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ABSTRACT

Integer Programs (IP) are a class of discrete optimization problems that are uti-

lized commercially to improve the function of various systems. Implementation is often

aimed at reaching optimal financial objectives with constraints on resources and oper-

ation. While incredibly beneficial, IPs are NP-complete, with many IP models being

unsolvable.

Branch and bound (BB) is the primary method employed to solve IPs to optimality.

BB is an exhaustive approach to enumerating all potential integer solutions for a given

IP. By utilizing a hierarchical tree structure to tabulate progression of enumeration, BB

can guarantee an optimal solution in finite time. However, BB can take an exponential

number of iterations to solve an IP. Computationally, this can result in a tree structure

that exceeds a computer’s memory capacity, or a prohibitively long solution time.

This thesis introduces a modified version of BB call the Quaternary Hyperplane

Branching Algorithm (QHBA). QHBA employs a quaternary branching scheme, utilizes

hyperplane branching constraints, and generates internal cutting planes to increase effi-

ciency. Implementation of these advancements theoretically improves QHBA in compar-

ison to traditional BB. It can also be shown that QHBA guarantees an optimal solution

in a finite number of iterations. A short computational study shows that QHBA re-

sults in a 26.7% decrease in solution times when compared to CPLEX, a commercially

available IP solver.
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Chapter 1

Introduction

An integer program is a class of discrete optimization problems with the defining char-

acteristic of a categorical integer restriction on the variables in the program. An integer

program (IP) is canonically defined as max cT x subject to Ax ≤ b, x ∈ Zn
+ where

A ∈ Rmxn, c ∈ Rn, and b ∈ Rm. The feasible region is defined as P = {x ∈ Zn
+|Ax ≤ b},

which is the set of possible integer solutions that satisfy the constraints of the inte-

ger program. An IP is essentially a traditional linear programming problem with an

integrality restriction on the decision variables.

This thesis presents a theoretically superior version of branch and bound (BB), the

primary method used to solve integer programs. This new algorithm is called the Qua-

ternary Hyperplane Branching Algorithm (QHBA) and introduces a novel approach to

partitioning the solution space. QHBA enumerates more integer points per iteration, and

consequently many IPs can be solved faster using QHBA when compared to traditional
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implementations of BB.

Integer programming problems have been used to mathematically model and manage

a wide variety of systems across myriad applications. In 1989, the San Francisco Police

Department implemented an IP based scheduling algorithm that significantly increased

the efficiency of daily operations [29]. Prior to the implementation of the algorithm

scheduling was done manually. The police department sought to achieve several objec-

tives: 1) minimizing cost of operations, 2) maximizing citizen safety and 3) maximizing

police officer morale. Implementation of this scheduling algorithm led to a 25 percent

increase in the availability of officers during peak hours, a 20 percent decrease in re-

sponse times, which resulted in a projected savings of approximately 11 million dollars

per year.

Delta Airlines utilized another integer program based scheduling algorithm to deter-

mine airplane fleet assignments [26]. The fleet assignment problem is extremely complex

due to the size of the system (at the time of the implementation there were approxi-

mately 2,500 departures to be divided among 450 airplanes). The solution to the IP

model was forecasted to save the company over 300 million dollars for the following 3

years.

There have also been significant increases in IP applications for medicine. Recently,

mixed integer programs (MIP) have been used to determine treatment plans for intensity-

modulated radiation therapy [20]. Optimal treatment solutions were found quickly, and

the solutions were superior in terms of tumor coverage and conformity while minimizing
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collateral radiation damage to normal tissues. Integer programs have also been used

to match organ donors to potential recipients [24], and have significantly increased the

efficiency of the transplant system employed in the United States. The proposed re-

districting of transplant centers should result in a net increase of 17 transplants per

year.

IP models have also seen extensive use in financial planning [11, 28]. One common

problem consists of a set of potential investments (capital expenditures) that are con-

strained by a set of financial and resource limitations. Thus, the problem’s goal is to

choose the best subset of those potential investments [19, 25].

Integer programs have been shown to be largely beneficial to a host of problems;

however, the primary limiting factor to the applicability of IPs lie in their potential

computational complexity. Integer programs are NP-complete in the strong sense [15].

As such, many IPs require an exponential amount to time to find and prove the optimal

solution. The result is that often times integer programs are functionally unsolvable. One

such problem is known as the Duty Scheduling Problem, which is a problem associated

with public transportation [3]. Bordörfer et al. provides a 67,732 variable, 656 constraint

mixed integer program from the Mixed Integer Programming Library (MIPLIB) [1] that

is still unsolved even after years of researchers’ attempts to solve it.

When an IP is unsolvable, practitioners are forced to compromise on various limiting

factors such as constraints or variable restrictions on integrality. Relaxing the limitations

for a particular problem to allow for solvability may not even result in a feasible solution.
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Other concessions, such as partitioning the IP into smaller subproblems or relaxing

constraints, often times leads to an inferior integer program. The solutions to these

weaker integer programs are significantly less beneficial than a solution to the desired

model.

The primary solution method used to solve integer programs is the Branch and Bound

Algorithm (BB) [2, 7]. BB is an enumerative approach to solve an IP that utilizes a

tree structure to tabulate potential solutions. In finite time BB guarantees an optimal

solution to a bounded integer program, if such a solution exists, or reports that no

integer solutions satisfy the constraints. Theoretically, BB requires exponentially many

iterations in order to achieve this result.

A critical component of BB solves the linear relaxation (LR) of the IP. The LR is

the continuous formulation of the IP where all aspects are identical to the IP except the

integrality constraints on the decision variables are removed. The LR solution contains

x values, x∗LR , and the objective value, z∗LR .

BB begins by solving the LR of the initial problem with x∗LR and z∗LR . If x∗LR is

non-integer, let j be selected such that x∗LR
j /∈ Z+. Two new subproblems or nodes of a

BB tree are created (a generalized branching structure is displayed in Figure 1.1). One

of these nodes adds on the constraint xj ≤ bx∗LR
j c, while the other node includes the

constraint xj ≥ bx∗LR
j c + 1. Then one of the new nodes is selected, the LR for that

subproblem is solved, and new branching constraints are generated if applicable. This

process continues until all pendant nodes are fathomed. A node is fathomed if the LR
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Figure 1.1: Binary partition for branch and bound

is infeasible, integer, or if z∗LR is worse than the best known integer solution.

Observe that a single branch eliminates all of the LR space where xj ∈ (bx∗LR
j c, bx∗LR

j c+

1), as depicted in Figure 1.1. Due to the binary branching employed, BB may require

exponentially many iterations prior to obtaining an optimal solution. This is one of the

primary disadvantages to an enumerative approach to solving IPs. An exponentially

large problem is not only time consuming, but often times the size of the tree can grow

so large that it outstrips the memory capability of computers. For example, a 250 vari-

able, 30 constraint IP ran until it exhausted 3 gigabytes of available storage without

determining the optimal solution, as evidenced while pursuing this research.

Cutting planes are a common technique to help reduce the computational effort
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to solve an IP. Cutting planes are formulated so that non-integer extrema are rendered

infeasible (or cut from the linear relaxation). Cutting planes are not allowed to eliminate

any feasible integer solutions. Therefore if enough strong cutting planes are employed,

then the solution to the linear relaxation is also the solution to the IP. Unfortunately

there exists infinitely many cutting planes and there can exist exponentially many non-

dominated cutting planes. While cutting planes represents an effective technique, BB is

still primarily used to solve IPs with some cuts implemented prior to beginning BB.

1.1 Motivation

The branch and bound algorithm has changed very little since its inception in 1960.

Improvements for the algorithm come in the form of additional branching strategies

aiding in the selection of children that could expedite computation, or combinations of

branching and cutting plane methods (branch and cut). Many improvements to the

algorithm are problem specific, and while largely effective, such approaches cannot be

successfully applied to all IPs.

The motivation for this research is derived from attempting to use cutting planes

internally to solve an IP. Can cutting planes be used as branches in BB? Thus the

ambitious motivation for this research is to redesign the traditional branch and bound

algorithm by utilizing complex branching structures.
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1.2 Research Contribution

This research’s contribution is the development of a new version of BB called the Quater-

nary Hyperplane Branching Algorithm (QHBA). While the traditional implementation

of BB focuses on a single non-integer variable at each branch, QHBA uses multivariate

constraints (or cutting planes) at each branch. While potentially advantageous, expand-

ing the scope of potential branching variables resulted in a myriad parameters that had

to be accounted for in a successful implementation of this new branching scheme.

The coefficients corresponding to particular x values in a cutting plane are not re-

stricted, thus the initial decision was to restrict potential coefficients for candidate cut-

ting planes to {1, 0,−1}. These values were considered more desirable because they

would cut the most continuous space per iteration. Additionally, these values increase

the likelihood that basic feasible solutions for subproblems are integer.

One of the preliminary versions of QHBA operates very similarly to the traditional

BB algorithm. Instead of using a single variable, multiple variables are selected for

the branching cut. Constraints are derived by using the x values obtained from the

LR solution, and instead of just using a single non-integer value, the right-hand side

is calculated by inputing solution values into the complex branches. If this right-hand

side value is non-integer, then the floor and ceiling values are calculated and used for

the branches in those subproblem. Preliminary results indicated that it is possible to

branch using cutting planes. In certain instances this algorithm terminates. However, if

the initially calculated right-hand side is integral, then the algorithm fails to terminate
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because no rounding procedure can be implemented. Consequently the LR solution is

not removed and the subsequent child node’s LR is identical to its parent node’s LR

solution.

A potential solution to this problem is to increase the number of cutting planes be-

ing used per branch in QHBA. In doing so QHBA creates four subproblems, opposed

to two for BB, licensing higher order branching (more than two branches per iteration).

Ideally there is nothing prohibitive in the traditional BB algorithm that would prevent

more than binary branching; however, in the traditional implementation higher order

branching would be tantamount to doing multiple iterations in one step. For our imple-

mentation that was not necessarily the case. Using two branching cuts simultaneously

requires a quaternary branching structure that is unique to QHBA. Most importantly,

this quaternary structure enables the use of internal cutting planes (in this specific im-

plementation Chvátal-Gomory cuts are used).

In summary the primary benefits of QHBA are as follows. QHBA provides a unique

approach to branch and bound that employs quaternary branching. Theoretically this

algorithm has quadratically more basic feasible integer points at each iteration than

traditional branch and bound due to the use of Chvátal-Gomory cuts. Additionally,

more continuous relaxation space is eliminated in one set of branches than in traditional

BB. Finally, the computational benefits of QHBA have been shown to decrease the

computational time by approximately 26.7% in solving bounded integer programs in

comparison to traditional branch and bound on some benchmark problems.
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1.3 Thesis Outline

Chapter 2 provides the background information required to understand this thesis. The

traditional implementation of BB is presented. Several methods that have been regularly

implemented to improve solution capability for IPs are briefly discussed. Topics including

cutting planes and total unimodularity are also examined.

Chapter 3 contains the bulk of the work done for this research. The Quaternary Hy-

perplane Branching Algorithm is outlined in detail along with a 2-dimensional example

to illustrate the advancements made. Theorems and proofs are provided to show finite

convergence, and that the tree structure of QHBA is capable of iteratively partitioning

the solution space.

Chapter 4 contains the computational results from the implementation of QHBA.

QHBA is compared to a commercially available IP software, CPLEX, and another par-

titioning technique. The chapter presents the solution times for all methods, along with

an interpretation of the data, which illustrates the benefits of QHBA.

Chapter 5 provides a conclusion and summarizes the work. During the implementa-

tion of this computational study, numerous strategies were developed that could be used

in order to further improve solution times, and some of those future research topics are

briefly discussed.
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Chapter 2

Background Information

This chapter contains the information needed to understand the fundamental concepts

of this research. Only a small sample of the massive amount of research done in the

scope of integer programming is provided. Further information can be found in [22].

This chapter begins with an in depth look into branch and bound, and the funda-

mental theory behind this algorithm. More specifically the first section examines the

nature of the partitions established by BB and the logic necessary for the algorithm

to terminate. A detailed example is provided to further explore BB. Specific branching

strategies and algorithmic improvements along with their implications are also discussed.

The chapter concludes with a brief discussion of cutting planes and total unimodularity.
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2.1 IP Definitions

As aforementioned, an integer program is a discrete class of optimization problems that

consist of an objective function limited by a set of constraints on potential decision

variables. An IP is defined as max cT x subject to Ax ≤ b, x ∈ Zn
+ where A ∈ Rmxn,

c ∈ Rn, and b ∈ Rm. The feasible region of an IP is defined as P = {x ∈ Zn
+|Ax ≤ b},

which is the set of possible integer solutions that satisfy the constraints of the integer

program.

BB uses the linear relaxation of the IP as a primary component. The linear relaxation

(LR) is defined as max cT x subject to Ax ≤ b, x ∈ Rn
+ where A ∈ Rmxn, c ∈ Rn, and

b ∈ Rm with the feasible region of the linear relaxation defined as PLP = {x ∈ Rn
+|Ax ≤

b}.

Integer programs are NP-complete [15], which has dire consequences in the effort

needed to compute the optimal solution in even small integer programs. However linear

programs (LP) can be solved in polynomial time [16] and most LPs are easily solved on

commercially available software.

2.2 Branch and Bound

The Branch and Bound Algorithm (BB) [2, 7] is the most popular method for solving

arbitrary IPs . BB guarantees an optimal solution, if it exists, and can find the solution

in finite time. Therefore it has been widely used to solve IPs since its inception. BB
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systematically enumerates solutions using a tree structure to establish a hierarchical set

of bounds and constraints for candidate solutions.

BB begins by solving the LR with x∗LR and z∗LR , this is described as the root node of

the tree. Denote the node being evaluated as the parent node Tp′ . If x∗LR is non-integer,

let j be selected such that x∗LR
j /∈ Z+. Two new subproblems or nodes of a BB tree

are created, these are referred to as child nodes. Note that the parent-child relationship

is indicative of immediate adjacency, with parent denoting the node above the current

node, and child being the nodes below the current node. One of these child nodes adds

the constraint xj ≤ bx∗LR
j c to its LR formulation. This node is denoted TL

p′ . While the

other node includes the constraint xj ≥ bx∗LR
j c+ 1, and this node is denoted TG

p′ .

BB continues generating children nodes until all pendant nodes are fathomed. A

node is fathomed if the solution to its LR is integer, if the LR is infeasible, or if z∗LR is

worse than the best known integer solution. BB sets a bound by recording the current

best integer solution z∗. If an integer solution is found and z∗LR > z∗, then this new

integer bound is set as z∗. If there are no more unfathomed nodes then BB terminates

and reports the optimal solution, if it exists, or reports that the problem is infeasible.

Formally,

The Branch and Bound Algorithm

Initialization

Let T = {T1} be the starting enumeration tree and T1 has the IP’s linear

relaxation.

12



Set z∗ := −∞ where z∗ is the current best integer solution.

Set totalnodes := 1.

Main Step

While there exists an unfathomed pendant node.

Let Tp be any unfathomed pendant node of T .

Solve the linear relaxation for Tp and denote it as z∗Tp and x∗Tp .

If Tp is infeasible, then mark Tp as fathomed.

If x∗Tp ∈ Zn, then mark Tp as fathomed and if z∗Tp > z∗, then z∗ := z∗Tp

and x∗ := x∗ Tp .

If zTp ≤ z∗, then mark Tp as fathomed.

If Tp is not fathomed, then Begin

Select an x
Tp

i such that x
∗Tp

i /∈ Z.

Set βTp := bx∗Tp

i c.

Create the following two new nodes with Tp as the parent by adding

the following constraints to Tp’s linear relaxation.

TL
p = Ttotalnodes+1 with the following constraints appended to Tp’s LR.

xi ≤ βTp .

TG
p = Ttotalnodes+2 with the following constraints appended to Tp’s LR.

xi ≥ βTp + 1.

13



totalnodes := totalnodes + 2

End

End while

Output

If z∗ = −∞, then report the problem as infeasible, else report z∗ and x∗ as the

optimal solution.

The branching step in BB is indeterminate. At any iteration there are many nodes

that need to be evaluated. Therefore, the next unfathomed node to be evaluated is

selected arbitrarily. Selecting the next node to be evaluated can have significant im-

plications to the efficacy of BB. Memory capacity becomes a pertinent issue in larger

problems, and often times BB trees can grow large enough to exceed the memory ca-

pacity of computers. However it is possible that the overall solution time would increase

when using such a strategy. Common search strategies used to explore the BB tree are

the topic of the next section.

2.2.1 Search Strategies

Branching strategies were originally implemented to alleviate memory concerns in early

computers, and while less of an issue with modern computing, large branching structures

still occur that often times outstrip the available resources. Consequently a wide array
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of branching strategies have been developed in an attempt to avoid such complexities.

Generally, strategies are either some form of breadth first, depth first, or best bound

(also known as best child) selection.

Depth first search is an evaluation method where BB explores a child node and keeps

expanding until all ancestors are fathomed. Once a fathomed node is found, then the

BB algorithm backtracks and repeats the process. Depth first strategies are typically

assigned a direction, right or left, denoting which direction to dive.

Depth first search is memory efficient as the evaluation tree only has to keep track

of the current node being evaluated and other children that have been created as the

algorithm iterates through the tree. Denote a depth d, where d demarcates the level of

nodes, with the root node of depth d = 1. Thus, the children of the root node have

d = 2, and the children of all nodes at d = 2 are marked with a depth of d = 3, and so

on.

Using a depth first search strategy, at a depth d there are at most d + 1 unevaluated

nodes left in the tree. Since the number of nodes in the tree is linear in order, the

amount of memory necessary to store the tree is small. Additionally, depth first search

strategies tend to find integer solutions quickly. Thus more nodes can be pruned from

the tree.

However, there is no guarantee to the effectiveness of depth first search. It is possible

to explore to a large depth and then find an integer solution that does not prune any

nodes. This effect is multiplied in larger problems. There is no overt indication that a
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particular enumeration path or child node is the best candidate for branching, thus a

depth first strategy has the potential to engage in an exponential amount of superfluous

work, which has dire consequences on solution times. Thus, computation times can vary

drastically from problem to problem even within the same size and class. Now that

memory is not as rigid of a limiting factor, other branching strategies have been devised

that typically perform better.

Breadth first strategies attempt to evenly expand the tree by exploring all children

at the current depth. For example, all nodes at depth 3 are evaluated before any depth

4 nodes. Breadth first criteria also utilize a direction, such as breadth first right. Eval-

uating one level at a time alleviates the concerns of a depth first strategy. No ’wrong

decision’ can be made in regards to what direction to dive. This potentially reduces the

amount of computation needed to find the optimal integer solution by not exploring all

the ancestors of a useless node.

A breadth first strategy is potentially problematic because it does not seek a goal,

namely to fathom a node (potentially resulting in a bound). Instead by evenly expanding

the tree, the current number of unfathomed nodes (nodes that must then be stored in

memory) can grow exponentially large, resulting in 2d nodes at depth d. This can quickly

result in a tree large enough to exceed the available memory on many computers.

The default approach for most implementations of BB is the best bound search,

which is a mixture of breadth and depth strategies. Best bound search is a strategy that

uses information provided by the objective function of evaluated nodes to determine
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the order of enumeration. The assumption is that a better objective value is the best

candidate for enumeration. The logic follows that the optimal integer solution would

be a child of a node with a good objective value. Thus the nodes are evaluated in the

descending order of z∗LR. A near optimal (or optimal) integer solution is a better bound

because it prunes a larger area of the enumeration tree, resulting in a reduced solution

time. Finding a good integer solution quickly can lessen the size of the current tree,

prevent excessive enumeration, and reduce the need for excessive amounts of memory to

store the tree.

A more advanced search practice is to use a best bound search mixed with a depth

first search condition known as random diving [27]. In this hybrid approach BB enacts

the best bound search for a set number of iterations. At prescribed intervals the algo-

rithm switches to a depth first search and dives until that path is fathomed. This diving

attempts to quickly discover a superior IP solution.

There is no overt indication to the best search method and the best strategy varies

from problem to problem. While one approach may be effective for a certain class of

problems, there is no guarantee that it will work efficiently for all problems.

A Branch and Bound Example

The basic BB algorithm has been described along with tools fundamental to its imple-

mentation. This section uses tradition BB to solve a simple IP. Branching, fathoming,

and search strategies are discussed in the context of this example.
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Example 2.2.1 Consider the following problem

Maximize 5x1 + 2x2

subject to 10x1 + 2x2 ≤ 23

4x1 + 2x2 ≤ 13

x1, x2 ≥ 0 and x1, x2 ∈ Zn

Figure 2.1 provides a graphical representation of this integer program with the con-

straints 10x1 + 2x2 ≤ 23 and 4x1 + 2x2 ≤ 13 as labeled. The points labeled on the

interior of the constraints represent feasible solutions, P , to the integer program. Note

that the solution to the linear relaxation is non-integer, and there are no integer extrema

except (0, 0) in PLR.

The initialization of BB requires evaluating the root node, which is the solution to

the linear relaxation. The LR solution is z∗ = 44
3
, and x∗LR = (5

3
, 19

6
). For this example a

depth first left search strategy is used. Recall that in depth first left the preference is to

select the left most unfathomed node for evaluation. Node selection continues downwards

and left until a node is fathomed. Once a node is fathomed, then the algorithm selects a

higher node with an unexplored branch and continues evaluating nodes depth first left.

In the root node both decision variables are fractional in the LR solution. Selection

of the initial branching variable is arbitrary, therefore in this example x1 is selected.

Constraints are formulated using the rounding procedure that was previously explained.

Since x1 = 5
3
, the branches are x1 ≤ b5

3
c and x1 ≥ b5

3
c + 1, equivalently x1 ≤ 1 and
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x1 ≥ 2.

Figure 2.2 depicts the branching of the root node. For each node there are two

branches, and each branch is representative of one constraint. These constraints are re-

ferred to as branching constraints. Finding the solution to a node and creating the

branching constraints is one iteration of BB. The graphical depiction in Figure 2.2

shows that the branching constraints divide the solution space into two subproblems.

The shaded area indicates the continuous space eliminated by these two branching con-

straints. Observe that the previous LR solution is now infeasible in the two subproblems,

due to the branching constraints.

For the next iteration the branch x1 ≤ 1 is followed due to depth first left. This

subproblem can be denoted TL
1 = T2 with the following constraints: 10x1 + 2x2 ≤ 23,

4x1 +2x2 ≤ 13 and the branching constraint x1 ≤ 1 is included in this subproblem. The

linear relaxation of node 2 is solved rendering a solution of z∗LR = 14, x∗LR = (1, 9
2
).

Continuing, x2 is the only candidate for branching because it is noninteger. Two new

nodes and accompanying constraints are generated. The constraints are x2 ≤ b9
2
c and

x2 ≥ b9
2
c+ 1, x2 ≤ 4 and x2 ≥ 5. Thus two new nodes are generated. Figure 2.3 depicts

the fully explored BB enumeration tree for this problem and the remainder of the section

refers back to this figure.

The next node selected is node 3 which includes the branching constraint x2 ≤ 4.

The LR solution to node 3 is z∗LR = 13, x∗LR = (1, 4) which is integer. Node 3 is

considered fathomed. Since there is no current best integer solution (z∗ is initialized to
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Figure 2.2: First branching partition for Example 1
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Figure 2.3: A Branch and Bound enumeration tree
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−∞), z∗ is updated to 13.

When a node is fathomed, it denotes that the current node is not a candidate for

future branching. Once fathomed, the algorithm does not continue branching along that

node. Therefore, the algorithm finds another unfathomed node and continues enumer-

ation according to the prescribed branching strategy. In Figure 2.3, the dashed line

borders denote a fathomed node.

BB returns to the next unfathomed node (node 4) and continues down that path

favoring depth first moving left. In node 4 the LR is found using the added constraint

x2 ≥ 5. Next, the same constraint generation procedure is applied and the algorithm

continues down the tree, as shown in Figure 2.3. In the example this path follows the

labeled numbers in ascending order. Note that the constraints on the decision variables

are cumulative, thus at node 6 the constraints x1 ≥ 1, x2 ≥ 5, and x1 ≤ 1. Furthermore,

these constraints are added to linear relaxation problems of subsequent child nodes.

The best integer solution found thus far is z∗ = 13. Consequently node 5 is fathomed

because its linear relaxation objective value is less than or equal to an already existing

integer solution (even though the solution is non-integer), and node 6 is fathomed because

the added constraints render the LR infeasible. Finally node 7 is fathomed due to the

best integer solution bound.

Note that it is possible to fathom node 4 because the coefficients of the objective

function are integer, and thus integer solutions would result in integer objective values.

The LR solution to node 4 is a noninteger value (13.75) greater than the current best
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integer solution 13, but worse than the next best integer objective value 14. Node 4 can

be fathomed because there would be no integer solution that would result in a better

objective value. This would reduce the total nodes necessary to solve the problem,

however for this example the tree was fully explored.

Termination occurs now that there are no more unfathomed pendant nodes. Once

BB terminates, the optimal integer solution is reported, which is z∗T = 13, x∗T = (1, 4).

In this example selecting a depth first left strategy is very beneficial. The optimal

integer solution is found in two iterations, and it bounds the right side of the tree

rapidly. However, with other search strategies the total number of nodes evaluated can

vary widely. If a depth first right strategy is adopted for Example 1, the total number

of nodes evaluated would be 13, which is more than depth first left. A depth first right

tree is shown in Figure 2.4. Using a best bound search method would result in an tree

identical to Figure 2.3, except enumerated in a different order.
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2.2.2 Branch and Bound Requirements

There exist various versions or tweaks to branch and bound. Tweaking an algorithm no

longer guarantees that the algorithm optimally solves the problem. Thus, any tweak to

BB must have an argument that proves that the tweak still enables BB to solve every

IP. There are two main points that must be shown to validate such a tweak to BB.

First, the modification must terminate in a finite number of iterations. If not, then

the algorithm may be stuck in an infinite loop and never terminate. Such an example is

provided at the beginning of Chapter 3.

Second, the optimal solution must not be eliminated. This is typically shown through

an argument that proves that every integer solution in the parent node is also in at least

one of its children’s nodes or that a better solution does not exist in a certain region.

Bounding in BB is an example of this second case.

2.2.3 Hyperplane Branching

Hyperplane branching is a modification on the branching constraints used in BB. For

BB, branching constraints are single variables. Hyperplane branches (or disjunctive

constraints) are another implementation spanning multiple variables in an attempt to

increase the efficiency of the enumeration tree. Branching constraints would follow a

similar pattern to traditional BB. One child includes the constraints
∑n

i=1 αixi ≤ β and

the other child has
∑n

i=1 αixi ≥ β + 1 where α, β ∈ Z.
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Primary research for hyperplane branching has been done by Owen and Mehrotra.

They offer a technique, called disjunctions, that utilizes {−1, 0, 1} inequalities or hyper-

planes and implements them in a binary branching tree. The use of general disjunctions

was derived from [21], which provides a polynomial time algorithm for solving general

IPs. This paper provides much of the background ideas for the work presented here.

Given an x∗LR, these authors create a branching constraint (α, β) ∈ Zn+1. Two child

nodes are created with one having the constraint
∑n

i=1 αixi ≤ b
∑n

i=1 αix
∗LR
i c and the

other with
∑n

i=1 αixi ≥ b
∑n

i=1 αix
∗LR
i c + 1. Theoretically, their proof of convergence is

slower than BB’s and some other problems with this general approach are discussed at

the beginning of chapter 3.

Owen and Mehrotra provide an algorithm that is primarily concerned with the gen-

eration of ’good’ disjunctions, and at any parent node use a greedy heuristic algorithm

to find the best general disjunction to use that for branching. A small amount of re-

search has been done for finding effective disjunctions [14, 17]. The primary result is

traditionally a reduction in tree size, but there is not necessarily a reduction in solution

time in computational studies. In contrast, this work actually decreases the solution

time to many IPs.

Other researchers have used hyperplanes to help solve integer programs, but their

results are much less related to the research presented here. Ryan and Foster allude to

the use of multi-variate branching for use in a set partitioning problem [9]. Specifically,

in duty scheduling set partitioning problems, the use of single variable branches results
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in uneven tree growth. Duty variables are binary, thus at any variable branch values

are restricted to 0 or 1. When a variable is fixed to 0, it often times has little effect on

the objective value which produces fewer branches. Restricting a variable to 1 has the

opposite effect. Implementation of branching constraints would result in more even tree

growth, which was computationally less demanding.

A hybrid algorithm utilizing hyperplane branching was proposed for the generalized

assignment problem by Jörnsten and Värbrand [13]. They present the Complement

Algorithm, which is a modified branch and cut application. The Compliment Algorithm

begins by generating many valid inequalities to cut the linear relaxation solution. If no

valid inequalities can be generated, then the algorithm implements a form of hyperplane

branching until valid inequalities can be generated again. In the computational study,

the maximum number of branches was limited to 10. Implementation of the Complement

Algorithm led to an increase in the efficiency of solving test problems.

Fischetti and Lodi employ a type of hyperplane branching, that they term local

branching, to assist in the solution of mixed integer programs [8]. The branching con-

straints were based on the binary variables included in the problem. Instead of ’hard

fixing’ a single binary variable to either 0 or 1, Fischetti and Lodi’s branching constraints

focused on the fixation of sets of these variables. In doing so they could partition the solu-

tion space into solution neighborhoods. A neighborhood that yielded a superior solution

would be further searched using commercially available software. Using the branching

constraints with the newly devised search heuristics yielded significant improvements in
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solving hard IPs.

2.3 Cutting Planes

The feasible region of a linear program is known as a polyhedron, which is the intersection

of a finite number of halfspaces. A halfspace is the solution space of a single linear

inequality {x ∈ Rn : Ax ≤ b}. The feasible region of a linear program is a convex

polyhedron. A set S is convex if, and only if, λs1 + (1 − λ)s2 ∈ S for all s1, s2 ∈ S

and λ ∈ [0, 1]. The solution space to an integer program is a countable set of points,

and consequently not convex. The polyhedron containing those points is known as the

convex hull of P , denoted P ch. Formally the convex hull of P is the intersection of all

convex sets containing P .

A cutting plane or valid inequality typically removes non-integer space from the LR.

An inequality of the form
∑n

i=1 αixi ≤ β is a valid inequality if, and only if,
∑n

i=1 αix
′
i ≤

β is not violated for all x′ ∈ P . In using cutting planes to obtain an integer solution, each

application of a cutting plane seeks to invalidate the current linear relaxation solution.

This is known as the separation problem.

Cutting planes aim to remove the non-integer space so that only the convex hull of

P remains. Thus an integer solution can be obtained by using the simplex method.

Various topics such as facet defining inequalities, lifting, disjunctive constraints, and

other valid inequality generation techniques are described in [22].
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Returning to Figure 2.1, the graphical depiction of Example 1 shows the impertinent

continuous space related to the linear formulation that is not necessary to solve the

integer program. Solving the linear relaxation results in a non-integer solution, z∗ = 44
3
,

x1 = 5
3
, and x2 = 19

6
. Thus consider Example 1 and include the cut 3x1 + x2 ≤ 7. The

resulting LR solution is z∗ = 27
2
, x1 = 1

2
, and x2 = 11

2
. Including the cut 2x1 + x2 ≤ 6,

the solution to the LR becomes z∗ = 13, x1 = 1, and x2 = 4, which is the optimal integer

solution. Notice that neither of the inequalities eliminated a feasible integer point. This

is shown graphically in Figure 2.5.

In Figure 2.5 the two new constraints cut the section of continuous space that con-

tained the relaxation’s solution from the problem. Subsequently, the first constraint

removes the original LR solution, but still allows for a noninteger optimum. The ad-

dition of the second constraint cuts the new noninteger optimum from the polyhedron

and actually constrains the space so that there are more integer extrema that can be

accessed from the simplex method. The resulting integer optimum is achieved without

the branch and bound algorithm.

While cutting planes are effective, the derivation of effective cutting planes is the

primary obstacle in their implementation. There exists infinitely many cutting planes

and there can exist exponentially many non-dominated cutting planes for even simple

IPs. The difficulty of finding a cutting plane varies, and finding certain classes of cutting

planes is NP-hard [15].

A class of cutting planes known as Chvátal-Gomory (C-G) [5, 10] cuts are of par-
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Figure 2.5: Graph for the IP with cutting planes
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ticular importance to this research. C-G cuts are a useful tool that potentially allows

the derivation of all valid inequalities. The general procedure is that some valid inequal-

ity is a non-negative linear combination of the constraints whose coefficients have been

rounded down to the next lowest integer. The C-G procedure can be applied recursively.

The basic argument supporting the validity of a C-G cut is that a non-integer right

hand side can be modified without impacting the coefficients of a constraint, given

those coefficients are integer. More specifically, suppose a valid inequality of the form∑n
j=1 ajxj ≤ b where aj ∈ Z ∀ j = 1, ..., n and b ∈ R. Since a is integer, the inequality∑n
j=1 ajxj ≤ bbc is also valid. This can be furthered applied to instances when the

a coefficients are also non-integer. Suppose a valid inequality
∑n

j=1 ajxj ≤ b where

aj ∈ R ∀ j = 1, ..., n and b ∈ R. Then rounding down the a coefficients decreases the

value of the left hand side and thus
∑n

j=1bajcxj ≤ b is valid. Therefore,
∑
bajcxj ≤ bbc

is also a valid inequality.

Traditionally derived C-G inequalities are positive fractional linear combinations of

valid inequalities. Returning to Example 1 both cutting planes can be derived from the

constraints. The inequality 2x1 + x2 ≤ 6 is derived by 1
2
(4x1 + 2x2) ≤ 1

2
(13), this yields

the constraint 2x1 + x2 ≤ 13
2
. Using the C-G rounding procedure this constraint can be

modified to b2cx1 + b1cx2 ≤ b13
2
c, which is equivalently 2x1 + x2 ≤ 6. The constraint

3x1 + x2 ≤ 7 can be derived in a similar fashion. The first step is 1
2
(10x1 + 2x2) ≤ 1

2
(23)

which yields b5cx1 + b1cx2 ≤ b23
2
c, which is an intermediary constraint 5x1 + x2 ≤ 11.

Utilizing the two recently derived constraints, the final cutting plane can be derived by
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adding 1
3
(5x1 + x2) ≤ 1

3
(11) and 2

3
(2x1 + x2) ≤ 2

3
(6), which is 3x1 + 12 ≤ 23

3
. Using the

C-G rounding procedure, all noninteger values can be rounded down which is expressed

by b3cx1 +b1cx2 ≤ b23
3
c, resulting in the constraint 3x1 +x2 ≤ 7. Thus, the C-G process

has created the two cutting planes used in this example.

2.4 Totally Unimodular Matrices

The final topic presented in this chapter is the concept of totally unimodular matrices

(TUM). A matrix A is TUM if every square submatrix of A has a determinant of

{1,−1, 0}. TUM matrices are of particular importance because if a particular matrix is

TUM, then all basic feasible solutions from that matrix are integer as long as the right

hand side is integer. More specifically, if A is TUM, then P = {x ∈ Rn
+ : Ax ≤ b} is

integral for all b ∈ Zm.

In order to prove that some matrix A is not TUM, it suffices to provide a square

submatrix of A where the determinant does not equal {1,−1, 0}. However, proving a

matrix is TUM is significantly more difficult. Therefore there are several properties that

can be used to aid in the identification of TUM matrices.

If A is TUM, then a matrix obtained by interchanging two rows or columns of A is also

TUM. Additionally, if A is TUM, then (A, I) is also TUM. Alternatively, if for every J ⊂

N = {1, ..., n}, there exists a partition J1, J2, of J such that |
∑

j∈J1
aij −

∑
j∈J2

aij| ≤ 1

for i = 1, ...,m then A is TUM.
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For the remainder of this thesis, presented TUM matrices are relatively easy to

prove by demonstrating that all square sub-matrices have determinants that satisfy the

primary definition.
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Chapter 3

The Quaternary Hyperplane

Branching Algorithm (QHBA)

This chapter provides an explanation of QHBA and demonstrates its implementation

with a simple example. The theorems necessary to support QHBA are also presented

along with theoretical evidence that shows why QHBA is an improvement to Branch

and Bound.

3.1 QHBA

Briefly, QHBA is an enumeration algorithm similar to BB with several key modifications

that significantly increase QHBA’s efficiency when compared to traditional BB. Progres-

sion through QHBA follows a tree structure. The key differences lie in the generation
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of the branching constraints and in the design of the enumeration tree. The branching

constraints for QHBA are multivariate, whereas BB’s branching constraints are single

variables. Additionally, QHBA follows a quaternary branching scheme (4 branches for

each parent node). These modifications allow QHBA to better eliminate continuous

relaxation space, which results in significant theoretical and computational benefits.

The primary idea behind QHBA consists of choosing branching constraints. Define

(α, β) to be a branching constraint where α ∈ Zn and β ∈ Z. In traditional branch

and bound, α = ei. In this work, α could take any integer values, but is restricted to

{−1, 0, 1}n, which enables strong theoretical results.

Converting BB into this generalized branching constraints setting is fairly straight-

forward. Given the linear relaxation solution of an unfathomed node Tp′ and branching

constraint (α, β), two child nodes are created. One adds on the constraint
∑n

i=1 αixi ≤ β

and the other has the constraint
∑n

i=1 αixi ≥ β + 1. The natural selection of β is

b
∑n

i=1 αix
∗Tp′c.

The single biggest complication with this natural implementation is that the linear

relaxation solution of a parent node may still be feasible in one of the child nodes.

For instance, if the LR solution for some node Tp is x∗ = (1.5, 3.5) with the branching

constraint ((1, 1), β), then β = 1 ∗ (1.5) + 1 ∗ (3.5) = 5 and x∗ is contained in TL
p′ which

includes the constraint x1 + x2 ≤ 5. Changing the branching constraint to ((1,−1), β)

incurs a similar problem as β = 1 ∗ (1.5) + (−1) ∗ (3.5) = −2 and the constraint is

x1−x2 ≤ −2. Since both β values are integral, then the additional branching constraints
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do not eliminate x∗ from future children. Consequently, the BB algorithm with these

two branching constraints enters an infinite loop and will not terminate.

Two advancements are developed to overcome this serious problem and enable QBHA

to be a valid solution technique to solve IPs. The first advancement involves the case

when
∑n

i αix
∗Tp′ ∈ Z. In such a case α is changed so that

∑n
i αix

∗Tp′ /∈ Z. Clearly the

branching constraints now remove the LR solution from future children.

The second advancement involves the concept that the corner points of branch-

ing constraints are not integer, as previously shown. The new proof of finite con-

vergence fundamentally relies on the corner points of the branching structure being

integer. To guarantee integer corner points, a quaternary branching strategy is imple-

mented. Thus, each parent node has two branching constraints (α1, β1) and (α2, β2).

Since two branching constraints are being used the solution space is divided into 4

partitions, or nodes constructed with pairs of branching constraints. These 4 parti-

tions, or children, are created as follows. Including the specific branching constraints,∑n
i=1 α1T

i x
∗Tp′
i ≤ bβ1T c,

∑n
i=1 α2T

i x
∗Tp′
i ≤ bβ2T c, denotes TLL

p′ . The next partition utilizes∑n
i=1 α1T

i x
∗Tp′
i ≤ bβ1T c,

∑n
i=1 α2T

i x
∗Tp′
i ≥ bβ2T c + 1, which is denoted by TLG

p′ . Another

space has
∑n

i=1 α1T
i x

∗Tp′
i ≥ bβ1T c+ 1,

∑n
i=1 α2T

i x
∗Tp′
i ≤ bβ2T c, which is denoted as TGL

p′ .

The final quadrant is
∑n

i=1 α1T
i x

∗Tp′
i ≥ bβ1T c + 1,

∑n
i=1 α2T

i x
∗Tp′
i ≥ bβ2T c + 1 and is

denoted as TGG
p′ .

Just enumerating into 4 quadrants does not eliminate any fractional corner points;

however, it does enable the introduction of cutting planes based solely upon the branch-

37



ing constraints, which is a major advancement of this research. To each of these four

nodes, the obvious Chvátal-Gomory cut (the multipliers are (1
2
,1
2
)) is added to each of

the four subproblems. These C-G constraints are only non-redundant when the sum of

the right hand side of the specific branching constraints for a subproblem are odd. This

occurs in precisely 2 of the subproblems, so a total of 10 inequalities are added across

the 4 nodes. In contrast, in a similar setting, BB would only have 8 such inequalities,

which enables a single iteration of QHBA to eliminate more continuous relaxation space

per branch.

Once the branching structure is understood, QHBA iterates through the tree us-

ing these new branching constraints when creating children. Fathoming conditions are

identical to traditional BB. Thus QHBA fathoms if it finds an integer solution, if the

subproblem is infeasible, or if the objective value of a subproblem is inferior to the

current best integer solution. Formally, the algorithm can be described as follows.

Quaternary Hyperplane Branching Algorithm

Initialization

Let T = {T1} be the starting enumeration tree and T1 contain the IP’s linear

relaxation.

Set z∗ := −∞ where z∗ is the current best integer solution.

Set totalnodes := 1.

Main Step
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While there exists an unfathomed pendant node.

Let Tp be any unfathomed pendant node of T .

Solve the linear relaxation for Tp and denote it as z∗Tp and x∗Tp .

If Tp is infeasible, then mark Tp as fathomed.

If x∗Tp ∈ Zn, then mark Tp as fathomed and if z∗Tp > z∗, then z∗ := z∗Tp

and x∗ := x∗ Tp .

If z∗Tp ≤ z∗, then mark Tp as fathomed.

If Tp is not fathomed, begin

Select α1Tp and α2Tp ∈ {−1, 0, 1}n

For l = 1 and 2, begin

If
∑n

i=1 α
lTp

i x
∗Tp

i ∈ Z, then select a j ∈ {1, ..., n} such that x
∗Tp

j /∈ Z,

and if α
lTp

j = 0, then α
lTp

j := 1, else α
lTp

j := 0.

Set βlTp := b
∑n

i=1 α
lTp

i x
∗Tp

i c.

End for

Create the following four new nodes with Tp as the parent by adding

the following constraints to Tp’s linear relaxation.

TLL
p := Ttotalnodes+1 with the following constraints included in the

subproblem.

∑n
i=1 α

1Tp

i xi ≤ β1Tp ,
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∑n
i=1 α

2Tp

i xi ≤ β2Tp and

∑n
i=1b

α
1Tp
i +α

2Tp
i

2
cxi ≤ bβ1Tp+β2Tp

2
c.

TLG
p := Ttotalnodes+2 with the following constraints included in the

subproblem.

∑n
i=1 α

1Tp

i xi ≤ β1Tp ,

∑n
i=1 α

2Tp

i xi ≥ β2Tp + 1 and

∑n
i=1b

α
1Tp
i −α

2Tp
i

2
cxi ≤ bβ1Tp−(β2Tp+1)

2
c.

TGL
p := Ttotalnodes+3 with the following constraints included in the

subproblem.

∑n
i=1 α

1Tp

i xi ≥ β1Tp + 1,

∑n
i=1 α

2Tp

i xi ≤ β2Tp and

∑n
i=1b

−α
1Tp
i +α

2Tp
i

2
cxi ≤ b−(β1Tp+1)+β2Tp

2
c.

TGG
p := Ttotalnodes+4 with the following constraints included in the

subproblem.

∑n
i=1 α

1Tp

i xi ≥ β1Tp + 1,

∑n
i=1 α

2Tp

i xi ≥ β2Tp + 1 and

∑n
i=1b

−α
1Tp
i −α

2Tp
i

2
cxi ≤ b−(β1Tp+1)−(β2Tp+1)

2
c.

totalnodes := totalnodes + 4.

End if
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End while

Output

If z∗ = −∞, then report the problem as infeasible, else report z∗ and x∗ as the

optimal solution.

The introduction of internal cutting planes garners a host of benefits. The immedi-

ately available benefit is that in some instances the use of C-G cuts removes problematic

noninteger solutions. Returning to the example from the opening section, suppose the

LR solution for some node Tp′ is x∗ = (1.5, 3.5) with the branching constraints ((1, 1), β1)

and ((1,−1), β2). Then β1 = 1 ∗ (1.5) + 1 ∗ (3.5) = 5 and β1 = 1 ∗ (1.5)− 1 ∗ (3.5) = −2.

In the original example this is problematic because x∗ is contained in TLL
p for either

constraint. The C-G cut derived from the two branching constraints is ((1, 0), 1), equiv-

alently x1 ≤ 1, which clearly precludes this LR from future children. Lemma 3.2.2

formally proves this result. Now that QHBA has been established, it is beneficial to

explore an example to demonstrate the unique characteristics of this method. The ex-

ample from chapter 2 is explored in the context of QHBA, and the results are compared

to traditional BB.

Example 3.1.1 Reconsider the following problem from Example 1

Maximize 5x1 + 2x2

subject to 10x1 + 2x2 ≤ 23

4x1 + 2x2 ≤ 13
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x1, x2 ≥ 0 and x1, x2 ∈ Zn

For simplicity, the same coefficients for the branching constraints are used throughout

the example. The branching constraints are 1x1 + 1x2 ≤ β1 and −1x1 + 1x2 ≤ β2, with

β values to be determined based on the LR solution the current node. Breadth first

right is used as the search strategy.

The first iteration of QHBA finds the LR solution for the root node, which is z∗ = 44
3

and x∗ = (5
3
, 19

6
) and this node is not fathomed. Now β1 and β2 can be calculated with

β1 = b5
3

+ 19
6
c = 4 and β2 = b−5

3
+ 19

6
c = 1. The constraints are added to the root

node’s LR to create 4 children as follows:

The first child created is TGG
1 , due to the breadth first right strategy, is represented

by T2 with the following constraints x1 + x2 ≥ 5, −x1 + x2 ≥ 2 and x2 ≥ 4. The third

constraint x2 ≥ 4 is generated using the Chvátal-Gomory rounding procedure. The exact

derivation begins with multiplying the two ’≥’ constraint by a −1 to transform them to

a ’≤’. Next the constraints a multiplied by 1
2

and summed resulting in 1
2
(−x1 +−x2 ≤

−5)+ 1
2
(x1 +−x2 ≤ −2). This results in the inequality 0x1 +−x2 ≤ −7

2
. Using the C-G

rounding procedure the constraint can be modified to b0cx1 +−b1cx2 ≤ b−7
2
c, which is

equivalently −x2 ≤ −4 or x2 ≥ 4.

For the next child, TGL
1 = T3 with the following additional constraints x1 + x2 ≥ 5

and −x1 + x2 ≤ 1. In this set of constraints it is also possible to use the C-G procedure

to generate a third constraint. The constraint can be derived as follows, 1
2
(−x1 +−x2 ≤

−5) + 1
2
(−x1 + x2 ≤ 1). The intermediate inequality is −x1 + 0x2 ≤ −2, and with
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rounding b−1cx1 + −b0cx2 ≤ b−2c, which is the redundant constraint x1 ≥ 2. Notice

that the intersection of the two branching constraints occurs at (2, 3). Furthermore, the

only point that meets x2 ≤ 2 at equality is (2, 3). Since this polyhedron has a dimension

of two and x1 ≤ 2 has a face of dimension 0, this C-G inequality is redundant.

The next child is TLG
1 = T4 with the added constraints x1 +x2 ≤ 4 and −x1 +x2 ≥ 2,

and the fourth child is TLL
1 = T5 with the following additional constraints x1 + x2 ≤ 4,

−x1 + x2 ≤ 1 and x2 ≤ 2. The third constraint for TLL
1 is generated using similar

arguments as TGG
1 . The Chvátal-Gomory procedure can be generalized to instances

when in some branch β1 + β2 is odd. So returning to TLL
1 , the LR includes the extra

constraints x1 + x2 ≤ 4, −x1 + x2 ≤ 1 and x2 ≤ 2. If only the first two constraints

are included it would be possible to achieve a basic feasible solution from the branching

structure in Rn\Z. As previously mentioned, this is problematic for the termination

conditions of QHBA.
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Figure 3.1: Subproblems TLL
1 and TLG

1
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As illustrated in Figures 3.2 and 3.1, these four subproblems partition the solution

space without excluding any candidate integer solutions. The C-G cuts are depicted in

the nodes TLL
1 and TGG

1 . Note how the C-G cut induces two integer extreme points.

If these constraints were not implemented, then TLL
1 and TGG

1 would have structures

similar to TLG
1 and TGL

1 and the branching constraints would not intersect at an integer

point. The implementation of the C-G cuts can prevent this issue.

The search strategy is breadth first right, therefore the first node to be evaluated is

TGG
1 denoted node 2. Node 2 has a noninteger solution with z∗T

GG
1 = 14.25, x∗T

GG
1 =

(1.25, 4). Node 2 is a candidate for future branching. The next node is TGL
1 , marked node

3, which is infeasible. Thus node 3 is fathomed. The next child to be evaluated is TLG
1

(node 4), which is an integer solution. Since an integer solution is found z∗ is updated

to 11 with x∗ = (1, 3) and this node is fathomed. TLL
1 is the next node evaluated, node

5, which is also a non-integer solution with z∗T
LL
1 = 13.5, x∗T

LL
1 = (1.9, 2). Node 5 is

also a candidate for future branching.

Nodes 2, and 5 are potential candidates for further exploration and are not pruned

by the recorded best integer solution. For breadth first right, node 2 serves as the

basis for the next four iterations. Branching constraints are generated using the new

LR according to the procedure outlined earlier. The four new children are evaluated

right to left as before. Node 6 is non-integer and is not fathomed with z∗T
GG
2 = 13.5

and x∗T
GG
2 = (.5, 5.5). Node 7 is infeasible with the added branching constraints and is

fathomed. Node 8 provides a new integer solution with z∗T
LG
2 = 13 and x∗T

LG
2 = (1, 4).
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1 and TGG
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Since this is a superior integer solution to the current best recorded solution, z∗ is

updated to 13 with x∗ = (1, 4) and the node is fathomed. Finally node 9 is evaluated

and is infeasible and thus fathomed. Figure 3.3 shows QHBA’s branching tree.

At this point the problem is functionally solved. QHBA marks nodes 5 and 6 for

constraint generation, but no new nodes are evaluated because the parent nodes (nodes

5 and 6) have fractional integer solutions where the next lowest potential integer solution

is z∗. This results in fathoming of nodes 5 and 6 because the objective values are non-

integer values less than 14 but greater than 13. Since the objective function has integer

coefficients, there are no integer solutions between 14 and 13, and fathoming can occur

because there is no better integer solution.

According to QHBA as outlined, branching constraints are created for nodes 2 and 6.

However, a node is only evaluated when the search strategy selects that branch to evalu-

ate (this is where a majority of the computational complexity arises). Referring back to

Figure 3.3, the breadth first right search strategy dictates that nodes 6-9 are evaluated

before exploring the children of node 5, and then the children of node 6. Given that

an integer solution is found at node 8, those noninteger parent nodes become fathomed.

Consequently, there is no need to select any of the remaining possible branches.

47



z
∗

=
14

.6
7

x
1

=
1.

67
,x

2
=

3.
17

l 1

�
�

�
�

��

@
@

@
@

@@

I
n
f
ea

si
bl

e
l 3

z
∗

=
14

.2
5

x
1

=
1.

25
,x

2
=

4

l 2
z
∗

=
11

x
1

=
1,

x
2

=
3

l 4
z
∗

=
13

.5

x
1

=
1.

9,
x

2
=

2

l 5
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

x
1

+
x

2
≤

4
−

x
1

+
x

2
≤

1
x

2
≤

2
x

1
+

x
2
≤

4
−

x
1

+
x

2
≥

2
x

1
+

x
2
≥

5
−

x
1

+
x

2
≤

1

x
1

+
x

2
≥

5
−

x
1

+
x

2
≥

2
x

2
≥

4

��
@@

�
�

�
�

��
X

X
X

X
XX

N
od

es
14
−

17

��
@@

�
�

�
�

��
X

X
X

X
XX

N
od

es
10
−

13

I
n
f
ea

si
bl

e
l 7

z
∗

=
13

.5

x
1

=
.5

,x
2

=
5.

5

l 6
z
∗

=
13

x
1

=
1,

x
2

=
4

l 8
I
n
f
ea

si
bl

e
l 9

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

x
1

+
x

2
≤

4
−

x
1

+
x

2
≤

1
x

2
≤

2
x

1
+

x
2
≤

4
−

x
1

+
x

2
≥

2
x

1
+

x
2
≥

5
−

x
1

+
x

2
≤

1

x
1

+
x

2
≥

5
−

x
1

+
x

2
≥

2
x

2
≥

4

F
ig

u
re

3.
3:

Q
H

B
A

E
n
u
m

er
at

io
n

T
re

e

48



Termination of the algorithm occurs now that all pendant nodes are fathomed. The

optimal solution z∗ = 13, x∗ = (1, 4) is reported. Although the total number of nodes

in the tree is higher than the example in chapter 2. The computational study provides

evidence that QHBA is computationally superior to BB.

3.2 Theory of QHBA

The primary result of this section is to show that QHBA guarantees an optimal solution

in a finite number of steps. This section provides a lemma to show that QHBA does

not exclude any potential integer solutions, followed by a proof that QHBA removes

continuous space by removing the linear relaxation from a parent node when children

are created. By then showing that the extrema in every subproblem are integer, a proof

of finite termination is presented.

To guarantee that an optimal solution is found in any implementation of BB it must

be shown that the optimal integer solution is not excluded. This is trivially shown in

traditional BB, but given the unique characteristics of QHBA, this may not be the case.

Simply put, it must be shown that no candidate integer solutions are eliminated at

any iteration of QHBA. The quaternary branching structure of QHBA must not violate

any potential integer solutions. When creating children, all integer points that were

candidate solutions in the parent node must still be feasible in one of the four children.

Formally,

Lemma 3.2.1. Let Tp′ be any node in QHBA’s branching tree, then Zn ∩ Tp′ = (Zn ∩
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TLL
p′ ) ∪ (Zn ∩ TLG

p′ ) ∪ (Zn ∩ TGL
p′ ) ∪ (Zn ∩ TGG

p′ ).

Proof : Trivially, every x ∈ Zn satisfies either
∑n

j=1 αjxj ≤ β or
∑n

j=1 αjxj ≥ β + 1 as

long as αj ∈ Zn and β ∈ Z. Consequently, every x ∈ Zn satisfies one of the following

four sets of inequalities.

LL)
∑n

j=1 α
1Tp′
j xj ≤ β1Tp′ and

∑n
j=1 α

2Tp′
j xj ≤ β2Tp′

LG)
∑n

j=1 α
1Tp′
j xj ≤ β1Tp′ and

∑n
j=1 α

2Tp′
j xj ≥ β2Tp′ + 1

GL)
∑n

j=1 α
1Tp′
j xj ≥ β1Tp′ + 1 and

∑n
j=1 α

2Tp′
j xj ≤ β2Tp′

GG)
∑n

j=1 α
1Tp′
j xj ≥ β1Tp′ + 1 and

∑n
j=1 α

2Tp′
j xj ≥ β2Tp′ + 1

It is well known that Gomory-Chv́atal cuts do not eliminate any integer points. Thus,

every x ∈ Zn satisfies one of the following four sets of inequalities.

LL)
∑n

j=1 α
1Tp′
j xj ≤ β1Tp′ ,

∑n
j=1 α

2Tp′
j xj ≤ β2Tp′ and

∑n
j=1b

α
1Tp′
j +α

2Tp′
j

2
cxj ≤ bβ

1Tp′ +β
2Tp′

2
c.

LG)
∑n

j=1 α
1Tp′
j xj ≤ β1Tp′ ,

∑n
j=1 α

2Tp′
j xj ≥ β2Tp′ + 1 and

∑n
j=1b

α
1Tp′
j −α

2Tp′
j

2
cxj ≤ bβ

1Tp′−β
2Tp′

2
c.

GL)
∑n

j=1 α
1Tp′
j xj ≥ β1Tp′ + 1,

∑n
j=1 α

2Tp′
j xj ≤ β2Tp′ and

∑n
j=1b

−α
1Tp′
j α

2Tp′
j

2
cxj ≤ b−β

1Tp′ β
2Tp′

2
c.
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GG)
∑n

j=1 α
1Tp′
j xj ≥ β1Tp′ + 1,

∑n
j=1 α

2Tp′
j xj ≥ β2Tp′ + 1 and

∑n
j=1b

−α
1Tp′
j −α

2Tp′
j

2
cxj ≤ b−β

1Tp′−β
2Tp′

2
c.

Thus Zn ∩ Tp′ ⊆ (Zn ∩ TLL
p′ ) ∪ (Zn ∩ TLG

p′ ) ∪ (Zn ∩ TGL
p′ ) ∪ (Zn ∩ TGG

p′ ). Trivially,

TLL
p′ , TLG

p′ , TGL
p′ , TGG

p′ ⊆ Tp′ . Consequently, Zn ∩ Tp′ = (Zn ∩ TLL
p′ )∪ (Zn ∩ TLG

p′ )∪ (Zn ∩

TGL
p′ ) ∪ (Zn ∩ TGG

p′ ).

2

Lemma 3.2.1 guarantees that each integer solution satisfying a parent node is con-

tained in one of the child nodes. However, this does not have any bearing on finite

termination. This theory only guarantees that QHBA does not eliminate any feasible

integer points and that the solution is optimal, if QHBA terminates.

In order to achieve finite termination we must ensure that the child nodes of a given

node Tp′ excludes the LR solution. If not, then the algorithm may never end. The

following theorem formally shows this exclusion.

Lemma 3.2.2. Let x′ ∈ Rn \ Zn, then x′ satisfies none of the four subproblems created

by the branching step of QHBA.

Proof : Suppose x ∈ Rn \ Zn. Let (α1, β1) and (α2, β2) be any branching inequalities

generated from QHBA. QHBA guarantees
∑n

j=1 α
1Tp′
j x′j /∈ Z and

∑n
j=1 α2T1

j x′j /∈ Z.

Since β1 and β2 ∈ Z, x′ is trivially not contained in any of the four subproblems and

the result follows.
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2

Therefore, each set of children generated by QHBA removes some continuous solution

space. The next result is used to provide a lower bound on how much linear relaxation

space is removed by each set of children.

Lemma 3.2.3. The extreme points of the polyhedron given by the branching constraints

for LL), LG), GL) and GG) are integer.

Proof : By definition, the extreme points of the polyhedron given by any of the con-

straints for LL), LG), GL) and GG) must be basic feasible solutions to these systems

of equations. Multiplying through by a negative one for a greater than constraint does

not change the integrality of a polytope. Thus, it suffices to only consider LL).

Case 1: If βT1 + βT2 is even, then the Chvátal-Gomory cut is redundant and can be

removed. Consider all basic solutions that could exist across the first two constraints.

Assume the basic variables are xi and xj and their columns take the form

B =

∣∣∣∣∣∣∣∣
αT1

i αT1
j

αT2
i αT2

j

∣∣∣∣∣∣∣∣.
a) If there exists a column or row of 0s in B or if multiplying one column by -1

produces the other column, then there does not exist a basis as the selected variables

are not full rank.

b) If there exists at least one 0 in any one of these four locations of B, then the basis

matrix is TUM and therefore the extreme points are integer.

c) Without loss of generality, the only full rank matrix B with no zeros takes the
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generic form

∣∣∣∣∣∣∣∣
1 1

−1 1

∣∣∣∣∣∣∣∣. The basic feasible solution can be obtained using Cramer’s rule,

which is a solution method for systems of equations introduced by Gabriel Cramer in

1750 in his book Introduction l’analyse des lignes courbes algbriques and is commonly

taught in high school [6]. Using Cramer’s rule results in xi =

˛̨̨̨
˛̨̨̨
˛̨̨̨
βT1 αT1

j

βT2 αT2
j

˛̨̨̨
˛̨̨̨
˛̨̨̨

˛̨̨̨
˛̨̨̨
˛̨̨̨
αT1

i αT1
j

αT2
i αT2

j

˛̨̨̨
˛̨̨̨
˛̨̨̨

and xj =

˛̨̨̨
˛̨̨̨
˛̨̨̨
αT1

i βT1

αT2
i βT2

˛̨̨̨
˛̨̨̨
˛̨̨̨

˛̨̨̨
˛̨̨̨
˛̨̨̨
αT1

i αT1
j

αT2
i αT2

j

˛̨̨̨
˛̨̨̨
˛̨̨̨
. Thus, xi = βT2−βT1

2
and xj = βT1+βT2

2
. Since βT1 + βT2 is even, both xi and

xj are integer.

Case 2: If βT1 + βT2 is odd, then the Chvátal-Gomory cut is not redundant and

there are 3 basic variables that must be evaluated. The three basic columns must be

taken from the following matrix where the last three columns represent the slack for

each constraint

B′ =

1 1 1 0 0 0 −1 −1 −1 1 0 0

1 0 −1 1 0 −1 1 0 −1 0 1 0

1 0 0 0 0 −1 0 −1 −1 0 0 1

.

Multiplying any column by a -1 flips the sign of a determinant. If a basis is chosen

that provides a noninteger (integer) solution, then the solution would remain noninteger
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(integer) under such an operation by Cramer’s rule. Furthermore, a column of 0s can

never be full rank and any repetitive columns can be removed, so B′ can be reduced to

B′ =

1 1 0 −1 1 0 0

1 −1 −1 0 0 1 0

1 0 −1 −1 0 0 1

.

The proof proceeds in cases based off of which slack variables are basic. If all the

slack variables are basic, then clearly the solution is integer since the right hand side is

integer. Now assume that any two slack variable are basic. In such a situation, either

the basis is infeasible or it clearly has an integer solution.

Now assume that only one slack variable is in the basis. Furthermore, assume that

such a basic variable is slack 1. The value of the basic variables for the second and third

row can be obtained by solving with at most 2 nonzero x’s.

1 −1 −1 0 0 1 0

1 0 −1 −1 0 0 1

x =
βT2

bβT1+βT2

2
c

.

Clearly the right hand side is integer and this matrix is TUM. Thus the variables

have an integer solution and so the basic solution is integer. Note that having slack 2

as a basic variable follows an identical argument.

Now assume that slack 3 is basic. Now the solution for the first and second basic

variables can be obtained by solving with at most 2 non-zeros columns the following

system of equations.

1 1 0 −1 1 0 0

1 −1 −1 0 0 1 0

x =
βT1

βT2

. Notice that this matrix is TUM except for
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the first two columns. Thus the solutions are integer unless the basis for this case is

B′′ =

1 1 0

1 −1 0

1 0 1

x =

βT1

βT2

bβT1+βT2

2
c

.

The unique solution to this instance is (βT1+βT2

2
, βT1−βT2

2
, −1

2
). Since s3 = −1

2
, this is

not a basic feasible solution and this case follows.

Finally, assume that none of the slack variables are basic. Then the basic variables

must be chosen from B′′′ =

1 1 0 −1

1 −1 −1 0

1 0 −1 −1

.

If the first 3 columns are selected, then the solution is (βT1 +βT2 −bβT1+βT2

2
c,−βT2 +

bβT1+βT2

2
c, βT1 + βT2 − 2bβT1+βT2

2
c). Clearly this is integer or infeasible.

If the first two columns and the fourth column are selected for the basis, then the

solution is (βT1 + βT2 − bβT1+βT2

2
c, βT1 − bβT1+βT2

2
c, βT1 + βT2 − 2bβT1+βT2

2
c). Again this

is clearly integer or infeasible.

If the first column and the last two column are selected for the basis, then the solution

is (βT1 + βT2 − bβT1+βT2

2
c, βT1 − bβT1+βT2

2
c, βT2 − bβT1+βT2

2
c). This is clearly integer or

infeasible since βT1 > βT2 .

The last three columns cannot be chosen since they are dependent. Consequently,

every basic feasible point of QBHA’s branching routine is integer and the result follows.

2
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Now that all extrema created by QHBA are integer, it is possible to show that

QHBA finitely terminates. An advancement from this research is an alternate proof

of finite termination for BB, and consequently QHBA. The standard approach to show

finite termination for traditional BB rests in the calculation of a worse case scenario

for the size of the resulting BB enumeration tree. By using the branching constraints

xj ≤ bx∗LR
j c and xj ≥ bx∗LR

j c + 1, the maximum number of branches necessary is two

times the sum of the upper bounds for all x’s. Eventually BB branches deep enough

that xi ≤ qi and xi ≥ qi for all i = 1, ..., n, and then each xi is integer with a value of qi

or the LR is infeasible.

This standard approach cannot be applied to QHBA. Since the branching constraints

in QHBA are multi-variate and the α coefficients are not constant, any single variable is

not restricted to some integer value. Instead a lower bound on the amount of continuous

space removed every time a set of children is created. Therefore, if the IP is bounded,

it has finite volume. Thus it can be shown that after a finite number of branches all

continuous space is removed and QHBA generates an enumeration scheme. Formally,

Theorem 3.2.4. Given any bounded integer program, QHBA solves the integer program

in a finite number of steps.

Proof : Let IP be any bounded integer program, where each xi is bounded by 0 and

u. Thus, the volume of the linear relaxation space is bounded by a hyperrectangle with

volume un. Given any unfathomed node Tp′ , the four children of Tp′ generated by QHBA

eliminates a fractional point, x∗Tp′ . Furthermore, Lemma 3.2.3 guarantees that every
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extreme point of the constraints used to create these four children is integer. Thus, the

volume of the eliminated region is at least one unit. Consequently, QHBA requires at

most un steps that create children. After un sets of child nodes are created there are no

noninteger solutions remaining and every pendant node is fathomed. Furthermore, no

feasible integer point is removed by lemma 3.2.1, so QHBA reports the optimal solution.

2

Given that the QHBA evaluates all integer points and that it terminates in a finite

number of steps, QHBA finds an optimal solution, if one exists. However, even though

these fundamental characteristics have been established, a benefit must be accrued from

QHBA to show practicality in its implementation. The next section focuses on some

theoretical benefits of QHBA.

3.3 Theoretical Benefits of QHBA

The implementation of QHBA leads to a host of benefits over traditional implementa-

tions of BB. A primary result is that when QHBA creates children there are more integer

extreme points due to the branching structure. Recall that a total of 10 inequalities are

added per set of children created. Having more integer feasible solutions at any sub-

problem is beneficial because this encourages a candidate integer solution to be found

faster. Additionally, with the inclusion of Chvátal-Gomory cuts in certain child nodes

the amount of continuous space that QHBA eliminates increases. This should result in

a decrease in the total number of nodes when compared to BB.
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A direct comparison between the quaternary branching QHBA and the binary tra-

ditional BB is not a fair comparison because QHBA creates four nodes and BB only

generates two nodes. Therefore a quaternary branching scheme of BB, or quaternary

branch and bound (QBB), should be created.

A quaternary branching structure implemented in BB with single variable constraints

is identical to QHBA, except the branching constraints are of the form xi ≤ β1, xi ≥

β1 + 1, xj ≤ β2 and xj ≥ β2 where i 6= j when xi, xj ∈ Rn\Zn where β1 = bxic and

β2 = bxjc. If such an xj does not exist, then any i 6= j will suffice. The 4 partitions, or

children, are created as follows. TLL
p includes the constraints xi ≤ β1 and xj ≤ β2. The

next subproblem includes xi ≤ β1, xj ≥ β2 + 1 which is denoted TLG
p . The subproblem

TGL
p includes the constraints xi ≥ β1 + 1 and xj ≤ β2. The final subproblem, TGG

p ,

includes xi ≥ β1 + 1 and xj ≥ β2 + 1.

To illustrate single variable branching in a quaternary tree, return to the example

from the beginning of the chapter articulating conditions where hyperplane branching

could enter an infinite loop. The root node x∗LR is (1.5, 3.5) so the branching constraints

are ((1, 0), 1) and ((0, 1), 3). TLL
1 includes the constraints x1 ≤ 1 and x2 ≤ 3, TLG

1

includes the constraints x1 ≤ 1 and x2 ≥ 4, TGL
1 includes the constraints x1 ≥ 2 and

x2 ≤ 3 and TGG
1 includes the constraints x1 ≥ 2 and x2 ≥ 4. Note that the third C-G

constraint can be derived for any of the pairs, however it is always redundant.

Figure 3.4 is an illustration in two dimensions of the increased effectiveness of QHBA.

The leftmost graph shows QHBA’s branching structure and the rightmost graph shows
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QBB’s branching structure. One set of created children for QHBA has 6 integer extrema

distributed over the four child nodes that are clustered around x∗LR. However, QBB

only has 4 such integer extrema. Furthermore, QHBA eliminates an area of dimension

two around x∗LR while QBB only eliminates an area of one. Both of these benefits are

greatly expanded in higher dimensions.

After establishing a method for single variable branching constraints using a quater-

nary scheme, the number of integer extreme points at each set of created children can

be defined. Observe that these integer points are independent to the IP, thus in certain

instances they may be infeasible for a particular QBB node. Formally,

Theorem 3.3.1. One set of siblings in QBB in Rn
+ results in at most nine basic feasible

solutions that are integer for any n ≥ 2.

Proof : The proof is shown by induction. Without loss of generality and through index

substitution, it can be assumed that the branching variables are x1 and x2 in a set of

siblings in standard branch and bound with a quaternary branching strategy.

Base case: Let n = 2. Clearly there are at most 9 basic feasible solutions. The subprob-

lems for the 4 child nodes are:

1) x1 ≤ β1 x2 ≤ β2

2) x1 ≤ β1 x2 ≥ β2 + 1

3) x1 ≥ β1 + 1 x2 ≤ β2

4) x1 ≥ β1 + 1 x2 ≥ β2 + 1
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Figure 3.4: One set of children for QHBA and QBB
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where β1 and β2 ≥ 0 and integer. It is trivial to verify that the only basic feasible

solutions, which are all integer, for each child subproblem are as follows:

TLL: (β1, β2), (0, β2), (β1, 0) and (0, 0)

TLG: (0, β2 + 1) and (β1, β2 + 1)

TGL: (β1 + 1, 0) and (β1 + 1, β2)

TGG: (β1 + 1, β2 + 1).

If β1 and β2 are not 0, then there are at most 9 integer basic feasible solutions. If β1

or β2 equals zero; some points are redundant.

Induction step: Assume that standard branch and bound with a quaternary branching

strategy has at most nine basic feasible solutions that are integer in Rk. Show this is

true for Rk+1.

Since there are at most q basic feasible solutions in Rk, denoted by x1, ..., xq, examine

the points in Rk+1 which have a 0 for xk+1, (x1, 0), (x2, 0), ..., (xq, 0). Clearly, each of

these meet the respective branching inequality at equality and only have 2 nonbasic

variables. Thus, there are at least q basic feasible solution that are integer in Rk+1.

Suppose that there exists a q + 1th basic feasible integer point in Rk+1, called xq+1,

that is distinct from the q points in the previous paragraph. Clearly, xq+1
k+1 = η > 0

where η ∈ Z due to the induction step. However, the points xq+1−ηek+1 and xq+1 +ek+1

is feasible, where ei is the ith identity point. Thus, xq+1 is not an extreme point and

cannot be basic feasible, a contradiction. Consequently, there are exactly q basic feasible
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solutions and since q ≤ 9, by induction assumption, the result follows.

2

The next theorem of this section addresses the theoretical benefits of QHBA achieved

by increasing the number of integer points. An important result that follows is that by

increasing the number of integer basic feasible solutions at any set of children, the amount

of polyhedral space eliminated per iteration is also increased.

However in order to make these claims, the location of enumeration must be re-

stricted. When the LR solution of a node exists on a boundary of the polytope, some

integer extreme points and eliminated relaxation space is infeasible. Returning to the

previous proof, if β1 and β2 are 0 then there are only four basic feasible solutions. This

can also be seen in Figure 3.4 where some integer points established by the child nodes

are not in the feasible region of the problem. This is an obstacle that exists with both

QHBA and BB.

Therefore some assumptions are made so that the properties of QHBA can be more

uniformly presented. For the remainder of the section it is assumed that either the

boundaries are increased by one unit (functional range increases from [0, u] to [−1, u+1],

or that QHBA is not operating near the boundaries of the hyperrectangle.

Now consider a simple branching strategy for QBHA. For ease of presentation, assume

n is even. The results here can trivially be extended to n odd. Consider α1
i = 1 for

i = 1, ..., n, α2
i = 1 for i = 1, ..., n

2
and α2

i = −1 for i = n
2

+ 1, ..., n. Observe that

in this structure that β1 and β3 ≥ 0, due to the symmetric nature of this branching
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strategy. Initially, these types of branches motivated this research. Call such a selection

for branching constraints to be the standard branches for QHBA. The following theorem

provides a quadratic number of integer extreme points.

Theorem 3.3.2. One set of siblings generated from a standard branching constraints

of QHBA from an x∗LR ∈ interior({Rn : xi ≥ 1 for all i = 1, ..., n}) results in at least

3
2
n2 basic feasible solutions that are integer for any n ≥ 2 and even.

Proof : The proof follows by selecting basic feasible solutions that generate a quadratic

number of basic integer points. Since these basic feasible points satisfy the constraints

at equality, the sign on the constraint is irrelevant. Furthermore all four partitions are

also nonempty since the linear relaxation, x∗LR, is in interior({Rn : xi ≥ 1 for all i =

1, ..., n}). Thus every corner point ”near” x∗LR is a basic feasible solution.

Assume that a child node has the right hand side of the branching constraints equal

to γ1 and γ2, and γ3 if applicable. Clearly, γ1 = β1 if the inequality is a ”≤” and a

β1 + 1 if the inequality is a ”≥” constraint.

Assume γ1 + γ2 is even, then there is no C-G cut. Now assume that the first and

second slack variable are nonbasic. Due to the standard branching structure and the

requirement to be full row rank, every basis takes the form
1 1

1 −1

with the x values

obtained by solving the following equations
1 1

1 −1

x =
γ1

γ2

. The solution to this

basis is always γ1+γ2

2
and γ1−γ2

2
, which is clearly integer since γ1 + γ2 is even. There are
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n
2

choices for the first column and n
2

choices for the second column. Since two children

have γ1 + γ2 even, these children provide at least 2 ∗ (n
2
)2 basic feasible integer extreme

points.

Now consider the case when γ1 +γ2 is odd and examine all bases where only the first

slack variable is basic. Due to the standard branching structure and the requirement to

be full row rank, every basis takes the form of

1 1 1

1 −1 0

1 0 0

with the x values obtained

by solving the following equations

1 1 1

1 −1 0

1 0 0

x =

γ1

γ2

γ3

. The solution to this basis

is (γ3, γ3 − γ2, γ1 − 2γ3 + γ2). These are clearly integer feasible solutions due to the

requirements to be sufficiently on the interior of RN
+ and is shown by Lemma 3.2.3.

There are n
2

possible selections for the first such column and n
2

selections for the second

column. Thus there are n2

4
such basic feasible solutions.

The case where only the second slack is basic follows almost identical to the first.

The basis is

1 1 0

1 −1 1

1 0 0

with the solution of (γ3, γ1 − γ3, γ1 − 2γ3 + γ2). There are n2

4

such basic feasible solutions. Since there are always two children nodes that have γ1 +γ2

odd, there are a total of n2 such basic feasible solutions.

Combining these two results generates at least n2 + n2

2
basic feasible integer solutions
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and the result follows.

2

The use of the C-G cuts internally removes noninteger points, and increases the

number of basic feasible solutions for any set of siblings. A result of increasing the

number of basic feasible solutions is that the amount of continuous space eliminated

is also increased. In Figure 3.4, in two dimensions the continuous space eliminated in

QBB from one iteration has volume 1. In QHBA the volume increases to 2. This effect

is multiplied in higher dimensions. By establishing the distance between basic feasible

solutions, the total volume of removed by one set of four children can be characterized.

Formally,

Theorem 3.3.3. If n is even and QBHA utilizes standard branches, then the combina-

tion of the four children eliminates at least 2
n
2 volume from Rn.

Proof: At the node Tp with standard branches, assume β1 + β2 is odd. Clearly, TLL
p′

and TGG
p′ have non-redundant C-G constraints. From Lemma 3.2.3, some basic feasible

solutions to these problems occur when either s1 or s2 are basic. Consider s1 as basic in

TLL, then the basic solutions of TLL in such a scenario takes the form xi = bβ1+β2

2
c and

xj = bβ1+β2

2
c − β2 for each i = 1, ...n

2
and j = n

2
+ 1, ..., n. Next consider s2 as basic in

TGG, then the basic solutions of TGG in such a scenario take the form xi = dβ1+β2

2
e + 1

and xj = β1 − bβ1+β2

2
c + 1 for each i = 1, ...n

2
and j = n

2
+ 1, ..., n. Observe that the

distance between these points in xi is 2 for each i = 1, ..., n
2
.

Now consider the case where β1+β2 is even. When β1+β2 is even, then the right hand
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side of the subproblems TLG and TGL are odd. From Lemma 3.2.3, some basic feasible

solutions to these problems occur when either s1 or s2 are basic. Consider s1 as basic

in TLG, the basic solutions for TLG in such a scenario takes the form xi = −β1 + β2 + 1

and xj = β2 + 1 for each i = 1, ...n
2

and j = n
2

+ 1, ..., n. Next consider s2 as basic in

TGL, then the basic solutions of TGL in such a scenario take the form xi = −β1 + β2 − 1

and xj = −β2 + 1 for each i = 1, ...n
2

and j = n
2

+ 1, ..., n. Observe that the distance

between these points in xi is 2 for each i = 1, ..., n
2
.

Consequently, the four children eliminate at least a hyperrectangle with n
2

variables

that have a distance of at least 2. From Lemma 3.2.3, every other dimension of the

hyperrectangle is at least 1, due to integer extreme points. Consequently, these four

children eliminate at least 2
n
2 volume from Rn.

2

Now that QHBA is known to eliminate a substantial amount of continuous relaxation

space for each branch. Naively, one may attempt to provide limit to the number of

branching iterations of QHBA to O( (u)n

2
n
2

), which is better than O(un) from BB. However,

it is possible that all of the 2
n
2 eliminated hyperrectangle from Theorem 3.3.3 may not be

in the feasible region of the current node. Thus, such a bound would be incorrect as all of

the volume from Theorem 3.3.3 cannot be guaranteed to be removed at each branching

step. The next chapter provides computational evidence to support the theoretical

benefits presented here.
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Chapter 4

Computational Results for the

Quaternary Hyperplane Branching

Algorithm

The Quaternary Hyperplane Branching Algorithm is a new approach to BB that has

shown significant theoretical benefits for the solution of IPs. This chapter contains a

computational study supporting these theoretical findings. The computational results

show an increased efficacy in the solution times of IPs. QHBA reduces the solution time

by approximately 26.7% for the class of problems used in this research.

The computational study was done on an Intel(R) Core(TM) i7-920 running at 2.67

GHz with 3 GB of RAM. Problems were solved using ILOG CPLEX 10.0 (referred to

as CPLEX); a commercially available optimization software package [12].
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The problems used for this study are multidimensional knapsack problems supplied

from test bank [4]. There were a total of 30 problems selected. The IPs used for this

study take the form of maximize
∑n

j=1 cjxj subject to
∑n

j=1 aijxj ≤ bi ∀ i = 1...m, and

xj ∈ [0, 100] and integer. The aij are integer and were drawn from a discrete uniform

generator between [0, 1000]. The right hand side bi is calculated using a tightness ratio,

λ, where bi = bλ ∗ (
∑n

j=1 aij)c ∀ i = 1...m. The objective function coefficients (cj) are

calculated by cj =
∑m

i=1
aij

m
+ 500qj ∀ j = 1...n, where qj is a real number taken from a

continuous uniform generator between [0,1]. The 30 problems were evenly divided into 3

classes, each with a different tightness ratio. The three ratios used for the problems are

λ = {.25, .5, .75}. Each problem has 100 variables and 30 constraints. These problems

are selected because solution times were not trivial but also not prohibitively high. A

ceiling of 100,000 seconds was set for the maximum amount of time alloted to solve a

problem.

There are three primary solution methods used in this computational study: stand

alone CPLEX, QHBA, and QBB. A basic version of warm starting was implemented for

all methods. Prior to running the test problems, CPLEX was run to find a value z∗, for

each test problem. A lower bound of z∗ − 1 is then implemented on all runs.

The QHBA was coded in C to implement quaternary branching with multivariate

branches for a set number of nodes. In the computational study QHBA was not imple-

mented to termination. Instead QHBA was executed for a set number of nodes (2000

nodes), then CPLEX is called and uses traditional BB to complete the problem. This
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modification to QHBA is necessary due to programming constraints and memory alloca-

tion concerns. The code created in the computational study could not allocate memory

as efficiently as commercially available software packages. Consequently, the memory

available on the test computers would be exceeded before a solution could be achieved

using only QHBA. Thus QHBA was used for 200 nodes and then traditional BB was

used to solve the resulting subproblems.

Any call to CPLEX is set at default with the exception that a depth first search

strategy is used to conserve memory. The default setting in CPLEX would often exhaust

the available memory on the test computers before solving to optimality, so depth first

search was employed so that the problems would solve. In CPLEX, depth first selects

the most recently created node for evaluation.

When implementing QHBA, a specific set of branching constraints is employed. Ini-

tially the standard branching pattern was used where α1
i = 1 for i = 1, ..., n, α2

i = 1 for

i = 1, ..., n
2

and α2
i = −1 for i = n

2
+ 1, ..., n. However, this often times did not have a

beneficial impact on computational time and consequently was not implemented in the

final study. Other branching schemes based on the standard branches were also explored

with mixed results and were not used.

The first branching constraint used in this computational study for QHBA is α1
i = 1

for i = 1, ..., n. Since all of the α coefficients are 1 for the first branching constraint,

it is possible that β1 could be integer. Therefore if
∑n

j αjx
∗Tp′
j ∈ Z, then find the first

xj where xj ∈ R\Z and set αj = 0. This insures that the linear relaxation solution is
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eliminated. The second branching constraint is α2
i = −1 if πi ≤ −300 and noninteger,

where πi is the reduced cost of variable xi, else α2
i = 0. Branching constraints are there-

fore variable from subproblem to subproblem. The first constraint was held relatively

constant for each subproblem (coefficients changed only when the sum was integer), and

the second constraint varied from node to node according to the reduced costs.

Branching constraint selection for QBB is as follows: for some node Tp′ find some

xi and xj such that xi, xj ∈ R and i 6= j. This was done sequentially, so xi was the

first noninteger value in x∗Tp′ and xj was the second. Set α1
i = 1 and α2

j = 1 and all

other α1 and α2 values to 0. So the first branching constraint is of the form ((ei)
T , β1),

and the second is ((ej)
T , β2). After 2000 nodes elapses, CPLEX solves the remaining

subproblems.

The immediate comparison was between CPLEX and QHBA with multivariate branch-

ing constraints. This comparison identifies any immediate benefits between traditional

BB and QHBA. The next comparison is between QHBA with multivariate branching

constraints and a quaternary scheme that uses single variate constraints, QBB. It is

possible that any computational benefits garnered by multivariate branches are a result

of effective partitioning and not of QHBA. Therefore, this comparison is made with a

method that randomly partitions the solution space with single variate branchings, us-

ing a quaternary branching scheme. If benefits are accrued from random branches, then

any computational benefits could be attributed to more efficient partitioning and not

necessarily to the modifications introduced by QHBA. Each problem was solved using
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the three solution methods, and total solution time is in seconds.
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The primary result is that QHBA shows a decrease in solution time when compared

to both stand alone CPLEX and QBB. When comparing QHBA to CPLEX, the average

solution time reduction is approximately 26.7%, shown in Table 4.1. QHBA shows an

improvement over CPLEX in 23 of the 28 problems that were solved to optimality. Of

the 5 problems where no benefit was garnered from QHBA, 4 of those problems were

the fastest to solve. Since these problems are the easiest to solve, implementation of

QHBA was the inhibiting factor. When problems are rudimentary and solved quickly

by CPLEX, implementation of QHBA to a high number of nodes probably only serves

to increase the computational time. Since QHBA increases the number of subproblems

necessary to reach a solution (a greater number of nodes) and increase the complexity

of these problems due to the added branching constraints, it is easy to see why QHBA

loses on fast problems. Therefore, by inhibiting it is not necessarily that QHBA causes

the impediment, but instead the elementary code of this version of QHBA increases the

overall processing time.

Note that if QHBA is implemented with a node threshold of 500 (instead of 2000),

then QHBA is again faster than stand alone CPLEX on problems 4, 9 and 21. For

problems with a low CPLEX solution time, it is still possible to accrue a benefit using

lower number of nodes. Therefore, as problems become more complex there should

be more improvement from QHBA implementation. This benefit is also seen in larger

problems.

Another knapsack problem from the same test bank was used in a pilot run, except
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this problem was 250 variables and 30 constraints (tightness constraint of .25). For the

same 2000 node threshold QHBA solved the problem in 335,927 seconds, and CPLEX

solved in 377,775 seconds. This is a decrease in the solution time by 41,848 seconds

(approximately 11.5 hours), or 11.8%. We believe that in this instance increasing the

node threshold would further reduce overall solution time.

The average preprocessing time while using QHBA was negligible to the overall

solution time. The average time using the programmed QHBA code was approximately

17.5 seconds and is not reported in the table because the processing time was relatively

constant across all problems. This indicates that a large benefit can be procured from

very little preprocessing. The fact that 17 seconds of preprocessing can result in up to

a 55% reduction in solution time indicates that QHBA at the very least can be used as

a preprocessing step for commercial IP solvers.

A second comparison was done between QHBA and QBB. The data for this compar-

ison is presented in Table 4.2. This comparison shows that QHBA decreases solution

time when compared to QBB by approximately 5%. In 25 of the 28 problems QHBA pro-

duced a benefit. Problem 23 appears to be an anomaly in the overall pattern of behavior

for the test methods as QBB solved 10,396 seconds faster than QHBA. When removed

from the test data, the benefit of QHBA increases to approximately 14.3%. The exact

reason for this anomalous reading is unknown, however QBB does reciprocally poorly

for other problems. In the aforementioned test problem using 250 variables and 30 con-

straints, QBB took 691,674 seconds (an increase of 355,747 seconds, approximately 4
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days). This result demonstrates the importance of hyperplane branches, and the effec-

tiveness of the internal cutting planes as an improvement method when multivariable

branching constraints are employed and the C-G cuts are derived.

The final comparison is between QBB and CPLEX. In this comparison QBB was

beneficial in only 15 of the 28 problems, as shown in Table 4.3. However QBB was over

20% faster and thus a quaternary branching structure may be more beneficial than a bi-

nary branching structure demonstrated in traditional BB. Since QHBA shows a benefit

in a majority of the problems when compared to CPLEX, QBB’s ineffectiveness in ap-

proximately half of the test problems is also evidence to the effectiveness of multivariable

branching constraints and internal cutting planes.

We believe that a primary reason for these computational advancements is that the

use of internal C-G cuts significantly increase the number of basic feasible integer points

in child subproblems. In traditional CPLEX, the number of infeasible integer points

in unfathomed nodes was at maximum the number of constraints. However, in QHBA

the number of integer infeasible points per node was significantly increased in QHBA.

This is due to the C-G cuts. Consequently, it is possible the warm starting procedure

reduces the magnitude of the benefit seen. If there were no lower integer bound set,

then it is possible that in the early iterations of QHBA bounding would happen in fewer

iterations. More specifically, that integer solutions would be found faster.

Observe that while QHBA showed a benefit in comparison to QBB, that benefit was

not as large as when compared to CPLEX. This suggests that there is some advantage to
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more advanced branching structures. However, when comparing QBB to CPLEX there

is not a clear benefit to implementation of a quaternary branching scheme. QHBA’s

superiority to QBB also further demonstrates the necessity of choosing strong branching

constraints, and the efficacy of internal cutting planes.

The theoretical and computational results from this research strongly suggest that

QHBA is a valuable tool for solving IPs. It must be noted that this is an elementary

version of QHBA, and there is much room for potential advancements that can even

further strengthen the algorithm and improve its computational depth. There are many

research areas that can be further addressed in future research for hyperplane branching,

and some of these research topics are further addressed in Chapter 5.
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QHBA CPLEX
ProblemNo. λ T ime T ime Improvement %Difference

1 .25 829 1072 Yes 25.6
2 .25 7615 12445 Yes 48.2
3 .25 1241 1415 Yes 13.1
4 .25 304 216 No -33.8
5 .25 244 87 No -94.9
6 .25 856 947 Yes 10.1
7 .25 1362 1586 Yes 15.2
8 .25 1799 2489 Yes 32.2
9 .25 601 530 No -12.6
10 .25 1838 2295 Yes 22.1

Total .25 16689.0 23082.0 7/10 32.1

11 .50 104 20 No -135.5
12 .50 3851 6500 Yes 51.2
13 .50 1255 1538 Yes 20.3
14 .50 585 995 Yes 51.9
15 .50 653 741 Yes 12.6
16 .50 13492 18904 Yes 33.4
17 .50 521 529 Yes 1.5
18 .50 12943 19094 Yes 38.4
19 .50 2078 3089 Yes 39.1
20 .50 1187 1790 Yes 40.5

Total .50 36669.0 53200.0 9/10 36.8

21 .75 8514 7149 No -17.4
22 .75 4425 5429 Yes 20.4
23 .75 42965 47080 Yes 9.1
24 .75 - - - -
25 .75 4126 7052 Yes 52.4
26 .75 1139 1521 Yes 28.7
27 .75 7505 12113 Yes 47.0
28 .75 - - - -
29 .75 2621 4632 Yes 55.5
30 .75 35353 48107 Yes 30.6

Total .75 106648.0 133083.0 7/8 22.1

Cumulative Total 160006.0 209365.0 23/28 26.7

Table 4.1: Data Reported for QHBA and CPLEX
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QHBA QBB
ProblemNo. λ T ime T ime Improvement %Difference

1 .25 829 1738 Yes 70.8
2 .25 7615 9314 Yes 20.1
3 .25 1241 1543 Yes 21.7
4 .25 304 353 Yes 14.9
5 .25 244 276 Yes 12.3
6 .25 856 1007 Yes 16.2
7 .25 1362 1451 Yes 6.3
8 .25 1799 2316 Yes 25.1
9 .25 601 670 Yes 10.9
10 .25 1838 2438 Yes 28.1

Total .25 16689.0 21106.0 10/10 23.4

11 .50 104 120 Yes 14.3
12 .50 3851 4386 Yes 13.0
13 .50 1255 1593 Yes 23.7
14 .50 585 748 Yes 24.5
15 .50 653 739 Yes 12.4
16 .50 13492 16125 Yes 17.8
17 .50 521 620 Yes 17.4
18 .50 12943 15690 Yes 19.2
19 .50 2078 2261 Yes 8.4
20 .50 1187 1552 Yes 26.7

Total .50 36669.0 43834.0 10/10 17.8

21 .75 8514 8473 No -0.5
22 .75 4425 5956 Yes 29.5
23 .75 42965 32569 No -27.5
24 .75 - - - -
25 .75 4126 5781 Yes 33.4
26 .75 1139 1619 Yes 34.8
27 .75 7505 10371 Yes 32.1
28 .75 - - - -
29 .75 2621 3836 Yes 37.6
30 .75 35353 34083 No -3.7

Total .75 106648.0 102668.0 5/8 -3.8

Cumulative Total 160006.0 167628.0 25/28 4.7

Table 4.2: Data Reported for QHBA and QBB
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QBB CPLEX
ProblemNo. λ T ime T ime Improvement %Difference

1 .25 1738 1072 No -47.4
2 .25 9314 12445 Yes 28.8
3 .25 1543 1415 No -8.7
4 .25 353 216 No -48.2
5 .25 276 87 No -104.1
6 .25 1007 947 No -6.1
7 .25 1451 1586 Yes 8.9
8 .25 2316 2489 Yes 7.2
9 .25 670 530 No -23.3
10 .25 2438 2295 No -6.0

Total .25 21106.0 23082.0 3/10 8.9

11 .50 120 20 No -142.9
12 .50 4386 6500 Yes 38.8
13 .50 1593 1538 No -3.5
14 .50 748 995 Yes 28.3
15 .50 739 741 Yes 0.3
16 .50 16125 18904 Yes 15.9
17 .50 620 529 No -15.8
18 .50 15690 19094 Yes 19.6
19 .50 2261 3089 Yes 31.0
20 .50 1552 1790 Yes 14.2

Total .50 43834.0 53200.0 7/10 19.3

21 .75 8473 7149 No -17.0
22 .75 5956 5429 No -9.3
23 .75 32569 47080 Yes 36.4
24 .75 - - - -
25 .75 5781 7052 Yes 19.8
26 .75 1619 1521 No -6.2
27 .75 10371 12113 Yes 15.5
28 .75 - - - -
29 .75 3836 4632 Yes 18.8
30 .75 34083 48107 Yes 34.1

Total .75 102688.0 133083.0 5/8 25.8

Cumulative Total 167628.0 209365.0 15/28 22.1

Table 4.3: Data Reported for QBB and CPLEX
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Chapter 5

Conclusion

This thesis introduced a modified version of the Branch and Bound Algorithm called the

Quaternary Hyperplane Branching Algorithm. The primary advancements of QHBA

are the use of multivariate branches (hyperplane branches), a quaternary branching

scheme, and the creation of internal C-G cutting planes. More specifically, by using the

multivariate branches in a quaternary branching tree C-G cuts can be induced from those

branching constraints. QHBA has a variety of theoretical and computational benefits.

Theoretically, QHBA induces a quadratic number of integer extreme points per

branch, which is far more than the nine created by classic BB in a similar setting.

Additionally, one set of QHBA branches can eliminate 2
n
2 volume of continuous relax-

ation area as compared to 1 for QBB. Besides these advancements, a novel proof to finite

termination is presented for QHBA and BB.

Computationally, implementation of QHBA on general bounded IPs has shown a
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26.7% decrease in the total solution time in certain problems over a commercial IP solver.

These improvements demonstrate the significant advantages of QHBA, and suggest that

QHBA would be a valuable inclusion to commercial IP solver software packages.

5.1 Future Research

The work presented in this thesis opens the door to a host of new research topics. Thus,

there is abundant future work that can and should be pursued to improve or extend the

results in this thesis.

For a majority of the theoretical arguments the standard branching scheme was con-

sidered. However, during the computational study it was discovered that the standard

branching scheme does not necessarily result in the most efficient branches. Selection

of the α values for the branching constraints is an important subproblem in the im-

plementation of QHBA, and further work needs to be done for branching constraint

selection.

Additionally, the quaternary branching structure employed was shown to increase the

number of integer extrema in each subproblem. Higher orders of branching should be

explored to see if this phenomena is pervasive, and if the number of integer extrema also

increases with more branches per iteration. In other words, are 3 branching constraints

with 8 resulting child nodes better than QHBA?

The implementation of cutting planes should also be further investigated. Cutting
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planes were induced in QHBA for the two branching constraints when necessary to elimi-

nate potential non-integer points that could prevent QHBA from terminating. However,

these non-integer sticking points do not only occur between the branching constraints.

Often times these points occur between a branching constraint and one of the original

problem constraints. Further work could be done to see if it is possible to implement

more cutting planes per subproblem to decrease the volume of the continuous relaxation

space.
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