~60:87
~-58435
—55076



‘F1
4239.69

©.3393.91
2604437

1870.59

1192.,18

" 568.74

«03

~514 .49

"975021

”1382936
”1736046

. —2037-.89

—2286.92

- —2484.04

F1
568:74
50940
45063
392:40
33414
217:61
22095

16493 |

109+ 36
54 otk
203
~53.88

~107.27
—160a02
=212.32
=264-02
—31502ﬁ
“365983
-415.98
=465.54
- =514:49

e st st e

F2
55.56
49,91
43.33

35057
26.27
1487

.950
“18030
=44 24
-82.87
—1&7-68
—-282420
-749:10
331123

F2
14.87
13.58
12.27
10.92

9:.54
8213
668
5019
3667
2011
«50
~1:15
"2¢84
~4.,58
-6.37
—B.22
"10011

T =12.07

”14008
~16.16
_15930

F3
-6012
_1}997

~3.84

-2715
_lo?o
—e68
30
1:25
2015
3.02
3685
4064
5039
6210

F3
-s68
-+ 58
“nqs
—-238
—~e28
~e18
-o09

e 01
el1
«e21
¢ 30
e 40
« 49
e 59
« 69
o718
e 87
e 97
le06
1215
125

Fa
-14.78
*12011
~9e4T
~6.84
“4023
“1665
092
347
5099
8450
10.99
13445
1590
18.33

F4q
~1.65
"1039
“1013

~-.88
—ab2
“ﬂ36
-011
«15
ﬂll‘l
066
«92
1e17
1.43
1.68
l1.94
219
245
2.70
2.96
3.21
Beb

136a



THE1
139,950
139.94C
139.93C
139.,92C
139,910
139,.,9C0
139,890
139.88C
139.870
139.860C
139.850
139.84C
139.830
139.82¢
139.810
136,.8C0
139.79C
139,780
139,770
139.760

THE1
139.860
139.859
139.858
139.857
139,856
139.855
139.854
139,853
139.852
139.851
139.850

139.849

139,848
139.847
139.846
139.845
139.84¢4
139,843
139.842
139.841

THEZ2
167350
167340
167330
167320
]67.310
167300
16?0290
167280
167270
167260
167250
167240
]6?0230
1674220
167210
167200
167190
167180
167170
]67e160

THE?2

167260

1674259
167258
1670257
167256

167255

1676254
167253
167252
]67-251
167250
167249
167248
167247
167246
167245
167244
167243
167242
?679241

THE3
240420

260410

240400
240390
2600380
240370
240360

240350

240340
240330
240320
240310
240300
240290
240280
240270
240260
240,250
240240
240230

THE3
240330
240329
240328
240327
240326
2406325

240324
. 240323

240e322
24C.321
240320
240319
240.318
24Ce317
240.316
24Cc315
24Ge314
240313
2406312
2400311

THE4
494 560
494550
494 540
494,530
594,520
494,510
494,500
494 490
484,480
494,470
494 4450
694450

494 440

494430
494 420
4G4 . 410
4G94 ., 4C0
494 4390
494 6380
4949370

THE &
494,470
494,469
4G94 868
4G94 467
494 6 4606
494 ¢ & 65
494 4B 4
494 ¢ 563
494 o562
484461
494 . 460
4G4 0459
494 . &£58
494 o 457
494 456
494 4455
494 o 454
494 453
4944652
494 45)

TABLE 3
213 zZ12
—80.50 -25.86
—8U.51 -25¢87
"80951 “25-88
—80.52 -25.89
—8C.52 —-25.90
-80.53 -25.91
"89-54 _25I92
—80.54 -25.93
—80e55 -25.94
—80¢55 -25.96
—80.56 ~25697
80,57 -25.98
—80.57 -25.99
—86958 -26.00
—80059 -26.01
~80,59 -26.02
“89.60 ”26003
-8U.60 -26.04
—80.61 -26.05
~8C.62 -26.06
213 212
~80 .55 —-25.96
~80.56 -2596
—80.56 -25696
—80056 -25.96
—80.56 2596
—80.56 -25.96
—BU.56 ~25.96
8056 25696
—80.56 -25096
—80.56 25697
—8Gt56 “25097
~850.56 —-25.97
—B0:56 —-25.97 -
—80.56 —-25¢97
—80.56 ~—25.97
-80.56 —25.97
~80+56 —=25.97
—8D.56 -25.97
-80.57 -25.98
~80 .57 -2598

X371 .

(CCNTINUED)

Z11
’82u91
-82e71
“82.51
-82.32
-82.12
-81.92
-81.72
—8le52
-Bl.32
-8l.12
-80992
-80-?2
“80:52
-80e32
-80.12
-719.92
‘79-71
"79951
—-79e31
"79.10

211
-8l.12
-81.10
-81.08
_81006
_81-04
—81402
“81-06
“80198
—80.96
—80l94
“80-92
“80-90
”80&88
"8G185
-80.84
~80.82
~80.80
-80.78
-80.76
“800?4



F1
54,44
49.00
43,50
368-04
3260
27.10
2174
16-: 24
10-88

540
" a03
~5045
~10:81
—16-24
"21965
-27-05
—-32+38
"37083
~43.17
-LE.5H4
F1
5.0
4.86
436
3.81
3:26
270
2217
162
104
o554
«03
~al; G
-1+10
~1.62
-2:16
273
"‘3e2f§
"39 81
~4o32
—& 82

F2

2.11

1.95
1.79
1.63
lo&7
131
l.15
0 9G
83
o606
50
e 34
.18
001
~a15
—~e32
-0 48
~0b65
._081
-e98

]

<66
e 65
«63
262
e 60
258
57
e 55
«53
e52
«50
o 1 G
e 47
o"i-s
s iy
i o4 2
._fil
039
« 37

236

F3
021
022
«23
e 24
o 24
e 25
026
e 27
<28
e 29
030
e31
e 32
«a33
e 34
¢35
026
e 37
e 38

- 39

F3
029
« 29
« 30
2 30
¢ 30
e 30
e 30
¢« 30
230
230
s 30
« 30
<31
231
231
31
31
231

«31 .

F4
+ 66
<69
ol
o 14
s (6
o719
e82
« 84
87
a89
92
294
97
1.00
l1.02
105
1.07
1,10

1.12

1.15

Fa4
c89
e 90
« 920
90
<90
291
091
e 91
091
092
«92
<92
092
«93
0«93
«93
093
e 94
« 94
e 94

1372
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TABLE 4. COMPUTER PROGRAM FCR THE SIMPLEX SEARCH TECHNIQUE

/ 7 SARCH JCB 10UBT40409G00ULs2+2% s SUBRAMASMSGLEVEL=1

//GRFXWYZQ FXEC PRCC=GCWATFCOR

//GC.SYSIN nD  * - : :

$JCB GILBERTsRUN=NCCHECK s TIME=155PAGES=400,L I1NES=60,KP=26

PURPTSE
7C FIND THE BEST FUNCTICN VALUE CF A FUNCTICN WITH N INDEPENDENT
VARTABLES AND THE SET CF INDPEPENDERT VARIABLES wHICH PRCDUCES
THIS TUTCCMES

USAGE

A PART CF THE SUBRCUTINE CALLED SUEBNAM SHCULD BE WRITTEN AND
PLUGGED IN THE PRCVIDED SUBROUTINE DECK TOGETHER WITH SCME
ARRANGEMENTS BY THE USERs IF NECESSARY.

DEScRIPTICRKR CF PARAMETERS
ALPHA«s REFLECTICMN FACTCR WITH A VALUE BETWEEN le0Q AND le5

RETAee CONTRACTICHN FACTCR BETA= 0.5 HAS BEEN SET IN THE
SEARCH DECKe 1TS RANGE LIES BETWEEN O AND 1 .

cl{Jles THE WEIGHT CF THE JTH VERTEX CF THE PATTERN. eeDIMEM-
SICNeeK-1

CNTRCX(I)esTHE 1TH DECISICR VARIABLE AT THE CENTRZID CF THE
PATTERNO OODIHEﬂESICN- ke

DCVX(TsJ)eoeTHE ITH INDEPENDENT VARIABLE AT THE JTH VERTEX CF
THE N DIMENSICHAL SPACEe eeoDIMENSICNeseNDIMoK(=
NDIM+JUMCHEN) e ¢ WHERE JUMCHEN=1 IN THE NEW METHCD AND
THE SIMPLEX» =NDIM IN BITX METHCD. '

DLTVX(1sJ)eeTHE INCREMENT COF THE ITH INDEPENDENT VARIABLE FRCM
; THE INITIAL VERTEX TC THE LTH REMAINING VERTEX CF
THE INITIAL PATTERNe e eDIMENSICNeoMNDIMIKes

FRRCRes THE PRESCRIBED ACCURACY CF THE FUNCTICN VALUE FCR
=2 eeTHE SIMPLEX METHCD.
=3 f.THE BCX METHID

NDIMeo NCo COF DECISICN VARIABLESs Ne

ﬁr“i(“!("\ﬁﬁhﬂﬁﬁﬁﬁﬁ(\‘ﬂﬁﬁﬂﬁﬂﬁlﬁﬁﬁﬁﬁﬁﬁhﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
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TABLE 4 (CCNTINUED)

STCPING THE COMPUTATICH
GAMMAs s EXPANSICN FACTCR GAMIdA=Z2 HAS BEEN SET .

Kee MAXIMIMUM VERTICES USED FCR SETTING UP THE INITIAL PATTERN
kKee NZ CF ACTUAL FUNCTICN EVALUATICN.

MAXNCe e MAXe NZe CF FUNCTICK EVALUATICN SET BY THE USER FCR
' TERMINATING THE CCMPUTATICN WHEN THE NCe CF FUNCTICN
EVALUATION EXCEEDS THIS GIVEN VALUE. MAXsVALUE=99998.

METHCDee =1 eeTHE NEW DEVELCPED SEARCH TECHNIQUE.
NDIMPlee THE NCe COF VERTICES CTHER THAN THE STARTING PTe IN
FCRMING THE INITIAL PATTERNe. NDIMP1l=K-1 .

NCPTee NCe COF VERTICES CF THt PATTERN TC WHICH THE DESIRED
INFCRMATICN wILL BE WRITTEN CUTe MAXe NTe =Ko

clJ)see THE FUNCTICN VALUE CF THE JTH VERTEXe eeDIMENSICNe«K(=
NDIM+IMCHEN) :

cUPLIMee THIS IS A SUPERLIMIT SET bY THE USER IN CCNSTRAINED
CPTIMIZATICN PRCoLEMSs WHICH IS PCSITIVELY INFINITE
IN MINIMIZATICN (NEGATIVELY INIFINITELY INFe IN
MAXIMIZATICN) WHEN ThE CCNSTRAINTS ARE VICLATED.

REMARKS

THE DIMENSICN STATEMENT IN THE DECK HAS BEEN BUILT FCR A
FUNCTICN WITH 27 DECISICN VARIABLES WHEN METHCD 1 AND 2 ARE
1ISEDe IF METHTD 3 IS USEDs IT CAN CZNLY USED FCR A FCNe WITH
14 DECISICN VARIABLES.

THE DATA CF THE PARAMETERS SHCULD BE PRCVIDED BY THE USER ARE
1) NDIM

2) DCVX(1s1)

3) DLTVX(1sJ)sI=1sNDIM AND J=1sNDIMP1

. 4) NCPT

5) MAXNC

) METHCD

7) ERRCR (EeGe 140E-0B)

g) SUPLIM =0 IN UNCCNSTRATED PRCBLEMs IN CCNSTRAINED PRCBLEM



1ko
TABLE 4 (CONTINUED)

SEE DESCRIPTICKN OF SUPLIMe

*¥% THE USERS ARE ENCCURAGED TC RtAD THRCUGH CAREFULLY THE
CCMMENT STATEMENTS IN THE PRCVIDED DECK.

*¥% THE SEARCH DECK HAS BEEN BUILT FCR MINIMIZATICN PRCBLEM.
HCWEVER THE SAME DECK CAN ALSC BE USED FCR MAXe PRCBLEM IF
=StJ) INSTEAD COF S5(J)(S(J) IS THE REAL FCNe VALUE CF THE
MAXe PRCBLEM) 1S USEDs leEe S{J)=-T .

iLLUSTRA1ICN-..UNCCNSTRAINED PRCuLEM

TC MINIMIZE S(XsY)=X¥X+Y%Y+le wlTH AN ARBITRARY STARTING
PTes S(10s5)e :
THE IKPUT DATA ARE
1) NDIM=2
2) NDIFMP1=2 FCR METHCD 1 AND 2, FCR METHCD 3 NDIMP1=3
3) DCVX(1s1)=1Ue sDCVX(251)=0o
4) DLTVX{1s1)=Ce5 sDLTVX(23s1)=00
DLTVX(1s2)=Le  sDLTVX(2351)=0e25 &
5) NCPT=2
6) MAXNC=100G
7) ERRCR=1.GE-08
8) METHCD=1
9) SUPLIM=Us

THE PART CF SUBRCUTINE TC BE WRITTEN AND PLUGGED IN IS
T=X11)=X(1)+X(2)%X(2)+1
IN CRTHER WCRDSs THE CCNTINUCUS THREE CARDS ARE
7 CCONTINRUE '
T=X{1)#*X{1}+X(2)%X(2}+]1
StJ)y=7

THIS 1S THE MAIN PRCGRAM FCR PRCVIUING THE NECESSARY DATA CF THE
PARAMFTERS
DIMENSICN DLTVX(27928)s5(301sDCVX(27530)
COMMON XL2T7)sX1(20)9X2020) s X2(20)sQ(20) s CeDsEsMsGeVeXX(27)sX4(9) P
161 FORMATI(1UIS)
3 FCRMAT(1I5s6F10Ue3)
162 FCRMATITE1C.4)
163 FCRMAT(/16H EVALUATICN NC =15/)
104 FCRMAT(6E13.6) '
READ(1s101INDIMsNCPTsNDIMP1 s MAXNTZ s METHCD



110
111
112
113
114
115

'1h1-

TABLE 4 (CONTINMUED)

READ(31s1U2)1ERRT haSUPLI“
READ{]:ILZ}((ULTVX(I:J):I—IsNDI1)9J lsNbInP‘)

REAC(13s3) i¥s Cs Ds EsGsVsP

READ(];IUZ){Q(N19N519M}
WRITE({3e1Ul)INDIMsNCPTsNDIMPL s MAXNTSsMETHCD
WRITE(351C4)ERRSRsSUPLIM
WRITE(3s124)Y((DLTVX(IsJ)sI=1sNDIM)sd= lghDI“PI) -
WRITE(3s3) Ms Cs Ds EsGsVsP

WRITE(3:102) (G(N)s N=1s})

READ(1s1CG2)(DCVXITs1)sI=1shDIM)
WRITE(3:1u4)(DCVX(Is1)ol=1sNDIM

CALL GRCHEN(NLDIMsMETHTDsMAXNG LKth95bPLInsDLTVX DCVX;S:KK]
ﬁRch(jslu4)5(hu1F+2}s(DCVX(IsNJIn+2)sI—lsNDIN}
WRITE(Z2s2ub4) ((OCVXITsd)sl=1sNDIM)»J=1sNTPT)
WRITE(3s1L4)(S(])s]l=1aRCPT)

WRITE(3s1U3)KK

STCR

END

THE FoLLCwWING PRCGRAM HAS 6EEN WRITTEN IN FORTRAN II\AND PUNCHED
IN KEYPUNCHER 26 FOR IMMENSE USAGE-

SUBRCpTINE GKCHEH(R)IP5MLTH\JQHAX\us_RhuKstPLI“sDLTVKQDCVK:S:KK}
DIMEN<IOH DLTVX(°f$é&)sC(ZDl!DQVK(£7>3U):5(30):(NTRCX(27}
Fn'ﬂAT(/l THIS IS MNEw METHTID/)

uhﬂﬁT(/léh THIS 15 SIMPLEX/)

ECRMAT(/12KH THIS IS BTX/)

FCRMAT(/1EH #R¥¥yARMINGH#X3 /) ) :
FORiapT 5CH INADEGUATE GIVEN MAXe NZ FCR FUNCTICN EVALUATICNG)
FCRMAT(LTH TNCREASING THE MAXMZ CR CHAMGIMNG THE STEP SIZE/)

G2 TS (116s117s118)sMETHSD

116

THE SFARCH BEGINS WITH THE CHTSEN METHOD
THIS 1S THE NEW METHCD.

JEChEn=1
KCHEM=1
ALDrsvuls\J
BETA=nct



117

118

1k2e

TABLE 4 (CONTINUED)

CCEFF=1e2
GAMMA=2 U
WRITE(2s110U)
GC TC 1

THIS 1S5 THE SIMPLEX.

JMCHEN=1
KCHEN=2
ALPHT=1.0
BETA=ne5
GAMMA=2.0
WRITE(3s111)
GC TC 1

THIS IS BCXe

JMCHEN=ND M
ALPHC=1.3
B_ETAz(\.a5
WRITE(3+112)

NC STATEMENTS FROM NCOW ON CAN BE REMCVED EXCEPT YCU ARE CERTAINLY SURE
WHAT 7T DCo

SET Up THE INKITIAL PATTERN
1) EVALUATICN CF THE GIVEN INITIAL POINT

J=1

KK=1

CALL cUBNAMINDIMesJsSUPLIMsSsDCVXeKKY)
K=NDIm+IMCHEN

KLT1=¢-1

2) EVALUATICN COF THE REMAINING PCINTS CF THE INITIAL PATTERN

DC 3 J=2,K

DC 2 1=1sNDIM
DCVX(1e)=DCVX (I 91} 4+DLTVX(1d-1)
CALL sUBNAM{NDIMsJsSUPLIMeSsDCVESKK)
CONT InUE

M=K

ALPHA=ALPHC



10
11

12

13-

14
15

le
17

18

143

TABLE 4 (CCNTINUED)

CRDERING THE FUNCTICN VALUES CF THE PATTERN
CALL RDER(MsNDIMsSsDCVX)
DEFINING THE CENTRTCID TC CBTAIN THE FURTHER SEARCH

D 5 I=1+KLTI
C{I)=1e
CALL cNTRCD(NDIMsKLT1sCsCNTRTXsDCVX)

REFLECTING CPERATICN

DC 7 I=1sNDIM

DCVX(TsK+1)=CNTRTX(I)+ALPHAX (CNTRCX(1)=DCVX(IsK))
J=K+1 '

CALL sUBRAM(INDIFsJsSUPLIMsSsDCVASKK)

ITFIKK-MAXNC) 828136

GC TC (9+9s23)sMETHTD

NC EXPANSICN IN BCOX METHCD s THAT 1S5 THE SIGNIFICANT DIFFERENCE

IF(S(e+1)-5(1))10s1Cs23
EXPANNING CPERATICN

DC 11 1=1sRDIM
DCVX(TsK+2)=CNTRTX( I )+GAMMAX (DCVX (1 sK+1)-CNTRCX(I))
J=K+2

CALL QUJNAIINDI|stbUPLIW;usDCVXsKN}

IF(KK-MAXNC) 12512536

THE DIFFERENCE CF THE NEW METHCD FRCM THE SIMPLEX

GC TC (16+13)sKCHEN
IF(S(e+2)-5S(1)) 1451421
S(K)=c(K+2)

DC 15 L=1sNDIW

DCVX (L oK) =DCVX(LsK+2)

GC TC 35
IF{S(g+2)-5(K+1))17+17521
SIK)=c(K+2)

DC 18 L=1sNDIM

DCVX (| sK)=DCVX(LsK+2}

M=K

CALL CRDER(MsNDIMsSsDCVX)
CALL cCHECK(KsSUMsNDIMsS)



alaNal

[aNaNa

19

20

21
22
23
24
25

26

27
28

29
30

31

32
33
34

35

TABLE 4 (CCNTIRKUED)

IF(SUM—LRRCR) 3737519

1k

DEFINING THE NEW CNTRCTD ACCCRDING TC THE IDEA CF THE NEW METHCD

CVALUF=2%NDIM-1

D2 20 I=1,KLT1
C(I)=cVALUE
CVALUF=2%ND1M-2

CALL CNTRCD(NDIMsKLT19CsCNTRTXsDCVX)
ALPHA=ALPHCXCCLEFF

GZ T 6

S(K)=g(K+1)

D2 22 L=1sNDIM

DCVX (] sK)=DCVX (LsK+1)

G2 TC 35
IF(S{r+1)~5(K=1)121s21s24
TF(S(g+1)-5(K) 125925427
S(K)=g(K+1)

D2 26 I=1sNDIM _
DCVX{TsKI=DCVX(IsK+1)

CCNTRACTING CTPERATICN

DC 28 I=1sNOIiM :
DCVX(1sK+1)=CNTROX(I)+BETAX{DCVX(1sK}-CNTRCX(1))
J=K+1

CALL sUBNAMINDIMeJsSUPLIMsSsDCVXIKK)
IF(KK-MAXNC)12G:29536

IF(S(v+1}-5(K)130,30.32

S(K)=c(K+1) '

DC 31 I=1+NDIM

CCVX(1:K)=DCVXIIsK+1)

GC TC 35

SHRINKIKG THE PATTERN DUE TC A BAD CONTRACTICN

DT 34 J=2.K

DT 33 1=1sNDIH
DCVX(1ed)=(DCVX(Is1)+DCVX(TsJ)) /2
CALL cUBNAM(NDIMsJsSUPLIMsSsDCVXsKK)
CCNT InUE

TF(KK-MAXNC 35435436

CALL cCHECK(KsSUMsNDIMsS)
IF{SUM—ERRCR)37+37+4

THE SFARCH 1S INCOMPLETE ACCCRODING TC THE GIVEN INADEQUATE MAXNC.



36

a7
38

39

40

1k5

TABLE & (CONTINUED)

WRITE(35113)

WRITE(3s114)

WRITE(35115)

G TS 4U

THE SFAKCH IS CCMPLETEDs RETURN TC THE MAIN PRCGRAM AFTER EVALUATING

THE CNTRCD CF THE PATTERN.

DC 38 I=1,KLT1

C(1}=]|

CALL ¢NTRCD(NDIMsKLT1sCsCNTRCXsDCVX)

D2 39 I=1sNDIM

DCVX(]sK+1)=CNTRSX (1)

J=K+1 )

CALL SUBNAM(NDIMsJsSUPLIMsSsDCVXsKK)

RETURN '

END

THIS qUBRCUTIKE SUBNAM SHCULD PRUVIDED bY USER FCR CBTAINING THE

REQUIRED CBJECTIVE FUNCTICN VALUE

KCCKT,eeA CONTRCL NUMBER SET FCR CUTPUTe FOR EVERY KCCNT NCe CF
FUNCTICON EVALUATICNS THE COMPUTER WILL WRITE ZUT THE DATA
ONCE .

ERRes,esA FUNCTICN VALUS SET FCR THE DATA T2 BE WEITTEN CUT AS THE
COMPUTED FUNCTICN VALUE DRCPPED- A TENTH CRDER EACH TIME.

SCPTe,seTHE BEST FUNCTICH VALUE HAS BEEN FCUND AT EACH STAGE COF

" COMPUTATICN

XCPT(1)eTHE CCRRESPCNDING ITri DECISICN VARIABLE CF SCPTe

SUBRCUTINE SUBMAM(NDIMsJsSUPLINMsSsDCVXsKK)

DIMENSICN S(3u)sDCVX(27s20) sXCPT(27)

CCMMCN X{27)sX1(2U)eX2(2G) sX3(20)5Q(20)sCsDsEsMaGaVeXX(2T7)sX4(T)sP

FORMATIELZ2.5)

FCRMAT(IS5s4F1543)

FCRMAT(31H THE CPTIMUM FUNCTICN VALUE 1S E13.6)

FCRMAT{6E13.6)

FCRMAT(1014)

IF(J=1)4:445

KCCNT=1u

ERR=1ne

GC 1T 6



5

1o

11
12
13

21

146

TABLE 4 (CCONTINUED)

KK=KK+1

TRANS|L CCATICN CF THE VALUES CF THE INDEPENDENT VARIABLES FRCM THE
SEARCH DECK Tu THCSE USED IN THIS SPECIAL PRCBLEMs WHERE X(1) IS
THE 17H INDEPENDENT VARIABLE IN THE USER PRCBLEM.

DC 7 I=1eNDIM
X(I)=pCVX(IsJ}
CCNTIpULE

THE UsER SHCULD PROVIDE A PART OF THIS SUBRCUTINE FCR CBTAINING
THE RFQUIRED FUNCTICKN VALUE AT EACH VERTEX BETWEEN THIS CCMMENT
STATEVENT AND THE FCLLCWING STATEMENT IN WHICH T MEANS THE RE-
QUIREN FUNCTICN VALUE.

IF[X[})-LE-G-)GC TC 16
IF(X(2)eLEeCe)GT TC 16

TIF(X{g)elEeUa}GT TS 16

PX11=g33.7~X(1)

PX12=670e0-X{1)=X(2)
PX13=2696e3-X{1)1-X{2)=-X(3)
PX21=,u0114%X(1)1%(1653.8=-X1{11})
PX22=,00228%#X(2)%(278424+PX11-(X(2)/2.0))

- PX23=,00228%#X(3)%¥(273e2+PX12-(X(3)/2.01))

PX24=,CU0228%X(4)%(344.2+PX13-(X(4)/2.0))
T11=13827-(PX21+PX22+PX23+PX24)1+(342.2-PX24)%%2

"T22={(362.2- PXZB!**2+(345 6-PX22)¥%24+ (332, 7-PX21)%%2

T= T11+T22

S{J)=71

STCRAGE CF BETTER FUNCTICN VALUE wWITH THE CCRRESPCHNDING INDEPEND-
ENT AnND DEPENDENT VARIABLESs IF NECESSARY.
IF(J=-119+9511

DS 10 I=1eNDIM

XCPT(1)=X(1)

CCNTInUE

SCPT=71

IF(J=1)17s179s12

IF(S(1)-5(J)}11259:9

IF{KK- KC“NT114913913

WRITE(321)SCPT
ER]TE(B;Z){XUPT(Ilsl—lsNDIM

WRITE(3+3)1KK

DS 21 N=1sM :

WRITE(3s2u&) NeXIIN)sX3(N)sX{N)sX2{N)
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15

20

16
17

v W

KCCNT =

1F(S(y

TABLE 4 (CONTINUED)

KCONT+10
J=ERR115+15s17

WRITE(3s1)S5CPT
WRITE(352){XCPT{1)sI=1sNDIM} .
DT 20 N=1+M

392U4) NaXL{N)sX3(N)sXIN)sXZ2(N)

WRITE(
WRITE(

333 )KK

ERR=ERK¥ue1l

GC 1C

17

S{J)=cUPLIM

RETURN
END

kT

THE SuBRCUTINE FCOR CRDERING THE FUNCTICHN VALUES CF THE PATTERN

SUBRCYTINE CRDER(MsNDIMsSsDCVX)

DIMENS
K=M

KLTl=¢
b 5
M=M—-1

ICHN S(30U)sDCVK(27.30)

=1
I=1sxLT1

DC 4 J=1sM
IF(S(MEL)I-5(J) 1224

A=S(My
S(M+1y
S(J)=x
pc 3
B=DCvy
DCVX (L
DCVX (L

1)
=5(J)

L=1sNDI#
{LeM+1)

2 M+1)=DCVXI(LJ)
s J) =B

CONTINUE
CONTINUE

CONTIN

- RETURN

END

UE

A NECFSSARY PART CF THE WHCLE SEARCH DECK BUILT FCR CBTAINING THE

CENTRAID CF THE PATTERN EXCLUSIVE CF THE WCRST PCINT,.

SUBRCUTINE CNTRCD(NDIMsKLT1sCsCNTROXsDCVX)
DIMENGICN C(28)sCNTRTX(27)+DCVX(27530)

SEARCH
CSUM=0
DT 1

ING FCR THE BETTER PIINT

I=1sKLT1

CF THE SPACE
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TABLE 4 (CONTIRUED)

1 CSUM=¢cSUM+C(I])
D2 3 1=14NDIM
AXIS=ne
DC 2 J=1sKLT1
CNTRCx (L) =AXIS+C(J)*DCVX(IsJ)
AXIS=cNTRCX(1)
2 CONTINUE
CNTROx (I)=CNTRCX (1) /CSUM
3 CONTINUE
RETURN
END

THE BUILT~IN SUBRCUTINE FCR CHECKING WHETHER THE CPTIMUM PCINT HAS
BEEN ACHIEVED : '

THE CRITERICN USED 15 SQRT(((AVGe(S)-S(J))¥¥2/NDIM) 9J=19K) oL oEe
ERRCR,

aNaEalaNaNaNa!

SUBRCUTINE SCHECK(KsSUMsNDINMeS)
DIMENSICN S(30)
SAVG=Qe
D& 17 Le1lsk
1 SAVG=g{L)+SAVG
AK=K
SAVG=gAVG/ AK
SuUM=0,
DC 2 L=1sK
2 SUM=SUM+(S(L)—-SAVG) %2
ANDIM=NDINM
SUMESUM #%0e5/ANDIM
RETURN
END
$ENTRY
4 4 4 2G00 1
«100GE-CT ,1UCGE+50
0.1000E0]1 LOUOGEUG «OOOOEOQOOC «O0OCOEOO «000GEGO  1000EOC1
«0000EC0 ,C0CCGEQOU «O0COCEOC «OGCCEDO «1QUGEQ]1l  «0O0Q00EGO
.0000ECCG ,000CEOG «0000ECO  «1GC0DEOQ]
.1000E03 ,100GE0U3 «10CCGEO03 +10C0EO3
$sTCP : .
VL
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T0.G6L5CTE Gz CL127711F CG3 0UV200990F (3 0.268911E° 03

TTHE CPTIRGH FUNCTION VALUT IS™ 0.3866492E 05 : T

© 0.13348CE 03 C.I727767 03 02254

i = 3 TABLE 5

RESULTS OBTAINED BY SIMPLE X SEARCH TECHNIQUE ' i 149

THE "?TItUV FUNLTI GUE TS CLl2e4955 ¢

G.10CCUSE 03 (. 5930507 22 0. 10205%E 03 0.102055E 03 ) T
10

CTHE CPTIMUM FUNCTICN YALUS 1S 7001197508 0 7 777 & e s —mmm s o T

0.10CE4TE 03 u-lUHElEt N3 D.119725& 03 0.1164058 03

20
THE CPTI%uM FU”"TIG* MALUE IS 0.5C9256E. 05

30

‘O 977;29E 02 O 1&347qv 03 0.264[?9‘ €3 0. 3?51L7E C3

40" e Woadivonadistefil e i A T R e

‘THE CPTIHMUK FUNCTICN VaLUT IS 0.367666E 05

T 0.10C427E 03 G.1539C0% 03 02399436 €3 0.4149606 03 s -
50 7 -

TTHE CPTI¥UF FUNCTICN VALUS 1S 700303327 o5 = B

0-121351E 03 C.1710%3C 03 0.277177¢ 03 0.407723 03

i
THE CPTINMUM FUNCTICN WALUE IS C.294CCaf OS5

- 0.125185¢ €3 0.1755527 03 0.2598395 03 0.39564%E €3~~~ N

ic
THE CPTI®UM FUNCTICN VALUT IS 0.290422F ©5

~C. 130768E €3 C.170742E 03 0. «233204F 03 0.371544E 03

a0 2 o W e e
THE CPTI#UNM FUHLTION VALYE IS 0.7 49 05
':g

3
03 0.374009€ C3

Je

THE CPTI¥UM FUNCTICN VALUZ IS 0.729037¢ 65— ' —
0.132868E 03 C.170123F 03 €.259212E G3 0.373389E €3

2 2SR ettt e A
THE CPTIKUM FU“LT[C\ VALUZ 1S 0.2EB309F 05 _
T0.T35734E 70370 1721515 03 ©.2505378 03 0.382311E 03
110

~ THE CPTILIHUM rb”CIIF\ VALUE 1S 0.287323E G5 ‘“
0.135126E 03 C.167385% 03 0.25119GF 03 €.333082€ 03
1 e i s e o SO e i i T e 5 B — —
THE CPTIMUM FUNCTICA VALUE IS 0.236110E 05
C0.T3E784E 03 0.165¢635703 0.2579428 03 0.3810135 03
130
TTHE CPTIMUM FUNCITON VALUE 1S 0. 2825028 G5~
_0.135688E 02 0.155365F 33 0. 2549255 ﬁs 9.331655E 03
lapTs s Wiicdlsicimutiiiot izl wk ‘e
THE CETINUNM FUNCTION VALUF IS  0.274792C 05 _
C 0.134266FE 703 0.153G1027G3 0.241568E 03 0.405004E 03 T '*‘
150 s
CTHE CPTIMUM PUSNCTICON VALUE 15 T 0.2635166°65 -
0.138CR1E 03 0.164247L €3 G.247641F 03 O, ADégaut 03
T k. el s o Ve e
THE CPTIMUNM FUNCTICAN VALUE 1S 261759 05 _
TT0LI3S4TTE 03 0.1666275 33 0.23830056 03 0. 503741E° 03 7 T T

-4



TABLE 5 (continued)

150

3?0 —— e e — . - L7 S R SV *}
CTHE CPTIMUM E”xhrlc« VALUE TS 0.261058E 05 ' ' '
0.138E37€ 03 0.167G53F 03 06.,24C182F ©3 ¢.4594751F 63
38G
THE CPTIMUK FUNCTIEN YALUZ IS  (0.2610585 05
T 0.138£37F 03 0.167C53E 03 0.24D0182F 03 0.494751F 63 T
350 _ ' - _
TCTHE CPTIRUK FURCTICN VALUETIS 0.261055E 05 — 0 777
0.138€37F €3 0.167G537 93 0.240182% 03 0.494751F 03
e B e e et e
CTHE CPTIMUM FUMCTICN VALUE IS  0,261052C 05 . )
TU0.13EE37E 03 0.J1670S3F 03 002401826 03 0.4947518 703 - B
410 -
THE CPTIFUM FUBCTICN VALUE TS C.2610%88 ¢y~~~ 77—~~~
0.138¢37E 03 C.1670535 03 0.240182C 02 0.494751E€ 03
St : Ml L2TWR ¢ N
THE CETIMUY FUNCTITA VALUE IS U.26l058E 05
T0.138637E 03 0.15670535 03 0L240142E 03 U.494T51E €3~ T
430 _
TUTHE CRTIRGK FUMCTICN VALDUE IS 0.2610588 05 o -
.__0.138¢37E €3 0.16TCS3E 03 C.240182E 03 G.494751E 03

TOTHE CETINUNM FLNCT]C\ VALUE IS (G Z€105¢(E 05
0.13E€37E 03 0.1&67C53E 03 (. 2401tc£ 03 0.494751€ 03

T 480
TOLI3EE3TF 037 0.1670538 U3 ¢.2401620.03 0.49%751E
COTHE CFRTTIHUF FURCTICN VALUF IS C.2€61058F 05

TROGTTTT

440
THE CoTINMUY FUNCTICN VALUSZ IS  (C.261056E 05

C0.13EE37E 03 0.107053F 03 0.24018267C3 0.494751E 03~ — T

450

TTHE CFTIMUM FUNCTICN VALUE TS " 0.26105&6E 05 77
0.138637E C3 0. 10!““5F 3 0.240182F C3 O, é94731E 03

460
THE CPTINMUK FUNCTICN VALUF 1S 0.26105FE 05

CO0LI3EC378 03 0.167C53E03 0.2401828 C3- 0.494751E

470

THE CPTIMUK FUNCTICN VALUE IS C.261GS5RE (5

490

v

03

-

G.13F€375 (3 0.167053E 03 0.240182E C3 0.494751E

THE CPTIKUF.FLHCTICN VﬁLUE IS 0.26105&8 05

TO-I3B(3TE €3 G.16TCS3F (3 AU E O GRS IE

93 ]
3




T 0.138€52E €G3 C.167055% 03 0.240075E 03 0.495036E C3

_"fﬁémfa?i‘E?W?U“ETfiﬂgﬁﬁfﬂﬁﬁf§j“6"ééfﬁﬁﬁﬁ 05

THE CETINFULY FUNMCIITN VALUGT IS ©.26 1uﬁur 05

G.138513F €3-C.1e71SSE 03 (.24G0468F 03 0.495177F 03 B

180

THE CETINUY FURCTION YALUT IS Q.ZelQGUI G5 -

Go132€3CE G3 C LE7USET U3 (0.240034F 3 0.4947125 03

150 e
CTHE CFTINUM FURNCTICN YALUS IS C.261CR9E G5

_0.138¢4SE 03 C.167024F 03 0.24C08%F (3 0.495177F 03

200
THE CPTIFUM FUMCTICN VALUE IS 0.261056F 05

',WVﬁ,ﬁlsl.;___ﬁ;l

210

_0.138652E €3 0.167055F 03 C.24C075E 03 0.495036E C3
220

THE CPTINUF FUNCTICN YALUE 1S  0.261058E 05

~ 0.138€52E 03 0.167053F 03 0.240075E 03 0.495036E 03
230

"THE CPTINUNF FUNICTICN VALUE IS 0.261058E 05

0.138£54E G3 C.167C56E C3 0.240075E 03 0.495035E 03

240
THE CPTINUM FUNCTICN VALUE IS 0.261C58E 05

_.0.138£54E 03 C.167C56E €3 0.240075E 03 0.495035E 03

0.138€54F 03 (G.16TC56C 03 0.240075E 03 (.495035E 03
250

~ THE CPTIMUNM FUMCTICN VALUE IS ©0.261058F 05

260
_THE CPTIMUM FUMNCTICN VALUE IS 0.261058E 05

© 0.138654F 03 0.167056F 03 0.240075E C3 0.495035E 03
270

THE CPTI1KUM FUNCTICN VALUE IS 0.261058E 05
__0-138654F 03 0.167056F 03 _0.240075€ 03 0.455035E 03

T 280
THE CPTINMUM FUNCTICN VALUE IS  0.261058E 05

0.138€654F 03 0.167C56F 03 0.240075C 03 0.495035F 03
290 '

THE CPTIMU¥ FUNCTICN VALUE IS 0.261058E 05

__0.138654F 03 0.167C56E 03 0.240075E 03 0.495035E_03

300
__THE CFTIMUM FUNCTICN VALUE IS 0.261058E 05

- 0.138£54E C3 0.167056F 03 0.240075E 03 0.495035E 03
310 ;

“THE CPTIWKUVM FUNCTICN VALUE IS 0.261058E 05
0.138654E (3 0. 167056& 03 0.240075E 03 0.495035E 03

“320 T
_ THE CPTIKUM FUNCTICN VALdF IS 0.261058F 05

© 0.13R€54E 63 ¢. 1670‘6[ 03 0. ZAOObe 03 0.495035E 03
330

THE CPTINUM FUNLCTICN VALUFE IS 0.261058E 05
_0.138€54E 03 0. lu?DﬁéE 03 _0.240075E €3 0.495035E 03

340
_TRE CPTIKMUM FUNCIICN VALUE IS 0.261058E 05

0. 138&54E G3 0.167056E 03 0. 240075E 03 G.495035€ 03

350 .
THE CPTIFUN FUNCTTEN VALGE 1S 0.261056E 05
0.138€654E c3 e,lovcsef 03 0.240075F 03 0.495035E 03 ~ 5
360 :

__THE CPTIFUM FUPCTlCh VALUE IS 0.261C58E 05

0.13BE54F 03 0.167CS6E 03 0.2400755 03 0.495035E 03
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The objective of this report is to demonstrate the applicability
of the discrete stochastic maximum principle to the case of some multi-
stage stochastic systems frequently encountered in management and in in-
dustry. The basic algorithm of the discrete stochastic maximum principle
is stated. The special theorems which are very useful in determining the
necessary condition for optimality and in calculating the adjoint vectors
are also explained.

First a prdductibn scheduling model is solved by applying the sto-
chastic maximum principle for two types of cost functions - a linear cost
function andra nonlinear cost function; For the linear cost function the
certainty equivalence principle is verified. A linear resource allocation
model is next solved for which also the certainty equivalence principle
is found to hold good,

The third multistage stochastic model formulated for and solved by
the stochastic maximum principle is the hydroelectric water storage system.
Solutions for linear and nonlinear cost functions are obtained separately.
For the nonlinear case, the numerical computation of optimal decisions is
done by using two techniques - the simplex search technique and a gradient
technique. The optimal policy by the two methods are found to be the same,

The last problem considered is a production and inventory control
problem with given discrete probability values for the demand random vari-
able and given discrete cost function Qalues. The solution by stochastie
dynamic programming is first presented. Then a stochastic model is formu-
lated for the system after fitting regression equation for the cost function
and the solution by the stochastic maximum principle is compared with that

obtained by the stochastic dynamic programming.



